

DPE PILOT TEST WELL AS-BUILT AND PILOT TEST COMPLETION REPORT

Lovington 66, PSTB Facility #1489 424 South Main Street, Lovington, Lea County, New Mexico

Submitted To:

Celestine Ngam

New Mexico Environment Department Petroleum Storage Tank Bureau 2905 Rodeo Park Drive E., Bldg. 1

Santa Fe, NM 87505

Submitted By:

Golder Associates Inc.

5200 Pasadena Avenue N.E., Suite C Albuquerque, NM 87113 USA

On Behalf Of:

Jack Walstad Oil Company 2317 Tuttington Circle Oklahoma City, OK 73170

Distribution:

2 Copies - NMED-PSTB

1 Copy – Jack Walstad Oil Company 2 Copies – Golder Associates Inc.

November 9, 2015

November 2015

i

Table of Contents

COVER PAGE		CP-1
STATEMENT OF FA	AMILIARITY	SOF-1
1.0 INTRODUC	CTION	1
1.1 Site Desc	cription and Previous Corrective Actions	1
2.0 ACTIONS C	COMPLETED DURING THE PROJECT	3
2.1 Site Acce	ess	3
2.2 Pre-Testi	ing - Monitor Wells W-1, W-2 and W-3	3
2.3 NAPL Ba	ail-Down and Recovery Testing	3
2.4 DPE Pilot	t Test Well Installation	4
2.5 Dual Pha	ase Extraction Pilot Testing	5
2.5.1 Dual P	Phase Pilot Test of Well DPE-1	6
2.5.2 Dual P	Phase Tests of Wells W-1, W-2, & DPE-1	7
3.0 RESULTS (OF INVESTIGATIONS	8
3.1 Pre-Testi	ing – Wells W-1, W-2 and W-3	8
3.2 NAPL Ba	ail-Down and Recovery Tests	8
3.3 Pilot Test	t Well DPE-1 Installation	8
3.4 Dual Pha	ase Extraction Pilot Testing	8
3.4.1 Dual P	Phase Pilot Test of Well DPE-1	9
3.4.2 Dual P	Phase Test of Well W-1	10
3.4.3 Dual P	Phase Test of Well W-2	11
3.4.4 Dual P	Phase Test of well DPE-1	11
4.0 CONCLUSI	IONS AND RECOMMENDATIONS	12
4.1 Conclusio	ons	12
4.2 Recomm	nendations	13
5.0 REFERENC	CES	14

1404221.4

List of Tables

Table 1	Summary of Sample Analytical Media Testing
Table 2	Summary of Soil Sample Results for DPE-1
Table 3	Summary of Water Sample Results for DPE-1
Table 4	Summary of Vapor Sample Results for DPE-1
Table 5	Summary of NAPL Bail-Down Test Results

List of Figures

Figure 1	Project Location Map
Figure 2	Site Layout
Figure 3	Dual Phase Extraction Pilot Test Well Locations
Figure 4	Boring Log/Well Construction Detail DPE-1

List of Appendices

Appendix A	Photographic Log
Appendix B	Access Agreements
Appendix C	Well Logs W-1, W-2 and W-3 and January 2014 groundwater and NAPL maps
Appendix D	Monitor Well Pre-Tests
Appendix E	NAPL Bail-down and Recovery Test Data and Interpretation
Appendix F	NMOSE Well Permit for Well DPE-1
Appendix G	Soil and Water Disposal Manifests
Appendix H	Laboratory Testing Reports
Appendix I	AcuVac Remediation, LLC Dual Phase Extraction Pilot Test Reports
Appendix J	Pilot Test Tables and Calculations

CP-1

1404221.4

COVER PAGE

DPE Pilot Test Well As-Built and Pilot Test Completion Report

Site: Lovington 66

Responsible Party: Jack Walstad Oil Company Inc., Robert C. Murrell

Responsible Party Mailing Address: 2317 Tuttington Circle

Oklahoma Čity, OK 73170

Facility ID: 1489

Release ID: 1182

Site Address: 424 S. Main St.

Lovington, NM 88260

Author/Consulting Company: Golder Associates Inc.

Date of Report: November 9, 2015

Date of Confirmation of Release: December 5, 1991

November 2015

SOF-1

1404221.4

STATEMENT OF FAMILIARITY

I, the undersigned, am personally familiar with the information submitted in this report and the attached documents and attest that it is true and complete.

Signature:

Name:

Clay Kilmer

Affiliation:

Golder Associates Inc.

Title:

Project Manager

Date:

November 9, 2015

1.0 INTRODUCTION

On behalf of Jack Walstad Oil Company, Golder Associates Inc. (Golder) has completed well installation activities, Dual Phase Extraction (DPE) pilot testing, and non-aqueous phase liquids (NAPL) bail testing at the former Walstad Lovington 66 Site. The work was completed in accordance with the *Work Plan for Dual Phase Extraction Pilot Test, Lovington 66 Site (LUST ID1182), Lovington, New Mexico* dated May 7, 2014. This work was completed in accordance with the requirements set forth in the New Mexico Administrative Code, Title 20, Chapter 5, Section 12 and the New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau (PSTB) Guidelines for Corrective Action. The work plan was approved by the NMED PSTB on May 14, 2014 under work plan identification number (WPID # 17138). This submittal satisfies scope of work identified in WPID #17138, and is identified as deliverable ID 17138-4.

1

1.1 Site Description and Previous Corrective Actions

The former Lovington 66 Site (the site) is located at 424 South Main Street, in Lovington, Lea County, in southeastern New Mexico (Figure 1). Figure 2. Locations of the groundwater monitoring well network for the Lovington 66 site are also shown. The site is bounded by on the south by New Mexico Highway 83 (Avenue D) and Main Street on the east. Avenue C is north of the site and west of the site is a commercial property. Southeast of the site is an Allsup's convenience store and self-service gasoline station (Allsup's #109), which is also a leaking underground storage tank (UST) site. A self-service gasoline station was formerly located south of the site. The Lovington 66 station has been demolished and a McDonald's restaurant operation is now located on the former Lovington 66 tract, as well as the adjoining tract to the north. The Lovington 66 station was in the area that is now developed as a driveway and parking area for McDonald's.

Fuel from the Lovington 66 site has migrated southeast in the direction of the Allsup's #109 site. Significant thicknesses of NAPL have been noted in monitoring well Nos. W-1, W-2, and W-3. Well installation and pilot testing activities were performed in the area of known NAPL accumulation at the site.

During Golder's negotiation for a site access agreement with Pearson Oil Company, Keith Pearson indicated that a fuel remediation system had previously been placed and operated at the site. Golder has not reviewed documentation of placement or operation of a remediation system at the site; however, during site activities conducted pursuant to completing well installation and pilot testing, Golder personnel observed underground conveyance line penetrations into well vaults for wells W-1, W-2 and W-3, shown in Photographs 34 and 35 in **Appendix A**. Wells W-1, W-2 and W-3 are completed with four-inch polyvinyl chloride (PVC) casing; the other network wells are completed with two-inch PVC casing.

Prior corrective action activities completed at the site include the following:

- July 1991 AEI Tank, Inc. (AEI) conducted a site assessment that included seven soil borings advanced within the underground storage tank (UST) backfill or UST perimeter, and five borings in or near product pipe trenches. Hydrocarbon contamination was observed.
- November 1991 AEI removed five USTs that contained diesel, unleaded fuels, and used oil, as well as the associated product piping and fuel dispensers. Hydrocarbon contamination was observed in the location of the dispensers and the location of the diesel tank. It was determined that a release likely occurred from overfilling the USTs and from the dispensers and product lines (a large section of product piping had been replaced).
- November and December 1991 AEI excavated approximately 600 cubic yards of contaminated soil from product line trenches, dispenser islands and tank excavations.
- December 1991 AEI attempted to delineate the vertical extent of contamination by installing one soil boring. The location of this soil boring was never documented. During the drilling of the boring, auger refusal was encountered at 40 feet below ground surface (bgs).
- February 1992 AEI installed one groundwater monitoring well (W-1). Groundwater sample results indicated that groundwater contamination was present above New Mexico Water Quality Control Commission (NMWQCC) standards.
- March 1992 AEI installed two additional monitor wells (W-2 and W-3) to determine the extent of dissolved phase hydrocarbon contamination. Both wells had dissolved phase hydrocarbon concentrations well above NMWQCC standards.
- June 1992 Billings & Associates, Inc (BAI) completed an Interim Hydrogeologic Investigation Report (On-site). During this investigation six soil borings (B-4 through B-9) were advanced at the site to a depth of 40 feet bgs. Heated headspace measurements above action levels were present in all borings except B-8. NAPL was present in the three monitor wells installed by AEI. Three additional monitor wells W-4, W-5, and W-6 were installed. The three new wells exceeded NMWQCC standards.
- September 1993 BAI completed a 2nd Interim Hydrogeologic Investigation Report. During this investigation free product recovery efforts commenced using BAI's Product Recovery Filter system. In addition six new monitor wells (W-7 through W-12) and vertical extent well V-1, were installed.
- June 1993 BAI submitted the 3rd Interim Hydrogeologic Investigation Report. Five wells (W-13 through W-17) were installed to delineate the dissolved phase plume. NAPL was present in vertical extent well V-1, which Billings attributed to leaking well casing.
- August 2006 Golder sampled the Lovington 66 wells as part of an investigation conducted at the Allsup's #109 site located downgradient from the Lovington 66 site.
- November 2007 Golder completed a Continued Secondary Investigation in which three downgradient wells (W-19, W-20, and W-21) were installed and a NAPL bail down test was completed on wells W-2 and W-3. The downgradient extent of contamination was delineated.
- August 2008 Golder completed four quarters of groundwater monitoring at the Lovington 66 site.
- February 2009 Golder completed a biannual monitoring event and associated quarterly product recovery from wells W-1, W-2, W-3, and V-1. The site data for the first biannual groundwater monitoring report was completed in January 2009.

August 2009 – Golder completed the second biannual monitoring event and associated quarterly product recovery from wells W-1, W-2 and W-3. The site data collection for the second biannual groundwater monitoring report was completed in July 2009.

2

- February 2014 Golder completed a biannual monitoring event and associated quarterly product recovery from wells W-1, W-2 and W-3. The site data collection for the first biannual groundwater monitoring report was completed in January 2014.
- October 2014 Golder completed a biannual monitoring event and associated quarterly product recovery from wells W-1, W-2 and W-3. The site data collection for the second biannual groundwater monitoring report was completed in October 2014.

2.0 ACTIONS COMPLETED DURING THE PROJECT

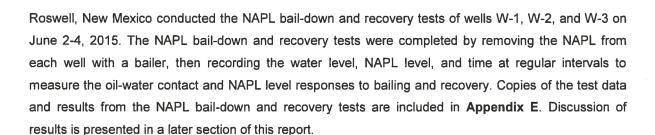
This section summarizes the list of activities performed during this project.

2.1 Site Access

Prior to the start of site work, Golder executed an access agreement with the current property owner, Pearson Oil Company, Hobbs, NM, with the McDonald's Corporation, current lessee of the property, and with Jack Walstad Oil Company, Responsible Party, to allow Golder and subcontractors to enter the property to perform well installation and pilot testing activities. A copy of the site access agreement is included with this submittal in **Appendix B**.

2.2 Pre-Testing - Monitor Wells W-1, W-2 and W-3

Work plan 17138 called for installing a new DPE extraction pilot test well (DPE-1) near the center of existing monitoring wells W-1, W-2 and W-3 and performing the extraction pilot test on DPE-1, observing vacuum and fluid level responses in DPE-1, as well as in wells W-1, W-2 and W-3. Available lithologic logs and completion details of Wells W-1, W-2 and W-3 provided by NMED-PSTB, as well as January 2014 groundwater gradient, dissolved volatile organic compound (VOC) and NAPL thickness maps are included with this submittal in **Appendix C**.


Due to the age of existing monitoring wells W-1, W-2 and W-2 (completed in 1991 and 1992), Work plan 17138 included scope to perform short duration vacuum flow and impedance tests of wells W-1, W-2 and W-3 to confirm that each well was in open communication with the subsurface and that representative responses could be expected from each during the vacuum extraction test of the new well.

Golder conducted monitor well pre-testing on March 29, 2015 on wells W-1, W-2, and W-3. Well testing included short vacuum extraction tests of each well, vacuum pumping to stability at several successively higher vacuum rates, and noting the flow and impedance at each extraction well and vacuum responses at the other two wells. Produced vapor concentrations were monitored with a photo-ionization detector (PID); vapor temperatures were measured with an infrared spot meter. Produced vapors were abated with a 180-pound granular activated charcoal filtration canister. Testing results indicated that wells W-1, W-2 and W-3 would provide acceptable observation well data for the DPE pilot test. The data records and results from the monitoring well pre-testing are shown in **Appendix D**.

2.3 NAPL Bail-Down and Recovery Testing

Responding to a request from NMED-PSTB for out-of-scope testing, Golder gained approval for contingency budget expenditure (WPID 17138-5) to perform NAPL bail-down and recovery testing and analysis on wells W-1, W-2 and W-3 in accordance with ASTM Method Designation ES-2856-13 "Standard Guide for Estimation of LNAPL Transmissivity," the API LNAPL Transmissivity Workbook, and the Gruszenski method for determination NAPL thickness. Golder's subcontractor, Clayton M. Barnhill,

2.4 DPE Pilot Test Well Installation

Golder contracted HCI Drilling Inc., Lubbock Texas (HCI) to install the well (DPE-1) for the DPE testing at the site. A permit to drill the well was obtained from the New Mexico Office of the State Engineer and a copy of the permit is included in **Appendix F**. The location of DPE-1 was selected such that wells W-1, W-2 and W-3 would be located at three successively greater distances from the DPE test well. The site layout showing the existing monitoring well locations and the location of DPE-1 is shown on **Figure 3**. The DPE-1 well location was marked with white paint two weeks prior to drilling, and Golder filed a New Mexico 811 One-Call locate request to clear underground utilities on June 4, 2015. The utilities were cleared on June 8, 2015. No underground utilities were identified near the proposed location for DPE-1.

On June 14, 2015, HCl drilled and completed DPE-1 to a depth of 75 feet using air rotary drilling methods. The well was drilled with a 7-7/8" outside diameter drill bit using an air-rotary circulation. HCl installed a four-inch Schedule 40 PVC well casing. The well was screened from 45 to 75 feet bgs with 0.010-inch slotted casing. An annular filter pack was placed around the well from 41 to 75 feet bgs using 20/40 silica sand. A hydrated bentonite seal was placed from 1 to 41 feet bgs. The well was completed with an eight-inch diameter traffic grade vault placed in concrete and finished flush to surrounding asphalt grade. The top of the casing was cut approximately six inches bgs. Photographs of the installation of DPE-1 are shown in **Appendix A**.

Golder personnel logged the borehole for lithology, grain size, color, moisture content, cohesiveness, odor, and estimated groundwater level. The boring log and well construction details are shown on Figure 4. Golder collected and screened the air-rotary circulated drill cuttings at 5-foot intervals using a PID and heated headspace methodology. The PID readings were utilized to determine the zone of highest residual fuel content and to collect a soil sample from that zone to submit for lab testing. Soil cuttings were contained in 55-gallon steel drums and sent for proper disposal by Gandy Corporation (Gandy). After the well was completed, HCl used an electric submersible pump to purge and develop the well to clear fine material from the sand pack around the well. The well was pumped until water was free from observed suspended solids. Approximately 150 gallons of water was purged from the well during development. Development water was pumped into a tanker truck for proper disposal. Disposal manifests for the soil cuttings and development water are included in **Appendix G**. A soil sample was collected from

the zone of greatest field screened VOC concentration, as determined by the PID, and submitted to Hall Laboratory in Albuquerque for analysis of Total Petroleum Hydrocarbon (TPH) for Gasoline Range Organics and for VOCs using Environmental Protection Agency (EPA) Methods 8015B and 8260B, respectively. The sample was also tested by EPA Method 6010B for total lead. Sample containers, preservatives, analytical methods, and holding times are summarized in **Table 1**. Results of laboratory tests of the soil samples are summarized in **Table 2**. Copies of the laboratory reports and associated chain-of-custody records are included in **Appendix H**.

2.5 Dual Phase Extraction Pilot Testing


Golder contracted AcuVac Remediation, L.L.C (AVR) to perform DPE pilot testing in accordance with commitments set forth in Work plan 17138. The purpose of the DPE pilot testing is to determine vacuum, impedance and flow characteristics of subsurface soil vapor and fluids, and to establish subsurface hydraulic properties adequately to allow detailed plans for selection, design and operation of an active remediation system at the site to be prepared.

The DPE testing was conducted with AVR's I-6 system. The key components of the I-6 testing system are:

- Roots RAI-33 and RAI-22 blowers;
- Horiba® Vapor Analyzer;
- Solinst interface probes;
- Lumidor O₂ meter;
- Vapor flow gauges;
- Liquid volume/flow meter;
- Barometric pressure meter;
- V-1 vacuum box;
- Redi-Flo 2 total fluids submersible electric pump;
- Internal combustion engine; and
- Moisture knockout tank;

Groundwater extraction during testing was accomplished using a Grundfos Redi-Flo 2 pump and fluid production was monitored with a totalizing volume meter. The discharge from the well was pumped into a tanker truck for proper offsite disposal. Disposal manifests for the extracted groundwater are shown in **Appendix G**. The vacuum extraction pump was connected to well DPE-1 and fuel vapors were routed to an internal combustion engine. Volatized hydrocarbons were passed through the engine and burned as part of the normal combustion process. Emissions from the internal combustion engine were passed through three catalytic converters to ensure maximum destruction of hydrocarbon vapors. The I-6 system

6

1404221.4

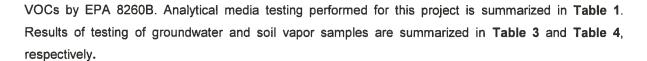
allows independent control of the vacuum and groundwater extraction flow rates. Photographs documenting the pilot test and event tests are included in **Appendix A**.

The pilot testing was conducted in two phases. The initial pilot testing phase (Mobile Dual Phase Pilot Test DPE-1) was completed on July 12, 2015 and consisted of an eight-hour, four step-rate vapor and liquid extraction test of well DPE-1, with measurements of fluid level and vacuum responses in well DPE-1 and in wells W-1, W-2 and W-3, as well as measurements of produced water and NAPL. The focus of Mobile Dual Phase Pilot Test DPE-1 was to establish the geometry of the propagated vacuum envelope by measuring vacuum responses in observation wells W-1, W-2 and W-3, as well as to determine vacuum air flow-impedance relationships and fluid extraction and water level drawdown in well DPE-1.

The second phase of pilot testing (Dual Phase Tests W-1, W-2, & DPE-1) was completed on July 13, 2015. This testing phase consisted of one-hour DPE tests of wells W-1 and W-2 and a six-hour DPE test of well DPE-1. The focus this testing was to determine vapor and fluid flow and impedance relationships, as well as to determine production rates for water and NAPL.

2.5.1 Dual Phase Pilot Test of Well DPE-1

AVR conducted an eight hour Mobile Dual Phase (MDP) pilot test on July 12, 2015 on DPE-1 (referenced in the AVR report as well A-1). During the initial two hour step of the test, induced vacuum was maintained at 40 inches of water (inches H₂O), producing a vapor flow rate of 12.19 standard cubic feet per minute (SCFM); water was pumped at a rate of 3.5 gallons per minute (gpm), producing a fluid level drawdown of 5.5 feet in the well. At test hour two, the vacuum was increased to 60 inches H₂O, producing a vapor flow rate of 19.88 scfm, and the pumping rate of 4.3 gpm and 5.5 feet of water level decline was maintained. At test hour 5.5, the vacuum was increased to 75 inches H₂O, producing a vapor flow rate of 21.34 scfm, and the pumping rate was increased to 4.6 gpm to maintain a 5.5-foot fluid level drawdown. At test hour seven, the vacuum was increased to 90 inches H₂O, producing a vapor flow rate of 27.95 scfm, and the pumping rate was increased to 5.20 gpm to maintain a 5.5-foot fluid level decline. Fluid levels, pumping rate, total volume, and pressure were measured on 30 minute intervals. Groundwater depths and vacuum pressures were measured in W-1, W-2, and W-3 during the test to determine radius of influence and vacuum communication. At periodic intervals, total fluid samples were also periodically collected in a 2,000-milliliter beaker and allowed to phase-separate to provide estimates of the proportion of NAPL present in the emulsified total produced fluids during the test. The report and test data from AVR is included in Appendix I.


Near the conclusion of the initial test of DPE-1, phase-separated water samples were collected for analyses of VOCs and TPH-GRO using EPA Methods 8260B and 8015B, respectively, and for total lead by EPA Method 6010B. A vapor sample was also collected and submitted for testing to be analyzed for

7

1404221.4

2.5.2 Dual Phase Tests of Wells W-1, W-2, & DPE-1

AVR conducted individual DPE tests of W-1, W-2 and DPE-1 on July 13, 2015 (one hour on W-1, one hour on W-2, and six hours on DPE-1). The objectives of the individual DPE tests were to evaluate the potential for removing liquid and vapor phase LNAPL from groundwater and subsurface soils, expose the capillary fringe zone to increase the groundwater and contaminant yields, and induce hydraulic gradients toward each well during testing. During each test, AVR recorded water levels, pumping rate, total volume, and pressure on 30-minute intervals. Total fluid samples were also periodically collected in a 2,000-milliliter beaker and allowed to phase-separate to provide estimates of the proportion of NAPL present in the emulsified total produced fluids during the test. The report and test data from the July 13, 2015 tests are included in **Appendix I**.

3.0 RESULTS OF INVESTIGATIONS

This section summarizes the combined findings of soil boring and well installation activities, pilot testing, and laboratory testing of media samples.

3.1 Pre-Testing – Wells W-1, W-2 and W-3

Results of pre-testing of wells W-1, W-2, and W-3 conducted on March 29, 2015 indicated that these wells were in hydraulic communication with subsurface sediments and were suitable for use as observation wells during the planned pilot testing. Consequently, no additional observation wells were installed for the pilot testing. Data from the pretests is included in **Appendix D**.

3.2 NAPL Bail-Down and Recovery Tests

The results of the NAPL bail-down and recovery tests are summarized in **Table 5**. The average NAPL Transmissivity values obtained by the tests ranged from 0.24 square feet per day (ft²/d) in well W-3 to 0.66 ft²/d in well W-1. The NAPL Storage Coefficient values obtained by testing ranged from 0.000046 (dimensionless) in well W-2 to 0.074 in well W-1, based upon the Cooper-Jacob analytical method. The Cooper, Bredehoeft and Papadopulos method produced Storage Coefficient values ranging from 0.39 in well W-2 to 0.53 in well W-3. The Gruszenski analytical method for determining formation NAPL thickness indicated that formation NAPL thickness ranged from 0.06 feet in well W-1 to 0.44 feet in well W-3. Copies of the NAPL bail down and recovery data, as well as the ASTM-API data interpretations and the Gruszenski method interpretations are included in **Appendix E**.

3.3 Pilot Test Well DPE-1 Installation

Well DPE-1 penetrated approximately 60 feet of caliche of variable texture and cohesion before striking silty sand in the saturated zone to total depth of 75 feet bgs. Groundwater saturation was noted at approximately 59 feet bgs. The static water level was sounded in the completed well at a depth of 64.08 feet below top of casing. Soil PID screening data indicated that high soil VOC vapors were noted between approximately 52 feet and 75 feet bgs. The highest zone of contamination was observed in the interval from 55 to 60 feet bgs with a PID reading of 2,709 parts per million (ppm). Laboratory sample results showed elevated concentrations of fuel constituents and lead. **Table 2** summarizes the analytical test results for the soil samples collected during drilling of DPE-1. A copy of the laboratory report on soil testing is included in **Appendix H**.

3.4 Dual Phase Extraction Pilot Testing

AVR completed the DPE pilot testing on July 12-13, 2015 and submitted their findings to Golder on July 15, 2015. The DPE findings are summarized in this section.

3.4.1 Dual Phase Pilot Test of Well DPE-1

The AVR interpretation of the results of the test indicate that DPE-1 had an effective vacuum radius of influence (0.75% of induced vacuum) of 25.91 to 32.64 feet, with an extraction well flow of 22.0 to 24.0 scfm, and a vacuum between 80 to 85 inches H_2O . DPE-1 had an effective vacuum radius of influence (1% of induced vacuum) of 22.02 to 24.53 feet, with an extraction well flow of 22.0 to 24.0 scfm, and an extraction well vacuum between 80 to 85 inches H_2O on the second run. Fluid pumping and level measurements indicated that the pumping rate of 4.0 to 4.3 gallons per minute propagated an effective induced hydraulic gradient of approximately 31.0 feet.

During the DPE-1 pilot test, a total liquid volume of 2,048 gallons was recovered. Of the total volume recovered, approximately 67.1 gallons were gasoline. Additionally, AVR reported that approximately 22.63 gallons of gasoline vapor was removed and burned as part of the test. *The total volume of gasoline removed was 86.27 gallons or 10.78 gallons per hour during the test.* Groundwater recovery was monitored for 30 minutes after the completion of the test. Emission data collected from the Horiba vapor tester during the test showed an average hydrocarbon level of 69,142 ppmv.

The AVR interpretations of the test results indicate the following:

- Wells W-1, W-2, and W-3 were in vacuum communication with DPE;
- The sub-surface medium is most likely isotropic;
- An average induced vacuum of 60.3" H₂O was required to produce a well flow of 18.83 scfm;
- The ratio of DPE-1 induced vacuum to DPE-1 well flow was 3.21:1;
- The average vapor flow per foot of DPE-1 well screen was 0.96 scfm with a maximum of 1.42 scfm;
- The average groundwater pumping rate was 4.22 gpm with a maximum of 5.20 gpm;
- The average groundwater depression was 5.50 feet below static water level; and
- An LNAPL thickness of 6.68 feet was measured prior to the test and a thickness of 0.04 feet was measured after the test.

Laboratory sampling from the water collected during the pilot test showed high levels of dissolved fuel constituents; lead was also detected. Laboratory sampling from the vapor collected during the pilot test showed high levels of contamination for fuel constituents. **Table 3** and **Table 4** contain summary results of laboratory testing of water and vapor samples collected during the test. A copy of the laboratory report on testing of water and vapor samples is contained in **Appendix H**.

Golder utilized the AVR dataset to calculate radius of influence (RO)I and soil permeability; copies of the Golder calculation sheets are included in **Appendix J**. The effective ROI for DPE-1 was observed to be 10.5, 8.4, 5.9, and 7.4 feet at applied wellhead vacuums of 40, 60, 75, and 90 inches H₂O, respectively.

Using the NMED standard of 3 percent of the applied wellhead vacuum, the greatest ROIs were generally achieved at the lower applied wellhead vacuum settings (40 and 60 inches H_2O). As such, the recommended wellhead vacuum setting for soil vapor extraction would be between 40 and 50 inches H_2O . A higher ROI would be anticipated during a continuous full-scale operation; therefore, Golder recommends an effective ROI of 15 feet. Calculated soil permeabilities for DPE-1 were 1.26, 1.36, 1.16, and 1.24 darcys, respectively, for the aforementioned applied wellhead vacuums. The overall average soil permeability observed during the pilot study was 1.26 darcys. ROI and soil permeability calculations for DPE-1 can be found in **Appendix J**.

Vapor flow rates were calculated using the average soil permeability of 1.26 darcys at ROIs of 10 feet and 15 feet. An applied wellhead vacuum of 45 inches H₂O was selected for each calculation. Based on these inputs, the calculated vapor flow rates were 16 scfm (approximately 0.8 scfm per foot of well screen) using an ROI of 10 feet and 14 scfm (approximately 0.7 scfm per foot of well screen) using an ROI of 15 feet. The calculated flow rates were also consistent with the flow rates measured during the pilot study. The vapor flow rate calculations are included in **Appendix J**.

An approximation of the hydraulic gradient was obtained by plotting the drawdown depths at wells W-1, W-2, and W-3 versus their distance from extraction well DPE-1. Based on the resulting plot and trendline equation, groundwater drawdown depths of approximately 1.02 feet and 0.76 feet were calculated for radial distances of 10 feet and 15 feet, respectively, from the extraction well. The drawdown versus distance plot and the resulting calculations are included in **Appendix J**.

3.4.2 Dual Phase Test of Well W-1

During the DPE test on W-1 (one hour), a total liquid volume of 201 gallons was recovered. Of the total volume recovered, AVR reported that approximately 47.61 gallons were gasoline. Additionally, AVR reported that approximately 1.84 gallons of gasoline vapor were removed. *The total equivalent volume* (*liquid and vapor*) of gasoline removed was 49.45 gallons. Emission data collected from the Horiba vapor detector during the test indicated an average hydrocarbon level of 85,750 (parts per million by volume) ppmv. Other key observations from W-1:

- The average vacuum induced was 60" H₂O;
- The average W-1 vapor flow was 9.51 scfm;
- The average groundwater pump rate was 3.47 gpm with a maximum of 3.70 gpm;
- The average groundwater depression was 5.50 feet below static water level;
- A LNAPL thickness of 6.84 feet was measured prior to the test and a thickness of 0.04-ft was measured after the test;
- LNAPL recovery was measured 7.5 hours later and was 1.01 feet, indicating a rebound of 14.77%; and

A layer of biomass was initially observed on the collected groundwater/NAPL sample.

11

3.4.3 Dual Phase Test of Well W-2

During the DPE test on W-2 (one hour), a total liquid volume of 192 gallons was recovered. Of the total volume recovered, AVR reported that approximately 25.92 gallons were gasoline. Additionally, AVR reported that approximately 1.97 gallons of gasoline vapor was removed. *The total equivalent volume* (*liquid and vapor*) of gasoline removed was 27.89 gallons. Emission data collected from the Horiba vapor detector during the test indicated an average hydrocarbon level of 95,790 ppmv. Other key observations from W-2:

- The average vacuum induced was 60" H₂O;
- The average W-2 vapor flow was 9.51 scfm;
- The average groundwater pump rate was 3.20 gpm with a maximum of 3.20 gpm;
- The average groundwater depression was 5.50-ft below static water level;
- An LNAPL thickness of 6.54 feet was measured prior to the test and no LNAPL thickness was measured after the test; and
- LNAPL recovery was measured 6.25 hours later and was 4.40 feet indicating a rebound of 67.28%.

3.4.4 Dual Phase Test of well DPE-1

During the event test on DPE-1 (six hours), a total liquid volume of 1,553 gallons was recovered. Of the total volume recovered, approximately 36.53 gallons were gasoline. Additionally, approximately 29.36 gallons of gasoline vapor was removed. The total equivalent volume (liquid and vapor) of gasoline removed was 65.88 gallons or 10.98 gals/hr. Emission data, collected from the Horiba vapor detector during the test, showed an average hydrocarbon level of 64,480 ppmv.

Key observations comparing the pilot test from the event test on DPE-1:

- The average hydrocarbon levels decreased 4,662 ppmv;
- The average vacuum induced was 68.46" H₂O; an increase of 8.16" H₂O;
- The average well vapor flow was 23.01 scfm; an increase of 4.18 scfm;
- The average groundwater pumping rate was 4.35 gpm with a maximum of 4.50 gpm;
- The average groundwater depression was 5.50-ft below static water level; and
- A LNAPL thickness of 5.52-ft was measured prior to the test and a thickness of 0.13-ft was measured after the test.

4.0 CONCLUSIONS AND RECOMMENDATIONS

This section summarizes the conclusions and recommendations based on the DPE-1 well installation and pilot testing conducted at the Lovington 66 site.

4.1 Conclusions

The NAPL bail-down and recovery tests of wells W-1, W-2 and W-3 indicate that formation NAPL thicknesses are significantly less than apparent NAPL thicknesses observed in these wells, ranging from 1% to 6% of the apparent NAPL thicknesses. Aquifer NAPL Transmissivity and Storativity values obtained from NAPL bail-recovery tests indicate that the moderate fluid-bearing properties are present in the water and NAPL-bearing zone at the site.

The lateral extent of NAPL at the site has not been established; therefore no estimate of NAPL in place is possible with existing data. The known distribution of NAPL relative to the former UST, service islands and wells W-1, W-2, W-3 and DPE-1 is shown in **Figure 2**. Based upon the gradient direction to the southeast, it is reasonable to expect that significant masses of adsorbed fuel and NAPL are present under Avenue D to the south of the site and under Main Street to the east of the site.

The DPE pilot testing of wells DPE-1, W-1, W-2 and W-3 indicate that subsurface materials are somewhat homogenous and modestly conductive. Moderate fluid and vapor flow rates were achieved with moderate impedance to flow during the testing. NAPL and vapor recovery rates during testing were significant; a total of 229.5 gallons of NAPL equivalent were recovered during 16.6 cumulative hours of DPE testing of wells DPE-1, W-1 and W-2, with a recovery rate of 13.8 equivalent NAPL gallons per hour. Recovered NAPL equivalent was approximately 5.7% of the 3,994 gallons of total fluids produced during the testing.

Based upon the results of pilot testing performed at the site, we conclude that site conditions are favorable for multiple remedial approaches, including simple NAPL recovery and water level suppression enhanced NAPL recovery. The site conditions are considered moderately favorable for dual-phase extraction. Site conditions are also considered favorable for secondary enhanced bioremediation using oxygen injection, once the NAPL has been recovered. Based on the anticipated horizontal and vertical extent of the contaminants and relatively low permeability, chemical oxidation is considered less favorable as a primary treatment method. Chemical oxidation may be considered as a secondary treatment method to polish residual dissolved hydrocarbons in localized areas. Since fuel contaminants included leaded gasoline (and likely the lead scavenger EDB), implementing remedial actions will likely require that effluent streams (water) will require treatment for lead, as well as petroleum contaminants.

Due to the modest permeability of the impacted zone, as well as the depth and geometry of the impacted media (much of it being located beneath Avenue D and Main Street), we anticipate that costs of remediation will be high.

Prior to implementation of a remedial strategy, Golder recommends that additional site characterization activities be conducted to further delineate the horizontal extent of the NAPL plume. As discussed in Section 3.4.1, the effective ROI for a dual-phase extraction approach would be approximately 10 feet at an applied wellhead vacuum of 45 inches H₂O, indicating a maximum well spacing of approximately 20 feet. A higher ROI could potentially be achieved during a continuous full-scale operation. Significant cost reductions could be realized if the horizontal extent of the NAPL plume could be adequately defined prior to full-scale remedial design and if extraction well spacing could be increased. Once the extent of NAPL has been defined, dual-phase extraction should be considered as the primary remedial strategy for this site. Enhanced bioremediation using oxygen injection should be considered as a secondary strategy.

Based on the rates of NAPL recovery that were observed during the pilot testing, Golder recommends that total fluid recovery and disposal events be performed at the site to maximize contaminant reduction during the time required to plan, install, and operate capital remediation equipment at the site.

American Petroleum Institute, September 2012, User Guide for the API LNAPL Transmissivity Workbook: a tool for baildown test analysis: API Regulatory and Scientific Affairs Department, API Publication 46xx(prepublication draft).

ASTM International, 2015, Standard Guide for Estimation of LNAPL Transmissivity: ASTM Designation E2856-13.

Gruszenski, 1987, Method for Determination of NAPL thickness *in* Testa and Winegardner, 1991, "Restoration of Contaminated Aquifers: Petroleum Hydrocarbons and Organic Compounds, p. 122.

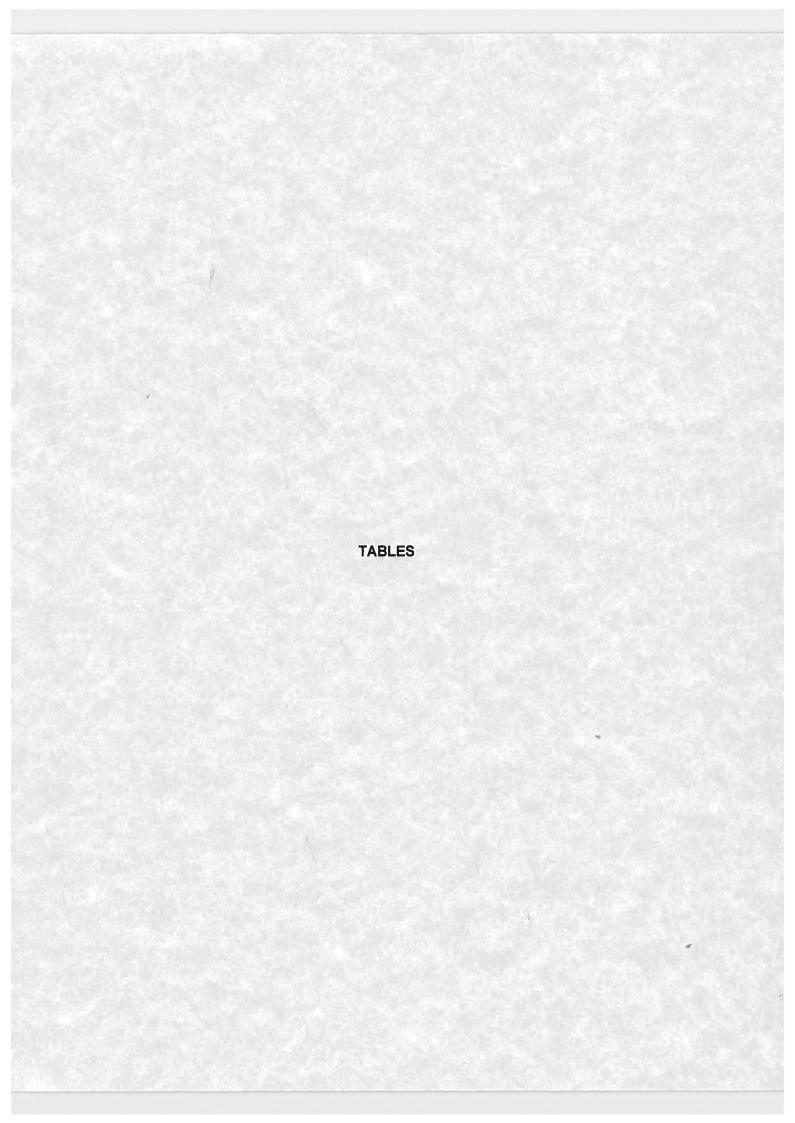


Table 1: Summary of Sample Analytical Media Testing, Lovington 66 Site 424 S. Main St., Lovington, New Mexico

Sampling Event	Matrix	Target Analytes	Analytical Method	Sample Container	Preservative
		VOCs	EPA 8260B	1 x glass jar	Cool to 4°C
Well DPE-1 Install	Soil	TPH GRO	EPA 8015B	1 x glass jar	Cool to 4°C
		Total Lead	EPA 6010B	2 x 40 ml VOA vials	MeOH; Cool to 4°C
		VOCs	EPA 8260B	10 × 40 × 9	HCj:
	Water	TPH GRO	EPA 8015B		Cool to 4°C
DPE-1 Pilot Test		Total Lead	EPA 6010B	1 x plastic bottle	HNO ₃ ; Cool to 4°C
	Vapor	VOCs	EPA 8260B	1 x tedlar bag	N/A

Notes:

VOC = Volatile Organic Compound
TPH = Total Petroleum Hydrocarbons
GRO = Gasoline Range Organics
EPA = Environmental Protection Agency

Summary of Soil Sample Results for DPE-1, Lovington 66 Site 424 S. Main St., Lovington, New Mexico Table 2:

Total	*40	0.93
TPH Gasoline Range	-	3,000
Total Naphthalenes	224	217
MTBE	0.553	0.82
Total BTEX	-	481.3
Total Xylenes	5.95	330
Ethyi Benzene	0.262	93
Toluene Toluene	12.1	22
Benzene	0.038	1.3
Sample Depth (ft)	evels (DAF	55-60
Date Sampled	MED Soil Screening Levels (DAF-20)	DPE-1 6/14/2015 55-60
Well ID	NMED Soil	DPE-1

All concentrations in milligrams per kilogram (mg/kg) Notes:

BTEX = Benzene, Toluene, Ethyl Benzene, and Xylenes

MTBE = methyl tertiary butyl ether

TPH = Total Petroleum Hydrocarbon

Volatile Organic Compound data are by EPA Method 8260B.

TPH by EPA Method 8015.

Total Lead by EPA Method 6010B *NMED Soil Screening Level for lead as for Residential risk

Summary of Water Sample Results for DPE-1, Lovington 66 Site 424 S. Main St., Lovington, New Mexico Table 3:

Well ID	Date Sampled	Benzene Toluene	Toluene	Ethyl Benzene	Total Xylenes	Total BTEX	MTBE	Total Naphthalenes	TPH Gasoline Range (mg/L)	Total Lead (mg/L)
NMWQCC	IMWQCC Standards	10	750	750	620	1	100	30	1	0.05
DPE-1	7/12/2015	28,000	000'09	7,500	24,000	119,500	39,000	22,900	260	1.3

All concentrations in micrograms per Liter (μg/L) unless otherwise noted BTEX = Benzene, Toluene, Ethyl Benzene, and Xylenes MTBE = methyl tertiary butyl ether Notes:

TPH = Total Petroleum Hydrocarbon

Volatile Organic Compound data are by EPA Method 8260B.

TPH by EPA Method 8015.

Total Lead by EPA Method 6010B

Table 4: Summary of Vapor Sample Results for DPE-1, Lovington 66 Site 424 S. Main St., Lovington, New Mexico

Well ID	Date Sampled	Benzene	Toluene	Ethyl Benzene	Total Xylenes	Total BTEX	MTBE
DPE-1	7/12/2015	1,500	3,600	420	950	6,470	620

Notes:

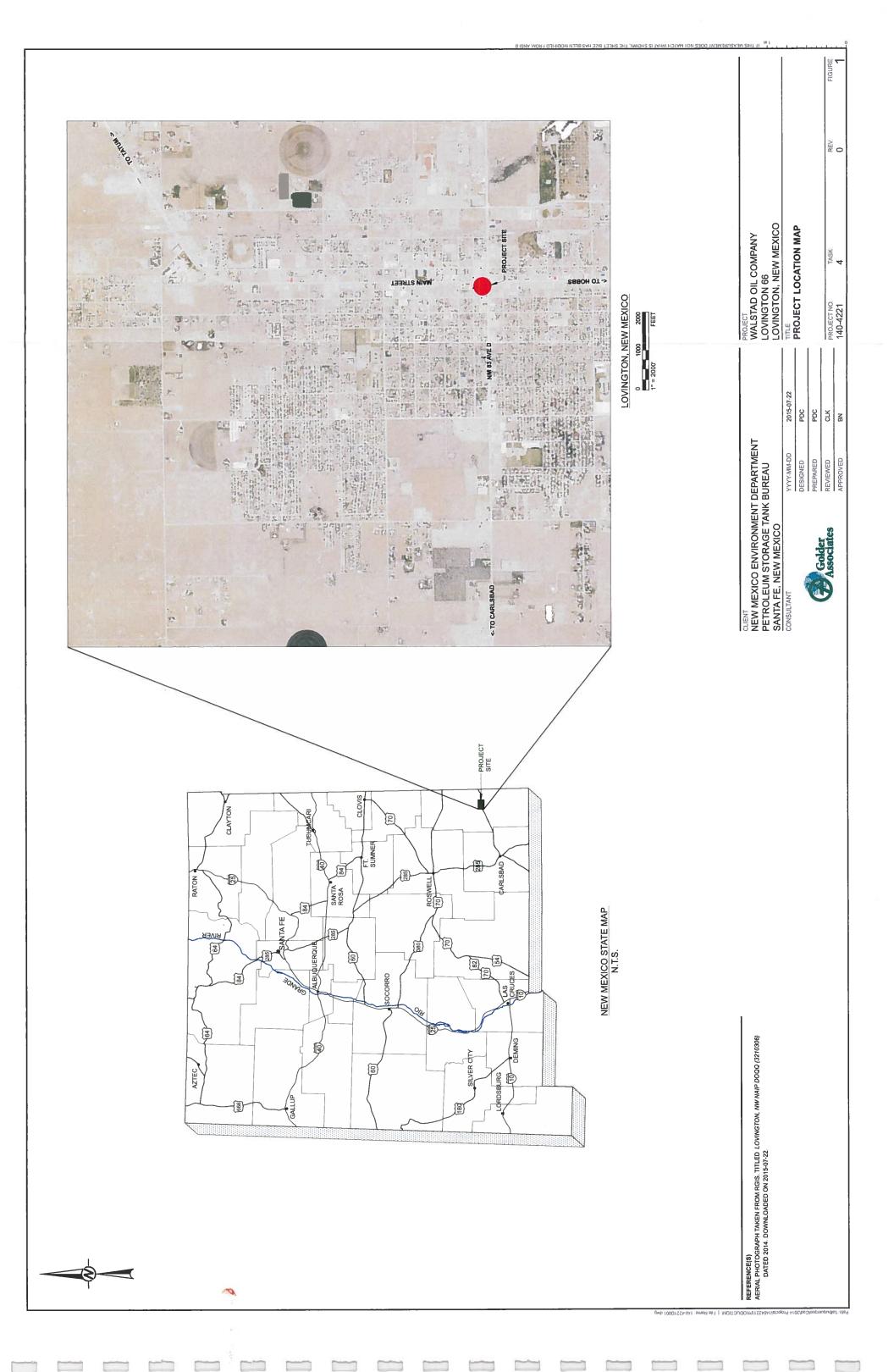
All concentrations in milligrams per cubic meter (mg/m ³)

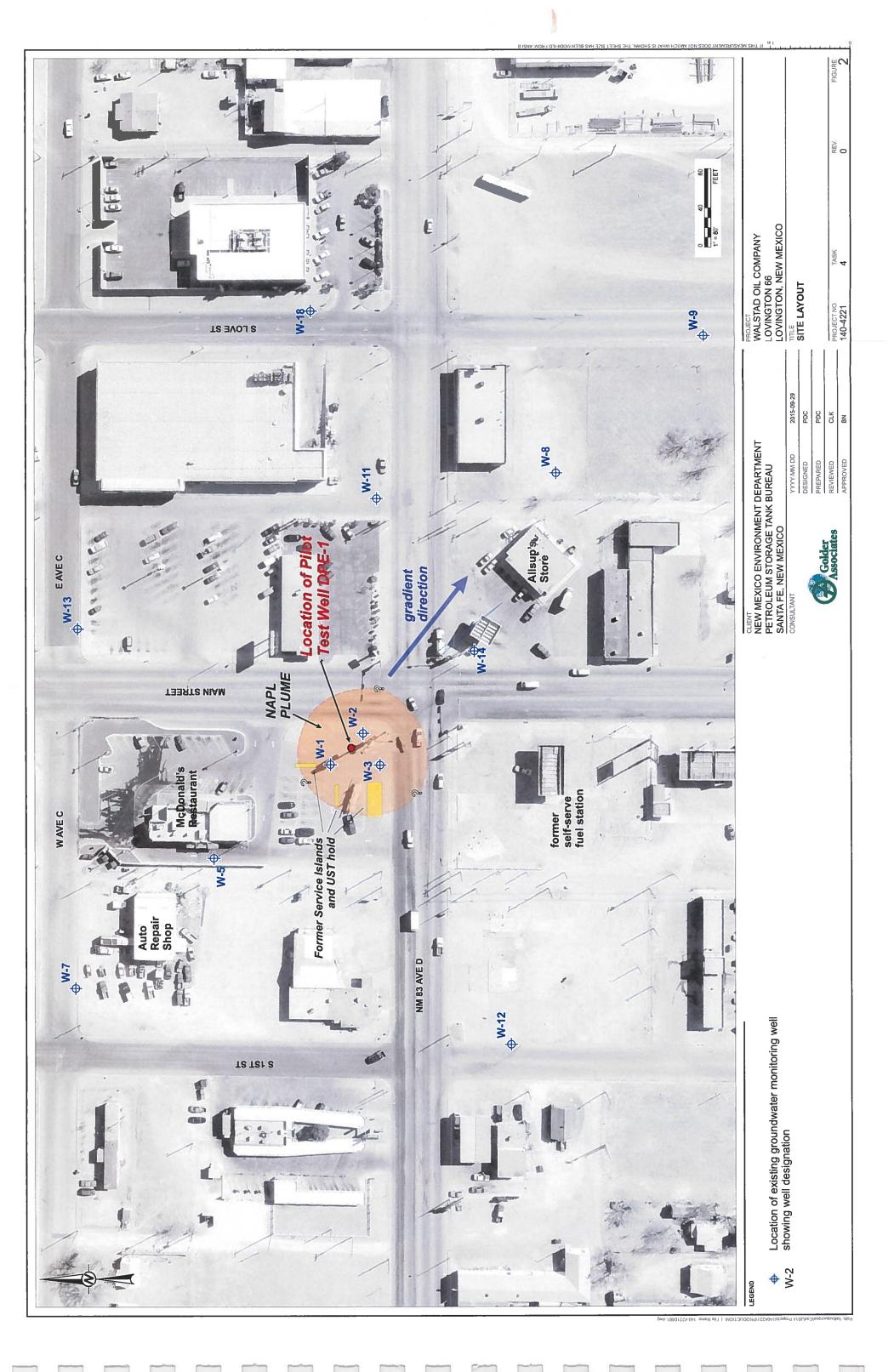
BTEX = Benzene, Toluene, Ethyl Benzene, and Xylenes

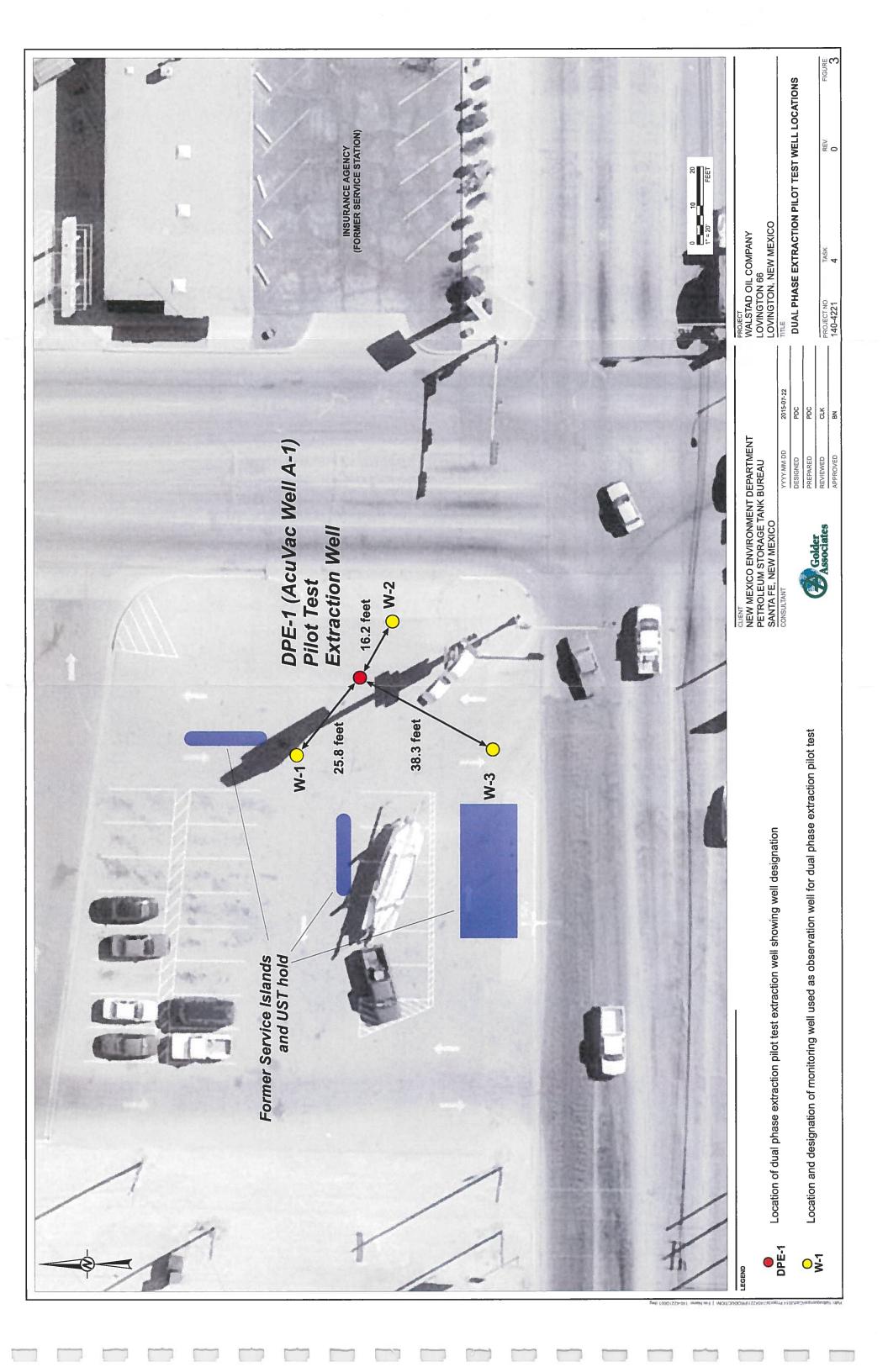
MTBE = methyl tertiary butyl ether

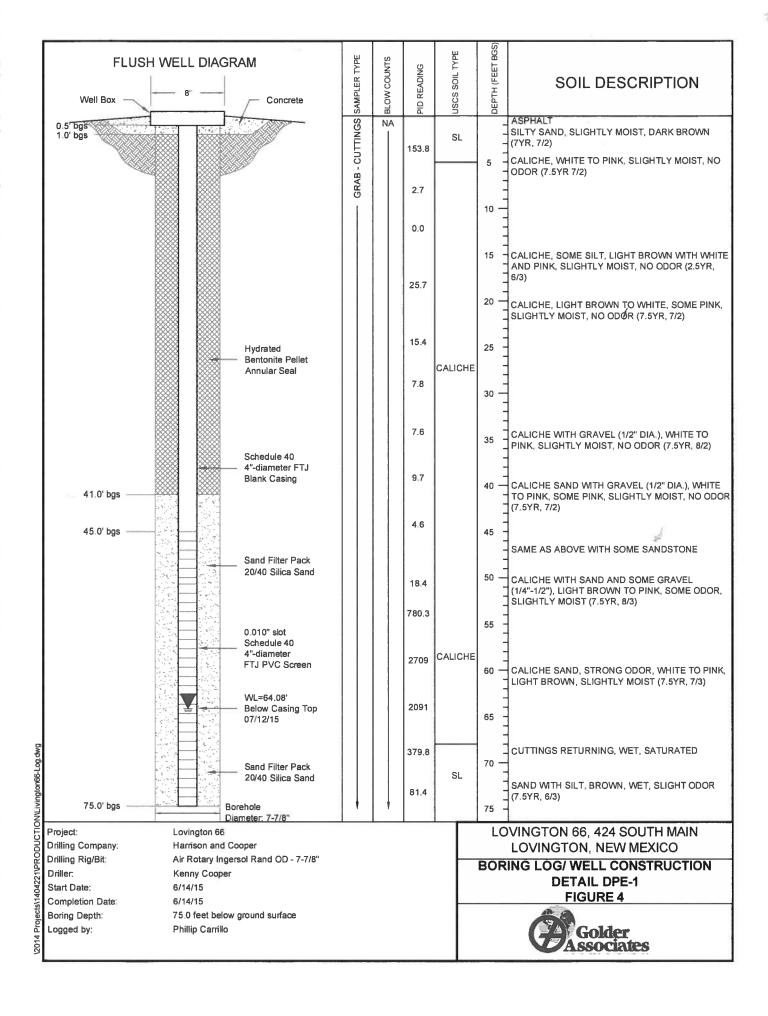
Volatile Organic Compound data are by EPA Method 8260B.

Table 5: Summary of NAPL Bail-Down Test Results, Lovington 66 Site 424 S. Main St., Lovington, New Mexico


ACCOUNT OF THE PARTY OF THE PAR	THE PERSON NAMED AND POST OF THE PERSON NAMED IN COLUMN NAMED					The second second	The state of the s				
Well	Date	Pre Bail Test Depth The Nation (4)	Pre Bail Test Depth to NAPL	Apparent NAPL Thickness, Pre	¹NAPL Thickness at Peak Recovery	² Bouwer and Rice Method	² Bouwer and Rice Jacob Method	² Cooper, Bredehoeft, Papadopulos Method	Average of Analytical Methods	Cooper-Jacob Method	Cooper, Cooper-Jacob Method Papadopulos Method
		io vvatel (III)	(£)	(ft)	Water Level (ft)		Transm	Transmissivity (T _n), ft²/day	у	Storage Co dimen	Storage Coefficient (S _n), dimensionless
W-1	6/2/2015	58.11	64.89	6.78	90.0	0.58	0.7	0.7	0.66	7.40E-02	4.00E-01
W-2	6/2/2015	57.07	64.26	7.19	0.22	0.28	0.58	0.3	0.39	4.60E-05	3.90E-01
W-3	6/2/2015	57.17	64.1	6.93	0.44	0.19	0.3	0.23	0.24	1.00E-03	5.30E-01


Notes:


¹ Formation NAPL thickness estimated by Gruszenski method


² Hydraulic properties estimated using the ASTM Designation ES2856-13 method (API LNAPL Transmissivity Workbook)

APPENDIX A
PHOTOGRAPHIC LOG

Appendix A: Photographic Log

PHOTO 1

Drill rig setting up on DPE-1 location for drilling.

2015-06-14

Cutting through the asphalt in the parking lot. Nominal diameter was 7-7/8".

The first return on cuttings. Drill depth is approximately 5-ft BGS.

2015-06-14

PHOTO 4

Cuttings were collected and transferred to 55-gal steel drums for off-site disposal.

Some of the cuttings collected for off-site disposal. Composition was mostly Caliche with varying particle sizes.

2015-06-14

PHOTO 6

Small amounts of cuttings were collected every 5-ft of drill depth for PID screening. Additionally a soil sample was collected from the interval producing the highest PID reading.

Drill encountered saturation at approximately 60-ft BGS. Cuttings return wet.

2015-06-14

PHOTO 8

Lower section of 4-inch well being rigged for insertion into borehole.

Silica sand was packed around the well screen to approximately 3-ft above the top of the screen.

2015-06-14

PHOTO 10

The well vault was flush mounted with concrete. The casing was cut approximately 6-inche BGS.

The final surface condition of DPE-1

2015-06-14

PHOTO 12

Gandy was present onsite for developing well. Gandy was responsible for collecting and disposing of water from well development.

2015-06-14

The water content of DPE-1 contained sediment and suspended solids.

2015-06-14

PHOTO 14

DPE-1 was pumped until the water was clear and free of suspended solids. A total of approximately 150 gallons was pumped.

2015-06-14

Five steel 55-gal drums were used for collecting cuttings and stored on-site. Gandy Marley retrieved the 55-gal drums for proper soil disposal.

2015-06-14

PHOTO 16

AcuVac Inc. arrives on set with their rig setup for Pilot Testing.

The rig from AcuVac for producing the vacuum and oxidizing vapor contamination during the test.

2015-07-12

PHOTO 18

The pilot test was focused on DPE-1.

W-1, W-2, & W-3 were used for monitoring during the test. Pictured is W-1.

2015-07-12

PHOTO 20

W-2 is shown.

W-3 is shown.

2015-07-12

PHOTO 22

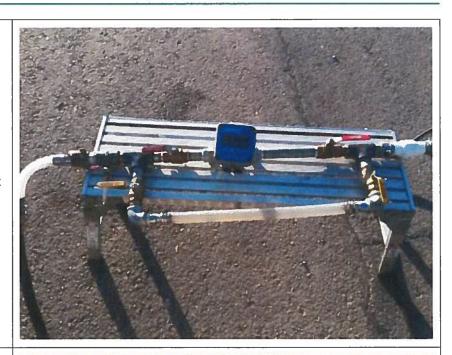
AcuVac Inc. installing the apparatus for testing.

The testing setup is shown with the vacuum hose and flowmeter attached to DPE-1.

2015-07-12

PHOTO 24

The rig was used to create the vacuum for the test and oxidize vapor contamination.



The pump test apparatus provided sight on water quality and a sampling port for collecting lab specimens.

2015-07-13

PHOTO 26

The flow meter read flow rate and total gallons pumped.

A clear portion of the outlet hose shows the condition of water being pumped.

2015-07-13

PHOTO 28

AcuVac periodically collected water samples to gauge NAPL content.

Bio-fouling material was observed during the pilot test on day two.

2015-07-13

PHOTO 30

The testing apparatus for collecting air monitoring samples as well as the sample submitted for lab testing.

AcuVac checked the vacuum induced in the surrounding wells with a digital manometer. W-1 shown.

2015-07-12

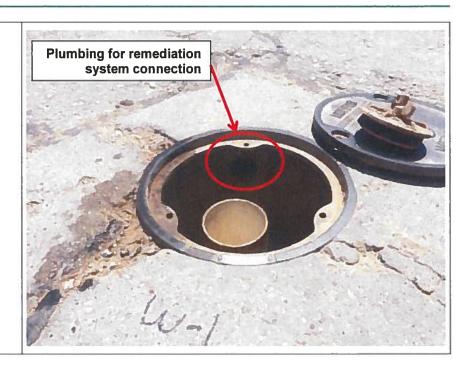
PHOTO 32

AcuVac checked the vacuum induced in the surrounding wells with a digital manometer. W-2 shown.

All produced water was containerized by Gandy in a tanker truck and sent offsite for proper disposal.

2015-07-12

PHOTO 34


During testing, plumbing connections for a remediation system was noted. W-2 is shown.

During testing, plumbing connections for a remediation system was noted. W-1 is shown.

APPENDIX B
ACCESS AGREEMENTS

THIS DOCUMENT MAY NOT BE RECORDED

City, State: Lovington, NM Address: 410 S. Main

L/C: 030-0087 RE File # 14922

LICENSE TO INSTALL MONITORING WELLS

This License to Install Monitoring Wells ("License") is dated MAZLE 10, 2014, between McDONALD'S CORPORATION, a Delaware corporation of One McDonald's Plaza, Oak Brook, IL 60523 ("McDonald's"), Golder Associates, Inc., a New Mexico corporation, of 5200 Pasadena N.E., Suite C, Albuquerque, NM 87113 ("Consultant"), and Mr. Robert Murrell, Designated Representative of Walstad Oil Company, ("Licensee").

RECITALS

- A. McDonald's leases the real property located at 410 S. Main, Lovington, NM legally described on Exhibit A (the "Property") from Pearson Oil Company, which has already granted to Consultant and a Right of Entry dated June 2, 2014, which is attached hereto as Exhibit D;
- B. McDonald's leases the Property to Kenneth Fadke ("Operator"), who operates a McDonald's restaurant on the Property;
- C. Licensee and Consultant desire to enter onto the Property to install up to three groundwater monitoring wells and to perform environmental investigations in connection with Licensee's investigation of the Property; and
- D. McDonald's is willing to grant Licensee and Consultant a license for these purposes pursuant to the terms below.

AGREEMENT

Now, therefore, in consideration of the terms below and other good and valuable consideration, the receipt and sufficiency of which are acknowledged by the parties, the parties agree as follows:

1. <u>License Grant</u>. Subject to the terms of this License, McDonald's grants to Licensee and Consultant (collectively referred to as "Licensee Parties"), a revocable, non-exclusive license to enter upon a portion of the Property as necessary for the purposes of: install up to three groundwater monitoring wells and vacuum extraction wells in the locations shown on the attached <u>Figure 1</u> ("Wells"); conduct a utility mark out in the vicinity of the proposed well locations; conduct a pilot vacuum extraction test; periodically gauge, monitor, survey or sample the Wells; after completion of the work as determined by governmental authorities, plug and abandon the Wells in compliance with all applicable laws; dispose of all samples off-site in accordance with applicable law; and after the completion of the work as determined by governmental authorities, remove any equipment brought onto the Property in connection with

Document #: 1387579-v1

the work, and restore any portion of the Property damaged by the work to as close to its condition existing at the time the work began as is reasonably possible; and access to and from the Property as necessary for purposes of conducting the foregoing activities (collectively the "Authorized Activities"), as further described in the Work Plan attached as Exhibit B. Figure 1 and Exhibit B are incorporated into and made a part of this License. The Authorized Activities include only pilot testing for the vacuum extraction contemplated for future remediation of the Property, and specifically does not include any future vacuum extraction activities, which will require a separate agreement.

- 2. <u>Licensee Parties' Work Under This Licensee</u>. Licensee Parties, at their sole expense, jointly and severally agree as follows:
 - a) Licensee Parties will perform the Authorized Activities on the Property in a good and workmanlike manner. Licensee Parties will exercise their rights and perform the Authorized Activities under this License in compliance with all applicable laws, rules, regulations, ordinances, and guidance documents of any governmental agency with authority over the Authorized Activities, including the applicable environmental agency ("Environmental Agency").
 - b) Licensee Parties will give written notice to McDonald's and verbal notice to the Regional McDonald's Property Manager for the Property Samantha Metzger Jupe (2140 460 9823 at least 10 days prior to each entry onto the Property for the purpose of conducting the Authorized Activities, which notice will specify the work to be performed, the date(s) when the work will be initiated, and an estimated date of completion. McDonald's will have the right, at its expense, to split samples during any sampling event by Licensee Parties.
 - c) Immediately upon completion of any Authorized Activities on the Property, Licensee Parties will restore the surface of the areas that were disturbed to the same condition as existed before the work commenced and to a safe condition, and will remove all of their equipment, tools, debris, and investigation-derived waste. Licensee Parties, in the name of Licensee or Consultant, will execute all manifests and other documentation associated with removal of waste residuals generated and removed from the Property and will select the disposal facility for such wastes.
 - d) Licensee Parties will contact the appropriate authorities in accordance with relevant law prior to commencing any subsurface activity as part of the Authorized Activities under this License. McDonald's makes no representation or warranty regarding the presence or absence of utilities in any given location on the Property, notwithstanding Licensee Parties' selection and identification of the locations for the Wells on Figure 1.
 - e) The Wells will be installed, maintained, and repaired in a workmanlike condition and in a manner that is reasonably secure from vandalism and any unauthorized use, including, without limitation, the installation of secure locking caps.
 - f) In connection with installation of the Wells, Licensee Parties will employ such boring and plugging techniques as necessary to protect aquifers from any contamination

and to prevent movement of any contamination from one stratum to another. The Wells will be flush-mounted and installed in conformance with the specifications contained on Figure 2.

- g) Licensee Parties will not move, remove or demolish any of McDonald's signs, access drives, curbing or other improvements on the Property. If McDonald's future operational or construction needs require the relocation of one or more of the Wells, Licensee Parties will properly abandon and/or relocate the Wells at a time specified by McDonald's at no expense to McDonald's.
- h) Licensee Parties will separate, by use of cones or other construction safety barriers, the areas surrounding the location where Licensee Parties perform any Authorized Activities. Licensee Parties will not park on or store any construction vehicles, equipment or materials on the Property when activity related to the Authorized Activities is not actively in progress.
- i) Licensee Parties will not unduly disrupt the operation of the McDonald's restaurant on the Property. While the restaurant is open for business, Licensee Parties will not (1) block more than five parking stalls at any one time; (2) block in any manner more than the drive aisles shown on the drawings attached on Figure 1, which permit closure only of the two curb-cuts in the southeast corner of the Property at any time; or (3) perform any work in or obstruct any drive-thru lane. Licensee Parties will complete all Authorized Activities on three different Sundays, and the location of the areas permitted to be blocked off on each day of work are shown on Figure 1. If possible, Consultant will install the Wells with a hand auger. If that is not possible, then the drilling equipment will be positioned in the locations identified on Figure 1 and will be removed from the Property upon completion of the installation of the Wells and within the time period specified above. Licensee Parties will perform all aspects of the Authorized Activities other than installation of the Wells (such as sample collection) on any days and at any time other than during the following time periods: 7:00 am through 10:00 am; 11:30 am through 1:30 pm; and 5:00 pm through 7:00 pm.
- j) Licensee Parties will perform all of the Authorized Activities under this License and any other activity related to this License at their own expense and will not allow any mechanics' or other lien to be placed on the Property with respect to the Authorized Activities. Should any such lien arise due to the acts or omissions of Licensee Parties or subcontractors working on behalf of Licensee Parties, Licensee Parties will, no later than 30 days from the claim of such lien, fully discharge the lien at their expense. McDonald's is not required to perform any activity or incur any expense for any purpose under this License, except as otherwise expressly stated in this License.
- 3. <u>Sampling</u>. Licensee Parties will permit the samples collected as part of the Authorized Activities to be analyzed only for the Volatile Organic Compounds by EPA Method 8260B, as listed on <u>Exhibit C</u>, and no other analytes without the written consent of McDonald's provided in advance of collecting the sample(s). Licensee Parties will provide McDonald's with a copy of all sampling results from samples taken from the Property promptly upon Licensee Parties' receipt of the sampling data. Simultaneously with submittal to the Environmental Agency, Licensee Parties will also provide McDonald's with copies of all correspondence, reports, and submittals

made to the Environmental Agency which include any sample results from the Property or any other data or information generated as part of any of the Authorized Activities. Upon request by McDonald's, Licensee Parties will also provide to McDonald's copies of field notes, boring logs, and other information generated or gathered in the course of executing any of the Authorized Activities.

- 4. <u>Term.</u> The term of this License will be for three days of work (each, a "Site Visit") over the course of the term of the License, which will commence on the date of this License aand terminate on the date that is the earlier of (a) the day after the third Site Visit on which Consultant conducts the Authorized Activities, and (b) December 31, 2014. Licensee Parties will properly abandon the Wells in accordance with all applicable laws, rules and protocol established by the Environmental Agency upon the expiration or earlier termination of this License, unless otherwise agreed in writing by the parties.
- 5. Indemnity. Licensee Parties, jointly and severally, will indemnify, defend, release and hold harmless McDonald's, Operator, and their subsidiaries and affiliates, from and against any and all claims, losses, causes of action, judgments, settlements, fines, penalties, damages including economic, direct, indirect and consequential damages, injury to persons and damages to property, costs and expenses, including reasonable attorneys' fees and costs (collectively "Claims") arising out of, in connection with, resulting from, or incidental to, directly or indirectly: (a) the performance of the Authorized Activities; (b) any acts, errors or omissions by the Consultant and/or its employees, agents, representatives, sub-consultants, or any other person acting directly or indirectly through or under the Consultant, or for subrogation actions initiated by the Consultant or the Consultant's workers' compensation insurance carrier, or for any other matter based on the Consultant's workers' compensation insurance; (c) any actual or alleged violation of any applicable federal, state or local laws, regulations, ordinances, administrative orders or rules; and/or (d) any actual or alleged breach by the Consultant or Licensee of any of their respective representations, warranties and/or obligations in this License. Licensee Parties' obligations under this License will not be negated or reduced by virtue of an insurance carrier's denial of coverage for the occurrence or event which is the subject matter of the claim or refusal to defend. This indemnification will survive the expiration or earlier termination of this License and will apply whether or not arising out of any claim by a third party.

Insurance.

- a) The Consultant will procure and maintain in effect during the term of this License the insurance coverages described below, which insurance will be placed with insurance companies authorized to do business in the state in which the Property is located, rated A VIII or better by the current edition of Best's Key Rating Guide and approved in advance in writing by McDonald's.
 - (1) Professional Liability Errors and Omissions Insurance, which will include contractual liability coverage on a per claim and aggregate limits of not less than \$1,000,000.00 covering the Consultant and the Consultant's employees and anyone, including consultants (who may provide such coverage under their own policy) for whom the Consultant is liable or contracts with to perform any of the Authorized Activities. Consultant will maintain this coverage in effect during the term of the License and for 3 years after the expiration or earlier termination of this License.

Document #: 1387579-v1

Consultant will give prompt written notice to McDonald's of any and all claims made against this policy during the period in which this policy is required to be maintained pursuant to this License.

- (2) Commercial General Liability Insurance, which will have coverage and terms comparable to an ISO CG-0001 form including personal injury, products and completed operations liability, with Bodily Injury and Property Damage limits of \$5,000,000.00 per occurrence, and Advertising and Personal Injury limits of \$5,000,000.00 per person or organization. This insurance will include coverage of the tort liability assumed by the Consultant in this License. The completed operations liability coverage will be maintained for 4 years after expiration or earlier termination of this License.
- (3) Workers' Compensation Insurance, which will have statutory benefits and limits compliant with applicable state law, and Employer's Liability Insurance with limits of \$1,000,000.00 per accident covering the Consultant and the Consultant's employees.
- (4) Business Automobile Liability Insurance, including owned, non-owned, and hired vehicles, which will have coverage of not less than \$1,000,000.00 for bodily injury and property damage for each accident.
- (5) Any insurance coverage required by law and/or governmental agency with respect to the performance of Authorized Activities.
- b) As to the policies identified in Sections 7(a)(2), 7(a)(4) and 7(a)(5) above, McDonald's and the Operator, will be named as additional insureds. These policies will be primary insurance for all additional insureds. All policies, with the exceptions of Professional Liability Errors and Ommissions Insurance will be endorsed to provide a waiver of rights of subrogation in favor of the additional insureds. The Consultant will be required to furnish evidence to McDonald's of insurance in form of certificates of insurance before commencing the Authorized Activities.
- c) The Consultant will not make changes in nor allow the required insurance coverages to lapse without McDonald's prior written approval.
- d) Consultant will give McDonald's 30 days prior notice of any cancellation of that policy or material change in coverage.
- 7. <u>Waiver of Claims</u>. Consultant acknowledges that it enters onto the Property and performs the Authorized Activities at its own risk. Licensee, and Consultant, for themselves and their officers, directors, shareholders, members, affiliates, agents, employees and subcontractors, waive any and all Claims arising out of, in connection with, resulting from, or incidental to, directly or indirectly, the conditions of the Property and any improvements on the Property.
- 8. <u>Default</u>. Any failure of Licensee, Consultant or Licensee Parties to perform any of their respective obligations set forth in this License will constitute a default. In the event of a default,

McDonald's may submit written notice of the default to the defaulting party and, if the default continues for 10 business days after receipt of notice from McDonald's, then McDonald's may terminate the Licensee Parties' right of access to the Property, cure the default and pursue any remedies available under applicable laws. If McDonald's cures the default, then Licensee Parties will reimburse McDonald's for the costs incurred within 30 days after receipt of McDonald's written demand for reimbursement. If Licensee Parties fail to pay any such sum when due, Licensee Parties will pay interest on the amount due at a rate which is the greater of: (1) 15% per year; or (2) the maximum rate allowed by law, from the date due to the date of payment in full. A default by Licensee or Consultant individually of any obligation imposed under this License will be deemed a default by Licensee Parties.

- 9. <u>Survival of Obligations</u>. Licensee Parties' obligations under this License that do not expressly survive the expiration of the term of this License will not cease until Licensee Parties have (a) removed all of their equipment from the Property in accordance with all applicable laws, regulations and orders of the Environmental Agency, (b) closed and sealed the Wells in such a manner so that they do not present a hazard or nuisance on the Property in the sole opinion of McDonald's, and (c) restored the Property to a state and appearance similar to the balance of the Property.
- 10. Notices. All notices under this License will be in writing and delivered by U.S. certified mail or overnight courier with proof of receipt, to the Designated Representative of the Licensee at 2317 Tuttington Circle, Oklahoma City, OK 7317, and to Consultant at 5200 Pasadena N.E., Suite C, Albuquerque, NM 87113 and to McDonald's at One McDonald's Plaza, Oak Brook, Illinois 60523, Attn: Director, U.S. Legal Dept. #091, L/C: 030-0087. Any party may lodge a change of address by sending notice of such change under this Section. Each notice will be deemed to have been given at the time it is deposited in the United States Mail, or upon receipt if sent by overnight courier.
- 12. <u>No Liability</u>. The granting of this License by McDonald's is not an admission of liability on the part of either McDonald's or any of its affiliates, successors or assigns, for any contamination discovered on or from the Property.
- 13. <u>Assignability</u>. This License may not be transferred or assigned by Licensee without the prior written consent of McDonald's.
- 14. Governing Law. This License and every term and provision in this License will be construed in accordance with the laws of the State in which the Property is located without giving effect to the principles of conflicts of laws.
- 15. <u>Miscellaneous</u>. This License is binding upon and inures to the benefit of the successors and assigns of each of the parties. This License contains a complete expression of the agreement between the parties, and there are no other promises, representations or inducements between them concerning the subject matter in this License. Each provision in this License is severable. If any provision of this License is held to be invalid, illegal or unenforceable in any respect, that provision will not affect any other provision or the validity of the remainder of this License. This License may only be modified by the written agreement of the parties to this License.

[SIGNATURE PAGE TO FOLLOW]

In witness whereof, the parties have executed this License on the first date written above.

LICENSEE:

By: Pan Will will

Its: Designated Representative of Walstad Oil Company

STATE OF <u>OKLAHOMA</u>) ss.

Acknowledged before me in OKLAHOMA County, OKLAHOMA on FEB 11, 2015, by 006 (1) the 0.4. of (1) of (1) on behalf of the 0.4.

JOSHUA NEUMAWN, Notary Public

My commission expires 06/11/2018

CONSULTANT:

By: Robert Newcomer Its: Associate MILL		
STATE OF <u>New Mexico</u>) SS.		
COUNTY OF BURNALIED) SS.		
Acknowledged before me in Arrabilla County, 2014, by Aller Lands and Solder Lands of the	7M Leorgia	, on <i>August _//</i> Oxfo <i>ratio</i> on beha
My commission expires 3/1/2018	My Commissio	OFFICIAL SEAL Marie Sanchez NOTARY PUBLIC STATE OF NEW MEXICO n Expires:

McDONALD'S:

McDONALDIS CORPORATION, a Delaware corporation

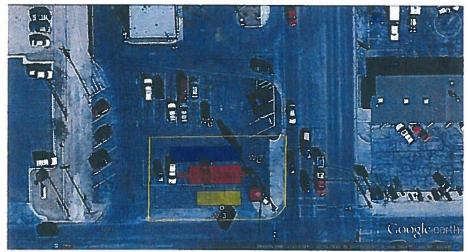

By: V 11 Starting

FIGURE 1

[Depict location of wells, as applicable]

Site work period 1.--working footprints for pre-pilot tests on existing wells.

Site work period 2.--working footprints for pilot test well installation.

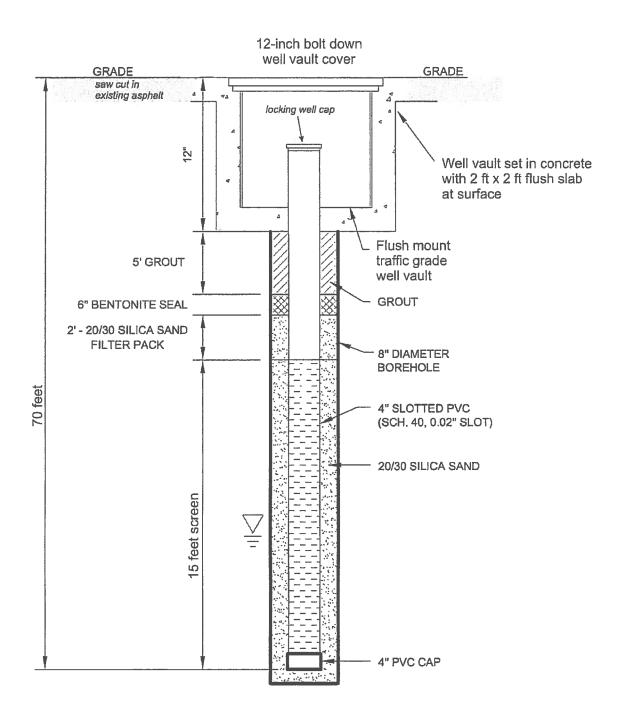
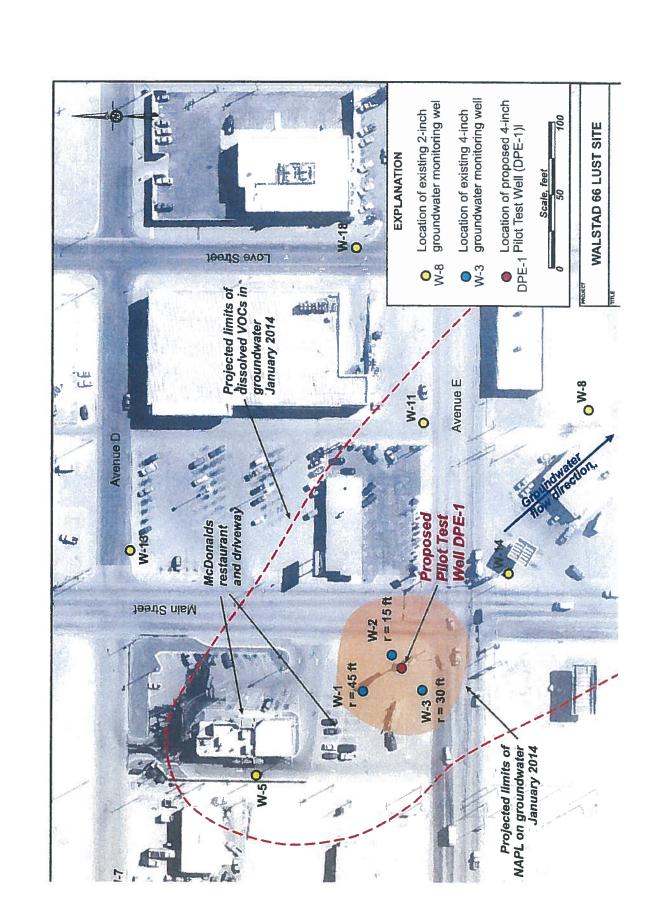

Site work period 3.--working footprint for multiphase extraction pilot test.

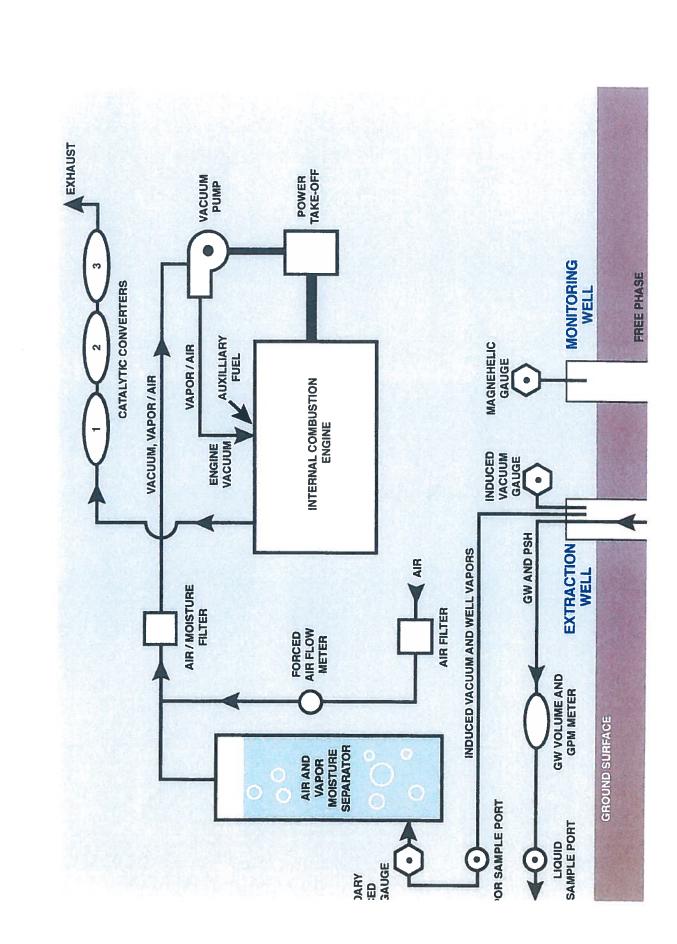
Figure 1.--Attachment to McDonald's Lovington NM Site Access Agreement.

FIGURE 2

[Well installation specifications, as applicable]

Figure 2.-Well installation specifications




EXHIBIT A


PROPERTY LEGAL DESCRIPTION

Property described as: Lots 7-18 of Tract 48, South Addition, Lovington New Mexico

EXHIBIT C

LABORATORY TESTING ANALYTES

Table 1B. Target Compound List, CAS Numbers, and Contract Required
Quantitation Limits for Volatile Organic Compounds by Method 8260

Analyte	CAS Number	CROL • g/La	CROL • q/Kqb
Benzene	71-43-2	1	5
Bromobenzene	108-86-1	1	5
Bromochloromethane	74-97-5	1	5
Bromodichloromethane	75-27-4	1	5
Bromoform	75-25-2	1	5
Bromomethane	74-83-9	1	5
n-Butylbenzene	104-51-8	1	5
sec-Butylbenzene	135-98-8	1	5
tert-Butylbenzene	98-06-6	1	5
Carbon tetrachloride	56-23-5	1 "	5
Chlorobenzene	108-90-7	1	5
Chlorodibromomethane	124-48-1	1	5
Chloroethane	75-00-3	1	5
Chloroform	67-66-3	1	5
Chloromethane	74-87-3	1	5
2-Chlorotoluene	95-49-8	1	5
4-Chlorotoluene	106-43-4	1	5
1,2-Dibromo-3-chloropropane	96-12-8	1	5
1,2-Dibromoethane	106-93-4	1	5
Dibromomethane	74-95-3	1	5
1,2-Dichlorobenzene	95-50-1	1	5
1,3-Dichlorobenzene	541-73-1	1	5
1,4-Dichlorobenzene	106-46-7	1	5
Dichlorodifluoromethane	75-71-8	1	5
1,1-Dichloroethane	75-34-3	1	5
1,2-Dichloroethane	107-06-2	1	5
1,1-Dichloroethene	75-35-4	1	5
cis-1,2-Dichloroethene	156-59-2	1	5
trans-1,2-Dichloroethene	156-60-5	1	5

1,2-Dichloropropane	78-87-5	1	5
2,2-Dichloropropane	594-20-7	1	5
1,3-Dichloropropane	142-28-9	1	5
1,1-Dichloropropene	563-58-6	1	5
Ethylbenzene	100-41-4	1	5
Hexachlorobutadiene	87-68-3	1	5
Isopropylbenzene	98-82-8	1	5
p-Isopropyltoluene	99-87-8	1	5
Methylene chloride	75-09-2	1	5
Naphthalene	91-20-3	1	5
n-Propylbenzene	103-65-1	1	5
Styrene	100-42-5	1	5
1,1,1,2-Tetrachloroethane	630-20-6	1	5
1,1,2,2-Tetrachloroethane	79-34-5	1	5
Tetrachloroethene	127-18-4	1	5
Toluene	108-88-3	1	5
1,2,4-Trichlorobenzene	120-82-1	1	5
1,2,3-Trichlorobenzene	87-61-6	1	5
1,1,1-Trichloroethane	71-55-6	1	5
1,1,2-Trichloroethane	79-00-5	1 *	5
Trichloroethene	79-01-6	1	5
Trichlorofluoromethane	75-69-4	1	5
1,2,3-Trichloropropane	96-18-4	1	5
1,2,4-Trimethylbenzene	95-63-6	1	5
1,3,5-Trimethylbenzene	108-67-8	1	5
Vinyl chloride	75-01-4	1	5
o-Xylene	95-47-6	1	5
m-Xylene	108-38-3	1	5
p-Xylene	106-42-3	1	5
Methyl-t-butyl ether	163-40-44	1	5
Dichlorofluoromethane	75-43-4	1	5
The state of the s			

Based on 25 mL water purge. Based on wet weight

Golder Associates Inc.

5200 Pasadena Blvd NE, Suite C Albuquerque, NM USA 87113 Telephone: (505) 821 3043 Fax: (505) 821-5273

May 30, 2014

Our Ref.: 140-1221

Mr. Keith Pearson KW Fuels – Pearson Oil Company 717 Sanger Street Hobbs, NM 88240

RE: ACCESS AGREEMENT FOR ENVIRONMENTAL MONITORING WELL INSTALLATION AND TESTING, FORMER LOVINGTON 66 LUST SITE, 424 SOUTH MAIN ST, LOVINGTON, NM

Dear Mr. Pearson:

Per our discussion, attached is the right of entry form allowing Golder Associates Inc. access to the above referenced Pearson Oil Company property in the southeast corner of the McDonald's restaurant parking area as indicated on Figure 1. We request authorization to enter the property to install up to two monitor wells, as well as to perform vacuum extraction pilot testing on the site wells. If you consent, please sign and fax or email the agreement to me at your earliest convenience.

Please call me at 505/821-3043 if you need additional information or have any questions regarding the access agreement. Thank you for your consideration and effort in this matter.

Sincerely,

GOLDER ASSOCIATES INC.

Clay Kilmer

Sr. Hydrogeologist

Attachments: Right of Entry Form

Figure 1 – Site Map and Proposed Pilot Test Well Locations

LCK/lck

CE

Golder Associates Inc.

5200 Pasadena N.E., Suite C Albuquerque, NM USA 87113 Telephone (505) 821-3043 Fax (505) 821-5273 www.golder.com

RIGHT OF ENTRY FORM GOLDER ASSOCIATES INC.

The undersigned, who is (are) the fee owner(s) of record (hereinafter referred to as Owner) with the sole right to the property in question, does hereby consent and grant Golder Associates Inc., its agents, employees, and assignees the right to enter the property stated below to install monitor wells and perform testing as required by the New Mexico Environment Department, and to conduct other activities as may be required in connection therewith. This Right of Entry is effective upon completion of this document.

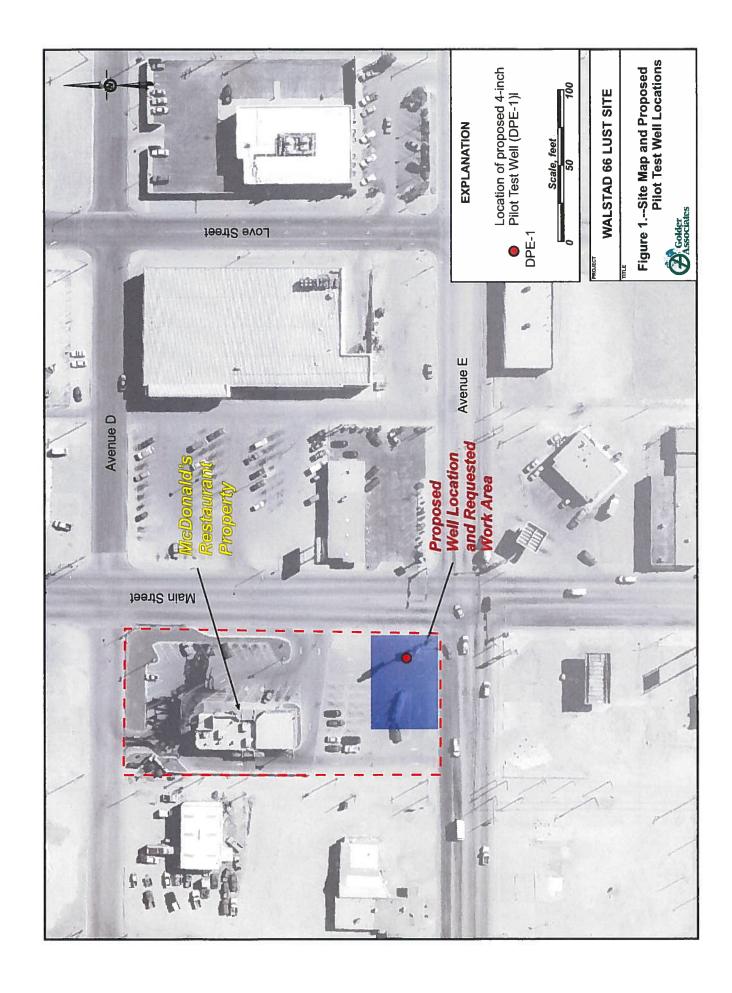
Property Owner:

Kelth Pearson, Pearson Oil Company

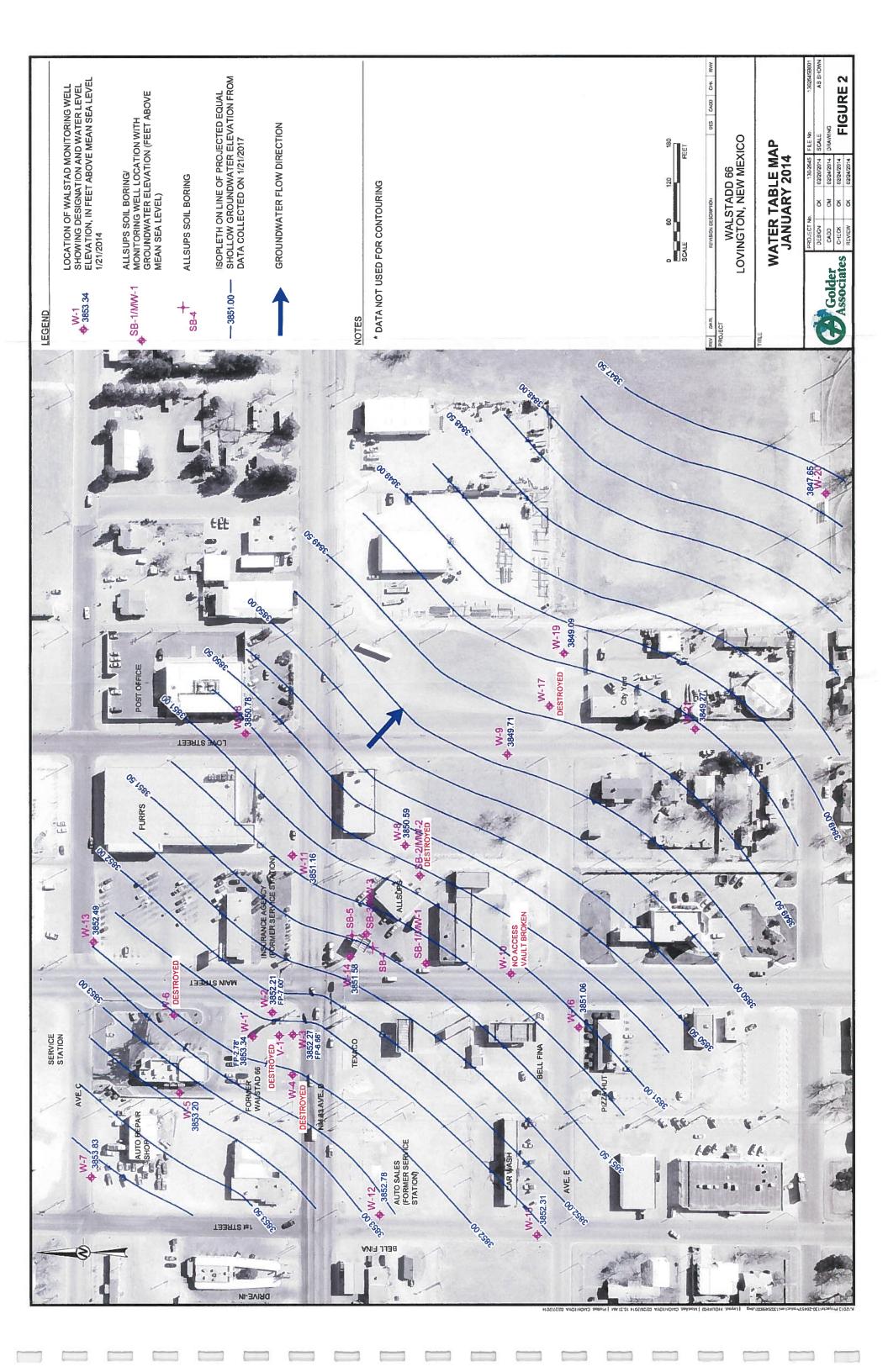
Property Street Address:

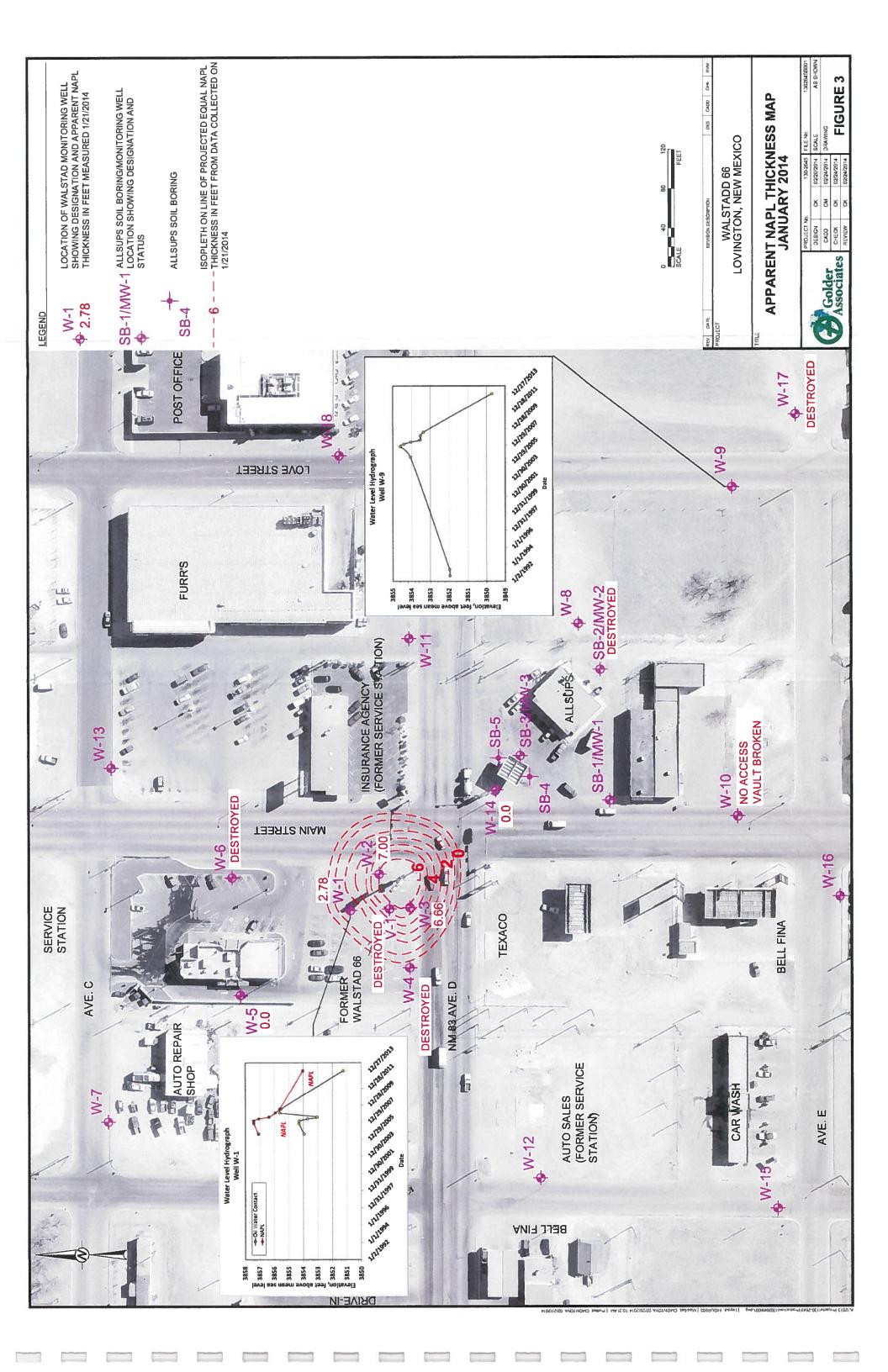
424 South Main Street McDonald's Restaurant

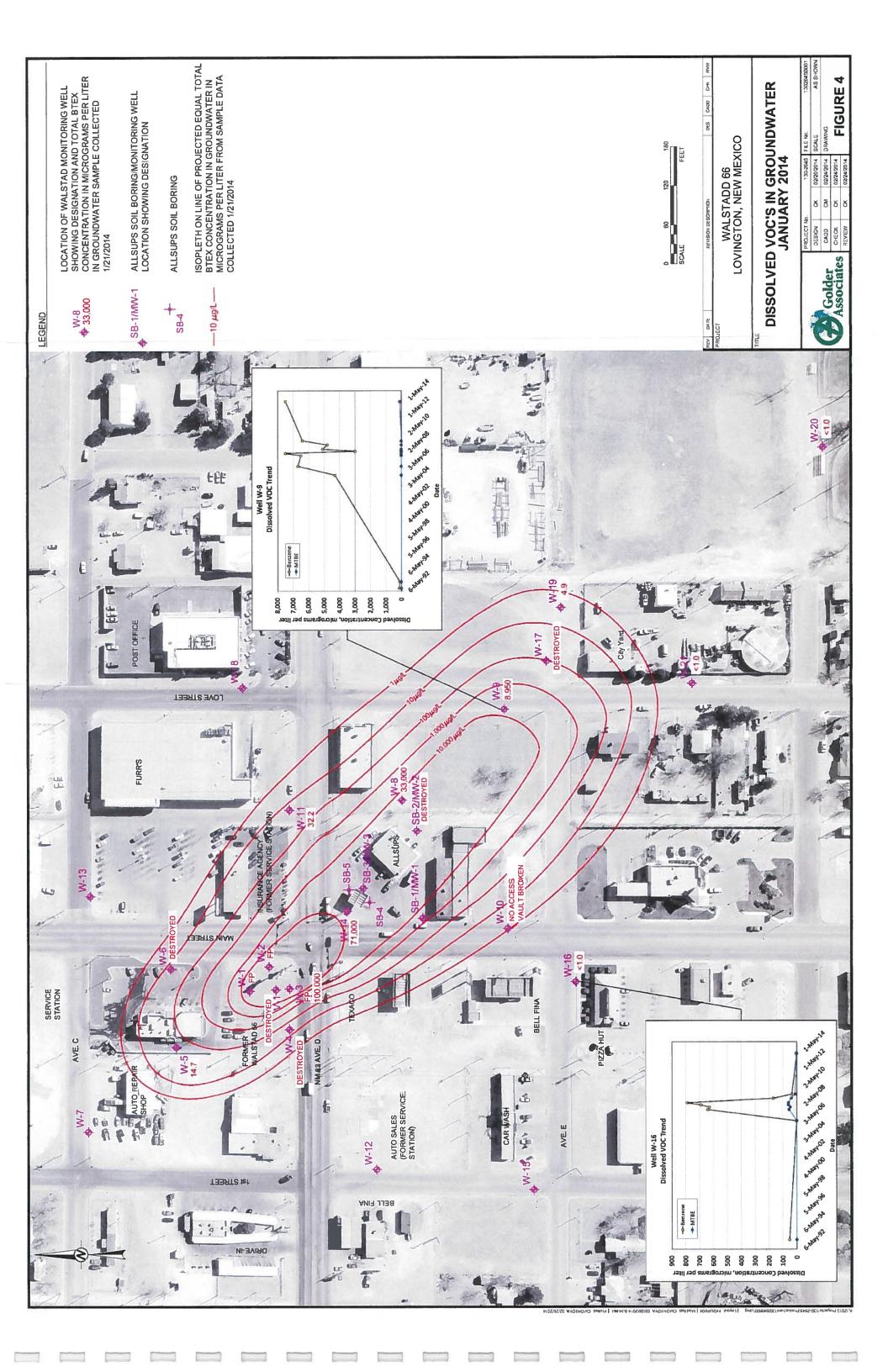
(See attached Figure)


City, State:

Lovington, New Mexico


This Right of Entry is granted in consideration of the following Golder Associates Inc. commitments:


- 1. Golder Associates, Inc. agrees that in consideration of Owners(s) granting this Right of Entry, the affected property will be restored as much as reasonably possible to its condition proceeding our entry. If monitoring wells are developed, these wells will be plugged and abandoned upon project termination in accordance with New Mexico's applicable rules and regulations.
- 2. Golder Associates Inc. agrees to coordinate with Mr. Ken Fadke (McDonald's franchise owner) to plan and execute the site work to minimize impact to the restaurant business.
- 3. Golder Associates, Inc. agrees to protect Owner from any and all liability which might arise as a result of the foregoing activities on the described property.
- 4. Owner(s) retain the discretion to terminate this agreement at any time, after 30 days written notice, if it is in his or his successor's interests.
- 5. Golder Associates Inc. will provide owner(s) with all analytical results and final investigation reports upon request. Golder Associates, Inc. agrees to provide owner with all future laboratory results and keep the owner informed of all future developments concerning subject property as it pertains to this investigation as requested by owner.


M. Y. Plator	Golder Associates Inc.
	Clay Kilmer Project Manager
6-2-14	May 30, 2014
Date	Date

BORING LOG MONITORING WELLS MINIMUM STIT ASSESSMENT DEC. 1991 MARCH 13, 1992 MONITOR WELL #2 (W-2) MONITOR WELL #3 (W-3) TOP SOIL CALICHE CALICHE & SANDSTONE 42' 40' 40' 323 (ppm 46 (0pm) SANGSTONE STREAMERS SANDSTONE 52' 50' 314 (ppm) 50' 287 (ppm) SANGSTONE STREAMERS & SAVIG HYDROSTATIC WATER LEVEL 35 30 23 WATER BEARING SANDS 70' 70' 751 75' WALSTAD DIL & GAS PHILLIPS 66 LOUINGTON, NEW MEXICO

BORING LOG - MONITORING WELL FEBRUARY 12, 1992

MINIMUM SITE ASSESSMENT DEC. 1991

GUESING W-1 TOP SOIL 41 MONITERING WELL CALICHE 40' 332 (ppm) 38' CALICHE & SAND STONE 42' SAND STONE STREAMERS 49' 50' 424 (ppm) 52' SAND STONE SAUD STONE STREAMERS & SAND HYDROSTATIC WATER LEVEL 494(ppn) SLOTTED PUC 1/1000 <u>70'</u> 477(ppm) WATER BEARING SAND WALSTAD OILE GAS 80' PHILLIPS 66 237(ppm) LOUINGTON, N.M.

Well W-1 Test Date: 3/29/2015 Data by: C. Kilmer Well Screen Interval (ft):

Depth to NAPL (ft): 57 92 Depth to Water (ft): 64 40

50-70

Well W-2 Well W-1 Well W-3 Rotameter ¹Flow Rate ¹Corrected Radius to Production Well (ft) PID (ppm) Temp F Time **Elapsed Time** Flow Rate Comments Correction Flow Rate R = 30 Induced Vacuum, (Inches H₂O) R = 36 (SCFM) (SCFM) Factor 12:29 PM 12:30 PM 12:35 PM 0.5 0.05 0.010 Pre-test Gauge Reading Start STEP 1 0:00 0:05 0:09 3460 75.2 32 35 0.010 1.048 2.10 0.05 12:35 PM 12:39 PM 12:40 PM 12:45 PM 12:45 PM 12:55 PM 12:55 PM 1:00 PM 1:05 PM 1:09 PM 1:01 PM 0.06 0.07 0.07 0.07 0.020 0.022 0.022 0.022 0.030 0.030 0.035 0.035 0.035 0.032 0:10 0:15 0:19 1.067 4.27 6620 76.4 Start STEP 2 8040 5.41 76.4 Start STEP 3 0:20 0.09 1.082 55 55 65 65 0:29 0:30 0:35 0:39 0.08 5.5 1.101 6.06 8530 Start STEP 4 0.09 0.09 0.08 0.07 0.07 0.08 1:09 PM 1:10 PM 1:15 PM 1:19 PM 1:20 PM 1:25 PM 1:29 PM 1:30 PM 1:39 PM 1.115 7.81 7020 Start STEP 5 0:40 0:45 0:49 0:50 77.3 0.030 0.038 0.037 0.037 0.037 0.037 0.037 0.020 0.030 0.035 1.134 9.07 5020 77.1 Start STEP 6 0:55 0:59 1:00 1:05 86 86 100 100 8.5 8.5 10 10 0.07 0.07 0.07 11.60 77.7 Start STEP 6 1.160 4442 1:39 PM 1:40 PM 1:09 1:10 0.07 0.08 0.07 0.08 100 10 Start STEP 7 Max Vac (>100) 33 4250 78.4 1:11 1:15 1:20 1:24 1:26 1:28 1:41 PM 1:45 PM Max Vac (>100) Max Vac (>100) 26

0.25 2:03 PM 1:33 0.15

Flow rate correction factor calculated in accordance with attached document

Max Vac (>100)

1.1 0.75 0.45

0.3

0.07

0.030

Well W-2 Test

1:50 PM 1:54 PM

1:56 PM 1:58 PM 1:59 PM 2:00 PM

3/29/2015 Date: Data by: C. Kilmer

Well Screen Interval (ft): 50-70 Depth to NAPL (ft): 56.88 Depth to Water (ft): 63.65

1:29 1:30

		Well W-2	Well W-1	Well W-3		¹ Flow Rate	¹ Corrected			
Time	Radius to Production Well (ft)			Flow Rate			DID (nam)	Temp F	Comments	
	Elapsed Time	R = 0	R = 30	R = 43	(SCFM)	Correction	Flow Rate	PID (ppm)	remp r	Comments
		Induce	d Vacuum, (Inches	H ₂ O)		Factor	(SCFM)			
2:06 PM		0	0.050	0.000						Pre-test Gauge Reading
2:10 PM	0:00	34	0.050	0.005	5.5	1.038	5.71	4943	62.9	Start STEP 1
2:15 PM	0:05	34	0.070	0.010	5.5					
2:19 PM	0:09	34	0.080	0.015	5.5					
2:20 PM	0:10	44	0.090	0.020	7.5	1.061	7.96	4690	71.2	Start STEP 2
2:25 PM	0:15	44	0.110	0.030	7					
2:29 PM	0:19	44	0.110	0.030	7					
2:30 PM	0:20	55	0.110	0.030	9	1.079	9.72	4328	73.4	Start STEP 3
2:35 PM	0:25	55	0.120	0.033	8.5					
2:39 PM	0:29	55	0.125	0.040	8.5					
2:40 PM	0:30	65	0.120	0.038	10.5	1.095	11.50	3770	73.7	Start STEP 4
2:45 PM	0:35	65	0.125	0.045	10					
2:50 PM	0:40	65	0.130	0.055	10					
2:54 PM	0:44	65	0.125	0.052	10					
2:55 PM	0:45	75	0.130	0.045	11.5	1.113	12.80	3971	74.6	Start STEP 5
3:00 PM	0:50	75	0.130	0.052	11					
3:04 PM	0:54	75	0.125	0.045	10.5					
3:05 PM	0:55	88	0.130	0.048	13	1.134	14.74	3665	73.5	Start STEP 6
3:10 PM	1:00	90	0.130	0.055	12					
3:14 PM	1:04	90	0.120	0.040	12					
3:15 PM	1:05	102	0.110	0.040	15	1.160	17.40	3322	73.7	Start STEP 7
3:20 PM	1:10	102	0.120	0.055	14					
3:24 PM	1:14	102	0.110	0.035	14					
3:25 PM	1:15	Max Vac (>100)	0.100	0.020	35			303	72.8	Start STEP 8
3:30 PM	1:20	Max Vac (>100)	0.090	0.030	25					
3:35 PM	1:25	Max Vac (>100)	0.100	0.040	22					End STEP 8

Flow rate correction factor calculated in accordance with attached document

End STEP 7

Residual Vacuum

Residual Vacuum

Residual Vacuum

Residual Vacuum

Residual Vacuum

Novembe 2015 130-2645

Well W-3 Test
Date: 3/29/2015
Data by: C. Kilmer
Well Screen Interval (ft):

 Well Screen Interval (ft):
 50-70

 Depth to NAPL (ft):
 57 01

 Depth to Water (ft):
 63 60

Depth to W		63 60 Well W-3	Well W-1	Well W-2	7					
		Radius to Production Well (ft)			Flow Rate	¹ Flow Rate	¹ Corrected			
Time	Elapsed Time			R = 43		Correction	Flow Rate	PID (ppm)	Temp F	Comments
		R = 0	R = 36		(SCFM)	Factor	(SCFM)			
			d Vacuum, (Inches					2000		Des to at Course Bondies
10:36 AM		0	0.02	0.07		1.005	4.44	2007	50.7	Pre-test Gauge Reading
10:41 AM	0:00	34	0.00	0.15	4	1.035	4.14	2037	59.7	Start STEP 1
10:44 AM	0:03	34	0.00	0.15	4					
10:50 AM	0:09	34	0.00	0.10	4					
10:55 AM	0:14	34	0.00	0.10	4					
11:00 AM	0:19	45	0.01	0.12	6	1,055	6.33	6100	64.2	Start STEP 2
11:05 AM	0:24	45	0.01	0.12	6					
11:09 AM	0:28	45	0.01	0.12	6					
11:10 AM	0:29	55	0.01	0.12	8	1.074	8.59	7287	68.3	Start STEP 3
11:15 AM	0:34	55	0.01	0.12	8					
11:19 AM	0:38	55	0.01	0.12	8					
11:20 AM	0:39	68	0.01	0.13	10	1.093	10.93	4720	66.5	Start STEP 4
11:25 AM	0:44	67	0.01	0.12	9					
11:29 AM	0:48	67	0.00	0.10	8					
11:30 AM	0:49	80	0.00	0.10	11				73.2	Start STEP 5
11:35 AM	0:54	80	0.00	0.10	10.5					
11:39 AM	0:58	80	0.00	0.10	10					
11:40 AM	0:59	100	0.00	0.10	14	1.157	16.19	4350	74.3	Start STEP 6
11:45 AM	1:04	100	0.00	0.10	13					
11:49 AM	1:08	100	0.00	0.10	12					
11:50 AM	1:09	Max Vac (>100)	0.00	0.10	34			3430	74.8	Start STEP 7
11:51 AM	1:10	Max Vac (>100)	0.00	0.10	30					
11:55 AM	1:14	Max Vac (>100)	0.00	0.10	23					
12:00 PM		Max Vac (>100)	0.00	0.10	21.5	1				
12:05 PM	1:24	Max Vac (>100)	0.00	0.10	20					
12:10 PM		Max Vac (>100)	0.00	0.10	20	†	1			End Step 7

Flow rate correction factor calculated in accordance with attached document

Line Librard Unit Description China Library and Californian Commission Library and Calendary Control Control Control	714 801 0008

Home | About Us | Products | Flowmeter Sizing | Flowmeter Calibration Services | Flowmeter Selection Guide | Contact Us | Cat

Flowmeter Sizing

Gas Flowmeter Sizing <u>Click Here To Download A Printable Version</u>
Variable area flowmeters suitable for liquid service have a capacity rating based on water at 70° Fahrenheit. Flowmeters suitable for gas service have a capacity rating based on air at STP (70°F, 14.7 PSIA) conditions. The correction factors listed below are used to calculate the flow capacity when using a liquid other than water or a gas other than air at STP conditions.

GAS CORRECTION FORMULA

Air Equivalent Flow Rate = Customer Gas Flow Rate X Gas Correction Factor

- Step 1: Convert Customer Gas Flow Rate unit of measure to a standard unit of measure for air flow (SCFM or SCCM).
- Step 2: Calculate Gas Correction Factor from given values.
- Step 3: Calculate the product of the Air Equivalent Flow Rate from the Customer Gas Flow Rate and the Gas Correction Factor
- Step 4: Calculate the maximum or minimum flow rate for the customer's

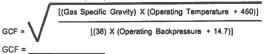
Step 1: Convert Customer Gas Flow Rate unit of measure to a standardunit of measure for air flow

Customer Gas Flow Rate SCFM / SCCM Converted Gas Flow Rate

Gas Flow Rate Conversions

	Gas Flow Nate	COLIACISI	J113
From	To SCFM	From	To SCCM
SCFH	Divide by 60	SCFM	Multiply by 28,317
SCIM	Divide by 1,728	SCFH	Multiply by 472
SLPM	Divide by 28.317	SCIM	Multiply by 16,39
SM ³ /MIN	Multiply by 35,31	SLPM	Multiply by 1,000
SM³/HR	Multiply by 0.5885	SLPH	Multiply by 16.67
NM³/MIN	Multiply by 37.99	SM³/MIN	Multiply by 1,000,000
NM³/HR	Multiply by 0.6331	SM³/HR	Multiply by 16,667
SCCM	Divide by 28,317	NM³/MIN	Multiply by 1,075,785
KG/MIN	Multiply by (29.39 + SpGr)	NM³/HR	Multiply by 17,929
KG/HR	Multiply by (0.49 + SpGr)	KG/MIN	Multiply by (832,000 + SpGr)
LBS/MIN	Multiply by (13.33 + SpGr)	KG/HR	Multiply by (13,876 + SpGr)
LBS/HR	Multiply by(0.2222 + SpGr)	LBS/MIN	Multiply by (377,500 + SpGr)
LBS/DAY	Multiply by (0.00926 + SpGr)	LBS/HR	Multiply by (6,292 + SpGr)
ACFM	Multiply by [[(Operating PSIG+	14.7)(530)	+ [(14.7)(Operating "F+460)]]

Step 2: Calculate Gas Correction Factor from given values


This information is required to size for conditions other than air at STP:

- Operating Temperature: _ Operating Back Pressure: PSIG Specific Gravity of Gas: @STP
- Temperature Conversions Gas Density Conversions To *Fahrenheit From To Specific Gravity From LBS/FT3 Divide by 0,075 *Centigrade (*C X 1.8) + 32 (*K - 273 15)1.8 + 32 KG/M³ Divide by 1.2 *Kelvin °R - 459.67 MolWt Divide by 29.0 a/cm³ Divide by 0.0012

Pressure Conversions

From	To PSIG	From	To PSIG
foot Water	Divide by 2 308	Pa	(Pa+101,300) X 14.7
Inch Water	Divide by 27.73	PSIA	Minus 14.7
mm Water	Divide by 704	ATM	(ATM X 14.7) - 14.7
inch Hg	Divide by 2 036	Torr	((Torr+760) X14.7) - 14.7
mm Hg	Divide by 51.7	Bars	((Bars+1.013) X14.7) - 14.7
kg/cm²	Multiply by 14 228	Millibar	((Millibars+1013) X 14.7) -14.7
kPa	(kPa+101.3) X 14.7		

Gas Correction Factor (GCF) formula:

Step 3: Determine the Air Equivalent Flow Rate.

Air Equivalent Flow Rate = Customer Gas Flow Rate x Gas Correction Factor

Step 4: Calculate the maximum or minimum flow rate for the customer's conditions (Customer Gas Flow Rate Scale)

Customer Gas Flow Rate Scale = Catalog Flow Rate + Gas Correction Customer Gas Flow Rate Scale = _

Liquid Flowmeter Sizing Click Here To Download A Printable Version

Variable area flowmeters suitable for liquid service have a capacity rating based on water at 70°Fahrenheit. Flowmeters suitable for gas service have a capacity rating based on air at STP (70°F, 14.7 PSIA) conditions. The correction factors listed below are used to calculate the flow capacity when using a liquid other than water or a gas other than air at STP conditions.

LIQUID CORRECTION FORMULA

Water Equivalent Flow Rate = Customer Liquid Flow Rate X Liquid Correction Factor

- Convert Customer Liquid Flow Rate unit of measure to a standard unit of measure for water flow (GPM or CC/MIN).
- Step 2: Calculate Liquid Specific GravityCorrection Factor from given values.
- Determine the Water Equivalent Flow Rate from the product of the Step 3 Customer Liquid Flow Rate and the Liquid Correction Factor
- Calculate the maximum or minimum flow rate for the customer's Step 4:

Step 1: Convert Customer Liquid Flow Rate unit of measure to a standard unit of measure for water flow.

Step 2: Calculate Liquid Correction Factor from given values

This information is required to size for liquids other than water: Operating Conditions
 F Operating Conditions Specific Gravity of Liquid:_____ Liquid Temperature:______ cps @Operating Conditions

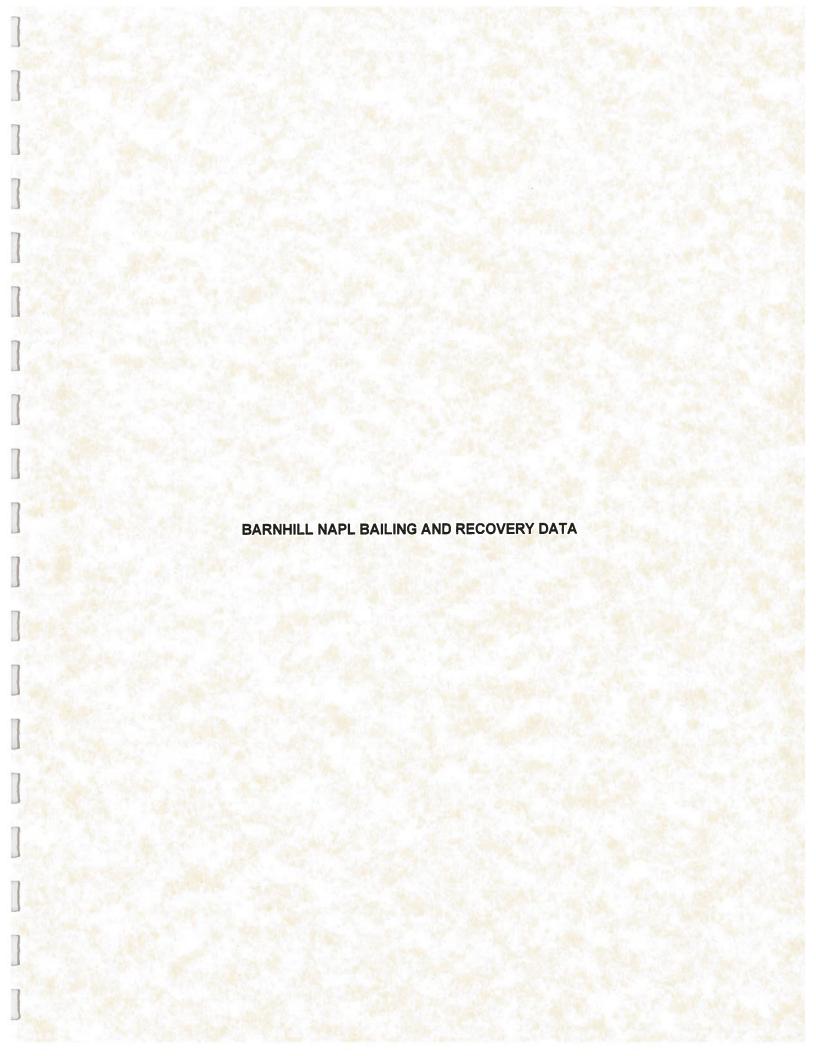
Liquid Viscosity: _____cps @Opera
 Specific Gravity of the Float to be used:

Float	Specif	ic Gravity		Liquid Density Conversions		
Teflon	2.20	316 SS	8.04	From	To Specific Gravity	
Glass	2.53	Hastelloy C	8.94	LBS/FT ^a	Divide by 62 4	
Sapphire	3,99	Carboloy	15.00	KG/M³	Divide by 1,000	
Titanium	4.50	Tantalum	16,60	API	[141.5 + (131.5+API)]	
316L SS	8.03			g/cm³	= SpGr	

Customer I	iquid Flow Rate			Liquid Specific Gravity Correction Factor (LSGCF) formula:
	Gas Flow Rate	GPM / CC/MIN		LSGCF = (Floet Specific Gravity - Specific Gravity of the Metered Liquid)
	Liquid FI	ow Rate Conversions		. /
From	To GPM	From	To CC/MIN	[(Float Specific Gravity - 1.0) X (Specific Gravity of the Metered Fluid)]
GPH	Divide by 60	GPM	Multiply by 3,785	¥
CC/MIN	Divide by 3,785	GPH	Multiply by 63.08	2. Determine the Weter Equipment Flour Date
CC/HR	Divide by 227,100	CC/HR	Divide by 60	3. Determine the Water Equivalent Flow Rate
LPM	Multiply by 3.785	LPM	Multiply by 1,000	Water Equivalent Flow Rate = Customer's Liquid Flow Rate + LSGCF Water
LPH	Multiply by 227.1	LPH	Multiply by 16.67	Equivalent Flow Rate =
M³/MIN	Multiply by 264.2	M³/MIN	Multiply by 1,000,000	4. Calculate the maximum or minimum flow rate for the customer's
M³/HR	Multiply by 4.402	M³/HR	Multiply by 16,667	conditions. (Customer Liquid Flow Rate Scale)
PINTS/MIN	Divide by 8	PINTS/MIN	Multiply by 473.1	Customer Liquid Flow Rate Scale = Catalog Flow Rate + LSGCF @ 70° F
FT³/MIN	Multiply by 7.48	FT³/MIN	Multiply by 28,320	Customer Liquid Flow Rate Scale =
FT³/HR	Divide by 8 021	FT³/HR	Multiply by 472	
KG/MIN	Multiply by (0.264 + SpGr)	KG/MIN	Multiply by (1,000 + SpGr)	
KG/HR	Divide by (227 X SpGr)	KG/HR	Multiply by (16 67 + SpGr)	
LBS/MIN	Divide by (8 347 X SpGr)	LBS/MIN	Multiply by (453.6 + SpGr)	
LBS/HR	Divide by (500.8 X SpGr)	LBS/HR	Multiply by (7.56 + Spgr)	
GMS/MIN	Divide by (3,785 X SpGr)	GMS/MIN	Divide by SpGr	
GMS/HR	Divide by (227,000 X SpGr)	GMS/HR Multiply by 3,785	Divide by (60 X SpGr)	

We are committed to:
Clearly understanding and fulfilling our Customers' needs and expectations of timely delivery, product performance and value.
Fostering productive, long-term relationships with Suppliers by aligning their goals with the needs of our Customers.
Methodically improving our production systems to create true quality and productivity enhancements that directly benefit our Customers.
A culture that values continuous improvement in our products, services, and personal relationships.

Ph. (714) 891-0008 sales@kinginstrumentco.com • 12700 Pala Drive Garden Grove, CA 92841 | J. Quality Made In The U.S.A.


The Company Mission
"To produce the finest group of rotameters ever sold"

APPENDIX E

NAPL BAILDOWN

AND

RECOVERY TEST DATA AND INTERPRETATION

Well: <u>W-1</u>

Baildown/Slug Test Data Site: Walstad 66 Lovington Well: W-1

Date: 6/2/15 - 6/4/15

Project #:	1404221	Site Name:	Walstad Oil Co.
Well:	VV-1	Samplers:	Barnhill/Beagles
Evacuation Method:	Bailing	Weather:	Warm Sunny

Well Information	i	LNAPL Information		
Casing Diameter (Inches):	4"	Fluid Type:	Gasolline	
Total Depth (Ft):	70.03'	Volume Removed:	16 gallons	
Static Depth to Product (Ft)	58.11	Evacuation Method:	bailing	
Static Depth to Water (Ft)	64.89	LNAPL Removed:	5.75 gallons removed	

Borehole Diam: 8 inches
Filter Pack Specific Yield (LNAPL)
0.175
Effective Well Radius (ft)
LNAPL Well Volume
6.78 x 0.668
4.40 g. psh

Period	Date	Time (HH:MM:SS)	Elapsed Time (Minutes)	DTP (feet)	DTW (feet)	NAPL Thickness (feet)	Comments
Bailed	06/02/15	9:39:00					4 gals NAPL
Bailed	06/02/15	9:44:00					1 gal NAPL, 3 gal water
Bailed	06/02/15	9:50:00					0.75 gal NAPL, 3.25 gal water
Bailed	06/02/15	9:55:00					trace NAPL, 4 gal water
0 - 5	06/02/15	9:57:00	start recovery	0	60.51		
0 - 5	06/02/15	9:57:30	0.5	60.41	60.51	0.10	
0 - 5	06/02/15	9:58:00	1.0	60.26	60.27	0.01	
0 - 5	06/02/15	9:58:30	1.5	60.16	60.17	0.01	
0 - 5	06/02/15	9:59:00	2.0	60.06	60.07	0.01	
0 - 5	06/02/15	9:59:30	2.5	59.91	59.94	0.03	
0 - 5	06/02/15	10:00:00	3.0	59.88	59.90	0.02	
0 - 5	06/02/15	10:00:30	3.5	59.85	59.87	0.02	
0 - 5	06/02/15	10:01:00	4.0	59.84	59.86	0.02	
0 - 5	06/02/15	10:01:30	4.5	59.81	59.83	0.02	
0 - 5	06/02/15	10:02:00	5.0	59.79	59.81	0.02	
0-5	06/02/15	10:02:30	5.5	59.77	59.79	0.02	
5 - 10	06/02/15	10:03:00	6.0	59.74	59.78	0.04	
5 - 10	06/02/15	10:04:00	7.0	59.71	59.77	0.06	Water level peak vaule
5 - 10	06/02/15	10:05:00	8.0	59.68	59.79	0.11	
5 - 10	06/02/15	10:06:00	9.0	59.67	59.81	0.14	-
5 - 10	06/02/15	10:07:00	10.0	59.65	59.84	0.19	+
5 - 10	06/02/15	10:08:00	11.0	59.64	59.86	0.22	
10 - 30	06/02/15	10:10:00	13.0	59.62	59.9	0.28	
10 - 30	06/02/15	10:12:00	15.0	59.60	59.94	0.34	
10 - 30	06/02/15	10:14:00	17.0	59.59	59.98	0.39	
10 - 30	06/02/15	10:16:00	19.0	59.58	60.00	0.42	
10 - 30	06/02/15	10:18:00	21.0	59.57	60.02	0.42	
10 - 30	06/02/15	10:18:00	23.0	59.57	60.02	0.43	
10 - 30	06/02/15	10:22:00	25.0	59.56	60.06	0.50	
10 - 30	06/02/15	10:24:00	27.0	59.55	60.08	0.53	
10 - 30	06/02/15	10:24:00	29.0	59.54	60.09	0.55	
				59.53		0.58	
10 - 30	06/02/15	10:28:00	31.0 33.0	59.53	60.11 60.12	0.59	
10 - 30	06/02/15	10:30:00				0.59	
10 - 30 10 - 30	06/02/15 06/02/15	10:32:00 10:34:00	35.0 37.0	59.52 59.52	60.14 60.16	0.62	
10 - 30			37.0	59.52	60.17	0.66	
	06/02/15	10:36:00	39.0 41.0	59.51		0.69	
10 - 30	06/02/15	10:38:00		+	60.19		
10 - 30	06/02/15	10:40:00	43.0	59.49	60.21	0.72	
30 - 60	06/02/15	10:45:00	48.0	59.48	60.24	0.76	
30 - 60	06/02/15	10:50:00	53.0	59.47	60.29	0.82	
30 - 60	06/02/15	10:55:00	58.0	59.45	60.33	0.88	
30 - 60	06/02/15	11:00:00	63.0	59.44	60.36	0.92	
30 - 60	06/02/15	11:05:00	68.0	59.43	60.39	0.96	
30 - 60	06/02/15	11:10:00	73.0	59.42	60.43	1.01	
60-180	06/02/15	11:20:00	83.0	59.40	60.51	1.11	
60-180	06/02/15	11:30:00	93.0	59.37	60.57	1.2	
60-180	06/02/15	11:40:00	103.0	59.36	60.65	1.29	
60-180	06/02/15	11:50:00	113.0	59.34	60.73	1.39	
60-180	06/02/15	12:00:00	123.0	59.31	60.80	1.49	

Period	Date	Time (HH:MM:SS)	Elapsed Time (Minutes)	DTP (feet)	DTW (feet)	NAPL Thickness (feet)	Comments
60-180	06/02/15	12:10:00	133.0	59.27	60.88	1.61	
60-180	06/02/15	12:20:00	143.0	59.26	60.92	1.66	
60-180	06/02/15	12:30:00	153.0	59.24	60.98	1.74	
60-180	06/02/15	12:40:00	163.0	59.21	61.04	1.83	
60-180	06/02/15	12:50:00	173.0	59.19	61.11	1.92	
60-180	06/02/15	13:00:00	183.0	59.17	61.16	1.99	
60-180	06/02/15	13:10:00	193.0	59.15	61.23	2.08	
60-180	06/02/15	13:20:00	203.0	59.12	61.29	2.17	
180+	06/02/15	13:30:00	213.0	59.10	61.35	2.25	
180+	06/02/15	14:00:00	243.0	59.04	61.54	2.50	
180+	06/02/15	14:30:00	273.0	58.98	61.71	2.73	
180+	06/02/15	15:00:00	303.0	58.93	61.87	2.94	
180+	06/02/15	16:00:00	363.0	58.84	61.57	2.73	
180+	06/02/15	17:00:00	423.0	58.73	62.49	3.76	
180+	06/02/15	18:00:00	483.0	58.65	62.77	4.12	
180+	06/02/15	19:00:00	543.0	58.58	63.02	4.44	
180+	06/02/15	20:00:00	603.0	58.52	63.22	4.70	
180+	06/02/15	21:00:00	663.0	58.47	63.40	4.93	
180+	06/03/15	6:30:00	1233.0	58.22	64.27	6.05	
180+	06/03/15	7:30:00	1293.0	58.20	64.30	6.10	
180+	06/03/15	8:30:00	1353.0	58.19	64.32	6.13	
180+	06/03/15	9:30:00	1413.0	58.18	64.36	6.18	
180+	06/03/15	10:30:00	1473.0	58.16	64.38	6.22	
180+	06/03/15	11:30:00	1533.0	58.16	64.40	6.24	
180+	06/03/15	12:30:00	1593.0	58.15	64.42	6.27	
180+	06/03/15	13:30:00	1653.0	58.14	64.43	6.29	
180+	06/03/15	14:30:00	1713.0	58.13	64.44	6.31	
180+	06/03/15	15:30:00	1773.0	58.12	64.45	6.33	
180+	06/04/15	11:30:00	2973.0	58.14	64.61	6.47	
180+	06/04/15	16:30:00	3273.0	58.11	64.58	6.47	

Baildown/Slug Test Data Site: Walstad 66 Lovington Well: W-2

Date: 6/2/15 - 6/4/15

Project #:	1404221	Site Name:	Walstad Oil Co.
Well:	W-2	Samplers:	Barnhill/Beagles
Evacuation Method:	Bailing	Weather:	Warm Sunny

Well Information		LNAPL	. Information
Casing Diameter (Inches):	4"	Fluid Type:	Gasolline
Total Depth (Ft):	69.55	Volume Removed:	16 gallons
Static Depth to Product (Ft)	57.07	Evacuation Method:	bailing
Static Depth to Water (Ft)	64.26	LNAPL Removed:	7.2 gallons removed

Period	Date	Time (HH:MM:SS)	Elapsed Time (Minutes)	DTP (feet)	DTW (feet)	Total thickness (feet)	Comments
Bailed	06/02/15	11:36:00					4 gal NAPL
Bailed	06/02/15	11:44:00					2 gal NAPL, 2 gal water
Bailed	06/02/15	11:53:00					1.2 gal NAPL, 2.8 gal water
Bailed	06/02/15	12:02:00					trace NAPL, 4 gal water
0 - 5	06/02/15	12:04:00	start recovery	59.30	59.32	0.02	
0 - 5	06/02/15	12:04:30	0.5	59.14	59.17	0.03	
0 - 5	06/02/15	12:05:00	1.0	59.01	59.06	0.05	
0 - 5	06/02/15	12:05:30	1.5	58.94	59.02	0.08	
0 - 5	06/02/15	12:06:00	2.0	58.87	58.95	0.08	
0 - 5	06/02/15	12:06:30	2.5	58.82	58.95	0.13	
0 - 5	06/02/15	12:07:00	3.0	58.79	58.91	0.12	
0 - 5	06/02/15	12:07:30	3.5	58.75	58.88	0.13	
0 - 5	06/02/15	12:08:00	4.0	58.73	58.86	0.13	
0 - 5	06/02/15	12:08:30	4.5	58.71	58.86	0.15	
0 - 5	06/02/15	12:09:00	5.0	58.70	58.86	0.16	
5 - 10	06/02/15	12:10:00	6.0	58.69	58.85	0.16	
5 - 10	06/02/15	12:11:00	7.0	58.66	58.85	0.19	
5 - 10	06/02/15	12:12:00	8.0	58.65	58.85	0.20	
5 - 10	06/02/15	12:13:00	9.0	58.64	58.85	0.21	
5 - 10	06/02/15	12:14:00	10.0	58.64	58.85	0.21	
10 - 30	06/02/15	12:16:00	12.0	58.63	58.85	0.22	Water level peak vaule
10 - 30	06/02/15	12:18:00	14.0	58.62	58.86	0.24	
10 - 30	06/02/15	12:20:00	16.0	58.61	58.88	0.27	
10 - 30	06/02/15	12:22:00	18.0	58.61	58.89	0.28	
10 - 30	06/02/15	12:24:00	20.0	58.61	58.89	0.28	
10 - 30	06/02/15	12:26:00	22.0	58.60	58.90	0.30	
10 - 30	06/02/15	12:28:00	24.0	58.60	58.91	0.31	
10 - 30	06/02/15	12:30:00	26.0	58.60	58.92	0.32	
10 - 30	06/02/15	12:32:00	28.0	58.59	58.93	0.34	
10 - 30	06/02/15	12:34:00	30.0	58.59	58.94	0.35	
30 - 60	06/02/15	12:39:00	35.0	58.58	58.96	0.38	
30 - 60	06/02/15	12:44:00	40.0	58.58	58.98	0.40	
30 - 60	06/02/15	12:49:00	45.0	58.57	58.99	0.42	
30 - 60	06/02/15	12:54:00	50.0	58.56	59.01	0.45	
30 - 60	06/02/15	12:59:00	55.0	58.55	59.03	0.48	
30 - 60	06/02/15	13:04:00	60.0	58.54	59.04	0.50	
60 - 180	06/02/15	13:14:00	70.0	58.53	59.08	0.55	
60 - 180	06/02/15	13:24:00	80.0	58.51	59.11	0.60	
60 - 180	06/02/15	13:34:00	90.0	58.50	59.14	0.64	
60 - 180	06/02/15	13:44:00	100.0	58.49	59.17	0.68	
60 - 180	06/02/15	13:54:00	110.0	58.48	59.20	0.72	
60 - 180	06/02/15	14:04:00	120.0	58.47	59.23	0.76	
60 - 180	06/02/15	14:14:00	130.0	58.46	59.27	0.81	
60 - 180	06/02/15	14:24:00	140.0	58.44	59.30	0.86	
60 - 180	06/02/15	14:34:00	150.0	58.43	59.33	0.90	
60 - 180	06/02/15	14:44:00	160.0	58.42	59.35	0.93	
180+	06/02/15	15:00:00	176.0	58.41	59.40	0.99	
180+	06/02/15	15:30:00	206.0	58.39	59.51	1.12	
180+	06/02/15	16:00:00	236.0	58.32	59.62	1.30	

Page 3 of 6 Data Tables Wells 1-3_LCK xlsx/W-2

Period	Date	Time (HH:MM:SS)	Elapsed Time (Minutes)	DTP (feet)	DTW (feet)	Total thickness (feet)	Comments
180+	06/02/15	17:00:00	296.0	58.30	59.74	1.44	
180+	06/02/15	18:00:00	356.0	58.25	59.90	1.65	
180+	06/02/15	19:00:00	416.0	58.21	60.05	1.84	
180+	06/02/15	20:00:00	476.0	58.16	60.22	2.06	
180+	06/02/15	21:00:00	536.0	58.11	60.37	2.26	
180+	06/03/15	6:30:00	1106.0	57.72	61.67	3.95	
180+	06/03/15	7:30:00	1166.0	57.68	61.78	4.10	
180+	06/03/15	8:30:00	1226.0	57.65	61.89	4.24	
180+	06/03/15	9:30:00	1286.0	57.61	61.97	4.36	7.19' PSH initial
180+	06/03/15	10:30:00	1346.0	57.57	62.07	4.50	
180+	06/03/15	11:30:00	1406.0	57.55	62.17	4.62	
180+	06/03/15	12:30:00	1466.0	57.51	62.25	4.74	
180+	06/03/15	13:30:00	1526.0	57.48	62.33	4.85	
180+	06/03/15	14:30:00	1586.0	57.46	62.42	4.96	
180+	06/03/15	15:30:00	1646.0	57.43	62.49	5.06	
180+	06/04/15	11:30:00	2846.0	57.22	63.47	6.25	
180+	06/04/15	16:30:00	3146.0	57.16	63.55	6.39	

Baildown/Slug Test Field Form

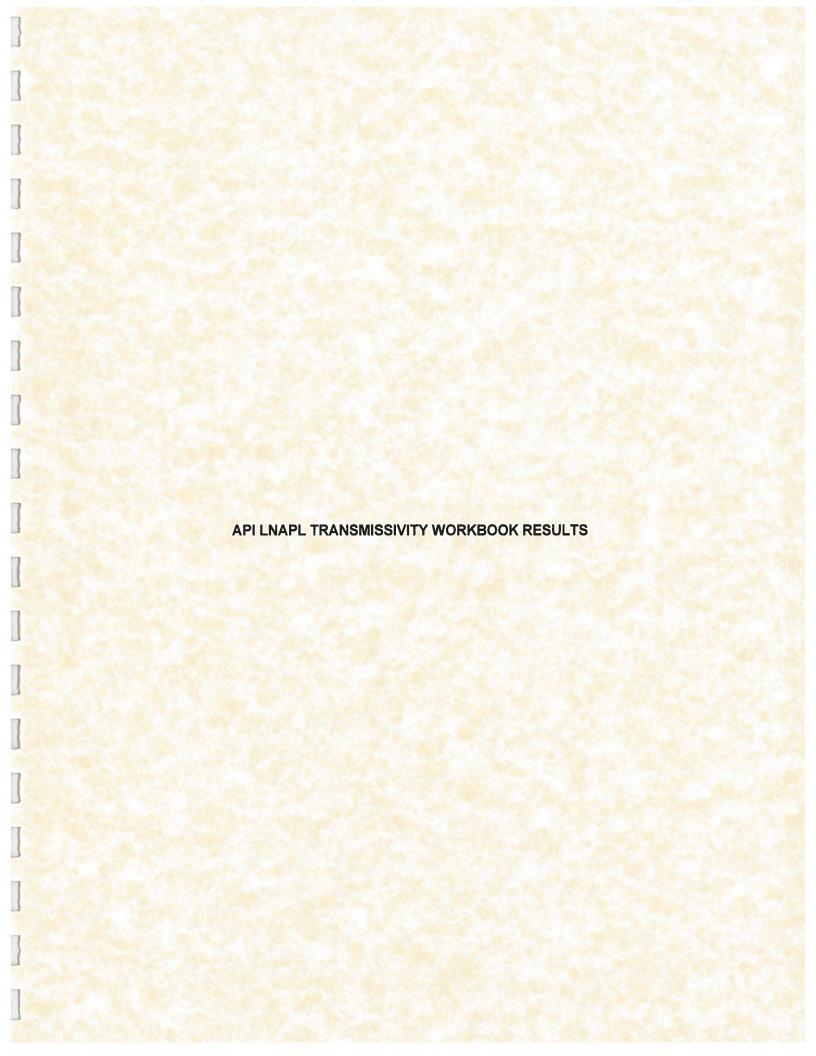
Well: W-3

Baildown/Slug Test Data Site: Walstad 66 Lovington Well: W-3

Date: 6/2/15 - 6/4/15

Project #:	1404221	Site Name:	Walstad Oil Co.
Well:	W-3	Samplers:	Barnhill/Beagles
Evacuation Method:	Bailing	Weather:	Hot 92°F

Well Information	1	LNAPL Information		
Casing Diameter (Inches):	4"	Fluid Type:	Gasolline	
Total Depth (Ft):	73.45	Volume Removed:	16 gallons	
Static Depth to Product (Ft)	57.17	Evacuation Method:	bailing	
Static Depth to Water (Ft)	64.1	LNAPL Removed:	7 gallons removed	


Borehole Diam: 8 inches
Filter Pack Specific Yield (LNAPL)
0.175
Effective Well Radius (ft)
(0)
LNAPL Well Volume
6.94 x 0.668 = 4.63 gallons
4.63 gal psh

Period	Date	Time (HH:MM:SS)	Elapsed Time (Minutes)	DTP (feet)	DTW (feet)	Total thickness (feet)	Comments
Bailed	06/02/15	15:08:00					4 gals NAPL
Bailed	06/02/15	15.12.00					2 gal NAPL, 2 gal water
Bailed	06/02/15	15:17:00					0.8 gal NAPL, 3.2 gal water
Bailed	06/02/15	15:21:00					0.2 gal NAPL, 3.2 gal water
0 - 5	06/02/15	15:23:00	0	59.80	59.95	0.15	
0 - 5	06/02/15	15:23:30	0.5	59.55	59.80	0.25	
0 - 5	06/02/15	15:24:00	1.0	59.50	59.77	0.27	
0 - 5	06/02/15	15:24:30	1.5	59.30	59.65	0.35	
0 - 5	06/02/15	15:25:00	2.0	59.23	59.54	0.31	
0 - 5	06/02/15	15:25:30	2.5	59.16	59.47	0.31	
0 - 5	06/02/15	15:26:00	3.0	59.06	59.40	0.34	
0 - 5	06/02/15	15:26:30	3.5	58.99	59.34	0.35	
0 - 5	06/02/15	15:27:00	4.0	58.93	59.30	0.37	
0 - 5	06/02/15	15:27:30	4.5	58.99	59.26	0.27	
0 - 5	06/02/15	15:28:00	5.0	58.85	59.23	0.38	
5 - 10	06/02/15	15:29:00	6.0	58.80	59.20	0.40	
5 - 10	06/02/15	15:30:00	7.0	58.77	59.17	0.40	
5 - 10	06/02/15	15:31:00	8.0	58.74	59.15	0.41	
5 - 10	06/02/15	15:32:00	9.0	58.72	59.13	0.41	
5 - 10	06/02/15	15:33:00	10.0	58.70	59.13	0.43	
10 - 30	06/02/15	15:35:00	12.0	58.68	59.11	0.43	
10 - 30	06/02/15	15:37:00	14.0	58.66	59.10	0.44	Water level peak vaule
10 - 30	06/02/15	15:39:00	16.0	58.65	59.11	0.46	1
10 - 30	06/02/15	15:41:00	18.0	58.64	59.11	0.47	
10 - 30	06/02/15	15:43:00	20.0	58.63	59.12	0.49	
10 - 30	06/02/15	15:45:00	22.0	58.63	59.13	0.50	
10 - 30	06/02/15	15:47:00	24.0	58.62	59.13	0.51	
10 - 30	06/02/15	15:49:00	26.0	58.62	59.14	0.52	
10 - 30	06/02/15	15:51:00	28.0	58.62	59.15	0.53	
10 - 30	06/02/15	15:53:00	30.0	58.62	59.15	0.53	
30 - 60	06/02/15	15:58:00	35.0	58.61	59.17	0.56	
30 - 60	06/02/15	16:03:00	40.0	58.60	59.18	0.58	
30 - 60	06/02/15	16:08:00	45.0	58.59	59.20	0.61	
30 - 60	06/02/15	16:13:00	50.0	58.59	59.21	0.62	
30 - 60	06/02/15	16:18:00	55.0	58.58	59.23	0.65	
30 - 60	06/02/15	16:23:00	60.0	58.57	59.25	0.68	
60 - 180	06/02/15	16:33:00	70.0	58.57	59.27	0.70	
60 - 180	06/02/15	16:43:00	80.0	58.56	59.30	0.74	1
60 - 180	06/02/15	16:53:00	90.0	58.55	59.32	0.77	
60 - 180	06/02/15	17:03:00	100.0	58.53	59.34	0.81	
60 - 180	06/02/15	17:13:00	110.0	58.53	59.38	0.85	
60 - 180	06/02/15	17:23:00	120.0	58.53	59.40	0.87	
60 - 180	06/02/15	17:33:00	130.0	58.52	59.42	0.90	
60 - 180	06/02/15	17:43:00	140.0	58.51	59.45	0.94	
60 - 180	06/02/15	17:53:00	150.0	58.50	59.46	0.96	
60 - 180	06/02/15	18:03:00	160.0	58.50	59.49	0.99	
60 - 180	06/02/15	18:13:00	170.0	58.49	59.52	1.03	
60 - 180	06/02/15	18:23:00	180.0	58.48	59.53	1.05	
180+	06/02/15	19:00:00	217.0	58.47	59.62	1.15	

Period	Date	Time (HH:MM:SS)	Elapsed Time (Minutes)	DTP (feet)	DTW (feet)	Total thickness (feet)	Comments
180+	06/02/15	20:00:00	277.0	58.42	59.76	1.34	
180+	06/02/15	21:00:00	337.0	58.39	59.89	1.50	
180+	06/03/15	6:30:00	907.0	58.06	61.00	2.94	
180+	06/03/15	7:30:00	967.0	58.02	61.09	3.07	
180+	06/03/15	8:30:00	1027.0	58.00	61.18	3.18	
180+	06/03/15	9:30:00	1087.0	57.96	61.26	3.30	6.93' PSH initial
180+	06/03/15	10:30:00	1147.0	57.93	61.35	3.42	
180+	06/03/15	11:30:00	1207.0	57.90	61.44	3.54	
180+	06/03/15	12:30:00	1267.0	57.87	61.51	3.64	
180+	06/03/15	13:30:00	1327.0	57.84	61.59	3.75	
180+	06/03/15	14:30:00	1387.0	57.82	61.66	3.84	
180+	06/03/15	15:30:00	1447.0	57.79	61.72	3.93	
180+	06/04/15	11:30:00	2647.0	57.48	62.82	5.34	
180+	06/04/15	16:30:00	2947.0	57.42	62.96	5.54	

STEP 1: RESET OUTPUT SUMMARY	
STEP 2: ENTER DATA & VIEW FIGURES STEP 3: CHOOSE WELL CONDITIONS	Mean LNAPL Transmissivity (ft²/d) 0.66 Standard Deviation (ft²/d) 0.07 Coefficient of Variation 0.10

NAPL Bailing Test Data and Interpretation Well W-1 Walstad Lovington 66 LUST Site June 2-4, 2015

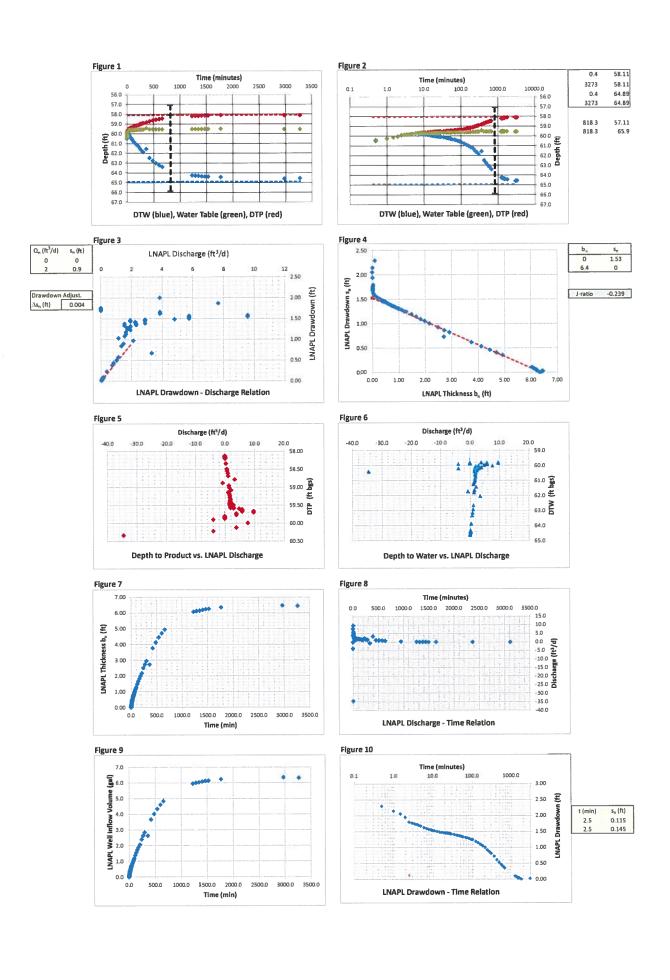
Walstad LUST Site 2-Jun-15 Well Designation: Date: W-1 date Ground Surface Elev (ft msl) Top of Casing Elev (ft msl) Well Casing Radius, $r_{\rm E}$ (ft): 0.0 Enter These Data Adjustmen (ft) 0.004 0.167 Well Radius, r_w (ft): LNAPL Specific Yield, S_γ: LNAPL Density Ratio, ρ_r: 0.333 0.175 0.780 LNAPL Density Ratuo, p.:

Top of Screen (ft bgs):

Bottom of Screen (ft bgs):

LNAPL Balldown Vol. (gal.):

Effective Radius, r_{as} (ft):


Effective Radius, r_{es} (ft):

Initial Casing LNAPL Vol. (gal.):

Initial Filter LNAPL Vol. (gal.): 50.0 70.0 6.0 0.206 Calculated Parameters 0.197

4.44

	Fnt	ter Data H	ere			Section 1	Water Table	LNAPL	1	LNAPL			
	211	ici bada ii					Depth	Drawdown	Average	Discharge	Sn	b _n	re
	Time (min)	DTP (ft btoc)	DTW (ft btoc)	DTP (ft bas)	DTW (ft bas)		(ft)	s _n (ft)	Time (min)	$Q_n(R^3/d)$	(ft)	(ft)	(ft)
Initial Fluid Levels:	0	58.11	64.89	58.11	64.89		59.60					6.78	
Enter Test Data:	0.5	60.41	60.51	60.41	60.51		60.43	2.30				0.10	_
	1.0	60.26	60.27	60.26	60.27		60.26	2.15	0.8	-34.538	2.22	0.01	0.206
	1.5	60.17	60.17	60.17	60.17		60.17	2.06	1.3	-3.838	2.10	0.00	0.206
	2.0	60.06	60.07	60.06	60.07		60.06	1.95	1.8	3.838	2.00	0.01	0.206
	2.5	59.91	59.94	59.91	59.94		59.92	1.80	2.3	7.675	1.87	0.03	0.20
	3.0	59.88	59.90	59.88	59.90		59.88	1.77	2.8	-3.838	1.78	0.02	0.20
	3.5	59.85	59.87	59.85	59.87		59.85	1.74	3.3	0.000	1.75 1.73	0.02 0.02	0.20
	4.0	59.84	59.86	59.84 59.81	59.86 59.83		59.84 59.81	1.73 1.70	3.8 4.3	0.000	1.71	0.02	0.20
	4.5 5.0	59.81 59.79	59.83 59.81	59.79	59.81		59.79	1.68	4.8	0.000	1.69	0.02	0.20
	6.0	59.74	59.78	59.74	59.78		59.75	1.63	5.5	3.838	1.65	0.04	0.20
	7.0	59.71	59.77	59.71	59.77		59.72	1.60	6,5	3.838	1.61	0.06	0.20
	8.0	59.68	59.79	59.68	59.79		59.70	1.57	7.5	9.594	1.58	0.11	0.20
	9.0	59.67	59.81	59.67	59.81		59.70	1.56	8.5	5.756	1.56	0.14	0.20
	10.0	59.65	59.84	59.65	59.84		59.69	1.54	9.5	9.594	1.55	0.19	0.20
	11.0	59.64	59.86	59.64	59.86		59.69	1.53	10.5	5.756	1.53	0.22	0.20
	13.0	59.62	59.90	59.62	59.90		59.68	1.51	12.0	5.756	1.52	0.28	0.20
	15.0	59.6	59.94	59.60	59.94		59.67	1.49	14.0	5.756	1.50	0.34	0.20
	17.0	59.59	59.98	59.59	59.98		59.68	1.48	16.0 18.0	4.797 2.878	1.48 1.47	0.39 0.42	0.20
	19.0	59.58	60.00 60.02	59.58 59.57	60.00 60.02		59.67 59.67	1.47 1.46	20.0	2.878	1.46	0.42	0.20
	21.0 23.0	59.57 59.57	60.02	59.57	60.02		59.67	1.46	22.0	1.919	1.46	0.47	0.20
	25.0	59.56	60.06	59.56	60.06		59.67	1.45	24.0	2.878	1.45	0.50	0.20
	27.00	59.55	60.08	59.55	60.08		59.67	1.44	26.0	2.878	1.44	0.53	0.20
	29.00	59.54	60.09	59.54	60.09		59.66	1.43	28.0	1.919	1.43	0.55	0.20
	35.00	59.52	60.14	59.52	60.14		59.66	1.41	32.0	2.239	1.42	0.62	0.20
	41.00	59.5	60.19	59.50	60.19		59.65	1.39	38.0	2.239	1.40	0.69	0.20
	43.00	59.49	60.21	59.49	60.21		59.65	1.38	42.0	2.878	1.38	0.72	0.20
	48.00	59.48	60.24	59.48	60.24		59.65	1.37	45.5	1.535	1.37	0.76	0.20
	53.00	59.47	60.29	59.47	60.29		59.65	1.36	50.5 55.5	2.303 2.303	1.36	0.82 0.88	0.20
	58.00	59.45	60.33	59.45	60.33 60.39		59.64 59.64	1.34 1.32	63.0	1.535	1.33	0.88	0.20
	68.00 73.00	59.43 59.42	60.39 60.43	59.43 59.42	60.43		59.64	1.32	70.5	1.919	1.31	1.01	0.20
	83.00	59.4	60.51	59.40	60.51		59.64	1.29	78.0	1.919	1.30	1.11	0.20
	93.00	59.37	60.57	59.37	60.57		59.63	1.26	88.0	1.727	1.27	1.20	0.20
	103.00	59.36	60.65	59.36	60.65	SETURE.	59.64	1.25	98.0	1.727	1.25	1.29	0.20
	123.00	59.31	60.80	59.31	60.80		59.64	1.20	113.0	1.919	1.22	1.49	0.20
	143.00	59.26	60.92	59.26	60.92	S2 11 11 17	59.63	1.15	133.0	1.631	1.17	1.66	0.20
	163	59.21	61.04	59.21	61.04		59.61	1.10	153.0	1.631	1.12	1.83	0.20
	183	59.17	61.16	59.17	61.16	West Hall	59.61	1.06	173.0	1.535	1.08	1.99	0.20
	213	59.12	61.29	59.12	61.29	REPAREITE	59.60	1.01	198.0	1.151 2.111	1.03 0.97	2.17 2.50	0.20
	243 273	59.04 58.98	61.54 61.71	59.04 58.98	61.54 61.71	March Color	59.59 59.58	0.93 0.87	228.0 258.0	1.471	0.90	2.50	0.20
	303	58.93	61.87	58.93	61.87		59.58	0.82	288.0	1.343	0.84	2.94	0.20
	363	58.84	61.57	58.84	61.57		59.44	0.73	333.0	-0.672	0.77	2.73	0.20
	423	58.73	62.49	58.73	62.49		59.56	0.62	393.0	3.294	0.67	3.76	0.20
	483	58.65	62.77	58.65	62.77		59.56	0.54	453.0	1.151	0.58	4.12	0.20
	543	58.58	63.02	58.58	63.02		59.56	0.47	513.0	1.023	0.50	4.44	0.20
	603	58.52	63.22	58.52	63.22	TOTAL POST	59.55	0.41	573.0	0.831	0.44	4.70	0.20
	663	58.47	63.40	58.47	63.40	The state of the	59.55	0.36	633.0	0.736	0.38	4.93	0.20
	1233	58.22	64.27	58.22	64.27	ELIA DURA	59.55	0.11	948.0	0.377	0.23	6.05	0.20
	1293	58.20	64.30	58.20	64.30	PORT IN	59.54	0.09	1263.0	0.160	0.10	6.10	0.20
	1353	58.19	64.32	58.19	64.32	PLOTE TOUR	59.54	0.08	1323.0	0.096	0.08	6.13	0.2
	1413	58.18	64.36	58.18	64.36		59.54	0.07	1383.0	0.160	0.07	6.18	0.20
	1473	58.16	64.38	58.16	64.38	Sec. 28 1	59.53	0.05	1443.0 1503.0	0.128 0.064	0.06	6.22 6.24	0.20
	1533 1773	58.16	64.40	58.16 58.12	64.40 64.45	A Part of the last	59.53 59.51	0.05	1653.0	0.054	0.03	6.33	0.20
	2973	58.12 58.14	64.45 64.61	58.12	64.61	THE STREET	59.56	0.01	2373.0	0.072	0.03	6.47	0.20
	3273	58.14	64.58	58.14	64.58	15474	59.56	0.03	3123.0	-0.019	0.02	6.44	0.20

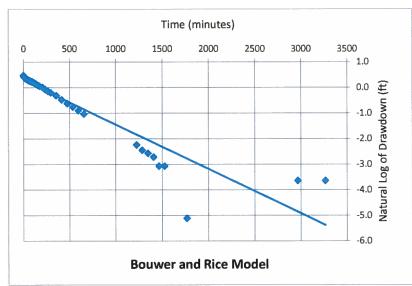
Generalized Bouwer and Rice (1976)

Well Designation: W-1
Date: 2-Jun-15

$$T_n = \frac{r_e^2 \ln(R/r_e) \ln(s_n(t_1)/s_n(t))}{2(-J)(t-t_1)}$$

Enter early time cut-off for least-squares model fit

Time_{cut} 6 <- Enter or change value here


Model Results:

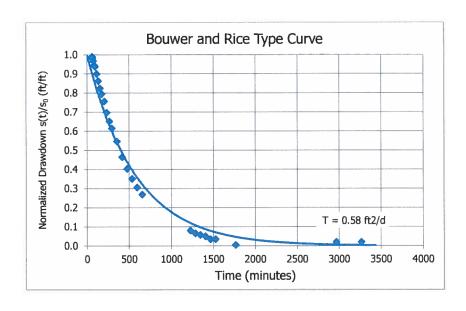
 $T_n (ft^2/d) = 0.58$

0.03

ft²/d

J-Ratio

Coef. Of Variation 0.06


L_e/r_e 32.9

C 2.11 R/r_e

14.01

-0.239

C coefficient calculated from Eq. 6.5(c) of Butler, The Design, Performance, and Analysis of Slug Tests, CRC Press, 2000.

Cooper and Jacob (1946)

Well Designation: W-1
Date: date

$V_n(t_i) = \sum_{i=1}^{n} t_i$	4π	$T_n s_j$	_A t
$r_n(i_i) - \sum_j$	$\ln \left(\frac{2.2}{2} \right)$	$25T_nt_j$	$\int_{-\infty}^{\Delta t} j$
	" ,	$r_e^2 S_n$	

Enter early time cut-off for least-squares model fit

	Time _{cut} (min):	200	<- Enter or change values here
Time Adjustment (min):		1.5	

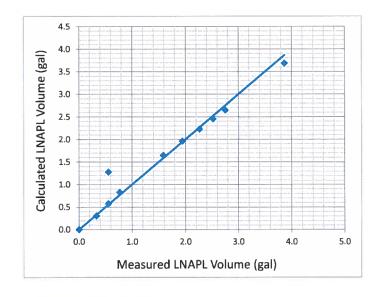
Trial S_n:

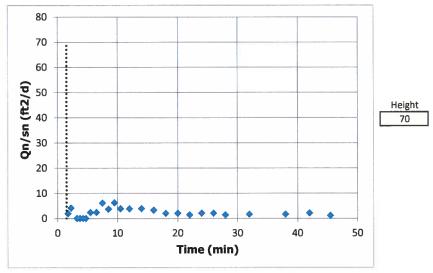
d <- Enter d for default or enter S_n value

Root-Mean-Square Error:

0.756 <-- Minimize this using "Solver"

0.074 <-- Working S_n

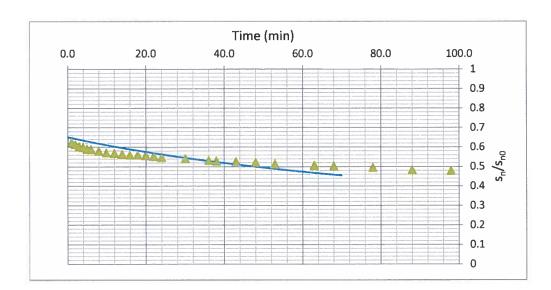

0.700 <-- By changing T_n through "Solver"


Trial T_n (ft²/d):

Add constraint $T_n > 0.00001$

Model Result:

 $T_n (ft^2/d) = 0.70$



Cooper, Bredehoeft and Papadopulos (1967)

Well Designation:	W-1
Date:	date

Enter early time cut-off for least-squares model fit

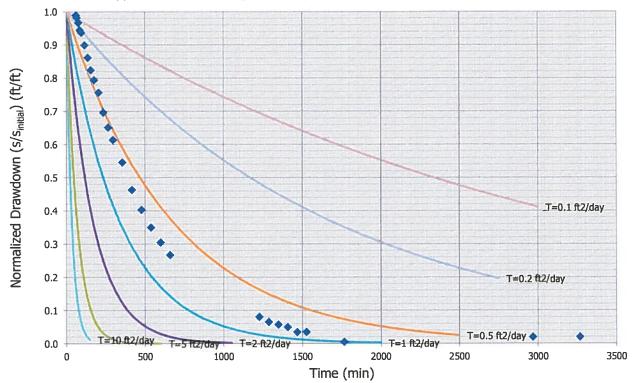
Enter early time cut-on for least-squares model in							
Time _{cut} (min):	5	- Enter or change values h	ere				
Initial Drawdown s _n (ft):	2.6						
Trial S _n :	d	Enter d for default					
Root-Mean-Square Error:	0.259	Minimize this using "Sol	ver"				
Trial T _n (ft²/d):		By changing T _n through "	Solver" constraint Tn > 0.00001				
Model Result: T _n (ft ² /	d) = 0.70		T _{min} 0.2				

J-Ratio -0.239

70

 $\mathsf{T}_{\mathsf{max}}$

Bouwer and Rice Short Term LNAPL Mobility Test Type Curves


B&R Type Curves: Casing Rad. (ft) = 0.167; Borehole Rad. (ft) = 0.333

Enter these values

Type Curve ID	Type Curve Name	Notes	Max Time (min)	Transmissivity (ft²/day)
1	T=10 ft2/day		150	10
2	T=5 ft2/day		600	5
3	T=2 ft2/day		1050	2
4	T=1 ft2/day		2000	1
5	T=0.5 ft2/day		2500	0.5
6	T=0.2 ft2/day		2750	0.2
7	T=0.1 ft2/day		3000	0.1

B&R Type Curves: Casing Rad. (ft) = 0.167; Borehole Rad. (ft) = 0.333

STEP 1: RESET OUTPUT SUMMARY	STEP 4: LNAPL TRANSMISSIVITY SUMMARY
STEP 2: ENTER DATA & VIEW FIGURES STEP 3: CHOOSE WELL CONDITIONS	Mean LNAPL Transmissivity (ft²/d) 0.39 Standard Deviation (ft²/d) 0.17 Coefficient of Variation 0.43

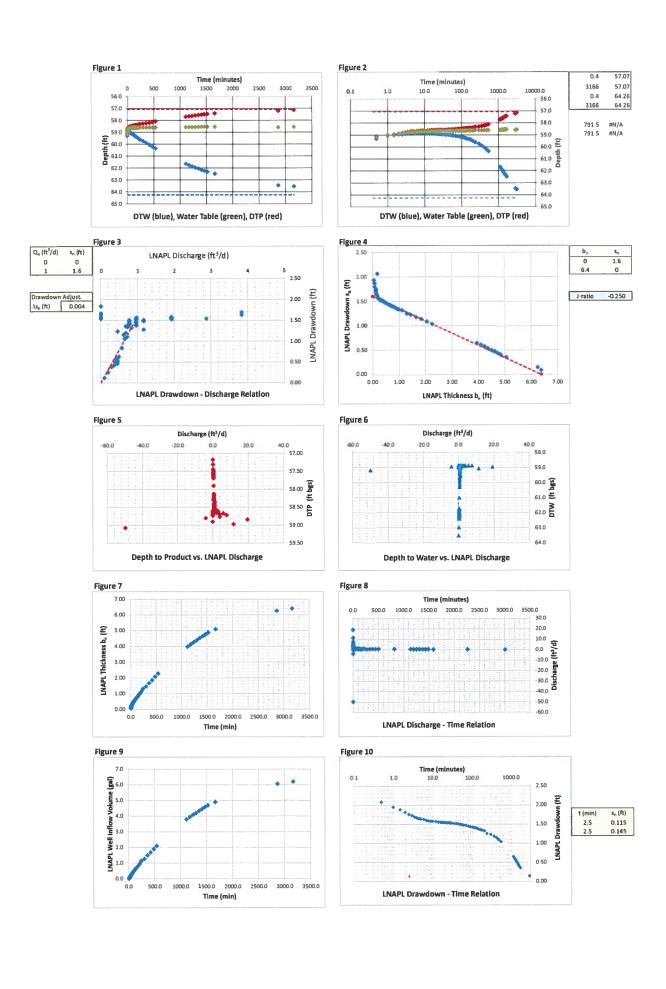
NAPL Bailing Test Data and Interpretation Well W-2 Walstad Lovington 66 LUST Site June 2-4, 2015

Walstad LUST Site 2-Jun-15 Well Designation: Date: W-2 date Ground Surface Elev (ft msl) Top of Casing Elev (ft msl) Well Casing Radius, r_c (ft): 0.0 Enter These Data Adjustment (ft) 0.004 0.167 $r_{\rm e1}$ Well Radius, rw (ft): 0.333 LNAPL Specific Yield, S_y: 0,175 LNAPL Density Ratio, pr. 0.780 LNAPL Density Ratio, p;

Top of Screen (ft bgs):

Bottom of Screen (ft bgs):

LNAPL Balidown Vol. (gal.):


Effective Radius, r_{aj} (ft):

Effective Radius, r_{dj} (ft):

Initial Casing LNAPL Vol. (gal.):

Initial Effect NAPL Vol. (gal.): 0.0 0.0 7.2 0.206 Calculated Parameters 0.197

Effective Radius, r _{e2} (ft):	0.197											
Initial Casing LNAPL Vol. (gal.):	4.71											
Initial Filter LNAPL Vol. (gal.):	2.45	i										
	En	ter Data H	ere			Water Table	LNAPL	IS.	LNAPL			
						Depth	Drawdown	Average	Discharge	S _n	b _n	re
	Time (min)	DTP (ft btoc)	DTW (ft btoc)	DTP (ft bgs)		(ft)	s _n (ft)	Time (min)	$Q_n(R^3/d)$	(ft)	(ft)	(ft)
Initial Fluid Levels:	0	57.07	64.26	57.07	64.26	58.65					7.19	
								-			0.18	
Enter Test Data:	0.5	59.14	59.32	59.14	59.32	59.18	2.07	0.0	-49.888	2.00	0.16	0.206
	1.0	59.01	59.06	59.01	59.06	59.02 58.96	1.94 1.87	0,8 1.3	11.513	1.90	0.03	0.206
	1.5	58.94	59.02 58.95	58.94 58.87	59.02 58.95	58.89	1.80	1.8	0.000	1.83	0.08	0.206
	2.0 2.5	58.87 58.82	58.95	58.82	58.95	58.85	1.75	2.3	19.188	1.77	0.13	0.206
	3.0	58.79	58.91	58.79	58.91	58.82	1.72	2.8	-3.838	1.73	0.12	0.206
	3.5	58.75	58.88	58.75	58.88	58.78	1.68	3,3	3.838	1.70	0.13	0.206
	4.0	58.73	58.86	58.73	58.86	58.76	1.66	3.8	0.000	1.67	0.13	0.206
	4.5	58.71	58.86	58.71	58.86	58.74	1.64	4,3	7.675	1.65	0.15	0.206
	5.0	58.70	58.86	58.70	58.86	58.74	1.63	4.8	3.838	1.63	0.16	0.206
	6.0	58.69	58.85	58.69	58.85	58.73	1.62	5.5	0.000	1.62	0.16	0.206
	7.0	58.66	58.85	58.66	58.85	58.70	1.59	6.5	5.756	1.60	0.19	0.206
	8.0	58.65	58.85	58.65	58.85	58.69	1.58	7.5	1.919 1.919	1.58 1.57	0.20	0.206
	9.0	58.64	58.85	58.64	58.85	58.69 58.69	1.57 1.57	8.5 9.5	0.000	1.57	0.21	0.206
	10.0	58.64	58.85	58.64 58.63	58.85 58.85	58.68	1.56	11,0	0.959	1.56	0.22	0.206
	12.0 14.0	58.63 58.62	58.85 58.86	58.62	58.86	58.67	1.55	13.0	1.919	1.55	0.24	0.206
	16.0	58.61	58.88	58.61	58.88	58.67	1.54	15.0	2.878	1.54	0.27	0.206
	18.0	58.61	58.89	58.61	58.89	58.67	1.54	17.0	0.959	1.54	0.28	0.206
	20.0	58.61	58.89	58.61	58.89	58.67	1.54	19.0	0.000	1.54	0.28	0.206
	22.0	58.6	58.90	58.60	58.90	58.67	1.53	21.0	1.919	1.53	0.30	0.206
	24.0	58.6	58.91	58.60	58.91	58.67	1.53	23.0	0.959	1.53	0.31	0.206
	26.0	58.6	58.92	58.60	58.92	58.67	1.53	25.0	0.959	1.53	0.32	0.206
	28.00	58.59	58.93	58.59	58.93	58.66	1.52	27.0	1.919	1.52	0.34	0.206
	30.00	58.59	58.94	58.59	58.94	58.67 58.66	1.52 1.51	29.0 32.5	0.95 9 1.151	1.52 1.51	0.35 0.38	0.206
	35.00 40.00	58.58 58.58	58.96 58.98	58.58 58.58	58.96 58.98	58.67	1.51	37.5	0.768	1.51	0.40	0.206
	45.00	58.57	58.99	58.57	58.99	58.66	1.50	42.5	0.768	1.50	0.42	0.206
	50.00	58.56	59.01	58.56	59.01	58.66	1.49	47.5	1.151	1.49	0.45	0.206
	55.00	58.55	59.03	58.55	59.03	58.66	1.48	52.5	1.151	1.48	0.48	0.206
	60.00	58.54	59.04	58.54	59.04	58.65	1.47	57.5	0.768	1.47	0.50	0.206
	70.00	58.53	59.08	58.53	59.08	58.65	1.46	65.0	0.959	1.46	0.55	0.206
	80.00	58.51	59.11	58.51	59.11	58.64	1.44	75.0	0.959	1.45	0.60	0.206
	90.00	58.5	59.14	58.50	59.14	58.64	1.43	85.0	0.768	1.43	0.64	0.206
	100.00	58.49	59.17	58.49	59.17	58.64	1.42	95.0	0.768	1.42	0.68	0.206
	110.00	58.48	59.20	58.48	59.20	58.64	1.41	105.0	0.768	1.41	0.72 0.76	0.206
	120.00	58.47 58.46	59.23 59.27	58.47 58.46	59.23 59.27	58.64 58.64	1.40 1.39	115.0 125.0	0.768 0.959	1.39	0.75	0.206
	140	58.44	59.30	58.44	59.30	58.63	1.37	135.0	0.959	1.38	0.86	0.206
	160	58.42	59.35	58.42	59.35	58.62	1.35	150.0	0.672	1.36	0.93	0.206
	176	58.41	59.40	58.41	59.40	58.63	1.34	168.0	0.720	1.34	0.99	0.206
	206	58.39	59.51	58.39	59.51	58.64	1.32	191.0	0.831	1.33	1.12	0.206
	236	58.32	59.62	58.32	59.62	58.61	1.25	221.0	1.151	1.28	1.30	0.206
	296	58.30	59.74	58.30	59.74	58.62	1.23	266.0	0.448	1.24	1.44	0.206
	356	58.25	59.90	58.25	59.90	58.61	1.18	326.0	0.672	1.20	1.65	0.206
	416	58.21	60.05	58.21	60.05	58.61	1.14	386.0	0.608	1.16	1.84	0.206
	476	58.16	60.22	58.16	60.22	58.61	1.09	446.0	0.704	1.11	2.06	0.206
	536	58.11	60.37	58.11	60.37	58.61 58.59	1.04 0.65	506.0 825.0	0.640 0.561	1.06 0.84	2.26 3.95	0.206
	1114	57.72	61.67	57.72 57.68	61.67 61.78	58.59 58.58	0.65	1144.0	0.561	0.63	4.10	0.206
	1174 1234	57.68 57.65	61.78 61.89	57.65	61.89	58.58	0.58	1204.0	0.448	0.59	4.24	0.206
	1234	57.61	61.97	57.61	61.89	58.57	0.54	1264.0	0.384	0.56	4.36	0.206
	1354	57.57	62.07	57.57	62.07	58.56	0.50	1324.0	0.448	0.52	4.50	0.206
	1414	57.55	62.17	57.55	62.17	58.57	0.48	1384.0	0.384	0.49	4.62	0.206
	1466	57.51	62.25	57.51	62.25	58.55	0.44	1440.0	0.443	0.46	4.74	0.206
	1526	57.48	62.33	57.48	62.33	58.55	0.41	1496.0	0.352	0.42	4.85	0.206
	1666	57.43	62.49	57.43	62.49	58.54	0.36	1596.0	0.288	0.38	5.06	0.206
	2866	57.22	63.47	57.22	63.47	58.60	0.15	2266.0	0.190	0.25	6.25	0.206
	3166	57.16	63.55	57.16	63.55	58.57	0.09	3016.0	0.090	0.12	6.39	0.206

Generalized Bouwer and Rice (1976)

Well Designation:	W-2
Date:	2-Jun-15

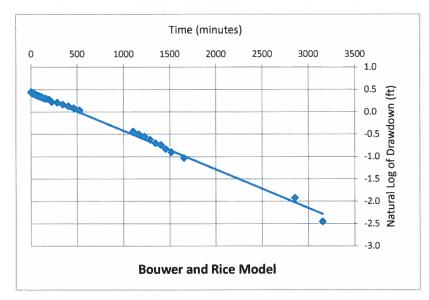
$$T_n = \frac{r_e^2 \ln(R/r_e) \ln(s_n(t_1)/s_n(t))}{2(-J)(t-t_1)}$$

+/-

Enter early time cut-off for least-squares model fit

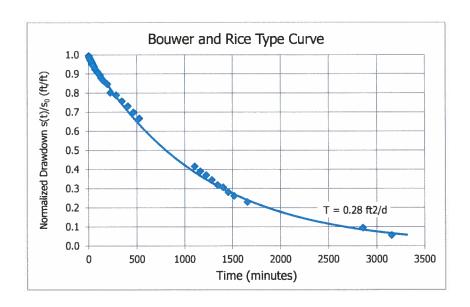
Time _{cut}	10	<-	Enter or	change	value	here

L_e/r_e 34.9 C 2.19 R/r_e 14.68


Model Results:

$$T_n (ft^2/d) = 0.28$$

0.00


ft²/d

J-Ratio -0.250

Coef. Of Variation 0.01

C coefficient calculated from Eq. 6.5(c) of Butler, The Design, Performance, and Analysis of Slug Tests, CRC Press, 2000.

Cooper and Jacob (1946)

cooper and sacor	7 (1340)
Well Designation:	W-2
Date:	date

$V_n(t_i) = \sum_{i=1}^{n}$	$4\pi T_n s_j$ Δt
$\left \begin{array}{c} r_n(t_i) - \sum_{j} \end{array} \right $	$\ln\left(2.25T_nt_j\right)^{\Delta t_j}$
	$r_e^2 S_n$

Enter early time cut-off for least-squares model fit

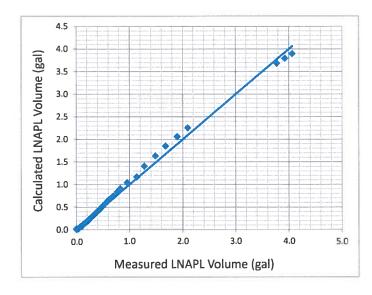
Time _{cut} (min):	5	<- Enter or change values here
Time Adjustment (min):	2	

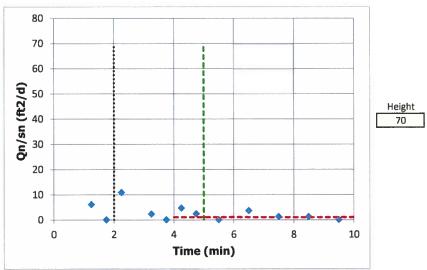
Trial S_n:

d <- Enter d for default or enter S_n value

Root-Mean-Square Error:

0.460 <-- Minimize this using "Solver" <-- Working S_n


Trial T_n (ft²/d):


0.58 <-- By changing T_n through "Solver"

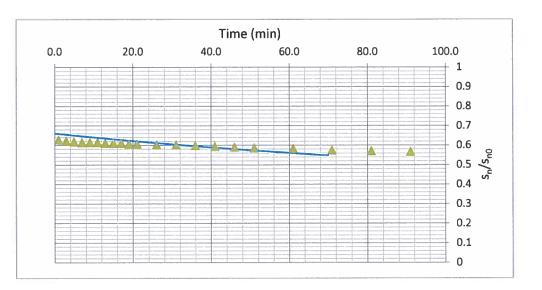
Add constraint $T_n > 0.00001$

Model Result:

 $T_n (ft^2/d) = 0.58$

Cooper, Bredehoeft and Papadopulos (1967)

Well Designation:	W-2
Date:	date


Enter early time cut-off for least-squares model fit

Time _{cut} (min):	9	<- Enter or change values here
Initial Drawdown s _n (ft):	2.5	

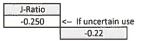
Trial S_n: d <-- Enter d for default

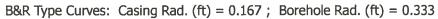
Root-Mean-Square Error: 0.197 <-- Minimize this using "Solver"

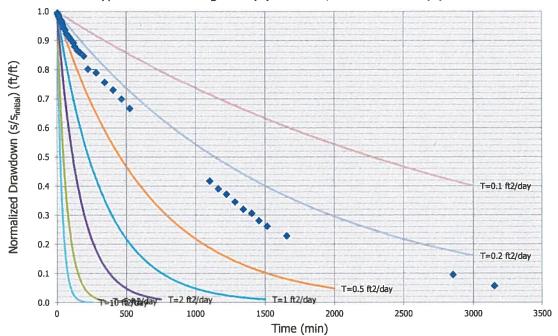
Trial T_n (ft²/d): 0.300 <-- By changing T_n through "Solver"

J-Ratio -0.250

0.270

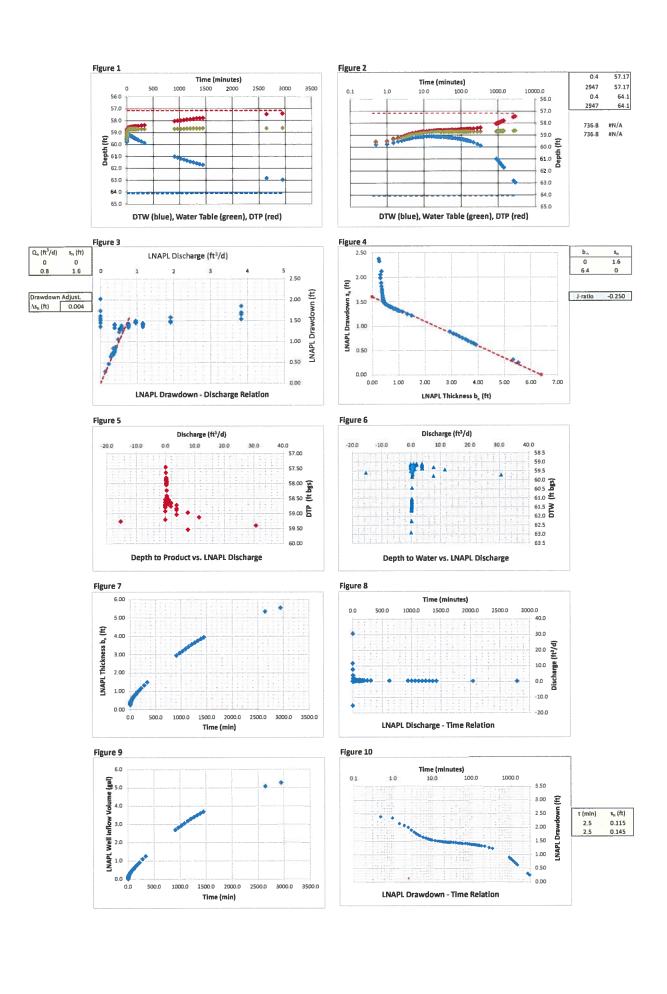

 T_{max}


Bouwer and Rice Short Term LNAPL Mobility Test Type Curves


B&R Type Curves: Casing Rad. (ft) = 0.167; Borehole Rad. (ft) = 0.333

Enter these values

			Litter these values	
Type Curve ID	Type Curve Name	Notes	Max Time (min)	Transmissivity (ft²/day)
1	T=10 ft2/day		250	10
2	T=5 ft2/day		350	5
3	T=2 ft2/day		750	2
4	T=1 ft2/day		1500	1
5	T=0.5 ft2/day		2000	0.5
6	T=0.2 ft2/day		3000	0.2
7	T=0.1 ft2/day		3000	0.1



STEP 1: RESET OUTPUT SUMMARY	STEP 4: LNAPL TRANSMISSIVITY SUMMARY
STEP 2: ENTER DATA & VIEW FIGURES STEP 3: CHOOSE WELL CONDITIONS	Mean LNAPL Transmissivity (ft²/d) 0.24 Standard Deviation (ft²/d) 0.05
	Coefficient of Variation 0.23

NAPL Bailing Test Data and Interpretation Well W-3 Walstad Lovington 66 LUST Site June 2-4, 2015

Well Designation: Date: W-3 Walstad LUST Site 2-Jun-15 Ground Surface Elev (ft msl) Top of Casing Elev (ft msl) Well Casing Radius, r_c (ft): 0.0 Enter These Data 0.0 Adjustment (ft) 0.004 0.167 Γ_{e1} Well Radius, r_w (ft): LNAPL Specific Yield, S_γ: LNAPL Density Ratio, ρ_γ: 0.333 0.175 0.780 Top of Screen (ft bgs): Bottom of Screen (ft bgs): LNAPL Baildown Vol. (gal.): Effective Radius, r_{e3} (ft): 0.0 0.0 7.0 0.206 Calculated Parameters Effective Radius, r_{s2} (ft): Initial Casing LNAPL Vol. (gal.): Initial Filter LNAPL Vol. (gal.): 0.197 4.54 2.37

	En	ter Data H	ere			Buthir	Water Table	LNAPL		LNAPL			
							Depth	Drawdown	Average	Discharge	Sn	b _n	r _e
				DTP (ft bgs)			(ft)	s _n (ft)	Time (min)	$Q_n(R^3/d)$	(ft)	(ft)	(ft)
Initial Fluid Levels:	0	57.17	64.1	57.17	64.1	A TOP A LET	58.69	10	-			6.93	
Enter Test Data:	0.5	59.55	59.80	59.55	59.80	September 1	59.61	2.38				0,25	
	1.0	59.50	59.77	59.50	59.77		59.56	2.33	0.8	7.675	2.35	0.27	0.206
	1.5	59.30	59.65	59.30	59.65		59.38	2.13	1.3	30.700	2.23	0.35	0.206
	2.0	59.23	59.54	59.23	59.54		59.30	2.06	1.8 2.3	-15,350 0,000	2.09 2.02	0,31 0,31	0.206 0.206
	2.5 3.0	59.16 59.06	59.47 59.40	59.16 59.06	59.47 59.40		59.23 59.13	1.99 1.89	2.8	11,513	1.94	0,31	0.206
	3.5	58.99	59.34	58.99	59.34		59.07	1.82	3.3	3.838	1.85	0.35	0.206
	4.0	58.93	59.30	58.93	59.30		59.01	1.76	3.8	7,675	1.79	0.37	0.206
	4.5	58.89	59.26	58.89	59.26		58.97	1.72	4.3	0,000	1.74	0.37	0.206
	5.0	58.85	59.23	58.85	59.23		58.93	1.68	4.8	3.838	1.70	0,38	0.206
	6.0	58.80 58.77	59.20 59.17	58.80 58.77	59.20 59.17		58.89 58.86	1.63 1.60	5.5 6.5	3.838 0.000	1,65 1.61	0.40	0,206
	7.0 8.0	58.74	59.17	58.74	59.17		58.83	1.57	7.5	1.919	1.58	0.41	0.206
	9.0	58.72	59.13	58.72	59.13		58.81	1.55	8.5	0.000	1.56	0.41	0.206
	10.0	58.7	59.13	58.70	59.13		58.79	1.53	9.5	3.838	1.54	0.43	0.206
	12.0	58.68	59.11	58.68	59.11		58.77	1.51	11.0	0,000	1,52	0.43	0.206
	14.0	58.66	59.10	58.66	59.10		58.76	1.49	13.0	0.959	1.50	0.44	0,206
	16.0 18.0	58.65 58.64	59.11 59.11	58.65 58.64	59.11 59.11		58.75 58.74	1.48 1.47	15.0 17.0	1,919 0.959	1.48	0.47	0.206
	20.0	58.63	59.12	58.63	59.12		58.74	1.46	19.0	1.919	1.46	0.49	0,206
	22.0	58.63	59.13	58.63	59.13		58.74	1.46	21.0	0.959	1.46	0.50	0.206
	24.0	58.62	59.13	58.62	59.13		58.73	1.45	23.0	0.959	1.45	0.51	0.206
	26.0	58.62	59.14	58.62	59.14		58.73	1.45	25.0	0.959	1.45	0.52	0.206
	28.00 30.00	58.62 58.62	59.15 59.15	58.62 58.62	59.15 59.15		58.74 58.74	1.45 1.45	27.0 29.0	0.959 0.000	1.45 1.45	0.53 0.53	0.206
	35.00	58.61	59.17	58.61	59.17		58.73	1.44	32.5	1.151	1.44	0.56	0.206
	40.00	58.6	59.18	58.60	59.18		58.73	1.43	37.5	0.768	1.43	0.58	0.206
	45.00	58.59	59.20	58.59	59.20		58.72	1.42	42.5	1.151	1.42	0.61	0.206
	50.00	58.59	59.21	58.59	59.21		58.73	1.42	47.5	0.384	1.42	0.62	0.206
	55.00	58.58	59.23	58.58 58.57	59.23		58.72 58.72	1.41 1.40	52.5 57.5	1.151 1.151	1.41 1.40	0.65 0.68	0.206 0.206
	70.00	58.57 58.57	59.25 59.27	58.57	59.25 59.27		58.72	1.40	65.0	0.384	1.40	0.70	0.206
	80.00	58.56	59.30	58.56	59.30		58.72	1.39	75.0	0.768	1.39	0.74	0.206
	90.00	58.55	59.32	58.55	59.32		58.72	1.38	85.0	0.576	1.38	0.77	0.206
	100.00	58.53	59.34	58.53	59.34		58.71	1.36	95.0	0.768	1.37	0.81	0.206
	110.00	58.53	59.34	58.53	59.34		58.71	1.36	105.0	0.000	1.36	0.81 0.87	0.206
	120.00	58.53 58.52	59.40 59.42	58.53 58.52	59.40 59.42		58.72 58.72	1.36 1.35	115.0 125.0	1.151 0.576	1.36 1.35	0.87	0.206
	140	58.51	59.45	58.51	59.45		58.72	1.34	135.0	0.768	1.34	0.94	0.206
	150	58.50	59.46	58.50	59.46		58.71	1.33	145.0	0.384	1.33	0.96	0.206
	160	58.50	59.49	58.50	59.49		58.72	1.33	155.0	0.576	1.33	0.99	0.206
	180	58.48	59.53	58.48	59.53	Massach	58.71	1.31	170.0 198.5	0.576 0.519	1.32	1.05	0.206 0.206
	217 277	58.47 58.42	59.62 59.76	58.47 58.42	59.62 59.76		58.72 58.71	1.30 1.25	247.0	0.519	1.27	1.34	0.206
	337	58.39	59.89	58.39	59.89	100000000000000000000000000000000000000	58.72	1.22	307.0	0.512	1.23	1.50	0.206
	907	58.06	61.00	58.06	61.00		58.71	0.89	622.0	0.485	1.05	2.94	0.206
	967	58.02	61.09	58.02	61.09		58.70	0.85	937.0	0.416	0.87	3.07	0.206
	1027	58.00	61.18	58.00	61.18		58.70	0.83	997.0	0.352	0.84	3.18	0.206
	1087	57.96 57.93	61.26 61.35	57.96 57.93	61.26 61.35	Park 7840	58.69 58.68	0.79 0.76	1057.0 1117.0	0.384 0.384	0.81 0.77	3.30 3.42	0.206
	1147	57.93	61.44	57.90	61.44	113-21/2	58.68	0.78	1177.0	0.384	0.74	3.54	0.206
	1267	57.87	61.51	57.87	61.51	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58.67	0.70	1237.0	0.320	0.71	3.64	0.206
	1327	57.84	61.59	57.84	61.59	The Arma	58.67	0.67	1297.0	0.352	0.68	3.75	0.206
	1387	57.82	61.66	57.82	61.66	- 900	58.66	0.65	1357.0	0.288	0.66	3.84	0.206
	1447	57.79	61.72	57.79	61.72	14-0 32-0	58.65	0.62	1417.0 2047.0	0.288 0.225	0.63 0.46	3.93 5.34	0.206 0.206
	2647 2947	57.48 57.42	62.82 62.96	57.48 57.42	62.82 62.96	931111111	58.65 58.64	0.31 0.25	2797.0	0.225	0.46	5.54	0.206
	257/	37.72	02.30	#N/A	#N/A		#N/A	#N/A	0.0	#N/A	#N/A	#N/A	0.000
				#N/A	#N/A		#N/A	#N/A	0.0	#N/A	#N/A	#N/A	0.000

Generalized Bouwer and Rice (1976)

Well Designation:	W-3
Date:	2-Jun-15

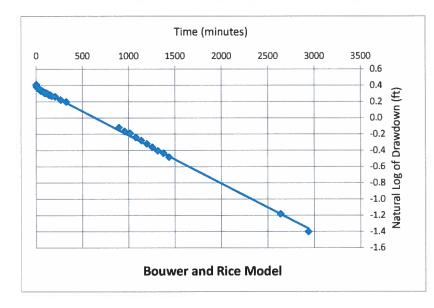
$$T_n = \frac{r_e^2 \ln(R/r_e) \ln(s_n(t_1)/s_n(t))}{2(-J)(t-t_1)}$$

+/-

Enter early time cut-off for least-squares model fit

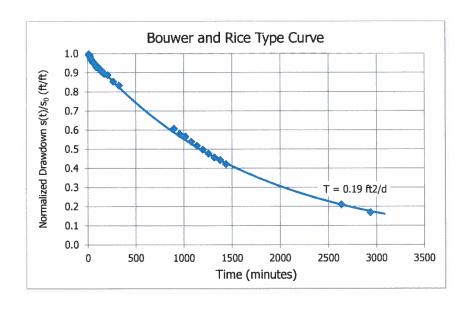
Time cut		Time _{cut}	10	<-	Enter or change value her
----------	--	---------------------	----	----	---------------------------

L_e/r_e 33.6 C 2.14 R/r_e 14.25


Model Results:

|--|

0.00


ft²/d

J-Ratio -0.250

Coef. Of Variation 0.01

C coefficient calculated from Eq. 6.5(c) of Butler, The Design, Performance, and Analysis of Slug Tests, CRC Press, 2000.

Cooper and Jacob (1946)

Well Designation: W-3
Date: 2-Jun-15

$V_n(t_i) = \sum_{i=1}^{i}$	$4\pi T_n s_j$
$V_n(i) - \sum_{j}$	$\ln\left(\frac{2.25T_nt_j}{2.25T_nt_j}\right)^{\Delta t_j}$
	$r_e^2 S_n$

Enter early time cut-off for least-squares model fit

	Time _{cut} (min):	5	<- Enter or change values here
Time Adjustment (min):		2	

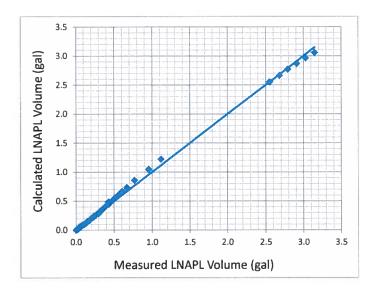
Trial S_n:

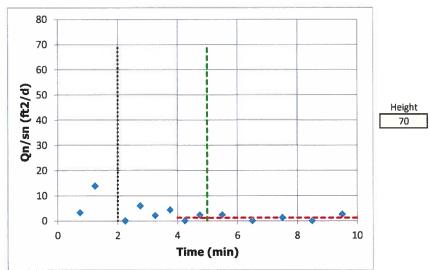
d <-- Enter d for default or enter S_n value

Root-Mean-Square Error:

0.247 <-- Minimize this using "Solver"

0.0010 <-- Working S_n


0.3000 <-- By changing T_n through "Solver"


Trial T_n (ft²/d):

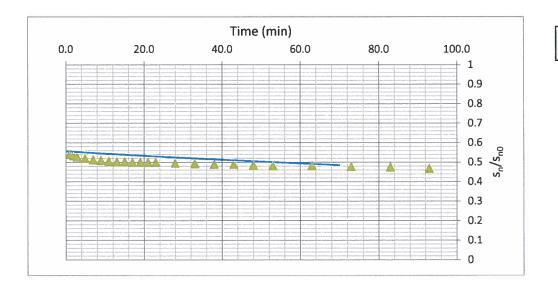
Add constraint $T_n > 0.00001$

Model Result:

 $T_n (ft^2/d) = 0.30$

Cooper, Bredehoeft and Papadopulos (1967)

Well Designation:	W-3
Date:	2-Jun-15


Enter early time cut-off for least-squares model fit

Time _{cut} (min):	7	<- Enter or change values here
Initial Drawdown s _n (ft):	2.9	

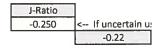
Trial S_n: d <-- Enter d for default

Root-Mean-Square Error: 0.143 <-- Minimize this using "Solver"

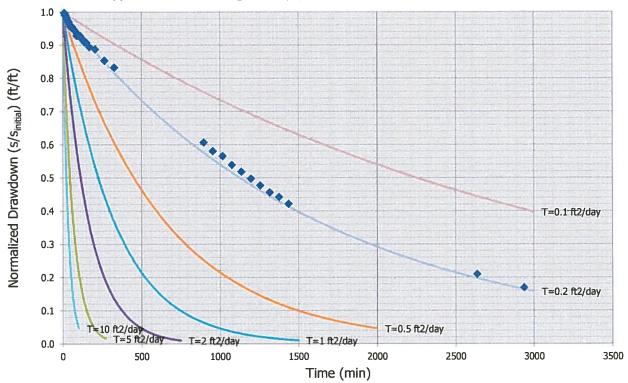
Model Result: $T_n (ft^2/d) = 0.23$

J-Ratio -0.250

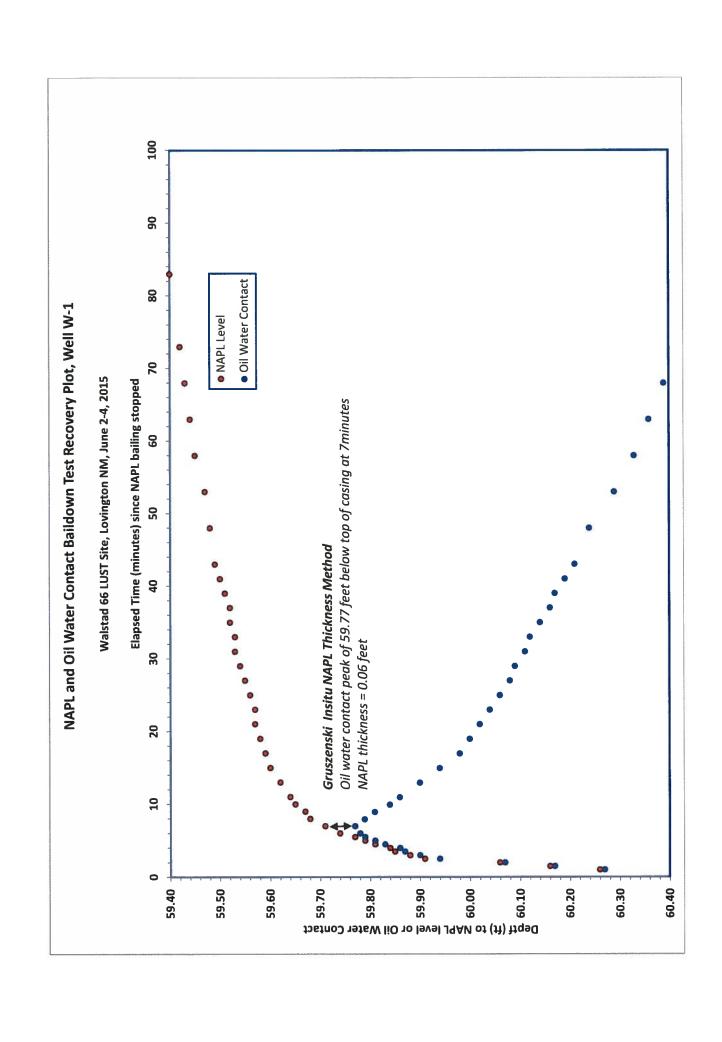
0.270

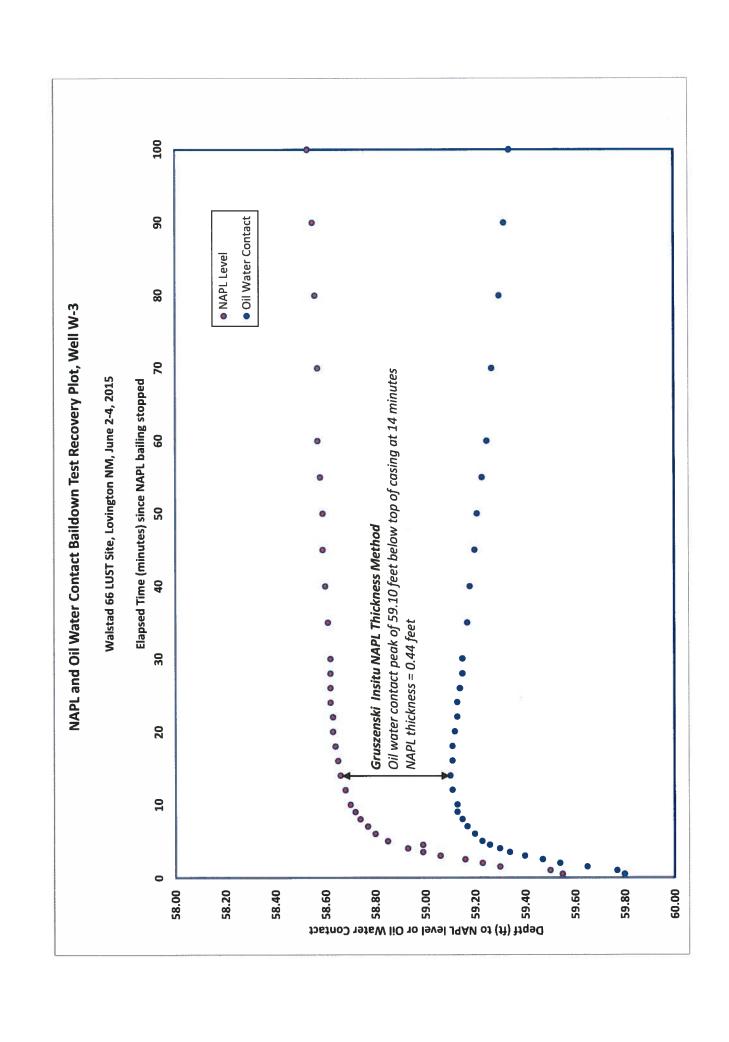

 T_{max}

Bouwer and Rice Short Term LNAPL Mobility Test Type Curves


B&R Type Curves: Casing Rad. (ft) = 0.167; Borehole Rad. (ft) = 0.333

Enter these values


Type Curve ID	Type Curve Name	Notes	Max Time (min)	Transmissivity (ft²/day)
1	T=10 ft2/day		100	10
2	T=5 ft2/day		270	5
3	T=2 ft2/day		750	2
4	T=1 ft2/day		1500	1
5	T=0.5 ft2/day		2000	0.5
6	T=0.2 ft2/day		3000	0.2
7	T=0.1 ft2/day		3000	0.1


B&R Type Curves: Casing Rad. (ft) = 0.167; Borehole Rad. (ft) = 0.333

GRUSZCZENSKI FORMATION NAPL THICKNESS PLOTS

Tom Blaine, P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

MAY 0 2 2015

Trn Nbr: 568362 File Nbr: L 13918

May. 06, 2015

CLAY KILMER
GOLDER ASSOCIATES INC
5200 PASADENA AVE NE STE C
ALBUQUERQUE, NM 87113

Greetings:

Enclosed is your copy of the above numbered permit that has been approved subject to the conditions set forth on the approval page. In accordance with the conditions of approval, the well can only be tested for 10 cumulative days, and the well is to be plugged on or before 05/31/2016, unless a permit to use the water is acquired from this office.

A Well Record & Log (OSE Form wr-20) shall be filed in this office within twenty (20) days after completion of drilling, but no later than 05/31/2016.

Appropriate forms can be downloaded from the OSE website www.ose.state.nm.us or will be mailed upon request.

Sincerely,

Juan Hernandez (575)622-6521

Enclosure

explore

File No	1 - 1	2/	1/5/
1 110 110.			110

State State State State of the State of the

NEW MEXICO OFFICE OF THE STATE ENGINEER

APPLICATION FOR PERMIT TO DRILL A WELL WITH NO CONSUMPTIVE USE OF WATER

(check applicable box):

For fees, see	State Engineer website	e: http://www.ose.state.nm	1.us/ 2-358	45	
Purpose: Pollution Control A	nd / Or Recovery	☐ Geo-Thermal			
☐ Exploratory ☐ Construction Site □	e-Watering	Other (Describe)	:		
	ng				
A separate permit will be required to apply water to	o beneficial use.				
▼ Temporary Request - Requested Start Date: 4	<u>4</u> /10/5	Requeste	ed End Date: 4/10/25		
Plugging Plan of Operations Submitted?	☑ No				
				- 1	157
I. APPLICANT(S)					PEFE
Name: Golder Associates, Inc.	N	lame:			
Contact or Agent: check here if A	Agent 🗵 C	Contact or Agent:	check here if Ag	gent: 🔲	
Mailing Address: 5200 Pasadena Ave NE St	e C	Mailing Address:		13	1
City: Albuquerque	C	City:			
State: Zip Code: 871	13	State:	Zip Code:		
Phone:		Phone: Phone (Work):	☐ Home ☐ Ce	#	
E-mail (optional): ckilmer@golder.com	E	E-mail (optional):			
	FOR OSE INTERNAL	USE /	Application for Permit, Form wr-		12/12

Trans Description (optional):

PCW/LOG Due Date:

Sub-Basin:

Page 1 of 3

2. WELL(S) Describe the well(s) applicable to this application.

Location Required: Coordin (Lat/Long - WGS84).	ate location must be	reported in NM S	ate Plane (NAD 83), UTM (NAD 83), or Latitud	le/Longitu	ude
	rict VII (Cimarron) c	ustomers, provide	a PLSS location in addition to above.		
NM State Plane (NAD83) NM West Zone NM East Zone NM Central Zone		ITM (NAD83) (Mete]Zone 12N]Zone 13N	rs) \times Lat/Long (WGS84) (to 1/10 th of second)	the neare	st
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (Quarters or Halves, Section, Township, I - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name	Range) Of	R
W-4	103d 20m 55.72s	32d 56m 38.94s	SW1/4 SW1/4 SW1/4 S. 3 T.16 S. R.	36 E.	
				W.C FAG-	
				Distriction of the second	
NOTE: If more well location Additional well descriptions			WR-08 (Attachment 1 – POD Descriptions) If yes, how many		
Other description relating well	to common landmark	ks, streets, or other:			
Well is on land owned by: T	Pearson Oil Comp	any, Hobbs, NM			
			cribed, provide attachment. Attached?	res □ N	No
Approximate depth of well (fe			outside diameter of well casing (inches): 4.5		
Driller Name: Harrison-Co	ooper Drilling, W	olfforth TX D	riller License Number: 1271		
3. ADDITIONAL STATEMENTS	OR EXPLANATION	S			22
				-	p-10-00
				7 77 0 19	
				15	
				N	

FOR OSE INTERNAL USE

Application for Permit, Form wr-07

Trn Number: 568362
Page 2 of 3 File Number:

4. SPECIFIC REC boxes, to indicate	QUIREMENTS: The applicant must include the information has been included and/or a	the following, as applicable to each ttached to this application:	n well type. Please check the appropriate
Monitoring: Monitoring: Include a description of any proposed pump test, if applicable. Monitoring: Include the reason for the monitoring well, and, The duration of the planned monitoring.	Pollution Control and/or Recovery: ☐ Include a plan for pollution control/recovery, that includes the following: ☐ A description of the need for the pollution control or recovery operation. ☐ The estimated maximum period of time for completion of the operation. ☐ The annual diversion amount. ☐ The annual consumptive use amount. ☐ The maximum amount of water to be diverted and injected for the duration of the operation. ☐ The method and place of discharge. ☐ The method of measurement of water produced and discharged. ☐ The source of water to be injected. ☐ The method of measurement of water injected. ☐ The characteristics of the aquifer. ☐ The method of determining the resulting annual consumptive use of water and depletion from any related stream system. ☐ Proof of any permit required from the New Mexico Environment Department. ☐ An access agreement if the applicant is not the owner of the land on which the pollution plume control or recovery well is to be located.	Construction De-Watering:	Mine De-Watering: Include a plan for pollution control/recovery, that includes the following: A description of the need for mine dewatering. The estimated maximum period of time for completion of the operation. The source(s) of the water to be diverted. The geohydrologic characteristics of the aquifer(s). The maximum amount of water to be diverted per annum. The maximum amount of water to be diverted for the duration of the operation. The quality of the water. The method of measurement of water diverted. The recharge of water to the aquifer. Description of the estimated area of hydrologic effect of the project. The method and place of discharge. An estimation of the effects on surface water rights and underground water rights from the mine dewatering project. A description of the methods employed to estimate effects on surface water rights and underground water rights. Information on existing wells, rivers, springs, and wetlands within the area of hydrologic effect.
		CKNOWLEDGEMENT	
I, We (name of	applicant(s)), Clay Kilmer	rint Name(s)	2 32
affirm that the fo	oregoing statements are true to the best of	. ,	IE ENGLATIER
Applicant Signa	ture	Applicant Signature	e ER
	ACTION	OF THE STATE ENGINEER	5 19
		This application is:	13 II
		partially approved [denied
provided it is r Mexico nor de	not exercised to the detriment of any others strimental to the public welfare and further so	having existing rights, and is not cubject to the attached conditions o	contrary to the conservation of water in New f approval.
Witness my har	nd and seal this day of	<u>May</u> 20 <u>15</u> ,	for the State Engineer,
	Tom Blaine, P.E.	, State Engineer	
By:			
Signature		Print	
Title: Jua	Hernandez, Engr Specialis	t Supervisor	
	FOR OS	SE INTERNAL USE	Application for Permit, Form wr-07
	File Nun	nber: /-/39/8	Trn Number: 5(8362
			Page 3 of 3

The New Mexico Environment Department has determined that an additional monitoring well is needed for this Leaking Underground Storage Tank site.

Duration of Use

The site is in active regulatory enforcement for corrective action for fuel contamination associated with a Leaking Underground Storage Tank that was formerly on this location. It is anticipated that the site may remain in enforcement requiring groundwater monitoring from this well for ten years.

Golder Associates Inc.

5200 Pasadena N.E., Suite C Albuquerque, NM USA 87113 Telephone (505) 821-3043 Fax (505) 821-5273 www.golder.com

RIGHT OF ENTRY FORM **GOLDER ASSOCIATES INC.**

The undersigned, who is (are) the fee owner(s) of record (hereinafter referred to as Owner) with the sole right to the property in question, does hereby consent and grant Golder Associates Inc., its agents, employees, and assignees the right to enter the property stated below to install monitor wells and perform testing as required by the New Mexico Environment Department, and to conduct other activities as may be required in connection therewith. This Right of Entry is effective upon completion of this document.

Property Owner:

Kelth Pearson, Pearson Oil Company

Property Street Address:

424 South Main Street McDonald's Restaurant

(See attached Figure)

City, State:

Lovington, New Mexico

This Right of Entry is granted in consideration of the following Golder Associates Inc. commitments:

- Golder Associates, Inc. agrees that in consideration of Owners(s) granting this Right of Entry, the affected property will be restored as much as reasonably possible to its condition proceeding our entry. If monitoring wells are developed, these wells will be plugged and abandoned upon project termination in accordance with New Mexico's applicable rules and regulations.
- Golder Associates Inc. agrees to coordinate with Mr. Ken Fadke (McDonald's franchise owner) to plan and execute the site work to minimize impact to the restaurant business.
- Golder Associates, Inc. agrees to protect Owner from any and all liability which might arise as a result of the foregoing activities on the described property.
- Owner(s) retain the discretion to terminate this agreement at any time, after 30 days written 4. notice, if it is in his or his successor's interests.
- Golder Associates Inc. will provide owner(s) with all analytical results and final investigation reports upon request. Golder Associates, Inc. agrees to provide owner with all future laboratory results and keep the owner informed of all future developments concerning subject property as it pertains to this investigation as requested by owner.

Owner(s) Agent M. Y. Pearon	Golder Associates Inc.
	Clay Kilmer Project Manager
6-2-14	May 30, 2014
Date	Date

Date

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL

- 1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- No water shall be appropriated and beneficially used under this permit.
- The well shall be plugged upon completion of the permitted use, and a plugging report shall be filed with the State Engineer within 10 days.
- The Permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.
- B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with Section 72-12-12 New Mexico Statutes Annotated.
- C Driller's well record must be filed with the State Engineer within 20 days after the well is drilled or driven. Well record forms will be provided by the State Engineer upon request.
- No water shall be diverted from this well except for testing purposes which shall not exceed ten (10) cumulative days, and well shall be plugged or capped on or before, unless a permit to use water from this well is acquired from the Office of the State Engineer.
- P The well shall be constructed, maintained, and operated to prevent inter-aquifer exchange of water and to prevent loss of hydraulic head between geologic zones.

 Trn Desc:
 L 13918 POD1
 File Number:
 L 13918

 Trn Number:
 568362

Locator Tool Report

General Information:

Application ID: 29

Date: 05-05-2015

Time: 11:35:40

WR File Number: L-MON Purpose: OTHER

Applicant First Name: GOLDER ASSOC INC

Applicant Last Name: CLAY KILMER

GW Basin: LEA COUNTY

County: LEA

Critical Management Area Name(s): NONE Special Condition Area Name(s): NONE

Land Grant Name: NON GRANT

PLSS Description (New Mexico Principal Meridian):

SE 1/4 of SW 1/4 of SW 1/4 of SW 1/4 of Section 03, Township 16S, Range 36E.

Coordinate System Details:

Geographic Coordinates:

Latitude: Longitude: 32 Degrees 56 Minutes 39.3 Seconds N 103 Degrees 20 Minutes 56.6 Seconds W

Universal Transverse Mercator Zone: 13N

 NAD 1983(92) (Meters)
 N: 3,646,316
 E: 654,330

 NAD 1983(92) (Survey Feet)
 N: 11,962,955
 E: 2,146,748

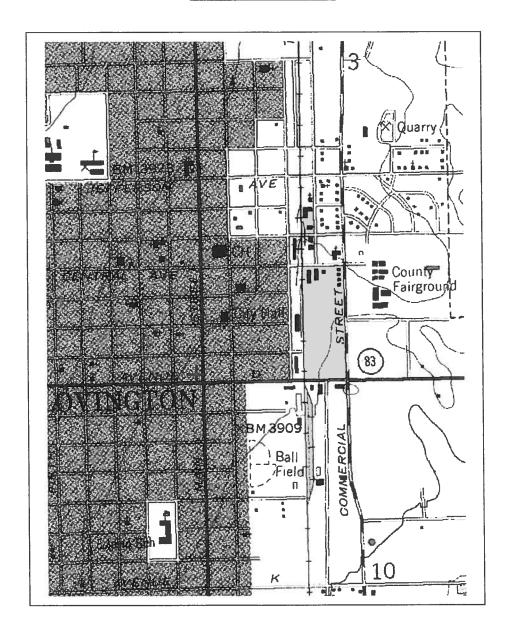
 NAD 1927 (Meters)
 N: 3,646,112
 E: 654,380

 NAD 1927 (Survey Feet)
 N: 11,962,287
 E: 2,146,913

State Plane Coordinate System Zone: New Mexico East

 NAD 1983(92) (Meters)
 N: 216,001
 E: 257,035

 NAD 1983(92) (Survey Feet)
 N: 708,664
 E: 843,290


 NAD 1927 (Meters)
 N: 215,981
 E: 244,484

 NAD 1927 (Survey Feet)
 N: 708,599
 E: 802,112

Page 1 of 2 Print Date: 05/05/2015

NEW MEXICO OFFICE OF STATE ENGINEER

Locator Tool Report

WR File Number: L-MON Scale: 1:14,368

Northing/Easting: SPCS83(92) (Feet): N: 708,664 E: 843,290

GW Basin: Lea County

Page 2 of 2 Print Date: 05/05/2015

OFFICE OF THE STATE ENGINEER/INTERSTATE STREAM COMMISSION - ROSWELL OFFICE

H: STATE: NM	yellow copy	\$ 50.00 \$ 50.00 \$ 50.00	\$ \$	₩ +	M-		
CHECK NO :: 111 CAS	to payor; pink copy to Program Support/ASD; and	C. Well Driller Fees 1. Application for Well Driller's License 2. Application for Renewal of Well Driller's License 3. Application to Amend Well Driller's License	D. Reproduction of Documents @ 0.25¢ Map(s)	E. Certification	G. Comments:		
DATE: 5115 FILE NO.: FINE 60/100 DOLLARS ADDRESS: 3319 JUNE NIE	RECEIVED BY: Control RECEIVED BY: Control RECEIVED BY: RECEIVED BY: Receipt information. Control Receipt Rec	r Right Siversion e from	Surrace water to Surrace water 5. Application to Change Point of Diversion and Place and/or Purpose of Use from Ground Water to Surface Water 6. Application to Change Point of Diversion \$ 100.00	Application to Change Place and/or Purpose of Use Application to Appropriate Notice of Intent to Appropriate Application for Extension of Time	Well to a Surface Right \$ 1 redit \$ 1 fetion of Works \$ cation of Water to \$ ment Plan \$ 1 Livestock Water	Impoundment \$ 10.00 17. Application for Livestock Water Impoundment \$ 10.00	
OFFICIAL RECEIPT NUMBER: 2 - 35845 TOTAL:	ZIP: S-H RECEIVED BY: The left of the left of the left of the remains and the original and all singles.	A. Ground Water Filing Fees 1. Change of Ownership of Water Right \$ 2.00 2. Application to Appropriate or Supplement Domestic 72-12-1 Well \$ 125.00 3. Application to Repair or Deepen \$ 75.00	4. Application for Keplacement 72-12-1 Well 5. Application to Change Purpose of Use 72-12-1 Well 6. Application for Stock Well \$ 5.00	7. Application to Appropriate Irrigation, Municipal, or Commercial Use 8. Declaration of Water Right 9. Application for Supplemental Non	72-12-1 Well 10. Application to Change Place or Purpose of Use Non 72-12-1 Well 11. Application to Change Point of Diversion and Place and/or Purpose of Use from Surface Water to Ground Water 12. Application to Change Point of Diversion		15. Application for Test, Expl. Observ. Well \$\(\frac{\xi_00}{6.00}\) 16. Application for Extension of Time \$\(25.00\) 17. Proof of Application to Beneficial Use \$\(25.00\) 18. Notice of Intent to Appropriate \$\(25.00\)

All fees are non-refundable.

APPENDIX G
SOIL AND WATER DISPOSAL MANIFESTS

N.M.E.D DP-1041	Gandy Marley, Inc. P.O. BOX 1658 · ROSWELL, NM 88202	LOAD INSPECTION FORM N	o. 15389
Date of Receipt: 06/	03/15 Time of Receipt: 16:50 AM Cell 160 ST/CY: GA 1605 Description: 6050	Placement: UST-LBB3	. 40
Quantity: ————————————————————————————————————	Wa/51.	ad Phillips 66 Louingto	on NU .
	or Goldera Associates Inc. 5	200 Pasadena Ave NE	SuiteC
Origin of Materials (if diff	erent): Albu QUELQUE, NU		
Transporter Name:	nB.	SCC ID No.	
Name of Laboratory Perfo	orming Sample Analysis: HEAL GNF1	LE	
		PHNon-HazardousI	Exempt
Verifi	ication of No Free Liquids Paint	Filter Liquids Test Performed	
Verification of Property Co	ompleted Manifest Generator Manifest	Number <u>15389</u>	1
shipped herewith is exempt fro	y, Inc's acceptance of the materials shipped as represented on this Load on the Resource Conservation and Recovery Act of 1976, as amended from the seq., and regulations related thereto, OR has been characterized as a desting methods.	om time to time, 40 U.S.C Section 6901, et seq., The New	Mexico Health and
Further, as a condition to Gammaterial delivered by Generate	dy Marley, Inc's acceptance of the materials shipped as represented on th or to Transporter to Gandy Marley, Inc.'s facility for disposal.	nis Load Inspection Form, Transporter represents and wa	rrants that only the
above described Generator. Th	e above Transporter loaded the material as represented on this Load Insp HIS WILL CERTIFY that no additional materials were added to this load,	and that the material was delivered without incident.	was tendered by the
Transporter:	loyton M Barnhill Print Name	Signature	
GMI Employee:	d. TOLTON Print Name	7 Tolon /Signature	
		- Ligitavar	

GANDY•MARLEY, INC. P.O. Box 1658 Roswell, NM 88202

(575) 347-0434 Fax (575) 347-0435

No. 34265

LEASE OPERATOR	SHIPPER/COMPANY: Golde no sold	1.73.4
LEASE NAME: //	6 66 (ab 115 m 15)	
TRANSPORTER CO	MPANY: SHULL TIME: SAME	M)
DATE: 07	VEHIĆLE NÓ.: 352 DRIVER NO.: /	
CHARGE TO:		
	TYPE OF MATERIAL	
	OCD	
[] Other Material:	[] Contaminated soil [] C-117 No.:	
Description:	March 2) LARER OWLY	
COMPANY CONTAC	m.	
VOLUME OF MATER	RIAL[]: YARDS 399: CELL#1 :[]	6
THIS JOB TICKET, OPERA SH RPED HEREWITH IS M ACT OF 1976, AS AMENDE CODE, §361.001, et seq. AFFORDED CONTAMINAT DEVELOPMENT OR PROD ALSO AS A CONDI WITH THIS JOB TICKET,	TO GANDY MARLEY, INC.'S ACCEPTÄNCE OF THE MATERIALS SHIPPE ATTOR/SHIPPER REPRESENTS AND WARRANTS THAT THE WASTE MAINTERIAL EXEMPT FROM THE RESOURCE, CONSERVATION AND RECED FROM TIME TO TIME, 40 U.S.C. §6901, et seq., THE NM HEALTH AN AND REGULATIONS RELATED THERETO, BY VIRTUE OF THE EXEMPTED SOILS AND OTHER WASTE ASSOCIATED WITH THE EXPLOPEUCTION OF CRUDE OIL OR NATURAL GAS OR GEOTHERMAL ENERGY ITION TO GANDY-MARLEY, INC.'S ACCEPTANCE OF THE MATERIALS SISTEMASPORTER REPRESENTS AND WARRANTS THAT ONLY THE MAINTERIALS TO TRANSPORTER IS NOW DELIVERED BY TRANSPORTANTS THAT ONLY THE MAINTERIALS OF THE	TERIAI OVER' ND SAF MPTION RATION Y HIPPEL TERIAI
THIS WILL CERTI Statement at the above des	FY that the above Transporter loaded the material represented by this Trascribed location, and that it was tendered by the above described shipper. terials were added to this load, and that the material was delivered without in	This wi

24-HOUR SERVICE, CALL LOVINGTON (575) 396-4948 TATUM (575) 398-4960

GANDY CORPORATION

KILL TRUCKS - VACUUM TRUCKS - WINCH TRUCKS ROLL OFFS - TANK CLEANING - ROUSTABOUTING PRC #14225 P.O. BOX 2140 LOVINGTON, NEW MEXICO 88260

522829

Date 7- 12-15	_ Truck No. 352			
Company GOIDER ASSOCIATES INC	Purchase Order No.		Invoice I	No
From LOVINGTON lele (NO DONALOS 410 SMA	Rig No.	Location		
To Lease GMA	_ Well No	Location		
A M	45 A.M.	TIME	RATE	AMOUNT
Time Out 6:15 P.M. Time In 6: Diesel Brine Water Fresh Water				
Crude Oil Produced Water Bbls. Hauled	2037 gal		0-50	1019,50
Driver, Operator or Pusher ROGETIU GANDARA		12.50	8500	1062.50
Helper				
Helper				
Helper				
Other Charges				<u> </u>
Description of Work Hauls D 2039 GALLOW OF W	PATER TO GM.	4		
STAND BY TO PUMPIN INTO TRU				
2039 GALLO	1a/S			
		1 1 ix (n = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
				-
	1722			
		2/2		
N. Albert				
the state of the s				
GMF HICK + 74265			Sub Total	
			Sales Tax	114.51
			TOTAL	2(96,51
Authorized By:			SUPERIOR PR	RINTING SERVICE, INC

100	Contaminated Soils Shipment Manifest	l. Manifes	st Document	No. 2 2	81219	2. Page of
	3. Generator's Name and Mailing Address				enerator Phone N	
	Cholder Associates Inc Clo	Walsted	1:0			1-3043
	1 32000		1 /	5. Ge	enerator Contact	* [
	6. Transporter 1 Company Name			7. ID	lay K	ilmer
	8. Transporter 2 Company Name			9. ID	4 2 2 1 No.	3
					1	
	10. Designated Disposal Facility Name and Site Address	1.0		11 F	acility Permit Nu	mber
	Gandy Marley, Inc. Contaminated Soils L 7200 East Second Street	andiarm		00	0100248	4
	PO Box 1658 Roswell, NM 88201			12. F	acility Phone No. (575) 3	98-0107
G	13. Description of Waste			ntainers	15. Total	16. Unit Wt, Vol.
E	a.		No	Туре	Quantity	
N E	" UST (gasoline)		j	12. K	2039501	
R						
A T	b.					
O R						
	c.					-
	17. Special Handling Instructions and Additional Information					
	18. Generator's Certification: I hereby declare that the contents of the coare classified, packed, marked, and labeled	d, and are in all res	and accurate pects in proj	ely descrih per conditi	ed above by prop on for transport	er shipping name and by highway according
	to applicable federal, state, and internation					
	FURTHER. I represent and warrant that th Conservation and Recovery Act of 1976, laboratory analysis done in accordance wi	OR has been chara	icterized as	non-hazarı	ifest is either exer dous material by	npt from the Resource virtue of appropriate
	Printed/Typed Name Signature	DIO!	1		Date	
T	Philip Carrillo 19. Transporter 1 Acknowledgement of Receipt of Materials	1196			0 7	2/1/2/15
R A N	Printed/Typed Name Signature	0 (1)	1		Date	
S P O	Rogelio Gandara - 23e	du Dard	en		01	111215
R T	20. Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Signature				Date	
E R						1 1 1 1
	21. Discrepancy Information		·			
G M						
] [22. Facility Owner or Operator Certification of receipt of materials described on	this manifest excep	ot as noted in	item 21.		
	Printed/Typed Name Signature				Date	
	David E. Dice	25 - OH	Elico		0,7	11215

Instructions for Proper Completion of Manifest

GENERATORS

- Item 1 Enter the number assigned to the Manifest by the
- Item 2 Enter the page number and the total number of pages used to complete the Manifest, if any.
- Item 3 Enter the name and mailing address of the generator. The address should be the location that will manage the returned Manifest forms.
- Item 4 Enter a telephone number where an authorized agent of the generator may be reached in the event of an emergency.
- Item 5 Enter the name of the authorized agent of the generator who is knowledgeable of the shipment and who should be contacted in the event of an emergency.
- Enter the company name of the first transporter who will transport the waste.
- Item 7 Enter the appropriate identification number for the first transporter. (e.g., State Corporation Commission or EPA identification number.)
- Item 8 If applicable, enter the company name of the second transporter who will transport the waste.
- Item 9 If applicable, enter the appropriate identification number for the second transporter.
- Item 10 Enter the company name and site address of the facility designated to receive the waste listed on the Manifest. The address must be the site address. which may differ from the company mailing address.
- Item 11 Enter the appropriate permit number of the facility designated to receive the waste listed on the Manifest.
- Item 12 Enter the phone number of the facility designated to receive the waste listed on the Manifest.
- Item 13 Enter a brief description of each waste being shipped under the Manifest.
- Item 14 Enter the number of containers for each waste and the appropriate abbreviation below for the type of container.

DM = Metal druns, barrels, kegs

CW - Wooden boxes, cartons, cases

DT - Dump truck

DF = Fiberboard or plastic drums

BA = Burlap, cloth, paper, plastic bags

CM = Metal boxes, cartons, cases

TC = Tank cars

DW = Wooden drums, barrels, kegs

CF = Fiber/plastic boxes, cartons, cases

CY = Cylinders

TP = Tanks portable

TΓ = Cargo tanks (tank trucks)

- Item 15 Enter the total quantity of waste described on each
- Item 16 Enter the appropriate abbreviation from below for the unit of measure.

G = Gallons Y = Cubic yards

P = Pounds L = Liters

T = Tons K = Kilograms

M = Metric tons

N = Cubic meters

- Item 17 Generators may use this space to indicate special transportation, treatment, storage, or disposal information or Bill of Lading information.
- Item 18 The generator must read, sign (by hand), and date the certification statement. If a mode other than highway is used, the word "highway" should be lined out and the appropriate mode (rail, water, or air) inserted in the space below. If another mode in addition to the highway mode is used, enter the appropriate additional mode (e.g., and rail) in the space below.

TRANSPORTERS

- Item 19 Enter the name of the person accepting the waste on behalf of the first transporter. That person must acknowledge acceptance of the waste described on the Manifest by signing and entering the date of receipt.
- Item 20 Enter, if applicable, the name of the person accepting the waste on behalf of the second transporter. That person must acknowledge acceptance of the waste described on the Manifest by signing and entering the date of receipt.

OWNERS AND OPERATORS OF DESIGNATED DISPOSAL **FACILITIES**

- Item 21 The authorized representative of the designated facility's owner or operator must note in this space any significant discrepancy between the waste described on the Manifest and the waste actually received at the facility.
- Item 22 Print or type the name of the person accepting the waste on behalf of the owner or operator of the facility. That person must acknowledge acceptance of the waste described on the Manifest by signing and entering the date of receipt.

22830

GANDY•MARLEY, INC. P.O. Box 1658 Roswell, NM 88202

(575) 347-0434 Fax (575) 347-0435

No.34302

LEASE OPERATOR	SHIPPER/COMPANY:	LIBRO-BOSSCIALES CONT
LEASE NAME:		Carried States of the Control of the
TRANSPORTER CO	MPANY: 6 /	TIME: AM/PM
DATE: 7	VEHICLE NO.:	DRIVER NO.:
CHARGE TO:		
	TYPE OF MATERIA	AL
	OCD	
[] Other Material:	[] Contaminated soil [] BS&W content:	[] C-117 No.:
Description:		m garage
COMPANY CONTAC	TI	
VOLUME OF MATER	RIAL []: YARDS	CELL#:[]
THIS JOB TICKET, OPERA SHIPPED HEREWITH IS M ACT OF 1976, AS AMENDE CODE, §361.001, et seq. AFFORDED CONTAMINAT	TOR/SHIPPER REPRESENTS AND V ATERIAL EXEMPT FROM THE RESO ED FROM TIME TO TIME, 40 U.S.C. § AND REGULATIONS RELATED THE	ANCE OF THE MATERIALS SHIPPED WITH VARRANTS THAT THE WASTE MATERIAL URCE, CONSERVATION AND RECOVERY 6901, et seq., THE NM HEALTH AND SAF, RETO, BY VIRTUE OF THE EXEMPTION ASSOCIATED WITH THE EXPLORATION, IL GAS OR GEOTHERMAL ENERGY.
WITH THIS JOB TICKET.	TRANSPORTER REPRESENTS AND PR/SHIPPER TO TRANSPORTER IS N	CEPTANCE OF THE MATERIALS SHIPPED WARRANTS THAT ONLY THE MATERIAL NOW DELIVERED BY TRANSPORTER TO
THIS WILL CERTI		
Stafement at the above des	cribed location, and that it was tendere	ed by the above described shipper. This wil
Stafement at the above des	cribed location, and that it was tendere	the material epresented by this Transporter ed by the above described shipper. This wil t the material was delivered without incident.
Statement at the above describing that of additional man	ecribed location, and that it was tender terials were added to this load, and that	ed by the above described shipper. This wil

24-HOUR SERVICE, CALL LOYINGTON (575) 396-4948 TATUM (575) 398-4960

GANDY CORPORATION

KILL TRUCKS - VACUUM TRUCKS - WINCH TRUCKS ROLL OFFS - TANK CLEANING - ROUSTABOUTING PRC #14225 P.O. BOX 2140 LOVINGTON, NEW MEXICO 88260

522830

Date 7-13-15	Truck No. 355	2			
Company GOLDER ASSOCIATES	Purchase Order No.			Invoice l	No
From LOVINGTON GE (MEDONACO'S MAIN ST)	Rig No		Location		
To Lease GMI	Well No		Location		
Time Out 5:45 RM. Time In 6:00	,	A.M.	TIME	RATE	AMOUNT
Diesel Brine Water Fresh Water	1933 GA	Llews		0-50	966.50
Driver, Operator or Pusher ROGELIO SANDARA			12.25	85.00	1041.25
Helper					
Helper					
Helper	\$100				
Other Charges					
Description of Work Houled 1933 GALLONS OF TO GMZ STAND BY, WHILE RUNNING THOMPS INTO TRUCK.					
1933 GALLO.	NS.				
			·		
					-
	1-0				
			-		

GMI tick-+ 34302				Sub Total	2007.75
				Sales Tax	110.4
				TOTAL	2118.11
Authorized By: The Communication					INTING SERVICE, IN

	Contaminated Soils Shipment M	anifest	1. Manifes	st Docur	- 1		017		2. Page	1 of 1
1500				2	9		8 3	Phone N		
	3 Generator's Name and Mailing Address SOLDER ASSOCIATES INC C/O 5203 JASA DENA, NE STEC ALBROVERQUE NM 87113	WAISTED OF	i Co	MPAN	19	4. 06	enerator	Phone in	υ.	
	Società Association Ste C				•	50	5-4	21-30	/ 2	
	5203 pash sera, 20 200								143	
	ALBROVERQUE NM 8/113							Contact		
		<u></u>			,	0	My	Kil	MER	
	6. Transporter 1 Company Name					7. ID	No.			
	GANDY CORP						11 1	12	ا ج	1 1 1
	8. Transporter 2 Company Name					9. ID		2		
	8. Hansporter 2 Company Name					9. 10	INO.			
						11	4/2	2	5	
	10. Designated Disposal Facility Name and Site Address					11. F	acility P	ermit Nu	mber	
	Gandy Marley, Inc. Contaminate		m						100	
	7200 East Second S	treet						00 0		<u> </u>
	PO Box 1658 Roswell, NM 882	0.1				12. F	-	hone No (575) 3		0.7
	NOSWEII, INITE OOZ	01						(373)	70-01	07
1	13. Description of Waste			14	. Con	tainers	15.	Total	16.	Unit
G				No)	Type	Qı	uantity		Wt.Vol.
E	a. UST (GASOLINE)		_					-		
N					1	TRUCK	193	> 3 39	1	
E R					ı	TANK	1 1	1 1		
A							Ш			
T	b.									
0										
R										
	c.								\top	
				1	ı	1	, ,	1 1		
	17. Special Handling Instructions and Additional Information									
	A									
	19 Communication Contribution of the state o							,		
	18. Generator's Certification: I hereby declare that the conte are classified, packed, marked									
	to applicable federal, state, an	d international laws.		•				•	, ,	
	FURTHER. I represent and wa	errant that the waste	naterial as	describ	ed on	this man	ifest is e	ither exe	mpt fron	n the Resource
	Conservation and Recovery A	ct of 1976, OR has	heen chare	acterizea	l as n	on-hazar				
	lahoratory analysis done in ac	cordance with EPA-a	oproved te	sting me	thods	•				
		Signature	0					Date		
_	Phillip Camillo	Th	$v \in$					0	7/1	31115
T R	19. Transporter 1 Acknowledgement of Receipt of Materials									
A N	l	Signature	1	1				Date		
S <	POGELIO GANDARA	Dozellie	Dard	Jon				07	11	3 1/5
O R	20. Transporter 2 Acknowledgement of Receipt of Materials							Ţ.		
T E	Printed/Typed Name	Signature						Date		
R									1	
	21. Discrepancy Information							<u></u>		·
G M										
ī										
	22. Facility Owner or Operator Certification of receipt of materials	described on this man	ifest excep	pt as not	ed in	item 21.				
		Signature						Date		
	David E. Dica	1 -5) /:	25	ر در	_		10 -	7.1	1
	1700101			-1				0		3 1 2

Instructions for Proper Completion of Manifest

GENERATORS

- Item 1 Enter the number assigned to the Manifest by the generator.
- Item 2 Enter the page number and the total number of pages used to complete the Manifest, if any.
- Item 3 Enter the name and mailing address of the generator. The address should be the location that will manage the returned Manifest forms.
- Item 4 Enter a telephone number where an authorized agent of the generator may be reached in the event of an emergency.
- Item 5 Enter the name of the authorized agent of the generator who is knowledgeable of the shipment and who should be contacted in the event of an emergency.
- Item 6 Enter the company name of the first transporter who will transport the waste.
- Item 7 Enter the appropriate identification number for the first transporter. (e.g., State Corporation Commission or EPA identification number.)
- Item 8 If applicable, enter the company name of the second transporter who will transport the waste.
- Item 9 If applicable, enter the appropriate identification number for the second transporter.
- Item 10 Enter the company name and site address of the facility designated to receive the waste listed on the Manifest. The address must be the site address, which may differ from the company mailing address.
- Item 11 Enter the appropriate permit number of the facility designated to receive the waste listed on the Manifest.
- Item 12 Enter the phone number of the facility designated to receive the waste listed on the Manifest.
- Item 13 Enter a brief description of each waste being shipped under the Manifest.
- Item 14 Enter the number of containers for each waste and the appropriate abbreviation below for the type of container.

DM = Metal drums, barrels, kegs CW = Wooden boxes, cartons, cases

D'I' = Dump truck

DF = Fiberboard or plastic drums
BA = Burlap, cloth, paper, plastic bags

CM = Metal boxes, cartons, cases

TC = Tank cars

DW = Wooden drums, barrels, kegs

CF = Fiber/plastic boxes, cartons, cases

CV = Cylinders

TP = Tanks portable

TT = Cargo tanks (tank trucks)

- Item 15 Enter the total quantity of waste described on each line.
- Item 16 Enter the appropriate abbreviation from below for the unit of measure.

G = Gailons P = Pounds Y = Cubic yards L = Liters

T = Tons K = Kilograms

M = Metric tons N = Cubic meters

- Item 17 Generators may use this space to indicate special transportation, treatment, storage, or disposal information or Bill of Lading information.
- Item 18 The generator must read, sign (by hand), and date the certification statement. If a mode other than highway is used, the word "highway" should be lined out and the appropriate mode (rail, water, or air) inserted in the space below. If another mode in addition to the highway mode is used, enter the appropriate additional mode (e.g., and rail) in the space below.

TRANSPORTERS

- Item 19 Enter the name of the person accepting the waste on behalf of the first transporter. That person must acknowledge acceptance of the waste described on the Manifest by signing and entering the date of receipt.
- Item 20 Enter, if applicable, the name of the person accepting the waste on behalf of the second transporter. That person must acknowledge acceptance of the waste described on the Manifest by signing and entering the date of receipt.

OWNERS AND OPERATORS OF DESIGNATED DISPOSAL FACILITIES

- Item 21 The authorized representative of the designated facility's owner or operator must note in this space any significant discrepancy between the waste described on the Manifest and the waste actually received at the facility.
- Item 22 Print or type the name of the person accepting the waste on behalf of the owner or operator of the facility. That person must acknowledge acceptance of the waste described on the Manifest by signing and entering the date of receipt.

24-HOUR SERVICE, CALL LOVINGTON 396-4948 • TATUM 398-4960

Superior Printing Service, Inc. - 104

GANDY MARLEY P.O. BOX 1658 · ROSWELL, NEW MEXICO 88202

P.O. BOX 2140 LOVINGTON, NEW MEXICO 88260

19227

AUTHORIZATION FOR WORK

Date GOLDA & ANDCO	LEASE VOUR NO.
MAIL INVOICE TO	WELL
	8
DESCRIPTION OF WORK	
Riched up 5 duro	@ Lavington My Donalds
Equipment Used	@\$ 5 Hrs. worked / 100 Total #500
Box Rent	
Liner	
Jet Out	-
	@ \$ Hrs. worked Total
	@ \$ Hrs. worked Total
Box No. Delivered	
Box No. Picked Up	
	- Sub Total
	Sales Tax
0.1 11 00	TOTAL
Driver-Hlen Howard	Approved by

		1404521-译2	in the second
N.M.E.D 198-041	Gandy Marley, Inc. P.O. BOX 1658 • ROSWELL, NM 88202	LOAD INSPECTION FORM	1596
Date of Receipt:	AM Time of Receipt PM Cell Placeme	1404221-2	38 ₃ 8
Quantity T/	CY: Oum Description:	44	10 Eq.
	A		
Name/Address of Generator:	Golder & alson.		
Origin of Materials (if different)	Dounation in		
_	Ó		
Name of Laboratory Performing Sa	ample Analysis MTBE TPH _	SCC ID No	mpo (
Name of Laboratory Performing Sa	BTEX MTBE TPH		ompo (
Name of Laboratory Performing Sa	BTEX MTBE TPH	Non-Hazardous Exe	ompo (
Name of Laboratory Performing Sa TCLP (EPA Method 1311) Ver Verification of Property Completed As a condition to Gandy Marley, Inc. shipped herewith is exempt from th	rification of No Free Liquids Paint F Manifest Generator Manifest a.'s acceptance of the materials shipped as represented on this Locate Resource Conservation and Recovery Act of 1976, as amended to seq., and regulations related thereto, OR has been characterized.	Non-Hazardous Lexe Iter Liquids Test Performed Number 1933 Mumber d Inspection Form, Generator represents and warrants the from time to time, 40 U.S.C. Section 6901, et seq., The	New Mexico H
Name of Laboratory Performing Sa TCLP (EPA Method 1311) Ver Verification of Property Completed As a condition to Gandy Marley, Inc. shipped herewith is exempt from the and Safety Code, section 361.001, et in accordance with EPA-approved t Further, as a condition to Gandy M	rification of No Free Liquids Paint F Manifest Generator Manifest a.'s acceptance of the materials shipped as represented on this Locate Resource Conservation and Recovery Act of 1976, as amended to seq., and regulations related thereto, OR has been characterized.	Non-Hazardous Les lter Liquids Test Performed Number J J J J J J J J J J J J J J J J J J J	New Mexico H ratory analysis
Name of Laboratory Performing Sa TCLP (EPA Method 1311) Ver Verification of Property Completed As a condition to Gandy Marley, Inc. shipped herewith is exempt from the and Safety Code, section 361.001, et in accordance with EPA-approved t Further, as a condition to Gandy M the material delivered by Generator THIS WILL CERTIFY that the abo	rification of No Free Liquids Paint F Manifest Generator Manifest a. 's acceptance of the materials shipped as represented on this Locate Resource Conservation and Recovery Act of 1976, as amended to seq., and regulations related thereto, OR has been characterized esting methods. Marley, Inc.'s acceptance of the materials shipped as represented the sequence of t	Non-Hazardous Number I Garage Service Servic	New Mexico H ratory analysis d warrants that it it was tendere
Name of Laboratory Performing Sa TCLP (EPA Method 1311) Ver Verification of Property Completed As a condition to Gandy Marley, Inc. shipped herewith is exempt from the and Safety Code, section 361.001, et in accordance with EPA-approved t Further, as a condition to Gandy M the material delivered by Generator THIS WILL CERTIFY that the abo	rification of No Free Liquids Paint F Manifest Generator Manifest C.'s acceptance of the materials shipped as represented on this Local Resource Conservation and Recovery Act of 1976, as amended to seq., and regulations related thereto, OR has been characterized esting methods. Marley, Inc.'s acceptance of the materials shipped as represented to Transporter is now delivered by Transporter to Gandy Marley over Transporter bladed the material as represented on this Load over Transporter bladed the material as represented on this Load	Non-Hazardous Number I Garage Service Servic	New Mexico H ratory analysis d warrants that it it was tender
Name of Laboratory Performing Set TCLP (EPA Method 1311) Ver Verification of Property Completed As a condition to Gandy Marley, Inc. shipped herewith is exempt from the and Safety Code, section 361.001, et in accordance with EPA-approved to Further, as a condition to Gandy Martey the material delivered by Generator THIS WILL CERTIFY that the aboth the above described Generator. THI	rification of No Free Liquids Paint F Manifest Generator Manifest C.'s acceptance of the materials shipped as represented on this Local Resource Conservation and Recovery Act of 1976, as amended to seq., and regulations related thereto, OR has been characterized esting methods. Marley, Inc.'s acceptance of the materials shipped as represented to Transporter is now delivered by Transporter to Gandy Marley over Transporter bladed the material as represented on this Load over Transporter bladed the material as represented on this Load	Non-Hazardous Number A D D D D D D D D D D D D D D D D D D	New Mexico H ratory analysis d warrants that it it was tendere

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

June 26, 2015

Clay Kilmer Golder Associates 5200 Pasadena, NE Suite C Albuquerque, NM 87113 TEL: (505) 821-3043

RE: Lovington 66 OrderNo.: 1506728

Dear Clay Kilmer:

FAX (505) 821-5273

Hall Environmental Analysis Laboratory received 2 sample(s) on 6/15/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Only

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order 1506728

Date Reported: 6/26/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates Client Sample ID: DPE-1 55'-60'

 Project:
 Lovington 66
 Collection Date: 6/14/2015 11:50:00 AM

 Lab ID:
 1506728-001
 Matrix: MEOH (SOIL)
 Received Date: 6/15/2015 12:54:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 6010B: SOIL METALS						Analyst	ELS
Lead	0.93	0.26		mg/Kg	1	6/25/2015 11:43:22 AM	19875
EPA METHOD 8015D: GASOLINE RAN	IGE					Analyst:	NSB
Gasoline Range Organics (GRO)	3000	200		mg/Kg	50	6/17/2015 10:13:01 PM	
Surr: BFB	217	75.4-113	s	%REC	50	6/17/2015 10:13:01 PM	
EPA METHOD 8260B: VOLATILES	2	70.4 110	O	MILO	30	Analyst:	
Benzene	1.3	0.80		m = 11/ =	20	•	
Toluene	1.3 57			mg/Kg	20	6/19/2015 5:07:34 AM	19772
		0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Ethylbenzene	93	8.0		mg/Kg		6/19/2015 4:38:47 AM	19772
Methyl tert-butyl ether (MTBE)	0.82	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
1,2,4-Trimethylbenzene	200	8.0		mg/Kg		6/19/2015 4:38:47 AM	19772
1,3,5-Trimethylbenzene	61	8.0		mg/Kg		6/19/2015 4:38:47 AM	19772
1,2-Dichloroethane (EDC)	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
1,2-Dibromoethane (EDB)	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Naphthalene	70	16		mg/Kg	200	6/19/2015 4:38:47 AM	19772
1-Methylnaphthalene	48	32		mg/Kg	200	6/19/2015 4:38:47 AM	19772
2-Methylnaphthalene	99	32		mg/Kg	200	6/19/2015 4:38:47 AM	19772
Acetone	ND	12		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Bromobenzene	ND	8.0		mg/Kg	200	6/19/2015 4:38:47 AM	19772
Bromodichloromethane	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Bromoform	ND	8.0		mg/Kg	200	6/19/2015 4:38:47 AM	19772
Bromomethane	ND	2.4		mg/Kg	20	6/19/2015 5:07:34 AM	19772
2-Butanone	ND	8.0		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Carbon disulfide	ND	8.0		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Carbon tetrachloride	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Chlorobenzene	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Chloroethane	ND	1.6		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Chloroform	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Chloromethane	ND	2.4		mg/Kg	20	6/19/2015 5:07:34 AM	19772
2-Chlorotoluene	ND	8.0		mg/Kg	200	6/19/2015 4:38:47 AM	19772
4-Chlorotoluene	ND	8.0		mg/Kg		6/19/2015 4:38:47 AM	19772
cis-1,2-DCE	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
cis-1,3-Dichloropropene	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
1,2-Dibromo-3-chloropropane	ND	16		mg/Kg		6/19/2015 4:38:47 AM	19772
Dibromochloromethane	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
Dibromomethane	ND	0.80		mg/Kg	20	6/19/2015 5:07:34 AM	19772
1,2-Dichlorobenzene	ND	8.0		mg/Kg		6/19/2015 4:38:47 AM	19772
1,3-Dichlorobenzene	ND	8.0		mg/Kg		6/19/2015 4:38:47 AM	19772
1,4-Dichlorobenzene	ND	8.0		mg/Kg		6/19/2015 4:38:47 AM	19772
1,4-DIGHIDIODELIZELIE	שאו	6.0		my/Ny	200	0/13/2010 4.30.4/ AIVI	19/12

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 9

- P Sample pH Not In Range
- RL Reporting Detection Limit

Analytical Report

Lab Order 1506728

Date Reported: 6/26/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates

Project: Lovington 66

Lab ID: 1506728-001

Client Sample ID: DPE-1 55'-60'

Collection Date: 6/14/2015 11:50:00 AM

Matrix: MEOH (SOIL) Received Date: 6/15/2015 12:54:00 PM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Ana	yst: cadg
Dichlorodifluoromethane	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
1,1-Dichloroethane	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
1,1-Dichloroethene	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
1,2-Dichloropropane	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
1,3-Dichloropropane	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
2,2-Dichloropropane	ND	1.6	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
1,1-Dichloropropene	ND	1.6	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
Hexachlorobutadiene	ND	16	mg/Kg	200 6/19/2015 4:38:47 A	M 19772
2-Hexanone	ND	8.0	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
Isopropylbenzene	13	8.0	mg/Kg	200 6/19/2015 4:38:47	M 19772
4-Isopropyltoluene	ND	8.0	mg/Kg	200 6/19/2015 4:38:47 A	M 19772
4-Methyl-2-pentanone	ND	8.0	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
Methylene chloride	ND	2.4	mg/Kg	20 6/19/2015 5:07:34 A	M 19772
n-Butylbenzene	24	24	mg/Kg	200 6/19/2015 4:38:47 A	M 19772
n-Propylbenzene	43	8.0	mg/Kg	200 6/19/2015 4:38:47 A	M 19772
sec-Butylbenzene	8.0	8.0	mg/Kg	200 6/19/2015 4:38:47	M 19772
Styrene	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 /	M 19772
tert-Butylbenzene	ND	8.0	mg/Kg	200 6/19/2015 4:38:47	M 19772
1,1,1,2-Tetrachloroethane	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 /	M 19772
1,1,2,2-Tetrachloroethane	ND	8.0	mg/Kg	200 6/19/2015 4:38:47	M 19772
Tetrachloroethene (PCE)	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 /	AM 19772
trans-1,2-DCE	ND	0.80	mg/Kg	20 6/19/2015 5:07:34	AM 19772
trans-1,3-Dichloropropene	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 /	AM 19772
1,2,3-Trichlorobenzene	ND	16	mg/Kg	200 6/19/2015 4:38:47	AM 19772
1,2,4-Trichlorobenzene	ND	8.0	mg/Kg	200 6/19/2015 4:38:47	AM 19772
1,1,1-Trichloroethane	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 /	AM 19772
1,1,2-Trichloroethane	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 /	AM 19772
Trichloroethene (TCE)	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 /	AM 19772
Trichlorofluoromethane	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 /	AM 19772
1,2,3-Trichloropropane	ND	16	mg/Kg	200 6/19/2015 4:38:47 /	AM 19772
Vinyl chloride	ND	0.80	mg/Kg	20 6/19/2015 5:07:34 /	AM 19772
Xylenes, Total	330	16	mg/Kg	200 6/19/2015 4:38:47 /	AM 19772
Surr: Dibromofluoromethane	94.4	70-130	%REC	20 6/19/2015 5:07:34 /	AM 19772
Surr: 1,2-Dichloroethane-d4	102	70-130	%REC	20 6/19/2015 5:07:34 /	AM 19772
Surr: Toluene-d8	98.2	70-130	%REC	20 6/19/2015 5:07:34 /	AM 19772
Surr: 4-Bromofluorobenzene	85.4	70-130	%REC	200 6/19/2015 4:38:47 /	AM 19772

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 2 of 9

Analytical Report

Lab Order 1506728

Date Reported: 6/26/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates

Client Sample ID: MeOH Blank

Project: Lovington 66

Collection Date:

Lab ID: 1506728-002

Matrix: MEOH BLAN

Received Date: 6/15/2015 12:54:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RAM	IGE				Analyst	NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	6/17/2015 11:39:07 PM	R26901
Surr: BFB	88.5	75.4-113	%REC	1	6/17/2015 11:39:07 PM	R26901
EPA METHOD 8260B: VOLATILES					Analyst	cadg
Benzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Toluene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Ethylbenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Methyl tert-butyl ether (MTBE)	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,2-Dichloroethane (EDC)	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,2-Dibromoethane (EDB)	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Naphthalene	ND	0.10	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1-Methylnaphthalene	ND	0.20	mg/Kg	1	6/19/2015 12:31:04 PM	19772
2-Methylnaphthalene	ND	0.20	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Acetone	ND	0.75	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Bromobenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Bromodichloromethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Bromoform	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Bromomethane	ND	0.15	mg/Kg	1	6/19/2015 12:31:04 PM	19772
2-Butanone	ND	0.50	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Carbon disulfide	ND	0.50	mg/Kg	8 1	6/19/2015 12:31:04 PM	19772
Carbon tetrachloride	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Chlorobenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Chloroethane	ND	0.10	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Chloroform	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Chloromethane	ND	0.15	mg/Kg	1	6/19/2015 12:31:04 PM	19772
2-Chlorotoluene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
4-Chlorotoluene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
cis-1,2-DCE	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
cis-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Dibromochloromethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Dibromomethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,2-Dichlorobenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,3-Dichlorobenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,4-Dichlorobenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Dichlorodifluoromethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,1-Dichloroethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,1-Dichloroethene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 9

- P Sample pH Not In Range
- RL Reporting Detection Limit

Analytical Report Lab Order 1506728

Date Reported: 6/26/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates Client Sample ID: MeOH Blank

Project: Lovington 66 Collection Date:

Lab ID: 1506728-002 Matrix: MEOH BLAN Received Date: 6/15/2015 12:54:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst:	cadg
1,2-Dichloropropane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,3-Dichloropropane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
2,2-Dichloropropane	ND	0.10	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,1-Dichloropropene	ND	0.10	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Hexachlorobutadiene	ND	0.10	mg/Kg	1	6/19/2015 12:31:04 PM	19772
2-Hexanone	ND	0.50	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Isopropylbenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
4-Isopropyltoluene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
4-Methyl-2-pentanone	ND	0.50	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Methylene chloride	ND	0.15	mg/Kg	1	6/19/2015 12:31:04 PM	19772
n-Butylbenzene	ND	0.15	mg/Kg	1	6/19/2015 12:31:04 PM	19772
n-Propylbenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
sec-Butylbenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Styrene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
tert-Butylbenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Tetrachloroethene (PCE)	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
trans-1,2-DCE	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
trans-1,3-Dichloropropene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,1,1-Trichloroethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,1,2-Trichloroethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Trichloroethene (TCE)	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Trichlorofluoromethane	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
1,2,3-Trichloropropane	ND	0.10	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Vinyl chloride	ND	0.050	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Xylenes, Total	ND	0.10	mg/Kg	1	6/19/2015 12:31:04 PM	19772
Surr: Dibromofluoromethane	111	70-130	%REC	1	6/19/2015 12:31:04 PM	19772
Surr: 1,2-Dichloroethane-d4	110	70-130	%REC	1	6/19/2015 12:31:04 PM	19772
Surr: Toluene-d8	93.0	70-130	%REC	1	6/19/2015 12:31:04 PM	19772
Surr: 4-Bromofluorobenzene	103	70-130	%REC	1	6/19/2015 12:31:04 PM	19772

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 9

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1506728 26-Jun-15

Client:

Golder Associates

Project:

Lovington 66

Sample ID 5ML RB

SampType: MBLK

TestCode: EPA Method 8015D: Gasoline Range

Client ID: **PBS**

Batch ID: R26901

RunNo: 26901

Analysis Date: 6/17/2015

5.0

Analyte

Prep Date:

Result PQL

SeqNo: 803064

Units: mg/Kg

SPK value SPK Ref Val %REC

SPK value SPK Ref Val

HighLimit

75.4

%RPD **RPDLimit** Qual

Gasoline Range Organics (GRO)

ND

1000

89.8

113

Sum: BFB

900

Result

26

TestCode: EPA Method 8015D: Gasoline Range

Sample ID 2.5UG GRO LCS Client ID: **LCSS**

SampType: LCS Batch ID: R26901

PQL

5.0

RunNo: 26901

LowLimit

64

75.4

LowLimit

130

113

Qual

S

Analyte

Prep Date:

Analysis Date: 6/17/2015

SeqNo: 803065

Units: mg/Kg HighLimit

RPDLimit

Gasoline Range Organics (GRO) Surr: BFB

960

1000

25.00

96.5 TestCode: EPA Method 8015D: Gasoline Range

%REC

104

%RPD

%RPD

Client ID: DPE-1 55'-60'

Sample ID 1506728-001AMS SampType: MS

Batch ID: R26901

0

RunNo: 26901 SeqNo: 803067

Units: mg/Kg

Analyte Gasoline Range Organics (GRO)

Surr. BFB

Client ID:

Prep Date:

Prep Date:

Result

Analysis Date: 6/17/2015 **PQL**

200

SPK value SPK Ref Val

2999

2999

%REC LowLimit 48.2 47.9 HighLimit 144

113

RPDLimit Qual

Sample ID 1506728-001AMSD SampType: MSD

3500

76000

Result

3400

76000

TestCode: EPA Method 8015D: Gasoline Range

RunNo: 26901

189

75.4

Units: mg/Kg

113

RPDLimit Qual

29.9 S S

Analyte Gasoline Range Organics (GRO)

Surr: BFB

DPE-1 55'-60'

Batch ID: R26901 Analysis Date: 6/17/2015

PQL

200

1002

40100

SPK value SPK Ref Val

1002

40100

SeqNo: 803068

36.6

189

%REC

LowLimit 47.9

75.4

HighLimit 144

%RPD

3.40 0

0

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits

RSD is greater than RSDlimit 0

R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits B Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH Not In Range

RL Reporting Detection Limit Page 5 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#:

1506728

26-Jun-15

Client:

Golder Associates

Project:

Lovington 66

Sample ID mb-19772	SampType: MBLK TestCode: EPA Me						PA Method 8260B: Volatiles						
Client ID: PBS	Batch	ID: 19	772	F	RunNo: 2	6939							
Prep Date: 6/17/2015	Analysis Da	ate: 6/	18/2015	S	SeqNo: 8	04350	Units: mg/K	g					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	ND	0.050											
Toluene	ND	0.050											
Ethylbenzene	ND	0.050											
Methyl tert-butyl ether (MTBE)	ND	0.050											
1,2,4-Trimethylbenzene	ND	0.050											
1,3,5-Trimethylbenzene	ND	0.050											
1,2-Dichloroethane (EDC)	ND	0.050											
1,2-Dibromoethane (EDB)	ND	0.050											
Naphthalene	ND	0.10											
1-Methylnaphthalene	ND	0.20											
2-Methylnaphthalene	ND	0.20											
Acetone	ND	0.75											
Bromobenzene	ND	0.050											
Bromodichloromethane	ND	0.050											
Bromoform	ND	0.050											
Bromomethane	ND	0.15											
2-Butanone	ND	0.50											
Carbon disulfide	ND	0.50											
Carbon tetrachloride	ND	0.050											
Chlorobenzene	ND	0.050											
Chloroethane	ND	0.10											
Chloroform	ND	0.050											
Chloromethane	ND	0.15											
2-Chlorotoluene	ND	0.050											
4-Chlorotoluene	ND	0.050											
cis-1,2-DCE	ND	0.050											
cis-1,3-Dichloropropene	ND	0.050											
1,2-Dibromo-3-chloropropane	ND	0.10											
Dibromochloromethane	ND	0.050											
Dibromomethane	ND	0.050											
1,2-Dichlorobenzene	ND	0.050											
1,3-Dichlorobenzene	ND	0.050											
1,4-Dichlorobenzene	ND	0.050											
Dichlorodifluoromethane	ND	0.050											
1,1-Dichloroethane	ND	0.050											
1,1-Dichloroethene	ND	0.050											
1,2-Dichloropropane	ND	0.050											
1,3-Dichloropropane	ND	0.050											
2,2-Dichloropropane	ND	0.10											

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 6 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#:

1506728

26-Jun-15

Client: Golder Associates

Project: Lovington 66

Sample ID mb-19772	Samp	ype: M B	LK	TestCode: EPA Method 8260B: Volatiles						
Client ID: PBS	Batcl	n ID: 19 7	772	R	unNo: 2	6939				
Prep Date: 6/17/2015	Analysis D	oate: 6/	18/2015	S	eqNo: 8	04350	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.54		0.5000		107	70	130			
Surr. 1,2-Dichloroethane-d4	0.54		0.5000		107	70	130			
Surr: Toluene-d8	0.45		0.5000		89.6	70	130			
Surr: 4-Bromofluorobenzene	0.52		0.5000		103	70	130			

Sample ID Ics-19772	SampT	SampType: LCS			TestCode: EPA Method 8260B: Volatiles					
Client ID: LCSS	Batch	Batch ID: 19772			RunNo: 26939					
Prep Date: 6/17/2015	Analysis D	ate: 6/	18/2015	S	SeqNo: 8	04351	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.1	0.050	1.000	0	105	70	130			
Toluene	0.92	0.050	1.000	0	92.3	70	130			
Chlorobenzene	1.0	0.050	1.000	0	100	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 7 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#:

1506728

26-Jun-15

Client:

Golder Associates

Project:

Lovington 66

Sample ID Ics-19772	SampT	SampType: LCS			TestCode: EPA Method 8260B: Volatiles					
Client ID: LCSS	Batch	Batch ID: 19772			RunNo: 26939					
Prep Date: 6/17/2015	Analysis D	ate: 6/	18/2015	S	SeqNo: 8	04351	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	1.1	0.050	1.000	0	110	60.6	134			
Trichloroethene (TCE)	0.92	0.050	1.000	0	91.6	70	130			
Surr: Dibromofluoromethane	0.52		0.5000		103	70	130			
Surr: 1,2-Dichloroethane-d4	0.53		0.5000		107	70	130			
Surr: Toluene-d8	0.44		0.5000		88.2	70	130			
Surr: 4-Bromofluorobenzene	0.51		0.5000		103	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 8 of 9

Hall Environmental Analysis Laboratory, Inc.

WO#:

1506728

26-Jun-15

Client:

Golder Associates

Project:

Lovington 66

Sample ID MB-19875

Prep Date: 6/23/2015

SampType: MBLK

TestCode: EPA Method 6010B: Soil Metals

Client ID:

PBS

Batch ID: 19875

PQL

RunNo: 27084

Units: mg/Kg

RPDLimit

Analyte Lead

Analysis Date: 6/25/2015

SeqNo: 809623

HighLimit

%RPD

Qual

Sample ID LCS-19875

SampType: LCS

TestCode: EPA Method 6010B: Soil Metals

Client ID: LCSS

Batch ID: 19875

RunNo: 27084

HighLimit

Prep Date: 6/23/2015

Analysis Date: 6/25/2015

SeqNo: 809624

Units: mg/Kg

Analyte

Result

25.00

Lead

25

SPK value SPK Ref Val

120

%RPD

Qual

PQL 0.25

0

SPK value SPK Ref Val %REC LowLimit

101

%REC

80

LowLimit

RPDLimit

Qualifiers:

Value exceeds Maximum Contaminant Level

Spike Recovery outside accepted recovery limits

- E Value above quantitation range
- Analyte detected below quantitation limits 0 RSD is greater than RSDImit
- R
- RPD outside accepted recovery limits

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- Sample pH Not In Range
- Reporting Detection Limit

Page 9 of 9

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Clier	nt Name:	Golder Assoc	Wark Order N	umber: 1506728		RcptNa 1
Rece	lved by/da	te: KS	06/15/15	e construer atmost		
Logg	ed By	Celina Sessa	6/15/2015 12:54	:00 PM	Celin S	***
Com	pleted By:	Celina Sessa	6/16/2015 10:36	3:31 AM	Celia S	Zore-o
Revie	ewed By:		06/14/	15	WW. 27	
	n of Cus	stody	1 00/14/			
1. 9	Custody sea	als intact on samp	ie bottles?	Yes .	No 🗌	Not Present
2, 1	5 Chain of	Custody complete	9?	Yes 🗸	No 🗌	Not Present
3. F	low was th	e sample delivere	d?	Client		
Log	<u>lln</u>					
4. 1	Was an att	empt made to cod	ol the samples?	Yes 🗹	No 🗌	NA 🗆
5. V	Nere all sa	mples received a	a temperature of >0° C to 6.0°	C Yes 🔽	No _	NA 🗔
6. :	Sample(s)	in proper containe	entsj?	Yes 🗸	No 🗌	
7. 8	Sufficient s	emple volume for	indicated test(s)?	Yes 🗹	No 🗔	
8. 4	ve sample	s (except VOA an	d ONG) properly preserved?	Yes 🗸	No _	
9. 1	Nas preser	d ot bebbe evitev	ottles?	Yes	No 🗹	NA 🔲
10.\	/OA vials h	nave zero headspa	ace?	Yes 🗌	No 🗌	No VOA Vials
11,	Were any s	sample containers	received broken?	Yes	No 🗸	# of preserved
12.0	Does paper	rwork match bottle	labels?	Yes 🗸	No 🗔	for pH:
`	-	epancles on chair				(<2 or >12 unless nater Adjusted?
			ied on Chain of Custcdy?	Yes ☑ Yes ☑	No No	7.10,000.00
100		hat analyses were		Yes 🗹	No 🗀	Checked by.
		olding times able to y customer for aut		165 🖭	1 apol	
Spe	cial Han	dling (if appli	cable)			
16.1	Was client	notified of all disc	repancies with this order?	Yes	No	NA 🗹
	Perso	on Notified:		Date		
	By W	/hom:		Via: 🔲 eMail 🗍 f	Phone Fax	n Person
	Rega	nding:				
	Clien	t Instructions:				
17.	Additional	remarks:				
18.	Cooler Int	<u>formation</u>	W 17	1045	194	
	Cooler	No Temp °C	Condition Seal Intact Seal	No Seal Date	Signed By	
	11	3.3	Spod Not Present		1	

	_ ≿					V = 4		(1	N Ye) Y) səldduB ıiA								
	HALL ENVIRONMENTAL ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Yua	(\frac{\kappa_{\lambda}}{\lambda}	Gas or	7 DRH (1) PH (1)	T + + O	GE de Solo OVO.	BTEX + MTI BTEX + MTI TPH 8015B TPH (Metho PAH's (8310 RCRA 8 Met RCRA 8 Met RCRA 8 Met RCRA 8 Met RCRA 8 Met RCRA 8 Met RCRA 8 Met ROS (Semi-	×						Remarks:	
Turn-Around Time:	CX Standard □ Rush	Project Name:	المعرادة المعرادة	Project #.	140-4221	Project Manager:	Cley Kilmer	C. P. (spills	% D	Sample Temperature: 3, 3	Container Preservative HEAL No.	4/6.km -001	600-					Received by Received by Time Re	
Record	Client Cholder Associates Inc		Mailing Address: 5200 Pasadone NESKC	Alburnage NA 37113	Phone #: 505-821-3043	email or Fax#: Clay - Kilmer @ golder.com	ű.	no	□ NELAP □ Other	□ EDD (Type)	Date Time Matrix Sample Request ID	6/14 1):50 Soil OPE-1 55"-60"	6/12 MIA MIN MCOIN Black				i C	5/15 12:54	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 27, 2015

Clay Kilmer Golder Associates 5200 Pasadena, NE Suite C Albuquerque, NM 87113

TEL: (505) 821-3043 FAX (505) 821-5273

RE: Lovington 66

OrderNo.: 1507551

Dear Clay Kilmer:

Hall Environmental Analysis Laboratory received 2 sample(s) on 7/14/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the OC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1507551

Date Reported: 7/27/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates

Client Sample ID: Trip Blank

Project: Lovington 66

Collection Date:

Lab ID: 1507551-001

Matrix: TRIP BLANK

Received Date: 7/14/2015 9:25:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	BCN
Benzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Toluene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Ethylbenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Naphthalene	ND	2.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1-Methylnaphthalene	ND	4.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
2-Methylnaphthalene	ND	4.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Acetone	ND	10	μg/L	1	7/14/2015 4:00:54 PM	R2748
Bromobenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Bromodichloromethane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Bromoform	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Bromomethane	ND	3.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
2-Butanone	ND	10	μg/L	1	7/14/2015 4:00:54 PM	R2748
Carbon disulfide	ND	10	μg/L	1	7/14/2015 4:00:54 PM	R2748
Carbon Tetrachloride	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Chlorobenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Chloroethane	ND	2.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Chloroform	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Chloromethane	ND	3.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
2-Chlorotoluene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
4-Chlorotoluene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
cis-1,2-DCE	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Dibromochloromethane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Dibromomethane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,2-Dichlorobenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,3-Dichlorobenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,4-Dichlorobenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
Dichlorodifluoromethane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,1-Dichloroethane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,1-Dichloroethene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,2-Dichloropropane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R2748
1,3-Dichloropropane	ND	1.0	µg/L	1	7/14/2015 4:00:54 PM	R2748
2,2-Dichloropropane	ND	2.0	μg/L	1	7/14/2015 4:00:54 PM	R2748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1507551

Date Reported: 7/27/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates Client Sample ID: Trip Blank

Project: Lovington 66 Collection Date:

Lab ID: 1507551-001 Matrix: TRIP BLANK Received Date: 7/14/2015 9:25:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	BCN
1,1-Dichloropropene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
Hexachlorobutadiene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
2-Hexanone	ND	10	μg/L	1	7/14/2015 4:00:54 PM	R27487
Isopropylbenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
4-Isopropyltoluene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
4-Methyl-2-pentanone	ND	10	μg/L	1	7/14/2015 4:00:54 PM	R27487
Methylene Chloride	ND	3.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
n-Butylbenzene	ND	3.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
n-Propylbenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
sec-Butylbenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
Styrene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
tert-Butylbenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
trans-1,2-DCE	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
1,1,1-Trichloroethane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
1,1,2-Trichloroethane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
Trichloroethene (TCE)	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
Trichlorofluoromethane	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
1,2,3-Trichloropropane	ND	2.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
Vinyl chloride	ND	1.0	μg/L	1	7/14/2015 4:00:54 PM	R27487
Xylenes, Total	ND	1.5	μg/L	1	7/14/2015 4:00:54 PM	R27487
Surr: 1,2-Dichloroethane-d4	99.8	70-130	%REC	1	7/14/2015 4:00:54 PM	R27487
Surr: 4-Bromofluorobenzene	91.8	70-130	%REC	1	7/14/2015 4:00:54 PM	R27487
Surr: Dibromofluoromethane	108	70-130	%REC	1	7/14/2015 4:00:54 PM	R27487
Surr: Toluene-d8	89.9	70-130	%REC	1	7/14/2015 4:00:54 PM	R27487

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1507551

Date Reported: 7/27/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates Client Sample ID: DPE-1

 Project:
 Lovington 66
 Collection Date: 7/12/2015 3:00:00 PM

 Lab ID:
 1507551-002
 Matrix: AQUEOUS
 Received Date: 7/14/2015 9:25:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed Ba	itch
EPA 6010B: TOTAL RECOVERABLE	METALS			Analyst: ME	ED
Lead	1.3	0.010	mg/L	2 7/23/2015 12:33:24 PM 20	355
EPA METHOD 8015D: GASOLINE RA	NGE			Analyst: DJ	JF
Gasoline Range Organics (GRO)	260	50	mg/L		27517
Surr: BFB	102	70-130	%REC		27517
EPA METHOD 8260B: VOLATILES	, 52	70 100	701120	Analyst: BC	
Benzene	28000	2000	uo/l	130	27580
	60000	2000	μg/L		27580 27580
Toluene			μg/L		
Ethylbenzene	7500	200	μg/L		27580
Methyl tert-butyl ether (MTBE)	39000	200	μ g /L		27580
1,2,4-Trimethylbenzene	13000	200	μg/L 		27580
1,3,5-Trimethylbenzene	3600	200	μg/L		27580
1,2-Dichloroethane (EDC)	ND	200	μg/L 		27580
1,2-Dibromoethane (EDB)	ND	200	μg/L		27580
Naphthalene	6900	400	μg/L		27580
1-Methylnaphthalene	5000	800	μg/L		27580
2-Methylnaphthalene	11000	800	μg/L		27580
Acetone	ND	2000	μg/L		27580
Bromobenzene	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Bromodichloromethane	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Bromoform	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Bromomethane	ND	600	μg/L	200 7/17/2015 8:27:25 PM R2	27580
2-Butanone	ND	2000	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Carbon disulfide	ND	2000	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Carbon Tetrachloride	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Chlorobenzene	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Chloroethane	ND	400	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Chloroform	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Chloromethane	ND	600	μg/L	200 7/17/2015 8:27:25 PM R2	27580
2-Chlorotoluene	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
4-Chlorotoluene	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
cis-1,2-DCE	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
cis-1,3-Dichloropropene	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
1,2-Dibromo-3-chloropropane	ND	400	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Dibromochloromethane	ND	200	μg/L	200 7/17/2015 8:27:25 PM R2	27580
Dibromomethane	ND	200	μg/L		27580
1,2-Dichlorobenzene	ND	200	μg/L		27580
1.3-Dichlorobenzene	ND	200	μg/L		27580
1.4-Dichlorobenzene	ND	200	µg/L		27580

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1507551

Date Reported: 7/27/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates Client Sample ID: DPE-1

 Project:
 Lovington 66
 Collection Date: 7/12/2015 3:00:00 PM

 Lab ID:
 1507551-002
 Matrix: AQUEOUS
 Received Date: 7/14/2015 9:25:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES	}			Analyst	BCN
Dichlorodifluoromethane	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,1-Dichloroethane	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,1-Dichloroethene	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,2-Dichloropropane	ND	200	µg/L	200 7/17/2015 8:27:25 PM	R27580
1,3-Dichloropropane	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
2,2-Dichloropropane	ND	400	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,1-Dichloropropene	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
Hexachlorobutadiene	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
2-Hexanone	ND	2000	μg/L	200 7/17/2015 8:27:25 PM	R27580
Isopropylbenzene	560	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
4-Isopropyltoluene	220	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
4-Methyl-2-pentanone	ND	2000	μg/L	200 7/17/2015 8:27:25 PM	R27580
Methylene Chloride	ND	600	μg/L	200 7/17/2015 8:27:25 PM	R27580
n-Butylbenzene	1300	600	μg/L	200 7/17/2015 8:27:25 PM	R27580
n-Propylbenzene	1900	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
sec-Butylbenzene	500	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
Styrene	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
tert-Butylbenzene	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,1,1,2-Tetrachloroethane	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,1,2,2-Tetrachloroethane	ND	400	µg/L	200 7/17/2015 8:27:25 PM	R27580
Tetrachloroethene (PCE)	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
trans-1,2-DCE	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
trans-1,3-Dichloropropene	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,2,3-Trichlorobenzene	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,2,4-Trichlorobenzene	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,1,1-Trichloroethane	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,1,2-Trichloroethane	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
Trichloroethene (TCE)	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
Trichlorofluoromethane	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
1,2,3-Trichloropropane	ND	400	μg/L	200 7/17/2015 8:27:25 PM	R27580
Vinyl chloride	ND	200	μg/L	200 7/17/2015 8:27:25 PM	R27580
Xylenes, Total	24000	300	µg/L	200 7/17/2015 8:27:25 PM	R27580
Surr: 1,2-Dichloroethane-d4	105	70-130	%REC	200 7/17/2015 8:27:25 PM	R27580
Surr: 4-Bromofluorobenzene	75.8	70-130	%REC	200 7/17/2015 8:27:25 PM	R27580
Surr: Dibromofluoromethane	111	70-130	%REC	200 7/17/2015 8:27:25 PM	R27580
Surr: Toluene-d8	96.6	70-130	%REC	200 7/17/2015 8:27:25 PM	R27580

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1507551

27**-J**ul-15

Client:

Golder Associates

Project:

Lovington 66

DLimit Qual
OLimit Qual
DLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 5 of 12

Hall Environmental Analysis Laboratory, Inc.

WO#:

1507551

27-Jul-15

Client: Golder Associates
Project: Lovington 66

Sample ID rb1	SampT	ype: MI	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ı ID: R2	7487	F	RunNo: 2	7487				
Prep Date:	Analysis D	ate: 7/	14/2015	\$	SeqNo: 8	24923	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.6		10.00		96.3	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.7	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.6		10.00		95.8	70	130			
Sample ID 1507551-002ams	Samn	vne M	<u> </u>	Tes	tCode: E	PA Method	8260B: VOL	ATILES		

Sample ID 1507551-002ams	Sampi	ype: MS	3	ies	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: DPE-1	Batch	n ID: R2	7487	F	RunNo: 2	7487				
Prep Date:	Analysis D)ate: 7/	14/2015	5	SeqNo: 8	25483	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	42000	100	2000	41010	60.7	70	130			ES
Toluene	59000	100	2000	68970	-507	70	130			ES
Chlorobenzene	2000	100	2000	30.00	96.3	70	130			

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 6 of 12

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

RPDLimit

%RPD

1507551

27-Jul-15

Qual

Client: **Project:**

Prep Date:

Golder Associates

Lovington 66

Sample ID 1507551-002ams Client ID: DPE-1

SampType: MS

TestCode: EPA Method 8260B: VOLATILES

RunNo: 27487

Batch ID: R27487 Analysis Date: 7/14/2015

SeqNo: 825483 Units: µg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit 1,1-Dichloroethene 2200 100 2000 70 0 109 130 Trichloroethene (TCE) 1900 100 2000 0 96.3 70 130 Surr: 1,2-Dichloroethane-d4 970 1000 97.2 70 130 Surr: 4-Bromofluorobenzene 800 1000 80.2 70 130 Surr: Dibromofluoromethane 1100 1000 114 70 130 Surr: Toluene-d8 980 1000 97.9 70 130

Sample ID 1507551-002amsd Client ID: DPE-1

SampType: MSD Batch ID: R27487 TestCode: EPA Method 8260B: VOLATILES

RunNo: 27487

Prep Date:	Analysis D	ate: 7/	14/2015	8	SeqNo: 8	25484	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	43000	100	2000	41010	97.0	70	130	1.70	20	E
Toluene	63000	100	2000	68970	-306	70	130	6.64	20	ES
Chlorobenzene	2200	100	2000	30,00	106	70	130	9.58	20	
1,1-Dichloroethene	2300	100	2000	0	114	70	130	4.79	20	
Trichloroethene (TCE)	2100	100	2000	0	105	70	130	8.87	20	
Surr: 1,2-Dichloroethane-d4	1000		1000		100	70	130	0	0	
Surr: 4-Bromofluorobenzene	780		1000		77.5	70	130	0	0	
Surr: Dibromofluoromethane	1200		1000		119	70	130	0	0	
Surr: Toluene-d8	1100		1000		106	70	130	0	0	

Sample ID 100ng LCS2	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1D: R2	7487	F	RunNo: 2	7487				
Prep Date:	Analysis D	ate: 7/	14/2015	8	SeqNo: 8	25485	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	110	70	130			
Toluene	21	1.0	20.00	0	104	70	130			
Chlorobenzene	20	1.0	20.00	0	101	70	130			
1,1-Dichloroethene	24	1.0	20.00	0	119	70	130			
Trichloroethene (TCE)	21	1.0	20.00	0	106	70	130			
Surr: 1,2-Dichloroethane-d4	9.4		10.00		93.7	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		93.9	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.2		10.00		92.4	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Detection Limit

Page 7 of 12

Hall Environmental Analysis Laboratory, Inc.

WO#:

1507551

27-Jul-15

Client:

Golder Associates

Project:

Lovington 66

Sample D rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES	ıal	Qua		ATILES	8260B: VOL							
Prep Date: Analysis Date: 7/15/2015 SeqNo: 825967 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qua Surr: 1,2-Dichloroethane-d4 9.8 10.00 97.8 70 130 Surr: 2-Bromofluorobenzene 10 10.00 101 70 130 Surr: Dibromofluoromethane 10 10.00 95.6 70 130 Surr: Toluene-d8 9.6 10.00 95.6 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R27517 RunNo: 27517 Prep Date: Analysis Date: 7/15/2015 SeqNo: 825969 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RP	ıal	Qua				PA Method	Code: Ef	Tes	BLK	ype: ME	SampT	Sample ID rb
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quasition Surr: 1,2-Dichloroethane-d4 9.8 10.00 97.8 70 130 Surr: 4-Bromofluorobenzene 10 10.00 101 70 130 Surr: Dibromofluoromethane 10 10.00 95.6 70 130 Surr: Toluene-d8 9.6 10.00 95.6 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R27517 RunNo: 27517 Prep Date: Analysis Date: 7/15/2015 SeqNo: 825969 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quasition Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130	ıal	Qua				7517	RunNo: 27	R	7517	ı ID: R2	Batch	Client ID: PBW
Surr: 1,2-Dichloroethane-d4 9.8 10.00 97.8 70 130 Surr: 4-Bromofluorobenzene 10 10.00 101 70 130 Surr: Dibromofluoromethane 10 10.00 103 70 130 Surr: Toluene-d8 9.6 10.00 95.6 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R27517 RunNo: 27517 Prep Date: Analysis Date: 7/15/2015 SeqNo: 825969 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qua Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130	ıal	Qua			Units: %RE	25967	SeqNo: 82	S	15/2015	ate: 7/	Analysis D	Prep Date:
Surr: 4-Bromofluorobenzene 10 10.00 101 70 130 Surr: Dibromofluoromethane 10 10.00 103 70 130 Surr: Toluene-d8 9.6 10.00 95.6 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R27517 RunNo: 27517 Prep Date: Analysis Date: 7/15/2015 SeqNo: 825969 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qua Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130			RPDLimit	%RPD	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
Surr: Dibromofluoromethane 10 10.00 103 70 130 Surr: Toluene-d8 9.6 10.00 95.6 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R27517 RunNo: 27517 Prep Date: Analysis Date: 7/15/2015 SeqNo: 825969 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quality Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130					130	70	97.8		10.00		9.8	Surr: 1,2-Dichloroethane-d4
Surr: Toluene-d8 9.6 10.00 95.6 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R27517 RunNo: 27517 Prep Date: Analysis Date: 7/15/2015 SeqNo: 825969 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quasition: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130					130	70	101		10.00		10	Surr: 4-Bromofluorobenzene
Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R27517 RunNo: 27517 Prep Date: Analysis Date: 7/15/2015 SeqNo: 825969 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quastrong Quastrong Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130					130	70	103		10.00		10	Surr: Dibromofluoromethane
Client ID: LCSW Batch ID: R27517 RunNo: 27517 Prep Date: Analysis Date: 7/15/2015 SeqNo: 825969 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Quality Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130					130	70	95.6		10.00		9.6	Surr: Toluene-d8
Prep Date: Analysis Date: 7/15/2015 SeqNo: 825969 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130				ATILES	8260B: VOL	PA Method	tCode: EF	Tes	s	ype: LC	SampT	Sample ID 100ng Ics
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qua Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130						7517	RunNo: 2	F	7517	n ID: R2	Batch	Client ID: LCSW
Surr: 1,2-Dichloroethane-d4 10 10.00 101 70 130 Surr: 4-Bromofluorobenzene 9.8 10.00 98.1 70 130					Units: %RE	25969	SeqNo: 82	S	15/2015	ate: 7/	Analysis D	Prep Date:
Surr. 4-Bromofluorobenzene 9.8 10.00 98.1 70 130	ıal	Quí	RPDLimit	%RPD	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
					130	70	101		10.00		10	Surr: 1,2-Dichloroethane-d4
Surr: Discompliance 10 10.00 102 70 130					130	70	98.1		10.00		9.8	Surr: 4-Bromofluorobenzene
ount precontinuous and the formation of					130	70	102		10.00		10	Surr: Dibromofluoromethane
Surr: Toluene-d8 9.6 10.00 96.3 70 130					130	70	96.3		10.00		9.6	Surr: Toluene-d8
Sample ID rb1 SampType: MBLK TestCode: EPA Method 8260B: VOLATILES				ATILES	8260B: VOL	PA Method	tCode: El	Tes	BLK	ype: ME	SampT	Sample ID rb1
Client ID: PBW Batch ID: R27580 RunNo: 27580						7580	RunNo: 2	F	7580	ı ID: R2	Batch	Client ID: PBW
Prep Date: Analysis Date: 7/17/2015 SeqNo: 827914 Units: µg/L					Units: µg/L	27914	SeqNo: 8	S	17/2015	ate: 7/	Analysis D	Prep Date:
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qua	ual	Qu	RPDLimit	%RPD	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
Benzene ND 1.0										1.0	ND	enzene
Toluene ND 1.0										1.0	ND	oluene
Ethylbenzene ND 1.0										1.0	ND	thylbenzene
Methyl tert-butyl ether (MTBE) ND 1.0										1.0	ND	ethyl tert-butyl ether (MTBE)
1,2,4-Trimethylbenzene ND 1.0										1.0	ND	2,4-Trimethylbenzene
1,3,5-Trimethylbenzene ND 1.0										1.0	ND	3,5-Trimethylbenzene
1,2-Dichloroethane (EDC) ND 1.0										1.0	ND	2-Dichloroethane (EDC)
1,2-Dibromoethane (EDB) ND 1.0										1.0	ND	2-Dibromoethane (EDB)
Naphthalene ND 2.0										2.0	ND	aphthalene
1-Methylnaphthalene ND 4.0										4.0	ND	Methylnaphthalene
2-Methylnaphthalene ND 4.0										4.0	ND	Methylnaphthalene
Acetone ND 10										10	ND	cetone
Bromobenzene ND 1.0										1.0	ND	romobenzene
Downstink and ND 4.0										1.0	ND	romodichloromethane
Bromodichloromethane ND 1.0												OHIOGICINO OHICEINAIC
Bromodichloromethane ND 1.0 Bromoform ND 1.0										1.0		
											ND	romoform
Bromoform ND 1.0										3.0	ND ND	romoform romomethane
Bromoform ND 1.0 Bromomethane ND 3.0										3.0 10	ND ND ND	romoform romomethane Butanone
Bromoform ND 1.0 Bromomethane ND 3.0 2-Butanone ND 10										3.0 10 10	ND ND ND ND	romoform romomethane Butanone arbon disulfide

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 8 of 12

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1507551 27-Jul-15

Client:

Golder Associates

Project:

Lovington 66

Sample ID rb1	SampT	ype: ME	BLK	Tes	tCode: I	EPA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R2	7580	R	RunNo:	27580				
Prep Date:	Analysis D	ate: 7/	17/2015	S	SeqNo:	827914	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
1-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
sopropylbenzene	ND	1.0								
1-Isopropyltoluene	ND	1.0								
1-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
ert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0			(8)					
Tetrachloroethene (PCE)	ND	1.0								
rans-1,2-DCE	ND	1.0								
rans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 9 of 12

Hall Environmental Analysis Laboratory, Inc.

9.6

9.5

10

11

10.00

10.00

10.00

10.00

WO#: 1507551

27-Jul-15

Client:

Golder Associates

Project:

Lovington 66

Sample ID rb1	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R2	7580	F	RunNo: 2	7580				
Prep Date:	Analysis D	ate: 7/	17/2015	S	SeqNo: 8	27914	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.7	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.5	70	130			
Surr: Dibromofluoromethane	10		10.00		105	70	130			
Surr: Toluene-d8	10		10.00		99.9	70	130			
Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	iD: R2	7580	F	RunNo: 2	7580				
Prep Date:	Analysis D	ate: 7/	17/2015	8	SeqNo: 8	27915	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	93.3	70	130		<u> </u>	
Toluene	21	1.0	20.00	0	105	70	130			
Chlorobenzene	19	1.0	20.00	0	94.6	70	130			
1,1-Dichloroethene	21	1.0	20.00	0	105	70	130			
1, 1-Dicilioroculone	21	1.0	20.00	U	100	, ,				

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range

95.7

94.5

100

107

70

70

70

70

130

130

130

130

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 10 of 12

Hall Environmental Analysis Laboratory, Inc.

WO#:

1507551

27-Jul-15

Client:

Golder Associates

Project:

Lovington 66

Sample ID MB-20355

SampType: MBLK

TestCode: EPA 6010B: Total Recoverable Metals

Client ID:

PBW

Batch ID: 20355

RunNo: 27712

Prep Date: 7/21/2015

Analysis Date: 7/23/2015

SeqNo: 832847

Units: mg/L

HighLimit

RPDLimit

RPDLimit

%RPD

Qual

Analyte Lead

Result **PQL** ND 0.0050

SPK value SPK Ref Val %REC LowLimit

Sample ID LCS-20355

SampType: LCS

Client ID: LCSW

Batch ID: 20355

PQL

RunNo: 27712

Prep Date: 7/21/2015

Analysis Date: 7/23/2015

SeqNo: 832848

Units: mg/L

Analyte

0.5000

SPK value SPK Ref Val %REC LowLimit 102

HighLimit 120 %RPD

Qual

Lead

Result 0.51

80

TestCode: EPA 6010B: Total Recoverable Metals

0.0050

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Sample Diluted Due to Matrix D
- Holding times for preparation or analysis exceeded Н
- Not Detected at the Reporting Limit ND
- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- Reporting Detection Limit

Page 11 of 12

Hall Environmental Analysis Laboratory, Inc.

WO#:

1507551

27-Jul-15

Client:

Golder Associates

Project:

Lovington 66

Sample ID rb

SampType: MBLK

TestCode: EPA Method 8015D: Gasoline Range

Client ID: **PBW** Batch ID: R27517

RunNo: 27517

Prep Date:

PQL

0.050

Units: mg/L

Analyte

Analysis Date: 7/15/2015

SeqNo: 825974

LowLimit

70

70

TestCode: EPA Method 8015D: Gasoline Range

%RPD

%RPD

RPDLimit

Qual

Gasoline Range Organics (GRO) Surr: BFB

ND 9.7

10.00

SPK value SPK Ref Val %REC

97.0

130

HighLimit

RPDLimit

Qual

Sample ID 2.5ug gro lcs

SampType: LCS

RunNo: 27517

122

130

Client ID: LCSW

Batch ID: R27517

SeqNo: 825976

Units: mg/L

Prep Date:

Analysis Date: 7/15/2015

HighLimit

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit Gasoline Range Organics (GRO) 0.49 0.050 0.5000 0 98.4 80.6 Surr. BFB 10 10.00 102

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- Reporting Detection Limit

Page 12 of 12

Hall Enviconmental Analysis Laboratory 4901 Hawkins NL Albuquerque NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental com

Sample Log-In Check List

Client Name: Golder Assoc	Work Order Number:	1507551		RcptNo	1
Received by/date:	7/14/2015 9:25:00 AM		completed to		
Completed By: Lindsay Mangin	7/14/2015 9:40:29 AM		1 State Alligo		
	07/14/15		000		
C-3	० ।(१५)। ५				
Chain of Custody	2	Yes	No 🗔	Not Present	
 Custody seals intact on sample bottl Is Chain of Custody complete? 	162 (Yes 🗹	No 🔲	Not Present	
		Client			
3. How was the sample delivered?		Ollotti			
<u>Log In</u>					
4. Was an attempt made to cool the sa	amples?	Yes 🗸	No 🗔	NA	
					
Were all samples received at a tem	perature of >0° C to 6.0°C	Yes 🔽	No	NA -	
6. Sample(s) in proper container(s)?		Yes 🗸	No 🗌		
		. car			
7. Sufficient sample volume for indicat		Yes 🗹	No 🗔		
8. Are samples (except VOA and ONG	b) property preserved?	Yes 🗹	No ☐ No ✔	NA 🗆	
9. Was preservative added to bottles?		Yes	NO (4)	IVA Lund	
10, VOA vials have zero headspace?		Yes 🗸	No	No VOA Vials	
11. Were any sample containers receiv	ed broken?	Yes	No 🗹	# of preserved	there is a sure in the
				bottles checked	\
12. Does paperwork match bottle labels		Yes 🗹	No L	for pH:	or >12 unless note
(Note discrepancies on chain of cus 13, Are matrices correctly identified on		Yes 🗹	No 🗔	Adjusted?	NO
14. Is it clear what analyses were reque		Yes 🗸	No 📋		101
15. Were all holding times able to be m		Yes 🛂	No 🗔	Checked by	· V
(If no, notify customer for authorizal	ion.)				
Special Handling (if applicable		Lond	N- [NA 🗹	
16. Was client notified of all discrepand	les with this order?	Yes 📙	No 🗆	NA 🗹	
Person Notified:	Date	V.000 1 mm	- Contraction		
By Whom:	Via:	eMail	Phone Fax	In Person	
Regarding					
Cilent Instructions					
17. Additional remarks:					
18. Cooler Information			a	I.	
Cooler No Temp C Condi	tion Seal Intact Seal No	Seal Date	Signed By		

Ch	in-o	f-Cus	Chain-of-Custody Record	Turn-Around Time:				Ĩ	ALL EN	HALL ENVIRONMENTAL	HENT	AL
Client:			4	☐ Standard	□ Rush			A	MALYSI	ANALYSIS LABORATORY	RATO	RY
		Golder	Golder Associates Inc.	Project Name:	Lo	Lovington 66			www.hall	www.hallenvironmental.com	ıtal.com	
Mailing Address:	ress:	5200 Pa	5200 Pasadena NE Suite C				46	01 Haw	kins NE - ,	4901 Hawkins NE - Albuquerque, NM 87109	e, NM 8	7109
		Albuque	Albuquerque, NM 87113	Project #:		140-4221		Tel. 505	Tel. 505-345-3975	Fax 508	Fax 505-345-4107	107
Phone #:			(505) 821-3043						Analysis	Analysis Request		
email or Fax#:		පි	Clay Kilmer@golder.com	Project Manager:	•							
QA/QC Package:	.: .: .:				Ö	Clay Kilmer						
☐ Standard			☐ Level 4 (Full Validation)					C				- (
Accreditation:	••			Sampler:	Ä	Carrillo	0					- N
O NELAP		□ Other		On Ice:	Z Yes	NO I	<u>u</u>) <u>V</u>
□ EDD (Type)	(a			Sample Temperature:	4.5-	, Ocr = 35%) St
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO. 1507	628 A93 108 A93	FPA 601				Air Bubble
7/9/2015	NA	Ą	Trip Blank	Glass Bottle - 2	HCI	102-	×					
7/12/2015	15:00	AQ	DPE-1	Glass Bottle - 6	HCI	700	×					
7/12/2015	15:00	AQ	DPE-1	Plastic Bottle - 1	HNO3	-N2		×			_	1
			The state of the s									1
												\downarrow
				and the second minimal property.							\dashv	
								_			1	+
												+
								_			$\frac{1}{1}$	+
				C	-							\exists
Date: 7//2//(5	Time: 7:25	Relinquished by	Sed by:	Received by:	B	Date Time 14/15 Cがスペー	Remarks:	ks:				
Date	Time:	Relinquished by:	led by:	Received by:		Date ime						
II nepessary, sam	oles submi	ted to Half Er	If necessary, samples submitted to Half Environmental may be subcontracted to other socredited laboratories. This serves as notice of this possibility. Any sub-contracted cata will be clearly notated on the analytical report.	her accredited laboratories. T	his serves as notice	of thus possibility. Any sub-co	ntracted co	tz will be c	early notated on	the analytical rec	DOM.	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 20, 2015

Clay Kilmer
Golder Associates
5200 Pasadena, NE Suite C
Albuquerque, NM 87113
TEL: (505) 821-3043
FAX (505) 821-5273

RE: Lovington 66 OrderNo.: 1507550

Dear Clay Kilmer:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/14/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1507550

Date Reported: 7/20/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates

Client Sample ID: DPE-1

Project: Lovington 66

Collection Date: 7/12/2015 2:53:00 PM

Lab ID: 1507550-001

Matrix: AIR

Received Date: 7/14/2015 9:25:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analyst:	DJF
Benzene	1500	50	μg/L	500 7/15/2015 12:43:43 PM	R27517
Toluene	3600	50	μg/L	500 7/15/2015 12:43:43 PM	R27517
Ethylbenzene	420	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Methyl tert-butyl ether (MTBE)	620	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,2,4-Trimethylbenzene	66	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,3,5-Trimethylbenzene	30	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Naphthalene	ND	10	μg/L	50 7/14/2015 1:38:46 PM	R27501
1-Methylnaphthalene	ND	20	μg/L	50 7/14/2015 1:38:46 PM	R27501
2-Methylnaphthalene	ND	20	μg/L	50 7/14/2015 1:38:46 PM	R27501
Acetone	ND	50	μg/L	50 7/14/2015 1:38:46 PM	R27501
Bromobenzene	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Bromodichloromethane	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Bromoform	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Bromomethane	ND	10	μg/L	50 7/14/2015 1:38:46 PM	R27501
2-Butanone	ND	50	μg/L	50 7/14/2015 1:38:46 PM	R27501
Carbon disulfide	ND	50	μg/L	50 7/14/2015 1:38:46 PM	R27501
Carbon tetrachloride	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Chlorobenzene	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Chloroethane	ND	10	μg/L	50 7/14/2015 1:38:46 PM	R27501
Chloroform	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Chloromethane	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
2-Chlorotoluene	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
4-Chlorotoluene	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
cis-1,2-DCE	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
cis-1,3-Dichloropropene	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,2-Dibromo-3-chloropropane	ND	10	μg/L	50 7/14/2015 1:38:46 PM	R27501
Dibromochloromethane	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Dibromomethane	ND	10	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,2-Dichlorobenzene	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,3-Dichlorobenzene	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,4-Dichlorobenzene	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
Dichlorodifluoromethane	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,1-Dichloroethane	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,1-Dichloroethene	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,2-Dichloropropane	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
1,3-Dichloropropane	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501
2,2-Dichloropropane	ND	5.0	μg/L	50 7/14/2015 1:38:46 PM	R27501

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 4

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order 1507550

Date Reported: 7/20/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Golder Associates

Project: Lovington 66

Lab ID: 1507550-001

Client Sample ID: DPE-1

Collection Date: 7/12/2015 2:53:00 PM

Received Date: 7/14/2015 9:25:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES	*****				Analyst	: DJF
1,1-Dichloropropene	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
Hexachlorobutadiene	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
2-Hexanone	ND	50	μg/L	50	7/14/2015 1:38:46 PM	R27501
Isopropylbenzene	20	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
4-Isopropyltoluene	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
4-Methyl-2-pentanone	ND	50	μg/L	50	7/14/2015 1:38:46 PM	R27501
Methylene chloride	ND	15	μg/L	50	7/14/2015 1:38:46 PM	R27501
n-Butylbenzene	ND	15	μg/L	50	7/14/2015 1:38:46 PM	R27501
n-Propylbenzene	41	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
sec-Butylbenzene	5.4	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
Styrene	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
tert-Butylbenzene	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
Tetrachloroethene (PCE)	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
trans-1,2-DCE	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
trans-1,3-Dichloropropene	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
1,2,3-Trichlorobenzene	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
1,2,4-Trichlorobenzene	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
1,1,1-Trichloroethane	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
1,1,2-Trichloroethane	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
Trichloroethene (TCE)	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
Trichlorofluoromethane	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R27501
1,2,3-Trichloropropane	ND	10	μg/L	50	7/14/2015 1:38:46 PM	R2750
Vinyl chloride	ND	5.0	μg/L	50	7/14/2015 1:38:46 PM	R2750
Xylenes, Total	950	7.5	μg/L	50	7/14/2015 1:38:46 PM	R2750
Surr: Dibromofluoromethane	90.0	70-130	%REC	50	7/14/2015 1:38:46 PM	R2750
Surr: 1,2-Dichloroethane-d4	115	70-130	%REC	50	7/14/2015 1:38:46 PM	R2750
Surr: Toluene-d8	109	70-130	%REC	50	7/14/2015 1:38:46 PM	R2750
Surr: 4-Bromofluorobenzene	109	70-130	%REC	50	7/14/2015 1:38:46 PM	R2750

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 2 of 4
- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1507550

20-Jul-15

Client: Project: **Golder Associates**

Lovington 66

Sample ID 1507550-001a dup	SampTy	pe: Dl	JP	Tes	tCode: El	PA Method	8260B: Volati	iles		
Client ID: DPE-1	Batch	ID: R2	7501	F	RunNo: 2					
Prep Date:	Analysis Da	ite: 7/	14/2015	8	SeqNo: 8	25196				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Ethylbenzene	360	5.0						15.3	20	
Methyl tert-butyl ether (MTBE)	580	5.0						6.51	20	
1,2,4-Trimethylbenzene	52	5.0						23.8	20.4	R
1,3,5-Trimethylbenzene	24	5.0						21.8	20	R
1,2-Dichloroethane (EDC)	ND	5.0						0	20	
1,2-Dibromoethane (EDB)	ND	5.0						0	20	
Naphthalene	ND	10						0	20	
1-Methylnaphthalene	ND	20						0	20	
2-Methylnaphthalene	ND	20						0	20	
Acetone	70000	50						200	20	ER
Bromobenzene	ND	5.0						0	20	
Bromodichloromethane	ND	5.0						0	20	
Bromoform	ND	5.0						0	20	
Bromomethane	ND	10						0	20	
2-Butanone	10000	50						200	20	ER
Carbon disulfide	ND	50						0	20	
Carbon tetrachloride	ND	5.0						0	20	
Chlorobenzene	ND	5.0						0	20	
Chloroethane	ND	10						0	20	
Chloroform	ND	5.0						0	20	
Chloromethane	110	5.0						200	20	R
2-Chlorotoluene	ND	5.0						0	20	
4-Chlorotoluene	ND	5.0						0	20	
cis-1,2-DCE	ND	5.0						0	20	
cis-1,3-Dichloropropene	ND	5.0						0	20	
1,2-Dibromo-3-chloropropane	ND	10						0	20	
Dibromochloromethane	ND	5.0						0	20	
Dibromomethane	ND	10						0	20	
1,2-Dichlorobenzene	ND	5.0						0	20	
1,3-Dichlorobenzene	ND	5.0						0	20	
1,4-Dichlorobenzene	ND	5.0						0	20	
Dichlorodifluoromethane	ND	5.0						0	20	
1,1-Dichloroethane	ND	5.0						0	20	
1,1-Dichloroethene	ND	5.0						0	20	
1,2-Dichloropropane	ND	5.0						0	20	
1,3-Dichloropropane	ND	5.0						0	20	
2,2-Dichloropropane	10	5.0						200	20	R
1,1-Dichloropropene	ND	5.0						0	20	
Hexachlorobutadiene	ND	5.0						0	20	
		3.0						Ü	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Sample pH Not In Range
- Reporting Detection Limit

Page 3 of 4

Hall Environmental Analysis Laboratory, Inc.

WO#:

1507550

20-Jul-15

Client:

Golder Associates

Project:

Lovington 66

Sample ID 1507550-001a du	ı p SampT	ype: DU	P	TestCode: EPA Method 8260B: Volatiles						
Client ID: DPE-1	Batch	1D: R2	7501	R						
Prep Date:	Analysis D	ate: 7/	14/2015	S	eqNo: 8	25196	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Hexanone	ND	50						0	20	
Isopropylbenzene	17	5.0						17.5	20	
4-Isopropyltoluene	ND	5.0						0	20	
4-Methyl-2-pentanone	ND	50						0	20	
Methylene chloride	ND	15						0	20	
n-Butylbenzene	ND	15						0	20	
n-Propylbenzene	32	5.0						24.7	20	R
sec-Butylbenzene	ND	5.0						200	20	R
Styrene	ND	5.0						0	20	
tert-Butylbenzene	ND	5.0						0	20	
1,1,1,2-Tetrachloroethane	ND	5.0						0	20	
1,1,2,2-Tetrachloroethane	ND	5.0						0	20	
Tetrachloroethene (PCE)	ND	5.0						0	20	
trans-1,2-DCE	ND	5.0						0	20	
trans-1,3-Dichloropropene	ND	5.0						0	20	
1,2,3-Trichlorobenzene	ND	5.0						0	20	
1,2,4-Trichlorobenzene	ND	5.0						0	20	
1,1,1-Trichloroethane	ND	5.0						0	20	
1,1,2-Trichloroethane	ND	5.0						0	20	
Trichloroethene (TCE)	ND	5.0						0	20	
Trichlorofluoromethane	ND	5.0						0	20	
1,2,3-Trichloropropane	ND	10						0	20	
Vinyl chloride	ND	5.0						0	20	
Xylenes, Total	830	7.5						13.6	20	
Surr: Dibromofluoromethane	46		50.00		91.0	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	52		50.00		105	70	130	0	0	
Surr: Toluene-d8	55		50.00		109	70	130	0	0	
Surr: 4-Bromofluorobenzene	52		50.00		103	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 4 of 4

Hall Environmental Analysis Luporatory 4961 Hawkins NE

Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name	Golder Assoc	Work Order Number:	1507550		RcptNo: 1	
Received by	date	64/11/15				
Logged By	Lindsay Mangin	7/14/2015 9:25:00 AM		July 1		
Completed E	_	7/14/2015 9:37:24 AM		A HAD		
Reviewed By	0.0	07/14/15		000		
Chain of C		VIJISIII				
	seals intact on sample bottle	se?	Yes 🗌	No 🗆	Not Present 🗹	
	of Custody complete?		Yes 🗹	No 🗌	Not Present	
	the sample delivered?		Client			
Log In						
	attempt made to cool the sa	mples?	Yes	No 🗆	NA 🗹	
5. Were all	samples received at a temp	erature of >0° C to 6.0°C	Yes	No 🗀	NA 🗹	
6. Sample	(s) in proper container(s)?		Yes 🔽	No 🗋		
7 Sufficier	it sample volume for indicate	d test(s)?	Yes 🗸	No 🗌		
	ples (except VOA and ONG)		Yes 🗸	No 🗌		
	servative added to bottles?		Yes	No 🗸	NA 🗆	
10.VOA via	Is have zero headspace?		Yes 🗌	No 🗀	No VOA Vials 🗹	
11, Were a	ny sample containers receive	ed braken?	Yes	No 🗸	# of preserved bottles checked	
12. Does pa	perwork match boitle labels	?	Yes 🗹	No 🗔	for pH:	- 40to-s cated)
	screpancies on chain of cust		-	. 6	(<2 or Adjusted?	>12 unless noted)
	rices correctly identified on C		Yes 🗹	No 🗌	Adjusted !	
	r what analyses were reques		Yes 😾	No L	Checked by:	
	I holding times able to be me otify customer for authorizati		Yes 🗹	No 🗔	Ondotta by	
Special H	andling (if applicable)	!				
	ent notified of all discrepance		Yes	No 🗌	NA 🗸	
P	erson Notified	Date				
B	y Whom	Via:	eMail [Phone Fax	_ In Person	
	egarding					
	lient Instructions					
17. Additio	nal remarks:					
	Information Ier No Temp °C Condit	ion Seal Intact Seal No Not Present	Scal Date	Signed By		

HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request				10		28 A 43	×						Remarks:	
		Lovington 66		140-4221			Clay Kilmer	P. Carrillo	TJ-Klo/	ンダ	HEAL No. 1507550	(W)-						9 Time	Date Time
	□ Rush	VO.1		1	•		Cla		res res	re:	Preservative Type	N/A						Date / 14/15	۵
Turn-Around Time:	C Standard	Project Name:		Project #:		Project Manager:		Sampler:	On ice:	Sample Temperature:	Container Type and #	Tedlar Bag - 1						Received by:	Received by:
Chain-of-Custody Record		Golder Associates inc.	5200 Pasadena NE Suite C	Albuquerque, NM 87113	(505) 821-3043	Clay Kilmer@golder.com	☐ Level 4 (Full Validation)		Address of the second s		Sample Request ID	DPE-1						Aq pa	sd by:
f-Cus	100	Solder	5200 Pa	Albuque		Cla			□ Other		Matrix	Vapor						Relinquished by	Relinquished by:
nain-o			ddress:			×#:	kage:	ž.		(be)	Time	14:53						Time: 7.25	Time
Ö	Clent:		Mailing Address:		Phone #:	email or Fax#:	OA/OC Package:	Accreditation:	□ NELAP	□ EDD (Type)	Date	7/12/2015						Date: 7/1 4/1 S	Date:

If necessary, samples submitted to Hall Environmental may be subcentracted to other accredited fatheretories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

v.	

APPENDIX I

ACUVAC REMEDIATION, LLC DUAL PHASE EXTRACTION PILOT TEST REPORTS

	Г
	T
	L
	Г
	L
	Γ
	L
	T
	1
	٢
	L
	I
	-
	Г
	L
	ſ
	-
	L
	ſ
	L
	1
	7
	L
	5
	4

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

July 15, 2015

Mr. Clay Kilmer: Senior Hydrogeologist Golder Associates, Inc. 5200 Pasadena Avenue N.E. Suite C Albuquerque, NM 87113

Dear Clay:

Re: Walstadd 66, Lovington, NM

At your request, we performed one Mobile Dual Phase (MDP) Pilot Test on July 12, 2015 at the above referenced sites. An Engineer and an Environmental Specialist, with over 14,500 hours of on-site testing, conducted the Pilot Test. The total MDP test time, including static data time, was 8.6 hours. The contaminant was weathered gasoline.

OBJECTIVES

The Objectives of an MDP Pilot Test are to:

- Evaluate the potential for removing liquid and vapor LNAPL and contaminated groundwater (GW) from soils in the subsurface formations.
- Expose the capillary fringe area and below to induced soil vacuum extraction (SVE) in the extraction well (EW).
- With induced vacuums, increase the GW specific yields. Stress the GW System and monitor its response.
- Maintain a near constant GW depression in the EW.
- Create an induced hydraulic gradient (IHG) to gain hydraulic control of the area.
- Record GW depression and pump rates to accomplish the above objectives.

The purpose of the EW induced vacuum variable rate test is to define the pressure/flow characteristics of sub-surface soils around the EW and to estimate potential conditions for an operational Dual Phase System. Starting a test with lower variable rates of vacuum and flow allows the EW and outer wells sufficient time to adjust and stabilize and minimizes the risk of developing preferential paths. This will also assist the development of newly installed extraction wells.

METHODS AND EQUIPMENT

The tests were conducted using AcuVac's I-6 System, with Roots RAI-33 and RAI-22 blowers, various instrumentation, including the HORIBA® Analyzer, Solinst Interface Probes, Lumidor O₂ Meter, vapor flow gauges, liquid volume/flow meter, a sensitive instrument to determine barometric pressure, V-1 vacuum box to capture non-diluted vapor samples, Redi-Flo 2 total fluids (TF) pump and other special equipment. The vacuum extraction portion of the AcuVac System consists of a vacuum pump driven by an internal combustion (IC) engine. The vacuum pump is connected to the extraction well and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the GW to volatilize and flow through a moisture knockout tank, to the vacuum pump and the IC engine where they are burned as part of the normal combustion process. Propane is used as auxiliary fuel to help power the engine if the well vapors do not provide the required BTU.

The GW Extraction is provided by an in-well, Redi-Flo 2 total fluids pump that has the discharge line connected to a total volume meter. The discharge line from the volume meter is then connected to the stand-by tank truck. The electrical power for the GW pump was supplied from a 120v Honda generator. The GW flow rate can be adjusted to maintain a target level. Interface meters are used to measure Depth to Groundwater (DTGW)/Depth to Light Non-Aqueous Petroleum Liquids (DTLNAPL).

The AcuVac IC engine is fully loaded for maximum power that is necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum SVE Radius of Influence (ROI) for Pilot Tests and short term Event remediation. The lower part of the IC engine is encased with a liquid collection pan designed to catch any oil drips or liquid leaks if it should occur.

Emissions from the engine are passed through three catalytic converters to ensure maximum destruction of removed hydrocarbon vapors. The engine's fuel to air ratio can be adjusted to maintain efficient combustion. Because the engine is the power source for all IC engine driven equipment, all systems stop when the engine stops. This eliminates any uncontrolled release of hydrocarbons. Since the AcuVac System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure or overheating.

The design of the AcuVac System enables complete independent control of both the Induced Well Vacuum and the GW pumping functions such that the AcuVac System operator can control the IHG to expose the maximum amount of the formation to SVE. The ability to separate the induced vacuum and liquid flows within the EW improves the LNAPL recovery rates, and enables the test data to be recorded independently. All the systems are properly grounded to eliminate any static electrical charge.

PROJECT SCOPE AND PROCEDURES

- Gauge the DTGW and DTLNAPL in the EW.
- Calculate the Hydro-equivalent in the EW.
- Determine the appropriate placement for the GW pump inlet.

- Calculate the GW depression necessary to gain hydraulic control of the area.
- Record the distances from the selected EW to the outer wells.
- Install the GW pump into the EW (A-1).
- Connect the ground wires for the AcuVac System and Honda generator.
- Set pump and data probe at the selected depth from TOC.
- Connect discharge hoses to liquid volume meter and then connect to the on-site tank truck.
- Connect the AcuVac System to the selected EW manifold and seal the selected outer observation wells with plugs designed to accept magnehelic gauges or digital manometers.
- Record the static well data, DTGW/DTLNAPL, well size, TD, screen intervals and then apply EW induced vacuum. Record the vacuum and well flow, all System data (including fuel flow of propane), temperature and barometric pressure.
- The test procedures are to provide variable rates of induced vacuum and GW pumping rates over the test period.
- Start the GW pump and set at proper flow rate to achieve the selected GW drawdown.
- Monitor the GW pump and adjust the flow to maintain the selected GW drawdown.
- Record pump flow rate and total liquid volume.
- Collect GW/LNAPL samples in a 2,000 ml beaker to determine the percentage of LNAPL in the recovered liquid volume.
- Install and observe the digital manometer on the outer observation wells to determine if the selected EW induced vacuum is in vacuum communication with the outer observation wells.
- Gauge the outer wells to determine the GW drawdown.
- Record the data at a selected interval of time.
- Operate the AcuVac System in such a manner that all well vapors are passed through the engine and catalytic converters, to destruct the contaminants and exhausted, to meet air emission standards. Comply with all security and safety regulations.
- Complete the tests by providing a report consisting of operating and analytical data, projection of SVE radius of influence (ROI), the IHG ROI and the collected volumes of GW and LNAPL.

CONDITIONS AFFECTING PILOT TESTS

- Generally, a decreasing barometric pressure results in increased well pressures (decreased vacuums) on those wells plugged and sealed at the TOC, while an increasing barometric pressure results in increased well vacuums. This is the function of GW levels increasing and decreasing. There are many variables that can affect Pilot Test data, but barometric pressure fluctuations have the most immediate and profound effect. This assumes that SVE short-circuiting is not a factor.
- ❖ To offset the induced vacuum/pressure as a result of GW depression or upwelling in the outer monitoring wells, the wells are vented periodically to atmosphere and then re-plugged prior to recording data at select intervals. The potential for increased vacuum or pressure as a result of in/decreasing GW levels will be minimized. GW depression surrounding an outer observation well will result in an induced vacuum not associated with the induced vacuum created in the EW. Likewise, GW mounding will create the opposite effect creating well pressures.

TEST #MDP-1 WALSTADD 66 LOVINGTON, NM JULY 12, 2015

PRE-TEST FUNCTIONS - PILOT TEST #MDP-1

Prior to starting the MDP test with GW Extraction, all systems were checked for normal and safe operation. The DTGW/DTLNAPL, barometric and absolute pressure and ambient air temperature were recorded. The hydro equivalent (HE) was calculated. Based upon the HE, the GW pump inlet was set at 65 ft below the top of the well casing. The pump hose was then connected to the total volume meter. The discharge hose was connected to the on-site 3,000 gal liquid collection tank truck. Each magnehelic gauge was checked and calibrated to zero. The outer monitoring wells were plugged with expandable well plugs designed to accept a digital manometer. Static well data and the atmospheric effect on the outer wells were recorded prior to engaging the AcuVac System. The propane tank fuel level was recorded so that accurate fuel consumption could be estimated for the total test period. All safety checks were performed on the Systems. (See list of Attached Schedules and Figures, Page 11.)

DISCUSSION OF DATA - TEST #MDP-1

Test #MDP-1, with vacuum and GW/LNAPL extraction, was an 8.6 hour MDP test including static well data, conducted from well A-1 as the EW. Immediately prior to starting the test, the selected outer monitoring wells were recording zero vacuums. The general weather conditions were clear and cool. At the start of the MDP test, the EW induced vacuum was set at 40"H₂O, with an initial well vapor flow of 12.19 scfm. The data probe static reading was 7.5 ft, immediately decreasing to 2.0 ft when the GW pump was engaged. Based upon the data probe, it was determined that a constant drawdown creating a GW depression (GWD) of approximately 5.5 ft below HE static level would be appropriate for this test (see Table #1A). The initial GW pump rate was set at 3.5 gpm to achieve the selected GWD and then remained constant for 2.0 hours. The GWD and related GW pump rate are monitored constantly throughout the test and recorded every 30 minutes. Table #1A summarizes the GWD, GW pump rate and the drawdown in the EW and Table #1B summarizes the GWD in the outer observation wells.

During the first 2.0 hours of the test, the EW induced vacuum remained constant at 40"H₂O with a well vapor flow of 12.19 scfm. Outer well W-2, which is located 16.2 ft from the EW, immediately recorded a well vacuum increasing from 0 to 0.07"H₂O and continued on an increasing trend during the test period to 0.88"H₂O. Outer wells W-1 and W-3 which are located 25.8 and 38.3 ft from the EW, recorded a slight increasing vacuum level and then continued on a slight increasing vacuum trend to 0.36 and 0.17"H₂O. The ambient air temperature increased from 72.4 to 79.6°F and the barometric pressure was mostly steady at 30.10"Hg. The GW depression averaged 5.5 ft below static level. The total collected liquid volume was 420 gals and 38.9 gals of liquid LNAPL were observed on the collected GW.

EXTRACTION WELL A-1 OPERATING DATA TEST #MDP-1

Table #1A

Location: Walstadd	66, Lovington, NM					
Project Date 07/12	2/2015	A-1 DTGW ft	GWD ft	GWR gpm	Total Volume gal	EW Vacuum "H₂O
Well Data						
TD		75.0	-	-	-	
Screen		45.0-75.0	-	-	-	-
Well Size		4.0			-	-
DTGW	0715 hrs	64.08		-	-	-
DTGW Hydro Equ	ivalent	59.14		-	-	-
DTLNAPL	0715 hrs	57.40	-		-	-
LNAPL	0715 hrs	6.68	-		-	-
Drawdown Data	etalyharta esthali					
Data Probe	0730 hrs Start	7.50	-	-	-	-
Data Probe	0800 hrs	2.00	-5.50	3.50	105	40
Data Probe	0830 hrs	2.00	-5.50	3.50	210	40
Data Probe	0900 hrs	2.00	-5.50	3.50	315	40
Data Probe	0930 hrs	2.00	-5.50	3.50	420	40
Data Probe	1000 hrs	2.00	-5.50	4.30	549	60
Data Probe	1030 hrs	2.00	-5.50	4.30	678	60
Data Probe	1100 hrs	2.00	-5.50	4.30	807	60
Data Probe	1130 hrs	2.00	-5.50	4.30	936	60
Data Probe	1200 hrs	2.00	-5.50	4.30	1065	60
Data Probe	1230 hrs	2.00	-5.50	4.30	1194	60
Data Probe	1300 hrs	2.00	-5.50	4.30	1323	60
Data Probe	1330 hrs	2.00	-5.50	4.60	1460	75
Data Probe	1400 hrs	2.00	-5.50	4.60	1598	75
Data Probe	1430 hrs	2.00	-5.50	4.60	1736	75
Data Probe	1500 hrs	2.00	-5.50	5.20	1892	90
Data Probe	1530 hrs Stop	2.00	-5.50	5.20	2048	90
Data Probe	1600 hrs Static	7.46	-0.04	0.00	-	-
DTGW	1600 hrs	61.65		-	_	_
DTGW Hydro Equ	ivalent	61.64	-	_		-
DTLNAPL	1600 hrs	61.61	-	-	_	-
LNAPL	1600 hrs	0.04	-	-	-	_
Average GW Depre		-	-5.50	_	_	_

OBSERVATION WELLS INDUCED HYDRAULIC GRADIENT DATA TEST #MDP-1 TABLE #1B

			TABLE #1					
Location: Walstadd 66, Lovin	gton, NM		-					
Project Date 07/12/2015		W	/- 2	v	V-1	v	V-3	
Well Data								
TD	ft	7:	5.0	8	0.0	7	5.0	
Screen	ft	50.0	- 70,0	50.0	- 70.0	50.0	- 70.0	
Well Size	in	4	.0	4	1.0		1.0	
		DTGW ft	Change in GWD ft	DTGW ft	Change in GWD	DTGW ft	Change in GWD ft	GW Pump Rate gpm
Static/Start Data								Charles
DTGW 0730 h	rs ft	63.92		64.62		63.81		3.50
DTGW Hydro Equivalent	ft	58.87	0	59.84	0	58.94	0	
DTLNAPL 0730 h	rs ft	57.10		58.16		57.23		
LNAPL 0730 h	rs ft	6.82		6.46		6.58		
Drawdown Data								
DTGW 1030 h	rs ft	64.13		64.82		63.87		4.30
DTGW Hydro Equivalent	ft	58.99	-0.11	59.91	-0.07	58.97	-0.03	
DTLNAPL 1030 h	rs ft	57.18		58.19		57.25		
LNAPL 1030 h	rs ft	6.95		6.63	}	6.62		
Drawdown Data								
DTGW 1330 h	rs ft	64.81		65.28		64.08		4.60
DTGW Hydro Equivalent	ft	59.46	-0.59	60,16	-0.32	59.14	-0.20	
DTLNAPL 1330 h	rs ft	57.58		58.36		57.41		
LNAPL 1330 h	rs ft	7.23		6.92		6.67		
Drawdown Data	REPORT.							
DTGW 1530 h	rs ft	64.91		65.38		64.21		5.20
DTGW Hydro Equivalent	ft	59.53	-0.66	60.21	-0.37	59.18	-0.24	
DTLNAPL 1530 h	rs ft	57.64		58.39		57.41		
LNAPL 1530 h	rs ft	7.27		6.99		6.80		
Maximum Drawdown	ft		-0.66		-0.37		-0.24	
Distance From EW		16.2		25.8		38.3		
Specific Gravity .74								

Specific Gravity .74

HORIBA® analytical data indicated the two influent vapor samples taken from the EW had HC concentrations of 76,990 and 74,020 ppmv, with CO₂ at 4.72 and 5.12%, CO at 3.82 and 3.09%, O₂ at 6.8 and 6.1% and H₂S at 0 ppm. The propane flow to the IC engine averaged 0 cfh, with a well flow of 12.19 scfm. The influent vapors were supplying 100% of the IC engine required fuel. The HC levels were within the mid to high range normally found in soil gas samples collected from an area contaminated with weathered gasoline.

At test hour 2.0, the test continued with the induced vacuum increased to 60"H₂O and a well flow of 19.88 scfm. The test period was 3.5 hours with the EW induced vacuum and well flow remaining steady. Outer well W-2 continued on an increasing vacuum trend to 1.14"H₂O in response to the EW vacuum increase and then developed a slight decreasing trend when the barometric pressure decreased. Outer wells W-1 and W-3 recorded an increased vacuum trend to 0.43 and 0.15"H₂O and then decreased to 0.38 and 0.12"H₂O. The GW pump rate increased to 4.30 gpm and remained steady during this test period. The collected volume was 903 gals which brings the total to 1,323 gals, with a GW depression average of 5.5 ft. The ambient air temperature increased to 91.8°F and the barometric pressure decreased from 30.10 to 30.07"Hg. The influent vapor temperature increased to 71°F. A total LNAPL volume of 14.4 gals was observed on the collected GW.

Additional HORIBA® analytical data indicated the influent vapor samples recorded HC levels of 71,750, 68,490 and 61,890 ppmv, with CO₂ at 4.60, 5.24 and 5.12%, CO at 2.37, 2.55 and 1.88%, O₂ at 5.8, 6.4 and 8.3% and H₂S at 0 ppm. The influent vapors continued to supply 100% of the IC engine's fuel and the TPH levels continued to be within the range of weathered gasoline vapors.

At test hour 5.5, the test continued with the induced vacuum increased to 75"H₂O₁ and a vapor well flow of 21.34 scfm. The test period was 1.5 hours with the EW vacuum and well flow remaining steady. The outer observation wells, W-2, W-1 and W-3, immediately recorded increased vacuum levels for 1.0 hour, and then developed a decreasing trend as the barometric pressure continued to decrease. This is an excellent example of the effect of barometric pressure oscillations on the vacuum/pressures observed on the outer observation wells. The average GW drawdown in the EW was 5.5 ft. A drawdown of 0.59 ft was recorded in W-2, 0.32 ft in W-1 and 0.2 ft in W-3. The GW pump rate averaged 4.60 gpm with a collected volume 413 gals. The total collected volume increased to 1,736 gals and 7.6 gals of liquid LNAPL was observed on the GW. The ambient air temperature increased from 91.8 to 93.3°F and the barometric pressure decreased from 30.07 to 30.04"Hg.

Additional HORIBA® analytical data indicated the influent vapor samples recorded a HC level of 61,720 ppmv, with CO₂ at 5.20%, CO at 1.75%, O₂ at 8.7% and H₂S at 0 ppmv. The influent vapors continued to supply 100% of the IC engine's fuel. Although the HORIBA® Analyzer has been proven to be reasonably accurate compared to laboratory analysis of influent vapors, projections should be based on analytical results from a Certified Testing Laboratory qualified to conduct tests on air emission samples.

At test hour 7.0, the test continued with the induced vacuum increased to 90"H₂O and a vapor well flow of 27.95 scfm. The test period was 1.0 hour with the EW vacuum and well flow remaining steady. Outer observation well W-2 recorded an increased vacuum level from 1.10 to 1.23"H₂O and continued to increase to 1.54"H₂O during the test period. Outer well W-1 recorded an increasing vacuum ranging from 0.37 to a maximum of 0.60"H₂O and well W-3 recorded an increase from 0.09 to 0.20"H₂O. The average GW drawdown in the EW was 5.5 ft. A maximum drawdown of 0.66 ft was recorded in W-2, 0.37 ft in W-1 and 0.24 ft in W-3. This was the maximum recorded drawdown before any required well vacuum adjustments resulting from the decreasing barometric pressure. The GW pump rate averaged 5.2 gpm with a collected volume of 312 gals. The total collected volume increased to 2,048 gals and 6.2 gals of liquid LNAPL was observed on the GW. The ambient air temperature increased from 95.3 to 96.1°F and the barometric pressure decreased from 30.04 to 30.02"Hg.

Immediately before the conclusion of this test period, the outer observation wells were gauged. The gauging data is included on Table #1B.

RADIUS OF INFLUENCE & INDUCED HYDRAULIC GRADIENT

Figure #1A indicates that the effective vacuum radius of influence from Test #MDP-1 with groundwater extraction (GWE) would be from 25.91 to 32.64 ft, with extraction well flow of 22.0 to 24.0 scfm and extraction well vacuum in the 80 to 85"H₂O range. An approximation of the radius of influence may be obtained by determining the point at which the measured vacuum is 0.50 to 0.70"H₂O. It is assumed that beyond the lower point, the pressure gradient (driving force) is negligible to effectively transport vaporized contaminants to the extraction well. Under continuous operation, vacuum and radius of influence will most likely continue to increase horizontally and vertically.

Figure #1B indicates that the effective vacuum radius of influence from Test #MDP-1 with groundwater extraction (GWE) would be from 22.02 to 24.53 ft, with extraction well flow of 22.0 to 24.0 scfm and extraction well vacuum in the 80 to 85"H₂O range. An approximation of the radius of influence may be obtained by determining the point at which the measured vacuum is 0.75 to 0.85"H₂O or approximately 1.0% of the EW induced vacuum. It is assumed that beyond the lower point, the pressure gradient (driving force) is negligible to effectively transport vaporized contaminants to the extraction well. Under continuous operation, vacuum and radius of influence will most likely continue to increase horizontally and vertically.

Figure #2 indicates that the effective induced hydraulic gradient from Test #MDP-1 with vacuum and groundwater extraction would be greater than approximately 31.0 ft, with a pump rate of 4.0 to 4.3 gpm. An approximation of the radius of influence may be obtained by determining the point at which the measured GW level effect on the outer wells is greater than 0.30 ft. At the point at which the measured GW level effect on the outer wells is greater than 0.20 ft, the effective induced hydraulic gradient with vacuum would be greater than approximately 46 ft. Under continuous operation, the gradient effect of the GW pump rate and depression may cover a larger area.

The effective vacuum radius of influence is based on calculations and equations using a software program of which data was provided from an extensive database collected by AcuVac over a period of years. Each projection is based on the test data and site parameters, and takes into consideration such variables as barometric pressure oscillations and gauge error. Although we cannot provide total assurance of accuracy, past experience and results have proven these projections to be well within the acceptable range of accuracy.

PRODUCT RECOVERY

A total liquid volume of 2,048 gals were recovered during the test of which 3.11% or 63.64 gals was liquid gasoline. A calculated volume of 22.63 gals of gasoline contaminant were removed as part of the influent vapors and were burned as IC engine fuel bringing the total gasoline recovery to 86.27 gals or an average of 10.78 gals/hr.

GROUNDWATER RECOVERY

GW recovery was monitored in well A-1 for 30 minutes after the vacuum had ceased. The GW recovery was recorded with the interface meter. In 30 minutes, the recovery for A-1 was equal to 54.5% based on the hydro equivalent.

EMISSION DATA

During this Pilot Test, HORIBA® data indicated that the influent vapors had an average hydrocarbon level (TPH) of 69,142 ppmv. Laboratory analysis of influent vapor samples from previous pilot tests indicated that those vapor samples had a benzene level of approximately 2.0% of the 69,142 ppmv. Using an average well flow of 18.83 scfm from this extended test, the calculated emissions from one extraction well without vapor treatment were as follows:

HC = 42.5 lbs/day = 17.7 lbs/hr Benzene = 8.5 lbs/day = 0.35 lbs/hr

ADDITIONAL INFORMATION

The HORIBA® analytical instrument is calibrated with Hexane and CO₂. One sample was collected for laboratory analysis.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x $1.58E^{-7}$ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

To calculate MDP well placement, the equation we use is as follows:

L= 2 ROI Cos 30° (L = distance between wells; ROI = radius of influence)

All other data, including the groundwater depth, well placement, extraction well screened intervals, induced vacuum and vapor well flow and liquid recovery rate, must be considered in the final design for a Corrective Action Plan (CAP).

Static (baseline) data, recorded 0.5 hours after the conclusion of the test, indicates that W-1 was recording a pressure of 0.19"H₂O, W-1 was recording a well pressure of 0.15"H₂O and W-3 was recording a well pressure of 0.17"H₂O. The well pressure was the result of the decreasing barometric pressure.

The test provided excellent data to use in the calculation and projection of an SVE vacuum radius of influence and excellent data to project an induced hydraulic gradient.

CONCLUSION

Pilot Tests are conducted to provide information on short term tests that can be projected into long term remedial plans. These feasibility tests indicated that Mobile Dual Phase Extraction (MDP) with groundwater depression should provide an excellent method of remediation for this facility. Although the observed vacuum of the most distant outer monitoring well was moderately low, the duration of the pilot tests was short compared to continuous operation. However, the tests results provided excellent data to project that wells W-2, W-1 and W-3 were in vacuum communication with the selected extraction well. The vacuum radius of influence defines the region within which the vapor in the vadose zone flows to the extraction well under the influence of a vacuum. The radius of influence depends on the soil properties of the vented zone, properties of surrounding soil layers, the depth at which the well is screened, well installation and the presence of any impermeable boundaries such as the water table, clay layers, surface seal, building basements and the presence of such areas as tank pits with backfill and underground utilities. The induced hydraulic gradient (IHG) defines the region within which a selected GW depression is recorded in the outer monitoring wells. The IHG depends on the hydraulic properties of the underlying sub-surface, aquifer characteristics and the effect of the induced vacuum on specific yields.

SUMMARY AND OBSERVATIONS - TEST #MDP-1

- Based on the recorded test data, the sub-surface medium is most likely isotropic.
- Due to the age of the contaminant, the recovered gasoline may contain tetraethyl lead.
- ❖ An average induced vacuum of 60.3"H₂O was required to produce an average well vapor flow of 18,83 scfm. The ratio of the average EW induced vacuum to the EW well flow was 3,21;1.
- The average well flow per foot of EW well screen was 0.96 scfm with a maximum of 1.42 scfm.
- The GW pump rate was increased to provide a sufficient GW depression when the EW induced vacuum was increased. The average GW pump rate was 4.22 gpm with a maximum of 5.20 gpm.
- During each increase of the induced vacuum, outer observation wells W-2, W-1 and W-3 recorded increased vacuum levels. Additionally, GW drawdown in the observation wells continued to decrease during the test period.

- The average maximum percent of induced vacuum observed in outer observation wells W-2 at 16.2 ft was 1.74-2.30%, W-1 at 25.8 ft was 0.66-0.95% and W-3 was 0.25-0.50%.
- The HC levels recorded during the test period were within the range normally associated with soil gas samples taken from an area that is highly saturated with weathered gasoline.
- The test provided excellent data for the calculation and projection of a vacuum radius of influence, excellent data for the projection of an induced hydraulic gradient and excellent data to support the collection and removal of liquid and vapor phase gasoline with Dual Phase Recovery.
- SVE without GW extraction would not be an effective remediation option at this site. The higher vacuums would result in GW upwelling in the EW which may cover the well screen and render the SVE ineffective.

ATTACHED SCHEDULES AND FIGURES

Schedule A: Summary of Data

Schedule B: Graphic Summary of Data

Figure #1A: Plot of Observed Vacuum vs Distance at the Facility (ROI) at 0.75% of Induced Vacuum

Figure #1B: Plot of Observed Vacuum vs Distance at the Facility (ROI) at 1.00% of Induced Vacuum

Figure #2: Plot of Recorded GW Induced Hydraulic Gradient vs Distance at the Facility (ROI)

Additional Information (this should be read as part of the report):

- Field Operating Data and Notes Test #MDP-1
- Site Photographs

Once you have reviewed the report, please call me if you have any questions.

Sincerely,

ACUVAC REMEDIATION, LLC

Soll

James E. Sadler,

VP Engineering/Environmental

cc: Paul Faucher

Attachment A

Acronyms and Definitions

A Annulus - the space between the pipes and lines in the extraction well and the outer casing

ACFM Actual Cubic Feet Per Minute

Al (AS) Air Injection (Sparging) the mass transfer of O₂ from air to groundwater

BGL Below Ground Level
BGS Below Ground Surface

BP Barometric Pressure (Atmospheric Pressure)

BTOC Below Top of Casing
CFH Cubic Feet Per Hour

DNAPL Dense Non-Aqueous Petroleum Liquid

DPVE Dual Phase Vacuum Extraction

DTGW Depth to Groundwater

DTPSH Depth to Phase Separated Hydrocarbons/NAPL

DT Drop Tube

EVR Enhanced Vacuum Recovery, also referred to as SVE/GWD

EW Extraction Well
GW Groundwater

GWD Groundwater Depression
GWE Groundwater Extraction
GWUP Groundwater Upwelling

HC Hydrocarbon Concentration (Petroleum-TPH)

"H₂O Inches of Water "Hg Inches of Mercury

IHG Induced Hydraulic Gradient

IV Induced Vacuum, normally from a vacuum pump connected to the extraction well or

vapor recovery well

LNAPL Light Non-Aqueous Petroleum Liquids

MDP Mobile Dual Phase

NAPL Non-Aqueous Petroleum Liquids

P Pressure, the existence of above atmospheric pressure

ROI Radius of Influence
RPM Revolutions Per Minute

SCFM Standard Cubic Feet Per Minute

SVE Soil Vacuum Extraction

TD Total Depth

QT Quick Test, a short duration SVE Test

V Vacuum, the existence of below atmospheric pressure

VEGE Vacuum Enhanced Groundwater Extraction

VER Vacuum Enhanced Recovery

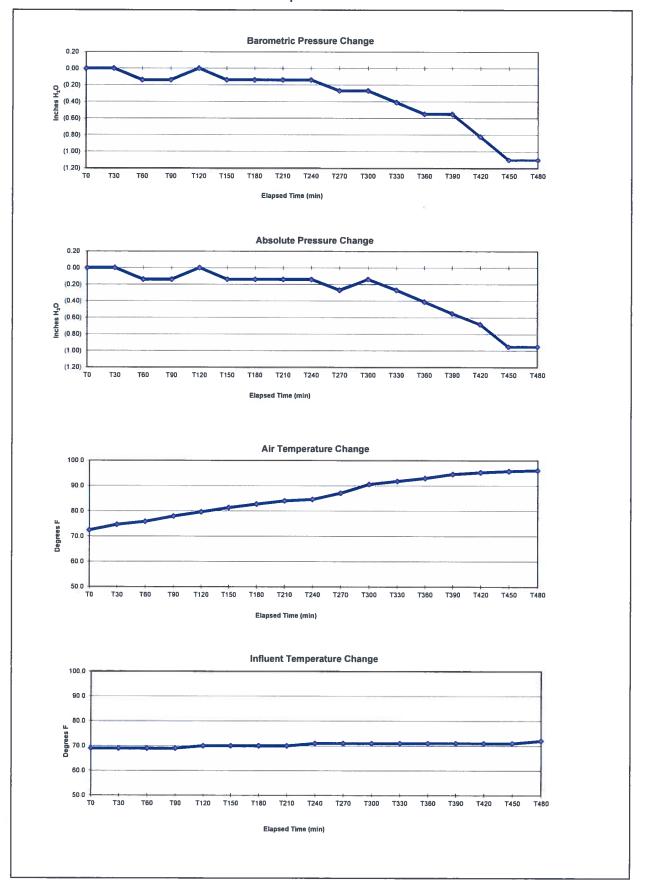
VEW Vapor Extraction Well
VWF Vapor Well Flow
WVF Well Vapor Flow

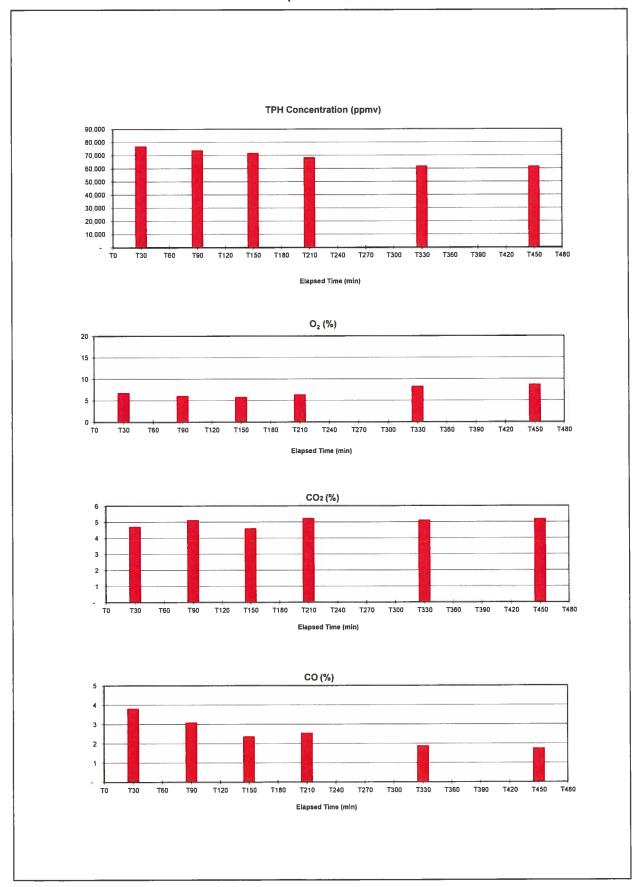
			D	ATA ELEMEN	IT		
7/12/2015	Static 7:25	Start 7:30	8:00	8:30	9:00	9:30	10:00
nfluent Vapor Data							
Horiba HC ppmv	ND	ND	76,990	ND	74,020	ND	71,750
Horiba CO₂%	ND	ND	4.72	ND	5.12	ND	4.60
Horiba CO%	ND	ND	3.82	ND	3.09	ND	2.37
Lumidor O ₂ %	ND	ND	6.8	ND	6.1	ND	5.8
Lumidor H ₂ S ppm	ND	ND	0	ND	0	ND	0
Influent Vapor Temp °F	OFF	69.0	69.0	69.0	69.0	70.0	70.0
Atmospheric Conditions							
Barometric Pressure "Hg	30.10	30.10	30.10	30.09	30.09	30.10	30.09
Absolute Pressure "Hg	26.09	26.09	26.09	26.08	26.08	26.09	26.08
Groundwater Data							
Groundwater Pump Rate (gpm)	OFF	3.50	3.50	3.50	3.50	3.50	4.30
Total Liquid Vol (gal)	0	0	105	210	315	420	549
Extraction Well Data - We	II A-1						
Flow SCFM	OFF	12.19	12.19	12.19	12.19	12.19	19.88
Vacuum "H ₂ O	OFF	40.0	40.0	40.0	40.0	40.0	60.0
Well Vapor Flow SCFM / "H₂O	OFF	0.30	0.30	0.30	0.30	0.30	0.33
Well Vapor Flow SCFM / ft Well Screen	OFF	0.621	0.621	0.621	0.621	0.621	1.013
Observation Well Data - V	acuum "H₂C						
Well W-2 Dist. 16.2 ft	0.00	0.07	0.86	0.88	0.92	0.88	1.07
Well W-1 Dist. 25.8 ft	0.00	0.05	0.31	0.37	0.38	0.36	0.38
Well W-3 Dist. 38.3 ft	0.00	0.02	0.13	0.17	0.20	0.17	0.14

() Indicates Well Pressure ND - No Recorded Data

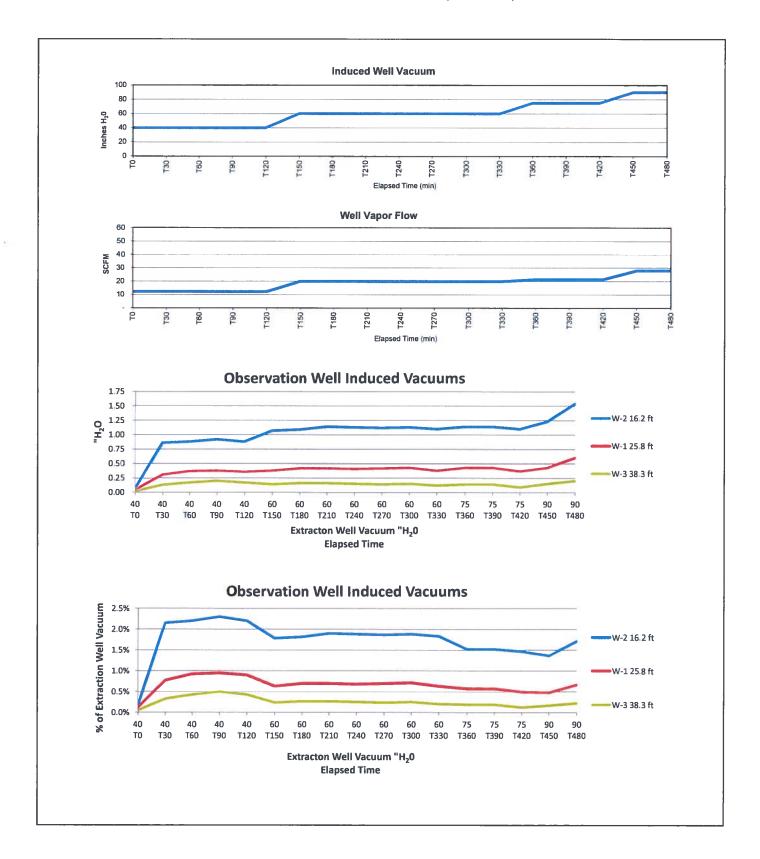
				DATA ELEME	NT		
7/12/2015	10:30	11:00	11:30	12:00	12:30	13:00	13:30
Influent Vapor Data	VI STA						
Horiba HC ppmv	ND	68,490	ND	ND	ND	61,880	ND
Horiba CO₂%	ND	5.24	ND	ND	ND	5.12	ND
Horiba CO%	ND	2.55	ND	ND	ND	1.88	ND
Lumidor O ₂ %	ND	6.4	ND	ND	ND	8.3	ND
Lumidor H ₂ S ppm	ND	0	ND	ND	ND	0	ND
Influent Vapor Temp °F	70.0	70.0	71.0	71.0	71.0	71.0	71.0
Atmospheric Conditions	4 hard	THE E			r garing		Nielegila
Barometric Pressure "Hg	30.09	30.09	30.09	30.08	30.08	30.07	30.06
Absolute Pressure "Hg	26.08	26.08	26.08	26.07	26.08	26.07	26.06
Groundwater Data							
Groundwater Pump Rate (gpm)	4.30	4.30	4.30	4.30	4.30	4.30	4.60
Total Liquid Vol (gal)	678	807	936	1,065	1,194	1,323	1,460
Extraction Well Data - Wel	I A-1		A Marian				
Flow SCFM	19.88	19.88	19.88	19.88	19.88	19.88	21.34
Vacuum "H₂O	60.0	60.0	60.0	60.0	60.0	60.0	75.0
Well Vapor Flow SCFM / "H ₂ O	0.33	0.33	0.33	0.33	0.33	0.33	0.28
Well Vapor Flow SCFM / ft Well Screen	1.013	1.013	1.013	1.013	1.013	1.013	1.087
Observation Well Data - Va	acuum "H₂O		gerinde be				The state
Well W-2 Dist. 16.2 ft	1.09	1.14	1.13	1.12	1.13	1.10	1.14
Well W-1 Dist. 25.8 ft	0.42	0.42	0.41	0.42	0.43	0.38	0.43
Well W-3 Dist. 38.3 ft	0.16	0.16	0.15	0.14	0.15	0.12	0.14

() Indicates Well Pressure

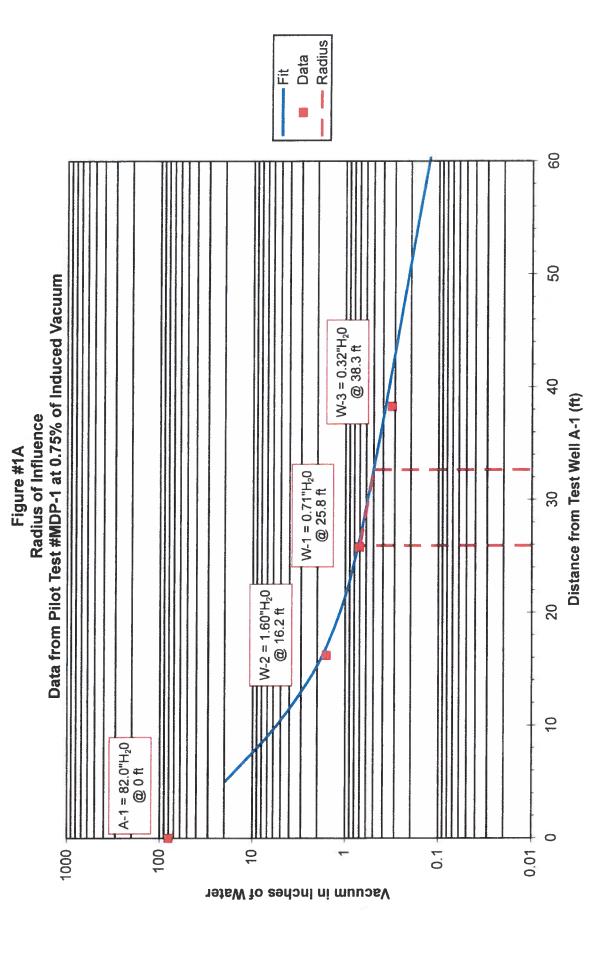

ND - No Recorded Data

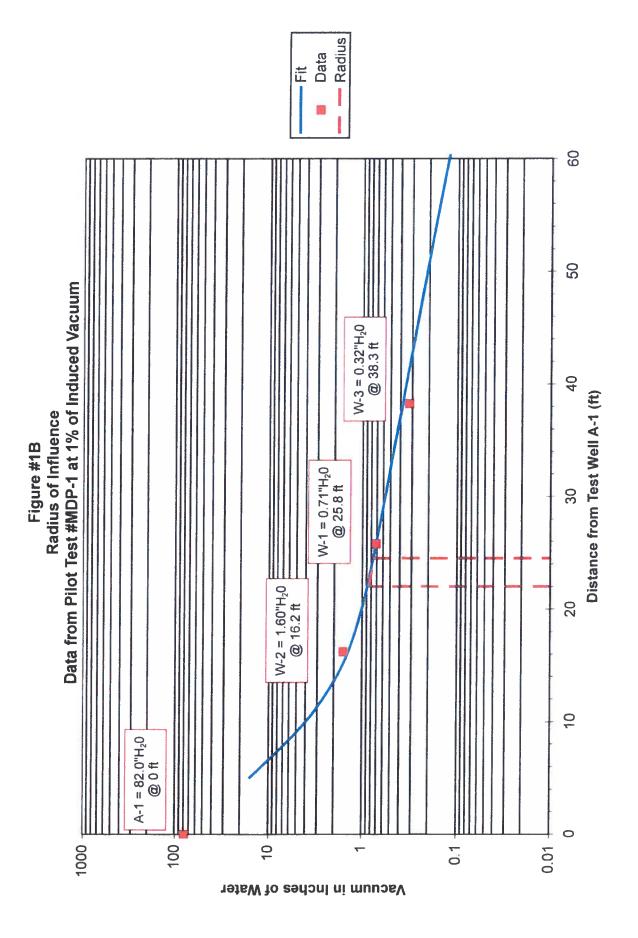

			D	ATA ELEMEN	IT		
7/12/2015				End	Static		irs
	14:00	14:30	15:00	15:30	16:00	Average	Maximum
Influent Vapor Data							-
Horiba HC ppmv	ND	ND	61,720	ND	ND	69,142	76,990
Horiba CO₂%	ND	ND	5.20	ND	ND	5.00	5.24
Horiba CO%	ND	ND	1.75	ND	ND	2.58	3.82
Lumidor O₂%	ND	ND	8.7	ND	ND	7.0	8.7
Lumidor H₂S ppm	ND	ND	0	ND	ND	0	0
Influent Vapor Temp °F	71	71	71	72	OFF	70	72
Atmospheric Conditions							
Barometric Pressure "Hg	30.06	30.04	30.02	30.02	30.02	30.08	30.10
Absolute Pressure "Hg	26.05	26.04	26.02	26.02	26.02	26.07	26.09
Groundwater Data							
Groundwater Pump Rate (gpm)	4.60	4.60	5.20	5.20	OFF	4.22	5.20
Total Liquid Vol (gal)	1,598	1,736	1,892	2,048	•	•	-
Extraction Well Data - We	II A-1						
Flow SCFM	21.34	21.34	27.95	27.95	OFF	18.83	27.95
Vacuum "H₂O	75.0	75.0	90.0	90.0	OFF	60.3	90.0
Well Vapor Flow SCFM / "H₂O	0.28	0.28	0.31	0.31	OFF	0.31	0.33
Well Vapor Flow SCFM / ft Well Screen	1.087	1.087	1.423	1.423	OFF	0.960	1.420
Observation Well Data - V	/acuum "H₂C						
Well W-2 Dist. 16.2 ft	1.14	1.10	1.23	1.54	(0.19)	0.97	1.54
Well W-1 Dist. 25.8 ft	0.43	0.37	0.43	0.60	(0.15)	0.37	0.60
Well W-3 Dist. 38.3 ft	0.14	0.09	0.15	0.20	(0.17)	0.14	0.20

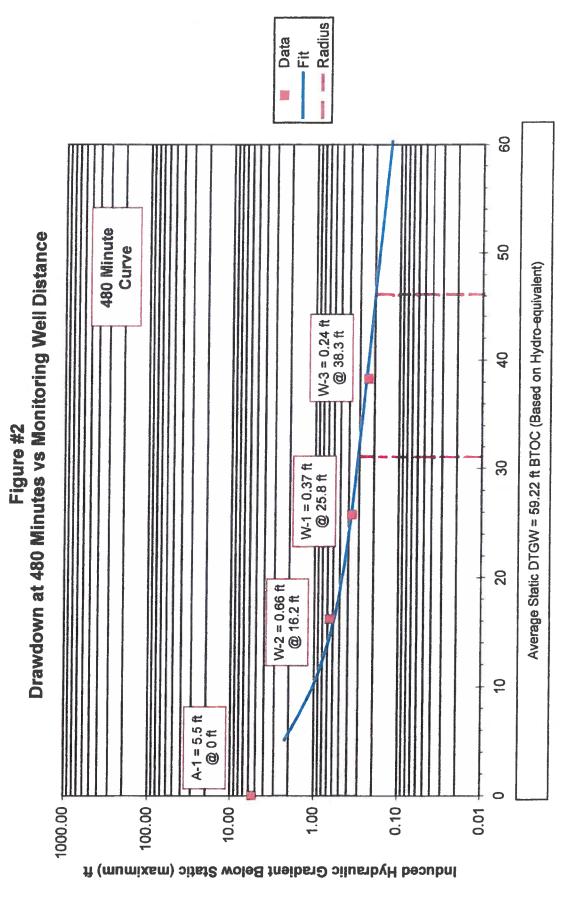
() Indicates Well Pressure


ND - No Recorded Data

SCHEDULE B Summary of TEST # MDP-1 Atmospheric Conditions






SCHEDULE B Summary of ACUVAC TEST # MDP-1 Recorded Well Vacuums and/or (Pressures)

AcuVac Remediation, LLC July 12, 2015

Monitoring Well Distance from A-1 (ft)

Name Project Manager: SaderFaucher Date 7-12-15	OPERATING DATA - PILOT TEST #1 PAGE # 1 MOBILE DUAL PHASE SYSTEM Project Managers: Sudler/Faucher									
Parameters Time O735 O300 O320 O430	Locatio	n: Walstadd 66, Loving					Project	Managers: Sa	dier/Faucher	
Well # A-1			Date:	1 12 13	-			-	1	
Hir Meter 73/8/9 Hir Meter 73/8/0 73/8	Paramet	ders				1			t	
Well # A-1						1	1			
R.P.M.		Well # A-1				1				
Oil Pressure		R.P.M.			2200	2200	2200			
Gas Flow Fuel/Propane Cfh LOO O O O O O O O O	ER	Oil Pressure	psi			50	50	50	50	
Gas Flow Fuel/Propane Cfh LOO O O O O O O O O	LOW	Water Temp	°F	155		160	160	160	160	
Gas Flow Fuel/Propane Cfh LOO O O O O O O O O	NE/B	Volts		13,5	140	14.0	14.0	14.0	140	
Gas Flow Fuel/Propane Cfh LOO O O O O O O O O	NG	Intake Vacuum	"Hg	19	18	(8	18	18	18	
Extraction Well Flow Scfm OFF 13.14 13.15	E.	Gas Flow Fuel/Propane	cfh	100	0	0	٥	0	6	
Extraction Well Vac. "H ₂ O		GW Pump	ON/OFF	066	ON	00	010	610	90	
Absolute Pressure "Hg 26.09 26	AIR	Extraction Well Flow	scfm	OFF	12.19	12.19	12.19	12,19	12.19	
Absolute Pressure "Hg 26.09 26	UM/ E	Extraction Well Vac.	"H ₂ O	DFF	40	40	40	40	46	
Absolute Pressure "Hg 26.09 26	ACU JUM	Pump Rate	gals/min	P(A	3.50	3.50	3.50	3.50	3.50	
Absolute Pressure "Hg 26.09 26	VOI	Total Volume	gals	_	7	105	210	315	426	
Absolute Pressure "Hg 26.09 26	HE	Influent Vapor Temp.	۰F	-	69	69	69	69	70	
Absolute Pressure "Hg 26.09 26	40SF	Air Temp	°F	72.3	72.4	74.6	75.8	71.9	196	
Variation Well DTNAPL 57.46 Sebaration Well DTGW 64.08 Sebaration Sebaratio	ATN	Barometric Pressure	Hg	30.10	30.10	30.10	30.09	30.09		
Company Comp		Absolute Pressure	"Hg	26.09	26.09	26.09	26,08	26.08	26.09	
NAPL % Vol Gals T,5 Ao A. O A A. O		(6.2) W-2	"H₂O	۵	,07	.86	.88	.42	.88	
H2O		(25.8) W-1	"H ₂ O	O	,05	,31	.37	،38	.36	
H2O	UUM	(323) W-3	"H₂O	۵	.02	.13	.17	,20	.17	
H2O	/AC	:	"H ₂ O							
H2O	LL		"H ₂ O							
H2O			"H ₂ O	Ŋ						
H2O	TOF		"H₂O							
H2O	MON		"H ₂ O	S						
NAPL % Vol Gals — 180/184 9.5 /10 5.5 /5.8 4.0 /4.2			"H ₂ O							
Gals			"H ₂ O							
Data Logger Probe ft 7.5 20 2.		NAPL %				180/189	9.5/10	5.5 5.8	40/42	
Extraction Well DTGW 64.08	3	Data Logger / Probe		7.5	20	2.0	20	20	2.0	
Extraction Well DTGW 64.08	NIFO	Depth of GW Depression	ft			-5.5	-5.5	-5.5	-5,5	
	MA	Extraction Well	DTNAPL	57.40						
		Extraction Well	DTGW	64.08						

() Indicates Well Pressure

6.68

7FORMS/TestForms/1210010

ACUVAC OPERATING DATA - MDP PILOT TEST # 1 PAGE # \ MOBILE DUAL PHASE SYSTEM

Loca	tion:	Walstadd 66 Lov	ington, NM			Projec	t Managers: Sa	dler/Faucher				
	Date	7-12-15	_	_								
	Time		008 o	0900								
TEST	Instru	ıment	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA				
TE	Well	No.	A-1	17-1								
F	НС	ppmv	76,990	74,020								
V A POR/INFLUENT	CO ₂	%	4.72	5.12								
VINF	СО	%	3.82	3,09								
APO	O ₂	%	6.8	6.1								
>	H ₂ S	%	0	D								
06	00	Arrived &	location	- Position	rd mop so	ystem nea	r well A-	1 05				
			the extraction well. Mobilized equipment - Opened selected well-recorded distances equipment wells- Install total fluid pumparel probe in EW. Plugged outer									
							e to valame					
		and stundl	ry trate-tro	cte - Safe	by checks	· allok-a	alibooted inst	ira mente				
07,	25						- Pumpinlet					
0;]	36						40, WVF =					
		GW pomp n	ste: 3.5gpm	· All outer	wells rece	ded slight	increased uce	evam level				
0/8	00			a: BP - All outer wells an increasing vacuum trand. GWR								
		= 3.5 ypu	· 6WD =	-5,5f1 -(Heavy LNA	PL recover	1.) Propose &	octh				
		HORIBA OF	TA : HC =	76,990pmu	Co2:4.775	1. co = 3.82	2-0+26.8	%				
08	30	Recorded do	tal BP + C	Juter wells	continue	or a slight	t increasing	frond.				
		6WA= 3.	Sapm LNAP	C recovery	(l'igual) @	5.5% = 5	.890ls					
290	00	HORIBADAT	A: HC= 74	1,020 pmu	Cor= 5.12	%1, Co > 3.0	190 V. Or=	6.1%				
		Recorded d	ata BP-A	ll outer w	ells conti	nue on an 1	ncressing L	Joeaukm				
						iquid LUAF						
09	30						nd documentic					
		trend-L	NAPLES 70	· GWR =	3.5gm. W.	ell voakur a	DUWFSL	wdey				
							3 scfm. C					
		4.39pm -	Pump rate	incrose n	ccessory to	main Lain	aug e	5.5 ft				
		1.			`							
				-								

OPERATING DATA - PILOT TEST # 1 PAGE # 2 MOBILE DUAL PHASE SYSTEM

	OPERATING DATA		ESI#1	PAGE #	~	The second second	DUAL PHAS	
Locatio	n: Walstadd 66, Loving					Project	Managers: Sa	dler/Faucher
		Date:	110-17	_	_		-	-
Paramet	ters		Time	Time	Time	Time	Time 1200	Time
			Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter
	Well# A-1		7282.5		7283.5	72840	7284.5	7285.0
	R.P.M.		2300	2300	2300	2300	2300	2300
VER	Oil Pressure	psi	50	50	50	50	50	50
[6	Water Temp	°F	165	165	170	170	176	170
ENGINE/BLOWER	Volts		14.0	14.0	14.0	14.0	14.6	14.0
SNGI	Intake Vacuum	"Hg	17	17	17	17	17	17
	Gas Flow Fuel/Propane	cfh	0	0	0	0	0	0
	GW Pump	ON/OFF	ON	00	00	90	OP	00
AIR	Extraction Well Flow	scfm	19.88	19.38	19.88	19.88	19.88	14.88
IUM/	Extraction Well Vac.	"H ₂ O	60	60	60	60	60	60
ACU	Pump Rate	gals/min	4.30	4.30	4.30	4.30	4.30	430
SPHERE/VACUU PUMP/VOLUME	Total Volume	gals	549	678	807	936	1065	1194
HE	Influent Vapor Temp.	°F	70	70	70	71	71	71
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Air Temp	°F	81.3	82.7	84.0	84.6	87.7	90.6
ATN	Barometric Pressure	Hg	30.09	30.09	30.09	30.09	30.08	30.08
	Absolute Pressure	"Hg	26.08	26.08	2608	26.08	26.07	26.08
	W-2	"H ₂ O	1.07	1.09	1.14	1,13	1.12	1.13
	W-1	"H ₂ O	.38	,42	.42	.41	.42	.43
ELL VACUUM	w-3	"H₂O	.14	.16	.16	.15	.14	.15
/AC		"H₂O						
TE		"H₂O						
		"H₂O						
TO		"H₂O						
MONITOR W		"H₂O						
		"H₂O						
		"H₂O						
	NAPL %	Vol Gals	30 3.2	15/20	1.0/13	1.5/20	1,5/2,0	1,5/1,9
e l	Data Logger Probe	ft	2.0	2.0	2.0	2.0	2.0	2.0
MANIFOLD	Depth of GW Depression	ft	-5.5	<i>−5.</i> 5	-5.5	-513	-5 .5	-5.3
Z	Extraction Well	DTNAPL						

ACUVAC OPERATING DATA - MDP PILOT TEST # 1 PAGE # MOBILE DUAL PHASE SYSTEM

Loca	tion:	Walstadd 66 Lo	ington, NM			Projec	t Managers: Sa	dler/Faucher			
	Date	7-12-15	-	_							
	Time		1000	1100							
TEST	Instru	ıment	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA			
==	Well	No.	A-1	A-1							
Ę	НС	ppmv	71,750	68,490							
VAPOR/INFLUENT	CO ₂	%	4,60	5.24							
VINF	СО	%	2.37	2.55							
APOF	O ₂	%	5.8	6.4							
Λ'	H ₂ S	%	0	0							
100	20	HORIBA DA	LTA 46=7	11,750 ppmu	CD2=460	70 1. CO:	1.37% -0	· - 58%			
•				Outer well							
				the EW t							
				060 HW							
10	30			2s- IHC							
				- outer a				incy			
		veacys.	ucacins frend. GOVR steady @ 4.3gpm - LNAPC @ 1.0%								
110	00	Recorded data: BP - Outer well w-2, slight increase, whe two									
		welle s	wells steady - NOTE-LNAPL @ 1,5% of volume								
				68, 490 ppm							
113	0	Mecordad S	ata BP-	Duter u	velle most	y steady	but develop	ping a			
				weekens trend							
120	20			1-Outer w							
				teody e							
13	30			- Outer				slight			
		In creases	- GWR	= 4.3 ypu Lu	DAPL=1.5%	CWD = 5.	sft				
	_										
	_										
Onve	/Tag: E	rms/1210007									

	OPERATING DATA	- PILOT I	ES1#1	PAGE#	,	MOBILE	DUAL PHASI	ESTSTEM
Locatio	Location: Walstadd 66, Lovington, NM Project Managers: Sad							
		Date:	1-17-12			_	-	-
Parame	ters		Time	Time	Time	Time 1430	Time	Time 1530
			Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter
	Well # A-1		7285.5	7286.0		7287.0		
	R.P.M.		2300	2400	2400	2400	2400	2400
ENGINE/BLOWER	Oil Pressure	psi	50	50	50	50	50	50
EO.	Water Temp	°F	175	175	175	175	175	175
NE/E	Volts		14.0	14.0	14.0	14.0	14.0	14.0
I5N3	Intake Vacuum	"Hg	17	17	17	17	17	16
1	Gas Flow Fuel/Propane	cfh	8	0	0	0	0	0
	GW Pump	ON/OFF	04	64	060	OD	ON	0N
AIR	Extraction Well Flow	scfm	19.88	21.34	21.34	21.34	27.95	27.93
UM/ E	Extraction Well Vac.	"H ₂ O	60	75	75	75	90	90
ACU	Pump Rate	gals/min	4.30	4.60	4.60	460	5.20	5.20
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume	gals	1323	1460	1598	1736	1897	2048
PHE	Influent Vapor Temp.	°F	71	71	71	71	71	72.
10SI	Air Temp	°F	91.8	43.6	94.6	95.3	95.8	96.
ATN	Barometric Pressure	Hg	30.07	30.06	30.06	30.04	30.02	30.02
	Absolute Pressure	"Hg	26.07	26.06	26.05	26.04	26.02	26.02
	W-a	"H ₂ O	1.10	1114	1.14	1.10	1.23	1.54
	W-I	"H ₂ O	,38	. 43	. 43	,37	. 43	,60
ELL VACUUM	W-3	"H ₂ O	.12	.14	.14	.09	.15	,20
VAC		"H₂O						
TE		"H₂O						
W.E		"H ₂ O				4		
IOTI		"H ₂ O						
MONITOR W		"H₂O						
		"H ₂ O						
		"H ₂ O						
	NAPL %	Vol	1.5 2.0	15/21	2.0/27	20/18	20/31	20/3.1
	Data Logger	Gals ft				2.0		
MANIFOLD			210	210	20		2.0	2.0
ANI	Depth of GW Depression	ft	-5.5	75.5	-3.5	-5.5	- 5,5	-5.5
Σ	Extraction Well	DTNAPL						61.61
	Extraction Well	DTGW						6165
								· ·

() Indicates Well Pressure

7FORMS/TestForms/1210010

LNAPL= 0.04"

61.64 HE=

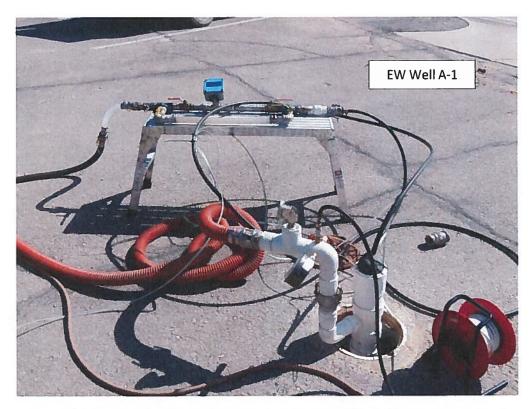
Loca	tion:	Walstadd 66 Lov	ington, Nivi			Projec	t Managers: Sa	dler/Fauche			
	Date	7-12-15	-								
	Time		1300	1500							
TEST	Instr	ument	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA			
TE	Well	No.	A-1	A-1							
F	HC	ppmv	61,880	61,720							
VAPOR/INFLUENT	CO ₂	%	5.()	5.20							
VINF	СО	%	1.88	1.15							
APOR	O ₂	%	8.3	8.7							
^	H₂S	%	0	0							
130	0	HORIGA D	ATAL UCE	61,82000	L co	-512	CD-1298	L 0. 78			
		Passagal	ميلين هم.	All out	mu v, c	10000 -0100	<u>CO - 110 018</u>	مائم			
				e de BPL							
				Induced va		Hro WI	11-121,34se	nde			
		6001L:	4.6gpm	- LWAPL	1.5%			1 1			
13	>0			, Outer w							
		in respon	se to the	EW increa	se, Gwa	-> 4.69 m	CHAPL =	2%			
				Us- Note							
14	00			PI Oute							
		6W12 =	46 gnm	LNAPL	steady	e 270 -	GWB = 5.5	54			
14	30			- Ocate							
		Vacuum	trend d	ue to BF	1 - EM B	= 4.69p	m - LNAP	L=2%			
14	30			induceduce		(40, WU	F -27.95=	- In			
				LNAPL=							
15	0	HORIBA	DATA: HO	= 61,720 ppn	w, coz: 5.2	080t, co=1,	75% , Or	8.7% 1			
15	8	Rocurded do	to: BP ++.	Outer we	lle record	al increasi	ישן טעובעוטי	m tres			
		In response	= to Ew	varian i	némuse - C	w 12 - 5-29	n-LNARC:	2%			
15	30	Recorded de									
	in response to A-1 e 90° Hro. GWR. 5.2 gm LNADL = 20% Gauged wells -										
33	35	Discon tini		Rumping	and indi	ueed Uveu	um to all	ou time			
i		for outer u									

OPERATING DATA - PILOT TEST # 1 PAGE # 4

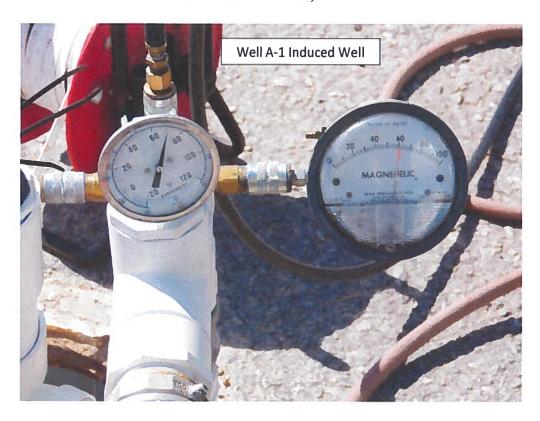
ACUVAC MOBILE DUAL PHASE SYSTEM

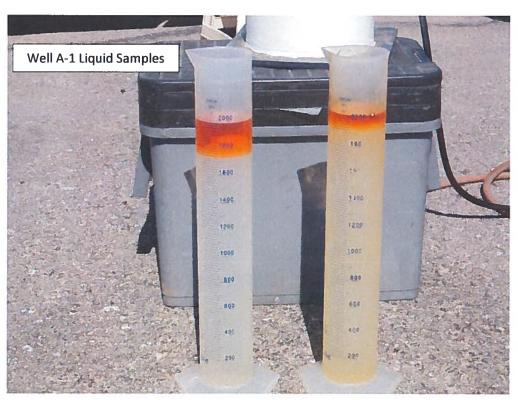
1	OFERATING DAT	The second second	ESI#I	PAGE #			DUAL PHAS	
Locat	tion: Walstadd 66, Lovi			T'		Project	Managers: Sa	dler/Fauche
Dozam		Date	1					
Param	ieters		Time /600	Time	Time	Time	Time	Time
	Well #		Hr Meter 7288,3	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter
	R.P.M.		1000					
WER	Oil Pressure	psi	50					
BLO.	Water Temp	°F	163					
NEZ	Volts		140	D ₁				
ENGINE/BLOWER	Intake Vacuum	"Hg	19					
	Gas Flow Fuel/Propane	cfh	90					
	GW Pump	ON/OFF	OFF					
AIR AIR	Extraction Well Flow	scfm	OFF					
JUM E	Extraction Well Vac.	"H₂O	OFF					
ACL LIM	Pump Rate	gals/min	OFF					
V O	Total Volume	gals	2048					
SPHERE/VACUU PUMP/VOLUME	Influent Vapor Temp.	°F	NA					
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Air Temp	°F	95.1					
A	Barometric Pressure	Hg	30.02					
	Absolute Pressure	"Hg	2602					
	(い-プ	"H₂O	(,19.)					
ijes	W-1	"H₂O	(.15)					-
DON	w-3	"H₂O	(.17)					
VAC		"H ₂ O						
ELL		"H ₂ O						
R		"H₂O						
E		"H ₂ O	TAMIC					
MONITOR WELL VACUUM		"H₂O	4					
		"Њо	•					
		"H ₂ O						
	NAPL %	Vol						
, F	Data I coccu	Gals						
5 F	Data Logger	ft						
	Depth of GW Depression	ft						
-		DTNAPL	_					
	Extraction Well	DTGW	-					
Indica	tes Well Pressure					75000		

OPERATING DATA - MDP PILOT TEST # 1 PAGE # 4 MOBILE DUAL PHASE SYSTEM


Loca	tion:	Walstadd 66 Lo	vington, NM			Proje	ct Managers: Sa	adler/Faucher			
	Date	7-11-15									
	Time										
TEST	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA			
	Well No.										
VAPOR/INFLUENT	НС	ppmv									
	CO ₂ %										
	СО	%	,								
	O ₂ %										
	H ₂ S	%									
160	20	Recorded a	tali- dat	Do .L	- A - O II	441.	A ·	41			
		Auros	due de	-lan	cody - All	wests	recording u	uell 			
pressure due to decrosed borometrie pressure on the GW TEST MOD-1 completed - NOTE - Torrac Liquid Volume = 2048											
1635		Secured all wells-deported site									
					2 211 C						
								-			
				~							
								1			
	-			/							
	_										
DRMS/	Test For	ns/1210007									

WALSTADD 66 LOVINGTON, NM




WALSTADD 66 LOVINGTON, NM

WALSTADD 66 LOVINGTON, NM

AcuVac Remediation, LLC

1656-H Townhurst • Houston, Texas 77043 713 468 6688 • acuvac.com

July 15, 2015

Mr. Clay Kilmer Senior Hydrogeologist Golder Associates, Inc. 5200 Pasadena Avenue, N.E. Suite C Albuquerque, NM 87113

Dear Clay:

Re: Walstadd 66, Lovington, NM

At your request, we performed two 1-hour (Wells W-1 and W-2), and one 6.0-hour (Well A-1) Mobile Dual Phase (MDP) Events at the above referenced location on July 13, 2015. Following is the Report and a copy of the Operating Data collected during Event #1 at the above referenced location. Table #1A is the Well Summary Information and Table #1B is the Recovery Summary Information on wells W-2 (Event #1A), W-1 (Event #1B), and Well A-1 (Event #1C). PSH is referred to as LNAPL in this report. GW samples are taken in a 2,000 ml beaker to determine the average LNAPL percentage and volume.

OBJECTIVES

The Objectives of an MDP Event are to:

- Evaluate the potential for removing liquid and vapor phase LNAPL (PSH) from the groundwater (GW) and soils in the subsurface formations.
- Expose the capillary fringe area and below to the Extraction Well (EW) induced vacuums.
- Increase the GW and contaminant specific yields with high induced vacuums.
- Provide an induced hydraulic gradient (IHG) to gain hydraulic control of the area during the Event period.
- Select the GW depression and pump rates to accomplish the above objectives.

METHODS AND EQUIPMENT

The tests were conducted using AcuVac's I-6 System, with Roots RAI-33 and RAI-22 blowers, various instrumentation, including the HORIBA® Analyzer, Solinst Interface Probes, Lumidor O₂ Meter, flow gauges, a sensitive instrument to determine barometric pressure, V-1 vacuum box to capture non-diluted vapor samples, Redi-Flo 2 total fluids pump and other special equipment.

The vacuum extraction portion of the AcuVac System consists of a vacuum pump driven by an internal combustion (IC) engine. The vacuum pump is connected to the extraction well and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the GW to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC Engine where they are burned as part of the normal combustion process. Propane is used as auxiliary fuel to help power the engine if the well vapors do not provide the required BTU.

The AcuVac IC Engine is fully loaded for the maximum power necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum Radius of Influence (ROI) for Pilot Tests and short term Event remediation.

Emissions from the engine are passed through three catalytic converters to ensure maximum destruction of removed hydrocarbon vapors. The engine's fuel to air ratio can be adjusted to maintain efficient combustion. Because the engine is the power source for all equipment, all systems stop when the engine stops. This eliminates any uncontrolled release of hydrocarbons. Since the AcuVac System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure or overheating.

The GW Extraction is provided by an in-well, Redi-Flo 2 total fluids pump that has the discharge line connected to a total volume meter. The discharge line from the volume meter is then connected to the stand-by tank truck. The electrical power for the GW pump was supplied from a 120v Honda generator. The GW flow rate can be adjusted to maintain a target level. Interface meters are used to measure all DTGW/DTLNAPL.

The design of the AcuVac System enables complete independent control of both the Induced Well Vacuum and the GW pumping functions such that the AcuVac team can control the IHG to expose the maximum amount of the formation to SVE. The ability to separate the vacuum and liquid flows within the Extraction Well improves the LNAPL recovery rates, and enables the AcuVac team to record data specific to each.

SUMMARY OF MDP EVENT #1A- WELL W-2

- The total Event time was 1.0 hour. The Event was conducted on July 13, 2015.
 There is no comparative data.
- The total liquid volume recovered was 192 gals, of which 13.50% or 25.92 gals were liquid LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 1.97 gals, for a total liquid and vapor LNAPL recovery of 27.89 gals.
- Average HORIBA® Analytical Data from the influent vapor samples was:
 HC = 95,790 ppmv, CO₂ = 3.46%, CO = 7.46%, O₂ = 8.6% and H₂S = 0 ppm.
- The maximum HORIBA® Analytical Data from the influent vapor samples for TPH was 95,790 ppmv.
- The Average Induced Vacuum was 60"H₂O with a maximum vacuum of 60.00"H₂O.
- The average EW well vapor flow was 9.51 scfm with a maximum well vapor flow of 9.51 scfm.
- The GW pump inlet was set at 65.0 ft BTOC. The average GW pump rate was 3.20 gpm, and the maximum GW pump rate was 3.20 gpm.
- The average GW depression, based on the positioning of the GW pump, was 5.50 ft below static level.
- An LNAPL thickness of 6.54 ft was recorded prior to the start of Event #1A and no LNAPL thickness was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 1.0 hour Event #1A, Well W-2, was 27.89 gals.

ADDITIONAL INFORMATION

- The higher percentage of the LNAPL volume, 25.92 gals or 92.94%, was recovered as liquid due to the high level of free phase LNAPL at the start of the Event.
- A minimal percentage of the LNAPL, 1.97 gals or 7.06%, was burned as IC engine fuel as a result of the short duration of the Event period.
- The high HC (TPH) levels indicate contaminant in the gasoline range.
- The relatively low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface most likely did not occur.
- Well W-2 was gauged at the conclusion of Event #1C (1445 hrs) and an LNAPL thickness of 4.40 ft was recorded indicating a rebound of 67.28%.

SUMMARY OF MDP EVENT #1B- WELL W-1

- The total Event time was 1.0 hour. The Event was conducted on July 13, 2015. There is no comparative data.
- The total liquid volume recovered was 201 gals, of which 23.69% or 47.61 gals were liquid LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 1.84 gals, for a total liquid and vapor LNAPL recovery of 49.45 gals.
- Average HORIBA[®] Analytical Data from the influent vapor samples was:
 HC = 89,750 ppmv, CO₂ = 3.52%, CO = 5.74%, O₂ = 8.6% and H₂S = 0 ppm.
- The maximum HORIBA® Analytical Data from the influent vapor samples for TPH was 89,750 ppmv.
- The Average Induced Vacuum was 60"H₂O with a maximum vacuum of 60.00"H₂O.
- The average EW well vapor flow was 9.51 scfm with a maximum well vapor flow of 9.51 scfm.
- The GW pump inlet was set at 65.0 ft BTOC. The average GW pump rate was 3.47 gpm, and the maximum GW pump rate was 3.70 gpm.
- The average GW depression, based on the positioning of the GW pump, was 5.50 ft below static level.
- An LNAPL thickness of 6.84 ft was recorded prior to the start of Event #1B and an LNAPL thickness of 0.04 ft was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 1.0 hour Event #1B, Well W-1, was 49.45 gals.

ADDITIONAL INFORMATION

- The higher percentage of the LNAPL volume of 47.61 gals or 96.27%, was recovered as liquid.
- A minimal amount of LNAPL, 1.84 gals or 3.73%, was burned as IC engine fuel as a result of the short duration of the Event period.

- The high HC (TPH) levels indicate contaminant in the gasoline range.
- The relatively low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface most likely did not occur.
- Well W-1 was gauged at the conclusion of Event #1C (1445 hrs) and an LNAPL thickness of 1.01 ft of was recorded indicating a rebound of 14.77%.
- A thickness of biomass was initially observed on the collected GW/LNAPL sample.

SUMMARY OF MDP EVENT #1C- WELL A-1

- The total Event time was 6.0 hours. The Event was conducted on July 13, 2015. The
 data is compared to Pilot Test #1 conducted on July 12, 2015 which had a total Test
 time of 8.0 hours.
- The total liquid volume recovered was 1,553 gals, of which 2.35% or 36.53 gals were liquid LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 29.36 gals, for a total liquid and vapor LNAPL recovery of 65.88 gals. This equates to an average of 10.98 gals/hr.
- Average HORIBA® Analytical Data from the influent vapor samples was:
 HC = 59,027 ppmv, CO₂ = 5.61%, CO = 1.73%, O₂ = 7.1% and H₂S = 0 ppm.
- Compared with MDP Pilot Test #1 data, the average TPH levels decreased 10,115 ppmv, CO₂ increased 0.61%, CO decreased 0.85%, O₂ increased 0.1% and H₂S was steady at 0 ppm.
- The maximum HORIBA® Analytical Data from the influent vapor samples for TPH was 64,480 ppmv. Compared with MDP Pilot Test #1 data, the maximum TPH levels decreased 12,510 ppmv.
- The Average Induced Vacuum was 68.46"H₂O with a maximum vacuum of 70.00"H₂O. Compared with Pilot Test #1 data, the average induced vacuum increased 8.17"H₂O and the maximum induced vacuum decreased 20.00"H₂O.
- The average EW well vapor flow was 23.01 scfm with a maximum well vapor flow of 23.34 scfm. Compared with MDP Pilot Test #1 data, the average EW well vapor flow increased 4.18 scfm, and the maximum well flow decreased 4.61 scfm.
- The GW pump inlet was set at 65.0 ft BTOC. The average GW pump rate was 4.35 gpm, and the maximum GW pump rate was 4.50 gpm.
- The average GW depression, based on the positioning of the GW pump, was 5.50 ft below static level.
- An LNAPL thickness of 5.52 ft was recorded prior to the start of Event #1C and a LNAPL thickness of 0.13 ft was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 6.0 hour Event #1C, Well A-1, was 65.88 gals.

ADDITIONAL INFORMATION

- The higher percentage of the LNAPL volume, 36.53 gals or 55.44%, was recovered as liquid.
- Of the total LNAPL volume recovered, 29.36 gals or 44.56%, was burned as IC engine fuel during the Event period as a result of the high TPH and Well Vapor Flow.
- The high HC (TPH) levels indicate contaminant in the gasoline range.
- The HC (TPH) recorded a decreasing trend throughout the Event period.
- The relatively low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface most likely did not occur.

TOTAL RECOVERY EVENT #1

The total LNAPL removed, including liquid and vapor, during the 8.0 hour Event #1, Wells W-1, W-2, and A-1, was 143.22 gals. This equates to 17.90 gal/hr.

RECOMMENDATION

The Events proved to be an extremely effective method of decreasing the liquid LNAPL thickness in these wells. An Event program should be considered to quickly reduce the LNAPL thickness before considering a CAP which includes an on-site recovery system. In many cases the Event program has initially been more cost effective.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA® Analytical instrument is calibrated with Hexane, CO and CO2.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x $1.58E^{-7}$ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1A Summary Well Data
- Table #1B Summary Recovery Data
- Recorded Data
- Photographs of the MDP System and Wells A-1, W-1 and W-2.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely,

ACUVAC REMEDIATION, LLC

Paul D. Faucher

Vice President, Operations

Summary Well Data Table #1A

Event	SE TOWN	1A	1B	1C	
WELL NO.		W-2	W-1	A-1	
Total Event Hours		1.0	1.0	6.0	
TD	ft	75.0	80.0	75.0	
Well Screen	ft	45.0 to 75.0	50 to 70	50 to 70	
Well Size	in	4.0	4.0	4.0	
Well Data					
DTGW - Static - Start Event	ft	64.67	63.96	63.55	
DTLNAPL - Static - Start Event	ft	58.13	57.12	58.03	
LNAPL	ft	6.54	6.84	5.52	
Hydro-Equivalent- Beginning	ft	59.83	58.90	59.47	
DTGW - End Event	ft	57.76	59.21	60.01	
DTLNAPL - End Event	ft	0	59.17	59.88	
LNAPL	ft	0	0.04	0.13	
Hydro-Equivalent - Ending	ft	57.76	59.18	59.91	
Extraction Data					
Maximum Extraction Well Vacuum	"H₂O	60.00	60.00	70.00	
Average Extraction Well Vacuum	"H₂O	60.00	60.00	68.46	
Maximum Extraction Well Vapor Flow	scfm	9.51	9.51	23.34	
Average Extraction Well Vapor Flow	scfm	9.51	9.51	23.01	
Maximum GW/ LNAPL Pump Rate	gpm	3.20	3.70	4.50	
Average GW/ LNAPL Pump Rate	gpm	3.20	3.47	4.35	
Influent Data					
Maximum TPH	ppmv	95,790	89,750	64,480	
Average TPH	ppmv	95,790	89,750	59,027	
Average CO ₂	%	3.46	3.52	5.61	
Average CO	%	7.46	5.74	1.73	
Average O ₂	%	8.6	8.6	7.1	
Average H₂S	ppm	0	0	0	

Summary Recovery Data Table #1B

Event		1A	1B	1C
WELL NO.		W-2	W-1	A-1
Recovery Data- Current Event				
Total Liquid Volume Recovered	gals	192	201	1,553
Total Liquid LNAPL Recovered	gals	25.92	47.61	36.53
Total Liquid LNAPL Recovered / Total Liquid	%	13.50	23.69	2.35
Total Liquid LNAPL Recovered / Total LNAPL	%	92.94	96.27	55.44
Total Vapor LNAPL Recovered	gals	1.97	1.84	29.36
Total Vapor LNAPL Recovered / Total LNAPL	%	7.06	3.73	44.56
Total Vapor and Liquid LNAPL Recovered	gals	27.89	49.45	65.88
Average LNAPL Recovery	gals/hr	27.89	49.45	10.98
Total LNAPL Recovered	lbs	195	346	461
Total Volume of Well Vapors	cu. ft	571	571	8,284
Recovery Data- Cumulative				
Total Liquid Volume Recovered	gals	192	201	3,601
Total Liquid LNAPL Recovered	gals	25.92	47.61	100.16
Total Vapor LNAPL Recovered	gals	1.97	1.84	51.87
Total Vapor and Liquid LNAPL Recovered	gals	27.89	49.45	152.03
Average LNAPL Recovery	gals/hr	27.89	49.45	10.86
Total LNAPL Recovered	lbs	195	346	1,064
Total Volume of Well Vapors	cu. ft	571	571	17,322

OPERATING DATA - EVENT #1 A
PAGE # | ACUVAC MOBILE DUAL PHASE SYSTEM

Locati	on: Walstadd 66, Lovin			PAGE# /		BILE DUAL PI t Managers: S	
Locati	Date:	7/13/15			Frojec	(Managers: 5	adier/rauche
	Parameters	Time 0615	Time OS 75	Time 07/5	Time	Time	Time
	WELL# W.~1	Hr Meter 7288.5	Hr Meter 7 289.0	Hr Meter 7289.5	Hr Meter	Hr Meter	Hr Meter
	R.P.M.	2206	2200	2200			
ENGINE/BLOWER	Oil Pressure psi	50	50	50			
ВГО	Water Temp °F	130	140	150			
INE	Volts	14	14	14			
ENG	Intake Vacuum "Hg	19	19	19			
	Gas Flow Fuel/Propane cfh	0	0	6			
	GW Pump ON/OFF	ON	02	OFF			
/AFR	Extraction Well Flow scfm	9.51	9.51	9.51			
UUM	Extraction Well Vacuum "H ₂ O	60	60	60			
VAC	Pump Rate gals/min	3.2	3.2	3. 2			
IERE MP/V	Total Volume gais	_	96	192			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	68	68	68			
	Air Temperature °F	66.7	69.1	698			
	Barometric Pressure "Hg	30.03	30.02	30.01			
Ė	HC ppmv	~	95190				
VAPOR /INFLUENT	CO ₂ %	-	3.42				
/INF	CO %	_	7.46				
POR	O ₂ %	_	8.6	_			
À	H ₂ S ppm	-	0	-			
NOTES	ARRIVED ON SITE WELL W-1. (7AV THE IN WELLPL WELL VAC SET AS SAMPLE INDICATE RANGE LIQUID ST PRESENT IN THE	GED THE IMP AT 6 LO"HO I SHIGH CO AMPLE TI LIGUID.	WELL AND TO STEED LETTING WICENTHATTO AND AS AS AND VICED WED WITH THE WAS AND WITH WITH WED WITH THE WAS AND WAS AND WITH THE WAS AND WAS A	D MOBILI EL EVENT EN WVF PON OF HALL PPROX 063 LELL VAC &	TEDALL E STANDO OF 9.50 SCF DIDCARBOUS O TUDICAR DESUCED AT (OUIPMENT AT 0615 HA M. INFLU IN THE 9: ES 15 90 OF	S, PLACED S, FN 571 ENS VAPOR S,008 + PPM LN APL
	PUMPING STOPPED LNAPL % VOI	-1 0/13	15/		30 pt 0715		
	Gals	/-	13/14.40	12/11.52			
MANIFOLD	Depth of GW Depression ft	-5.5	-5:5	-5.5	1445		
MA	Extraction Well DTLNAPL ft	58.13			59.00		
	Extraction Well DTGW ft	64.67		57.76	63.40		
ndicates	PRODUCTION OF THE PARTY OF THE	6.54		ø	440	7FORMS/Test	Forms/1210017B

7FORMS/TestForms/1210017B

_	OPERATING DATA -	EVENT #1 B		PAGE#	ACUVAC MOBILE DUAL PHASE SYS			
Locatio	on: Walstadd 66, Lovi				Proje	ect Managers: S	adler/Fauche	
	Date:	7/13/15		77.	T	- m'		
	Parameters	Time 0730	Time 0800	Time OS30	Time	Time	Time	
	WELL# W-Z	Hr Meter 7289.5	Hr Meter 7290.0	Hr Meter 7290.5	Hr Meter	Hr Meter	Hr Meter	
	R.P.M.	2200	2200	2200				
VER	Oil Pressure psi	50	50	50				
31.01	Water Temp °F	150	150	150				
ENGINE/BLOWER	Volts	14	14	14				
ENG	Intake Vacuum "Hg	19	19	15				
	Gas Flow Fuel/Propane cfh	0	0	0				
	GW Pump ON/OFF	س	0~	OFF				
AIR	Extraction Well Flow scfm	9.51	9.51	9.51				
JUM/ IE	Extraction Well Vacuum "H ₂ O	60	60	60				
VACU	Pump Rate gals/min	3.0	3.70	3,70				
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals		90	201				
	Influent Vapor Temp. °F	68	68	68				
	Air Temperature °F	70.4	7/. 7	72.5				
	Barometric Pressure "Hg	30.01	30.01	30.01				
-	HC ppmv	30.0.	89.750	30.07				
CEN	CO ₂ %	_	3.52	_				
NFL	CO %	_	5.74					
VAPOR /INFLUENT	O ₂ %	-	8.6	_				
VAP	H ₂ S ppm		0	-			1	
						1- 1- 2-	2 22 -15	
	RELOCATED THE AO							
	DOWELL PUMP A		STOC. INTI	DAL WELL	VAC SETA	-60°H20 16	SULTING I	
	A WVF OF 9.50 SOF	M.						
NOTES								
ž								
				-				
	Marie Control of the							
	LNAPL % Vol	1	17/	71/				
	Gals	7/-	27/24.3	21/23.31				
MANIFOLD	Depth of GW Depression ft	-5.5	-5.5	-57.5		1445		
ANI	Extraction Well DTLNAPL ft	57,12		59.17		59.12		
		37 17		/ / /	1	7/1/	1	
Σ	Extraction Well DTGW ft	63.96		59.21		60.13		

LMAPR 6.84 HE 58.80

. 04 HE 59.18

FORMS/TestForms/1210017B (1.0) HE 59.38

OPERATING DATA - EVENT #1 😃

PAGE # / ACUVAC MOBILE DUAL PHASE SYSTEM

Locatio	ration: Walstadd 66, Lovington, NM Project Managers: Sadler/Faucher						IASE SYSTEM adler/Fauche
	Date:	7/13/15					
	Parameters	Time 084-5	Time 09(5	Time 09.45	Time 1015	Time 1045	Time ///5
	WELL# A-(Hr Meter 7290-5	Hr Meter 7291.0	Hr Meter 7291.5	Hr Meter 7252-0	Hr Meter 7292.8	Hr Meter 7253.0
	R.P.M.	2200	2200	2300	2300	2300	2300
ENGINE/BLOWER	Oil Pressure psi	50	50	50	50	50	50
BLO	Water Temp °F	150	150	150	150	155	160
INE/	Volts	14	14	14	14	14	14
ENG	Intake Vacuum "Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane cfh	0	0	50	50	50	50
	GW Pump ON/OFF	ON	0~	001	on	on	02
/AIR	Extraction Well Flow scfm	23.34	23.34	72.55	22.55	22.55	22.55
UUM	Extraction Well Vacuum "H2O	60	60	70	70	70	70
VAC	Pump Rate gals/min	4.2	4.2	4,4	4.5	4.5	4.5
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	_	126	252	384	519	654
DSPH	Influent Vapor Temp. °F	71	71	71	72	72	72
ATM	Air Temperature °F	74,3	77.8	84.3	86.7	88.5	89.4
	Barometric Pressure "Hg	30.01	30.01	30.00	30,00	30.00	29.99
Ŀ	HC ppmv	-		64 480			
LUE	CO ₂ %		-	5,14	_	_	-
VAPOR /INFLUENT	CO %	-	_	2.09		_	
POR	O ₂ %	-	_	7,1	-	-	-
Y.	H ₂ S ppm	-	-	0	-		_
NOTES	AT 0830 MUBIC PUMP AT 67 FT B. OF 23,34 SCFM. AT 0945 INCRES. GW PUMP TLAKE: TO 4.5 GPM TO C. TIN THE GASOLI	IN MAN IN MAN USED WELL FAXILEASE COMPENSA	DALWELL GWAUMP LVACTOTO TO TO YYG TE FER HIGH	VAC SET A PATE SET I O"HID RES PM AND:	T 60"HZO TO AS 4.Z GPM ULTING IN O TNOTOASO	ESUTINGED HOWF OF 2 AGAIN AT ,	2.95 Scan.
MANIFOLD	Extraction Well DTLNAPL ft	58.03	-5.5 0836 57.76	4/5.04 -5.5	2/2.64 -5.5	² /2,7 -5.5	1,5/2,03
	Extraction Well DTGW ft	63.55	63.87				

() Indicates Well Pressure

7FORMS/TestForms/1210017B

OPERATING DATA - EVENT #1

PAGE #2

ACUVAC MOBILE DUAL PHASE SYSTEM

Locatio	on: Walstadd 66, Lovin	gton, NM		AGE #	Project	Managers: Sa	dler/Faucher				
	Date:	7/13/15					William William				
	Parameters	Time 11.45	Time 1215	Time 1245	Time 7315	Time 1345	Time 1445				
	WELL# A-(Hr Meter 7293.5	Hr Meter 729%.0	Hr Meter 7254.5	Hr Meter 7295.0	Hr Meter 7295-5	Hr Meter 7296.5				
	R.P.M.	23∞	2300	2300	2300	2300	2300				
NER	Oil Pressure psi	50	50	50	50	50	50				
BLOV	Water Temp °F	160	160	165	165	165	165				
ENGINE/BLOWER	Volts	14	14	14	14	14	14				
ENG	Intake Vacuum "Hg	16	16	16	16	16	16				
	Gas Flow Fuel/Propane cfh	50	50	50	50	50	50				
	GW Pump ON/OFF	02	مما	0~	al	02	OF				
AIR	Extraction Well Flow scfm	22.55	2,2.55	22.95	22.95	22.95	2255				
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	70	70	70	70	76	70				
VACI	Pump Rate gals/min	4,5	4.5	4.5	4.4	4.4	3.5				
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	789	924	1059	1194	1326	1553				
PUM	Influent Vapor Temp. °F	71	71	71	71	71	71				
TMC	Air Temperature °F	91.3	95.1	97.6	99.2	99.5	95.8				
•	Barometric Pressure "Hg	29.98	29.97	29.96	29.54	29.92	2882				
Ŀ	HC ppmv	56,750	-	_	_	55850	_				
LUEN	CO ₂ %	5.74	_	-	-	5.96					
INE	CO %	1.57	_		-	1.52					
VAPOR /INFLUENT	O ₂ %	7.0	-		_	7.2					
VA	H ₂ S ppm	0	-		***	6	_				
	INELL VAZ AM	WELL PL	OW STEAD	1 DURING	P2400.	TRH VAR	25				
	MOSTLY STEADY					<u>-</u>					
					GAUGED.	WELL W	-1 AND				
res		AT 1445 EVENT CONCLUDED. ALL WELL GAUGED. WELL W-1 AND N-2 WEZE GAUGED TO DETERMINE THE EXTENT OF ANY REBOUND.									
NOTES	ACUVAC EQUIPME										
	DEPARTED SITE.				,						
	LNAPL % Vol Gals	1.5/2.03	1.5/2.03	1.5/2.03	1.5/2103	1.5/1.98	1.5/1.98				
MANIFOLD	Depth of GW Depression ft	5.5	-5.5	-5.5	-5.5	-5.5	-5.5				
MAN	Extraction Well DTLNAPL ft						5538				
	Extraction Well DTGW ft						60.01				
	s Well Pressure		and the same of the same			TEODING/Teo	tForms/1210017B				

() Indicates Well Pressure

TFORMS/TestForms/1210017B

LANAPL .13

HE 59.91

Locati	on: Walstadd 66, Lovi			PAGE#/	LUCASION -	BILE DUAL P t Managers: S	
	Date:	7/13/15				0	
	Parameters	Time 0615	Time OS 75	7ime 07/5	Time	Time	Time
nues .	WELL# W.~1	Hr Meter 7288.5	Hr Meter 7289.0	Hr Meter 7289.5	Hr Meter	Hr Meter	Hr Meter
	R.P.M.	2206	2200	2200			
WER	Oil Pressure psi	50	50	50			
BLO	Water Temp °F	130	140	150			
ENGINE/BLOWER	Volts	14	14	14			
ENG	Intake Vacuum "Hg	19	19	19			
	Gas Flow Fuel/Propane cfh	0	0	6			
	GW Pump ON/OFF	00	02	OFF			
/AIR	Extraction Well Flow scfm	9.51	9.51	9.51			
UUM	Extraction Well Vacuum "H ₂ O	60	60	60			
VAC	Pump Rate gals/min	3.2	3.2	3. 2			
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	-	96	192			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	68	68	68			
	Air Temperature °F	66.7	69.1	628			
	Barometric Pressure "Hg	30.03	30.02	30.01			
È	HC ppmv	~	95 190				
T.	CO ₂ %	1	3.42	_			
JNF.	CO %	_	7.46	-			
VAPOR /INFLUENT	O ₂ %		8.6	_			
Λ'	H₂S ppm	-	0	-			
NOTES	ARRIVED ON SITE WELL WILL VAC SET ASSAMPLE INDICATE PANGE: LIQUID SI PRESENT IN THE	GOD THE OMP AT 6 - 60"Hzo 1 SHIGH CO AMPLE TI	WELL AND TO STORESULTING WEENTLATER AS A	D MOBILION EVENTON WYFOOD OF HAD	TEDALL E STANDO OF 9.50 SCF DIDCARBONS O TODICAR	AT 0615HA TOFLO TOFLO TO THE 9 ES 15 900	ENS VAPOR S,008 + APOR S,008 + APOR
	PUMPING STOPPED						700
	LNAPL % Voi Gals	7-	15/14.46	12/11.52			
MANIFOLD	Depth of GW Depression R	-5.5	-57.5	-5.5	1445		
MAN	Extraction Well DTLNAPL ft	58.13			59.00		
	Extraction Well DTGW ft	64.67		57.76	63.40		
ndicates	Well Pressure	6.54		Ø	440	7EODMS/To	tForms/1210017B

OPERATING DATA - EVENT #1

PAGE #/

ACUVAC MOBILE DUAL PHASE SYSTEM

	OPERATING DATA -	DV ZIVI WI		AGETT	EE# ACUVAC MOBILE DUAL PHASE SYSTEM			
Locatio					Proje	ct Managers: S	adler/Fauch	
	Date:	7/13/15	Tima	Time	Time	Time	Time	
	Parameters	Time 0730	Time 0800	0830	Time	Time	Time	
	WELL# W-Z	Hr Meter 7289.5	Hr Meter 7250.0	Hr Meter 7290.5	Hr Meter	Hr Meter	Hr Meter	
	R.P.M.	2200	2200	2200				
WER	Oil Pressure psi	50	50	50				
BLO	Water Temp °F	150	150	150				
ENGINE/BLOWER	Volts	14	14	14				
ENG	Intake Vacuum "Hg	19	19	19				
	Gas Flow Fuel/Propane cfh	0	0	0				
	GW Pump ON/OFF	لين	0~	OFF				
AIR	Extraction Well Flow scfm	9.51	9.51	9.51				
JUM/	Extraction Well Vacuum "H2O	60	60	60				
VACI	Pump Rate gals/min	3.0	3,70	3,70				
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	-	90	201				
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	68	68	68				
	Air Temperature °F	70.4	7/. 7	72.5				
	Barometric Pressure "Hg	30.01	30.01	30.01				
,	HC ppmv	30.01	89.750	50.07				
VAPOR /INFLUENT	CO ₂ %	_	3.52					
NFL	CO %		5.74	_				
OR /1	O ₂ %		8.6					
VAP	H ₂ S ppm	-	0	-				
	RELOCATED THE AC		MNEAR	NELL W-L.			to0 7742	
h h					The second secon	/ - / -		
	DWELL DUMPA		STOC. INSI	TAL WELL	VAC SET A	60°H20 72	ESULTING I	
	A WVF OF 9.50 SQ		STOC. INSI	nAL WELL	VAC SET A	- 60°H20 72	SUUTING I	
OTES			STOC. INST	TAL WELL	VAC SET A	60°H20 PE	SUDING I	
NOTES			STOC. INST	TAL WELL	VM SEI A	60°H20 PE	ESUTING I	
NOTES			STOC. JASIZ	TAL WELL	VAC SET A	- 60°H20 P2	ESUTING I	
NOTES			STOC. INST	THE WELL	VAC SEI A	60°H20 PE	ESUTING I	
NOTES			STOC. JASIS	TAL WELL	VAC SET A	60°H20 PE	ESUTING I	
			27/21.3	21/23.31	VAC SEI A	- 60° A20 PE	ESUTING I	
	A WVF OF 9.50 SQ				VAC SET A	1445	ESUTING I	
MANIFOLD NOTES	A WVF OF 9.50 SQ	7-	27/24.3	21/23.31	VAT SET A		ESUCING I	

LMAPT 6.84 HE 58.80

. 04 H& 59.18 7FORMS/TestForms/1210017B

Locatio	on: Walstadd 66, Lovi	ngton, NM			Projec	t Managers: S	adler/Fauche
	Date:	7/13/15					
	Parameters	Time 0845	7ime 09(5	Time 09.45	Time 1015	Time 1045	Time //15
	WELL# A-(Hr Meter 72905	Hr Meter 7251.0	7291.5	Hr Meter 72520	Hr Meter 7252.5	Hr Meter 7253.0
	R.P.M.	2200	2200	2300	2300	2300	2300
WER	Oil Pressure psi	50	50	50	50	50	50
ENGINE/BLOWER	Water Temp °F	150	150	150	150	155	160
INE.	Volts	14	14	14	14	14	14
ENG	Intake Vacuum "Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane cfh	0	0	50	50	50	50
	GW Pump ON/OFF	ON	02	001	on	on	امم
/AIR	Extraction Well Flow scfm	23.34	23.34	22.55	22.55	22.95	22.55
UUM	Extraction Well Vacuum "H ₂ O	60	60	70	70	70	70
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	4.2	4.2	4.4	4.5	4.5	4.5
ERE/	Total Volume gals	_	126	252	384	519	654
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	71	71	71	72	72	72
	Air Temperature °F	74,3	77.8	84.3	86.7	88.5	89.4
	Barometric Pressure "Hg	30.01	30.01	30.00	30,00	30.00	29.99
[HC ppmv	_		64 480			_
VAPOR /INFLUENT	CO ₂ %	-	_	5,14		_	_
INF	CO %	-	_	2,09	_	_	_
POR	O ₂ %	-	_	7.1	_	_	_
VA	H₂S ppm	-	-	0	_	_	_
NOTES	AT 0830 MUSI PUMP AT 67 FT E OF 23.34 SCFM. AT 0945 INCRE GW PUMP TRAKE TO 4.5 GPM TO IN THE GASOLI	TOUTHAL ASED WEL FACILEASE COMPENSA	THE WELL GW PUMP LVAC TO 7 DD TO 4.4.6 THE FOR HAG	VAC SET A PATE SET I O"HID RES	T 60"HZO TH AT 4.Z GPM ULTING IN TWOTERSO	RESULTING IN. A WYF OF Z AC, AIN AT ,	12.95 SOFM.
	LNAPL % Vol Gals	-/-	8/10.08	4/5.04	2/2.64	2/2.7	1.5/2.03
MANIFOLD	Depth of GW Depression ft	-5.5	-5.5	-5.5	-5.5	-5.5	-5.5
		5520	0835				
MAN	Extraction Well DTLNAPL ft	58.03	57.76				

() Indicates Well Pressure

LMAPL 5,52 HE

7FORMS/TestForms/1210017B

OPERATING DATA - EVENT #1

PAGE #2

ACUVAC MOBILE DUAL PHASE SYSTEM

Locatio	n: Walstadd 66, Lovir			AGE #	Project	Managers: Sa	dler/Faucher			
	Date:	7/13/15								
	Parameters	Time 11:45	Time 1215	Time 1245	Time 7 315	Time 1345	Time 1445			
	WELL# A-(Hr Meter 7293.5	Hr Meter 729%.0	Hr Meter 7294.5	Hr Meter 7295.0	Hr Meter 7295.5	Hr Meter 7256.5			
	R.P.M.	23∞	2300	2300	2300	2300	2300			
WER	Oil Pressure psi	50	50	50	50	50	50			
BLO	Water Temp °F	160	160	165	165	165	165			
ENGINE/BLOWER	Volts	14	14	14	14	14	14			
ENG	Intake Vacuum "Hg	16	16	16	16	16	16			
	Gas Flow Fuel/Propane cfh	50	50	50	50	50	50			
	GW Pump ON/OFF	02	مما	0~	a	ON	OF			
AIR	Extraction Well Flow scfm	22.95	2,2.55	22.95	22.95	22.95	2255			
JUM/	Extraction Well Vacuum "H2O	70	70	70	70	70	70			
VAC	Pump Rate gals/min	4,5	4.5	4.5	4.4	4.4	3.5			
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	789	924	1059	1194	1326	1553			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	71	71	71	71	71	71			
LTMC	Air Temperature °F	91.3	95.1	97.6	99.2	99.5	99.8			
	Barometric Pressure "Hg	29.98	29.97	29.96	29.54	29.92	2552			
Ę	HC ppmv	56,750		_	_	55850				
COE	CO ₂ %	5.74		-		5.96				
/INF	CO %	1.57		_	-	1.52	-			
VAPOR /INFLUENT	O ₂ %	7.0	-		-	7.2	•			
VA	H₂S ppm	0	_	-	-	0	_			
	WELL VAR AM	WELL A	dw stead	1 DUZING	P2400.	TRH VAR	25			
	MOSTLY STEADY	DURING	THE 75	400						
	AT 1445 EVEN				GAUGED.	WELL W	-1 AND			
NOTES	W-Z WOZE GA	UG 00 TO	DOBEMIN	SE THE E	XTENT OF	ANY RE	BOUND.			
NO		W-2 WORE GANGED TO DETERMINE THE EXTENT OF AMY REBOUND. ACUVAL EQUIPMENT AND SYSTEM DEMOBILIZED, SITE SECURED,								
	DAMYZO SITE.									
	LNAPL % Vol Gals	1.5/2.03	1.5/2.03	1.5/2.03	1.5/2.03	1.5/1.98	1.5/1.98			
IFOLD	2.11	1.5/2.03	1.5/2.03	1.5/2.03	1.5/2.03	1.5/1.98	1.5/1.98			
MANIFOLD	Gals			12.03	12.03	/1.98				

() Indicates Well Pressure

7FORMS/TestForms/1210017B

WARDL .13

HE 59.91

WALSTADD 66 LOVINGTON, NM

WALSTADD 66 LOVINGTON, NM

Dual-Phase Extraction Pilot Test Field Data (SVE Component) Lovington 66, PSTB Facility #1489 Lovington, New Mexico

	# # P		DPE-1				
Time	Wellhead Vacuum (in H ₂ 0)	Influent Flow Rate (cfm)	PID Response (ppmv)	Influent Temperature (°F)	W-1 (in H ₂ 0)	W-2 (in H ₂ 0)	W-3 (in H ₂ 0)
7:25	OFF	OFF	OFF	OFF	0.00	0.00	0.00
7:30	40	12.19		69	0.05	0.07	0.02
8:00	40	12.19	76,990	69	0.31	0.86	0.13
8:30	40	12.19		69	0.37	0.88	0.17
9:00	40	12.19	74,020	69	0.38	0.92	0.20
9:30	40	12.19		70	0.36	0.88	0.17
10:00	60	19.88	71,750	70	0.38	1.07	0.14
10:30	60	19.88		70	0.42	1.09	0.16
11:00	60	19.88	68,490	70	0.42	1.14	0.16
11:30	60	19.88		71	0.41	1.13	0.15
12:00	60	19.88		71	0.42	1.12	0.14
12:30	60	19.88		71	0.43	1.13	0.15
13:00	60	19.88	61,880	71	0.38	1.10	0.12
13:30	75	21.34		71	0.43	1.14	0.14
14:00	75	21.34		71	0.43	1.14	0.14
14:30	75	21.34		71	0.37	1.10	0.09
15:00	90	27.95	61,720	71	0.43	1.23	0.15
15:30	90	27.95		72	0.60	1.54	0.20
Average	60.3	18.83	69,142	70	0.37	0.97	0.14

Notes:

in H₂0 = inches of water cfm = cubic feet per minute ppmv = parts per million volume °F = degrees Fahrenheit

-- = Not measured/monitored

Prepared by: MCC Reviewed by: LCK

Dual-Phase Extraction Pilot Test Field Data Induced Hydraulic Gradient Data Lovington 66, PSTB Facility #1489 Lovington, New Mexico

Time	DPE-1 Vacuum (in H ₂ 0)	DPE -1 Pumping Rate (gpm)	Total Volume (gal)	DPE-1 (feet)	W-1 (feet)	W-2 (feet)	W-3 (feet)
7:30	0	0	0	0.00	0.00	0.00	0.00
10:30	60	4.30	678	5.50	0.07	0.11	0.03
13:30	75	4.60	1,460	5.50	0.32	0.59	0.20
15:30	90	5.20	2,048	5.50	0.37	0.66	0.24
	Di	stance from D	PE-1 (feet):	0.0	25.8	16.2	38.3

Notes:

gpm = gallons per minute

gal = gallons

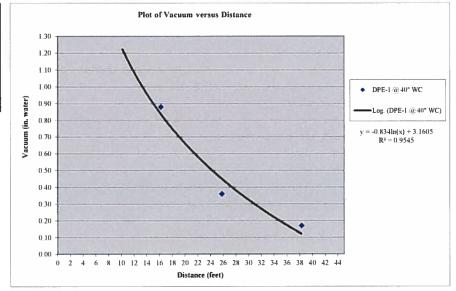
ppmv = parts per million volume

-- = Not measured/monitored

Prepared by: MCC Reviewed by: LCK

1404221 **APPENDIX J-3**

Calculation Sheet ESTIMATED SVE RADIUS OF INFLUENCE

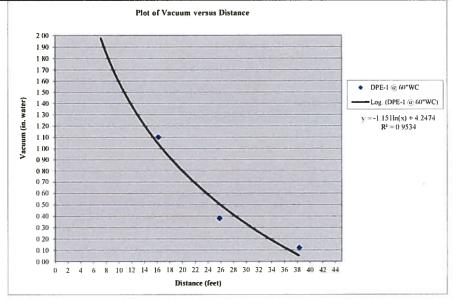

Designed by: Matthew C. Crews, PE Lovington 66 Facility ID: Reviewed by: Clay Kilmer 11/3/2015 Project Number: 1404221 Date:

DPE-1 @ 40" WC	Pressure (in. water)	Distance (feet)
Extraction wellhead	40	0
W-1	0.36	25.8
W-2	0.88	16.2
W-3	0.17	38.3

FROM PLOT (EPA)	(1"wc)
slope =	-0.834
intercept =	3.1605
ESTIMATED FIELD POL	13.3

FROM PLOT (NMED 3%)	(1.2"wc)
slope =	-0.834
intercept =	3.1605
ESTIMATED FIELD ROI =	10.5

FROM PLOT	(0.1"wc)
slope =	-0.834
intercept =	3.1605
ESTIMATED FIELD ROI =	39.2

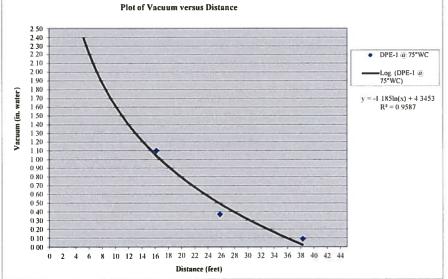


	Pressure	Distance
DPE-1 @ 60"WC	(in water)	(feet)
Extraction wellhead	60	0
W-1	0.38	25.8
W-2	1.10	16.2
W-3	0.12	38.3

FROM PLOT (EPA)	(1"wc)
slope =	-1.151
intercept =	4.2474
ESTIMATED FIELD ROI =	16.8

FROM PLOT (NMED 3%)	(1.8"wc)
slope =	-1.151
intercept =	4.2474
ESTIMATED FIELD ROI =	8.4

FROM PLOT	(0.1"wc)
slope =	-1.151
intercept =	4.2474
ESTIMATED FIELD POL	36.7

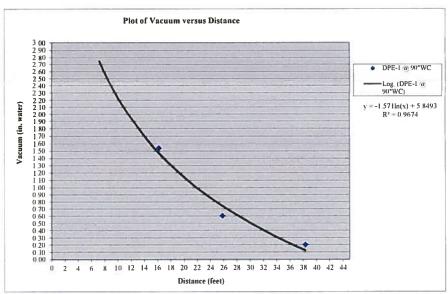


DPE-1 @ 75"WC	Pressure (in water)	Distance (feet)
Extraction wellhead	75	0
W-1	0.37	25.8
W-2	1.10	16.2
W-3	0.09	38.3

(1"wc)	FROM PLOT (EPA)
-1.185	slope =
4.3453	intercept =
16.8	ESTIMATED FIELD ROI =

(2.25"wc)	FROM PLOT (NMED 3%)
-1.185	slope =
4.3453	intercept =
5.9	ESTIMATED FIELD ROI =

FROM PLOT	(0.1"wc)
slope =	-1.185
intercept =	4.3453
ESTIMATED FIELD ROI =	36.0



	Pressure	Distance
DPE-I @ 90"WC	(in. water)	(feet)
Extraction wellhead	90	0
W-1	0.60	25.8
W-2	1.54	16.2
W-3	0.20	38.3

FROM PLOT (EPA)	(1"wc)
slope =	-1.571
intercept =	5.8493
ESTIMATED FIELD ROI =	21.9

FROM PLOT (NMED 3%)	(2.7"wc)
slope =	-1.571
intercept =	5.8493
ESTIMATED FIELD ROI =	7.4

FROM PLOT	(0.1"wc)
slope =	-1.571
intercept =	5.8493
ESTIMATED FIELD ROI =	38.8

Calculation Sheet ESTIMATED DRAWDOWN RADIUS OF INFLUENCE

Designed by: Matthew C. Crews, PE	Reviewed by: Clay Kilmer	Project Number: 1404221
Lovington 66	1489	11/3/2015
Site Name:	Facility ID:	Date:

	Drawdown Distance	Distance
DPE-1 @ End of Test	(leet)	(feet)
Extraction wellhead	5.5	0
W-1	0.37	25.8
W-2	99'0	16.2
W-3	0.24	38.3

	• DPE-1 (r. End of Test	Log. (DPE-1 @ End of Test)	y = .0 64/In(y) + 2.5134 $R^2 = 0.9994$
Plot of Drawdown versus Distance	5.0	40	2.5 2.0 1.0 0.5 0.2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 Distance (feet)
		(feet) nv	Drawdow

	0.13	0.31	0.43	0.58	92.0	0.81	0.85	16'0	96.0	1.02	1.09	1.17	1,25	1,35	1.47	1.62	1.80	2.06	2.51	2.96	4.00	(feet)	Drawdown
Radial Distance (feet) 0.1 0.5 1 1 2 3 4 4 4 6 6 6 10 11 11 11 12 13 14 14 14 15 20	35	30	25	20	15	14	13	12	11	10	6	8	7	9	5	4	3	2	_	0.5	0.1	(feet)	Radial Distance

November 2015

APPENDIX J-5

1404221

Calculation Sheet Soil Permeability (k) Calculations

Site Name:	Lovington 66	Designed by:	Matthew C. Crews, PE
Facility ID:	1489	Reviewed by:	Clay Kilmer
Date:	11/3/2015	Project No:	1404221

Test: DPE-1 at 40 inches of water

Value entered Calculated value 1.01E-02

Extraction Well: (DPE-1, 4" dia, 75 feet total depth, 30-foot screen, pump set at 65 feet BTOC)

scfm	inches H ₂ O	inches	feet	inches Hg
12,19	40	2	19.64	30.10
Flow Rate =	Wellhead Vacuum =	Well Radius =	Exposed Screen Length =	Atmospheric Pressure =

inches Hg 5750 cm³/sec 5.08 cm 5.08 cm 599 cm

0,9017 atm (absolute)

(ref.: from USA Corps of Eng., June 2002) $(\pi \cdot P_{\rm II} \cdot (1 - (P_{RJ}/P_{\rm II})^2))$ μ ·ln($R_{V'}/R_{I}$) $k = \frac{Q_{1}}{H}$

k = Soil permeability [cm² = 10⁸ Darcys]

 $Q_{W} = Extraction well flowrate [cm]^{3}scc]$ H = Extraction well screen length [cm] $\mu = V iscosity of air = 0.018 cp (centipoise)$ $\Pi = 3.1415 [dimensionless]$

$$\begin{split} P_{W} = & \text{Pressure at extraction well [atm, absolute]} \\ R_{W} = & \text{Radius of extraction well [cm]} \\ R_{t} = & \text{Distance to monitoring well [cm]} \\ P_{RJ} = & \text{Pressure at monitoring well [atm, absolute]} \end{split}$$

	Screened	Vacuum at	Pressure at	Distance to	e to	Permeability	Permeability
Well	Interval	Well	Well	Well		k	k
	(tr)	(inches H ₂ O)	(atm abs)	(tt)	(cm)	(Darcys)	(cm ²)
W-1	50 - 70	0.36	1.0051	25.8	984	1.26	1.26E-08
W-2	50 - 70	0.88	1.0039	16.2	464	1.16	1.16E-08
W-3	50 - 70	0.17	1.0056	38.3	1167	1.36	1.36E-08

Average Soil Permeability =

Darcys 1.26

CIII²

1.26E-08

APPENDIX J-6

Calculation Sheet Soil Permeability (k) Calculations

Site Name:	Lovington 66	Designed by:	Matthew C. Crews, PE
Facility ID:	1489 F	Reviewed by: 0	Clay Kilmer
Date:	11/3/2015 F	Project No:	1404221

Calculated value Value entered Constant 1.01E-02

Test: DPE-1 at 60 inches of water

Extraction Well: (DPE-1, 4" dia, 75 feet total depth, 30-foot screen, pump set at 65 feet BTOC)

Flow Rate =	19.88	scfm	. "
Wellhead Vacuum =	09	inches H2O	
Well Radius =	2	inches	.77
Exposed Screen Length =	19.64	feet	
Atmospheric Pressure =	30.08	inches Hg	

atm (absolute)

0.8525

 $(\pi \cdot P_{II} \cdot (1 - (P_{RJ}/P_{II})^2))$ μ ·ln($R_{
m I\Gamma}/R_{
m I}$)

k = Soil permeability [cm² = 10⁸ Darcys]

(ref. from USA Corps of Eng., June 2002)

$$\begin{split} Q_{\mathbf{w}} &= \text{Extraction well flowrate } \left[\text{cm}^3\text{/scc}\right] \\ H &= \text{Extraction well screen length } \left[\text{cm}\right] \\ \mu &= \text{Viscosity of air} = 0.018 \text{ cp (centipoise)} \\ \Pi &= 3.1415 \left[\text{dimensionless}\right] \end{split}$$

$$\begin{split} P_w = & \text{Pressure at extraction well [atm, absolute]} \\ R_w = & \text{Radius of extraction well [cm]} \\ R_t = & \text{Distance to monitoring well [cm]} \end{split}$$

absolute]
[atm,
well
 onitoring
Pressure at
P_{RL}

		Screened	Vacuum at	Pressure at	Distance to	; to	Permeability	Permeability
	Well	Interval	Well	Well	Well		k	k
		(lJ)	(inches H ₂ O)	(atm abs)	(ft)	(cm)	(Darcys)	(cm²)
_	W-1	50 - 70	0,38	1,0044	25.8	982	1.36	1.36E-08
_	W-2	50 - 70	1.10	1.0026	16.2	464	1.25	1.25E-08
L.,	W-3	50 - 70	0.12	1.0051	38.3	1167	1.46	1.46E-08
j								

Average Soil Permeability =

Darcys

1.36

1.36E-08

cm²

November 2015

APPENDIX J-7

1404221

Calculation Sheet Soil Permeability (k) Calculations

Site Name:	Lovington 66	Designed by:	Matthew C. Crews, PE
Facility ID:	1489	Reviewed by:	Clay Kilmer
Date:	11/3/2015	Project No:	1404221

Test: DPE-1 at 75 inches of water

Value entered Calculated value Constant 1.01E-02

Extraction Well: (DPE-1, 4" dia, 75 feet total depth, 30-foot screen, pump set at 65 feet BTOC)

scfm	inches H ₂ O	inches	feet	inches Hg
21.34	75	2	19,64	30.04
Flow Rate =	Wellhead Vacuum =	Well Radius =	Exposed Screen Length =	Atmospheric Pressure =

10070 cm³/sec 5.5147 inches Hg 5.08 cm 599 cm 1.00 atm

0.8156 atm (absolute)

(ref. from USA Corps of Eng., June 2002) $(\pi \cdot P_{\Pi} \cdot (1 - (P_{RJ}/P_{\Pi} \cdot)^2))$ μ ·ln($R_{\rm II}$ / $R_{\rm I}$)

k = Soil permeability [cm² = 10⁸ Darcys]

$$\begin{split} Q_W = & \text{Extraction well flowrate } \left[\text{cm}^3 \text{(sec)} \right] \\ H = & \text{Extraction well screen length } \left[\text{cm} \right] \\ \mu = & \text{Viscosity of air} = 0.018 \text{ cp (centipoise)} \\ \Pi = & 3.1415 \left[\text{dimensionless} \right] \end{split}$$

 $P_{W} = \text{Pressure at extraction well [atm, absolute]} \\ R_{W} = \text{Radius of extraction well [cm]}$

 $R_{I} = D_{I} stance \ to \ monitoring \ well \ [cm]$ $P_{RI} = Pressure \ at \ monitoring \ well \ [atm, absolute]$

	Screened	vacuum at	Pressure at	Distance to	e 10	Permeability	Permeability
Well	Interval	Well	Well	Well		j.	×
,	(£)	(inches H ₂ O)	(atm abs)	(tt)	(cm)	(Darcys)	(cm ²)
W-1	50 - 70	0.37	1:0031	25.8	982	1.16	1.16E-08
W-2	50 - 70	1.10	1.0013	16.2	464	1.06	1.06E-08
W-3	50 - 70	60'0	1.0038	38.3	1167	1.24	1,24E-08

Average Soil Permeability =

Darcys 1.16

1.16E-08

cm₂

November 2015

APPENDIX J-8

1404221

Soil Permeability (k) Calculations Calculation Sheet

Matthew C. Crews, PE Clay Kilmer 1404221 Designed by: Reviewed by: Project No: Lovington 66 1489 Site Name: Facility ID:

Calculated value Value enfered Constant 1.01E-02

Test: DPE-1 at 90 inches of water

Extraction Well: (DPE-1, 4" dia, 75 feet total depth, 30-foot screen, pump set at 65 feet BTOC)

inches H₂O inches Hg inches feet 90 2 19.64 30.02 Exposed Screen Length = Atmospheric Pressure = Flow Rate = Well Radius = Wellhead Vacuum

6.6176 inches Hg 5.08 cm 599 cm 1.00 atm 13190 cm³/sec

0.7788 atm (absolute)

(ref. from USA Corps of Eng., June 2002) $(\pi \cdot P_{II} (1 - (P_{RI}/P_{II})^2))$ μ ·ln($R_{\rm F}/R_{\rm f}$) $k = Q_{\Gamma}$

k = Soil permeability [cm² = 10⁸ Darcys]

 $\begin{aligned} Q_{W} = & \text{Extraction well flowrate } \left[\text{cm}^{3}/\text{scc} \right] \\ H = & \text{Extraction well screen length } \left[\text{cm} \right] \\ \mu = & \text{Viscosity of air} = 0.018 \text{ cp (centipoise)} \\ \Pi = & 3.1415 \left[\text{dimensionless} \right] \end{aligned}$

 $P_W = Pressure \ at \ extraction \ well \ [atm, absolute]$

 $R_{W} = Radius \ of extraction \ well \ [cm]$ $R_{I} = Distance \ to \ monitoring \ well \ [cm]$

 P_{RJ} = Pressure at monitoring well [attn, absolute]

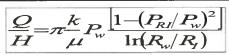
	Screened	Vacuum at	Pressure at	Distance to	e to	Permeability	Permeability
Well	Interval	Well	Well	Well		**	¥
	(ij)	(inches H ₂ O)	(atm abs)	(tt)	(cm)	(Darcys)	(cm ₂)
W-I	50 - 70	09'0	1.0019	25.8	98/	1.24	1.24E-08
W-2	50 - 70	1.54	9666 0	16.2	464	1:14	1.14E-08
W-3	50 - 70	0.20	1,0029	38,3	1167	1.33	1.33E-08

Average Soil Permeability =

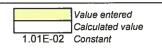
Darcys

1.24

1.24E-08


cm²

Calculation Sheet Pilot Study - Flow Rates


Facility Name: Lovington 66
Facility ID No.: 1489
Date: 11/3/2015

Designed by: Reviewed by: Matthew C. Crews, P.E.

Reviewed by: Clay Kilmer Project Number: 1404221

(ref.: from USA Corps of Eng., June 2002)

DPE Wells:

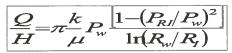
November 2015

E wells:				
		Metric L	Inits	English Units
K	Hydraulic conductivity	1.200E-03	cm/s	3.4 ft/d
μ_{w}	Water viscosity	1.01E-02	g/cm-s	0.0101 cp
$\rho_{\rm w}$	Water density (at 20C)	9.79E-01	g/cm3	
g	Gravitational acceleration	9.81E+02	_cm/s2	
k	Soil intrinsic permeability ($k=K\mu_w/g\rho_w$)	1.26E-08	cm2	1.26 darcy
μ_{a}	Air viscosity	1.80E-04	g/cm-s	0.018 ср
P_{atm}	Atmospheric pressure ≈ 12.23 psi at 5,000 ft elevation	1.0234E+06	g/cm-s2	1.01 atm
P	Pressure (suction) at the extraction well	112090	g/cm-s2	0.1106 atm
P_{w}	Absolute pressure in extraction well (Pw=Patm-P)	9.11E+05	g/cm-s2	0.90 atm
P_{x}	Pressure at radius of influence	3363	g/cm-s2	0.0033 atm
P_{RI}	Absolute pressure at radius of influence $(P_{RI} = Patm - Px)$	1.0200E+06	g/cm-s2	1.0067_atm
b	Vadose zone thickness	1798.3	cm	59.0 ft
R_{I}	Radius of influence	304.8	cm	10.0 ft
H'	Unit of length screened	30.5	cm	1.0 ft
Н	Total screened length/well	598.6	cm	19.6 ft
$R_{\rm w}$	Radius of extraction well	5.08	cm	2.0 in

	in of H ₂ O	PSI	Кра	in of Hg	Atm	mmHg
P_{atm}	410.9	14.8	102.338	30.22	1.010	767.6
P	45.0	1.6	11.209	3.31	0.111	84.1
$P_{\rm w}$	365.9	13.2	91.129	26.91	0.899	683.5
P_{x}	1.35	0.05	0.336	0.10	0.0033	2.5
P_{RI}	409.50	14.79	102.00	30.12	1.0067	765.08

Q/H	Flow rate/unit of length screened	12.34	cm3/s /H'	0.80	cfm / H'
Q	Total flow rate / well	7387	cm3/s	16	scfm
Q _{T-th}	No of wells 1 Total flow rate Safety factor 1,25	7387	cm3/s	16	scfm

0	Total system design flow rate	9234	cm3/s	20	scfm
GT-sf	Total system design flow rate	798	m3/d		001111



Calculation Sheet Pilot Study - Flow Rates

Facility Name: Lovington 66 Facility ID No.: 1489 11/3/2015 Date:

Designed by: Reviewed by: Matthew C. Crews, P.E.

Clay Kilmer Project Number: 1404221

(ref.: from USA Corps of Eng., June 2002)

Value entered Calculated value 1.01E-02 Constant

DPE Wells:

e wells:					
		Metric U	English Units		
K	Hydraulic conductivity	1.200E-03	cm/s	3.4	ft/d
μ_{w}	Water viscosity	1.01E-02	g/cm-s	0.0101	ср
ρ_{w}	Water density (at 20C)	9.79E-01	g/cm3		
g	Gravitational acceleration	9.81E+02	_cm/s2		
k	Soil intrinsic permeability (k=Kμ _w /gρ _w)	1.26E-08	cm2	1.26	darcy
μ_{a}	Air viscosity	1.80E-04	_g/cm-s	0.018	ср
P_{atm}	Atmospheric pressure ≈ 12.23 psi at 5,000 ft elevation	1.0234E+06	g/cm-s2	1.01	atm
P	Pressure (suction) at the extraction well	112090	g/cm-s2	0.1106	atm
$P_{\rm w}$	Absolute pressure in extraction well (Pw=Patm-P)	9.11E+05	g/cm-s2	0.90	atm
P_x	Pressure at radius of influence	3363	g/cm-s2	0.0033	atm
P_{RI}	Absolute pressure at radius of influence (P _{RI} =Patm-Px)	1.0200E+06	g/cm-s2	1.0067	atm
b	Vadose zone thickness	1798.3	cm	59.0	ft
R_I	Radius of influence	457.2	cm	15.0	ft
H'	Unit of length screened	30.5	cm	1.0	ft
Н	Total screened length/well	598.6	cm	19.6	ft
$R_{\rm w}$	Radius of extraction well	5.08	cm	2.0	in

	in of H₂O	PSI	Кра	in of Hg	Atm	mmHg
Patm	410.9	14.8	102.338	30.22	1.010	767.6
P	45.0	1.6	11.209	3.31	0.111	84.1
$P_{\rm w}$	365.9	13.2	91.129	26.91	0.899	683.5
P_{x}	1.35	0.05	0.336	0.10	0.0033	2.5
P_{RI}	409.50	14.79	102.00	30.12	1.0067	765.08

Q/H	Flow rate/unit of length screened	11.23	cm3/s /H'	0.73	cfm / H'
Q	Total flow rate / well	6721	cm3/s	14	scfm
Q _{T-th}	No of wells 1 Total flow rate Safety factor 1.25	6721	cm3/s	14	scfm

			,		T		1
Q _{T-sf}	0	Total austam design flow rate	8402	cm3/s	18	scfm	ŀ
	Total system design flow rate	726	m3/d	Ï	301111	ı	

