Mine Site Groundwater

Presentation Outline

- Well installation and sampling
- Characteristics
- Mine site and reference chemistry
- Operational pumping
- Best Management Practices (BMPs)
- Alluvial aquifer loading
- Nature and extent
- Summary

Questions Being Asked by RI/FS

- Groundwater Data Quality Objectives (DQOs)
 - Concentrations > RBSLs?
 - Concentrations > State Groundwater Standards and MCLs?
 - Adequately determined the nature and extent of concentrations > RBSLs?

Well Installation During the RI

Well ID	Location	Completion Zone	Completion Lithology	Borehole Depth (ft, bgs)	Screened Interval (ft,bgs)
	New R	I/FS Monitoring Well	's		
MMW-31B	Mine core storage area	Bedrock	qtz monzonite	205	180 to 200
MMW-42B	Goathill Gulch drainage	Bedrock	qtz monzonite	230	195 to 225
MMW-44A	Goathill Gulch drainage	Colluvium	sandy gravel	116	90 to 110
MMW-44B	Goathill Gulch drainage	Bedrock	diorite	340	308 to 338
MMW-45A	Capulin Gulch drianage	Alluvium	sandy gravel	30	8 to 28
MMW-45B	Capulin Gulch drainage	Bedrock	quartz monzonite	115	80 to 100
MMW-46B	West of Columbine Campground	Installation Attempted		205	
MMW-47A	East of mine Admin. Bldg.	Alluvium	gravel	51	15 to 35
MMW-48A	300 ft southeast of Guard Post	Colluvium	sandy gravel	228	101 to 121
MMW-49A	Base South Sugar Shack Pile	Alluvium	sandy gravel	90	40 to 70

URS

Groundwater Sampling

Quarterly events (all wells and springs):

- Completed: Fall 2002; January, April, July, and October 2003; and January 2004
- Planned: April 2004
- Monthly events (select wells and springs):
 - Completed: December 2002; February, March, May, June, August, September, November, and December 2003
 - No monthly sampling planned for 2004

Mine Site Characteristics

Where Does Groundwater Occur?

- Alluvial aquifer: found along Red River
 - consists of sand, gravel, and cobbles
 - primary porosity between grains
- Colluvium/debris flow: found along drainages
 - debris or mud flow materials that are angular and distinctly different than alluvium
 - has minimal saturated thickness and extent referred to as water-bearing unit instead of aquifer
- Bedrock aquifer: found at mine site and underlying mine site and alluvial aquifer
 - consists of consolidated bedrock
 - secondary porosity within fractures

West to East Geologic Cross Section Through Goathill Debris Flow

Geologic Cross Section at Sugar Shack South Rock Pile

Two cross sections

- North to south along pre-existing drainage shows the relationship between mine rock, underlying colluvium, bedrock and groundwater table
- West to east along the toe of the rock pile shows the geometry of the pre-existing drainage and groundwater table

Hydraulic Conductivity

- Red River alluvial aquifer:
 - 100's feet/day
- Colluvial/debris flow unit:
 - 0.01's to 1's feet/day
- Bedrock aquifer:
 - 0.001's to 1's feet /day

Alluvium >>> Colluvium >= Bedrock

Saturate Thickness

Alluvium:

- 120 feet thick in Mill area
- 30 feet thick near downstream mine boundary
- Colluvium/debris flow:
 - 290 feet thick at Goathill Gulch
 - 0 to <50 feet along drainages
- Bedrock:
 - 100's feet thick

Borehole Information for Front Rock Pile Areas

			Total	Depth to	Depth to	Thickness of	Thickness of
			Borehole	Top of	Top of	Saturated	Saturated
			Depth	Bedrock	Colluvium	Mine Rock	Colluvium
Rock Pile	Relative Location	Borehole ID	(ft bgs)	(ft bgs)	(ft bgs)	(ft)	(ft)
		WRD-11	295	NE	250	0	0
		MMW-39A (WRD-12)	417	416	335	0	10
	Within Rock Pile	WRD-13	199	NE	NE	0	0
Sulphur Gulch		SI-6	298	284	NR	0	0
		SI-7	108	93	NR	0	0
	Base of Rock Pile	MMW-14	75	NE	0	NE	<30 est.
	Base of Rook The	MMW-16	98	90	0	NE	<10
		MMW-38A (WRD-10)	295	293	288	7	12
	Within Rock Pile	S-2	307	292	NE	0	0
Middle Base of Rock		SI-4	284	273	NR	0	0
		SI-5	95	78	NR	0	0
	Base of Rock Pile	MMW-25A	74	73	0	NE	<1
	Base of Rook The	MMW-13	148	120	0	NE	0 to 5
		MMW-37A	363	NE	296	0	<20 est.
		WRD-3	120	NE	NE	0	0
	Within Rock Pile	WRD-4	75	NE	NE	0	0
		WRD-5	80	NE	NE	0	0
Sugar Shack		S-1	260	231	NE	0	0
South		SI-2	140	131	NE	0	0
		MMW-11/11A	106	145	0	NE	50
	Base of Rock Pile	MMW-26A	104	101	0	NE	<1
		MMW-18A/B	97	95	0	NE	<1
		MMW-27A	109	NE	0	NE	<30 est.
		WRD-6	60	NE	NE	0	0
Sugar Shack	Within Rock Pile	WRD-7	80	NE	NE	0	0
West		SI-1	208	197	NE	0	0
	Base of Rock Pile	MMW-36A	154	149	0	NE	0

Horizontal Groundwater Gradients

- Alluvium:
 - 0.002 to 0.06, average = 0.02 (~ slope of river)
- Colluvium:
 - 0.2 to 0.3 (steep drainages)
- Bedrock:
 - 0.2 to to 0.3 (steep bedrock slopes)

Water Table Elevation Contours for the Alluvial Aquifer and Colluvial Unit

Groundwater Level Fluctuations in Alluvial Aquifer

Upstream

Downstream

- Mill area = 30 ft
- Cabin Springs = 5 to 15 ft
- Below M&E area = 6 ft
- Mine boundary = 1 to 2 ft
- Water level fluctuations decrease downstream due Goathill debris fan and bedrock valley constrictions

Approximate Flow Through the Alluvial Aquifer

Groundwater Elevation Contours for the Bedrock Aquifer

Underground Workings

- Lowermost level is 7,120 feet; 500 to 700 feet below the elevation of Red River
- Inflows average 250 gpm
- Approximately 20 gpm is from infiltration of surface water along Goathill Gulch
- Workings are dewatered (pumped to Mill) and this dewatering influences the bedrock aquifer

Example of Dewatering Influences

Reference Monitoring Wells and Groundwater Chemistry

Reference/Background Monitoring Wells

- Near upstream mine boundary: MMW-17A/B
- Upper Capulin Canyon: CC-1A/B and C2-A/B; installed by USGS
- Straight Creek: SC-1A/B, SC-2B, SC-3A/B, SC-4A, SC-5A/B, SC-6A, SC-7A, SC-8A; installed by USGS
- Others wells have been installed in Hottentot and Hansen Creek drainages and at LaBobita Campground by USGS

Straight Creek Alluvial Wells (October 2003)

	Alluvium		
	SC-7A 195	SC-8A	HH SLC at
Parameter mg/L	ft	98 ft	HQ=1
Aluminum	33.3	<0.22	37
Cadmium	<0.13	<0.0013	0.018
Copper	<0.23	<0.0023	1.4
Iron	29.2	<0.46	11
Manganese	5.36	<0.016	1.7
Nickel	<0.45	0.0056	0.73
Zinc	1.94	<0.04	11
Sulfate	919	115	No SLC
Fluoride	3.8	0.28	2.2
Total Alkalinity	<1	57.3	No SLC
pH (s.u.)	3.79	6.52	No SLC
SC (uS/cm)	1619	385	No SLC

URS

SC-7A screen: 110 to 140 ft debris flow

140 to 195 ft alluvium

Sampled in October 2003; dissolved metals

Straight Creek Debris Flow/Colluvial Wells (October 2003)

	Debris Flow/Colluvium					
Parameter	SC-1A	SC-3A	SC-4A	SC-5A	SC-6A	HH SLC at
mg/L	75 ft	113 ft	115 ft	197 ft	150 ft	HQ=1
Aluminum	98.7	80.5	58.8	42.1	93.6	37
Cadmium*	<0.13	<0.13	<0.13	<0.13	<0.13	0.018
Copper	1.03	0.88	<0.23	<0.23	0.76	1.4
lron	31.6	<4.55	44.9	<4.55	11.9	11
Manganese	19.8	14.3	18	4.9	19.7	1.7
Nickel	1.16	0.56	0.55	<0.45	0.74	0.73
Zinc	11.6	5.16	5.19	1.96	6.83	11
Sulfate	1930	1640	1800	855	1970	No SLC
Fluoride	11.7	8.9	9.7	3.8	11.1	2.2
Total Alkalinity	<1	<1	<1	<1	<1	No SLC
pH(s.u.)	3.55	2.77	3.70	2.50	3.32	No SLC
SC (uS/cm)	2494	2520	2330	1669	2495	No SLC

*Cadmium exeeded SLC in all wells except SC-5A in June 2003

Sampled in October 2003; dissolved metals

Straight Creek Bedrock Wells (October 2003)

	Bedrock				
Parameter	SC-1B	SC-2B	SC-3B	SC-5B	HH SLC at
mg/L	146 ft	86 ft	200 ft	358 ft	HQ=1
Aluminum	<0.22	2.2	6.9	<0.22	37
Cadmium	<0.0005	< 0.00013	<0.13	<0.00013	0.018
Copper	<0.002	0.3	<0.23	<0.002	1.4
lron	1.37	32.8	64.6	<0.45	11
Manganese	6.04	18.2	27.2	2.34	1.7
Nickel	<0.0024	0.53	0.63	<0.0045	0.73
Zinc	<0.023	2.06	4.08	<0.019	11
Sulfate	1550	1420	1940	1420	No SLC
Fluoride	1.1	7.3	7.3	1.1	2.2
Total Alkalinity	458	97.8	45.1	202	No SLC
pH(s.u.)	6.56	5.92	5.90	6.80	No SLC
SC (uS/cm)	2867	2485	2280	2625	No SLC

SC-2B and SC-3B may be a mix of debris flow and bedrock groundwater

Sampled in October 2003; dissolved metals

Hottentot, Hansen, and LaBobita Wells (October 2003)

	Debris Flow/Colluvium		Bedrock	
	Hottentot Creek Well	Hansen Creek Well	LaBobita Well*	
Parameter	HTT-A	HAN-A	LB-A	HH SLC at
mg/L	115 ft	109 ft	63 ft	HQ=1
Aluminum	59.9	80.1	16.1	37
Cadmium	<0.13	<0.13	<0.07	0.018
Copper	<0.23	<0.23	<0.2	1.4
Iron	87.4	<4.55	3.1	11
Manganese	6.59	10.4	2.45	1.7
Nickel	<0.45	<0.45	0.28	0.73
Zinc	3.27	2.6	1.7	11
Sulfate	920	2100	556	No SLC
Fluoride	5	<6	2.7	2.2
pH (s.u.)	2.9	3.8	4.3	No SLC
SC (uS/cm)	1769	2720	773	No SLC

Sampled in October 2003; dissolved metals

* Screened across alluvium and bedrock

Summary of Metals Concentrations for Background Wells

- Based on June and October 2003 results:
 - Alluvium: Concentrations of Aluminum, Fluoride, Iron, and Manganese may be elevated in areas where alluvial groundwater mixes with debris flow/colluvial groundwater near the mouth of the drainages
 - Debris Flow/Colluvium: Concentrations of Aluminum, Cadmium, Fluoride, Manganese, Iron, Nickel and Zinc are elevated
 - Bedrock: Concentrations of Manganese, Iron, and Fluoride are elevated

Mine Site Groundwater Chemistry

pH in Paired Monitoring Wells

◆ Alluvial ▲ Colluvial ■ Bedrock

Fall 2002 data

Dissolved Aluminum in Paired Monitoring Wells

Alluvial A Colluvial Bedrock

Fall 2002 data

Alluvial A Colluvial Bedrock

Concentrations in Water from Underground Workings

mg/L	T o ta l	Dissolve d		
Aluminum	7.81	0.21		
Arsenic	0.0014	0.0005		
Boron	0.0129	0.0137		
Cadmium	0.0039	0.0035		
Cobalt	0.168	0.069		
Copper	0.03	0.02		
Iron	8.72	1.2		
Lead	0.0034	0.0002		
Manganese	40.6	39.6		
Molybdenum	5.3	5.3		
Nickel	0.263	0.26		
Selenium	0.0057	0.0015		
Zinc	3.22	2.39		
Sulfate	20	30		
Alkalinity	170			
Fluoride	10.9			
pH (su)	6.	98		

Fall 2002 data

Capulin and Goathill Springs

	Concentrations (diss)		
	Capulin	Goathill	
	Spring	Spring	
Constituent	(mg/L)	(mg/L)	
Aluminum	1,060	1,470	
Iron	243	631	
Manganese	524	427	
Nickel	8.15	8.06	
Zinc	109	98.4	
Fluoride	114	143	
Sulfate	12,900	13,600	
рН	2.7	2.6	

Historical Metals Concentrations for Cabin Springs

Operational Pumping

Operational Pumping 2000 to 2003

Columbine No. 2 Pumping and Groundwater Level Responses in P-1

Mill Well Pumping and Groundwater Level Responses in Mill Area

Note: water levels are from Vail Engineering's test well

Mill Pumping and Change in Alluvial Groundwater Levels

Extent of Operational Pumping Influences and Capture

 Map of showing area influenced and captured by pumping (ArcView)

Summary of Operational Pumping

- Pumping influences groundwater flowpaths near Mill and Columbine Park areas
- Pumping potentially influences both groundwater and surface water quality
- Interpretations regarding alluvial groundwater quality need to account for operational pumping

Groundwater Withdrawal Wells

- Required Best Management Practices under NPDES Permit
- Startup February 2, 2003
- GWW-1 = ~100 gpm
- GWW-2 = ~80 gpm
- GWW-3 = ~240 gpm
- Total from wells = 420 gpm (more than double the approximate accretion along north side of river from Mill to above Columbine Creek)

Water is delivered to mill for pipeline maintenance

Spring 39 and 13 Collection Systems

- Required by Best Management Practices under NPDES Permit
- System startup on February 2, 2003
- Spring 39: 300 ft long drain (~20 to 30 gpm)
- Spring 13: 1,000 ft long drain (~20 to 30 gpm)
- Water is delivered to the mill for pipeline maintenance

Spring 39 Collection System

Dissolved Aluminum Concentrations for Withdrawal Wells

Sulfate Concentrations for Withdrawal Wells

Concentrations from Spring 39 and 13 Pumps

	Concentrations (dissolved)		
	Spring 39	Spring 13	
	Pump	Pump	
Constituent	(mg/L)	(mg/L)	
Aluminum	22	81.3	
Iron	ND	11.2	
Manganese	1.97	11.7	
Nickel	0.39	0.26	
Zinc	0.95	2.96	
Fluoride	5.4	3.8	
Sulfate	843	1,060	
рН	4.78	3.58	

March 2003 data

Preliminary Loading Calculations for Red River Alluvial Aquifer Along Mine Site

Loading Estimate Methodology

- Used July 2003 groundwater levels, concentrations, and pumping rates
- Used Darcian approach (Q=KIA) to estimate flow through colluvium/debris flow
 - Average value for hydraulic conductivity
 - Measured gradients between wells
 - Cross sectional areas based on geologic cross sections near the base of each drainage
- Loadings for surface water/groundwater interactions were from July 2003 sampling event
- Calculations do not account for chemical
 transformations or precipitation

Aluminum Loading to/from Alluvial Aquifer

Sulfate Loading to/from Alluvial Aquifer

Comparison Between Colluvial Underflow and BMPs

Total from Colluvial/Debris Flow Underflow Along Mine Site Total from GWWs and Spring Pumps

Comparison of Aluminum Load Between Colluvial Underflow and BMPs

Comparison of Sulfate Load Between Colluvial Underflow and BMPs

Summary of Alluvial Loading Analysis and BMPs (Based on July 2003 Data)

- BMPs are removing metals/inorganics from alluvial aquifer; the amount removed is equal to or greater than the amount estimated in the colluvial underflow
- Another loss of alluvial groundwater load is due to the groundwater to surface water discharge due to the Goathill Gulch debris fan constriction and near the downstream mine boundary due to bedrock valley constrictions
- Loading estimates will be re-calculated after additional hydraulic testing is complete

Nature and Extent

Isoconcentration Contour Maps (GIS)

Mine site and reference areas
Aluminum October 2003
Sulfate October 2003

Summary

- The alluvial aquifer is considerably more transmissive (3 orders of magnitude) than the colluvial/debris flow unit and bedrock aquifer
- Available borehole data suggests that mine rock is not saturated along the front rock piles, except for at MMW-38A (<5 ft) in the Middle Rock Pile
- Goathill debris fan and bedrock constrictions at the downstream mine boundary create areas of strong groundwater to surface water discharge

Summary (cont)

- Metals concentrations are highest at Capulin and Goathill Springs. High concentration also occur at the M&E area and at lower Goathill debris fan
- Elevated metals also occur in the alluvium, colluvium and bedrock groundwater in the upstream reference area
- Operational pumping influences (lowers) alluvial water table from the Mill to Columbine Park area, where surface water infiltrates into the underlying alluvial aquifer

Summary (cont)

- BMPs are removing metals mass equal to or greater than the amount from colluvial groundwater underflow along the mine site
- Nature and Extent:
 - Concentrations in colluvium/debris flow groundwater within mine site drainages and pre-existing drainages decrease toward Red River as mixing with alluvial groundwater occurs
 - Poorer quality alluvial groundwater tends to flow along the northern portion of the alluvial aquifer due to colluvial/debris flow underflow
 - A similar pattern of metals concentrations and acidity also occurs upstream of the mine

