

NMED AIR QUALITY BUREAU NSR SIGNIFICANT REVISION APPLICATION

XTO Energy Inc. Cowboy Central Delivery Point (CDP)

Prepared By:

James Barron – Environmental & Regulatory Advisor

XTO ENERGY INC. 22777 Springwoods Village Pkwy Spring, TX 77389 (346) 566-9345

Adam Erenstein – Manager of Consulting Services

TRINITY CONSULTANTS

9400 Holly Ave NE Building 3, Suite B Albuquerque, NM 87122 (505) 266-6611

December 2024

Project 243201.0116

December 23, 2024

Permit Programs Manager NMED Air Quality Bureau 525 Camino de los Marquez Suite 1 Santa Fe, NM 87505-1816

RE: NSR Significant Revision Application to Permit No. 7877-M2 XTO Energy Inc. – Cowboy Central Delivery Point (CDP)

Permit Programs Manager:

XTO Energy Inc. is submitting an NSR Significant Revision application for the Cowboy Central Delivery Point (CDP). The facility is located 13.8 miles east-southeast of Malaga, New Mexico in Eddy County. Currently, this facility is permitted under NSR Permit No. 7877-M2.

The proposed permit revision includes updated emissions associated with flares, oil storage tanks, heaters, produced water tanks, slop oil tank, and combustor. The permit revision will also include the addition of emergency fire pump engines and a portable backup combustor to be used when the primary combustor is out of service. Other permitted sources will be removed from the permit as they are no longer included in the facility plan, or they are not regulated emission sources.

The format and content of this application are consistent with the Bureau's current policy regarding NSR Significant Revision applications; it is a complete application package using the most current application form. Enclosed is a hard copy of the application, including the original certification. Please feel free to contact me at (505) 266-6611 or by email at <u>aerenstein@trinityconsultants.com</u> if you have any questions regarding this application. Alternatively, you may contact James Barron, Environmental & Regulatory Advisor for XTO Energy, Inc., at (346) 566-9345 or by email at <u>James.Barron@exxonmobil.com</u>.

Sincerely,

Adam Erenstein Manager of Consulting Services

Trinity Project File 243201.0116

	TRINITY CONSULTANTS, INC. 12700 PARK CENTRAL DRIVE STE. 600 DALLAS, TX 75251-1546 (972) 661-8100	Fraud Protected by Positive Pay	JPMORGAN CH. DALLAS, TX	ASE BANK, N.A. 32-61/1110 CHECK DATE	660381 December 13, 2024
Pay	Five Hundred and 00/100 Dollars New Mexico Environmental Department	· ·	-		amount \$ 500.00
To The Order Of	525 Camino de los Marquez Suite 1 Air Quality Bureau Santa Fe, NM 87505-1816		₽, ₽) ₽, =] (₽) ₽ ₽		90 DAYS

#660381# -::111000614:

9319954724#

TRINIT	Y	CONSI	ULTAN	TS,	INC.

CONSULTANTS, IN	IC.	Check Date: 12/13/2024			660381		
Invoice Number	Date	Voucher	Amount	Discounts	Previous Pay	Net Amount	
12242432010116NRSAF	12/10/2024	0177114	500.00			500.00	
New Mexico Environmental D)epartment	TOTAL	500.00			500.00	
CHASE BANK-	30	000006134					

TRINITY CONSULTANTS, INC.

660381

Air Permit Application Compliance History Disclosure Form

Pursuant to Subsection 74-2-7(S) of the New Mexico Air Quality Control Act ("AQCA"), NMSA §§ 74-2-1 to -17, the New Mexico Environment Department ("Department") may deny any permit application or revoke any permit issued pursuant to the AQCA if, within ten years immediately preceding the date of submission of the permit application, the applicant met any one of the criteria outlined below. In order for the Department to deem an air permit application administratively complete, or issue an air permit for those permits without an administrative completeness determination process, the applicant must complete this Compliance History Disclosure Form as specified in Subsection 74-2-7(P). An existing permit holder (permit issued prior to June 18, 2021) shall provide this Compliance History Disclosure Form to the Department upon request.

Permi	Permittee/Applicant Company Name		Expected Application Submittal Date			
XTO E	nergy Inc.		December 20, 2024			
Permi	ttee/Company Contact	Phone	Email			
James	Barron	(346) 566-9345	James.Barron@exxonmobil.com			
Withi	n the 10 years preceding the expected date					
1	Knowingly misrepresented a material fact	in an application for a permi	t?	🗆 Yes 🛛 No		
2	Refused to disclose information required by the provisions of the New Mexico Air Quality Control Act?					
3	Been convicted of a felony related to envi	ronmental crime in any court	of any state or the United States?	🗆 Yes 🗵 No		
4	Been convicted of a crime defined by state or federal statute as involving or being in restraint of trade, price fixing, bribery, or fraud in any court of any state or the United States?					
5a	a Constructed or operated any facility for which a permit was sought, including the current facility, without the required air quality permit(s) under 20.2.70 NMAC, 20.2.72 NMAC, 20.2.74 NMAC, 20.2.79 NMAC, or 20.2.84 NMAC?					
5b	If "No" to question 5a, go to question 6. If "Yes" to question 5a, state whether eac air quality permit met at least one of the f	-	d or operated without the required	🗆 Yes 🗆 No		
	a. The unpermitted facility was discovered authorized by the Department; or	d after acquisition during a ti	nely environmental audit that was			
	b. The operator of the facility estimated that the facility's emissions would not require an air permit, and the operator applied for an air permit within 30 calendar days of discovering that an air permit was required for the facility.					
6	Had any permit revoked or permanently suspended for cause under the environmental laws of any state or the United States?					
7	For each "yes" answer, please provide an	explanation and documentat	ion.			

Mail Application To:

New Mexico Environment Department Air Quality Bureau Permits Section 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico, 87505

Phone: (505) 476-4300 Fax: (505) 476-4375 www.env.nm.gov/aqb

Universal Air Quality Permit Application

Use this application for NOI, NSR, or Title V sources.

Use this application for: the initial application, modifications, technical revisions, and renewals. For technical revisions, complete Sections, 1-A, 1-B, 2-E, 3, 9 and any other sections that are relevant to the requested action; coordination with the Air Quality Bureau permit staff prior to submittal is encouraged to clarify submittal requirements and to determine if more or less than these sections of the application are needed. Use this application for streamline permits as well.

 This application is submitted as (check all that apply):
 Request for a No Permit Required Determination (no fee)

 Updating an application currently under NMED review.
 Include this page and all pages that are being updated (no fee required).

 Construction Status:
 Not Constructed
 Existing Permitted (or NOI) Facility
 Existing Non-permitted (or NOI) Facility

 Minor Source:
 NOI 20.2.73 NMAC
 20.2.72 NMAC application or revision
 20.2.72.300 NMAC Streamline application

 Title V Source:
 Title V (new)
 Title V renewal
 TV minor mod.
 TV significant mod.
 TV Acid Rain:
 New
 Renewal

 PSD Major Source:
 PSD major source (new)
 Minor Modification to a PSD source
 a PSD major modification

Acknowledgements:

I acknowledge that a pre-application meeting is available to me upon request. 🔲 Title V Operating, Title IV Acid Rain, and NPR applications have no fees.

S500 NSR application Filing Fee enclosed OR □ The full permit fee associated with 10 fee points (required w/ streamline applications).

Check No.: 660381 in the amount of **\$500**

I acknowledge the required submittal format for the hard copy application is printed double sided 'head-to-toe', 2-hole punched (except the Sect. 2 landscape tables is printed 'head-to-head'), numbered tab separators. Incl. a copy of the check on a separate page.

I acknowledge there is an annual fee for permits in addition to the permit review fee: <u>www.env.nm.gov/air-quality/permit-fees-</u> <u>2/.</u>

This facility qualifies for the small business fee reduction per 20.2.75.11.C. NMAC. The full \$500.00 filing fee is included with this application and I understand the fee reduction will be calculated in the balance due invoice. The Small Business Certification Form has been previously submitted or is included with this application. (Small Business Environmental Assistance Program Information: www.env.nm.gov/air-quality/small-biz-eap-2/.)

Citation: Please provide the **low level citation** under which this application is being submitted: **20.2.72.219.D(1) NMAC** (e.g. application for a new minor source would be 20.2.72.200.A NMAC, one example for a Technical Permit Revision is 20.2.72.219.B.1.b NMAC, a Title V acid rain application would be: 20.2.70.200.C NMAC)

Section 1 – Facility Information

Sect	tion 1-A: Company Information	AI # if known: 38481	Updating Permit/NOI #: 7877-M2		
1	Facility Name: Cowboy Central Delivery Point (CDP)	Plant primary SIC Code (4 digits): 1311			
T		Plant NAIC code (6 digits): 211120			
а	a Facility Street Address (If no facility street address, provide directions from a prominent landmark): 14 mi SE of Malaga, NM.				
2	Plant Operator Company Name: XTO Energy Inc.	Phone/Fax: (346) 56	56-9345 / N/A		
а	Plant Operator Address: 22777 Springwoods Village Pkwy, Spring, TX 77389				

b	Plant Operator's New Mexico Corporate ID or Tax ID: 1522747					
3	Plant Owner(s) name(s): XTO Energy Inc. Phone/Fax: (346) 566-9345 / N/A					
а	Plant Owner(s) Mailing Address(s): 22777 Springwoods Village Pkwy, Spring,	TX 77389				
4	Bill To (Company): XTO Energy Inc. Phone/Fax: (346) 566-9345 / N/A					
а	A Mailing Address: 22777 Springwoods Village Pkwy, Spring, TX 77389 E-mail: James.Barron@exxonmobil.com					
5	Preparer: Adam Erenstein Consultant: Trinity Consultant Inc. Phone/Fax: (505) 266-6611					
а	Mailing Address: 9400 Holly Ave NE, Bldg. 3, Ste. B, Albuquerque, NM 87122	E-mail: aerenstein@trinityconsultants.com				
6	Plant Operator Contact: James Barron	Phone/Fax: (346) 566-9345 / N/A				
а	Address: 22777 Springwoods Village Pkwy, Spring, TX 77389	E-mail: James.Barron@exxonmobil.com				
7	Air Permit Contact: James Barron	Title: Environmental & Regulatory Advisor				
а	E-mail: James.Barron@exxonmobil.com Phone/Fax: (346) 566-9345 / N/A					
b	Mailing Address: 22777 Springwoods Village Pkwy, Spring, TX 77389					
С	The designated Air permit Contact will receive all official correspondence (i.e. letters, permits) from the Air Quality Bureau.					

Section 1-B: Current Facility Status

1.a	Has this facility already been constructed? 🛛 Yes 🔲	1.b If yes to question 1.a, is it currently operating inNew Mexico?☑ Yes☑ No	
2	If yes to question 1.a, was the existing facility subject t Intent (NOI) (20.2.73 NMAC) before submittal of this a Yes No	If yes to question 1.a, was the existing facility subject to a construction permit (20.2.72 NMAC) before submittal of this application? Yes No	
3	Is the facility currently shut down? 🔲 Yes 🛛 No	If yes, give m	month and year of shut down (MM/YY):
4	Was this facility constructed before 8/31/1972 and con	erated since 1972? 🔲 Yes 🖾 No	
5	If Yes to question 3, has this facility been modified (see ☐ Yes ☐ No ☑ N/A	NMAC) or the capacity increased since 8/31/1972?	
6	Does this facility have a Title V operating permit (20.2. ☐ Yes ⊠ No	If yes, the permit No. is:N/A	
7	Has this facility been issued a No Permit Required (NPF	If yes, the NPR No. is: N/A	
8	Has this facility been issued a Notice of Intent (NOI)?		If yes, the NOI No. is: N/A
9	Does this facility have a construction permit (20.2.72/2 ☑ Yes □ No	C)? If yes, the permit No. is: 7877-M2	
10	Is this facility registered under a General permit (GCP- Yes 🛛 No	1, GCP-2, etc.))? If yes, the register No. is: N/A

Section 1-C: Facility Input Capacity & Production Rate

1	What is the facility's maximum input capacity, specify units (reference here and list capacities in Section 20, if more room is required)					
		Hourly:	Daily:	Annually:		
-	Current	41.67 MMSCF Natural Gas	1 BSCF Natural Gas	365 BSCF Natural Gas		
а	Current	25,000 bbl Oil	600,000 bbl Oil	219 MMbbl Oil		
		7,916.67 bbl Natural Gas Liquid	190,000 bbl Natural Gas Liquid	69.35 MMbbl Natural Gas Liquid		
	Proposed	Hourly:	Daily:	Annually:		
h		66.67 MMSCF Natural Gas	1.6 BSCF Natural Gas	584 BSCF Natural Gas		
D		25,000 bbl Oil	600,000 bbl Oil	219 MMbbl Oil		
		7,916.67 bbl Natural Gas Liquid	190,000 bbl Natural Gas Liquid	69.35 MMbbl Natural Gas Liquid		
2	What is the facility's maximum production rate, specify units (reference here and list capacities in Section 20, if more room is required)					
		Hourly:	Daily:	Annually:		
а	Current	41.67 MMSCF Natural Gas	1 BSCF Natural Gas	365 BSCF Natural Gas		
-		25,000 bbl Oil	600,000 bbl Oil	219 MMbbl Oil		

		7,916.67 bbl Natural Gas Liquid	190,0	00 bbl Natural Gas Liquid	69.35 MMbbl Natural Gas Liquid	
b	Proposed	Hourly: 41.67 MMSCF Natural Gas 25,000 bbl Oil 7,916.67 bbl Natural Gas Liquid	600,0	F Natural Gas 00 bbl Oil 00 bbl Natural Gas Liquid	Annually: 365 BSCF Natural Gas 219 MMbbl Oil 69.35 MMbbl Natural	Gas Liquid
Sec	tion 1-D:	Facility Location Infor	mation			
1	Latitude (o	lecimal degrees): 32.160000	Longitude	(decimal degrees): -103.841667	County: Eddy	Elevation (ft): 3397
2	UTM Zone	: 🗌 12 or 🔀 13		Datum: 🗌 NAD 83 🛛 🖾 WG	iS 84	
а	UTM E (in r	neters, to nearest 10 meters): 609,224	m	UTM N (in meters, to nearest 10 meter	rs): 3,558,758 m	
3	Name and	zip code of nearest New Mexico	town: Mala	aga, NM 88263		
4	on McDon	-	in Wells Rd	ittach a road map if necessary): He . In 0.6 mi. take slight left to stay c		
5	The facility	is 14 miles southeast of Malag	a, NM 8826	3		
6	Land Statu	s of facility (check one): 🔲 Priv	ate 🔲 Indi	ian/Pueblo 🔲 Government 🕅	BLM 🔲 Forest Sei	rvice 🔲 Military
7		nicipalities, Indian tribes, and cou facility is proposed to be constru		n a ten (10) mile radius (20.2.72.2 erated: Eddy and Lea	03.B.2 NMAC) of th	e property on
8	than 50 km publication	n (31 miles) to other states, Bern	alillo Count 6.A.7 NMA	which the facility is proposed to b y, or a Class I area (see <u>www.env.r</u> C) If yes, list all with corresponding	nm.gov/air-quality/	modeling-
9	Name nea	rest Class I area: Carlsbad Caverr	s National	Park		
10	Shortest d	istance (in km) from facility bour	idary to the	boundary of the nearest Class I a	rea (to the nearest 10 m	neters): 49.9 km
11				perations (AO is defined as the pla nearest residence, school or occup		
12	Method(s) used to delineate the Restricted Area: Fencing "Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted					
13	area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. Does the owner/operator intend to operate this source as a portable stationary source as defined in 20.2.72.7.X NMAC? Yes No A portable stationary source is not a mobile source, such as an automobile, but a source that can be installed permanently at one location or that can be re-installed at various locations, such as a hot mix asphalt plant that is moved to different jol sites. Will this facility operate in conjunction with other air regulated parties on the same property? No					2.7.X NMAC? ed permanently
14		t is the name and permit numbe		• • • • •		

Section 1-E: Proposed Operating Schedule (The 1-E.1 & 1-E.2 operating schedules may become conditions in the permit.)

1	Facility maximum operating ($\frac{hours}{day}$): 24	(<mark>days</mark>): 7	(weeks year): 52	(hours year): 8760		
2	Facility's maximum daily operating schedule (if less	than 24 hours day)? Start: N/A	□AM □PM	End: N/A	□AM □PM	
3	Month and year of anticipated start of construction	1: upon receipt of permit				
4	Month and year of anticipated construction completion: TBD					
5	Month and year of anticipated startup of new or modified facility: TBD					
6	Will this facility operate at this site for more than o	ne year? 🛛 Yes 🗌 No				

Section 1-F: Other Facility Information

1	Are there any current Notice of Violations (NOV), compliance orders, or any other compliance or enforcement issues related				
_	to this facility? 🔲 Yes 🛛 No If yes, specify:				
а	If yes, NOV date or description of issue: N/A NOV Tracking No: N/A				
	Is this application in response to any issue listed in 1-F, 1 o	r 1a abov	/e? Yes	🛛 No	
b	If Yes, provide the 1c & 1d info below:				
	Document	Data: N	/^	Requirer	nent # (or
С	Title: N/A	Date: N	/A	page # a	nd paragraph #): N/A
d	Provide the required text to be inserted in this permit: N/A	4			
2	Is air quality dispersion modeling or modeling waiver being	g submitt	ed with this	applicatio	n? 🛛 Yes 🗌 No
3	Does this facility require an "Air Toxics" permit under 20.2	.72.400 N	NMAC & 20.2	2.72.502, 1	ables A and/or B? 🔲 Yes 🛛 No
4	Will this facility be a source of federal Hazardous Air Pollut	ants (HA	P)? 🔀 Yes	🗌 No	
а	If Yes, what type of source? Major (≥10 tpy of a OR Minor (<10 tpy of any				tpy of any combination of HAPS) py of any combination of HAPS)
5	Is any unit exempt under 20.2.72.202.B.3 NMAC?	🗹 No			
	If yes, include the name of company providing commercial	l electric	power to the	e facility: _	N/A
а	Commercial power is purchased from a commercial utility on site for the sole purpose of the user.	compan	y, which spe	cifically d	oes not include power generated
Sec	tion 1-G: Streamline Application (This section a	applies to	20.2.72.300	NMAC Stre	amline applications only)
1	I have filled out Section 18, "Addendum for Streamlin	e Applica	itions."	T) N/A 🛛	his is not a Streamline application.)
Sect	Section 1-H: Current Title V Information - Required for all applications from TV Sources				
-	(Title V-source required information for all applications submitted pursuant to 20.2.72 NMAC (Minor Construction Permits), or 20.2.74/20.2.79 NMAC (Major PSD/NNSR applications), and/or 20.2.70 NMAC (Title V))				
1	Responsible Official (R.O.) Phone: N/A				
а	R.O. Title: N/A		R.O. e-mail:	N/A	

1	Responsible Official (R.O.) (20.2.70.300.D.2 NMAC): N/A		Phone: N/A		
а	R.O. Title: N/A	R.O. e-mail: N/A			
b	R. O. Address: N/A				
2	Alternate Responsible Official (20.2.70.300.D.2 NMAC): N/A		Phone: N/A		
а	A. R.O. Title: N/A	A. R.O. e-mail: N/A	N Contraction of the second seco		
b	A. R. O. Address: N/A				
3	Company's Corporate or Partnership Relationship to any other Air have operating (20.2.70 NMAC) permits and with whom the applic relationship): N/A				
4	Name of Parent Company ("Parent Company" means the primary permitted wholly or in part.): N/A	name of the organiz	ation that owns the company to be		
а	Address of Parent Company: N/A				
5	Names of Subsidiary Companies ("Subsidiary Companies" means organizations, branches, divisions or subsidiaries, which are owned, wholly or in part, by the company to be permitted.): N/A				
6	Telephone numbers & names of the owners' agents and site contacts familiar with plant operations:				
7	Affected Programs to include Other States, local air pollution control programs (i.e. Bernalillo) and Indian tribes: Will the property on which the facility is proposed to be constructed or operated be closer than 80 km (50 miles) from other states, local pollution control programs, and Indian tribes and pueblos (20.2.70.402.A.2 and 20.2.70.7.B)? If yes, state which ones and provide the distances in kilometers: N/A				

Section 1-I – Submittal Requirements

Each 20.2.73 NMAC (**NOI**), a 20.2.70 NMAC (**Title V**), a 20.2.72 NMAC (**NSR** minor source), or 20.2.74 NMAC (**PSD**) application package shall consist of the following:

Hard Copy Submittal Requirements:

- One hard copy original signed and notarized application package printed double sided 'head-to-toe' <u>2-hole punched</u> as we bind the document on top, not on the side; except Section 2 (landscape tables), which should be head-to-head. Please use numbered tab separators in the hard copy submittal(s) as this facilitates the review process. For NOI submittals only, hard copies of UA1, Tables 2A, 2D & 2F, Section 3 and the signed Certification Page are required. Please include a copy of the check on a separate page.
- 2) If the application is for a minor NSR, PSD, NNSR, or Title V application, include one working hard **copy** for Department use. This <u>copy</u> should be printed in book form, 3-hole punched, and <u>must be double sided</u>. Note that this is in addition to the head-to-to 2-hole punched copy required in 1) above. Minor NSR Technical Permit revisions (20.2.72.219.B NMAC) only need to fill out Sections 1-A, 1-B, 3, and should fill out those portions of other Section(s) relevant to the technical permit revision. TV Minor Modifications need only fill out Sections 1-A, 1-B, 1-H, 3, and those portions of other Section(s) relevant to the minor modification. NMED may require additional portions of the application to be submitted, as needed.
- 3) The entire NOI or Permit application package, including the full modeling study, should be submitted electronically. Electronic files for applications for NOIs, any type of General Construction Permit (GCP), or technical revisions to NSRs must be submitted with compact disk (CD) or digital versatile disc (DVD). For these permit application submittals, two CD copies are required (in sleeves, not crystal cases, please), with additional CD copies as specified below. NOI applications require only a single CD submittal. Electronic files for other New Source Review (construction) permits/permit modifications or Title V permits/permit modifications can be submitted on CD/DVD or sent through AQB's secure file transfer service.

Electronic files sent by (check one):

CD/DVD attached to paper application

Secure electronic transfer. Air Permit Contact Name Adam Erenstein, Email aerenstein@trinityconsultants.com

Phone number <u>(505) 266-6611</u>

a. If the file transfer service is chosen by the applicant, after receipt of the application, the Bureau will email the applicant with instructions for submitting the electronic files through a secure file transfer service. Submission of the electronic files through the file transfer service needs to be completed within 3 business days after the invitation is received, so the applicant should ensure that the files are ready when sending the hard copy of the application. The applicant will not need a password to complete the transfer. **Do not use the file transfer service for NOIs, any type of GCP, or technical revisions to NSR permits.**

- 4) Optionally, the applicant may submit the files with the application on compact disk (CD) or digital versatile disc (DVD) following the instructions above and the instructions in 5 for applications subject to PSD review.
- 5) If air dispersion modeling is required by the application type, include the NMED Modeling Waiver and/or electronic air dispersion modeling report, input, and output files. The dispersion modeling <u>summary report only</u> should be submitted as hard copy(ies) unless otherwise indicated by the Bureau.
- 6) If the applicant submits the electronic files on CD and the application is subject to PSD review under 20.2.74 NMAC (PSD) or NNSR under 20.2.79 NMC include,
 - a. one additional CD copy for US EPA,
 - b. one additional CD copy for each federal land manager affected (NPS, USFS, FWS, USDI) and,
 - c. one additional CD copy for each affected regulatory agency other than the Air Quality Bureau.

If the application is submitted electronically through the secure file transfer service, these extra CDs do not need to be submitted.

Electronic Submittal Requirements [in addition to the required hard copy(ies)]:

- 1) All required electronic documents shall be submitted as 2 separate CDs or submitted through the AQB secure file transfer service. Submit a single PDF document of the entire application as submitted and the individual documents comprising the application.
- 2) The documents should also be submitted in Microsoft Office compatible file format (Word, Excel, etc.) allowing us to access the

Cowboy CDP

text and formulas in the documents (copy & paste). Any documents that cannot be submitted in a Microsoft Office compatible format shall be saved as a PDF file from within the electronic document that created the file. If you are unable to provide Microsoft office compatible electronic files or internally generated PDF files of files (items that were not created electronically: i.e. brochures, maps, graphics, etc.), submit these items in hard copy format. We must be able to review the formulas and inputs that calculated the emissions.

- 3) It is preferred that this application form be submitted as 4 electronic files (3 MSWord docs: Universal Application section 1 [UA1], Universal Application section 3-19 [UA3], and Universal Application 4, the modeling report [UA4]) and 1 Excel file of the tables (Universal Application section 2 [UA2]). Please include as many of the 3-19 Sections as practical in a single MS Word electronic document. Create separate electronic file(s) if a single file becomes too large or if portions must be saved in a file format other than MS Word.
- 4) The electronic file names shall be a maximum of 25 characters long (including spaces, if any). The format of the electronic Universal Application shall be in the format: "A-3423-FacilityName". The "A" distinguishes the file as an application submittal, as opposed to other documents the Department itself puts into the database. Thus, all electronic application submittals should begin with "A-". Modifications to existing facilities should use the core permit number (i.e. '3423') the Department assigned to the facility as the next 4 digits. Use 'XXXX' for new facility applications. The format of any separate electronic submittals (additional submittals such as non-Word attachments, re-submittals, application updates) and Section document shall be in the format: "A-3423-9-description", where "9" stands for the section # (in this case Section 9-Public Notice). Please refrain, as much as possible, from submitting any scanned documents as this file format is extremely large, which uses up too much storage capacity in our database. Please take the time to fill out the header information throughout all submittals as this will identify any loose pages, including the Application Date (date submitted) & Revision number (0 for original, 1, 2, etc.; which will help keep track of subsequent partial update(s) to the original submittal. Do not use special symbols (#, @, etc.) in file names. The footer information should not be modified by the applicant.

Table of Contents

- Section 1: General Facility Information
- Section 2: Tables
- Section 3: Application Summary
- Section 4: Process Flow Sheet
- Section 5: Plot Plan Drawn to Scale
- Section 6: All Calculations
- Section 7: Information Used to Determine Emissions
- Section 8: Map(s)
- Section 9: Proof of Public Notice
- Section 10: Written Description of the Routine Operations of the Facility
- Section 11: Source Determination
- Section 12: PSD Applicability Determination for All Sources & Special Requirements for a PSD Application
- Section 13: Discussion Demonstrating Compliance with Each Applicable State & Federal Regulation
- Section 14: Operational Plan to Mitigate Emissions
- Section 15: Alternative Operating Scenarios
- Section 16: Air Dispersion Modeling
- Section 17: Compliance Test History
- Section 18: Addendum for Streamline Applications (streamline applications only)
- Section 19: Requirements for the Title V (20.2.70 NMAC) Program (Title V applications only)
- Section 20: Other Relevant Information
- Section 21: Addendum for Landfill Applications
- Section 22: Certification Page

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
	Stabilization Hot Oil		G110 5000	PK-6010	58.93	58.93	2018	N/A		□ Existing (unchanged) □ To be Removed		27/4
SHTR1	Heater (58.93 MMBtu/hr)	THM	SHO5000	H-6012	MMBtu/hr	MMBtu/hr	2020	SHTR1	31000403	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
	Stabilization Hot Oil			PK-6020	58.93	58.93	2018	N/A		□ Existing (unchanged) □ To be Removed		
SHTR2	Heater (58.93 MMBtu/hr)	THM	SHO5000	H-6022	MMBtu/hr		2020	SHTR2	31000403	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
	Stabilization Hot Oil			PK-6030	58.93	58.93	2018	N/A		□ Existing (unchanged) □ To be Removed		
SHTR3	Heater (58.93 MMBtu/hr)	THM	SHO5000	H-6032	MMBtu/hr		2020	SHTR3	31000403	 □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	N/A	N/A
	Stabilization Hot Oil			PK-6040	58.93	58.93	2019	N/A		□ Existing (unchanged) □ To be Removed		
SHTR4	Heater	THM	SHO5000	РК-6040 H-6042	MMBtu/hr		2022	SHTR4	31000403	 □ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced 	N/A	N/A
	(58.93 MMBtu/hr) Stabilization Hot Oil			D <i>U</i> (0(0	50.00	50.02	2022	N/A		□ Existing (unchanged) □ To be Removed		
SHTR5	Heater	THM	SHO5000	РК-6060 Н-6062	58.93 MMBtu/hr	58.93 MMBtu/hr	2013	SHTR5	31000403	New/Additional Replacement Unit	N/A	N/A
	(58.93 MMBtu/hr) Stabilization Hot Oil							N/A		 ☑ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed 		
SHTR6	Heater	THM	SHO5000	TBD	58.93 MMBtu/hr	58.93 MMBtu/hr	TBD		31000403	□ New/Additional □ Replacement Unit	N/A	N/A
	(58.93 MMBtu/hr)						TBD	SHTR6		☑ To Be Modified □ To be Replaced		
	Stabilization Hot Oil Heater w/ SCR				58.93	58.93	TBD	SHTR7- CAT		□ Existing (unchanged) □ To be Removed		
SHTR7	catalyst (58.93 MMBtu/hr)	THM	SHO5000	TBD	MMBtu/hr	MMBtu/hr	TBD	SHTR7	31000403	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
	Stabilization Hot Oil						TBD	SHTR8-				+
SHTR8	Heater w/ SCR catalyst	THM	SHO5000	TBD	58.93 MMBtu/hr	58.93 MMBtu/hr	TDD	CAT	31000403	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	(58.93 MMBtu/hr)				WIWDu/III	WINDtu/III	TBD	SHTR8		☑ To Be Modified □ To be Replaced		
CHTR1	Cryo Hot Oil Heater	THM	SHO5000	PK-6110	94.54	94.54	2019	N/A	31000403	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
CIIIKI	(94.54 MMBtu/hr)	111111	51105000	H-6112	MMBtu/hr	MMBtu/hr	2021	CHTR1	51000405	$\square \text{ New Additional} \square \text{ Replacement Only} \\ \square \text{ To Be Modified} \square \text{ To be Replaced} \\ \square$	11/7	11/2
CUTDO	Cryo Hot Oil Heater		51105000	PK-6120	94.54	94.54	2019	NA	21000402	□ Existing (unchanged) □ To be Removed		
CHTR2	(94.54 MMBtu/hr)	THM	SHO5000	H-6122	MMBtu/hr	MMBtu/hr	2023	CHTR2	31000403	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
	Cryo Hot Oil Heater						TBD	CHTR3-		□ Existing (unchanged) □ To be Removed		
CHTR3	w/ SCR Catalyst	THM	SHO5000	TBD	94.54 MMBtu/hr	94.54 MMBtu/hr		CAT	31000403	□ New/Additional □ Replacement Unit	N/A	N/A
	(94.54 MMBtu/hr)						TBD	CHTR3		☑ To Be Modified □ To be Replaced		
	Cryo Hot Oil Heater				94.54	94.54	TBD	CHTR4- CAT	AT 31000403 □ Existing (unchanged TR4 31000403 □ New/Additional ☑ To Be Modified ☑	□ Existing (unchanged) □ To be Removed		
CHTR4	w/ SCR Catalyst (94.54 MMBtu/hr)	THM	SHO5000	TBD	MMBtu/hr		TBD	CHTR4		*	N/A	N/A
	、									□ Existing (unchanged) □ To be Removed		
RHTR1	Regen Heater (35.25 MMBtu/hr)	THM	SHO2500	Н-3132	35.25 MMBtu/hr	35.25 MMBtu/hr	2018 2021	N/A RHTR1	31000405	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack#	fication Code (SCC)	For Each Piece of Equipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
RHTR2	Regen Heater (35.25 MMBtu/hr)	THM	SHO2500	Н-3232	35.25 MMBtu/hr	35.25 MMBtu/hr	2019 2023	N/A RHTR2	31000405	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
RHTR3	Regen Heater (35.25 MMBtu/hr)	THM	SHO2500	Н-3332	35.25 MMBtu/hr	35.25 MMBtu/hr	2019 TBD	N/A RHTR3	31000405	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
RHTR4	Regen Heater (35.25 MMBtu/hr)	THM	SHO2500	TBD	35.25 MMBtu/hr	35.25 MMBtu/hr	TBD	N/A RHTR4	31000405	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
FL1	CDP Flare 1 (Dual Tip Flare)	Zeeco, Inc.	N/A	FS 9020 S.O # 35284	20 MMscfd	20 MMscfd	2019	N/A FL1	31000160	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
FL2	Cryo Flare 2 (Dual Tip Flare)	Zeeco, Inc.	N/A	FS 6960 S.O # 38126	20 MMscfd	20 MMscfd	2019 2020	N/A FL2	31000160	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
FL3	Cryo Flare 3 (Dual Tip Flare)	Zeeco, Inc.	N/A	FS-6962	20 MMscfd	20 MMscfd	TBD 2024	N/A FL3	31000160	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
FL1-FL3OVHD- SSM	FL1-FL3 Stabilizer Overhead SSM Gas	Zeeco, Inc.	N/A	N/A	250 MMscfd	250 MMscfd	N/A N/A	FL1-FL3 FL1-	31000160	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
FL1-FL3CRYO- SSM	FL1-FL3 Cryo Blowdown SSM Gas	Zeeco, Inc.	N/A	N/A	250 MMscfd	250 MMscfd	N/A N/A	FL3OVHD- FL1-FL3 FL1-	31000160	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
IFR1	Oil Storage Tank 1 (50,000 bbl)	Advance Tank	N/A	TK-4201	50,000 bbl	50,000 bbl	2019 2020	FL3CRYO- N/A IFR1	40400331	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
IFR2	Oil Storage Tank 2 (50,000 bbl)	Advance Tank	N/A	TK-4202	50,000 bbl	50,000 bbl	2019 2020	N/A IFR2	40400331	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
IFR3	Oil Storage Tank 3 (50,000 bbl)	Advance Tank	N/A	TK-4203	50,000 bbl	50,000 bbl	2019 2020	N/A IFR3	40400331	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
IFR4	Oil Storage Tank 4 (50,000 bbl)	Advance Tank	N/A	TK-4204	50,000 bbl	50,000 bbl	2020 2019 2020	N/A IFR4	40400331	□ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
IFR5	Oil Storage Tank 5 (100,000 bbl)	TBD	N/A	TK-4211	100,000 bbl	100,000 bbl	3/31/2023 12/10/2023	N/A IFR5	40400331	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
IFR6	Oil Storage Tank 6 (100,000 bbl)	TBD	N/A	TK-4212	100,000 bbl	100,000 bbl	3/31/2023	N/A IFR6	40400331	☑ To Be Modified □ To be Replaced □ Existing (unchanged) □ To be Removed □ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
IFR7	Oil Storage Tank 7	TBD	N/A	TK-4213	100,000 bbl	100,000 bbl	3/31/2023	N/A	40400331	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	(100,000 bbl)						1/21/2024	IFR7		☑ To Be Modified □ To be Replaced		
IFR8	Oil Storage Tank 8	TBD	N/A	TK-4214	100,000 bbl	100,000 bbl	3/31/2023	N/A	40400331	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	(100,000 bbl)						11/8/2023	IFR8		☑ To Be Modified □ To be Replaced		
IFR9	Oil Storage Tank 9	TBD	N/A	TK-4215	100,000 bbl	100,000 bbl	TBD	N/A	40400331	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	(100,000 bbl)						TBD	IFR9		☑ To Be Modified □ To be Replaced		
IFR10	Oil Storage Tank 10	TBD	N/A	TK-4216	100,000 bbl	100,000 bbl	3/12/2024	N/A	40400331	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	(100,000 bbl)					, ,	6/24/2024	IFR10		To Be Modified		
IFR11	Oil Storage Tank 11	TBD	N/A	TK-4217	100.000 bbl	100,000 bbl	3/12/2024	N/A	40400331	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	(100,000 bbl)			,			5/30/2024	IFR11		☑ To Be Modified □ To be Replaced		
IFR12	Oil Storage Tank 12	TBD	N/A	TK-4218	100 000 bbl	100,000 ьы	TBD	N/A	40400331	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
11 1(12	(100,000 bbl)	100	14/14	111 1210	100,000 001	100,000 001	TBD	IFR12	10100331	☑ To Be Modified □ To be Replaced	10/21	1.071
IFR13	Oil Storage Tank 13	TBD	N/A	TK-4219	100 000 bbl	100,000 ьы	3/12/2024	N/A	40400331	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
II KIS	(100,000 bbl)	TDD	14/14	1 K 4217	100,000 001	100,000 001	7/22/2024	IFR13	40400551	$\square requirement of the set of $	14/24	11/21
IFR14	Oil Storage Tank 14	TBD	N/A	TK-4220	100 000 661	100,000 ьы	3/12/2024	N/A	40400331	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
11/1/14	(100,000 bbl)	IBD	11/74	1K-4220	100,000 001	100,000 001	6/7/2024	IFR14	40400331	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	11/74	IN/A
ECD1	Combustor 1	7	N/A	FS-6820	N/A	N/A	2019	N/A	31000209	□ Existing (unchanged) □ To be Removed	N/A	N/A
ECDI	Combustor 1	Zeeco, Inc.	IN/A	SO # 35567	IN/A	IN/A	2020	ECD1	31000209	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	IN/A	IN/A
			Zephyr-9-48				TBD	N/A		□ Existing (unchanged) □ To be Removed		
ECD2a / ECD2b	Combustor 2	Zeeco, Inc.	Zephyr-7.5-40	TBD	N/A	N/A	TBD	ECD2a / ECD2b	31000209	☑ New/Additional □ Replacement Unit □ To Be Modified □ To be Replaced	N/A	N/A
TO1	The survey logicities of	7	NT/ A	TO-6980	25	25	2018	N/A	31000209	□ Existing (unchanged) □ To be Removed		NT/ A
TO1	Thermal Oxidizer	Zeeco, Inc.	N/A	SO # 35595	MMbtu/hr	MMbtu/hr	2019	TO1	31000209	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
TO2	Thermal Oxidizer	Zeeco, Inc.	N/A	TBD	25	25	TBD	N/A	31000209	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
102		Zeeco, me.	10/11	IDD	MMbtu/hr	MMbtu/hr	TBD	TO2	51000207	$\square \text{ To Be Modified} \square \text{ To be Replaced}$	10/21	11/21
TO3	Thermal Oxidizer	Zeeco, Inc.	N/A	TBD	25	25	TBD	N/A	31000209	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
-		,			MMbtu/hr	MMbtu/hr	TBD	TO3		☑ To Be Modified □ To be Replaced		
TO4	Thermal Oxidizer	Zeeco, Inc.	N/A	TBD	25	25	TBD	N/A	31000209	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
		,			MMbtu/hr	MMbtu/hr	TBD	TO4		\square To Be Modified \square To be Replaced		

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
FUG	Fucitives	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
ruu	Fugitives	IN/A	\mathbf{N}/\mathbf{A}	IN/A	IN/A	IN/A	N/A	FUG	51088811	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	IN/A	IN/A
SSM/M	SSM Emissions	N/A	N/A	N/A	N/A	N/A	N/A	N/A	31088811	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
55101101	Sofir Limstrons	10/11	1011	1011	10/11	1011	N/A	SSM/M	21000011	□ To Be Modified □ To be Replaced	1011	1011
AU1	Amine Sweetener 1	Sexton	N/A	V-6978	250	250	2019	TO1	31000305	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
1101		Industrial	1011	V-6979	MMSCFD	MMSCFD	TBD	TO1	51000505	□ To Be Modified □ To be Replaced	1011	1011
AU2	Amine Sweetener 2	TBD	N/A	TBD	250	250	TBD	TO2	31000305	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
					MMSCFD	MMSCFD	TBD	TO2		□ To Be Modified □ To be Replaced		
AU3	Amine Sweetener 3	TBD	N/A	TBD	250	250	TBD	TO3	31000305	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
					MMSCFD	MMSCFD	TBD	TO3		□ To Be Modified □ To be Replaced		
AU4	Amine Sweetener 4	TBD	N/A	TBD	250	250	TBD	TO4	31000305	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
					MMSCFD	MMSCFD	TBD	TO4		□ To Be Modified □ To be Replaced		
CDC1		Angelina	27/4	TH 7001	1 000 111	1 000 111	2019	ECD1 / ECD2a/2b	21000506	□ Existing (unchanged) □ To be Removed		27/4
GBS1	Gunbarrel Tank	Tank	N/A	TK-7001	1,000 bbl	1,000 bbl	2020	ECD1 /	31000506	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
							2019	ECD2a/2b ECD1 /				
PWTK1	Produced Water Tank	HMI	N/A	TK-7005	750 bbl	750 bbl		ECD2a/2b ECD1 /	40400315	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	1						2020	ECD2a/2b		☑ To Be Modified □ To be Replaced		
	Produced Water Tank	ID (I	NT/A	TH 7000	750111	750111	2019	ECD1 / ECD2a/2b	40400215	□ Existing (unchanged) □ To be Removed		
PWTK2	2	HMI	N/A	TK-7006	750 bbl	750 bbl	2020	ECD1 /	40400315	□ New/Additional □ Replacement Unit ☑ To Be Modified □ To be Replaced	N/A	N/A
							2019	ECD2a/2b ECD1 /		□ Existing (unchanged) □ To be Removed		
SOTK1	Slop Oil Tank	HMI11	N/A	TK-6895	500 bbl	500 bbl		ECD2a/2b ECD1 /	40400311	New/Additional Replacement Unit	N/A	N/A
							2020	ECD2a/2b		☑ To Be Modified □ To be Replaced		
SOTL	Slop Oil Truck	TBD	N/A	N/A	210 bbl/day	210 bbl/day	N/A	ECD1 / ECD2a/2b	40400250	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
JOIL	Loading	TDD	1 1/2 1	14/11	210 001 duy	210 001 duy	N/A	SOTL	10100250	☑ To Be Modified □ To be Replaced	1.1/21	1.0.2 1
GEN1	Emergency Generator	Caterpillar	G3520H	G-7400	3448 HP	3448 HP	12/1/2019	N/A	20200254	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	4SLB	N/A
		Caterpinar	033200	GFR01251	J440 IIP	J440 III	2020	GEN1	20200254	□ To Be Modified □ To be Replaced	HOLD	IN/A
GEN2	Emergency Generator	Caterpillar	G3520H	G-7410	3448 HP	3448 HP	9/1/2020	N/A	20200254	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	4SLB	N/A
ULINZ	Emergency Generator	Caterpinal	0552011	GFR01272	5770111	JTTO III	2023	GEN2	20200234	□ To Be Modified □ To be Replaced		11/7

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack#	fication Code (SCC)	For Each Piece of Equipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
CEN12		C. (C252011	TDD	2449 110	2449 110	TBD	N/A	20200254	☑ Existing (unchanged) □ To be Removed	ACL D	
GEN3	Emergency Generator	Caterpillar	G3520H	TBD	3448 HP	3448 HP	TBD	GEN3	20200254	New/Additional Replacement Unit To Be Modified To be Replaced	4SLB	N/A
CEN4	Emonopolic	Catamillar	C252011	TBD	3448 HP	3448 HP	TBD	N/A	20200254	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	451 D	N/A
GEN4	Emergency Generator	Caterpillar	G3520H	IBD	5446 ПР	3448 ПР	TBD	GEN4	20200234	To Be Modified To be Replaced	4SLB	IN/A
EOOSCOMP1	Electric Oil Overhead	Ariel	JGT-2	K-1600	450 HP	450 HP	2/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
EOOSCOMPT	Stabilizer Compressors	After	JG1-2	F-59023	430 HP	430 HP	6/1/2020	N/A	IN/A	□ To Be Modified □ To be Replaced	IN/A	IN/A
EOOSCOMP2	Electric Oil Overhead	Ariel	JGT-2	K-1610	450 HP	450 HP	2/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
E005COMI 2	Stabilizer Compressors	Allel	JOT-2	F-59144	430 111	430 111	6/1/2020	N/A	11/74	□ To Be Modified □ To be Replaced	11/74	11/A
EOOSCOMP3	Electric Oil Overhead	Ariel	JGT-2	K-1620	450 HP	450 HP	2/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Loobeoning	Stabilizer Compressors	7 11 101	JOI 2	F-59213	150 111	150 111	6/1/2020	N/A	10/11	□ To Be Modified □ To be Replaced	10/11	1071
EOOSCOMP4	Electric Oil Overhead	Ariel	JGT-2	TBD	450 HP	450 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Looscollin	Stabilizer Compressors	7 miler	JOI 2	100	150 111	100 111	TBD	N/A	10/1	□ To Be Modified □ To be Replaced	10/11	1071
EOOSCOMP5	Electric Oil Overhead	Ariel	JGT-2	TBD	450 HP	450 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Looscolling	Stabilizer Compressors	7 miler	JOI 2	100	150 111	100 111	TBD	N/A	10/11	□ To Be Modified □ To be Replaced	10/11	1071
EOOSCOMP6	Electric Oil Overhead	Ariel	JGT-2	TBD	450 HP	450 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Looscollino	Stabilizer Compressors	7 miler	JOI 2	100	150 111	150 111	TBD	N/A	10/11	□ To Be Modified □ To be Replaced	10/11	1071
EOOSCOMP7	Electric Oil Overhead	Ariel	JGT-2	TBD	450 HP	450 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Looscollii /	Stabilizer Compressors	7 miler	JOI 2	100	150 111	100 111	TBD	N/A	10/11	□ To Be Modified □ To be Replaced	10/11	1071
ECOSCOMP1	Electric Condenstate Overhead Stabilizer	Ariel	JGH-2	K-2600	750 HP	750 HP	2/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Leobeonnii	Compressors		JOH 2	F-59006	750111	/20111	6/1/2020	N/A	10/1	□ To Be Modified □ To be Replaced	10/11	1071
ECOSCOMP2	Electric Condenstate Overhead Stabilizer	Ariel	JGH-2	K-2610	750 HP	750 HP	2/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressors		00112	F-59007	, 00 III	/20 III	6/1/2020	N/A	1011	□ To Be Modified □ To be Replaced	1071	1011
ECOSCOMP3	Electric Condenstate Overhead Stabilizer	Ariel	JGH-2	K-2620	750 HP	750 HP	2/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressors		00112	F-59142	, 00 III	700 III	6/1/2020	N/A	1071	□ To Be Modified □ To be Replaced	1071	1011
ECOSCOMP4	Electric Condenstate Overhead Stabilizer	Ariel	JGH-2	K-2700	750 HP	750 HP	8/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressors		00112	F-61085	, 00 III	/20 III	9/1/2021	N/A	10/11	□ To Be Modified □ To be Replaced	1011	1011
ECOSCOMP5	Electric Condenstate Overhead Stabilizer	Ariel	JGH-2	TBD	750 HP	750 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressors				,	,	TBD	N/A	1.111	□ To Be Modified □ To be Replaced	11111	1.011
ECOSCOMP6	Electric Condenstate Overhead Stabilizer	Ariel	JGH-2	TBD	750 HP	750 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressors				,	,	TBD	N/A	1.111	□ To Be Modified □ To be Replaced	11111	1.011
ECOSCOMP7	Electric Condenstate Overhead Stabilizer	Ariel	JGH-2	TBD	750 HP	750 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressors			100	,	,	TBD	N/A	1,711	□ To Be Modified □ To be Replaced	1,771	1,711

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack#	fication Code (SCC)	For Each Piece of Equipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ERESCOMP1	Electric Residue Gas	A: -1	VD7/(K-3600	(500 LID	6500 HP	5/1/2019	N/A	N/A	☑ Existing (unchanged) □ To be Removed		NI/A
ERESCOMPT	Compressor	Ariel	KBZ/6	F-60185	6500 HP	6300 HP	1/1/2021	N/A	IN/A	New/Additional Replacement Unit To Be Modified To be Replaced	N/A	N/A
ERESCOMP2	Electric Residue Gas	Ariel	KBZ/6	K-3610	6500 HP	6500 HP	5/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
LICESCOWI 2	Compressor	Alter	IXDZ/0	F-60281	0500 111	0500 111	1/1/2021	N/A	IWA	□ To Be Modified □ To be Replaced	IWA	
ERESCOMP3	Electric Residue Gas	Ariel	KBZ/6	K-3620	6500 HP	6500 HP	6/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
ERESCOWI 5	Compressor	And	KDZ/0	F-60484	0500 111	0500 111	1/1/2021	N/A	11/A	□ To Be Modified □ To be Replaced		11/74
ERESCOMP4	Electric Residue Gas	Ariel	KBZ/6	K-3630	6500 HP	6500 HP	6/1/2019	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
LILLSCOMI 4	Compressor			F-60505	0000111	0500111	1/1/2021	N/A	10/1	□ To Be Modified □ To be Replaced	1071	11/21
ERESCOMP5	Electric Residue Gas	Ariel	KBZ/6	K-3640	6500 HP	6500 HP	6/1/2020	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
LICESCOMI 5	Compressor			F-62887	0000111	0500111	5/1/2022	N/A	10/1	□ To Be Modified □ To be Replaced	1071	11/21
ERESCOMP6	Electric Residue Gas	Ariel	KBZ/6	K-3650	6500 HP	6500 HP	6/1/2020	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
LILBEONI	Compressor			F-62902	0000111	0000111	5/1/2022	N/A	10/1	□ To Be Modified □ To be Replaced	1011	10/11
ERESCOMP7	Electric Residue Gas	Ariel	KBZ/6	K-3660	6500 HP	6500 HP	7/1/2020	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressor			F-62931	0000111	0000111	5/1/2022	N/A	1011	□ To Be Modified □ To be Replaced	1011	1011
ERESCOMP8	Electric Residue Gas	Ariel	KBZ/6	TBD	6500 HP	6500 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
Littleeeiiii e	Compressor			100	0200111	0000111	TBD	N/A	1011	□ To Be Modified □ To be Replaced	1011	1011
ERESCOMP9	Electric Residue Gas	Ariel	KBZ/6	TBD	6500 HP	6500 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressor		1222.0	122	0000111		TBD	N/A	1011	□ To Be Modified □ To be Replaced	1	1.011
ERESCOMP10	Electric Residue Gas	Ariel	KBZ/6	TBD	6500 HP	6500 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressor						TBD	N/A		□ To Be Modified □ To be Replaced		
ERESCOMP11	Electric Residue Gas	Dresser	D8R8B	K-3700	15865 HP	15865 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressor	Rand	201102	SN169376-A1	10000 111	10000 111	1/1/2023	N/A	1011	□ To Be Modified □ To be Replaced		1.011
ERESCOMP12	Electric Residue Gas	Dresser	D8R8B	K-3710	15865 HP	15865 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressor	Rand		SN169376-B1			1/1/2023	N/A		□ To Be Modified □ To be Replaced		
ERESCOMP13	Electric Residue Gas	Dresser	D8R8B	K-3720	15865 HP	15865 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressor	Rand		SN169376-C1			TBD	N/A		□ To Be Modified □ To be Replaced		
ERESCOMP14	Electric Residue Gas	Dresser	D8R8B	TBD	15865 HP	15865 HP	TBD	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
	Compressor	Rand	20100	150	10000 111	10000 111	TBD	N/A	1.111	□ To Be Modified □ To be Replaced	11111	1.7.11

Unit and stack numbering must correspond throughout the application package. If applying for a NOI under 20.2.73 NMAC, equipment exemptions under 2.72.202 NMAC do not apply.

					Manufact- urer's Rated	Requested Permitted	Date of Manufacture ²	Controlled by Unit #	Source Classi-		RICE Ignition Type	
Unit Number ¹	Source Description	Make	Model #	Serial #	Capacity ³ (Specify Units)	Capacity ³ (Specify Units)	Date of Construction/ Reconstruction ²	Emissions vented to Stack #	fication Code (SCC)	For Each Piece of Equipment, Check One	(CI, SI, 4SLB, 4SRB, 2SLB) ⁴	Replacing Unit No.
ERESCOMP15	Electric Residue Gas	Ariel	KBZ/6	TBD	6500 HP	6500 HP	N/A	N/A	N/A	 Existing (unchanged) Mew/Additional Replacement Unit 	N/A	N/A
EKESCOWF15	Compressor	Allel	KDZ/0	IDD	0300 HF	0300 HF	N/A	N/A	IN/A	Image: New/Additional Image: Replacement Onter Image: New / Additional Image: Replacement Onter	IN/A	IN/A
ERESCOMP16	Electric Residue Gas	Ariel	KBZ/6	TBD	6500 HP	6500 HP	N/A	N/A	N/A	 Existing (unchanged) Image: New/Additional Replacement Unit 	N/A	N/A
EKESCOMI 10	Compressor	Allel	KDZ/0	IBD	0500 111	0500 111	N/A	N/A	IN/A	To Be Modified To be Replaced	11/24	\mathbf{N}/\mathbf{A}
ERESCOMP17	Electric Residue Gas	Ariel	KBZ/6	TBD	6500 HP	6500 HP	N/A	N/A	N/A	 Existing (unchanged) Image: New/Additional Replacement Unit 	N/A	N/A
ERESCOMI 17	Compressor	And	KDZ/0	IDD	0500 111	0500 111	N/A	N/A	N/A	Image: New/Additional Image: Replacement Onic Image: Ima	11/74	11/24
ERESCOMP18	Electric Residue Gas	Ariel	KBZ/6	TBD	6500 HP	6500 HP	N/A	N/A	N/A	 Existing (unchanged) Image: To be Removed New/Additional Replacement Unit 	N/A	N/A
ERESCOWI 10	Compressor	Alter	IXDZ/0	IDD	0500 111	0500 111	N/A	N/A		To Be Modified To be Replaced	11/74	11/14
CRYO1-4	4 Cryogenic Trains	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	 Existing (unchanged) Image: To be Removed New/Additional Replacement Unit 	N/A	N/A
CK1014		11/7	11/2	11/2	11/2	11/2	N/A	N/A	11/21	To Be Modified To be Replaced	11/23	11/21
MOL1-4	4 Molecular Sieve	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	 Existing (unchanged) To be Removed New/Additional Replacement Unit 	N/A	N/A
WIOL1-4	Dehydrators	11/21	11/27	11/27	11/27	11/21	N/A	N/A	11/23	To Be Modified To be Replaced	N/A	N/A

¹ Unit numbers must correspond to unit numbers in the previous NOI unless a complete cross reference table of all units in both NOIs is provided.

² Specify dates required to determine regulatory applicability.

³ To properly account for power conversion efficiencies, generator set rated capacity shall be reported as the rated capacity of the engine in horsepower, not the kilowatt capacity of the generator set.

⁴ "4SLB" means four stroke lean burn engine, "4SRB" means four stroke rich burn engine, "2SLB" means two stroke lean burn engine, "CI" means compression ignition, and "SI" means spark ignition

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at

http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No. Serial No.	Max Capacity Capacity Units	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5) Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Manufacture /Reconstruction ² Date of Installation /Construction ²	For Each Piece of Equipment, Chee	ck Onc
	1000 bbl Firefighting Foam		N/A	N/A	20.2.72.202.B.5	TBD	☑ Existing (unchanged) To be Removed	
FFT	Tank	TBD	N/A	N/A	Units with PTE < 0.5 tpy	TBD	 □ New/Additional □ To Be Modified Replacement Un To be Replaced 	nit
48A	1000 bbl Raw Water Tank	TBD	N/A	N/A	20.2.72.202.B.5	TBD	☑ Existing (unchanged) To be Removed	
40A	1000 bbi Kaw water Talik	IBD	N/A	N/A	Units with PTE < 0.5 tpy	TBD	□ New/Additional Replacement Un □ To Be Modified To be Replaced	
48B	1000 bbl Raw Water Tank	TBD	N/A	N/A	20.2.72.202.B.5	TBD	 ☑ Existing (unchanged) □ New/Additional □ New/Additional 	
40D	1000 bbi Kaw water Talik	IBD	N/A	N/A	Units with PTE < 0.5 tpy	TBD	To Be Modified To be Replaced	m
49	1000 bbl Demineralized	TBD	N/A	N/A	20.2.72.202.B.5	TBD	 ☑ Existing (unchanged) □ New/Additional □ Replacement Unchanged 	
49	Water Tank	IBD	N/A	N/A	Units with $PTE < 0.5$ tpy	TBD	To Be Modified To be Replaced	m
50	Amine Makeup Tank	TBD	N/A	N/A	20.2.72.202.B.5	TBD	 ☑ Existing (unchanged) □ New/Additional □ Replacement Unchanged 	
50	Annie Wakeup Tank	IDD	N/A	N/A	Units with PTE < 0.5 tpy	TBD	To Be Modified To be Replaced	int
51A	100 bbl Lube Oil Make-Up	TBD	N/A	N/A	20.2.72.202.B.5	TBD	 ☑ Existing (unchanged) □ New/Additional □ Replacement Unchanged 	nit
JIA	Tank	IDD	N/A	N/A	Units with PTE < 0.5 tpy	TBD	☐ To Be Modified To be Replaced	
51B	100 bbl Lube Oil Make-Up	TBD	N/A	N/A	20.2.72.202.B.5	TBD	 ✓ Existing (unchanged) To be Removed □ New/Additional Replacement Unchanged 	
012	Tank	122	N/A	N/A	Units with PTE < 0.5 tpy	TBD	To Be Modified To be Replaced	
55	Utility Water Tank	TBD	N/A	N/A	20.2.72.202.B.5	TBD	 ✓ Existing (unchanged) To be Removed □ New/Additional Replacement Unchanged 	nit
			N/A	N/A	Units with PTE < 0.5 tpy	TBD	To Be Modified To be Replaced	
ROAD	Haul Road Fugitives	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 ✓ Existing (unchanged) To be Removed □ New/Additional Replacement Unchanged 	
	6		N/A	N/A	Units with PTE < 0.5 tpy	N/A	To Be Modified To be Replaced	
VTank01	Varsol Tank	TBD	N/A	N/A	20.2.72.202.B.5	TBD	 ✓ Existing (unchanged) To be Removed □ New/Additional Replacement Units 	
v runkor	v urbor T unix	122	N/A	N/A	Units with PTE < 0.5 tpy	TBD	□ To Be Modified To be Replaced	
FWPE1	Emergency Fire-Pump Engine	TBD	TBD	TBD	20.2.72.202.B.3	TBD	 □ Existing (unchanged) To be Removed ☑ New/Additional Replacement Un 	.,
FWFEI	Emergency Fire-Fump Engine	IBD	TBD	TBD	N/A	TBD	 ☑ New/Additional □ To Be Modified Replacement Un To be Replaced 	iit
			TBD	TBD	20.2.72.202.B.3	TBD	Existing (unchanged) To be Removed	
FWPE2	Emergency Fire-Pump Engine	TBD	TBD	TBD	N/A	TBD	 ☑ New/Additional □ To Be Modified Replacement Un To be Replaced 	it
	Condensate Stabilization -		N/A	N/A	20.2.72.202.B.5	N/A	☑ Existing (unchanged) To be Removed	
SSMEBD1	Reflux Blowdowns	N/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	□ New/Additional Replacement Un □ To Be Modified To be Replaced	nit
	Condensate Stabilization -	N 7/ •	N/A	N/A	20.2.72.202.B.5	N/A	☑ Existing (unchanged) To be Removed	
SSMEBD2	Surge and Flash Drum Blowdowns	N/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	□ New/Additional Replacement Un □ To Be Modified To be Replaced	nıt

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at

http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of H	Equipment, Check Onc
			Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²		
SSMEBD3	Condensate Stabilization - Overhead Compressor	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SSINEBDS	Blowdowns	IN/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	 New/Additional To Be Modified 	To be Replaced
SSMEBD4	Gas Processing - Surge Drum	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SSMEDD4	Blowdowns	IN/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	 New/Additional To Be Modified 	To be Replaced
SSMEBD5	Gas Processing - Separator	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SSMEDDS	Blowdowns	IN/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	 New/Additional To Be Modified 	To be Replaced
SSMEBD6	Gas Processing - Expander/Compressor	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
35MEBD0	Blowdowns	IN/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	 New/Additional To Be Modified 	To be Replaced
SSMEBD7	Gas Processing - Dehydrator	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SSIMEDD/	Blowdowns	Processing - Dehydrator neration Gas Compressor Blowdowns N/A N/A N/A Processing - Subcooler Blowdowns N/A N/A N/A Gas Processing - N/A N/A N/A	N/A	Units with PTE < 0.5 tpy	N/A	 New/Additional To Be Modified 	To be Replaced	
SSMEBD8	Gas Processing - Subcooler	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
55WEDD0		IN/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	 To Be Modified 	To be Replaced
SSMEBD9	Gas Processing - Chiller/Exchanger	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
55WEDD9	Blowdowns	IVA	N/A	N/A	Units with $PTE < 0.5$ tpy	N/A	□ To Be Modified	To be Replaced
SSMEBD10	Gas Processing - Dehydrator	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SSMEDDIO	Blowdowns	IVA	N/A	N/A	Units with PTE < 0.5 tpy	N/A	 To Be Modified 	To be Replaced
SSMEBD11	Gas Processing - Mercury	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SSMEDDII	Guard Bed	IVA	N/A	N/A	Units with PTE < 0.5 tpy	N/A	 To Be Modified 	To be Replaced
SSMEBD12	Gas Processing - Tower	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SSMEDD12	Blowdowns	IVA	N/A	N/A	Units with $PTE < 0.5$ tpy	N/A	□ To Be Modified	To be Replaced
SSMEBD13	Gas Processing - Condenser	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
	Blowdowns	11/74	N/A	N/A	Units with PTE < 0.5 tpy	N/A	 To Be Modified 	To be Replaced
SSMEBD14	Gas Processing - Economizer	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SSMEDD14	Blowdowns	11/12	N/A	N/A	Units with $PTE < 0.5$ tpy	N/A	 To Be Modified 	To be Replaced
SSMEBD15	Utilities & Common Equipment - Closed Drain	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 Existing (unchanged) New/Additional 	To be Removed Replacement Unit
SSWIEDD I J	Drum Blowdowns	11/21	N/A	N/A	Units with $PTE < 0.5$ tpy	N/A	 To Be Modified 	To be Replaced

Table 2-B: Insignificant Activities¹ (20.2.70 NMAC) OR Exempted Equipment (20.2.72 NMAC)

All 20.2.70 NMAC (Title V) applications must list all Insignificant Activities in this table. All 20.2.72 NMAC applications must list Exempted Equipment in this table. If equipment listed on this table is exempt under 20.2.72.202.B.5, include emissions calculations and emissions totals for 202.B.5 "similar functions" units, operations, and activities in Section 6, Calculations. Equipment and activities exempted under 20.2.72.202 NMAC may not necessarily be Insignificant under 20.2.70 NMAC (and vice versa). Unit & stack numbering must be consistent throughout the application package. Per Exemptions Policy 02-012.00 (see http://www.env.nm.gov/aqb/permit/aqb_pol.html), 20.2.72.202.B NMAC Exemptions do not apply, but 20.2.72.202.A NMAC exemptions do apply to NOI facilities under 20.2.73 NMAC. List 20.2.72.301.D.4 NMAC Auxiliary Equipment for Streamline applications in Table 2-A. The List of Insignificant Activities (for TV) can be found online at

http://www.env.nm.gov/aqb/forms/InsignificantListTitleV.pdf. TV sources may elect to enter both TV Insignificant Activities and Part 72 Exemptions on this form.

Unit Number	Source Description	Manufacturer	Model No.	Max Capacity	List Specific 20.2.72.202 NMAC Exemption (e.g. 20.2.72.202.B.5)	Date of Manufacture /Reconstruction ²	For Each Piece of Equipment, Check Onc
Unit Number	Source Description	Manufacturei	Serial No.	Capacity Units	Insignificant Activity citation (e.g. IA List Item #1.a)	Date of Installation /Construction ²	
COMEDD1(Utilities & Common	27/4	N/A	N/A	20.2.72.202.B.5	N/A	☑ Existing (unchanged) To be Removed
SSMEBD16	Equipment - Combustor KO Drum Blowdowns	N/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	Image: New/Additional Replacement Unit Image: To Be Modified To be Replaced
COMEDD17	Utilities & Common	21/4	N/A	N/A	20.2.72.202.B.5	N/A	\square Existing (unchanged) To be Removed
SSMEBD17	Equipment - Cryo LP/HP Flare KO Drum Blowdowns	N/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	Image: New/Additional Replacement Unit Image: To Be Modified To be Replaced
SSMEBD18	Utilities & Common	N/A	N/A	N/A	20.2.72.202.B.5	N/A	\square Existing (unchanged) To be Removed
SSMEBD18	Equipment - Combustor Blowdowns	IN/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	Image: New/Additional Replacement Unit Image: To Be Modified To be Replaced
SSMEBD19	Sitewide - Reboiler	N/A	N/A	N/A	20.2.72.202.B.5	N/A	 ✓ Existing (unchanged) To be Removed □ New/Additional Replacement Unit
SSIVIEDD19	Blowdowns	IN/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	To Be Modified To be Replaced
SSMEBD20	Sitewide - Gas Filter	N/A	N/A	N/A	20.2.72.202.B.5	N/A	\square Existing (unchanged) To be Removed
SSMEBD20) Sitewide - Gas Filter Coalescer Blowdowns	IN/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	Image: New/Additional Replacement Unit Image: To Be Modified To be Replaced
SSMEBD21	SMERD21 Sitewide - Pig Launching and	le - Pig Launching and	N/A	N/A	20.2.72.202.B.5	N/A	 ✓ Existing (unchanged) To be Removed □ New/Additional Replacement Unit
SSIVIEDD21	Receiving Blowdowns	N/A	N/A	N/A	Units with PTE < 0.5 tpy	N/A	Image: New/Additional Replacement Unit Image: To Be Modified To be Replaced

¹ Insignificant activities exempted due to size or production rate are defined in 20.2.70.300.D.6, 20.2.70.7.Q NMAC, and the NMED/AQB List of Insignificant Activities, dated September 15, 2008. Emissions from these insignificant activities do not need to be reported, unless specifically requested.

² Specify date(s) required to determine regulatory applicability.

Table 2-C: Emissions Control Equipment

Unit and stack numbering must correspond throughout the application package. Only list control equipment for TAPs if the TAP's maximum uncontrolled emissions rate is over its respective threshold as listed in 20.2.72 NMAC, Subpart V, Tables A and B. In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions.

Control Equipment Unit No.	Control Equipment Description	Date Installed	Controlled Pollutant(s)	Controlling Emissions for Unit Number(s) ¹	Efficiency (% Control by Weight)	Method used to Estimate Efficiency
FL1	Flare 1	2020	VOC, HAP	Plant Inlet & SSM Activities	98%	Mnf. Guarantee
FL2	Flare 2	2020	VOC, HAP	Plant Inlet & SSM Activities	98%	Mnf. Guarantee
FL3	Flare 3	2024	VOC, HAP	Plant Inlet & SSM Activities	98%	Mnf. Guarantee
ECD1	Combustor 1	2020	VOC, HAP	GBS1, PWTK1-PWTK2, SOTK1,SOTL	99%	Mnf. Guarantee
ECD2a / ECD2b	Combustor 2	TBD	VOC, HAP	GBS1, PWTK1-PWTK2, SOTK1,SOTL	99%	Mnf. Guarantee
TO1	Thermal Oxidizer	2019	VOC, HAP	AU1	99%	Mnf. Guarantee
TO2	Thermal Oxidizer	TBD	VOC, HAP	AU2	99%	Mnf. Guarantee
TO3	Thermal Oxidizer	TBD	VOC, HAP	AU3	99%	Mnf. Guarantee
TO4	Thermal Oxidizer	TBD	VOC, HAP	AU4	99%	Mnf. Guarantee
SHTR7-CAT	SCR Catalytic Reduction	TBD	NOx	SHTR7-CAT	NO _x - 75%	Mnf. Guarantee
SHTR8-CAT	SCR Catalytic Reduction	TBD	NOx	SHTR8-CAT	NO _x - 75%	Mnf. Guarantee
CHTR3-CAT	SCR Catalytic Reduction	TBD	NOx	CHTR3-CAT	NO _x - 80%	Mnf. Guarantee
CHTR4-CAT	SCR Catalytic Reduction	TBD	NOx	CHTR4-CAT	NO _x - 80%	Mnf. Guarantee

¹ List each control device on a separate line. For each control device, list all emission units controlled by the control device.

Cowboy CDP

Table 2-D: Maximum Emissions (under normal operating conditions)

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

	N	Ox	С	0	VC	DC	SC	Ox	P	M ¹	PM	$[10^2]$	PM	2.5^{2}	Н	₂ S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SHTR1	1.97		1.20		0.47		0.16		0.55		0.55		0.55		-		-	
SHTR2	1.97		1.20		0.47		0.16		0.55		0.55		0.55		-		-	
SHTR3	1.97	41.35	1.20	25.24	0.47	9.91	0.16	3.42	0.55	11.54	0.55	11.54	0.55	11.54	-		-	
SHTR4	1.97	41.55	1.20	23.24	0.47	9.91	0.16	5.42	0.55	11.54	0.55	11.54	0.55	11.54	-	-	-	-
SHTR5	1.97		1.20		0.47		0.16		0.55		0.55		0.55		-		-	
SHTR6	1.97		1.20		0.47		0.16		0.55		0.55		0.55		-		-	
SHTR7	1.97	13.78	1.20	3.30	0.47	3.30	0.16	1.14	0.55	3.85	0.55	3.85	0.55	3.85	-		-	
SHTR8	1.97	15.78	1.20	5.50	0.47	5.50	0.16	1.14	0.55	5.85	0.55	5.85	0.55	5.85	-	-	-	-
CHTR1	3.95	27.66	1.93	8.41	0.76	3.30	0.26	1.14	0.88	3.85	0.88	3.85	0.88	3.85	-		-	_
CHTR2	3.95	27.00	1.93	0.41	0.76	5.50	0.26	1.14	0.88	5.85	0.88	5.85	0.88	5.85	-	-	-	-
CHTR3	3.95	27.66	1.93	13.50	0.76	5.30	0.26	1.83	0.88	6.17	0.88	6.17	0.88	6.17	-		-	
CHTR4	3.95	27.00	1.93	13.50	0.76	5.50	0.26	1.65	0.88	0.17	0.88	0.17	0.88	0.17	-	-	-	-
RHTR1	1.18		0.72		0.28		0.097		0.33		0.33		0.33		-		-	
RHTR2	1.18	16.49	0.72	10.07	0.28	3.95	0.097	1.36	0.33	4.60	0.33	4.60	0.33	4.60	-		-	
RHTR3	1.18	10.49	0.72	10.07	0.28	3.95	0.097	1.50	0.33	4.00	0.33	4.00	0.33	4.00	-	-	-	-
RHTR4	1.18		0.72		0.28		0.097	l	0.33		0.33		0.33		-		-	
FL1-FL3 ²	2.95	12.90	5.88	25.75	2.30	10.06	0.050	0.22	0.16	0.70	0.16	0.70	0.16	0.72	-	-	-	-
FL1- FL3OVHD-							Not	operating	during nor	rmal operat	ting condit	ions						
SSM								1 0	e	1	8							
FL1-							N T .											
FL3CRYO- SSM							Not	operating	during nor	mal operat	ting condit	ions						
Oil Storage			[]		[]		[[[[[[[
Tanks 1-4	-	_		_	5.05	-		_	_	_						_		
(Hourly VOC	-	-	-	-	3.05	-	-	-	-	-	-	-	-	-	-	-	-	-
emissions)																		
Oil Storage Tanks 5-14																		
(Hourly VOC	-	-	-	-	12.93	-	-	-	-	-	-	-	-	-	-	-	-	-
emissions)																		
IFR1-14	-	_	_	_	-	70.48	_	_	_	_	_				_	-	-	_
Annual VOC ³	-	_		-	_	/0.40	-	_		_		_	-	_		_		
ECD1 ²	1 77	7.60	2.04	12.24	1.65	20.22			0.072	0.12	0.072	0.12	0.15	0.67				
ECD2a / ECD2b ²	1.77	7.69	3.04	13.24	4.65	20.23	-	-	0.073	0.12	0.073	0.12	0.15	0.67	-	-	-	-
TO1 ²	0.28	1.22	0.17	0.74	0.30	1.31	_	_	0.15	0.65	0.15	0.65	0.15	0.65	_		_	_
TO1 ²	0.28	1.22	0.17	0.74	0.30	1.31	-	-	0.15	0.65	0.15	0.65	0.15	0.65	-	-	-	-
TO2 ²	0.28	1.22	0.17	0.74	0.30	1.31	-	-	0.15	0.65	0.15	0.65	0.15	0.65	-	-	-	-
105	0.20	1.22	0.17	0.74	0.50	1.51	-	-	0.15	0.05	0.15	0.05	0.15	0.05	-		-	

Cowboy CDP

Table 2-D: Maximum Emissions (under normal operating conditions)

Maximum Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) & Toxic Air Pollutants (TAPs) in Table 2-I. Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E-4).

Unit No.	N	Ox	С	0	V	DC	S	Ox	P	\mathbf{M}^1	PM	[10 ²	PM	2.5^{2}	Н	[2S	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
TO4 ²	0.28	1.22	0.17	0.74	0.30	1.31	-	-	0.15	0.65	0.15	0.65	0.15	0.65	-	-	-	-
FUG	-	-	-	-	7.98	34.93	-	-	-	-	-	-	-	-	-	-	-	-
AU1	-	-	-	-	73.92	323.77	-	-	-	-	-	-	-	-	-	-	-	-
AU2	-	-	-	-	73.92	323.77	-	-	-	-	-	-	-	-	-	-	-	-
AU3	-	-	-	-	73.92	323.77	-	-	-	-	-	-	-	-	-	-	-	-
AU4	-	-	-	-	73.92	323.77	-	-	-	-	-	-	-	-	-	-	-	-
GBS1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PWTK1	-	-	-	-	1.34	5.86	-	-	-	-	-	-	-	-	-	-	-	-
PWTK2	-	-	-	-	1.34	5.86	-	-	-	-	-	-	-	-	-	-	-	-
SOTK1	-	-	-	-	459.04	2,010.59	-	-	-	-	-	-	-	-	-	-	-	-
SOTL	-	-	-	-	53.02	0.57	I	-	-	-	-	-	-	-	-	-	-	-
GEN1	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	0.20	0.010	-	-	-	-
GEN2	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	0.20	0.010	-	-	-	-
GEN3	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	0.20	0.010	-	-	-	-
GEN4	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	0.20	0.010	-	-	-	-
SSM/M	-	-	-	-	-	51.33	-	-	-	-	-	-	-	-	-	-	-	-
Totals	57.26	153.18	86.95	105.36	872.87	3,536.99	2.96	9.11	10.87	33.48	10.87	33.48	10.95	34.05	-	-	-	-

¹Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but PM is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

²Only includes pilot/purge gas/assist gas emissions, other emissions not considered normal operating conditions.

³Annual VOC emissions are grouped together for IFR1 - IFR14. Worst-case annual withdrawl lossess were calculated by assuming total site throughput for each size group of IFR storage tanks and selecting the higher value to include in the total annual VOC emissions.

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No	N	Ox	C	0	V	DC	S	Ox	P	M	PM	[10 ¹	PM	2.5 ¹	Н	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SHTR1	1.97		1.20		0.47		0.16		0.55		0.55		0.55		-		-	
SHTR2	1.97		1.20		0.47		0.16		0.55		0.55		0.55		-		-	
SHTR3	1.97	41.35	1.20	25.24	0.47	9.91	0.16	3.42	0.55	11.54	0.55	11.54	0.55	11.54	-		-	
SHTR4	1.97	41.55	1.20	23.24	0.47	9.91	0.16	5.42	0.55	11.54	0.55	11.54	0.55	11.54	-	-	-	-
SHTR5	1.97		1.20		0.47		0.16		0.55		0.55		0.55		-		-	
SHTR6	1.97		1.20		0.47		0.16		0.55		0.55		0.55		-		-	
SHTR7	0.49	3.46	1.20	8.41	0.47	3.30	0.16	1.14	0.55	1.10	0.55	1.10	0.55	1.10	-		-	
SHTR8	0.49	5.40	1.20	0.41	0.47	5.50	0.16	1.14	0.55	1.10	0.55	1.10	0.55	1.10	-	-	-	-
CHTR1	3.95	27.66	1.93	13.50	0.76	5.30	0.26	1.83	0.88	6.17	0.88	6.17	0.88	6.17	-		-	
CHTR2	3.95	27.00	1.93	13.30	0.76	5.30	0.26	1.85	0.88	0.17	0.88	0.17	0.88	0.17	-	-	-	-
CHTR3	0.79	5.55	1.93	13.50	0.76	5.30	0.26	1.83	0.88	6.17	0.88	6.17	0.88	6.17	-		-	
CHTR4	0.79	5.55	1.93	13.30	0.76	5.50	0.26	1.85	0.88	0.17	0.88	0.17	0.88	0.17	-	-	-	-
RHTR1	1.18		0.72		0.28		0.097		0.33		0.33		0.33		-		-	
RHTR2	1.18	16.49	0.72	10.07	0.28	3.95	0.097	1.36	0.33	4.60	0.33	4.60	0.33	4.60	-		-	
RHTR3	1.18	10.49	0.72	10.07	0.28	3.95	0.097	1.50	0.33	4.00	0.33	4.00	0.33	4.00	-	-	-	-
RHTR4	1.18		0.72		0.28		0.097		0.33		0.33		0.33		-		-	
FL1-FL3	2.95	10.75	5.88	21.46	2.30	8.38	0.050	0.18	0.16	0.58	0.16	0.58	0.16	0.58				
Oil Storage Tanks 1-4 (Hourly VOC emissions)	-	-	-	-	5.05	-	-	-	-	-	-	-	-	-	-	-	-	-
Oil Storage Tanks 5-14 (Hourly VOC emissions)	-	-	-	-	12.93	-	-	-	-	-	-	-	-	-	-	-	-	-
IFR1-14 Annual VOC ³	-	-	-	-	-	70.48	-	-	-	-	-	-	-	-	-	-	-	-
ECD1	1.77	7.69	3.04	13.24	4.65	20.23	-	-	0.073	0.12	0.073	0.12	0.073	0.12	-	-	-	-
ECD2a-ECD2b																		
TO1	3.56	15.59	2.17	9.49	0.72	3.24	0.88	3.87	0.19	0.82	0.19	0.82	0.19	0.82	-	-	-	-
TO2	3.56	15.59	2.17	9.49	0.72	3.24	0.88	3.87	0.19	0.82	0.19	0.82	0.19	0.82	-	-	-	-
TO3	3.56	15.59	2.17	9.49	0.72	3.24	0.88	3.87	0.19	0.82	0.19	0.82	0.19	0.82	-	-	-	-
TO4	3.56	15.59	2.17	9.49	0.72	3.24	0.88	3.87	0.19	0.82	0.19	0.82	0.19	0.82	-	-	-	-
FUG	-	-	-	-	7.98	34.93	-	-	-	-	-	-	-	-	-	-	-	-
AU1									ions are re	•								
AU2									ions are re	-								
AU3								Emiss	ions are re	presented a	at TO3							
orm Povision: 5/3/2	016							Table 2	E. Dage 1							Drie	atad 12/20/	2024 10.33

Table 2-E: Requested Allowable Emissions

Unit & stack numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Numbers shall be expressed to at least 2 decimal points (e.g. 0.41, 1.41, or 1.41E⁻⁴).

Unit No.	N	Ox	С	0	V	DC	S	Ox	PN	M ¹	PM	[10 ¹	PM	2.5 ¹	Η	$_2S$	Le	ead
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AU4								Emissi	ons are rej	presented a	at TO4							
GBS1								Emissic	ons are rep	resented a	t ECD1							
PWTK1								Emissic	ons are rep	resented a	t ECD1							
PWTK2		Emissions are represented at ECD1																
SOTK1	Emissions are represented at ECD1																	
SOTL	-	-	-	-	0.69	7.43E-03	-	-	-	-	-	-	-	-	-	-	-	-
GEN1	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	0.20	0.010	-	-	-	-
GEN2	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	0.20	0.010	-	-	-	-
GEN3	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	0.20	0.010	-	-	-	-
GEN4	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	0.20	0.010	-	-	-	-
Totals	61.13	176.07	94.94	146.24	64.86	175.78	6.49	25.22	11.02	33.59	11.02	33.59	11.02	33.59	-	-	-	-

¹ Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

² For all pollutants except VOC/HAP, the hourly emission rate excludes the generators and overhead SSM stream as they cannot occur at the same time and the cryo SSM stream has a higher emission rate. For VOC, the overhead SSM stream is included with the highest hourly rate. For HAP, the generators have the highest hourly rate.

³ Annual VOC emissions are grouped together for IFR1 - IFR14. Worst-case annual withdrawl lossess were calculated by assuming total site throughput for each size group of IFR storage tanks and selecting the higher value to include in the total annual VOC emissions.

Table 2-F: Additional Emissions during Startup, Shutdown, and Routine Maintenance (SSM)

This table is intentionally left blank since all emissions at this facility due to routine or predictable startup, shutdown, or scehduled maintenance are no higher than those listed in Table 2-E and a malfunction emission limit is not already permitted or requested. If you are required to report GHG emissions as described in Section 6a, include any GHG emissions during Startup, Shutdown, and/or Scheduled Maintenance (SSM) in Table 2-P. Provide an explanations of SSM emissions in Section 6 and 6a.

(https://www	env.nm.gov/aqb/permit/aqb pol.html) for NOx CO							l be expre	ssed to at l	east 2 deci	mal points			.41E-4).				
Unit No.	NO	Ox	С	0	VC)C	SC	Ox	PI	M^2	PM	(10^2)	PM	2.5^{2}	Н	$_2S$	Le	ad
Unit No.	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SSM/M	-	-	-	-	-	51.33	-	-	-	-	-	-	-	-	-	-	-	-
FL1-																		
FL3OVHD-	222.82	8.54	444.83	17.06	1,419.77	45.00	4.04	0.15	12.03	0.21	12.03	0.21	12.03	0.21				
SSM FL1-																		
FL1- FL3CRYO-	405.77	11.43	810.06	22.82	822.57	10.60	6.99	0.19	21.91	0.58	21.91	0.58	21.91	0.58				
SSM	+05.77	11.45	010.00	22.02	022.57	10.00	0.77	0.17	21.71	0.50	21.71	0.50	21.71	0.50				
Totals	628.59	19.97	1,254.89	39.88	2,242.34	106.93	11.03	0.35	33.94	0.79	33.94	0.79	33.94	0.79	_	_	-	-
10(415	020.39	19.97	1,434.07	57.00	2,272.34	100.95	11.05	0.55	55.74	0.79	55.74	0.79	55.74	0.79	-	-	-	-

¹ For instance, if the short term steady-state Table 2-E emissions are 5 lb/hr and the SSM rate is 12 lb/hr, enter 7 lb/hr in this table. If the annual steady-state Table 2-E emissions are 21.9 TPY, and the number of scheduled SSM events result in annual emissions of 31.9 TPY, enter 10.0 TPY in the table below.

² Condensable Particulate Matter: Include condensable particulate matter emissions for PM10 and PM2.5 if the source is a combustion source. Do not include condensable particulate matter for PM unless PM is set equal to PM10 and PM2.5. Particulate matter (PM) is not subject to an ambient air quality standard, but it is a regulated air pollutant under PSD (20.2.74 NMAC) and Title V (20.2.70 NMAC).

Table 2-G: Stack Exit and Fugitive Emission Rates for Special Stacks

Z I have elected to leave this table blank because this facility does not have any stacks/vents that split emissions from a single source or combine emissions from more than one source listed in table 2-A. Additionally, the emission rates of all stacks match the Requested allowable emission rates stated in Table 2-E.

Use this table to list stack emissions (requested allowable) from split and combined stacks. List Toxic Air Pollutants (TAPs) and Hazardous Air Pollutants (HAPs) in Table 2-I. List all fugitives that are associated with the normal, routine, and non-emergency operation of the facility. Unit and stack numbering must correspond throughout the application package. Refer to Table 2-E for instructions on use of the "-" symbol and on significant figures.

	Serving Unit	N	Ox	C	0	V	DC	so	Dx	Р	М	PN	110	PM	12.5	H ₂ S o	r Lead
Stack No.	Number(s) from Table 2-A	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
						N/A - Th	is facility do	es not have	Special Sta	icks							
,	Totals:																

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
SHTR1	SHTR1	V	No	33.0	488	447	NA	0	35.6	4.0
SHTR2	SHTR2	V	No	33.0	488	447	NA	0	35.6	4.0
SHTR3	SHTR3	V	No	33.0	488	447	NA	0	35.6	4.0
SHTR4	SHTR4	V	No	33.0	488	447	NA	0	35.6	4.0
SHTR5	SHTR5	V	No	33.0	488	447	NA	0	35.6	4.0
SHTR6	SHTR6	V	No	33.0	488	447	NA	0	35.6	4.0
SHTR7	SHTR7	V	No	33.0	488	447	NA	0	35.6	4.0
SHTR8	SHTR8	V	No	33.0	488	447	NA	0	35.6	4.0
CHTR1	CHTR1	V	No	76.9	599	832	NA	0	66.2	4.0
CHTR2	CHTR2	V	No	76.9	599	832	NA	0	66.2	4.0
CHTR3	CHTR3	V	No	76.9	599	832	NA	0	66.2	4.0
CHTR4	CHTR4	V	No	76.9	599	832	NA	0	66.2	4.0
RHTR1	RHTR1	V	No	28.7	470	296	NA	0	53.0	2.7
RHTR2	RHTR2	V	No	28.7	470	296	NA	0	53.0	2.7
RHTR3	RHTR3	V	No	28.7	470	296	NA	0	53.0	2.7
RHTR4	RHTR4	V	No	28.7	470	296	NA	0	53.0	2.7
FL1	FL1	V	No	130.0	1832	139	NA	0	65.6	0.4
FL2	FL2	V	No	170.0	1832	139	NA	0	65.6	0.7
FL3	FL3	V	No	170.0	1832	139	NA	0	65.6	0.7
ECD1	ECD1	V	No	40.0	1450	529	NA	0	39.5	8.4
ECD2a / ECD2b	ECD2a / ECD2b	V / V / V	No / No	47.5 / 43	1600 / 1600	2512.9 / 1745.1	NA / NA	0 / 0	39.5 / 39.5	9 / 7.5
TO1	TO1	V	No	58.0	1700	782.5	NA	0	58.6	4.1
TO2	TO2	V	No	58.0	1700	782.5	NA	0	58.6	4.1
TO3	ТОЗ	V	No	58.0	1700	782.5	NA	0	58.6	4.1
TO4	TO4	V	No	58.0	1700	782.5	NA	0	58.6	4.1
GEN1	GEN1	V	No	14.0	736	260.3	NA	0	331.4	1.0

Table 2-H: Stack Exit Conditions

Unit and stack numbering must correspond throughout the application package. Include the stack exit conditions for each unit that emits from a stack, including blowdown venting parameters and tank emissions.

Stack	Serving Unit Number(s)	Orientation (H-Horizontal	Rain Caps	Height Above	Temp.	Flow	Rate	Moisture by	Velocity	Inside
Number	from Table 2-A	V=Vertical)	(Yes or No)	Ground (ft)	(F)	(acfs)	(dscfs)	Volume (%)	(ft/sec)	Diameter (ft)
GEN2	GEN2	V	No	14.0	736	260.3	NA	0	331.4	1.0
GEN3	GEN3	V	No	14.0	736	260.3	NA	0	331.4	1.0
GEN4	GEN4	V	No	14.0	736	260.3	NA	0	331.4	1.0

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above.

Stack No.	Unit No.(s)	Total	HAPs	n-Hexa ☑ HAP or		Ben: ☑ HAP o			^{iene} r TAP		enzene or TAP		^{ene} r TAP	Formal ☑ HAP o		Name	Pollutant Here Dr TAP	Provide I Name HAP o	
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
SHTR1	SHTR1	0.14		0.13		1.52E-04		2.46E-04		-		-		5.42E-03					
SHTR2	SHTR2	0.14		0.13		1.52E-04		2.46E-04		-		-		5.42E-03					
SHTR3	SHTR3	0.14	0.81	0.13	0.69	1.52E-04	3.19E-03	2.46E-04	5.16E-03	-	_	-	· _	5.42E-03	0.11				
SHTR4	SHTR4	0.14		0.13		1.52E-04		2.46E-04		-		-		5.42E-03					
SHTR5	SHTR5	0.14		0.13		1.52E-04		2.46E-04		-		-		5.42E-03					
SHTR6	SHTR6	0.14		0.13		1.52E-04		2.46E-04		-		-		5.42E-03					
SHTR7	SHTR7	0.14	0.27	0.13	0.23	1.52E-04	1.06E-03	2.46E-04	1.72E-03	-		-	· _	5.42E-03	0.038				
SHTR8	SHTR8	0.14		0.13		1.52E-04		2.46E-04		-		-		5.42E-03					
CHTR1	CHTR1	0.22	0.44	0.21	0.37	2.43E-04	1.71E-03	3.94E-04	2.76E-03	-	_	-	_	8.69E-03	0.061				
CHTR2	CHTR2	0.22		0.21		2.43E-04		3.94E-04		-		-		8.69E-03					
CHTR3	CHTR3	0.22	0.44	0.21	0.37	2.43E-04	1.71E-03		2.76E-03	-	-	-	-	8.69E-03	0.061				
CHTR4	CHTR4	0.22		0.21		2.43E-04		3.94E-04		-		-		8.69E-03					
RHTR1	RHTR1	0.081		0.078		9.07E-05		1.47E-04		-		-		3.24E-03					
RHTR2	RHTR2	0.081	0.32	0.078	0.27	9.07E-05	1.27E-03	1.47E-04	2.06E-03	-	_	-	· _	3.24E-03	0.045				
RHTR3	RHTR3	0.081		0.078		9.07E-05		1.47E-04		-		-		3.24E-03					
RHTR4	RHTR4	0.081		0.078		9.07E-05		1.47E-04		-		-		3.24E-03					
FL1-FL3 ¹	FL1-FL3 ¹ FL1-	0.16	0.60	0.072	0.31	0.013	0.058	0.029	0.13	1.35E-03	5.93E-03	0.012	0.052	-	-				
FL1-FL3 ¹	FL3OVHD- SSM	61.34	1.79	39.74	1.30	6.79	0.18	8.01	0.18	1.35E-03	5.93E-03	4.48	0.091	-	-				
FL1-FL3 ¹	FL1- FL3CRYO- SSM	10.88	0.17	9.08	0.14	0.82	0.013	0.97	0.015	-	-	-	-	-	-				
Oil Storage Tanks 1-4	IFR 1-4	0.060	0.26	0.037	0.16	2.34E-03	0.010	6.37E-03	0.028	1.70E-03	7.43E-03	8.95E-03	0.039	-	-				
Oil Storage Tanks 5-14	IFR 5-14	0.059	0.26	0.044	0.19	2.47E-03	0.011	4.41E-03	0.019	8.12E-04	3.56E-03	4.13E-03	0.018	-	-				
ECD1	ECD1	0.15	0.67	0.13	0.56	0.010	0.044	7.24E-03	0.032	2 25 0 04	1 46E 02	1.96E-03	9 55E 02						
ECD2a / ECD2b	ECD2a / ECD2b	0.15	0.07	0.15	0.50	0.010	0.044	7.24E-03	0.032	5.55E-04	1.40E-03	1.90E-03	0.33E-03	-	-				
T01	T01	0.018	0.079	3.59E-03	0.016	3.59E-03	0.016	3.59E-03		3.59E-03	0.016	3.59E-03	0.016	-	-				
TO2	TO2	0.018	0.079	3.59E-03	0.016	3.59E-03	0.016	3.59E-03	0.016	3.59E-03	0.016	3.59E-03	0.016	-	-				

Table 2-I: Stack Exit and Fugitive Emission Rates for HAPs and TAPs

In the table below, report the Potential to Emit for each HAP from each regulated emission unit listed in Table 2-A, only if the entire facility emits the HAP at a rate greater than or equal to one (1) ton per year For each such emission unit, HAPs shall be reported to the nearest 0.1 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources calculated to the nearest 0.1 ton per year. Per 20.2.72.403.A.1 NMAC, facilities not exempt [see 20.2.72.402.C NMAC] from TAP permitting shall report each TAP that has an uncontrolled emission rate in excess of its pounds per hour screening level specified in 20.2.72.502 NMAC. TAPs shall be reported using one more significant figure than the number of significant figures shown in the pound per hour threshold corresponding to the substance. Use the HAP nomenclature as it appears in Section 112 (b) of the 1990 CAAA and the TAP nomenclature as it listed in 20.2.72.502 NMAC. Include tank-flashing emissions estimates of HAPs in this table. For each HAP or TAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold

Stack No.	Unit No.(s)	Total	HAPs	n-Hex ☑ HAP or		Benz ☑ HAP o		Tolı ☑ HAP o		Ethylb ☑ HAP o		Xyle Z HAP o		Formal ☑ HAP o		Name	Pollutant e Here or TAP		Pollutant e Here or TAP
		lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
TO3	тоз	0.018	0.079	3.59E-03	0.016	3.59E-03	0.016	3.59E-03	0.016	3.59E-03	0.016	3.59E-03	0.016	-	-				
TO4	TO4	0.018	0.079	3.59E-03	0.016	3.59E-03	0.016	3.59E-03	0.016	3.59E-03	0.016	3.59E-03	0.016	-	-				
FUG	FUG	1.39	6.10	0.25	1.09	0.053	0.23	0.14	0.61	0.035	0.15	0.18	0.80	-	-				
T01	AU1								Emissio	ns are repr	esented at	TO1.							
TO2	AU2								Emissio	ns are repr	esented at	TO2.							
тоз	AU3		Emissions are represented at TO3.																
TO4	AU4		Emissions are represented at TO4.																
ECD1	GBS1								Emission	is are repre	sented at l	ECD1.							
ECD1	PWTK1								Emission	is are repre	sented at l	ECD1.							
ECD1	PWTK2								Emission	is are repre	sented at l	ECD1.							
ECD1	SOTK1								Emission	is are repre	sented at l	ECD1.							
ECD1	SOTL	0.021	2.23E-04	0.014	1.46E-04	-	-	-	-	-	-	-	-	-	-				
GEN1	GEN1	2.17	0.11	0.022	1.12E-03	-	-	-	-	-	-	-	-	1.98	0.099				
GEN2	GEN2	2.17	0.11	0.022	1.12E-03	-	-	-	-	-	-	-	-	1.98	0.099				
GEN3	GEN3	2.17	0.11	0.022	1.12E-03	-	-	-	-	-	-	-	-	1.98	0.099				
GEN4	GEN4	2.17	0.11	0.022	1.12E-03	-	-	-	-	-	-	-	-	1.98	0.099				
Tota	als:	85.10	12.89	51.65	5.74	7.71	0.62	9.19	1.09	0.055	0.24	4.70	1.07	8.00	0.71				

Table 2-J: Fuel

Specify fuel characteristics and usage. Unit and stack numbering must correspond throughout the application package.

	Fuel Type (low sulfur Diesel,	Fuel Source: purchased commercial,		Speci	fy Units		
Unit No.	ultra low sulfur diesel, Natural Gas, Coal,)	pipeline quality natural gas, residue gas, raw/field natural gas, process gas (e.g. SRU tail gas) or other	Lower Heating Value (Btu/scf)	Hourly Usage (scf)	Annual Usage (mmscf)	% Sulfur (by weight)	% Ash
SHTR1	Natural Gas	Residue Gas	913.7	60194.1	527.3	< 0.0025	N/A
SHTR2	Natural Gas	Residue Gas	913.7	60194.1	527.3	< 0.0025	N/A
SHTR3	Natural Gas	Residue Gas	913.7	60194.1	527.3	< 0.0025	N/A
SHTR4	Natural Gas	Residue Gas	913.7	60194.1	527.3	< 0.0025	N/A
SHTR5	Natural Gas	Residue Gas	913.7	60194.1	527.3	< 0.0025	N/A
SHTR6	Natural Gas	Residue Gas	913.7	60194.1	527.3	< 0.0025	N/A
SHTR7	Natural Gas	Residue Gas	913.7	60194.1	527.3	< 0.0025	N/A
SHTR8	Natural Gas	Residue Gas	913.7	60194.1	527.3	< 0.0025	N/A
CHTR1	Natural Gas	Residue Gas	913.7	96567.9	845.9	< 0.0025	N/A
CHTR2	Natural Gas	Residue Gas	913.7	96567.9	845.9	< 0.0025	N/A
CHTR3	Natural Gas	Residue Gas	913.7	96567.9	845.9	< 0.0025	N/A
CHTR4	Natural Gas	Residue Gas	913.7	96567.9	845.9	< 0.0025	N/A
RHTR1	Natural Gas	Residue Gas	913.7	36006.1	315.4	< 0.0025	N/A
RHTR2	Natural Gas	Residue Gas	913.7	36006.1	315.4	< 0.0025	N/A
RHTR3	Natural Gas	Residue Gas	913.7	36006.1	315.4	< 0.0025	N/A
RHTR4	Natural Gas	Residue Gas	913.7	36006.1	315.4	< 0.0025	N/A
FL1	Natural Gas	Residue Gas	913.7	1600.0	14.0	< 0.0025	N/A
FL2	Natural Gas	Residue Gas	913.7	1600.0	14.0	< 0.0025	N/A
FL3	Natural Gas	Residue Gas	913.7	1600.0	14.0	< 0.0025	N/A
GEN1	Natural Gas	Residue Gas	913.7	24586.3	215.4	< 0.0025	N/A
GEN2	Natural Gas	Residue Gas	913.7	24586.3	215.4	< 0.0025	N/A
GEN3	Natural Gas	Residue Gas	913.7	24586.3	215.4	< 0.0025	N/A
GEN4	Natural Gas	Residue Gas	913.7	24586.3	215.4	< 0.0025	N/A
ECD1	Natural Gas	Residue Gas	913.7	180.0	1.58	< 0.0025	N/A
ECD2a / ECD2b	Natural Gas	Residue Gas	913.7	270.0	2.37	< 0.0025	N/A
TO1	Natural Gas	Residue Gas	1030.8	19430.0	170.2	< 0.0025	N/A
TO2	Natural Gas	Residue Gas	1030.8	19430.0	170.2	< 0.0025	N/A
TO3	Natural Gas	Residue Gas	1030.8	19430.0	170.2	< 0.0025	N/A
TO4	Natural Gas	Residue Gas	1030.8	19430.0	170.2	< 0.0025	N/A

Table 2-K: Liquid Data for Tanks Listed in Table 2-L

For each tank, list the liquid(s) to be stored in each tank. If it is expected that a tank may store a variety of hydrocarbon liquids, enter "mixed hydrocarbons" in the Composition column for that tank and enter the corresponding data of the most volatile liquid to be stored in the tank. If tank is to be used for storage of different materials, list all the materials in the "All Calculations" attachment, run the newest version of TANKS on each, and use the material with the highest emission rate to determine maximum uncontrolled and requested allowable emissions rate. The permit will specify the most volatile category of liquids that may be stored in each tank. Include appropriate tank-flashing modeling input data. Use additional sheets if necessary. Unit and stack numbering must correspond throughout the application package.

					Vapor	Average Stora	age Conditions	Max Storag	ge Conditions
Tank No.	SCC Code	Material Name	Composition	Liquid Density (lb/gal)	Molecular Weight (lb/lb*mol)	Temperature (°F)	True Vapor Pressure (psia)	Temperature (°F)	True Vapor Pressure (psia)
IFR1	40400331	Oil/Condensate	Oil/Condensate	6.54	53.15	100.00	11.35	100.00	11.35
IFR2	40400331	Oil/Condensate	Oil/Condensate	6.54	53.15	100.00	11.35	100.00	11.35
IFR3	40400331	Oil/Condensate	Oil/Condensate	6.54	53.15	100.00	11.35	100.00	11.35
IFR4	40400331	Oil/Condensate	Oil/Condensate	6.54	53.15	100.00	11.35	100.00	11.35
IFR5	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
IFR6	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
IFR7	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
IFR8	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
IFR9	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
IFR10	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
IFR11	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
IFR12	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
IFR13	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
IFR14	40400331	Oil/Condensate	Oil/Condensate	6.54	53.13	100.00	11.35	100.00	11.35
GBS1	31000506	Produced Water	Produced Water w/ Trace Oils	8.26	42.92	90.00	14.95	90.00	14.95
PWTK1	40400315	Produced Water	Produced Water w/ Trace Oils	8.30	42.92	75.80	12.03	75.80	12.03
PWTK2	40400315	Produced Water	Produced Water w/ Trace Oils	8.30	42.92	75.80	12.03	75.80	12.03
SOTK1	40400311	Oil/Condensate	Oil/Condensate	5.89	54.21	75.80	11.33	75.80	11.33

Table 2-L: Tank Data

Include appropriate tank-flashing modeling input data. Use an addendum to this table for unlisted data categories. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary. See reference Table 2-L2. Note: 1.00 bbl = 10.159 M3 = 42.0 gal

Tank No.	Date Installed	Materials Stored	Seal Type (refer to Table 2- LR below)	Roof Type (refer to Table 2- LR below)	Capa	acity	Diameter (M)	Vapor Space	Co (from Tal	lor ble VI-C)	Paint Condition (from Table VI-	Annual Throughput (gal/yr)	Turn- overs
			ER below)	ER below)	(bbl)	(M ³)		(M)	Roof	Shell	C)		(per year)
IFR1	TBD	Oil/Condensate	С	IF	50,000	7,949	30.5	13.4	Tan	Tan	Good	2,299,500,000	1095
IFR2	TBD	Oil/Condensate	С	IF	50,000	7,949	30.5	13.4	Tan	Tan	Good	2,299,500,000	1095
IFR3	TBD	Oil/Condensate	С	IF	50,000	7,949	30.5	13.4	Tan	Tan	Good	2,299,500,000	1095
IFR4	TBD	Oil/Condensate	C	IF	50,000	7,949	30.5	13.4	Tan	Tan	Good	2,299,500,000	1095
IFR5	TBD	Oil/Condensate	С	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
IFR6	TBD	Oil/Condensate	C	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
IFR7	TBD	Oil/Condensate	С	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
IFR8	TBD	Oil/Condensate	C	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
IFR9	TBD	Oil/Condensate	С	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
IFR10	TBD	Oil/Condensate	С	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
IFR11	TBD	Oil/Condensate	С	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
IFR12	TBD	Oil/Condensate	C	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
IFR13	TBD	Oil/Condensate	С	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
IFR14	TBD	Oil/Condensate	C	IF	100,000	15,899	39.8	15.2	Tan	Tan	Good	919,800,000	219
GBS1	TBD	Produced Water	NA	FX	1,000	159	4.7	7.3	Tan	Tan	Good	93,513,000	2227
PWTK1	TBD	Produced Water	NA	FX	750	119	4.7	7.3	Tan	Tan	Good	46,756,500	1114
PWTK2	TBD	Produced Water	NA	FX	750	119	4.7	7.3	Tan	Tan	Good	46,756,500	1114
SOTK1	TBD	Slop - Oil/Condensate	NA	FX	500	79	3.7	7.6	Tan	Tan	Good	4,599,000	219

Table 2-L2: Liquid Storage Tank Data Codes Reference Table

Roof Type	Seal Type, W	elded Tank Seal Type	Seal Type, Riveted	Roof, Shell Color	Paint Condition	
FX: Fixed Roof	Mechanical Shoe Seal	Liquid-mounted resilient seal	Vapor-mounted resilient seal	r-mounted resilient seal Seal Type		Good
IF: Internal Floating Roof	A: Primary only	A: Primary only	A: Primary only	A: Mechanical shoe, primary only	AS: Aluminum (specular)	Poor
EF: External Floating Roof	B: Shoe-mounted secondary	B: Weather shield	ld B: Weather shield B: Shoe-mounted secondary		AD: Aluminum (diffuse)	
P: Pressure	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	C: Rim-mounted secondary	LG: Light Gray	
					MG: Medium Gray	
Note: $1.00 \text{ bbl} = 0.159 \text{ M}^3 = 42.0 \text{ gal}$					BL: Black	
					OT: Other (specify)	

Material Processed				Material Produced				
Description	Chemical Composition	Phase (Gas, Liquid, or Solid) Quantity (specify units)		Description	Chemical Composition			
Mixed Hydrocarbons	Oil/Condensate	Liquid	600,000 (BOPD)	Mixed Hydrocarbons	Oil/Condensate	Liquid	600,000 (BOPD)	
	Produced Water	Liquid	6,100 (BWPD)		Produced Water	Liquid	6,100 (BWPD)	
	Natural Gas	Gas	1,600 (MMSCFD)		Natural Gas	Gas	1,000 (MMSCFD)	
	Natural Gas Liquids	Liquid	190,000 (BOPD)		Natural Gas Liquids	Liquid	190,000 (BOPD)	

Table 2-M: Materials Processed and Produced (Use additional sheets as necessary.)

Table 2-N: CEM Equipment

Enter Continuous Emissions Measurement (CEM) Data in this table. If CEM data will be used as part of a federally enforceable permit condition, or used to satisfy the requirements of a state or federal regulation, include a copy of the CEM's manufacturer specification sheet in the Information Used to Determine Emissions attachment. Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Stack No.	Pollutant(s)	Manufacturer	Model No.	Serial No.	Sample Frequency	Averaging Time	Range	Sensitivity	Accuracy
N/A									

Table 2-O: Parametric Emissions Measurement Equipment

Unit and stack numbering must correspond throughout the application package. Use additional sheets if necessary.

Unit No.	Parameter/Pollutant Measured	Location of Measurement	Unit of Measure	Acceptable Range	Frequency of Maintenance	Nature of Maintenance	Method of Recording	Averaging Time
			N/A					

Table 2-P: Greenhouse Gas Emissions

Applications submitted under 20.2.70, 20.2.72, & 20.2.74 NMAC are required to complete this Table. Power plants, Title V major sources, and PSD major sources must report and calculate all GHG emissions for each unit. Applicants must report potential emission rates in short tons per year (see Section 6.a for assistance). Include GHG emissions during Startup, Shutdown, and Scheduled Maintenance in this table. For minor source facilities that are not power plants, are not Title V, or are not PSD, there are three options for reporting GHGs 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHG as a second separate unit; OR 3) check the following box By checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

		CO2 ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ton/yr ²					al GHG s ton/yr ⁴	Total CO ₂ e
Unit No.	GWPs ¹	1	298	25	22,800	footnote 3						
SHTR1-6	mass GHG	181,191.43	0.34	3.41						181	195.18	
SHIKI-0	CO ₂ e	181,191.43	101.76	85.37								181,378.56
SHTR7-8	mass GHG	60,397.14	0.11	1.14						60,	398.39	
5111K/-0	CO ₂ e	60,397.14	33.92	28.46								60,459.52
CHTR1-2	mass GHG	96,893.70	0.18	1.83						96,	895.71	
CIIIKI-2	CO ₂ e	96,893.70	54.42	45.65								96,993.77
CHTR3-4	mass GHG	96,893.70	0.18	1.83						96,	895.71	
СПТК3-4	CO ₂ e	96,893.70	54.42	45.65								96,993.77
RHTR1-4	mass GHG	72,255.19	0.14	1.36						72,	256.69	
KH1K1-4	CO ₂ e	72,255.19	40.58	34.04								72,329.82
EL1 EL2	mass GHG	9,774.50	-	39.84						9,8	14.34	
FL1-FL3	CO ₂ e	9,774.50	-	996.03								10,770.53
FL1-FL3OVHD-	mass GHG	9,396.56	-	0.96						9,3	97.52	
SSM	CO ₂ e	9,396.56	-	24.00								9,420.57
FL1-FL3CRYO-	mass GHG	12,156.88	-	39.02						12,	195.90	
SSM	CO ₂ e	12,156.88	-	975.60								13,132.48
IFR1-IFR14	mass GHG	-	-	0.44						1).44	
IFK1-IFK14	CO ₂ e	-	-	11.01								11.01
ECD1	mass GHG	6,347.11	-	0.54						6,3	47.65	
ECD2a / ECD2b	CO ₂ e	6,347.11	-	13.49								6,360.60
TO1	mass GHG	106,227.53	-	34.76						106	262.29	
TO1	CO ₂ e	106,227.53	-	868.93								107,096.46
TO1	mass GHG	106,227.53	-	34.76						106	262.29	
TO2	CO ₂ e	106,227.53	-	868.93								107,096.46
TO 1	mass GHG	106,227.53	-	34.76						106	262.29	
TO3	CO ₂ e	106,227.53	-	868.93								107,096.46
TO 1	mass GHG	106,227.53	-	34.76						106	262.29	
TO4	CO ₂ e	106,227.53	-	868.93								107,096.46
FUG	mass GHG	0.76	-	119.59						11	20.35	
FUG	CO ₂ e	0.76	-	2,989.73								2,990.49
0.077	mass GHG	2.25E-06	-	3.69E-06						5.9	4E-06	1
SOTL	CO ₂ e	2.25E-06	-	9.23E-05		1	1					9.45E-05
	mass GHG	627.89	8.91E-04	8.91E-03						6	27.90	1
GEN1-GEN4	CO ₂ e	627.89	0.27	0.22								628.38
	mass GHG	970,844.98	0.96	349.00						971	194.94	
Total	CO ₂ e	970,844.98	285.37	8,724.96			1			,,,,		979,855.31

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

³ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁴ Green house gas emissions on a **mass basis** is the ton per year green house gas emission before adjustment with its GWP.

⁵ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the green house gas by its GWP.

Application Summary

The **Application Summary** shall include a brief description of the facility and its process, the type of permit application, the applicable regulation (i.e. 20.2.72.200.A.X, or 20.2.73 NMAC) under which the application is being submitted, and any air quality permit numbers associated with this site. If this facility is to be collocated with another facility, provide details of the other facility including permit number(s). In case of a revision or modification to a facility, provide the lowest level regulatory citation (i.e. 20.2.72.219.B.1.d NMAC) under which the revision or modification is being requested. Also describe the proposed changes from the original permit, how the proposed modification will affect the facility's operations and emissions, de-bottlenecking impacts, and changes to the facility's major/minor status (both PSD & Title V).

The **<u>Process Summary</u>** shall include a brief description of the facility and its processes.

<u>Startup, Shutdown, and Maintenance (SSM)</u> routine or predictable emissions: Provide an overview of how SSM emissions are accounted for in this application. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on SSM emissions.

XTO Energy Inc. is requesting a Significant Revision of Cowboy Central Delivery Point (Cowboy CDP) NSR Permit #7877M2 in accordance with 20.2.72.219.D(1) NMAC. The facility is located approximately 14 miles southeast of Malaga in Eddy County, New Mexico.

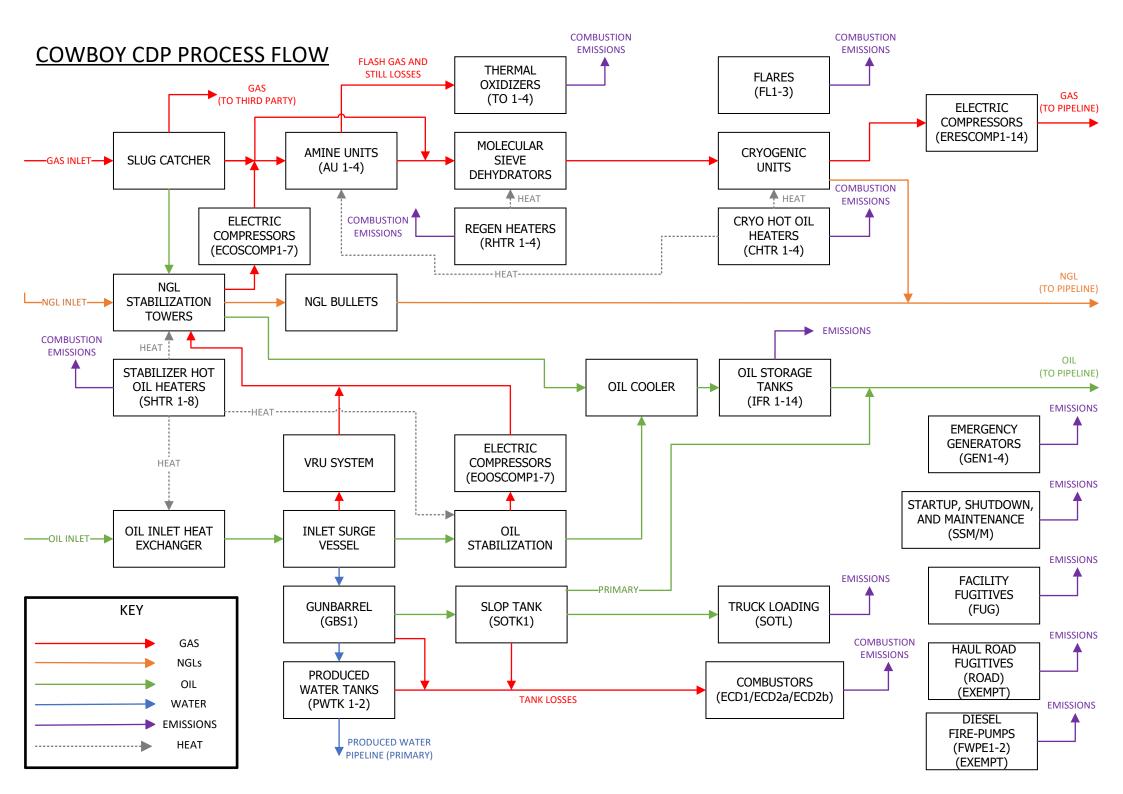
Cowboy CDP consists of gas processing facilities and oil/natural gas liquids (NGLs) processing facilities. The gas processing facilities utilize amine sweetening units to remove hydrogen sulfide (H₂S) and carbon dioxide (CO₂) from raw natural gas as needed to meet product specification. The sweetened gas is then routed to dehydration facilities to eliminate moisture. The sweetened and dried gas then enters cryogenic units, where it is cooled to condense and separate valuable NGLs out of the raw gas stream. Utility hot oil systems with gas-fired auxiliary heaters are used to provide the required heat to the distillation processes in the cryogenic units. The remaining residue gas is sold via pipelines. The incoming oil and NGLs both undergo stabilization via heating and distillation processes by means of two utility hot oil systems with separate gas-fired auxiliary heaters, thereby eliminating volatile components from the oil and NGLs for safe transportation via pipeline. The facility can receive up to 600,000 barrels of oil per day from surrounding field production tank batteries. The facility also has storage tanks for storing the processed oil and a portion of the NGLs before export. The oil and NGLs are transferred offsite via pipelines, while produced water and slop oil can be shipped via pipeline or transported offsite by truck.

With this application, XTO is requesting to revise potential flaring emissions (FL1-FL3) based upon updated annual flare volume estimates at full plant built out and capacity. Flare stream compositions, MW, and heating values are also updated based on recent flare stream sample analysis.

Also, XTO is requesting to revise potential enclosed combustor (ECD1) emissions based upon updated produced water and slop oil storage throughput estimates at full plant built out and capacity. Produced water and slop oil emissions are also updated based upon recent sample analysis of slop oil streams. XTO would like to add a portable backup combustor that would only be used if the existing combustor is out of service. Two different portable ECD models (ECD2a/ECD2b) are considered for this permit as represented in Table 2A and 2H. Annual emissions conservatively assume that the backup combustor could operate up to 8,760 hrs per year. The combustors will not operate at the same time; therefore, total combustor emissions are based on worst-case emissions from ECD1 or ECD2a/ECD2b.

Heater potential emissions are updated based upon recent fuel gas sample analysis. XTO is also requesting to group like heaters (SHTR1-SHTR8, CHTR1-4, RHTR1-4) and combine annual emission limits for each heater grouping.

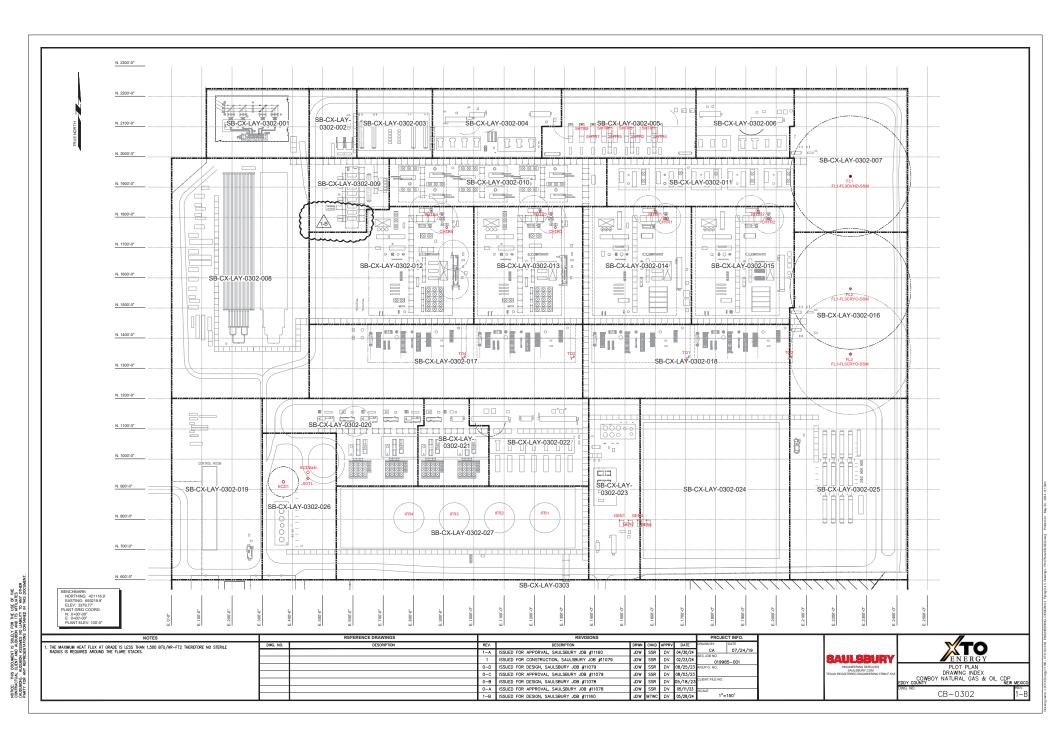
Oil storage tank emissions (IFR1-IFR14) are updated to reflect an average bulk storage temperature of 100 F and recent oil sample analysis.

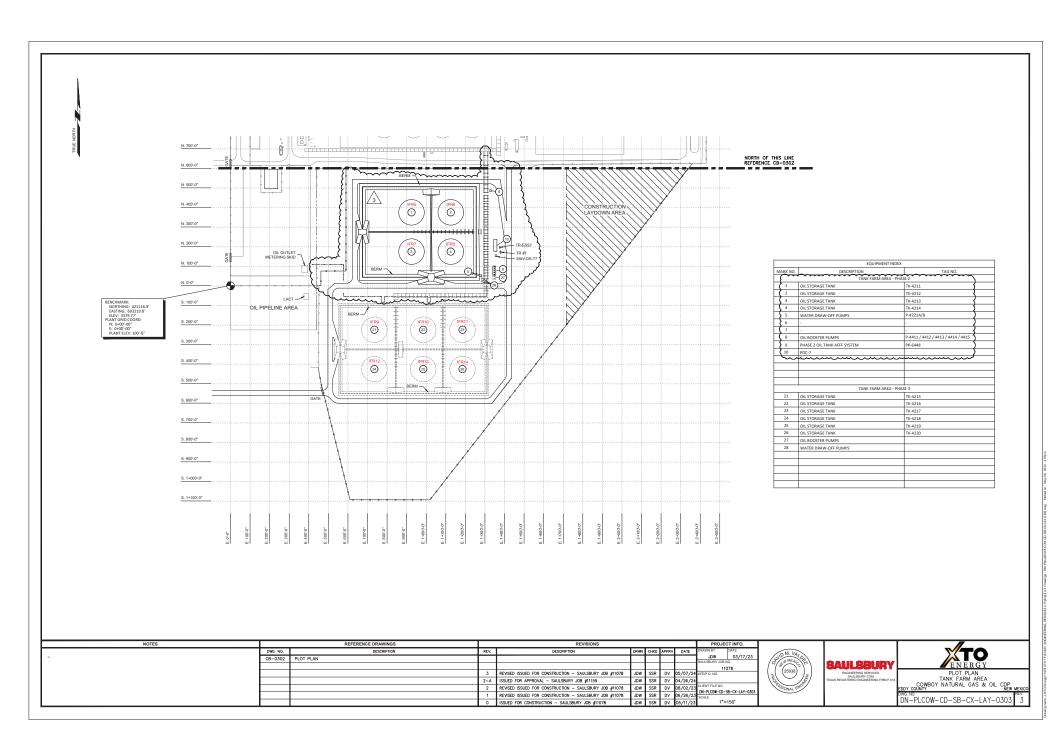

XTO is requesting to revise and clarify the process gas limit of 1 BSCF/day or 365 BSCF/year. At full build out, up to 1.6 BSCF/day field gas can be routed to the Cowboy facility with up to 1 BSCF/day being processed in the Cowboy gas plant facilities and the remaining rich gas being routed to offsite 3rd party gas processors. This clarification of the process gas limits does not change the permit emissions but is intended to clarify the process gas permit throughput limit. Other revisions include an updated process flow diagram and process description provided in Sections 4 and 10, respectively. Planned fire pump engines are represented as exempt sources as emergency fire protection equipment.

Finally, XTO also requests the removal of four (4) Arial KBZ/6 6500 hp electric residue gas compressors (ERESCOMP15-18), as well as the permitted molecular sieve dehydrators (MOL1-4) and cryogenic trains (CRYO1-4) from the permit, as these units are not sources of emissions and are not subject to any local or federal standards, although they remain part of the Cowboy facility.

Process Flow Sheet

A **process flow sheet** and/or block diagram indicating the individual equipment, all emission points and types of control applied to those points. The unit numbering system should be consistent throughout this application.


A Process Flow Diagram is attached to this application.



Plot Plan Drawn to Scale

A <u>plot plan drawn to scale</u> showing emissions points, roads, structures, tanks, and fences of property owned, leased, or under direct control of the applicant. This plot plan must clearly designate the restricted area as defined in UA1, Section 1-D.12. The unit numbering system should be consistent throughout this application.

A plot plan is attached to this application.

All Calculations

Show all calculations used to determine both the hourly and annual controlled and uncontrolled emission rates. All calculations shall be performed keeping a minimum of three significant figures. Document the source of each emission factor used (if an emission rate is carried forward and not revised, then a statement to that effect is required). If identical units are being permitted and will be subject to the same operating conditions, submit calculations for only one unit and a note specifying what other units to which the calculations apply. All formulas and calculations used to calculate emissions must be submitted. The "Calculations" tab in the UA2 has been provided to allow calculations to be linked to the emissions tables. Add additional "Calc" tabs as needed. If the UA2 or other spread sheets are used, all calculation spread sheet(s) shall be submitted electronically in Microsoft Excel compatible format so that formulas and input values can be checked. Format all spread sheets and calculations such that the reviewer can follow the logic and verify the input values. Define all variables. If calculation spread sheets are not used, provide the original formulas with defined variables. Additionally, provide subsequent formulas showing the input values for each variable in the formula. All calculations, including those calculations are imbedded in the Calc tab of the UA2 portion of the application, the printed Calc tab(s), should be submitted under this section.

Tank Flashing Calculations: The information provided to the AQB shall include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., NOI, permit, or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis. If Hysis is used, all relevant input parameters shall be reported, including separator pressure, gas throughput, and all other relevant parameters necessary for flashing calculation.

SSM Calculations: It is the applicant's responsibility to provide an estimate of SSM emissions or to provide justification for not doing so. In this Section, provide emissions calculations for Startup, Shutdown, and Routine Maintenance (SSM) emissions listed in the Section 2 SSM and/or Section 22 GHG Tables and the rational for why the others are reported as zero (or left blank in the SSM/GHG Tables). Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (http://www.env.nm.gov/aqb/permit/app_form.html) for more detailed instructions on calculating SSM emissions. If SSM emissions are greater than those reported in the Section 2, Requested Allowables Table, modeling may be required to ensure compliance with the standards whether the application is NSR or Title V. Refer to the Modeling Section of this application for more guidance on modeling requirements.

Glycol Dehydrator Calculations: The information provided to the AQB shall include the manufacturer's maximum design recirculation rate for the glycol pump. If GRI-Glycalc is used, the full input summary report shall be included as well as a copy of the gas analysis that was used.

Road Calculations: Calculate fugitive particulate emissions and enter haul road fugitives in Tables 2-A, 2-D and 2-E for:

- 1. If you transport raw material, process material and/or product into or out of or within the facility and have PER emissions greater than 0.5 tpy.
- 2. If you transport raw material, process material and/or product into or out of the facility more frequently than one round trip per day.

Significant Figures:

A. All emissions standards are deemed to have at least two significant figures, but not more than three significant figures.B. At least 5 significant figures shall be retained in all intermediate calculations.

C. In calculating emissions to determine compliance with an emission standard, the following rounding off procedures shall be used:

- (1) If the first digit to be discarded is less than the number 5, the last digit retained shall not be changed;
- (2) If the first digit discarded is greater than the number 5, or if it is the number 5 followed by at least one digit other than the number zero, the last figure retained shall be increased by one unit; and
- (3) If the first digit discarded is exactly the number 5, followed only by zeros, the last digit retained shall be rounded upward if it is an odd number, but no adjustment shall be made if it is an even number.

(4) The final result of the calculation shall be expressed in the units of the standard.

Form-Section 6 last revised: 5/3/16

Control Devices: In accordance with 20.2.72.203.A(3) and (8) NMAC, 20.2.70.300.D(5)(b) and (e) NMAC, and 20.2.73.200.B(7) NMAC, the permittee shall report all control devices and list each pollutant controlled by the control device regardless if the applicant takes credit for the reduction in emissions. The applicant can indicate in this section of the application if they chose to not take credit for the reduction in emission rates. For notices of intent submitted under 20.2.73 NMAC, only uncontrolled emission rates can be considered to determine applicability unless the state or federal Acts require the control. This information is necessary to determine if federally enforceable conditions are necessary for the control device, and/or if the control device produces its own regulated pollutants or increases emission rates of other pollutants.

Hot Oil Heaters (SHTR1 – SHTR8, CHTR1 – CHTR4, RHTR1 – RHTR4)

The facility is equipped with eight (8) 58.93 Million British Thermal units per hour (MMbtu/hr) burners used for heating units in oil & NGL stabilization, four (4) 94.54 MMbtu/hr burners used for natural gas cryogenic heaters, and four (4) 35.25 MMbtu/hr burners used for mole sieve regeneration. SHTR7, SHTR8, CHTR3, and CHTR4 are to be equipped with SCR catalysts to control NO_x emissions. The heaters generate emissions of nitrogen oxides (NO_x), carbon dioxide (CO), volatile organic compounds (VOC), sulfur dioxide (SO₂), and Particulate Matter (PM). NO_x, CO, and VOC emissions were calculated using manufacturer's guaranteed exhaust concentrations. PM, hazardous air pollutants (HAPs), and SO₂ emissions were calculated using emission factors from AP-42 Section 1.4 for natural gas combustion. AP-42 emission factors were adjusted for the heat content of the fuel gas. Supporting manufacturer documentation is provided in Section 7. A 25% safety factor was applied to the lb/hr emission rates. The high heating value (Btu/scf) of the fuel gas is based on Bryan Research and Engineering's (BR&E) ProMax software simulation using a recent fuel sample analysis (see simulation report in Section 7).

Thermal Oxidizers (TO1 – TO4)

Thermal oxidizers (TO) are used to control vapors from the amine flash vessels and acid gas from the amine still reflux accumulators. Speciated VOC, SO₂ and HAP emissions associated with the flash vessels and still vents were calculated using Promax simulation (see simulation report in Section 7). The ProMax simulation for each amine flash vessel and still vent was designed to simulate emissions at the maximum design gas throughput of 250 Million standard cubic feet per day (MMscfd) per cryo train and maximum design amine recirculation pump rates of 500 standard gallons per minute (sgpm). To be conservative, total HAP emissions were calculated assuming that the total molar concentration of hydrocarbon components that are hexanes or heavier (C6+) is equal to the molar concentration of each individual HAP component. A manufacturer guaranteed destruction efficiency of 99% was used for the TO. Emissions of NO_x and CO from the TOs were calculated using manufacturer's guaranteed exhaust concentrations. PM emissions from TO combustion were calculated using AP-42 Section 1.4. Supporting manufacturer documentation is provided in Section 7.

Flares (FL1 – FL3)

The facility is be equipped with three dual-tip flares used to control routine flare streams and startup, shutdown, maintenance (SSM) flare streams. Routine emissions from the flares include pilot, purge, assist gas, and process gas. Process gas includes sweep gas and miscellaneous process vents such as analyzer vents, compressor seals, and pump seals. Flare stream flowrates were based on process knowledge and engineering estimates. Flare stream composition and heat content were based on recent flare stream sample analysis and ProMax simulation (see simulation report in Section 7). NO_x and CO emissions were calculated using emission factors from the Texas Commission on Environmental Quality (TCEQ) publication RG-360A/09. VOC and H2S emissions were calculated using estimated flaring volumes, stream composition from recent flare gas sample analysis, and the manufacturer's guaranteed destruction efficiency of 98%. Manufacturer documentation provided in Section 7 of the application. SO2 emissions are based on flare stream total sulfur content of 25 ppmw and assumes 100% of the sulfur is converted to SO2. PM10 and PM2.5 emissions were calculated using emission factors from AP-42 Section 1.4 for natural gas combustion. Emission factors were adjusted for the heat content of the flare streams. A 20% safety factor was added to the lb/hr emission rates from the flares.

SSM streams routed to the flares could include process vessel purging and blowdowns associated with startup, shutdown, and maintenance activities and events. Separate SSM flaring limits have been established for process equipment associated with the oil and NGL stabilization and the natural gas processing cryo trains. A maximum hourly SSM gas rate to any of the dual-tip flares of 500,000 scfh was included in the calculations for the oil and NGL stabilization equipment. A separate maximum hourly SSM gas rate to the any of the dual-tip flares of 2,000,000 scfh was included for cryo train equipment. For permitting purposes, the total SSM rate established for each process area is intended to represent one total limit for all three flares. Flare SSM stream composition and heat content were based on recent flare stream sample analysis and ProMax simulation (see simulation report in Section 7). NO_X and CO emissions were calculated using emission factors from the Texas Commission on Environmental Quality (TCEQ) publication RG-360A/09. VOC and H2S emissions were calculated using estimated flaring volumes, stream composition from recent flare gas sample analysis, and the manufacturer's guaranteed destruction efficiency of 98%. Manufacturer

Form-Section 6 last revised: 5/3/16

documentation provided in Section 7 of the application. SO2 emissions are based on flare stream total sulfur content of 25 ppmw and assumes 100% of the sulfur is converted to SO2. PM10 and PM2.5 emissions were calculated using emission factors from AP-42 Section 1.4 for natural gas combustion. Emission factors were adjusted for the heat content of the flare streams. A 20% safety factor was added to the lb/hr emission rates from the flares.

Combustors (ECD1 and ECD2a/ECD2b)

Enclosed combustors will control flashing, working, and breathing losses from the gunbarrel separator and fixed roof tanks, as well as the displaced vapors from truck loading operations from the slop oil tank. ECD1 will be the primary control for these units, and the portable ECD2a/ECD2b will provide backup control during ECD1 downtimes. The portable unit can range in size in terms of capacity and stack parameters which are provided under Unit IDs ECD2a and ECD2b in the UA2 tables. Emissions of NO_x and CO from the combustors were calculated using manufacturer's guaranteed exhaust concentrations. VOC emissions were calculated using speciated streams determined from recent sample analysis, BR&E ProMax software simulation, and the manufacturer's guaranteed destruction efficiency of 99%. Annual emissions conservatively assume that ECD2a/ECD2b could operate up to 8760 hr/yr. Total emissions represent worst-case emission from ECD1, ECD2a, or ECD2b. The combustors will not operate at the same time. A constant pilot gas fuel rate of 180 scfh is included in the emission calculations for the ECD1, and 270 scf/hr is included for ECD2a/ECD2b. Supporting manufacturer documentation is provided in Section 7.

Storage Tanks (IFR5 – IFR8, GBS1, SOTK1, PWTK1 – PWTK2)

Standing and withdrawal emissions from the fourteen (14) internal floating roof (IFR) crude oil tanks, as well as flash, working, and breathing emissions from the one gunbarrel separator, one (1) fixed roof slop oil tank, and two (2) fixed roof produced water storage tanks were calculated using speciated streams determined from recent sample analysis, estimated liquid throughput, and BR&E ProMax simulation software. The BR&E ProMax software utilizes current AP-42, Chapter 7, Liquid Storage Tank emission calculation methodology. Emissions from the fixed roof tanks will be controlled by ECD1 or ECD2a/ECD2b. The simulation reports' details and summaries are included in Section 7.

Truck Loading (SOTL)

Controlled emissions from slop oil loading of trucks were calculated using Equation 1 of AP-42 Section 5.2. Maximum slop oil loading rates are calculated using 210 BOPD. Relevant portions of AP-42 Section 5.2 are included in Section 7. Slop oil truck loading will be controlled by the combustor (ECD1 or ECD2a/ECD2b).

Startup, Shutdown, and Maintenance (SSM/M)

Startup, shutdown, maintenance (SSM) and malfunction (M) emissions not routed to the flare system were quantified at the facility. The SSM/M emissions include blowdowns and degassing from various equipment as identified in the emission calculations. Like-kind SSM/M activities were grouped together. The estimated frequency, volume, MW, and VOC wt% of the vented stream for each SSM/M grouping were used to calculate VOC emissions. Vented volume per event was based on the capacity of equipment, piping, and piping components. Emissions for some like-kind SSM activities were less than 0.5 tpy and are identified as permit exempt sources in the emission calculations and in UA2 Table 2-B.

Haul Road Fugitive Emissions (Exempt pursuant 20.2.72.202.B.(5) NMAC)

Fugitive haul road emissions were calculated using Equations 1a and 2 of AP-42 Section 13.2.2. Relevant portions of AP-42 Section 13.2.2 are included in Section 7.

Emergency Generators (GEN1-GEN4)

Emission factors for NO_x, CO, formaldehyde, and VOC are based on manufacturer's data. Emission rates PM, PM₁₀, and PM_{2.5} were calculated using AP-42 Table 3.2-3 emission factors. PM₁₀ and PM_{2.5} emissions are set equal to PM emissions as a conservative measure. SO₂ emissions were calculated based on the units' fuel consumption and a maximum sulfur content of 0.75 grains per 100 standard cubic feet (0.75 gr/100 scf). Hazardous Air Pollutants (HAPs) except for formaldehyde were calculated using AP-42 factors. Annual operation was assumed to be 100 hours per generator.

Piping Component Fugitive Emissions (FUG)

Facility fugitive emissions were calculated using emission factors from the "Protocol for Equipment Leak Emission Estimates" document, conservatively assumed component counts from P&I diagrams of the facility, and representative stream compositions.

Cowboy CDP

CONTROLLED FACILITY EMISSIONS SUMMARY

						EMISSI	ONS SUMN	AARY TABI	LE								
	[[1		1				1		1		
EMISSION SOURCE DESCRIPTION	FACILITY NUMBER	STACK NUMBER	N	Юx	CC)		OC DES HAPs)	S	D ₂	Р	М	PM ₁₀ /	PM _{2.5}	HA	Ps	CO2e
			lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ	TPY
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR1	SHTR1	1.97		1.20		0.47		0.16		0.55		0.55		0.14		
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR2	SHTR2	1.97		1.20		0.47		0.16		0.55		0.55		0.14		
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR3	SHTR3	1.97	41.35	1.20	25.24	0.47	9.91	0.16	3.42	0.55	11.54	0.55	11.54	0.14	0.81	181,378.56
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR4	SHTR4	1.97	11.00	1.20	20.21	0.47	,,,,	0.16	0.12	0.55	11.01	0.55	11.01	0.14	0.01	101,070,000
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR5	SHTR5	1.97		1.20	+	0.47		0.16		0.55		0.55		0.14		
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR6	SHTR6	1.97		1.20		0.47		0.16		0.55		0.55		0.14		
Stabilization Hot Oil Heater w/ SCR catalyst (58.93 MMBtu/hr)	SHTR7	SHTR7	0.49	3.46	1.20	8.41	0.47	3.30	0.16	1.14	0.55	1.10	0.55	1.10	0.14	0.27	60,459.52
Stabilization Hot Oil Heater w/ SCR catalyst (58.93 MMBtu/hr)	SHTR8	SHTR8	0.49	5.10	1.20	0.11	0.47	0.00	0.16	1.11	0.55	1.10	0.55	1.10	0.14	0.27	00,107.02
Cryo Hot Oil Heater (94.54 MMBtu/hr)	CHTR1	CHTR1	3.95	27.66	1.93	13.50	0.76	5.30	0.26	1.83	0.88	6.17	0.88	6.17	0.22	0.44	96,993.77
Cryo Hot Oil Heater (94.54 MMBtu/hr)	CHTR2	CHTR2	3.95	27.00	1.93	15.50	0.76	5.50	0.26	1.05	0.88	0.17	0.88	0.17	0.22	0.44	90,993.77
Cryo Hot Oil Heater w/ SCR Catalyst (94.54 MMBtu/hr)	CHTR3	CHTR3	0.79	5.55	1.93	13.50	0.76	5.30	0.26	1.83	0.88	6.17	0.88	6.17	0.22	0.44	96,993.77
Cryo Hot Oil Heater w/ SCR Catalyst (94.54 MMBtu/hr)	CHTR4	CHTR4	0.79	5.55	1.93	13.50	0.76	5.50	0.26	1.05	0.88	0.17	0.88	0.17	0.22	0.44	90,993.17
Regen Heater (35.25 MMBtu/hr)	RHTR1	RHTR1	1.18		0.72		0.28		0.097		0.33		0.33		0.081		
Regen Heater (35.25 MMBtu/hr)	RHTR2	RHTR2	1.18	16.49	0.72	10.07	0.28	3.95	0.097	1.36	0.33	4.60	0.33	4.60	0.081	0.32	72,329.82
Regen Heater (35.25 MMBtu/hr)	RHTR3	RHTR3	1.18	10.47	0.72	10.07	0.28	3.90	0.097	1.30	0.33	4.00	0.33	4.00	0.081	0.32	12,329.02
Regen Heater (35.25 MMBtu/hr)	RHTR4	RHTR4	1.18		0.72		0.28		0.097		0.33		0.33		0.081		
CDP Flare 1 (Dual Tip Flare) Cryo Flare 2 (Dual Tip Flare) Cryo Flare 3 (Dual Tip Flare)	FL1-FL3 ¹	FL1-FL3 ¹	2.95	10.75	5.88	21.46	2.30	8.38	0.050	0.18	0.16	0.58	0.16	0.58	0.16	0.60	10,770.53

Cowboy CDP

CONTROLLED FACILITY EMISSIONS SUMMARY

						EMISSI	ONS SUMN	MARY TABI	LE								
EMISSION SOURCE DESCRIPTION	FACILITY NUMBER	STACK NUMBER	N	[Ox	СС	,		OC DES HAPs)	S	0 ₂	P	м	PM ₁₀ /	PM _{2.5}	н	APs	CO2e
			lb/hr	ТРҮ	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	TPY
FL1-FL3 Stabilizer Overhead SSM Gas	FL1- FL3OVHD- SSM	FL1-FL31	222.82	8.54	444.83	17.06	1,419.77	45.00	4.04	0.15	12.03	0.21	12.03	0.21	73.61	1.79	9,420.57
FL1-FL3 Cryo Blowdown SSM Gas	FL1- FL3CRYO- SSM	FL1-FL31	405.77	11.43	810.06	22.82	822.57	10.60	6.99	0.19	21.91	0.58	21.91	0.58	13.05	0.17	13,132.48
Oil Storage Tanks 1-4 (Hourly VOC emissions)	IFR1-4	IFR1-4					5.05								0.24		-
Oil Storage Tanks 5-14 (Hourly VOC emissions)	IFR5-14	IFR5-14					12.93								0.59		
Oil Storage Tanks 1-14 ³ (Annual VOC emissions)	IFR1-14	IFR1-14						70.48								3.66	11.01
Combustor 1	ECD1	ECD1	1.77	7.69	3.04	13.24	4.65	20.23			0.073	0.12	0.073	0.12	0.15	0.67	6,360.60
Combustor 2a/2b (Backup Unit)	ECD2a- ECD2b	ECD2a- ECD2b															.,
Thermal Oxidizer	TO1	TO1	3.56	15.59	2.17	9.49	0.72	3.24	0.88	3.87	0.19	0.82	0.19	0.82	0.018	0.079	107,096.46
Thermal Oxidizer	TO2	TO2	3.56	15.59	2.17	9.49	0.72	3.24	0.88	3.87	0.19	0.82	0.19	0.82	0.018	0.079	107,096.46
Thermal Oxidizer	TO3	ТОЗ	3.56	15.59	2.17	9.49	0.72	3.24	0.88	3.87	0.19	0.82	0.19	0.82	0.018	0.079	107,096.46
Thermal Oxidizer	TO4	TO4	3.56	15.59	2.17	9.49	0.72	3.24	0.88	3.87	0.19	0.82	0.19	0.82	0.018	0.079	107,096.46
Fugitives	FUG	FUG					7.98	34.93							1.39	6.10	2,990.49
Amine Sweetener 1	AU1	TO1						1	Emissions	represente	d at TO1.						
Amine Sweetener 2	AU2	TO2						1	Emissions	represente	d at TO2.						
Amine Sweetener 3	AU3	TO3]	Emissions	represente	d at TO3.						
Amine Sweetener 4	AU4	TO4]	Emissions	represente	d at TO4.						
Gunbarrel Tank	GBS1	ECD1						E	missions 1	represented	d at ECD1						
Produced Water Tank 1	PWTK1	ECD1						E	missions 1	represented	d at ECD1						
Produced Water Tank 2	PWTK2	ECD1						E	missions 1	represented	d at ECD1						
Slop Oil Tank	SOTK1	ECD1						E	missions 1	represented	d at ECD1						
Slop Oil Truck Loading	SOTL	ECD1					0.69	7.43E-03							0.021	2.23E-04	9.45E-05
Emergency Generator	GEN1	GEN1	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	2.17	0.11	157.09

Cowboy CDP

CONTROLLED FACILITY EMISSIONS SUMMARY

						EMISSI	ONS SUMN	MARY TAB	LE								
	-	Т	1		1		1		1		F		1		1		r
EMISSION SOURCE DESCRIPTION	FACILITY NUMBER	STACK NUMBER	N	Ox	co)		OC DES HAPs)	s	O ₂	Р	М	PM ₁₀	/ PM _{2.5}	HA	APs	CO2e
			lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	TPY	lb/hr	TPY	lb/hr	ТРҮ	TPY
Emergency Generator	GEN2	GEN2	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	2.17	0.11	157.09
Emergency Generator	GEN3	GEN3	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	2.17	0.11	157.09
Emergency Generator	GEN4	GEN4	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	2.17	0.11	157.09
SSM/M IFR Tank and Misc Equipment	SSM/M	SSM/M						51.33									
			N	Ox	СС)		OC DES HAPs)	s	O ₂	Р	м	PM ₁₀	/ PM ₂₅	HA	APs	CO2e
TOTAL FACILITY	TOTAL FACILITY EMISSIONS						lb/hr ²	ТРҮ	lb/hr ²	ТРҮ	lb/hr ²	ТРҮ	1b/hr ²	ТРҮ	lb/hr ²	TPY	ТРҮ
				196.04	1,349.83	207.15	2,307.20	282.71	17.52	28.42	44.96	43.99	44.96	43.99	100.26	16.70	979,855.31
Since FL3 serves as a backup flare, the pi simulataneously, the highest of the two s					he NGL/condensa	ate overheads	and cryo SSM	stream can be re	outed to any	of the flare; the	erefore, emis	sions were co	mbined betw	een the three	flares. Since t	he two SSM e	vents cannot occu
For all pollutants except VOC/HAP, the l	· · · · · ·				ot occur at the car	no time and t	ha arwa SSM ah	room has a high	or omission r	ata For VOC	the overhead	SSM stream	ic included w	ith the higher	t hourly rate	For UAP the	gaporators have

For an polutants except VOC/EAF, the nourly emission rate excludes overhead 55M stream as they cannot occur at the same time and the eryo 55M stream has a nighter emission rate. For VOC, the overhead 55M stream is included with the nightst nourly rate. For EAF, the generators have the highest hourly rate.

3 Annual VOC emissions are grouped together for IFR1 - IFR14. Worst-case annual withdrawl lossess were calculated by assuming total site throughput for each size group of IFR storage tanks and selecting the higher value to include in the total annual VOC emissions.

Cowboy CDP

UNCONTROLLED FACILITY EMISSIONS SUMMARY

				UNCONT	ROLLED E	MISSIONS	SUMMAR	Y TABLE								
	FACILITY	STACK NUMBER	NC	Dx	c	0		OC DES HAPs)	s	O ₂	т	SP	PM	A ₁₀	HA	APs
EMISSION SOURCE DESCRIPTION	IDENTIFICATION NUMBER	STACK NUMBER	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	тру	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR1	SHTR1	1.97		1.20		0.47		0.16		0.55		0.55		0.14	
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR2	SHTR2	1.97	-	1.20		0.47	+	0.16	+	0.55	-	0.55		0.14	
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR3	SHTR3	1.97		1.20		0.47		0.16		0.55		0.55		0.14	
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR4	SHTR4	1.97	41.35	1.20	25.24	0.47	9.91	0.16	3.42	0.55	11.54	0.55	11.54	0.14	0.81
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR5	SHTR5	1.97		1.20		0.47	İ	0.16	İ	0.55		0.55		0.14	
Stabilization Hot Oil Heater (58.93 MMBtu/hr)	SHTR6	SHTR6	1.97		1.20		0.47	Ī	0.16	Ī	0.55		0.55		0.14	
Stabilization Hot Oil Heater w/ SCR catalyst (58.93 MMBtu/hr)	SHTR7	SHTR7	1.97	13.78	1.20	3.30	0.47	3.30	0.16	1 1 4	0.55	3.85	0.55	3.85	0.14	0.27
Stabilization Hot Oil Heater w/ SCR catalyst (58.93 MMBtu/hr)	SHTR8	SHTR8	1.97	13.78	1.20	3.30	0.47	3.30	0.16	1.14	0.55	3.85	0.55	3.85	0.14	0.27
Cryo Hot Oil Heater (94.54 MMBtu/hr)	CHTR1	CHTR1	3.95	27.66	1.93	8.41	0.76	3.30	0.26	1.14	0.88	3.85	0.88	3.85	0.22	0.44
Cryo Hot Oil Heater (94.54 MMBtu/hr)	CHTR2	CHTR2	3.95	27.00	1.93	0.41	0.76	5.50	0.26	1.14	0.88	5.65	0.88	5.65	0.22	0.44
Cryo Hot Oil Heater w/ SCR Catalyst (94.54 MMBtu/hr)	CHTR3	CHTR3	3.95	27.66	1.93	13.50	0.76	5.30	0.26	1.83	0.88	6.17	0.88	6.17	0.22	0.44
Cryo Hot Oil Heater w/ SCR Catalyst (94.54 MMBtu/hr)	CHTR4	CHTR4	3.95	27.66	1.93	15.50	0.76	5.30	0.26	1.65	0.88	6.17	0.88	6.17	0.22	0.44
Regen Heater (35.25 MMBtu/hr)	RHTR1	RHTR1	1.18		0.72		0.28		0.097		0.33		0.33		0.081	
Regen Heater (35.25 MMBtu/hr)	RHTR2	RHTR2	1.18	16.49	0.72	10.07	0.28	3.95	0.097	1.36	0.33	4.60	0.33	4.60	0.081	0.32
Regen Heater (35.25 MMBtu/hr)	RHTR3	RHTR3	1.18	10.49	0.72	10.07	0.28	3.95	0.097	1.50	0.33	4.00	0.33	4.00	0.081	0.32
Regen Heater (35.25 MMBtu/hr)	RHTR4	RHTR4	1.18		0.72		0.28	Ī	0.097	Ī	0.33		0.33		0.081	
CDP Flare 1 (Dual Tip Flare)																
Cryo Flare 2 (Dual Tip Flare)	FL1-FL31	FL1-FL31	2.95	12.90	5.88	25.75	2.30	10.06	0.050	0.22	0.16	0.70	0.16	0.70	0.16	0.72
Cryo Flare 3 (Dual Tip Flare)																
FL1-FL3 Stabilizer Overhead SSM Gas	FL1-FL3OVHD- SSM	FL1-FL31	31 Not operating in uncontrolled emissions scenario.													
FL1-FL3 Cryo Blowdown SSM Gas	FL1-FL3OVHD- SSM	FL1-FL31					N	ot operating	in uncontr	olled emissi	ons scenario	э.				
Oil Storage Tanks 1-4 (Hourly VOC emissions)	IFR1-4	IFR1-4					5.05								0.24	

Cowboy CDP

UNCONTROLLED FACILITY EMISSIONS SUMMARY

				UNCONT	ROLLED E	MISSIONS	SUMMAR	Y TABLE								
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	NO	Dx	0	20		OC DES HAPs)	s	O ₂	T	SP	PN	Л ₁₀	H	APs
	NUMBER		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
Oil Storage Tanks 5-14 (Hourly VOC emissions)	IFR5-14	IFR5-14					12.93								0.59	
Oil Storage Tanks 1-14 ³ (Annual VOC emissions)	IFR1-14	IFR1-14						70.48								3.66
Combustor 1	ECD1 ¹	ECD1 ¹		- 10												
Combustor 2a/2b (Backup Unit)	ECD2a / ECD2b	ECD2a / ECD2b	1.77	7.69	3.04	13.24	4.65	20.23			0.073	0.12	0.073	0.12	0.15	0.67
Thermal Oxidizer	TO1	TO1	0.28	1.22	0.17	0.74	0.30	1.31			0.15	0.65	0.15	0.65		
Thermal Oxidizer	TO2	TO2	0.28	1.22	0.17	0.74	0.30	1.31			0.15	0.65	0.15	0.65		
Thermal Oxidizer	TO3	TO3	0.28	1.22	0.17	0.74	0.30	1.31			0.15	0.65	0.15	0.65		
Thermal Oxidizer	TO4	TO4	0.28	1.22	0.17	0.74	0.30	1.31			0.15	0.65	0.15	0.65		
Fugitives	FUG	FUG					7.98	34.93								
Amine Sweetener 1	AU1	TO1					73.92	323.77							1.80	7.87
Amine Sweetener 2	AU2	TO2					73.92	323.77							1.80	7.87
Amine Sweetener 3	AU3	TO3					73.92	323.77							1.80	7.87
Amine Sweetener 4	AU4	TO4					73.92	323.77							1.80	7.87
Gunbarrel Tank	GBS1	ECD1														
Produced Water Tank 1	PWTK1	ECD1					1.34	5.86							0.061	0.27
Produced Water Tank 2	PWTK2	ECD1					1.34	5.86							0.061	0.27
Slop Oil Tank	SOTK1	ECD1					459.04	2,010.59							15.16	66.41
Slop Oil Truck Loading	SOTL	ECD1					53.02	0.57							1.59	0.017
Emergency Generator	GEN1	GEN1	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	2.17	0.11
Emergency Generator	GEN2	GEN2	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	2.17	0.11

Cowboy CDP

UNCONTROLLED FACILITY EMISSIONS SUMMARY

				UNCONT	ROLLED EN	MISSIONS	SUMMAR	Y TABLE								
	-	1			1		T		Ī				ſ		T	
EMISSION SOURCE DESCRIPTION	FACILITY IDENTIFICATION	STACK NUMBER	NC	Dx	C	O		OC DES HAPs)	s	O ₂	Т	SP	PN	M ₁₀	H	APs
	NUMBER		lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
Emergency Generator	GEN3	GEN3	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	2.17	0.11
Emergency Generator	GEN4	GEN4	3.80	0.19	14.29	0.71	5.11	0.26	0.044	2.21E-03	0.20	0.010	0.20	0.010	2.17	0.11
SSM/M IFR Tank and Misc Equipment	SSM/M	SSM/M						51.33	1							
					1		T		ľ				1		T	
			NC	Dx	C	Ö		OC DES HAPs)	S	O ₂	Т	SP	PM	110	H	APs
TOTAL FACILITY EN	AISSIONS		lb/hr	ТРҮ	lb/hr	TPY	1b/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
			57.26	153.18	86.95	105.36	872.87	3,536.99	2.96	9.11	10.87	33.48	10.87	33.48	36.17	106.19
¹ Only includes pilot/purge gas emissions in	uncontrolled scer	nario			•		•						•		•	• • •

² Annual VOC emissions are grouped together for IFR1 - IFR14. Worst-case annual withdrawl lossess were calculated by assuming total site throughput for each size group of IFR storage tanks and selecting the higher value to include in the total annual VOC emissions.

Cowboy CDP

PSD MAJOR SOURCE THRESHOLD COMPARISON

PSD NESTED	NOx	CO	VOC	SO_2	PM	$PM_{10 \& 2.5}$	H2SO4
SOURCE CATEGORY Table 1 (20.2.74.501 NMAC)	TPY	ТРҮ	ТРҮ	ТРҮ	ТРҮ	ТРҮ	TPY
Fossil fuel boilers (or combination thereof) totaling more than 250 MMBtu/hr heat input	78.02	81.69	34.46	11.06	34.59	34.59	-
Petroleum storage transfer units, total storage capacity over 300,000 barrels	7.69	13.24	91.83	0.00	0.121	0.121	-
PSD Categorical Thresholds (tpy)*	100	100	100	100	100	100	100
Is Project above Threshold?	No	No	No	No	No	No	No

* The PSD major source threshold for the listed source categories is a potential to emit equal to or greater than 100 TPY.

XTO Energy, Inc. Cowboy CDP FUGITIVE EMISSIONS - Nested PSD Sources

-			Estimated				V	OC Emissions	
Component Type	Service	Control (%)	Components Count	Hours	Factors	Total VOC Weight % ¹	lb/hour	lb/year	tons/year
	Gas/Vapor		680	8760	0.009920	25.72%	1.74	15201.02	7.60
371	Light Oil		0	8760	0.005500	99.97%	0.00	0.00	0.00
Valves	Heavy Oil		0	8760	0.000019	99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760	0.000216	99.97%	0.00	0.00	0.00
	Gas/Vapor		0	8760	0.005290	25.72%	0.00	0.00	0.00
Dumm Caul	Light Oil	Ī	0	8760	0.028660	99.97%	0.00	0.00	0.00
Pump Seals	Heavy Oil		0	8760	0.001130	99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760	0.000053	99.97%	0.00	0.00	0.00
	Gas/Vapor		2040	8760	0.000440	25.72%	0.23	2022.72	1.01
<i>c</i> .	Light Oil		0	8760	0.000463	99.97%	0.00	0.00	0.00
Connectors	Heavy Oil		0	8760	0.000017	99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760	0.000243	99.97%	0.00	0.00	0.00
	Gas/Vapor		1200	8760	0.000860	25.72%	0.27	2325.58	1.16
T-1	Light Oil		0	8760	0.000243	99.97%	0.00	0.00	0.00
Flanges	Heavy Oil		0	8760	0.000001	99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760	0.000006	99.97%	0.00	0.00	0.00
	Gas/Vapor		0	8760	0.004410	25.72%	0.00	0.00	0.00
Open-ended	Light Oil		0	8760	0.003090	99.97%	0.00	0.00	0.00
Lines	Heavy Oil		0	8760	0.000309	99.97%	0.00	0.00	0.00
	Water/Light Oil	Ī	0	8760	0.000550	99.97%	0.00	0.00	0.00
	Gas/Vapor		40	8760	0.019400	25.72%	0.20	1748.69	0.87
01	Light Oil		0	8760	0.016500	99.97%	0.00	0.00	0.00
Other:	Heavy Oil		0	8760	0.000068	99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760	0.030900	99.97%	0.00	0.00	0.00

Emission Component	lb/hr	lb/year	TPY
Uncontrolled VOC Emissions	2.43	21298.02	10.65

¹ Gas/Vapor analysis based on inlet gas. Liquid analysis based on stabilized crude oil.

Notes:

XTO Energy, Inc. Cowboy CDP FUGITIVE EMISSIONS - Nested PSD Sources

	Teno	leum stora		unnes	over 500,0	00 bbls fugi			
Component Type	Service	Control (%)	Estimated Components Count	Hours	Factors	Total VOC Weight % ¹	V lb/hour	OC Emissions lb/year	tons/yea
	Gas/Vapor		159	8760	2.87E-05	25.72%	0.00	10	0.01
371	Light Oil		1389	8760	9.48E-05	99.97%	0.13	1,153	0.58
Valves	Heavy Oil		0	8760		99.97%	0.00	0	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0	0.00
	Gas/Vapor		0	8760	1.43E-04	25.72%	0.00	0	0.00
	Light Oil		35	8760	1.19E-03	99.97%	0.04	367	0.18
Pump Seals	Heavy Oil		0	8760		99.97%	0.00	0	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0	0.00
	Gas/Vapor		308	8760	9.26E-05	25.72%	0.01	64	0.03
C 1	Light Oil		3623	8760	1.76E-05	99.97%	0.06	560	0.28
Connectors	Heavy Oil		0	8760		99.97%	0.00	0	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0	0.00
	Gas/Vapor		169	8760	9.26E-05	25.72%	0.00	35	0.02
F1	Light Oil		239	8760	1.76E-05	99.97%	0.00	37	0.02
Flanges	Heavy Oil		0	8760		99.97%	0.00	0	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0	0.00
	Gas/Vapor		0	8760		25.72%	0.00	0	0.00
Open-ended	Light Oil		0	8760		99.97%	0.00	0	0.00
Lines	Heavy Oil		0	8760		99.97%	0.00	0	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0	0.00
	Gas/Vapor		0	8760	2.65E-04	25.72%	0.00	0	0.00
Other	Light Oil		0	8760	2.87E-04	99.97%	0.00	0	0.00
Other:	Heavy Oil		0	8760		99.97%	0.00	0	0.00
	Water/Light Oil	1	0	8760		99.97%	0.00	0	0.00

Emission Component	lb/hr	lb/year	TPY
Controlled VOC Emissions	0.25	2,227	1.11

Notes:

¹ Gas/Vapor analysis based on inlet gas. Liquid analysis based on stabilized crude oil.

Cowboy CDP

BURNER CALCULATIONS

CRITERIA & REGULATED POLLUTANTS

						Manufactu	rer's Data (NOx	, CO, VOC)		1									
						and AI	P-42 Factors (SO	2, PM) ^{1,2}				lb/hr ¹					tpy ²		
Source ID	Source Description	Fuel Gas HHV Design Case (BTU/SCF)	Operating Hours	Burner Design Case (MMBTU/Hr)	NOx (lb/MMBtu)	CO (lb/MMBtu)	VOC (lb/MMBtu)	SO ₂ (lb/MMscf)	PM _{10 & 2.5} (lb/MMscf)	NOx	со	VOC	SO ₂	PM _{10 & 2.5}	NOx	со	VOC	SO ₂	PM _{10 & 2.5}
SHTR1	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0267	0.0163	0.0064	2.25	7.6	1.97	1.20	0.47	0.16	0.55	6.89	4.21	1.65	0.57	1.92
SHTR2	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0267	0.0163	0.0064	2.25	7.6	1.97	1.20	0.47	0.16	0.55	6.89	4.21	1.65	0.57	1.92
SHTR3	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0267	0.0163	0.0064	2.25	7.6	1.97	1.20	0.47	0.16	0.55	6.89	4.21	1.65	0.57	1.92
SHTR4	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0267	0.0163	0.0064	2.25	7.6	1.97	1.20	0.47	0.16	0.55	6.89	4.21	1.65	0.57	1.92
SHTR5	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0267	0.0163	0.0064	2.25	7.6	1.97	1.20	0.47	0.16	0.55	6.89	4.21	1.65	0.57	1.92
SHTR6	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0267	0.0163	0.0064	2.25	7.6	1.97	1.20	0.47	0.16	0.55	6.89	4.21	1.65	0.57	1.92
SHTR7	Stabilization Hot Oil Heater w/ SCR catalyst (58.93 MMBtu/hr)	979	8760	58.93	0.0067	0.0163	0.0064	2.25	7.6	0.49	1.20	0.47	0.16	0.55	1.73	4.21	1.65	0.57	1.92
SHTR8	Stabilization Hot Oil Heater w/ SCR catalyst (58.93 MMBtu/hr)	979	8760	58.93	0.0067	0.0163	0.0064	2.25	7.6	0.49	1.20	0.47	0.16	0.55	1.73	4.21	1.65	0.57	1.92
CHTR1	Cryo Hot Oil Heater (94.54 MMBtu/hr)	979	8760	94.54	0.0334	0.0163	0.0064	2.25	7.6	3.95	1.93	0.76	0.26	0.88	13.83	6.75	2.65	0.91	3.09
CHTR2	Cryo Hot Oil Heater (94.54 MMBtu/hr)	979	8760	94.54	0.0334	0.0163	0.0064	2.25	7.6	3.95	1.93	0.76	0.26	0.88	13.83	6.75	2.65	0.91	3.09
CHTR3	Cryo Hot Oil Heater w/ SCR Catalyst (94.54 MMBtu/hr)	979	8760	94.54	0.0067	0.0163	0.0064	2.25	7.6	0.79	1.93	0.76	0.26	0.88	2.77	6.75	2.65	0.91	3.09
CHTR4	Cryo Hot Oil Heater w/ SCR Catalyst (94.54 MMBtu/hr)	979	8760	94.54	0.0067	0.0163	0.0064	2.25	7.6	0.79	1.93	0.76	0.26	0.88	2.77	6.75	2.65	0.91	3.09
RHTR1	Regen Heater (35.25 MMBtu/hr)	979	8760	35.25	0.0267	0.0163	0.0064	2.25	7.6	1.18	0.72	0.28	0.10	0.33	4.12	2.52	0.99	0.34	1.15
RHTR2	Regen Heater (35.25 MMBtu/hr)	979	8760	35.25	0.0267	0.0163	0.0064	2.25	7.6	1.18	0.72	0.28	0.10	0.33	4.12	2.52	0.99	0.34	1.15
RHTR3	Regen Heater (35.25 MMBtu/hr)	979	8760	35.25	0.0267	0.0163	0.0064	2.25	7.6	1.18	0.72	0.28	0.10	0.33	4.12	2.52	0.99	0.34	1.15
RHTR4	Regen Heater (35.25 MMBtu/hr)	979	8760	35.25	0.0267	0.0163	0.0064	2.25	7.6	1.18	0.72	0.28	0.10	0.33	4.12	2.52	0.99	0.34	1.15

¹ NOx, CO, and VOC factors were provided by the equipment manufacturers. A 25% safety factor is added to NOx, CO, VOC, SO2 and PM10 & 2.5 lb/hr emissions. The heaters may run on rich gas temporarily while a Cryo is

2 SO2 and PM emission factors were adjusted based on site heat content versus the AP-42 value of 1,020 Btu/scf. SO2 factor was adjusted to 7500 gr S/MMscf (0.75 gr S/100 scf or ~25 ppmw S).

rily while a Cryo is down.												
Total (tpy)	NOx	со	VOC	SO_2	PM _{10 & 2.5}							
SHTR1-8	44.81	33.66	13.22	4.55	15.39							
CHTR1-4	33.21	27.00	10.60	3.65	12.34							
RHTR1-4	16.49	10.07	3.95	1.36	4.60							
All Heaters	94.51	70.72	27.77	9.57	32.33							

XTO Energy, Inc. Cowboy CDP BURNER CALCULATIONS

HAZARDOUS AIR	POLLUTANTS	(HAPs)	
in Lindbooo nin	I OLLO IIII III	(11113)	

				i i		AP-42	Factors ¹		AP-42 ¹ & En	g Calc ³	ĺ									
							IMSCF		lb/MMS				lb/hr ²					tpy2		
Source ID	Source Description	Fuel Gas HHV Design Case (BTU/SCF)	Operating Hours	Burner Design Case (MMBTU/Hr)	Benzene	Toluene	Dichloro benzene	НСНО	N-Hexane (Hourly)	N- Hexane (Annual)	Benzene	Toluene	Dichloro benzene	НСНО	N- Hexane	Benzene	Toluene	Dichloro benzene	НСНО	N-Hexane
SHTR1	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.13	0.00	0.00	0.00	0.02	0.11
SHTR2	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.13	0.00	0.00	0.00	0.02	0.11
SHTR3	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.13	0.00	0.00	0.00	0.02	0.11
SHTR4	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.13	0.00	0.00	0.00	0.02	0.11
SHTR5	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.13	0.00	0.00	0.00	0.02	0.11
SHTR6	Stabilization Hot Oil Heater (58.93 MMBtu/hr)	979	8760	58.93	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.13	0.00	0.00	0.00	0.02	0.11
SHTR7	Stabilization Hot Oil Heater w/ SCR catalyst (58.93 MMBtu/hr)	979	8760	58.93	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.13	0.00	0.00	0.00	0.02	0.11
SHTR8	Stabilization Hot Oil Heater w/ SCR catalyst (58.93 MMBtu/hr)	979	8760	58.93	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.13	0.00	0.00	0.00	0.02	0.11
CHTR1	Cryo Hot Oil Heater (94.54 MMBtu/hr)	979	8760	94.54	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.21	0.00	0.00	0.00	0.03	0.18
CHTR2	Cryo Hot Oil Heater (94.54 MMBtu/hr)	979	8760	94.54	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.21	0.00	0.00	0.00	0.03	0.18
CHTR3	Cryo Hot Oil Heater w/ SCR Catalyst (94.54 MMBtu/hr)	979	8760	94.54	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.21	0.00	0.00	0.00	0.03	0.18
CHTR4	Cryo Hot Oil Heater w/ SCR Catalyst (94.54 MMBtu/hr)	979	8760	94.54	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.01	0.21	0.00	0.00	0.00	0.03	0.18
RHTR1	Regen Heater (35.25 MMBtu/hr)	979	8760	35.25	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.01	0.07
RHTR2	Regen Heater (35.25 MMBtu/hr)	979	8760	35.25	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.01	0.07
RHTR3	Regen Heater (35.25 MMBtu/hr)	979	8760	35.25	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.01	0.07
RHTR4	Regen Heater (35.25 MMBtu/hr)	979	8760	35.25	0.0021	0.0034	0.0021	0.0750	1.8	0.45	0.00	0.00	0.00	0.00	0.08	0.00	0.00	0.00	0.01	0.07
	HAP emission factors are from		3.																	

² A 25% safety factor added to lb/hr HAP emissions. The heaters may run on rich gas temporarily while a Cryo is down. ³ The heaters burn residue gas with minimal to no Hexane; therefore, the Hexane lb/MMscf annual emission factor was calculated from a conservative fuel gas 0.01 mol percent Hexane (derived emission factor provided below). The heaters may burn rich gas temporarily while a Cryo is down so the lb/hr emissions are on the AP-42 factor for Hexane.

C6 EF Calc	0.01 lbmol C6H14 100 lbmol fuel gas	x	86.178 lbs C6H14 1 lbmol C6	x	1 lbmol fuel gas 379.5 scf fuel gas	x	10^6 scf fuel gas 1 MMscf fuel gas	x	0.02 (1-98%DRE)	-	0.45 lbs C6H14 MMSCF
	100 lbmol fuel gas	x	1 lbmol C6	x	379.5 scf fuel gas	x	1 MMscf fuel gas	x			MMSCF

Total (tpy)	Benzene	Toluene	Dichloro benzene	нсно	N-Hexane
SHTR1-8	0.004	0.007	0.004	0.152	0.919
CHTR1-4	0.003	0.006	0.003	0.122	0.738
RHTR1-4	0.001	0.002	0.001	0.045	0.275
All Heaters	0.009	0.014	0.009	0.319	1.932

G	reenhou	Co) Energy owboy (missions	DP	zer Heate	ers	
Emission unit number(s): Source description:		ITR2, SHTR on Hot Oil H			R6, SHTR7, S r)	HTR8	
Fuel Consumption Input heat rate: Fuel heat value: Fuel rate: Annual fuel usage: Hours per year:	58.93 979 60,194 527.3 8760	MMBtu/ Btu/scf scf/hr MMscf/y hrs/yr			tt rate / fue yr operatic		ue
Exhaust Parameters Heat Rate: Exhaust temp (Tstk): Stack diameter: Stack height: Exhaust velocity:	58,930 488 4.00 33 35.6	MBtu/hr °F ft ft ft/sec	Manufa Manufa Manufa Manufa	icturer icturer			
Emission Rates Uncontrolled Heater Emissio GHG Emissions Per Heater	ons CO ₂	CH4	CH ₄ as CO ₂ e	N ₂ O	N ₂ O as CO ₂ e	Total CO2e	
	117.00 6,895 30,199	0.002 0.130 0.57	0.055 3.25 14.23	0.0002 0.013 0.06	0.066 3.87 16.96	6,902 30,230	lb/MMbtu lb/hr tpy (8760 hrs)
1	40 CFR 98 En	nission Factors.	Global warmir	ng potential of 25	5 for CH4 and 29	8 for N20.	

	XTO Energy, Inc. Cowboy CDP Greenhouse Gas Emissions - Cryo Heaters											
Emission unit number(s): Source description:		CHTR2, Cl t Oil Heate		ITR4 /IMBtu/hr)							
Fuel ConsumptionInput heat rate:94.54 MMBtu/hrCapacityFuel heat value:979 Btu/scfField GasFuel rate:96,568 scf/hrInput heat rate / fuel heat valueAnnual fuel usage:845.9 MMscf/yr8760 hrs/yr operationHours per year:8760 hrs/yr												
Exhaust Parameters Heat Rate: Exhaust temp (Tstk): Stack diameter: Stack height: Exhaust velocity:	94,540 599 4.0 76.875 66.2	94,540MBtu/hr599°FManufacturer4.0ftManufacturer76.875ftManufacturer										
Emission Rates Uncontrolled Heater Emissi	ons		CH₄ as		N ₂ O as	Total						
GHG Emissions Per Heater	CO ₂ 117.00 11,061 48,447	CH4 0.002 0.208 0.91	CO ₂ e 0.055 5.21 22.83	N ₂ O 0.0002 0.021 0.09	CO ₂ e 0.066 6.21 27.21	CO ₂ e 11,072 48,497	lb/MMbtu lb/hr tpy (8760 hrs)					
1	40 CFR 98 En	nission Factors.	Global warmir	ng potential of 25	5 for CH4 and 29	8 for N20.						

XTO Energy, Inc. Cowboy CDP Greenhouse Gas Emissions - Regen Heaters											
Emission unit number(s): Source description:		RHTR2, RH eater (35.25									
Fuel Consumption Input heat rate: Fuel heat value: Fuel rate: Annual fuel usage: Hours per year:	35.25 979 36,006 315.4 8760	MMBtu/I Btu/scf scf/hr MMscf/y hrs/yr		-	t rate / fue yr operatic		ue				
Exhaust Parameters Heat Rate: Exhaust temp (Tstk): Stack diameter: Stack height: Exhaust velocity:	35,250 470 2.67 28.7 53.0	MBtu/hr °F ft ft ft/sec	Manufa Manufa Manufa Manufa	acturer acturer							
Emission Rates Uncontrolled Heater Emissio	ons										
GHG Emissions Per Heater	60	$C \Pi A$	CH_4 as		N_2O as	Total					
GIG EIIIISSIONS PER HEATER	CO ₂ 117.00	CH4 0.002	CO ₂ e	N ₂ O 0.0002	CO ₂ e	CO ₂ e	lb/MMbtu				
	4,124	0.002	1.94	0.0002	2.32	4,128	lb/hr				
	18,064	0.34	8.51	0.03	10.15	18,082	tpy (8760 hrs)				

XTO Energy, Inc. Cowboy CDP STORAGE TANK EMISSIONS SUMMARY

				TOTAL EMISS	SIONS SUMMARY								
						V(Standing		VOC Withdrawl Losses ⁽³⁾		VOC Flash Losses		V(Total Er	DC nissions
FIN	Unit Description	Tank Controlled (Yes/No)	Control Type	Material Throughput (bbls/day) ⁽¹⁾	Material Type	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
IFR1 - IFR4	Hourly Emissions ⁽²⁾ 50K BBL IFR Oil/Condensate Storage Tanks	Yes	Internal Floating Roof	600,000	Oil/Condensate	2.68		2.36				5.05	
IFR5 - IFR14	Hourly Emissions ⁽²⁾ 100K BBL IFR Oil/Condensate Storage Tanks	Yes	Internal Floating Roof	600,000	Oil/Condensate	11.05		1.89				12.93	
IFR1 - IFR14	Annual Emissions ⁽³⁾ 50K & 100K BBL IFR Oil/Condensate Storage Tanks	Yes	Internal Floating Roof	600,000	Oil/Condensate		60.13		10.35				70.48
						Wo	-	OC eathing Lo	sses	V(Flash		V(Total Er	DC nissions
FIN	Unit Description	Tank Controlled (Yes/No)	Control Type	Material Throughput (bbls/day) ⁽¹⁾	Material Type	lbj	/hr	T	РҮ	lb/hr	ТРҮ	lb/hr	ТРҮ
GBS1	Gun Barrel Separator ⁽⁴⁾	Yes	Combustor	4,195	Produced Water	0.	00	0.	00	0.00	0.00	0.00	0.00
PWTK1	Produced Water Tank ⁽⁴⁾	Yes	Combustor	2,098	Produced Water	1.	34	5.	86	0.00	0.00	1.34	5.86
PWTK2	Produced Water Tank ⁽⁴⁾	Yes	Combustor	2,098	Produced Water	1.	34	5.	86	0.00	0.00	1.34	5.86
SOTK1	Slop Tank ⁽⁴⁾	Yes	Combustor	16	Oil/Condensate	7.	04	30	.82	452.00	1979.77	459.04	2010.59

Footnotes:

(1) Total site oil/condensate throughput is 600,000 BBL/Day.

(2) Worst-case hourly withdrawl lossess were calculated by assuming total site throughput for each size group of IFR storage tanks.

(3) Annual VOC emissions are grouped together for IFR1 - IFR14. Worst-case annual withdrawl lossess were calculated by assuming total site throughput for each size group of IFR storage tanks and selecting the higher value to include in the total annual VOC emissions. The annual total standing losses include both 50K and 100K tanks standing emissions.

(4) Uncontrolled VOC emissions are included in this table. Controlled emission rates are shown on the Combustor emissions tables.

XTO ENERGY INC. Cowboy CDP IFR 1-4 TANKS EMISSIONS SUMMARY

IFR 1-4 TANK EMISSIONS

	50,0	00 BBL Internal Floa	ting Roof Storage Tai	nk Emissions ⁽¹⁾			IFR 1-4 Tank I	Informatio	n
Component	Standinş (IFR 1-4		Withdrav (IFR 1-4	vl Losses 4 tanks)	Total S& (per		Number of Tanks Tank Size	4 50.000	 BBL
	(11- /1)	(1	(11- /1)	(1	(11-(1)	, (1 ()		50,000 IFR	
T AT -	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	Control Device Total Oil/Condensate	IFK	
Water	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	· ·	600,000	BBL/D
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Throughput IFR1-4 ⁽²⁾		
Nitrogen	1.97E-02	8.63E-02	8.35E-05	3.66E-04	4.95E-03	2.17E-02	-		
Carbon Dioxide	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-		
Methane	1.96E-02	8.58E-02	6.13E-05	2.68E-04	4.91E-03	2.15E-02	4		
Ethane	1.93E-01	8.45E-01	5.70E-04	2.50E-03	4.84E-02	2.12E-01	1		
Propane	7.54E-01	3.30E+00	9.16E-03	4.01E-02	1.91E-01	8.36E-01			
Iso-butane	2.64E-01	1.16E+00	8.68E-03	3.80E-02	6.82E-02	2.99E-01			
N-butane	7.06E-01	3.09E+00	3.37E-02	1.48E-01	1.85E-01	8.10E-01			
Iso-pentane	2.54E-01	1.11E+00	3.03E-02	1.33E-01	7.10E-02	3.11E-01			
N-pentane	2.89E-01	1.26E+00	4.58E-02	2.00E-01	8.36E-02	3.66E-01			
Cyclopentanes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Other Hexanes	1.45E-01	6.35E-01	5.39E-02	2.36E-01	4.97E-02	2.18E-01			
n-Hexane	9.70E-02	4.25E-01	4.96E-02	2.17E-01	3.66E-02	1.60E-01			
Methylcyclopentane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Benzene	5.20E-03	2.28E-02	4.14E-03	1.81E-02	2.34E-03	1.02E-02			
Cyclohexane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
2,2,4 Trimethylpentane	6.91E-03	3.03E-02	1.05E-02	4.59E-02	4.35E-03	1.90E-02			
Other Heptanes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Methylcyclohexane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
n-Heptane	9.73E-02	4.26E-01	1.57E-01	6.87E-01	6.36E-02	2.78E-01			
Toluene	7.16E-03	3.14E-02	1.83E-02	8.02E-02	6.37E-03	2.79E-02	1		
Octanes	4.53E-02	1.98E-01	2.43E-01	1.06E+00	7.21E-02	3.16E-01	1		
Ethylbenzene	8.15E-04	3.57E-03	5.97E-03	2.61E-02	1.70E-03	7.43E-03	1		
M&P-Xvlene	3.84E-03	1.68E-02	3.20E-02	1.40E-01	8.95E-03	3.92E-02	1		
Nonanes	6.93E-03	3.03E-02	1.39E-01	6.07E-01	3.64E-02	1.59E-01	1		
Decanes Plus	3.10E-05	1.36E-04	1.52E+00	6.67E+00	3.81E-01	1.67E+00			
Undecanes Plus	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1		
Total	2.91	12.77	2.36	10.35	1.32	5.78	1		
Total VOC	2.68	11.75	2.36	10.35	1.32	5.53	1		
Total HAP	0.121	0.53	0.12	0.53	0.060	0.26	4		

Footnotes: (1) Uncontrolled stream properties determined via ProMax.

(2) Total site oil/condensate throughput is 600,000 BBL/Day. Worst-case withdrawl losses for all IFR tanks at the site was calculated by conservatively assuming 1) total site throughput through the four (4) 50,000 BBL IFRs, 2) total site throughput through the ten (10) 100,000 BBL IFRs, and 3) selecting the higher value to represent worst-case withdrawl losses.

XTO ENERGY INC. Cowboy CDP IFR 5-14 TANKS EMISSION SUMMARY

IFR 5-14 TANK EMISSIONS

	100,	000 BBL Internal Floa	ating Roof Storage Ta	nk Emissions ⁽¹⁾			IFR 5-14 Tank	Informatio	n
Component	Standin (IFR 5-1			wl Losses 14 tanks)		W Losses tank)	Number of Tanks Tank Size	10 100.000	- BBL
* *	(lb/hr)	(ton/yr)	(lb/hr)	(ton/yr)	(1b/hr)	(ton/yr)	Control Device	IFR	-
Water	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Total Oil/Condensate		
Hydrogen Sulfide	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	Throughput IFR5-14 ⁽²⁾	600,000	BBL/Day
Nitrogen	8.13E-02	3.56E-01	6.67E-05	2.92E-04	8.14E-03	3.57E-02	Throughput II K3-14		
Carbon Dioxide	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-		
Methane	8.08E-02	3.54E-01	4.89E-05	2.14E-04	8.09E-03	3.54E-02	-		
Ethane	7.96E-01	3.49E+00	4.55E-04	1.99E-03	7.96E-02	3.49E-01	-		
Propane	3.11E+00	1.36E+01	7.32E-03	3.21E-02	3.12E-01	1.36E+00			
Iso-butane	1.09E+00	4.77E+00	6.93E-03	3.03E-02	1.10E-01	4.80E-01	-		
N-butane	2.91E+00	1.27E+01	2.69E-02	1.18E-01	2.94E-01	1.29E+00	-		
Iso-pentane	1.04E+00	4.57E+00	2.42E-02	1.06E-01	1.07E-01	4.68E-01	-		
N-pentane	1.19E+00	5.20E+00	3.65E-02	1.60E-01	1.22E-01	5.36E-01	-		
Cyclopentanes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-		
Other Hexanes	5.97E-01	2.61E+00	4.31E-02	1.89E-01	6.40E-02	2.80E-01	-		
n-Hexane	3.99E-01	1.75E+00	3.96E-02	1.74E-01	4.39E-02	1.92E-01	-		
Methylcyclopentane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-		
Benzene	2.14E-02	9.37E-02	3.31E-03	1.45E-02	2.47E-03	1.08E-02	-		
Cyclohexane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-		
2,2,4 Trimethylpentane	2.84E-02	1.25E-01	8.36E-03	3.66E-02	3.68E-03	1.61E-02	-		
Other Heptanes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-		
Methylcyclohexane	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	-		
n-Heptane	4.00E-01	1.75E+00	1.25E-01	5.49E-01	5.25E-02	2.30E-01	-		
Toluene	2.95E-02	1.29E-01	1.46E-02	6.40E-02	4.41E-03	1.93E-02			
Octanes	1.86E-01	8.15E-01	1.94E-01	8.50E-01	3.80E-02	1.67E-01	-		
Ethylbenzene	3.35E-03	1.47E-02	4.77E-03	2.09E-02	8.12E-04	3.56E-03			
M&P-Xylene	1.58E-02	6.91E-02	2.55E-02	1.12E-01	4.13E-03	1.81E-02			
Nonanes	2.85E-02	1.25E-01	1.11E-01	4.85E-01	1.39E-02	6.10E-02			
Decanes Plus	1.27E-04	5.57E-04	1.22E+00	5.33E+00	1.22E-01	5.33E-01			
Undecanes Plus	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Total	12.00	52.58	1.89	8.27	1.39	6.08			
Total VOC	11.05	48.38	1.89	8.27	1.29	5.67			
Total HAP	0.50	2.18	0.10	0.42	0.059	0.26	1		

Footnotes: (1) Uncontrolled stream properties determined via ProMax.

(2) Total site oil/condensate throughput is 60000 BHL/Day. Worst-case withdrawl losses for all IFR tanks at the site was calculated by conservatively assuming 1) total site throughput through the four (4) 50,000 BBL IFRs, 2) total site throughput through the ten (10) 100,000 BBL IFRs, and 3) selecting the higher value to represent worst-case withdrawl losses.

XTO Energy, Inc. Cowboy CDP FUGITIVE EMISSIONS - VOCs

Component Type	Service	Estimated Components Total Count ¹	Hours
	Gas/Vapor	5658	8760
\$7.1	Light Oil	3431	8760
Valves	Heavy Oil	200	8760
	Water/Light Oil	0	8760
	Gas/Vapor	0	8760
Denne Carle	Light Oil	35	8760
Pump Seals	Heavy Oil	0	8760
	Water/Light Oil	0	8760
	Gas/Vapor	16805	8760
Connectors	Light Oil	9749	8760
	Heavy Oil	0	8760
	Water/Light Oil	1400	8760
	Gas/Vapor	1569	8760
Flanges	Light Oil	1339	8760
Flanges	Heavy Oil	0	8760
	Water/Light Oil	0	8760
	Gas/Vapor	0	8760
Open-ended	Light Oil	0	8760
Lines	Heavy Oil	0	8760
	Water/Light Oil	0	8760
	Gas/Vapor	0	8760
Other:	Light Oil	0	8760
Other:	Heavy Oil	0	8760
	Water/Light Oil	0	8760

Notes:

¹ Estimated components include both Natural Gas Processing Facility and Petroleum Storage Transfer Units.

Uncontrolled VOC Emissions Total

Emission Component (Natural Gas Processing Facility & Petroleum Storage Transfer Units)	lb/hr	lb/year	ТРҮ
Uncontrolled VOC Emissions	7.98	69,862.64	34.93

XTO Energy, Inc. Cowboy CDP FUGITIVE EMISSIONS - VOCs

			Estimated				V	OC Emissions	
Component Type	Service	Control (%)	Components Count	Hours	Factors	Total VOC Weight % ¹	lb/hour	lb/year	tons/year
	Gas/Vapor	75%	5499	8760	0.009920	25.72%	3.51	30,731.77	15.37
Valves	Light Oil	75%	2042	8760	0.005500	99.97%	2.81	24,588.46	12.29
valves	Heavy Oil	75%	200	8760	0.000019	99.97%	0.00	8.32	0.00
	Water/Light Oil	75%	0	8760	0.000216	99.97%	0.00	0	0.00
	Gas/Vapor	75%	0	8760	0.005290	25.72%	0.00	0	0.00
Pump Seals	Light Oil	75%	0	8760	0.028660	99.97%	0.00	0	0.00
Pump Seals	Heavy Oil	75%	0	8760	0.001130	99.97%	0.00	0	0.00
	Water/Light Oil	75%	0	8760	0.000053	99.97%	0.00	0	0.00
Connectors	Gas/Vapor	75%	16497	8760	0.000440	25.72%	0.47	4,089.31	2.04
	Light Oil	75%	6126	8760	0.000463	99.97%	0.71	6,209.70	3.10
	Heavy Oil	75%	0	8760	0.000017	99.97%	0.00	0	0.00
	Water/Light Oil	75%	1400	8760	0.000243	99.97%	0.09	744.81	0.37
Flanges	Gas/Vapor	75%	1400	8760	0.000860	25.72%	0.08	678.30	0.34
	Light Oil	75%	1100	8760	0.000243	99.97%	0.07	585.21	0.29
	Heavy Oil	75%	0	8760	0.000001	99.97%	0.00	0	0.00
	Water/Light Oil	75%	0	8760	0.000006	99.97%	0.00	0	0.00
	Gas/Vapor	75%	0	8760	0.004410	25.72%	0.00	0	0.00
Open-ended	Light Oil	75%	0	8760	0.003090	99.97%	0.00	0	0.00
Lines	Heavy Oil	75%	0	8760	0.000309	99.97%	0.00	0	0.00
	Water/Light Oil	75%	0	8760	0.000550	99.97%	0.00	0	0.00
	Gas/Vapor	75%	0	8760	0.019400	25.72%	0.00	0	0.00
Others	Light Oil	75%	0	8760	0.016500	99.97%	0.00	0	0.00
Other:	Heavy Oil	75%	0	8760	0.000068	99.97%	0.00	0	0.00
	Water/Light Oil	75%	0	8760	0.030900	99.97%	0.00	0	0.00
			_						1
Emission Component						lb/hr	lb/year	TPY	
		Controlled	l VOC Emissio	ns		7.72	67635.88	33.82	

XTO Energy, Inc. Cowboy CDP FUGITIVE EMISSIONS - VOCs

Component			Estimated			Total VOC	v	OC Emissions	6
Туре	Service	Control (%)	Components Count	Hours	Factors	Weight % ¹	lb/hour	lb/year	tons/year
	Gas/Vapor		159	8760	2.87E-05	25.72%	0.00	10.28	0.01
Valves	Light Oil		1389	8760	9.48E-05	99.97%	0.13	1153.38	0.58
	Heavy Oil		0	8760		99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0.00	0.00
	Gas/Vapor		0	8760	1.43E-04	25.72%	0.00	0.00	0.00
Pump Seals	Light Oil		35	8760	1.19E-03	99.97%	0.042	366.98	0.18
Pump Seals	Heavy Oil		0	8760		99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0.00	0.00
Connectors	Gas/Vapor		308	8760	9.26E-05	25.72%	0.0073	64.27	0.032
	Light Oil		3623	8760	1.76E-05	99.97%	0.064	559.65	0.28
	Heavy Oil		0	8760		99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0.00	0.00
Flanges	Gas/Vapor		169	8760	9.26E-05	25.72%	0.0040	35.35	0.018
	Light Oil		239	8760	1.76E-05	99.97%	0.00	36.87	0.018
	Heavy Oil		0	8760		99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0.00	0.00
	Gas/Vapor		0	8760		25.72%	0.00	0.00	0.00
Open-ended	Light Oil		0	8760		99.97%	0.00	0.00	0.00
Lines	Heavy Oil		0	8760		99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0.00	0.00
	Gas/Vapor		0	8760	2.65E-04	25.72%	0.00	0.00	0.00
Out	Light Oil	Ī	0	8760	2.87E-04	99.97%	0.00	0.00	0.00
Other:	Heavy Oil		0	8760		99.97%	0.00	0.00	0.00
	Water/Light Oil		0	8760		99.97%	0.00	0.00	0.00
			on Component			lb/hr 0.25	Ib/year 2226.76	TPY]
		Uncontrolle	ed VOC Emissi	Uncontrolled VOC Emissions					

XTO Energy, Inc. Cowboy CDP FUGITIVE EMISSIONS - HAPs

Component	Service		Estimated		Factors (Natural Gas	Factors	Emissions (Nat & Petroleur	tural Gas Proc n Storage Tran	0
Туре		Control (%)	Components Total Count	Hours	Processing Facility)	(Petroleum Storage Transfer Units)	lb/hour	lb/year	tons/year
	Gas/Vapor		5658	8760	0.00992000	0.00002866	0.547	4795.05	2.398
Valves	Light Oil		3431	8760	0.00550000	0.00009480	0.579	5071.92	2.536
	Heavy Oil		200	8760	0.00001900	-	0.000	1.70	0.001
	Water/Light Oil		0	8760	0.00021600	-	0.000	0.00	0.000
Pump Seals	Gas/Vapor		0	8760	0.00529000	0.00014330	0.000	0.00	0.000
	Light Oil		35.2	8760	0.02866000	0.00119049	0.002	18.71	0.009
	Heavy Oil		0	8760	0.00113000	-	0.000	0.00	0.000
	Water/Light Oil		0	8760	0.00005300	-	0.000	0.00	0.000
Connectors	Gas/Vapor		16805	8760	0.00044000	0.00009259	0.073	640.50	0.320
	Light Oil		9749	8760	0.00046300	0.00001764	0.148	1294.57	0.647
	Heavy Oil		0	8760	0.00001700	-	0.000	0.00	0.000
	Water/Light Oil		1400	8760	0.00024300	-	0.017	151.85	0.076
EI.	Gas/Vapor		1569	8760	0.00086000	0.00009259	0.012	107.20	0.054
	Light Oil		1339	8760	0.00024300	0.00001764	0.014	121.19	0.061
Flanges	Heavy Oil		0	8760	0.00000086	-	0.000	0.00	0.000
	Water/Light Oil		0	8760	0.00000620	-	0.000	0.00	0.000
	Gas/Vapor		0	8760	0.00441000	-	0.000	0.00	0.000
Open-ended	Light Oil		0	8760	0.00309000	-	0.000	0.00	0.000
Lines	Heavy Oil		0	8760	0.00030900	-	0.000	0.00	0.000
	Water/Light Oil		0	8760	0.00055000	-	0.000	0.00	0.000
	Gas/Vapor		0	8760	0.01940000	0.00026455	0.000	0.00	0.000
Othern	Light Oil		0	8760	0.01650000	0.00028660	0.000	0.00	0.000
Other:	Heavy Oil		0	8760	0.00006800	-	0.000	0.00	0.000
	Water/Light Oil		0	8760	0.03090000	-	0.000	0.00	0.000
		Emission	Component			lb/hr	lb/year	ТРҮ	
		Tota	al HAPs			1.39	12202.70	6.10	

XTO Energy, Inc. Cowboy CDP FUGITIVE EMISSIONS - HAPs

<u> </u>			Estimated			TAINAR		Emissions	
Component Type	Service	Control (%)	Components Count	Hours	Factors	Total HAPs Weight % ¹	lb/hour	lb/year	tons/year
I	Gas/Vapor	1	5499	8760	0.00992000	1.00%	0.547	4794.65	2.397
Valves	Light Oil	<u>ا</u>	2042	8760	0.00550000	5.10%	0.572	5013.14	2.507
valves	Heavy Oil		200	8760	0.00001900	5.10%	0.000	1.70	0.001
	Water/Light Oil		0	8760	0.00021600	5.10%	0.000	0.00	0.000
	Gas/Vapor		0	8760	0.00529000	1.00%	0.000	0.00	0.000
D	Light Oil		0	8760	0.02866000	5.10%	0.000	0.00	0.000
Pump Seals	Heavy Oil	1	0	8760	0.00113000	5.10%	0.000	0.00	0.000
	Water/Light Oil	1	0	8760	0.00005300	5.10%	0.000	0.00	0.000
Ī	Gas/Vapor	1	16497	8760	0.00044000	1.00%	0.073	638.00	0.319
Compartant	Light Oil	1	6126	8760	0.00046300	5.10%	0.145	1266.04	0.633
Connectors	Heavy Oil	1	0	8760	0.00001700	5.10%	0.000	0.00	0.000
ļ	Water/Light Oil		1400	8760	0.00024300	5.10%	0.017	151.85	0.076
	Gas/Vapor		1400	8760	0.00086000	1.00%	0.012	105.82	0.053
1 1	Light Oil		1100	8760	0.00024300	5.10%	0.014	119.31	0.060
Flanges	Heavy Oil		0	8760	0.0000086	5.10%	0.000	0.00	0.000
ſ	Water/Light Oil		0	8760	0.00000620	5.10%	0.000	0.00	0.000
· · · · · ·	Gas/Vapor	1	0	8760	0.00441000	1.00%	0.000	0.00	0.000
Open-ended	Light Oil		0	8760	0.00309000	5.10%	0.000	0.00	0.000
Lines	Heavy Oil		0	8760	0.00030900	5.10%	0.000	0.00	0.000
	Water/Light Oil		0	8760	0.00055000	5.10%	0.000	0.00	0.000
	Gas/Vapor		0	8760	0.01940000	1.00%	0.000	0.00	0.000
Other:	Light Oil	1	0	8760	0.01650000	5.10%	0.000	0.00	0.000
Other:	Heavy Oil	1	0	8760	0.00006800	5.10%	0.000	0.00	0.000
, I	Water/Light Oil	1	0	8760	0.03090000	5.10%	0.000	0.00	0.000

Emission Component	lb/hr	lb/year	TPY
Total HAPs	1.38	12090.52	6.05

Notes:

¹ Gas/Vapor analysis based on inlet gas. Liquid analysis based on stabilized crude oil.

XTO Energy, Inc. Cowboy CDP FUGITIVE EMISSIONS - HAPs

<u> </u>			Estimated			T (LUAD		Emissions	
Component Type	Service	Control (%)	Components Count	Hours	Factors	Total HAPs Weight % ¹	lb/hour	lb/year	tons/year
	Gas/Vapor		159	8760	0.00002866	1.00%	0.000	0.40	0.000
Valves	Light Oil		1389	8760	0.00009480	5.10%	0.007	58.79	0.029
valves	Heavy Oil		0	8760		5.10%	0.000	0.00	0.000
	Water/Light Oil		0	8760		5.10%	0.000	0.00	0.000
	Gas/Vapor		0	8760	0.00014330	1.00%	0.000	0.00	0.000
Dump Coolo	Light Oil		35	8760	0.00119049	5.10%	0.002	18.71	0.009
Pump Seals	Heavy Oil		0	8760		5.10%	0.000	0.00	0.000
	Water/Light Oil		0	8760		5.10%	0.000	0.00	0.000
	Gas/Vapor		308	8760	0.00009259	1.00%	0.000	2.51	0.001
	Light Oil		3623	8760	0.00001764	5.10%	0.003	28.53	0.014
Connectors	Heavy Oil		0	8760		5.10%	0.000	0.00	0.000
	Water/Light Oil		0	8760		5.10%	0.000	0.00	0.000
	Gas/Vapor		169	8760	0.00009259	1.00%	0.000	1.38	0.001
Elenaro	Light Oil		239	8760	0.00001764	5.10%	0.000	1.88	0.001
Flanges	Heavy Oil		0	8760		5.10%	0.000	0.00	0.000
	Water/Light Oil		0	8760		5.10%	0.000	0.00	0.000
	Gas/Vapor		0	8760		1.00%	0.000	0.00	0.000
Open-ended	Light Oil		0	8760		5.10%	0.000	0.00	0.000
Lines	Heavy Oil		0	8760		5.10%	0.000	0.00	0.000
	Water/Light Oil		0	8760		5.10%	0.000	0.00	0.000
	Gas/Vapor		0	8760	0.00026455	1.00%	0.000	0.00	0.000
01	Light Oil		0	8760	0.00028660	5.10%	0.000	0.00	0.000
Other:	Heavy Oil		0	8760		5.10%	0.000	0.00	0.000
	Water/Light Oil		0	8760		5.10%	0.000	0.00	0.000

Emission Component	lb/hr	lb/year	TPY
Total HAPs	0.013	112.18	0.056

Notes:

¹ Gas/Vapor analysis based on inlet gas. Liquid analysis based on stabilized crude oil.

XTO Energy, Inc. Cowboy CDP FUGITIVE GREENHOUSE GAS EMISSIONS

			Unco	ntrolled Emi	ssions			
Component Type	Service	Estimated Components Count	Hours	Factors	Total CH4 Weight %	Total CO2 Weight %	CH4 Emissions ¹ tons/year	CO2 Emissions ² tons/year
	o /11		07/0	0.00000000000	55.000/	0.05%	.,	15
	Gas/Vapor	5658	8760	0.00992070	57.92%	0.37%	103.47	0.66
Valves	Light Oil	3431	8760	0.00550000	0.00%	0.00%	0.00	0.00
	Heavy Oil	200	8760	0.00001900	0.00%	0.00%	0.00	0.00
	Water/Light Oil	0	8760	0.00021600	0.00%	0.00%	0.00	0.00
	Gas/Vapor	0	8760	0.00529000	57.92%	0.37%	0.00	0.00
Pump Seals	Light Oil	35	8760	0.02866000	0.00%	0.00%	0.00	0.00
i unip Scais	Heavy Oil	0	8760	0.00113000	0.00%	0.00%	0.00	0.00
	Water/Light Oil	0	8760	0.00005300	0.00%	0.00%	0.00	0.00
	Gas/Vapor	16805	8760	0.00044000	57.92%	0.37%	13.63	0.09
Connectors	Light Oil	9749	8760	0.00046300	0.00%	0.00%	0.00	0.00
Connectors	Heavy Oil	0	8760	0.00001700	0.00%	0.00%	0.00	0.00
	Water/Light Oil	1400	8760	0.00024300	0.00%	0.00%	0.00	0.00
	Gas/Vapor	1569	8760	0.00086000	57.92%	0.37%	2.49	0.02
171	Light Oil	1339	8760	0.00024300	0.00%	0.00%	0.00	0.00
Flanges	Heavy Oil	0	8760	0.00000086	0.00%	0.00%	0.00	0.00
	Water/Light Oil	0	8760	0.00000620	0.00%	0.00%	0.00	0.00
	Gas/Vapor	0	8760	0.00441000	57.92%	0.37%	0.00	0.00
Open-ended	Light Oil	0	8760	0.00309000	0.00%	0.00%	0.00	0.00
Lines	Heavy Oil	0	8760	0.00030900	0.00%	0.00%	0.00	0.00
	Water/Light Oil	0	8760	0.00055000	0.00%	0.00%	0.00	0.00
	Gas/Vapor	0	8760	0.01940000	57.92%	0.37%	0.00	0.00
01	Light Oil	0	8760	0.01650000	0.00%	0.00%	0.00	0.00
Other:	Heavy Oil	0	8760	0.00006800	0.00%	0.00%	0.00	0.00
	Water/Light Oil	0	8760	0.03090000	0.00%	0.00%	0.00	0.00

Emission Component	CH₄ TPY	CO ₂ TPY
Uncontrolled Emissions	119.59	0.76

Notes:

 1 CH4 emissions were calculated as follow: TOC lb/hr * CH4 weight % = CH4 lb/hr.

 2 CO2 emissions were calculated as follow: TOC lb/hr * CO2 weight % = CO2 lb/hr.

XTO Energy, Inc. Cowboy CDP Senerators (GEN1 - GEN4)

Generators (GEN1 - GEN4)

											Unc	ontroll	ed En	nission	ns Cal	lculati	ons													
						Manufact g/h	ırer's Data p-hr	a			Factors IMBtu						lb/hr									tpy				
Source ID	Unit Description	Yearly Operating Hours	Rated HP	MMbtu/hp- hr ¹	NOx	со	VOC ²	нсно	SO_2^3	PM _{10 & 2.5} 4	Hexane	Aceta- ldehyde	NOx	со	voc	нсно	SO ₂	PM _{10 & 2.5}	Hexane	Aceta- ldehyde	HAPs	NOx	со	voc	нсно		PM _{10 & 2.5}	Hexane	Aceta- ldehyde	HAPs
GEN1	Caterpillar G3520H Emergency Generator	100	3448	0.00586	0.50	1.88	0.65	0.26	0.00219	0.01006	0.00111	0.00836	3.80	14.29	5.11	1.98	0.04	0.20	0.02	0.17	2.17	0.19	0.71	0.26	0.10	0.00	0.01	0.00	0.01	0.11
GEN2	Caterpillar G3520H Emergency Generator	100	3448	0.00586	0.50	1.88	0.65	0.26	0.00219	0.01006	0.00111	0.00836	3.80	14.29	5.11	1.98	0.04	0.20	0.02	0.17	2.17	0.19	0.71	0.26	0.10	0.00	0.01	0.00	0.01	0.11
GEN3	Caterpillar G3520H Emergency Generator	100	3448	0.00586	0.50	1.88	0.65	0.26	0.00219	0.01006	0.00111	0.00836	3.80	14.29	5.11	1.98	0.04	0.20	0.02	0.17	2.17	0.19	0.71	0.26	0.10	0.00	0.01	0.00	0.01	0.11
GEN4	Caterpillar G3520H Emergency Generator	100	3448	0.00586	0.50	1.88	0.65	0.26	0.00219	0.01006	0.00111	0.00836	3.80	14.29	5.11	1.98	0.04	0.20	0.02	0.17	2.17	0.19	0.71	0.26	0.10	0.00	0.01	0.00	0.01	0.11
¹ Fuel Consum	ption Rate @ 100% Load fro	m the Gas Er	ngine Ratir	ng Pro Report					•																					
² Emission Fac	tor Includes HCHO														Total	l Emissio	ons Per I	Pollutan	t (TPY)			NOx	со	VOC	нсно	SO ₂	PM _{10 & 2.5}	Hexane	Aceta- ldehyde	HAPs
³ SO ₂ Emission	ns were calculated based on	0.75 gr S/100	scf																. ,			0.76	2.86	1.02	0.40	0.0088	0.041	0.0045	0.034	0.43
⁴ PM Emission	Factor = Sum of all PM fact	tors in AP-42																												

	1 0	Cov	Energy, vboy CI	OP			
Gre	enhouse Ga	is Emissio	ns - Gei	nerators (GENI - G	EN4)	
Emission unit number(s): Source description:	GEN1-GEN4 Emergency (
Fuel Consumption Input heat rate: Fuel heat value (LHV): Fuel rate: Annual fuel usage: Hours per year:	20.21 914 22117 193.7 100	MMBtu/l Btu/scf scf/hr MMscf/y hrs/yr ea	r				
Exhaust Parameters Heat Rate: Exhaust temp (Tstk): Stack diameter: Stack height: Exhaust velocity:	20209 736 1.0 14 331	MBtu/hr °F ft ft ft ft/sec	Manufa Manufa Manufa Manufa	icturer icturer			
Emission Rates Engine Output: GHG Emissions Per Engine	3448 CO ₂	horsepow CH4	ver CH4 as CO2e	N ₂ O	N ₂ O as CO ₂ e	Total CO2e	
	413 3139.45 156.97	0.002 0.045 0.00	0.055 1.11 0.06	0.0002 0.004 0.00	0.066 1.33 0.07	3141.89 157.09	lb/MMbtu lb/hr tpy (8760 hrs)
	1 CO2 factor provi 2 40 CFR 98 Emissi			potential of 25	for CH4 and 298	3 for N20.	

Calculations: Page 26

XTO Energy, Inc. Cowboy CDP HEATERS - EXHAUST STACK FLOW & FUEL CONSUMPTION RATES

Source	Stabilization Heaters (Design Case)
Burner Rating (btu/hr)	58,930,000
Heating Value (btu/scf)	979.0
stack Temperature (°F)	488
Stack Diameter (ft)	400
Stack Height (ft)	33.0
Fuel Consumption (scf/hr)	60194
Fuel Consumption (scf/day)	1444658
Fuel Consumption (mmscf/year)	527.3
Air Injection Rate (scf/hr)	823455.0
Fotal exhaust flow rate @ STP (scf/hr)	883649.03
Total exhaust flow rate @ STP (scf/sec)	245.5
otal exhaust flow rate @ 488 °F (acf/hr)	1610960.2
otal exhaust flow rate @ 488 °F (acf/sec)	447.5
xhaust Stack Exit Velocity @ STP (ft/sec)	19.5
xhaust Stack Exit Velocity @ 488 °F (ft/sec)	35.6
Source	Cryogenic Heaters (Design Case)
Surner Rating (btu/hr)	94,540,000
leating Value (btu/scf)	979.0
tack Temperature (°F)	599
tack Diameter (ft)	4.0
tack Height (ft)	76.9
Fuel Consumption (scf/hr)	96568
Suel Consumption (scf/day)	2317630
fuel Consumption (mmscf/year)	845.9
Air Injection Rate (scf/hr)	1374161.6
Fotal exhaust flow rate @ STP (scf/hr)	1470729.52
Fotal exhaust flow rate @ STP (scf/sec)	408.5
Fotal exhaust flow rate @ 599 °F (acf/hr)	2995197.2
otal exhaust flow rate @ 599 °F (acf/sec)	832.0
Exhaust Stack Exit Velocity @ STP (ft/sec)	32.5
Exhaust Stack Exit Velocity @ 599 °F (ft/sec)	66.2
Source	Regeneration Heaters (Design Case)
urner Rating (btu/hr)	35,250,000
Ieating Value (btu/scf)	979.0
tack Temperature (°F)	470
tack Diameter (ft)	2.7
tack Height (ft)	28.7
uel Consumption (scf/hr)	36006
uel Consumption (scf/day)	864147
uel Consumption (mmscf/year)	315.4
ir Injection Rate (scf/hr)	559895.3
otal exhaust flow rate @ STP (scf/hr)	595901.43
otal exhaust flow rate @ STP (scf/sec)	165.5
otal exhaust flow rate @ 470 °F (acf/hr)	1065746.8
otal exhaust flow rate @ 470 °F (acf/sec)	296.0
Exhaust Stack Exit Velocity @ STP (ft/sec)	29.6
Exhaust Stack Exit Velocity @ 470 °F (ft/sec)	53.0

XTO Energy, Inc. Cowboy CDP DUAL TIP FLARES SUMMARY - FL1/FL2/FL3

			Flare	Emissio	ns Summar	y Table						
	Ν	Ox	CC	C	Total V	/OC	S	O_2	PM ₁	0 & 2.5	Total	HAPs
Stream Source ^a	lb/hr ^b	TPY	lb/hr ^b	TPY	lb/hr ^b	TPY	lb/hr ^b	TPY	lb/hr ^b	TPY	lb/hr ^b	TPY
CDP SSM Gas (FL1-FL3OVHD-SSM)	222.82	8.54	444.83	17.06	1,419.77	45.00	4.04	0.15	12.03	0.21	73.61	1.79
Cryo SSM Gas (FL1-FL3CRYO-SSM)	405.77	11.43	810.06	22.82	822.57	10.60	6.99	0.19	21.91	0.58	13.05	0.17
CDP Flare 1 (FL1)	0.71	2.59	1.42	5.17	1.80	6.56	0.01	0.04	0.04	0.14	0.10	0.36
Cryo Flare 2 (FL2)	1.38	5.03	2.75	10.05	0.46	1.69	0.023	0.09	0.07	0.27	0.06	0.22
Cryo Flare 3 (FL3)	0.86	3.13	1.71	6.24	0.03	0.12	0.014	0.05	0.05	0.17	0.01	0.02
Total Emissions	631.53	30.72	1,260.77	61.34	2,244.64	63.99	11.08	0.53	34.10	1.37	86.83	2.56

Footnotes:

^a SSM gas can be routed to one or any combination of the three flares. For emissions tracking purposes in accordance with the permit, XTO Energy is requesting a combined emission limit for flaring.

^bPound per hour emissions include a 20% safety factor.

XTO Energy, Inc. Cowboy CDP DUAL TIP FLARES - HOURLY EMISSIONS (FL1 - FL3)

		1	Maximum Ho	ourly Emission	n Rates and C	Composition	to Flare ^{a,b}					Criteria P	ollutant En	nissions Oil C	DP Flare (FL1) ^b
	CI	OP Flare 1 (Fl			yo Flare 2 (FI		Cryo Fla	re 3 (FL3)							
Component	Pilot, Purge, Assist Gas	LP Flare Header	HP Flare Header	Pilot, Purge, Assist Gas	LP Flare Header	HP Flare Header	Pilot, Purge, Assist Gas	HP Flare Header	Total	Destruction Efficiency	Exhaust Stream (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units
	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)		(lb/hr)		
Water	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0%	0.00	NO _X	0.59	0.138	lb/MMBtu
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	CO	1.18	0.2755	lb/MMBtu
Nitrogen	0.57	0.33	0.72	0.57	9.96	2.64	0.57	0.83	16.19	0%	16.19	SO ₂	0.010	25	PPMW Total S
Carbon Dioxide	0.42	0.16	0.16	0.42	0.90	0.77	0.42	0.24	3.49	0%	3.49	PM ₁₀	0.032	7.60	lb/MMscf
Methane	65.94	15.53	27.89	65.94	154.86	129.37	65.94	40.43	565.87	98%	11.32	PM _{2.5}	0.032	7.60	lb/MMscf
Ethane	1.60	15.39	4.61	1.60	6.14	3.42	1.60	1.07	35.43	98%	0.71	H_2S	6.06E-06	98%	DRE
Propane	0.05	22.81	4.71	0.05	2.42	0.34	0.05	0.11	30.53	98%	0.61				
Iso-butane	0.04	5.26	0.61	0.04	0.81	0.09	0.04	0.03	6.93	98%	0.14	Flare VO	C DRE	98	%
N-butane	0.04	13.00	1.04	0.04	2.13	0.18	0.04	0.06	16.53	98%	0.33				
Iso-pentane	0.00	4.64	0.12	0.00	1.07	0.14	0.00	0.05	6.02	98%	0.12	Criteria	Pollutant E	Emissions Cry	o Flare (FL2) ^b
N-pentane	0.00	5.58	0.14	0.00	1.38	0.15	0.00	0.05	7.30	98%	0.15		Emission	Enderlan	Ended a Ender
Cyclopentanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	Component	Rate	Emission Factor	Emission Factor Units
Other Hexanes	0.00	2.85	0.16	0.00	1.18	0.14	0.00	0.04	4.38	98%	0.09		(lb/hr)	Factor	Onits
n-Hexane	0.00	2.18	0.17	0.00	1.01	0.17	0.00	0.05	3.58	98%	0.07	NO _X	1.15	0.138	lb/MMBtu
Methylcyclopentane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	CO	2.29	0.2755	lb/MMBtu
Benzene	0.00	0.26	0.18	0.00	0.09	0.10	0.00	0.03	0.66	98%	0.01	SO ₂	0.019	25	PPMW Total S
Cyclohexane	0.00	1.19	0.23	0.00	0.54	0.20	0.00	0.06	2.21	98%	0.04	PM10	0.062	7.60	lb/MMscf
2,2,4 Trimethylpentane	0.00	0.26	0.05	0.00	0.13	0.06	0.00	0.02	0.52	98%	0.01	PM _{2.5}	0.062	7.60	lb/MMscf
Other Heptanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	H_2S	3.40E-06	98%	DRE
Methylcyclohexane	0.00	1.39	0.28	0.00	0.76	0.38	0.00	0.12	2.94	98%	0.06				
n-Heptane	0.00	3.39	0.47	0.00	1.80	0.61	0.00	0.19	6.46	98%	0.13				
Toluene	0.00	0.42	0.29	0.00	0.24	0.37	0.00	0.12	1.44	98%	0.03	Criteria	Pollutant E	Emissions Cry	o Flare (FL3) ^b
Octanes	0.00	2.54	0.30	0.00	1.38	1.01	0.00	0.31	5.54	98%	0.11		Emission		
Ethylbenzene	0.00	0.03	0.00	0.00	0.01	0.02	0.00	0.01	0.07	98%	0.00	Component	Rate	Emission Factor	Emission Factor Units
M&P-Xylene	0.00	0.20	0.04	0.00	0.13	0.17	0.00	0.05	0.59	98%	0.01		(lb/hr)	Factor	Units
Nonanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	NO _X	0.71	0.138	lb/MMBtu
Decanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	CO	1.43	0.2755	lb/MMBtu
Undecanes Plus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	SO ₂	0.012	25	PPMW Total S
Total	68.66	97.41	42.15	68.66	186.94	140.33	68.66	43.85	716.67		33.63	PM ₁₀	0.039	7.60	lb/MMscf
Total VOC	0.13	66.00	8.78	0.13	15.09	4.13	0.13	1.29	95.68		1.91	PM _{2.5}	0.039	7.60	lb/MMscf
Total HAP	0.000	3.354	0.721	0.000	1.615	0.883	0.000	0.276	6.85		0.1370	H_2S	2.83E-06	98%	DRE
Net Heating Value (Btu/scf)	914	1947	1095	914	950	928	914	928	994			· · · · · · · · · · · · · · · · · · ·	· · · · · ·		
Molecular Weight	16.29	36.97	19.99	16.29	17.30	16.64	16.29	16.64	17.98						
SO2 Emissions (lb/hr)	0.003	0.005	0.002	0.003	0.009	0.007	0.003	0.009	0.04						
Volumetric Flow (scf/hr) ^c	1,600	1,000	800	1,600	4,100	3,200	1,600	4,000	17,900						
Heat Release (MMBtu/hr)	1.46	1.95	0.88	1.46	3.89	2.97	1.46	3.71	17.78						

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

^C Flare pilot, purge, assist gas, and process gas flowrates were based on engineering estimates. Process gas includes sweep gas and miscellaneous process vents such as analyzer vents, compressor seals, and pump seals.

			Annual	l Emission Ra	ates and Con	position to l	Flare ^{a,o}					Criteria Po	llutant Emiss	sions Oil C	DP Flare (FL1) ^b
	CI	DP Flare 1 (Fl	L1)	Cr	yo Flare 2 (Fl	L2)	Cryo Flar	re 3 (FL3)			Exhaust				
Component	Pilot, Purge, Assist Gas	LP Flare Header	HP Flare Header	Pilot, Purge, Assist Gas	LP Flare Header	HP Flare Header	Pilot, Purge, Assist Gas	HP Flare Header	Total	Destruction Efficiency	Stream (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)	NO	ton/yr	0.120	11 (1.0.07)
Water	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0%	0.00	NO _X	2.59	0.138	lb/MMBtu
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	CO SO ₂	5.17	0.2755	lb/MMBtu
Nitrogen	2.50	1.46	3.14	2.50	43.63	11.56	2.50	3.61	70.93	0%	70.93	_	0.04	25	PPMW Total S
Carbon Dioxide	1.85	0.70	0.68	1.85	3.93	3.38	1.85	1.05	15.30	0%	15.30	PM ₁₀	0.14	7.60	lb/MMscf
Methane	288.80	68.00	122.16	288.80	678.28	566.62	288.80	177.07	2478.52	98%	49.57	PM _{2.5}	0.14	7.60	lb/MMscf
Ethane	7.01	67.41	20.17	7.01	26.89	14.99	7.01	4.69	155.17	98%	3.10	H_2S	2.66E-05	98%	DRE
Propane	0.21	99.89	20.63	0.21	10.60	1.48	0.21	0.46	133.70	98%	2.67				
Iso-butane	0.19	23.04	2.68	0.19	3.54	0.41	0.19	0.13	30.37	98%	0.61	Flare	DRE	98.00	%
N-butane	0.17	56.96	4.55	0.17	9.35	0.78	0.17	0.24	72.39	98%	1.45				
Iso-pentane	0.00	20.32	0.54	0.00	4.69	0.63	0.00	0.20	26.38	98%	0.53	Criteria F	ollutant Em	issions Cry	o Flare (FL2) ^b
N-pentane	0.00	24.44	0.61	0.00	6.05	0.66	0.00	0.21	31.96	98%	0.64		Emission	Emission	Emission Facto
Cyclopentanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	Component	Rate	Factor	Units
Other Hexanes	0.00	12.49	0.70	0.00	5.17	0.63	0.00	0.20	19.18	98%	0.38		ton/yr		
n-Hexane	0.00	9.57	0.72	0.00	4.42	0.73	0.00	0.23	15.66	98%	0.31	NO _X	5.03	0.138	lb/MMBtu
Methylcyclopentane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	CO	10.05	0.2755	lb/MMBtu
Benzene	0.00	1.12	0.78	0.00	0.39	0.45	0.00	0.14	2.89	98%	0.06	SO ₂	0.09	25	PPMW Total S
Cyclohexane	0.00	5.21	0.99	0.00	2.35	0.86	0.00	0.27	9.68	98%	0.19	PM ₁₀	0.27	7.60	lb/MMscf
2,2,4 Trimethylpentane	0.00	1.16	0.21	0.00	0.57	0.25	0.00	0.08	2.27	98%	0.05	PM _{2.5}	0.27	7.60	lb/MMscf
Other Heptanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	H_2S	1.49E-05	98%	DRE
Methylcyclohexane	0.00	6.11	1.22	0.00	3.33	1.68	0.00	0.53	12.86	98%	0.26				
n-Heptane	0.00	14.83	2.07	0.00	7.89	2.67	0.00	0.83	28.30	98%	0.57				
Toluene	0.00	1.85	1.26	0.00	1.06	1.62	0.00	0.51	6.29	98%	0.13	Criteria F	ollutant Emi	issions Cry	o Flare (FL3) ^b
Octanes	0.00	11.12	1.32	0.00	6.05	4.41	0.00	1.38	24.27	98%	0.49		Emission	Environterr	E
Ethylbenzene	0.00	0.12	0.02	0.00	0.05	0.08	0.00	0.02	0.30	98%	0.01	Component	Rate	Emission Factor	Emission Facto Units
M&P-Xylene	0.00	0.87	0.16	0.00	0.58	0.74	0.00	0.23	2.58	98%	0.05		ton/yr		
Nonanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	NO _X	3.13	0.138	lb/MMBtu
Decanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	CO	6.24	0.2755	lb/MMBtu
Undecanes Plus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	98%	0.00	SO ₂	0.05	25	PPMW Total S
Total	300.74	426.66	184.62	300.74	818.82	614.63	300.74	192.07	3139.01		147.29	PM ₁₀	0.17	7.60	lb/MMscf
Total VOC	0.58	289.09	38.46	0.58	66.09	18.07	0.58	5.65	419.09		8.38	PM _{2.5}	0.17	7.60	lb/MMscf
Total HAP	0.000	14.69	3.16	0.00	7.07	3.87	0.00	1.21	29.99		0.60	H_2S	1.24E-05	98%	DRE
et Heating Value (Btu/scf)	914	1,947	1,095	914	950	928	914	928	994						
olecular Weight	16.29	36.97	19.99	16.29	17.30	16.64	16.29	16.64	17.98						
D2 Emissions (ton/yr)	0.015	0.021	0.01	0.015	0.04	0.030	0.015	0.038	0.18						
olumetric Flow (scf/year)	14,016,000	8,760,000	7,008,000	14,016,000	35,916,000	28,032,000	14,016,000	35,040,000	156,804,000						
eat Release (MMBtu/yr)	12,807	17,053	7,677	12,807	34,111	26,014	12,807	32,518	155,794						

XTO Energy, Inc. Cowboy CDP DUAL TIP FLARES - ANNUAL EMISSIONS (FL1 - FL3)

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

b Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

Cowboy CDP

DUAL TIP FLARES GHG EMISSIONS SUMMARY (FL1 - FL3)

Flare Emissions Summary Table - Normal Operations

, .	$X_{CH4} * [(1-\eta)* Z_L]$	+ Z _U	=	2,091,145.13	SCF/Yr		Source	Annual Volume
	156,804,000.00							
$X_{CH4} =$	0.6668						FL1-FL3 ¹	156,804,000
N =	0.98							
Z _L =	1.00							
$Z_U =$	0.00							-
	mbusted) = V _a *)	(_{CO2}	=	645,602.98	SCF/Yr			
Va =	156,804,000.00							156,804,000
X _{CO2} =	0.004117					-		
) E _{a,CO2} (comb	ousted) = Σ ($\eta * V$	a * Yj * Rj * Z _L)	1					
N =	0.98							
$V_a =$	156,804,000.00		Rj =		$E_{a, CO2} =$			
Ÿ _I =		0.6668	1		102,466,111.20			
,	Ethane	0.0417	2		12,829,640.43			
	Propane	0.0360	3		16,582,471.49			
	Butane	0.0276	4		16,994,212.17			
	Pentane +	0.0491	5		37,749,416.44			
Z _L =	1.00				186,621,851.73	SCF/Yr		
) $E_{s,n} = E_{a,n} * (a_{s,n} + b_{s,n}) + (a_{s,n} + b_{s,n}) $	459.67 + T _s) * P _a							
	$(9.67 + T_a) * P_s$							
$E_{a,n}(CH4) =$	2,091,145.13		=	1,882,463.39	SCF/Yr			
	187,267,454.70		=	168,579,465.14	SCF/Yr			
Ts =	60° F							
Ta =	93.7° F	Roswell, AP-	-42					
Ps =	13.28							
Pa =	12.73	Roswell, AP-	-42					
) Mass _{s,i} = E _{s,i}	$^{*}\rho_{i} ^{*}10^{3}$							
	1,882,463.39							
$E_{s,i}(CO2) =$		1						
$p_i(CH4) =$		kg/ft3	=	36.14	metric tons			
$p_i(CO2) =$	0.0526	kg/ft3	=	8867.28	metric tons			
$O_2 e = CO_2$	+ (CH ₄ X GWP)		short tons	cO2e				
CO2 =	8867.28	=	9774.50	9774.50				
CH4 =	36.14	=	39.84	996.03				
CH4 GWP =	25			10770.53				

Component	rly CRYO-SSM CRYO Blowdown SSM Gas	CRYO SSM Gas	Max Case ^c	Destruction Efficiency	
	(1b/hr)	(lb/hr)	(lb/hr)	(%)	(1b/hr)
Water	0	0	0	0%	0.00
Hydrogen Sulfide	0	2	0	98%	0.00
Nitrogen	627	601	627	0%	627.47
Carbon Dioxide	278	429	278	0%	278.33
Methane	62524	73809	62524	98%	1250.48
Ethane	20617	18424	20617	98%	412.35
Propane	15571	174	15571	98%	311.41
Iso-butane	3124	6	3124	98%	62.49
N-butane	7137	0	7137	98%	142.75
Iso-pentane	2205	0	2205	98%	44.11
N-pentane	2548	0	2548	98%	50.95
Cyclopentanes	0	0	0	98%	0.00
Other Hexanes	1226	0	1226	98%	24.53
n-Hexane	454	0	454	98%	9.08
Methylcyclopentane	310	0	310	98%	6.21
Benzene	41	0	41	98%	0.82
Cyclohexane	355	0	355	98%	7.10
2,2,4 Trimethylpentane	0	0	0	98%	0.00
Other Heptanes	475	0	475	98%	9.51
Methylcyclohexane	310	0	310	98%	6.21
n-Heptane	158	0	158	98%	3.17
Toluene	49	0	49	98%	0.97
Octanes	241	0	241	98%	4.82
Ethylbenzene	0	0	0	98%	0.00
M&P-Xylene	0	0	0	98%	0.00
Nonanes	68	0	68	98%	1.35
Decanes	0	0	0	98%	0.00
Undecanes Plus	0	0	0	98%	0.00
Total	118321	93445	118321		3254.10
Total VOC	34274	180	34274		685.47
Total HAP	544	0	544		10.88
Net Heating Value (Btu/scf)	1,225	988	1,225		
Molecular Weight	22.45	17.73	22.45		
5O2 Emissions (lb/hr)	5.82	4.60	5.82		
Volumetric Flow (scf/hr)	2,000,000	2,000,000	2,000,000		
Heat Release (MMBtu/hr)	2,450	1,977	2,450		

XTO Energy, Inc. Cowboy CDP DUAL TIP FLARES - CRYO SSM HOURLY EMISSIONS (FL1 - FL3)

Flare DRE

Criteria Pollutant Emissions from Flare ^b

Emission

Factor

0.138

0.2755

25

7.60

7.60

98.00

Emission Factor

Units

lb/MMBtu

lb/MMBtu

PPMW Total S

lb/MMscf

lb/MMscf

Emission

Rate

(lb/hr) 338.14

675.05

5.82

18.26

18.26

0.00

Component

NO_x

CO

 SO_2

PM₁₀

PM_{2.5}

 H_2S

Footnotes:

Uncontrolled stream properties determined via ProMax.

^b Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assumes 100% of total sulfur in the gas stream is converted to SO2. ^c Max hourly emissions is based upon the worst-case emissions vent stream at max flaring rate.

Annual Emis		SSM Rates and	d Compositio	n to Flare ^{a,b}		C
Component	CRYO Blowdown SSM Gas	CRYO SSM Gas	Total	Destruction Efficiency	Exhaust Stream (controlled)	Compone
T 47-1	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)	NO _x
Water	0.00	0.00	0.00	0%	0.00	
Hydrogen Sulfide	0.00	0.04	0.04	98%	0.00	CO SO ₂
Nitrogen	9.63	13.75	23.38	0%	23.38	-
Carbon Dioxide	4.27	9.82	14.09	0%	14.09	PM ₁₀
Methane	959.55	1688.65	2648.20	98%	52.96	PM _{2.5}
Ethane	316.41	421.52	737.93	98%	14.76	H_2S
Propane	238.96	3.99	242.95	98%	4.86	
Iso-butane	47.95	0.14	48.09	98%	0.96	FI
N-butane	109.54	0.00	109.54	98%	2.19	
Iso-pentane	33.85	0.00	33.85	98%	0.68	
N-pentane	39.10	0.00	39.10	98%	0.78	
Cyclopentanes	0.00	0.00	0.00	98%	0.00	
Other Hexanes	18.82	0.00	18.82	98%	0.38	
n-Hexane	6.97	0.00	6.97	98%	0.14	
Methylcyclopentane	4.76	0.00	4.76	98%	0.10	
Benzene	0.63	0.00	0.63	98%	0.01	
Cyclohexane	5.45	0.00	5.45	98%	0.11	
2,2,4 Trimethylpentane	0.00	0.00	0.00	98%	0.00	
Other Heptanes	7.29	0.00	7.29	98%	0.15	
Methylcyclohexane	4.76	0.00	4.76	98%	0.10	
n-Heptane	2.43	0.00	2.43	98%	0.05	
Toluene	0.75	0.00	0.75	98%	0.01	
Octanes	3.70	0.00	3.70	98%	0.07	
Ethylbenzene	0.00	0.00	0.00	98%	0.00	
M&P-Xylene	0.00	0.00	0.00	98%	0.00	
Nonanes	1.04	0.00	1.04	98%	0.02	
Decanes	0.00	0.00	0.00	98%	0.00	
Undecanes Plus	0.00	0.00	0.00	98%	0.00	
Total	1815.86	2137.90	3953.76		115.79	
Total VOC	525.99	4.13	530.12		10.60	
Total HAP	8.35	0.00	8.35		0.17	
Net Heating Value (Btu/scf)	1,225.14	988.26	733.27			
Molecular Weight	22.45	17.73	19.62			
6O2 Emissions (ton/yr)	0.09	0.11	0.19			
Volumetric Flow (scf/yr)	61,387,646	91,515,000	152,902,646			
Heat Release (MMBtu/yr)	75,208.22	90,440.99	165,649.22			

XTO Energy, Inc. Cowboy CDP DUAL TIP FLARES - CRYO SSM ANNUAL EMISSIONS (FL1 - FL3)

Criteria Pollutant Emissions from Flare

Emission

Factor

0.138

0.2755

25

7.60

7.60

98.00

Emission Factor

Units

lb/MMBtu

lb/MMBtu

PPMW Total S

lb/MMscf

lb/MMscf

Emission

Rate

ton/yr 11.43

22.82

0.19

0.58

0.58 H_2S 0.0008 Flare DRE

Footnotes:

^a Uncontrolled stream properties determined via ProMax. ^bFlare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assumes 100% of total sulfur in the gas stream is converted to SO2.

Cowboy CDP

DUAL TIP FLARES CRYO SSM GHG EMISSIONS SUMMARY (FL1-FL3CRYO-SSM)

Flare Emissions	Summary Table -	Normal Operations

 E_{a,CH4} = V_a * 	X _{CH4} * [(1- η)* Z _L	$+ Z_{U}$	=	2,048,259.36	SCF/Yr		Source	Annual Volume
Va =	152,902,646.49							
X _{CH4} =								
N =							FL1-FL3CRYO-SSM	152,902,646
Z _L =	1.00							
$Z_U =$	0.00							
) E con (unco	mbusted) = $V_a * \lambda$	(=	544,849.77	SCF/Yr			
	152,902,646.49	4002		011,015.77	/			152,902,646
$X_{CO2} =$								102,702,010
E. con (comb	pusted) = $\Sigma (\eta * Va$	a * Yi * Ri * Z.)						
N =	,	, ., <i>Z</i> [)						
	152,902,646.49		Rj =		$E_{a,CO2} =$			
Y _a Y _I =		0.6698	1		100,364,708.61			
-)	Ethane	0.1866	2		55,934,296.82			
	Propane	0.0614	3		27,622,790.83			
	Butane	0.0399	4		23,895,804.28			
	Pentane +	0.0328	5		24,548,466.66			
Z _L =					232,366,067.21	SCF/Yr		
) $E_{s,n} = E_{a,n} * ($	459.67 + T _s) * P _a							
(45	9.67 + T _a) * P _s							
$E_{a,n}(CH4) =$	2,048,259.36		=	1,843,857.32	SCF/Yr			
$E_{a,n}(CO2) =$	232,910,916.98		=	209,668,027.32	SCF/Yr			
Ts =	60° F							
Ta =	93.7° F	Roswell, AP-4	2					
Ps =	13.28							
Pa =	12.73	Roswell, AP-4	2					
) Mass _{s,i} = E _{s,i}	$* \rho_i * 10^3$							
	1,843,857.32							
$E_{s,i}$ (CO2) =	209,668,027.32	2						
p _i (CH4) =	0.0192	kg/ft3	=	35.40	metric tons			
p _i (CO2) =	0.0526	kg/ft3	=	11028.54	metric tons			
$O_2 e = CO_2$	+ (CH ₄ X GWP)	1	short tons	CO ₂ e				
CO2 =	11028.54	=	12156.88	12156.88				
CH4 =	35.40	=	39.02	975.60				
CH4 GWP =	25			13132.48				

XTO Energy, Inc. Cowboy CDP DUAL TIP FLARES - STABILIZER OVERHEAD SSM HOURLY EMISSIONS (FL1-FL3OVHD-SSM)

Maximum	Hourly OVE	ID-SSM En	nission Rates a	nd Compositi	on to Flare ^{a,t}	,
Component	Condensate SSM Gas	Oil SSM Gas	Surge Vessel SSM Gas	Max Case ^c	Destruction Efficiency	Exhaust Stream (controlled)
	(1b/hr)	(lb/hr)	(1b/hr)	(1b/hr)	(%)	(1b/hr)
Water	0.00	0.00	0.00	0.00	0%	0.00
Hydrogen Sulfide	0.45	0.45	0.00	0.45	98%	0.01
Nitrogen	133.06	20.67	0.00	0.00	0%	0.00
Carbon Dioxide	98.58	93.36	69.58	69.58	0%	69.58
Methane	15037.00	2903.83	1274.57	1274.57	98%	25.49
Ethane	6549.30	15731.24	7939.51	7939.51	98%	158.79
Propane	3911.25	19901.38	16372.42	16372.42	98%	327.45
Iso-butane	630.26	1548.46	5222.79	5222.79	98%	104.46
N-butane	1307.23	3349.63	12092.07	12092.07	98%	241.84
Iso-pentane	367.89	1128.38	4924.19	4924.19	98%	98.48
N-pentane	426.83	1563.76	5504.07	5504.07	98%	110.08
Cyclopentanes	0.00	0.00	9.24	9.24	98%	0.18
Other Hexanes	302.02	1108.18	3133.78	3133.78	98%	62.68
n-Hexane	257.74	731.22	1987.00	1987.00	98%	39.74
Methylcyclopentane	0.00	0.00	864.92	864.92	98%	17.30
Benzene	17.50	67.93	339.63	339.63	98%	6.79
Cyclohexane	135.28	288.31	1175.40	1175.40	98%	23.51
2,2,4 Trimethylpentane	0.00	0.00	60.20	60.20	98%	1.20
Other Heptanes	0.00	0.00	1584.29	1584.29	98%	31.69
Methylcyclohexane	187.58	159.12	1720.59	1720.59	98%	34.41
n-Heptane	512.25	724.81	871.36	871.36	98%	17.43
Toluene	40.06	33.99	400.62	400.62	98%	8.01
Octanes	203.18	224.25	1655.56	1655.56	98%	33.11
Ethylbenzene	0.00	0.00	55.95	55.95	98%	1.12
M&P-Xylene	8.39	5.60	223.81	223.81	98%	4.48
Nonanes	0.00	0.00	540.76	540.76	98%	10.82
Decanes	0.00	0.00	243.71	243.71	98%	4.87
Undecanes Plus	0.00	0.00	174.84	174.84	98%	3.50
Total	30125.86	49584.56	68440.86	68441.31		1437.02
Total VOC	8307.47	30835.02	59157.19	59157.19		1183.14
Total HAP	323.69	838.73	3067.21	3067.21		61.34
Heating Value (Btu/scf)	1,245	1,987	2,691	2,691		
Molecular Weight	22.86	37.63	51.94	51.94		
SO2 Emissions (lb/hr)	1.48	2.44	3.37	3.37		
Volumetric Flow (scf/hr)	500,000	500,000	500,000	500,000		
Heat Release (MMBtu/hr)	623	994	1,346	1,346		

Criteria	Pollutant	Emissions	from Flare ^b
Component	Emission Rate	Emission Factor	Emission Factor Units
	(1b/hr)		
NO _X	185.68	0.138	lb/MMBtu
CO	370.70	0.2755	lb/MMBtu
SO ₂	3.37	25	PPMW Total S
PM ₁₀	10.03	7.60	lb/MMscf
PM _{2.5}	10.03	7.60	lb/MMscf
H_2S	0.01		
-		-	
Flare	DRE	98.00	%

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

6 Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assumes 100% of total sulfur in the gas stream is converted to SO2.

^c Max hourly emissions is based upon the worst-case emissions vent stream at max flaring rate.

XTO Energy, Inc. Cowboy CDP DUAL TIP FLARES - STABILIZER OVERHEAD SSM ANNUAL EMISSIONS (FL1-FL3OVHD-SSM)

Annua	al Emission O	VHD-SSM F	ates and Com	position to l	Flare ^{a,b}	
Component	Condensate SSM Gas	Oil SSM Gas	Surge Vessel SSM Gas	Total	Destruction Efficiency	Exhaust Stream (controlled)
	(ton/yr)	(ton/yr)	(ton/yr)	ton/yr	(%)	(ton/yr)
Water	0.00	0.00	0.00	0.00	0%	0.00
Hydrogen Sulfide	0.00	0.02	0.00	0.02	98%	0.0003
Nitrogen	0.12	0.73	0.00	0.85	0%	0.85
Carbon Dioxide	0.09	3.31	1.35	4.75	0%	4.75
Methane	13.12	102.92	24.78	140.81	98%	2.82
Ethane	5.71	557.55	154.34	717.61	98%	14.35
Propane	3.41	705.35	318.28	1027.04	98%	20.54
Iso-butane	0.55	54.88	101.53	156.96	98%	3.14
N-butane	1.14	118.72	235.07	354.93	98%	7.10
Iso-pentane	0.32	39.99	95.73	136.04	98%	2.72
N-pentane	0.37	55.42	107.00	162.79	98%	3.26
Cyclopentanes	0.00	0.00	0.18	0.18	98%	0.00
Other Hexanes	0.26	39.28	60.92	100.46	98%	2.01
n-Hexane	0.22	25.92	38.63	64.77	98%	1.30
Methylcyclopentane	0.00	0.00	16.81	16.81	98%	0.34
Benzene	0.02	2.41	6.60	9.03	98%	0.18
Cyclohexane	0.12	10.22	22.85	33.19	98%	0.66
2,2,4 Trimethylpentane	0.00	0.00	1.17	1.17	98%	0.02
Other Heptanes	0.00	0.00	30.80	30.80	98%	0.62
Methylcyclohexane	0.16	5.64	33.45	39.25	98%	0.79
n-Heptane	0.45	25.69	16.94	43.08	98%	0.86
Toluene	0.03	1.20	7.79	9.03	98%	0.18
Octanes	0.18	7.95	32.18	40.31	98%	0.81
Ethylbenzene	0.00	0.00	1.09	1.09	98%	0.02
M&P-Xylene	0.01	0.20	4.35	4.56	98%	0.09
Nonanes	0.00	0.00	10.51	10.51	98%	0.21
Decanes	0.00	0.00	4.74	4.74	98%	0.09
Undecanes Plus	0.00	0.00	3.40	3.40	98%	0.07
Total	26.28	1757.39	1330.49	3114.16		67.77
Total VOC	7.25	1092.86	1150.02	2250.13		45.00
Total HAP	0.28	29.73	59.63	89.64		1.79
Heating Value (Btu/scf)	1,245	1,987	2,691	2,221		
Molecular Weight	22.86	37.63	51.94	42.39		
SO2 Emissions (ton/yr)	0.00	0.09	0.07	0.15		
Volumetric Flow (scf/year)	872,291	35,442,334	19,440,000	55,754,625		
Heat Release (MMBtu/yr)	1,086	70,428	52,314	123,829	l	

Criter	ia Pollutant	Emissions	from Flare ^b
Component	Emission Rate	Emission Factor	Emission Factor Units
	ton/yr		
NO _X	8.54	0.138	lb/MMBtu
CO	17.06	0.2755	lb/MMBtu
SO ₂	0.15	25	PPMW Total S
PM ₁₀	0.21	7.60	lb/MMscf
PM _{2.5}	0.21	7.60	lb/MMscf
H_2S	0.0003		
Flare	DRE	98.00	%

Footnotes:

⁴ Uncontrolled stream properties determined via ProMax. ⁶ Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assumes 100% of total sulfur in the gas stream is converted to SO2.

Cowboy CDP

DUAL TIP FLARES OVERHEAD SSM GHG EMISSIONS SUMMARY (FL1-FL3OVHD-SSM)

1) F = V *	X _{CH4} * [(1- η)* Z _L	+ 7	=	50,396.59	SCF/Yr		Source	Annual Volume
	^A CH4 [(1-1]) Z _L 55,754,624.93	τ Z _U	=	50,396.59	SCHIT		Source	Annual volume
va = X _{CH4} =	0.0452							
$\Lambda_{CH4} =$ N =	0.98						FL1-FL3OVHD-SSM	55,754,625
$Z_{L} =$	1.00						TEI-TESO VIID-551VI	33,734,023
$Z_{\rm L} = Z_{\rm U} =$	0.00							
20	0.00							
2) E _{a.CO2} (uncor	nbusted) = $V_a * \lambda$	(_{CO2}	=	84,955.77	SCF/Yr			
Va =	55,754,624.93							55,754,625
$X_{CO2} =$	0.001524							
3) E _{a.CO2} (comb	usted) = Σ (η * Va	a * Yj * Rj * Z ₁)						
N =	0.98	/						
V _a =	55,754,624.93		Rj =		$E_{a, CO2} =$			
$Y_J =$	Methane	0.0452	1		2,469,432.84			
	Ethane	0.2303	2		25,169,406.98			
	Propane	0.3296	3		54,033,732.82			
	Butane	0.1643	4		35,908,099.68			
-	Pentane +	0.2283	5		62,360,982.38			
Z _L =	1.00				179,941,654.69	SCF/Yr		
3) $E_{en} = E_{an} * (4)$	459.67 + T _s) * P _a							
	$9.67 + T_a) * P_s$							
$E_{a,n}(CH4) =$	50,396.59		=	45,367.36	SCF/Yr			
$E_{a,n}(CO2) =$	180,026,610.47		=	162,061,206.80	SCF/Yr			
Ts =	60° F							
Ta =	93.7° F	Roswell, AP-	42					
Ps =	13.28							
Pa =	12.73	Roswell, AP-	42					
4) $Mass_{s,i} = E_{s,i}$								
$E_{s,i}$ (CH4) =	45,367.36							
$E_{s,i}(CO2) =$	162,061,206.80							
$p_i(CH4) =$	0.0192	kg/ft3	=	0.87	metric tons			
p _i (CO2) =	0.0526	kg/ft3	=	8524.42	metric tons			
,	+ (CH ₄ X GWP)		short tons	CO ₂ e				
CO2 =	8524.42	=	9396.56	9396.56				
CH4 =	0.87	=	0.96	24.00				
CH4 GWP =	25			9420.57				

XTO Energy, Inc. Cowboy CDP COMBUSTOR EMISSIONS SUMMARY - ECD1/ECD2a/ECD2b

			Combu	stor Emis	sions Sum	mary Tab	ole					
Stream Courses	N	Ox	C	0	Total V	/OC	SC	D_2	PM ₁	0 & 2.5	Total	HAPs
Stream Source	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY	lb/hr	TPY
ECD1	1.34	5.85	2.68	11.67	4.65	20.23	0.00	0.00	0.07	0.12	0.15	0.67
ECD2a/ECD2b (Portable Backup) ^a	1.77	7.69	3.04	13.24	4.65	20.23	0.00	0.00	0.07	0.12	0.15	0.67
Total Emissions ^b	1.77	7.69	3.04	13.24	4.65	20.23	0.00	0.00	0.07	0.12	0.15	0.67

Footnotes:

^aECD2a/ECD2b represents a portable backup combustor that would only be used if ECD1 was out of service. Annual emissions conservatively assume that the backup combustor could operate up to 8,760 hrs per year. Two separate portable ECD models are considered for this permit as represented in Table 2A and 2H.

^bTotal emissions represent worst-case emissions from ECD1 or ECD2a/ECD2b. The combustors will not operate at the same time.

XTO ENERGY INC. Cowboy CDP COMBUSTOR HOURLY EMISSIONS

			Maximum Ho	ourly Emission Rates a	nd Composition to	Combustor ^{a,b}					Criteria P	ollutant Emi	ssions from	n ECD ^b
	Pilot Fuel	Slop Oil Ta	ank (SOTK1)	Gunbarrel (GBS1)	PW Tan	ks (53-54)	Slop Oil Truck	Total		Flare Exhaust		Emission	Emission	Emissio
Component		W&B Losses	Flashing Losses	Flashing Losses	W&B Losses	Flashing Losses	Loading (SOTL)		Efficiency	(controlled)	Component	Rate	Factor	Factor
	(lb/hr)	(1b/hr)	(lb/hr)	(1b/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)		(lb/hr)		Units
Water	0.00	0.00	0.00	0.00	0.29	0.00	0.00	0.29	0%	0.29	NO _X	1.34	0.138	lb/MM
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	CO	2.68	0.2755	lb/MM
Nitrogen	0.36	0.00	0.04	0.00	0.00	0.00	0.00	0.40	0%	0.40	SO_2	0.00		
Carbon Dioxide	0.26	0.00	0.04	0.00	0.00	0.00	0.00	0.31	0%	0.31	PM_{10}	0.07	7.60	lb/MM
Methane	41.21	0.02	3.57	0.00	0.10	0.00	0.01	44.90	99%	0.45	PM _{2.5}	0.07	7.60	lb/MM
Ethane	1.00	0.33	16.37	0.00	0.53	0.00	0.17	18.40	99%	0.18	H ₂ 5	8.58E-05		
Propane	0.03	2.14	124.64	0.00	1.33	0.00	1.07	129.20	99%	1.29				
Iso-butane	0.03	0.80	51.59	0.00	0.21	0.00	0.40	53.03	99%	0.53	Combus	stor DRE	99.00	%
N-butane	0.02	2.05	132.07	0.00	0.75	0.00	1.03	135.93	99%	1.36				
Iso-pentane	0.00	0.67	45.83	0.00	0.15	0.00	0.34	46.98	99%	0.47	Criteria Pol	llutant Emiss	ions from	Pilot Fue
N-pentane	0.00	0.72	49.91	0.00	0.07	0.00	0.36	51.07	99%	0.51		Emission	F	Emissi
Cyclopentanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	Component	Rate	Emission Factor	Facto
Other Hexanes	0.00	0.28	19.76	0.00	0.04	0.00	0.14	20.21	99%	0.20		(lb/hr)	Factor	Units
n-Hexane	0.00	0.18	12.50	0.00	0.01	0.00	0.09	12.78	99%	0.13	NOX	0.02	0.138	lb/MMI
Methylcyclopentane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	СО	0.05	0.2755	lb/MMI
Benzene	0.00	0.01	0.95	0.00	0.05	0.00	0.00	1.01	99%	0.01	SO ₂	0.00		
Cyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	PM_{10}	0.001	7.60	lb/MM
2,2,4 Trimethylpentane	0.00	0.01	0.63	0.00	0.00	0.00	0.00	0.65	99%	0.01	PM _{2.5}	0.001	7.60	lb/MM
Other Heptanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	H ₂ S	8.58E-05		
Methylcyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
n-Heptane	0.00	0.13	10.10	0.00	0.01	0.00	0.07	10.30	99%	0.10				
Toluene	0.00	0.01	0.67	0.00	0.04	0.00	0.00	0.72	99%	0.01				
Octanes	0.00	0.03	2.85	0.00	0.00	0.00	0.02	2.90	99%	0.03				
Ethylbenzene	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.03	99%	0.00				
M&P-Xylene	0.00	0.00	0.18	0.00	0.02	0.00	0.00	0.20	99%	0.00				
Nonanes	0.00	0.00	0.27	0.00	0.00	0.00	0.00	0.27	99%	0.00				
Decanes	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.03	99%	0.00				
Undecanes Plus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
Total	42.91	7.39	472.03	0.00	3.59	0.00	3.70	529.62		6.28				
Total VOC	0.08	7.04	452.00	0.00	2.68	0.00	3.52	465.32		4.65				
Total HAP	0.00	0.20	14.96	0.00	0.12	0.00	0.10	15.38		0.15				
leating Value (Btu/scf)	913.74	2,814.24	2,842.38	0.00	1,893.47	0.00	2,814.24	2,735.04						
Aolecular Weight	16.29	54.21	54.80	0.00	39.33	0.00	54.21	52.69						
O2 Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1					
olumetric Flow (scf/hr)	180.00	51.71	3,268.81	0.00	34.68	0.00	25.87	3,561.07						
Ieat Release (MMBtu/hr)	0.16	0.15	9.29	0.00	0.07	0.00	0.07	9.74	1					

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

XTO Energy, Inc. Cowboy CDP COMBUSTOR ANNUAL EMISSIONS

COMBUSTOR - ANNUAL (EPN: ECD1)

			Annual E	mission Rates and Con	nposition to Comb	ustor ^{a,b}					Criteria	Pollutant Em	issions fro	m ECD
	Pilot Fuel ^c	Slop Oil Ta	ank (SOTK1)	Gunbarrel (GBS1)	PW Tan	ks (53-54)	Slop Oil Truck	Total	Destruction	Exhaust Stream		Emission	Emission	Emiss
Component	THOTTUC	W&B Losses	Flashing Losses	Flashing Losses	W&B Losses	Flashing Losses	Loading (SOTL)		Efficiency	(controlled)	Component	Rate	Factor	Fact Uni
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)		(ton/yr)		Uni
Water	0.00	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0%	1.25	NO _X	5.85	0.14	lb/Ml
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	CO	11.67	0.28	lb/M
Nitrogen	1.56	0.00	0.20	0.00	0.01	0.00	0.00	1.77	99%	0.02	SO ₂	0.00		
Carbon Dioxide	1.16	0.00	0.18	0.00	0.00	0.00	0.00	1.35	0%	1.35	PM ₁₀	0.12	7.60	lb/M
Methane	180.50	0.07	15.65	0.00	0.43	0.00	0.00	196.65	99%	1.97	PM _{2.5}	0.12	7.60	lb/M
Ethane	4.38	1.46	71.68	0.00	2.33	0.00	0.02	79.88	99%	0.80	H ₂ 5	0.00		
Propane	0.13	9.37	545.90	0.00	5.81	0.00	0.19	561.41	99%	5.61				
Iso-butane	0.12	3.51	225.98	0.00	0.90	0.00	0.06	230.57	99%	2.31	Combu	stor DRE	99.00	%
N-butane	0.11	9.00	578.49	0.00	3.27	0.00	0.15	591.02	99%	5.91				
Iso-pentane	0.00	2.94	200.72	0.00	0.64	0.00	0.04	204.35	99%	2.04				
N-pentane	0.00	3.17	218.61	0.00	0.32	0.00	0.05	222.16	99%	2.22				
Cyclopentanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
Other Hexanes	0.00	1.22	86.54	0.00	0.16	0.00	0.02	87.94	99%	0.88				
n-Hexane	0.00	0.78	54.74	0.00	0.06	0.00	0.01	55.58	99%	0.56				
Methylcyclopentane	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	99%	0.00				
Benzene	0.00	0.04	4.17	0.00	0.20	0.00	0.00	4.41	99%	0.04				
Cyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	99%	0.00				
2,2,4 Trimethylpentane	0.00	0.04	2.77	0.00	0.01	0.00	0.00	2.81	99%	0.03				
Other Heptanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
Methylcyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	99%	0.00				
n-Heptane	0.00	0.57	44.22	0.00	0.06	0.00	0.00	44.85	99%	0.45				
Toluene	0.00	0.03	2.94	0.00	0.19	0.00	0.00	3.16	99%	0.03				
Octanes	0.00	0.14	12.49	0.00	0.01	0.00	0.00	12.64	99%	0.13				
Ethylbenzene	0.00	0.00	0.13	0.00	0.01	0.00	0.00	0.15	99%	0.00				
M&P-Xylene	0.00	0.01	0.78	0.00	0.07	0.00	0.00	0.85	99%	0.01				
Nonanes	0.00	0.01	1.17	0.00	0.00	0.00	0.00	1.18	99%	0.01				
Decanes	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.12	99%	0.00				
Undecanes Plus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
Total	187.96	32.36	2067.48	0.00	15.74	0.00	0.59	2304.13		25.61				
Total VOC	0.36	30.82	1979.77	0.00	11.72	0.00	0.56	2023.24		20.23				
Total HAP	0.00	0.88	65.53	0.00	0.53	0.00	0.02	66.96		0.67				
let Heating Value (Btu/scf)	913.74	2,814.24	2,842.38	0.00	1,893.47	0.00	2,814.24	2734.49						
Iolecular Weight	16.29	54.21	54.80	0.00	39.33	0.00	54.21	52.68						
O2 Emissions (tpy)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
olumetric Flow (scf/yr)	1,576,800.00	452,971.48	28,634,815.83	0.00	303,816.42	0.00	11,175.11	30,979,578.83						
leat Release (MMBtu/yr)	1,440.78	1,274.77	81,391.06	0.00	575.27	0.00	31.45	84,713.33	1					

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

b Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP.42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

XTO ENERGY INC. Cowboy CDP COMBUSTOR HOURLY EMISSIONS

				C	OMBUSTOR - HO	URLY (EPN: ECD2	e/ECD2b)							
<u> </u>											r			
	-		Maximum Ho	urly Emission Rates a	nd Composition to	Combustor ^{a, b}			-		Criteria P	ollutant Emis	ssions from	n ECD ^b
	Pilot Fuel	Slop Oil Ta	ink (SOTK1)	Gunbarrel (GBS1)	PW Tan	ks (53-54)	Slop Oil Truck	Total		Flare Exhaust		Emission	Emission	Emission
Component		W&B Losses	Flashing Losses	Flashing Losses	W&B Losses	Flashing Losses	Loading (SOTL)		Efficiency	(controlled)	Component	Rate	Factor	Factor Units
	(lb/hr)	(1b/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(%)	(lb/hr)		(1b/hr)		
Water	0.00	0.00	0.00	0.00	0.29	0.00	0.00	0.29	0%	0.29	NO _X	1.77	0.18	lb/MMBtu
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	CO	3.04	0.31	lb/MMBtu
Nitrogen	0.36	0.00	0.04	0.00	0.00	0.00	0.00	0.40	0%	0.40	SO_2	0.00		
Carbon Dioxide	0.26	0.00	0.04	0.00	0.00	0.00	0.00	0.31	0%	0.31	PM ₁₀	0.07	7.60	lb/MMscf
Methane	41.21	0.02	3.57	0.00	0.10	0.00	0.01	44.90	99%	0.45	PM _{2.5}	0.07	7.60	lb/MMscf
Ethane	1.00	0.33	16.37	0.00	0.53	0.00	0.17	18.40	99%	0.18	H ₂ 5	0.00		
Propane	0.03	2.14	124.64	0.00	1.33	0.00	1.07	129.20	99%	1.29				
Iso-butane	0.03	0.80	51.59	0.00	0.21	0.00	0.40	53.03	99%	0.53	Combus	tor DRE	99.00	%
N-butane	0.02	2.05	132.07	0.00	0.75	0.00	1.03	135.93	99%	1.36				
Iso-pentane	0.00	0.67	45.83	0.00	0.15	0.00	0.34	46.98	99%	0.47	Criteria Pol	lutant Emissi	ions from	Pilot Fuel
N-pentane	0.00	0.72	49.91	0.00	0.07	0.00	0.36	51.07	99%	0.51		Emission		Emission
Cyclopentanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	Component	Rate	Emission	Factor
Other Hexanes	0.00	0.28	19.76	0.00	0.04	0.00	0.14	20.21	99%	0.20	_	(lb/hr)	Factor	Units
n-Hexane	0.00	0.18	12.50	0.00	0.01	0.00	0.09	12.78	99%	0.13	NO _X	0.04	0.18	lb/MMBtu
Methylcyclopentane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	CO	0.07	0.2755	lb/MMBtu
Benzene	0.00	0.01	0.95	0.00	0.05	0.00	0.00	1.01	99%	0.01	502	0.00		
Cyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	PM_{10}	0.002	7.60	lb/MMscf
2,2,4 Trimethylpentane	0.00	0.01	0.63	0.00	0.00	0.00	0.00	0.65	99%	0.01	PM _{2.5}	0.002	7.60	lb/MMscf
Other Heptanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	H_2S	0.00		<i></i>
Methylcyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
n-Heptane	0.00	0.13	10.10	0.00	0.01	0.00	0.07	10.30	99%	0.10				
Toluene	0.00	0.01	0.67	0.00	0.04	0.00	0.00	0.72	99%	0.01				
Octanes	0.00	0.03	2.85	0.00	0.00	0.00	0.02	2.90	99%	0.03				
Ethylbenzene	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.03	99%	0.00				
M&P-Xylene	0.00	0.00	0.18	0.00	0.02	0.00	0.00	0.20	99%	0.00				
Nonanes	0.00	0.00	0.27	0.00	0.00	0.00	0.00	0.27	99%	0.00				
Decanes	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.03	99%	0.00				
Undecanes Plus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
Total	42.91	7.39	472.03	0.00	3.59	0.00	3.70	529.62		6.28				
Total VOC	0.08	7.04	452.00	0.00	2.68	0.00	3.52	465.32		4.65				
Total HAP	0.00	0.20	14.96	0.00	0.12	0.00	0.10	15.38		0.15				
Heating Value (Btu/scf)	914	2,814	2,842	0.00	1,893	0.00	2,814	2,690		0.10				
Molecular Weight	16.29	54.21	54.80	0.00	39.33	0.00	54.21	51.79						
SO2 Emissions (lb/hr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
Volumetric Flow (scf/hr)	270	52	3,269	0.00	35	0.00	26	3,651						
Heat Release (MMBtu/hr)	0.25	0.15	9.29	0.00	0.07	0.00	0.07	9.82						
incut itercuse (initiatu/iii)	0.20	0.10		0.00	0.07	0.00	0.07	J.01	1					

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

XTO Energy, Inc. Cowboy CDP COMBUSTOR ANNUAL EMISSIONS

				C	OMBUSTOR - AN	NUAL (EPN: ECD2	a/ECD2b)							
						, ab				1				nonk
	1		Annual	Emission Rates and Co	mposition to Com	bustor	-		1	F 1 (Criteria	Pollutant Em	issions fro	m ECD*
	Pilot Fuel ^c	Slop Oil Ta	nk (SOTK1)	Gunbarrel (GBS1)	PW Tan	ks (53-54)	Slop Oil Truck	Total	Destruction	Exhaust Stream		Emission	Emission	Emission
Component		W&B Losses	Flashing Losses	Flashing Losses	W&B Losses	Flashing Losses	Loading (SOTL)		Efficiency	(controlled)	Component	Rate	Factor	Factor Units
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)		(ton/yr)		Cints
Water	0.00	0.00	0.00	0.00	1.25	0.00	0.00	1.25	0%	1.25	NO _X	7.69	0.18	lb/MMBtu
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00	CO	13.24	0.31	lb/MMBtu
Nitrogen	1.56	0.00	0.20	0.00	0.01	0.00	0.00	1.77	99%	0.02	SO_2	0.00		
Carbon Dioxide	1.16	0.00	0.18	0.00	0.00	0.00	0.00	1.35	0%	1.35	PM ₁₀	0.12	7.60	lb/MMscf
Methane	180.50	0.07	15.65	0.00	0.43	0.00	0.00	196.65	99%	1.97	PM _{2.5}	0.12	7.60	lb/MMscf
Ethane	4.38	1.46	71.68	0.00	2.33	0.00	0.02	79.88	99%	0.80	H ₂ S	0.00		
Propane	0.13	9.37	545.90	0.00	5.81	0.00	0.19	561.41	99%	5.61				
Iso-butane	0.12	3.51	225.98	0.00	0.90	0.00	0.06	230.57	99%	2.31	Combu	stor DRE	99.00	%
N-butane	0.11	9.00	578.49	0.00	3.27	0.00	0.15	591.02	99%	5.91				
Iso-pentane	0.00	2.94	200.72	0.00	0.64	0.00	0.04	204.35	99%	2.04				
N-pentane	0.00	3.17	218.61	0.00	0.32	0.00	0.05	222.16	99%	2.22				
Cyclopentanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
Other Hexanes	0.00	1.22	86.54	0.00	0.16	0.00	0.02	87.94	99%	0.88				
n-Hexane	0.00	0.78	54.74	0.00	0.06	0.00	0.01	55.58	99%	0.56				
Methylcyclopentane	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	99%	0.00				
Benzene	0.00	0.04	4.17	0.00	0.20	0.00	0.00	4.41	99%	0.04				
Cyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	99%	0.00				
2,2,4 Trimethylpentane	0.00	0.04	2.77	0.00	0.01	0.00	0.00	2.81	99%	0.03				
Other Heptanes	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
Methylcyclohexane	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	99%	0.00				
n-Heptane	0.00	0.57	44.22	0.00	0.06	0.00	0.00	44.85	99%	0.45				
Toluene	0.00	0.03	2.94	0.00	0.19	0.00	0.00	3.16	99%	0.03				
Octanes	0.00	0.14	12.49	0.00	0.01	0.00	0.00	12.64	99%	0.13				
Ethylbenzene	0.00	0.00	0.13	0.00	0.01	0.00	0.00	0.15	99%	0.00				
M&P-Xylene	0.00	0.01	0.78	0.00	0.07	0.00	0.00	0.85	99%	0.01				
Nonanes	0.00	0.01	1.17	0.00	0.00	0.00	0.00	1.18	99%	0.01				
Decanes	0.00	0.00	0.12	0.00	0.00	0.00	0.00	0.12	99%	0.00				
Undecanes Plus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	99%	0.00				
Total	187.96	32.36	2067.48	0.00	15.74	0.00	0.59	2304.13		25.61				
Total VOC	0.36	30.82	1979.77	0.00	11.72	0.00	0.56	2023.24		20.23				
Total HAP	0.00	0.88	65.53	0.00	0.53	0.00	0.02	66.96		0.67				
Net Heating Value (Btu/scf)	914	2,814	2,842	0.00	1,893	0.00	2,814	2,689		0.07				
Molecular Weight	16.29	54.21	54.80	0.00	39.33	0.00	54.21	51.77						
SO2 Emissions (tpy)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00						
Volumetric Flow (scf/yr)	2,365,200	452,971	28,634,816	0.00	303,816	0.00	11,175	31,767,979						
Heat Release (MMBtu/yr)	2,303,200	1.275	81.391	0.00	575	0.00	31	85,434						

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

Flare CO and NOx emission factors from TCEQ Air Permit Techincal Guidance for Chemical Sources. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

Cowboy CDP

COMBUSTOR (ECD1/ECD2a/ECD2b) GHG EMISSIONS SUMMARY

Flare Emissions Summary Table - Normal Operations

1

Г

	X _{CH4} * [(1- η)* Ζ	$L_L + Z_U$	=	28,318.69	SCF/Yr		Source	Annual Volume
	30,979,578.83							
X _{CH4} =							ECD1/ECD2a/ECD2b	30,979,579
N =							-	
Z _L =								
Z _U =	0.00							
2) E _{a,CO2} (unco	mbusted) = $V_a *$	X _{CO2}	=	19,381.19	SCF/Yr			
Va =	30,979,578.83							30,979,579
$X_{CO2} =$	0.0006							
3) E _{a,CO2} (comb	pusted) = $\Sigma (\eta * V)$	Va * Yj * Rj * Z _L)						
N =	0.99							
$V_a =$	30,979,578.83		Rj =		$E_{a, CO2} =$			
Y _I =		0.0914	1		2,803,550.73			
,	Ethane	0.0371	2		2,277,694.29			
	Propane	0.2610	3		24,011,738.77			
	Butane	0.3819	4		46,852,532.98			
	Pentane +	0.2976	5		45,637,917.95			
$Z_L =$	1.00				121,583,434.73	SCF/Yr		
3) $E_{en} = E_{an} * ($	459.67 + T _s) * P _a							
	$P.67 + T_a) * P_s$							
	28,318.69		=	25,492.69	SCF/Yr			
$E_{a,n}(CO2) =$	121,602,815.92		=	109,467,700.62	SCF/Yr			
Ts =	60° F							
Ta =	93.7° F	Roswell, AP-42	2					
Ps =	13.28							
Pa =	12.73	Roswell, AP-42	2					
4) Mass _{s,i} = $E_{s,i}$	$^{*}\rho_{i} ^{*}10^{3}$							
	25,492.69							
$E_{s,i}(CO2) =$	109,467,700.62	2						
$p_i(CH4) =$	0.0192	kg/ft3	=	0.49	metric tons			
$p_i(CO2) =$	0.0526	kg/ft3	=	5758.00	metric tons			
5) CO ₂ e = CO ₂	+ (CH ₄ X GWP))	short tons	CO ₂ e				
CO2 =	5758.00	=	6347.11	6347.11				
CH4 =	0.49	=	0.54	13.49				
CH4 GWP =	25			6360.60				

Cowboy CDP

Truck Loading Losses - Slop Oil

	Truck Loading	Losses Calculatio	ons			
	Average BOPD	210				
	Average BOPY	5704				
	LL= 12.46 * SPM/T * (1-	EFF/100)				
	Sa	turation Factor (S) =	0	.6		
	Average True Vapor Pressure of	liquid loaded (P) ^a =	6.	55		
	Maximum True Vapor Pressure of	liquid loaded (P) ^a =	7.	72		
	Average Temperature of liquid lo	aded in Rankin (T) =	53	5.8		
	Maximum Temperature of liquid lo	aded in Rankin (T) =	501.3			
	Mole	ecular Weight (M) ^a =	54.21			
Uno	controlled LL-Average (lb Total HC	/ bbl Throughput) =	0.2081			
Unco	ntrolled LL-Maximum (lb Total HC	/ bbl Throughput) =	= 0.2622			
1	Uncontrolled LL-Average (lb VOC)					
Ur	controlled LL-Maximum (lb VOC)	= 0.2525				
	Estimated Throu	57	'04			
	Truck Loadin	22	10			
	Estimated # of Loads (Approxi	mately 1 hr/Load) =	2	7		
		b				
	Total Uncontrolled Loadir	ig Emissions ^o		[
T.	tel III deservations Frankrightens		lb/hr	TPY		
10	tal Hydrocarbon Emissions	-	55.07	0.59		
	Total VOC Emissions		lb/hr	TPY		
	romi voc Emissions		53.02	0.57		
			lb/hr	TPY		
	Total HAP Emissions		1.59	0.02		
	Uncollected Emissions Rele	eased at Rack ^c				
			lb/hr	TPY		
	Total VOC Emissions		0.69	0.01		
			lb/hr	TPY		
			,			
	Total HAP Emissions	ŀ	0.02	0.00		

Cowboy CDP

Truck Loading Losses - Slop Oil

Truck Loading Losses Calculations									
	1		1						
	Total Unc	ontrolled	Uncollected Emission	ons Released at		olled Speciated			
Component	Speciated Vapors		Rack	c	Vapors Colle	ected to Combustor ^d			
	11 (1		11 /1		11 /1				
Water	lb/hr	ton/year	lb/hr	ton/year	lb/hr	ton/year			
	0.00	0.00	0.00	0.00	0.00	0.00			
Hydrogen Sulfide	0.00	0.00	0.00	0.00	0.00	0.00			
Nitrogen	0.00	0.00	0.00	0.00	0.00	0.00			
Carbon Dioxide	0.02	0.00	0.00	0.00	0.02	0.00			
Methane	0.03	0.00	0.00	0.00	0.03	0.00			
Ethane	2.01	0.02	0.03	0.00	1.98	0.02			
Propane	18.00	0.19	0.23	0.00	17.77	0.19			
Iso-butane	5.36	0.06	0.07	0.00	5.29	0.06			
N-butane	14.04	0.15	0.18	0.00	13.86	0.15			
Iso-pentane	4.22	0.05	0.05	0.00	4.17	0.04			
N-pentane	4.55	0.05	0.06	0.00	4.49	0.05			
Cyclopentanes	0.00	0.00	0.00	0.00	0.00	0.00			
Other Hexanes	1.80	0.02	0.02	0.00	1.77	0.02			
n-Hexane	1.04	0.01	0.01	0.00	1.03	0.01			
Methylcyclopentane	0.72	0.01	0.01	0.00	0.71	0.01			
Benzene	0.33	0.00	0.00	0.00	0.32	0.00			
Cyclohexane	1.06	0.01	0.01	0.00	1.04	0.01			
2,2,4 Trimethylpentane	0.00	0.00	0.00	0.00	0.00	0.00			
Other Heptanes	0.36	0.00	0.00	0.00	0.36	0.00			
Methylcyclohexane	0.67	0.01	0.01	0.00	0.66	0.01			
n-Heptane	0.40	0.00	0.01	0.00	0.40	0.00			
Toluene	0.18	0.00	0.00	0.00	0.18	0.00			
Octanes	0.19	0.00	0.00	0.00	0.19	0.00			
Ethylbenzene	0.00	0.00	0.00	0.00	0.00	0.00			
M&P-Xylene	0.03	0.00	0.00	0.00	0.03	0.00			
Nonanes	0.04	0.00	0.00	0.00	0.04	0.00			
Decanes	0.01	0.00	0.00	0.00	0.01	0.00			
Undecanes Plus	0.00	0.00	0.00	0.00	0.00	0.00			
Total	55.07	0.59	0.72	0.008	54.35	0.59			
Total VOC	53.02	0.57	0.69	0.007	52.33	0.56			
Total HAP	1.59	0.02	0.02	0.00	1.57	0.02			

a Molecular Weight and VOC/HAP weight percent were obtained from Promax

b Loading emissions include total hydrocarbons as calculated using AP-42, Section 5.2.

98.7% of the vapors are collected and routed to the combustor. The remaining 1.3% is illustrated as truck loading ° emissions.

The component speciation was obtained from Promax (Slop Tank W&B) and multiplied by the total hydrocarbon $^{\rm d}$ emissions. (VOC = 55.07 lb/hr * 98. 7% = 54.35 lb/hr)

XTO ENERGY INC. Cowboy CDP THERMAL OXIDIZER HOURLY EMISSIONS (PER UNIT)

			THERMAL OXIDIZ		•	,		D.11.4.4.F		TO
Component	TO Assist Fuel	Emission Rates and Amine Flash Gas	Amine Reboiler Still Vent	Total	Destruction Efficiency	Exhaust Stream (controlled)	Criteria	Pollutant Em Emission Rate	Emissions fro Emission Factor	Emission Factor
	(lb/hr)	(lb/hr)	(1b/hr)	(lb/hr)	(%)	(1b/hr)		(lb/hr)		Units
Hydrogen Sulfide	0.00	0.00	0.47	0.47	99%	0.00	NO _X	3.56		
N2	25.10	2.12	0.03	27.25	0%	27.25	CO	2.17		
Carbon Dioxide	0.00	72.79	24180.07	24252.86	0%	24252.86	SO ₂	0.88		
Methane	658.66	129.51	5.37	793.54	99%	7.94	PM ₁₀	0.19	7.60	lb/MMscf
Ethane	257.75	56.10	3.72	317.57	99%	3.18	PM _{2.5}	0.19	7.60	lb/MMscf
Propane	29.81	27.90	1.52	59.23	99%	0.59	H ₂ S	0.00		
i-Butane	0.00	2.41	0.10	2.51	99%	0.03	CO2e	24451.25		
n-Butane	0.00	8.18	0.49	8.67	99%	0.09	Thermal O:	xidizer DRE	99.00	%
i-Pentane	0.00	0.75	0.03	0.78	99%	0.01	P			
n-Pentane	0.00	0.90	0.04	0.94	99%	0.01	Criteria Po	ollutant Emiss	ions from .	
n-Hexane	0.00	0.35	0.01	0.36	99%	0.00		Emission	Emission	Emission
Benzene	0.00	0.35	0.01	0.36	99%	0.00	Component	Rate	Factor	Factor
Toluene	0.00	0.35	0.01	0.36	99%	0.00		(1b/hr)		Units
Ethylbenzene	0.00	0.35	0.01	0.36	99%	0.00	NO _X	0.28	0.068	lb/MMBtu
Xylene	0.00	0.35	0.01	0.36	99%	0.00	CO	0.17		
Water	0.00	8.21	700.92	709.13	99%	7.09	SO ₂	0.00		
MDEA	0.00	0.00	0.00	0.00	99%	0.00	PM ₁₀	0.15	7.60	lb/MMscf
Piperazine	0.00	0.00	0.00	0.00	99%	0.00	PM _{2.5}	0.15	7.60	lb/MMscf
O2	0.00	0.00	0.00	0.00	99%	0.00	H ₂ S	0.00		
Total	971.32	310.62	24892.81	26174.75		24299.06				
Total VOC	29.81	41.88	2.24	73.92		0.72				
Total HAP	0.00	1.74	0.06	1.80		0.02				
Heating Value (Btu/scf)	1,030.84	962.33	1.07	100.89						
Molecular Weight	18.97	23.85	26.00				Calculation Fac	tors:		
5O2 Emissions (lb/hr)	0.00	0.00	0.88	0.88			NO2 MW	46.0100	lb/lb-mole	
Volumetric Flow (scf/hr)	19,430.00	4,920.46	223,460.74	247,811.20			CO MW		lb/lb-mole	
Heat Release (MMBtu/hr)	20.03	4.74	0.24	25.00			CO2 MW		lb/lb-mole	
					-		H2O MW		lb/lb-mole	
PV=nRT		Total lb-Mol/hr	1547.26	Zeeco Specifica	tions		N2 MW SO2 MW		lb/lb-mole lb/lb-mole	
T = n = P =	12.73	lb/hr Ibmol/hr psia	Normal Operating Te Max Design Flowrate Max Design Flowrate Roswell Atmospheric					31.9980 Guaranteed Ou	lb/lb-mole	ration
R = V = /elocity = Flow Rate/Area	2,817,002	psi·ft3·lbmol/°R ft3/hr ft3/sec	Gas Constant				Pollutant NOx CO	(ppmv) 50 50		
Flow rate = Inside Diameter =	4.1	ft3/sec feet								
Area = Velocity =	13.4 58.6	ft/sec								
Notes: ¹ Uncontrolled stream properties deter: ⁹ TO and NOx CO exhuast emissions g 502.			2.5 emission factors from	1 AP-42, Table 1.4-	1 and 1.4-2, July 1	998. SO2 emissions	assume 100% conve	ersion of H2S to		

XTO Energy, Inc. Cowboy CDP THERMAL OXIDIZER ANNUAL EMISSIONS (PER UNIT)

THERMAL OXIDIZER - ANNUAL (EPNS: TO1-TO4)

Annual Emission Rates and Composition to Thermal Oxidizer ^{a,b}						Crit	eria Pollutant	Emissions f	rom TO ^b	
Component	TO Assist Fuel	Amine Flash Gas	Amine Reboiler Still Vent	Total	Destruction Efficiency	Exhaust Stream (controlled)	Component	Emission Rate	Emission Factor	Emission Factor Units
	(ton/yr)	(ton/yr)	(ton/yr)	(ton/yr)	(%)	(ton/yr)		(ton/yr)		
Hydrogen Sulfide	0.00	0.012	2.04	2.06	99%	0.02	NO _X	15.59		lb/MMBtu
N2	109.95	9.28	0.13	119.37	0%	119.37	СО	9.49		
Carbon Dioxide	0.00	318.82	105908.71	106227.53	0%	106227.53	SO ₂	3.87		
Methane	2884.92	567.26	23.52	3475.70	99%	34.76	PM ₁₀	0.82	7.60	lb/MMscf
Ethane	1128.94	245.73	16.29	1390.97	99%	13.91	PM _{2.5}	0.82	7.60	lb/MMscf
Propane	130.55	122.22	6.66	259.43	99%	2.59	H_2S	0.021		
i-Butane	0.00	10.56	0.42	10.98	99%	0.11	CO2e	107096.46		
n-Butane	0.00	35.82	2.16	37.98	99%	0.38				
i-Pentane	0.00	3.28	0.12	3.40	99%	0.03	Thermal O	xidizer DRE	99.00	%
n-Pentane	0.00	3.93	0.18	4.10	99%	0.04				
n-Hexane	0.00	1.52	0.052	1.57	99%	0.02				
Benzene	0.00	1.52	0.052	1.57	99%	0.02				
Toluene	0.00	1.52	0.052	1.57	99%	0.02				
Ethylbenzene	0.00	1.52	0.052	1.57	99%	0.02				
Xylene	0.00	1.52	0.052	1.57	99%	0.02				
Water	0.00	35.96	3070.02	3105.98	99%	31.06				
MDEA	0.00	0.01	0.00	0.01	99%	0.00				
Piperazine	0.00	0.00	0.00	0.00	99%	0.00				
O2	0.00	0.00	0.00	0.00	99%	0.00				
Total	4254.36	1360.50	109030.53	114645.38		106429.88				_
Total VOC	130.55	183.42	9.80	323.77		3.24	Calculation	Factors:		
Total HAP	0.00	7.61	0.26	7.87		0.079	NO2 MW	46.0100	lb/lb-mole	
Heating Value (Btu/scf)	1,030.84	962.33	1.07	100.89			CO MW	28.0000	lb/lb-mole	
Molecular Weight	16.81	23.85	26.00							
SO2 Emissions (tpy)	0.00	0.022	3.84	3.87			Manufacture	ers Guarantee	ed Outlet Co	ncentration
Volumetric Flow (scf/yr)	170,206,800.0	43,103,237.4	1,957,516,073.9	2,170,826,111.31			Pollutant	(ppmv)		
Heat Release (MMBtu/yr)	175,455.74	41,479.64	2,084.99	219,020.38			NOx	50		
<u> </u>	•			• • •			со	50		

Footnotes:

^a Uncontrolled stream properties determined via ProMax.

²TO CO and NOx exhuast emissions gaurantee provided by ZEECO. PM and PM2.5 emission factors from AP-42, Table 1.4-1 and 1.4-2, July 1998. SO2 emissions assume 100% conversion of H2S to SO2.

XTO Energy, Inc. Cowboy CDP **ROAD EMISSIONS**

PM_{30} (Total) Emissions		
$E = k(s/12)^{a}(W/3)^{b}$		
a	0.7	a
b	0.45	b
k	4.9	k
Silt Loading	4.8	Silt Loading
Vehicle Weight (tons)	28	Vehicle Weight
E-Hourly (lbs/VMT)	7.05	E-Hourly (lbs/
Rain Days	70	Rain Days
E-Annual (lbs/VMT)	5.70	E-Annual (lbs/
Truckloads per year	27	Truckloads per
Driving Distance Per Load (ft)	3000	Driving Distan
Annual Distance (miles)	15	Annual Distand
Control Efficiency - 15 MPH Limit	0.57	Control Efficien
Control Efficiency - Base Course	0.60	Control Efficien
Emissions (lbs/hr)	2.76	Emissions (lbs/
Emissions (tpy)	0.0076	Emissions (tpy)

PM ₁₀ Emissions							
$E = k(s/12)^{a}(W/3)^{b}$							
a	0.9						
b	0.45						
k	1.5						
Silt Loading	4.8						
Vehicle Weight (tons)	28						
E-Hourly (lbs/VMT)	1.80						
Rain Days	70						
E-Annual (lbs/VMT)	1.45						
Truckloads per year	27						
Driving Distance Per Load (ft)	3000						
Annual Distance (miles)	15						
Control Efficiency - 15 MPH Limit	0.57						
Control Efficiency - Base Course	0.60						
Emissions (lbs/hr)	0.70						
Emissions (tpy)	0.0019						

PM _{2.5} Emissions							
$E = k(s/12)^{a}(W/3)^{b}$							
a	0.9						
b	0.45						
k	0.15						
Silt Loading	4.8						
Vehicle Weight (tons)	28						
E-Hourly (lbs/VMT)	0.18						
Rain Days	70						
E-Annual (lbs/VMT)	0.15						
Truckloads per year	27						
Driving Distance Per Load (ft)	3000						
Annual Distance (miles)	15						
Control Efficiency - 15 MPH Limit	0.57						
Control Efficiency - Base Course	0.60						
Emissions (lbs/hr)	0.070						
Emissions (tpy)	0.00019						

Notes: Emissions (lbs/hr) = Driving Distance (ft)/ 5280 * E (lbs/VMT) * 4 * (1-control efficiency). Emissions (tpy) = Annual Distance * E / 2000

References:

EPA. "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources," AP-42, Section 13.2.1 WRAP Fugitive Dust Handbook; September 7, 2006

Cowboy CDP

SSM/M Blowdown - VOC Calculations

Calculation Methodology

VOC Calculations

Maximum Annual Emissions (lb/hr) = Volume of Gas Vented (scf/event/unit) * MW of Gas Vented (lb/lbmol) * wt.% VOC * Number of Units Worked on Site (units) / Frequency of Events (hr/yr/unit) / 379.5 (scf/lbmol) / 2000 (lb/ton)

* Like-kind SSM activites were joined together into a singular group for a worst case emission scenario. Volume , MW, and VOC wt% were taken as the max of all the like-kind activites. Event frequency was taken as the total frequency of all the like-kind activites per year. Event frequency, volume, MW, and VOC wt% are not intended to represent permit limits.

Cowboy CDP

STARTUP, SHUTDOWN, MAINTENANCE (SSM) VENTING EMISSIONS

Equipment Blowdowns & Purging - Emission Calculations ⁽¹⁾							
					Γ		1
Vessel/ Equipment	Estimated Events per Year	Vented Volume (scf/event) ⁽²⁾	Total Vented Volume (scf/yr)	MW (lb/lbmol)	VOC (wt%)	Total Vented Mass (TPY)	VOC Emissions (TPY)
Oil Stabilization - Inlet Surge Vessel Blowdowns	3	12,345	37,034	40	65%	1.92	1.25
Oil Stabilization - VRU Blowdowns	97	120	11,640	50	85%	0.76	0.64
Oil Stabilization - Overhead Compressor Blowdowns	73	279	20,350	55	95%	1.45	1.38
Gas Processing - Slug Catcher Blowdown	1	78,678	78,678	25	30%	2.55	0.77
Gas Processing - Scrubber Blowdowns	5	2,243	11,215	45	100%	0.66	0.66
Gas Processing - Propane Refrigerant Compressors	72	120	8,640	45	100%	0.50	0.50
Utilities & Common Equipment - Stabilization LP/HP Flare KO Drum Blowdowns	2	6,716	13,432	55	95%	0.96	0.91
Oil and Condensate Stabilization - Tower Blowdowns	6	2,740	16,440	55	95%	1.17	1.12
Condensate Stabilization - NGL Storage Vessels Degassing	2	12,100	24,200	55	95%	1.73	1.64
Utilities & Common Equipment - Propane Vessel Degassing	2	8,365	16,729	45	100%	0.98	0.98
Totals	263	123,705	238,358			12.68	9.84
Standard Pressure	14	7					
Standard Temperature (°R)	52	7.7					

Calculation Mathedalams
Calculation Methodology
Total Vented Mass = Total Vented Volume * MW / Molar Volume
VOC Emissions = Total Vented Mass * VOC Component Weight%

Molar Volume at Standard Conditions (scf/lbmol)

Notes:

(1) Like-kind SSM activies were grouped together. Volume , MW, and VOC wt% were taken as the max of all the like-kind activies. Event frequency was taken as the total frequency of all the like-kind activites. Event frequency, volume, MW, and VOC wt% are not intended to represent permit limits.

385.2

(2) Vented volume per event represents an estimated volume per like-kind activites based on the equipment capacity, piping, and piping components.

Cowboy CDP

MALFUNCTION (M) VENTING EMISSIONS

Equipmen	it Blowdowns & l	Purging - Emissi	on Calculations ⁽¹)			
Vessel/ Equipment	Estimated Events per Year	Vented Volume (scf/event) ⁽²⁾	Total Vented Volume (scf/yr)	MW (lb/lbmol)	VOC (wt%)	Total Vented Mass (TPY)	VOC Emissions (TPY)
Oil Stabilization - Inlet Surge Vessel Blowdowns	3	12,345	37,034	40	65%	1.92	1.25
Oil Stabilization - VRU Blowdowns	97	120	11,640	50	85%	0.76	0.64
Oil Stabilization - Overhead Compressor Blowdowns	73	279	20,350	55	95%	1.45	1.38
Gas Processing - Slug Catcher Blowdown	1	78,678	78,678	25	30%	2.55	0.77
Gas Processing - Scrubber Blowdowns	5	2,243	11,215	45	100%	0.66	0.66
Gas Processing - Propane Refrigerant Compressors	72	120	8,640	45	100%	0.50	0.50
Utilities & Common Equipment - Stabilization LP/HP Flare KO Drum Blowdowns	2	6,716	13,432	55	95%	0.96	0.91
Oil and Condensate Stabilization - Tower Blowdowns	6	2,740	16,440	55	95%	1.17	1.12
Condensate Stabilization - NGL Storage Vessels Degassing	2	12,100	24,200	55	95%	1.73	1.64
Utilities & Common Equipment - Propane Vessel Degassing	2	8,365	16,729	45	100%	0.98	0.98
Totals	263	123,705	238,358			12.68	9.84
						•	
Standard Pressure	14	ł.7					
	50	77					

Standard Temperature (°R)	527.7
Molar Volume at Standard Conditions (scf/lbmol)	385.2

Calculation Methodology	
Total Vented Mass = Total Vented Volume * MW / Molar Volume	
VOC Emissions = Total Vented Mass * VOC Component Weight%	

Notes:

(1) Like-kind SSM activies were grouped together. Volume , MW, and VOC wt% were taken as the max of all the like-kind activies. Event frequency was taken as the total frequency of all the like-kind activites. Event frequency, volume, MW, and VOC wt% are not intended to represent permit limits.

(2) Vented volume per event represents an estimated volume per like-kind activites based on the equipment capacity, piping, and piping components.

Cowboy CDP

SSM Tank Degassing - VOC Calculations

Calcualtion Methodology

VOC Tank Degassing Calculations

Maximum Annual Emissions (tpy) = Volume of Vapor Space (scf/event) * Gas MW (lb/lbmol) * wt % VOC * Frequency of Events (events/yr) / 379.5 (scf/lbmol) / 2,000 (lb/ton) + Clingage Volume (scf/event) * Liquid Density (lb/scf) / Frequency of Event (events/yr) / 2,000 (lb/ton)

* Like-kind SSM activites were joined together into a singular group for a worst case emission scenario. Volume , MW, and VOC wt% were taken as the max of all the like-kind activites. Event frequency was taken as the total frequency of all the like-kind activites per year. Event frequency, volume, MW, and VOC wt% are not intended to represent permit limits.

Cowboy CDP

STARTUP, SHUTDOWN, MAINTENANCE (SSM) VENTING EMISSIONS

ed	Vented	C 1:				1	1
er	Volume (scf/event) ⁽²⁾	Clingage Volume (scf/event)	MW (lb/lbmol)	Density (lb/ft ³)	VOC (wt%)	Total Vented Mass (TPY)	VOC Emissions (TPY)
	5,848	1.71	60	71	100%	1.03	1.03
	58,906	3.62	55	65	95%	8.65	8.21
	99,549	5.92	56	66	95%	22.30	21.18
	2,885	0.28	60	71	100%	0.47	0.47
	4,624	0.34	60	71	100%	0.74	0.74
	171813	12				33.19	31.64
		(scf/event) ⁽²⁾ 5,848 58,906 99,549 2,885 4,624	(scf/event) (2) (scf/event) 5,848 1.71 58,906 3.62 99,549 5.92 2,885 0.28 4,624 0.34	(scf/event) (2) (scf/event) (1b/lbmol) 5,848 1.71 60 58,906 3.62 55 99,549 5.92 56 2,885 0.28 60 4,624 0.34 60	(scf/event) (2) (scf/event) (lb/lbmol) (lb/ff') 5,848 1.71 60 71 58,906 3.62 55 65 99,549 5.92 56 66 2,885 0.28 60 71 4,624 0.34 60 71	(scf/event) (2) (scf/event) (lb/lbmol) (lb/lff') (wt%) 5,848 1.71 60 71 100% 58,906 3.62 55 65 95% 99,549 5.92 56 66 95% 2,885 0.28 60 71 100% 4,624 0.34 60 71 100%	(scf/event) (2) (scf/event) (lb/lbmol) (lb/ft [*]) (wt%) Mass (TPY) 5,848 1.71 60 71 100% 1.03 58,906 3.62 55 65 95% 8.65 99,549 5.92 56 66 95% 22.30 2,885 0.28 60 71 100% 0.47 4,624 0.34 60 71 100% 0.74

Standard Pressure	14.7
Standard Temperature (°R)	527.7
Molar Volume at Standard Conditions (scf/lbmol)	385.2

Calculation Methodology
Total Vented Mass = Vented Volume * MW * Frequency / Molar Volume + Clingage Volume * Density * Frequency

VOC Emissions = Total Vented Mass * VOC Component Weight%

Notes: (1) Like-kind SSM activies were grouped together. Volume , MW, and VOC wt% were taken as the max of all the like-kind activies. Event frequency was taken as the total frequency of all the like-kind activites. Event frequency, volume, MW, and VOC wt% are not intended to represent permit limits.

(2) Vented volume per event represents an estimated volume per like-kind activites based on the equipment capacity, piping, and piping components.

Cowboy CDP

STARTUP, SHUTDOWN, MAINTENANCE (SSM) VENTING EMISSIONS - EXEMPT SOURCES & ACTIVITIES (1)

Equipment Blowdowns & Purging - Emission Calculations (2)

Vessel/ Equipment	Estimated Events per Year	Vented Volume (scf/event) ⁽³⁾	MW (lb/lbmol)	VOC (wt%)	Total Vented Mass (TPY)	VOC Emissions (TPY)
Condensate Stabilization - Reflux Blowdowns	2	700	55	95%	0.10	0.09
Condensate Stabilization - Surge and Flash Drum Blowdowns	2	3826	50	85%	0.50	0.42
Condensate Stabilization - Overhead Compressor Blowdowns	96	153	30	45%	0.57	0.26
Gas Processing - Surge Drum Blowdowns	2	4228	45	100%	0.49	0.49
Gas Processing - Separator Blowdowns	1	1677	25	30%	0.05	0.02
Gas Processing - Expander/Compressor Blowdowns	16	673	25	30%	0.35	0.10
Gas Processing - Dehydrator Regeneration Gas Compressor Blowdowns	16	9	25	30%	4.75E-03	1.43E-03
Gas Processing - Subcooler Blowdowns	51	256	25	30%	0.42	0.13
Gas Processing - Chiller/Exchanger Blowdowns	4	1632	45	100%	0.38	0.38
Gas Processing - Dehydrator Blowdowns	4	7906	25	30%	1.03	0.31
Gas Processing - Mercury Guard Bed	1	678	25	30%	0.02	0.01
Gas Processing - Tower Blowdowns	1	9013	25	30%	0.29	0.09
Gas Processing - Condenser Blowdowns	1	739	45	100%	0.04	0.04
Gas Processing - Economizer Blowdowns	1	922	45	100%	0.05	0.05
Utilities & Common Equipment - Closed Drain Drum Blowdowns	2	2215	50	90%	0.29	0.26
Utilities & Common Equipment - Combustor KO Drum Blowdowns	1	76	60	100%	0.01	0.01
Utilities & Common Equipment - Cryo LP/HP Flare KO Drum Blowdowns	3	8611	25	30%	0.84	0.25
Utilities & Common Equipment - Combustor Blowdowns	4	132	60	100%	0.04	0.04
Sitewide - Reboiler Blowdowns	7	504	55	95%	0.25	0.24
Sitewide - Gas Filter Coalescer Blowdowns	56	299	25	30%	0.54	0.16
Sitewide - Pig Launching and Receiving Blowdowns	168	55	45	80%	0.54	0.43
Totals	439	44,305			6.82	3.79

Standard Pressure	14.7
Standard Temperature (°R)	527.7
Molar Volume at Standard Conditions (scf/lbmol)	385.2

Calculation Methodology
Total Vented Mass = Total Vented Volume * MW / Molar Volume
VOC Emissions = Total Vented Mass * VOC Component Weight%

Notes:

(1) Activities are exempt from permitting per 20.2.72.202.B.(5) NMAC.
(2) Like-kind SSM activies were grouped together. Volume, MW, and VOC wt% were taken as the max of all the like-kind activites. Event frequency was taken as the total frequency of all the like-kind activites. Event frequency, volume, MW, and VOC wt% are not intended to represent permit limits.

(3) Vented volume per event represents an estimated volume per piece of small equipment, piping, or piping component.

Section 6.a

Green House Gas Emissions

(Submitting under 20.2.70, 20.2.72 20.2.74 NMAC)

Title V (20.2.70 NMAC), Minor NSR (20.2.72 NMAC), and PSD (20.2.74 NMAC) applicants must estimate and report greenhouse gas (GHG) emissions to verify the emission rates reported in the public notice, determine applicability to 40 CFR 60 Subparts, and to evaluate Prevention of Significant Deterioration (PSD) applicability. GHG emissions that are subject to air permit regulations consist of the sum of an aggregate group of these six greenhouse gases: carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Calculating GHG Emissions:

1. Calculate the ton per year (tpy) GHG mass emissions and GHG CO₂e emissions from your facility.

2. GHG mass emissions are the sum of the total annual tons of greenhouse gases without adjusting with the global warming potentials (GWPs). GHG CO₂e emissions are the sum of the mass emissions of each individual GHG multiplied by its GWP found in Table A-1 in 40 CFR 98 <u>Mandatory Greenhouse Gas Reporting</u>.

3. Emissions from routine or predictable start up, shut down, and maintenance must be included.

4. Report GHG mass and GHG CO₂e emissions in Table 2-P of this application. Emissions are reported in <u>short</u> tons per year and represent each emission unit's Potential to Emit (PTE).

5. All Title V major sources, PSD major sources, and all power plants, whether major or not, must calculate and report GHG mass and CO2e emissions for each unit in Table 2-P.

6. For minor source facilities that are not power plants, are not Title V, and are not PSD there are three options for reporting GHGs in Table 2-P: 1) report GHGs for each individual piece of equipment; 2) report all GHGs from a group of unit types, for example report all combustion source GHGs as a single unit and all venting GHGs as a second separate unit; 3) or check the following I by checking this box, the applicant acknowledges the total CO2e emissions are less than 75,000 tons per year.

Sources for Calculating GHG Emissions:

- Manufacturer's Data
- AP-42 Compilation of Air Pollutant Emission Factors at http://www.epa.gov/ttn/chief/ap42/index.html
- EPA's Internet emission factor database WebFIRE at http://cfpub.epa.gov/webfire/
- 40 CFR 98 <u>Mandatory Green House Gas Reporting</u> except that tons should be reported in short tons rather than in metric tons for the purpose of PSD applicability.

• API Compendium of Greenhouse Gas Emissions Methodologies for the Oil and Natural Gas Industry. August 2009 or most recent version.

• Sources listed on EPA's NSR Resources for Estimating GHG Emissions at http://www.epa.gov/nsr/clean-air-act-permitting-greenhouse-gases:

Global Warming Potentials (GWP):

Applicants must use the Global Warming Potentials codified in Table A-1 of the most recent version of 40 CFR 98 Mandatory Greenhouse Gas Reporting. The GWP for a particular GHG is the ratio of heat trapped by one unit mass of the GHG to that of one unit mass of CO₂ over a specified time period.

"Greenhouse gas" for the purpose of air permit regulations is defined as the aggregate group of the following six gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. (20.2.70.7 NMAC, 20.2.74.7 NMAC). You may also find GHGs defined in 40 CFR 86.1818-12(a).

Metric to Short Ton Conversion:

Short tons for GHGs and other regulated pollutants are the standard unit of measure for PSD and title V permitting programs. 40 CFR 98 <u>Mandatory Greenhouse Reporting</u> requires metric tons.

1 metric ton = 1.10231 short tons (per Table A-2 to Subpart A of Part 98 – Units of Measure Conversions)

Section 7

Information Used to Determine Emissions

Information Used to Determine Emissions shall include the following:

- ☑ If manufacturer data are used, include specifications for emissions units <u>and</u> control equipment, including control efficiencies specifications and sufficient engineering data for verification of control equipment operation, including design drawings, test reports, and design parameters that affect normal operation.
- □ If test data are used, include a copy of the complete test report. If the test data are for an emissions unit other than the one being permitted, the emission units must be identical. Test data may not be used if any difference in operating conditions of the unit being permitted and the unit represented in the test report significantly effect emission rates.
- If the most current copy of AP-42 is used, reference the section and date located at the bottom of the page. Include a copy of the page containing the emissions factors, and clearly mark the factors used in the calculations.
- □ If an older version of AP-42 is used, include a complete copy of the section.
- If an EPA document or other material is referenced, include a complete copy.
- □ Fuel specifications sheet.
- ☑ If computer models are used to estimate emissions, include an input summary (if available) and a detailed report, and a disk containing the input file(s) used to run the model. For tank-flashing emissions, include a discussion of the method used to estimate tank-flashing emissions, relative thresholds (i.e., permit or major source (NSPS, PSD or Title V)), accuracy of the model, the input and output from simulation models and software, all calculations, documentation of any assumptions used, descriptions of sampling methods and conditions, copies of any lab sample analysis.

Output from the following ProMax simulations were used to estimate emissions from sources as described below. Simulations were created based on current process knowledge and recent process fluid sample analysis. Relevant simulation output files and sample analysis reports are included in this section.

- IFR Oil Storage ProMax Simulation
 - Used to estimate emissions from internal floating roof tanks (IFR1-14) in accordance with AP-42 Chapter 7 methodology
 - o 2024 North Header Hydrocarbon Liquid Sample Used as representative oil stored in the IFR tanks.
- Gas Streams ProMax Simulation
 - Recent gas samples were input into ProMax and used to estimate emissions from several gas streams that are combusted at the Cowboy facility as outlined below.
 - o 2024 Fuel Gas Skid Sample Used as representative of flare pilot, purge, assist gas for all flares.
 - 2024_FL1 CDP LPF (V-6808) Used as representative of CDP Flare 1 LP Flaring
 - 2024_FL1 CDP HPF (V-6809) Used as representative of CDP Flare 1 HP Flaring
 - 2024_FL2 Cryo LPF (V-6858) Used as representative of Cryo Flares 2 & 3 LP Flaring
 - 2024_FL2 Cryo HPF (V-6859) Used as representative of Cryo Flares 2 & 3 HP Flaring
 - 2022 Cryo Residue Gas Used as representative of Cryo SSM Gas Flaring
 - 2024_FL2 Cryo HPF (V-6859) Hysys Comp Simulated composition from the Cowboy Plant Hysys model used as representative of Cryo Blowdown SSM Flaring
 - o 2022_Condensate OVH Compressor Used as representative of Condensate SSM Gas Flaring
 - o 2022_Oil OVH Compressor Used as representative of Oil SSM Gas Flaring
 - 2024_FL1 CDP LPF (V-6808) Hysys Comp Simulated composition from the Cowboy Plant Hysys model used as representative of Surge Vessel SSM Gas Flaring
- Slop Oil and Produced Water Handling ProMax Simulation

- 2024 Closed Drain Hydrocarbon Liquid Sample and 2024 Gunbarrel Hydrocarbon Liquid Sample were used as representative of the streams handled by the gunbarrel (GB1), slop oil tank (SOTK1), produced water tanks (PWTK1-2), and slop oil loading (SOTK1)
- Amine Unit ProMax Simulation
 - 2020 Amine Inlet Gas Hysys Comp Simulated composition from the Cowboy Plant Hysys model used as representative of gas inlet to the Amine Units

The following additional supplemental documents are provided in support of the calculations submitted with this application:

- Heater Manufacturer Data
- Thermal Oxidizer Manufacturer Data
- Flare Manufacturer Data
- Enclosed Combustor Manufacturer Data
- Generator Manufacturer Data

AP-42 and Other Emissions Guidance as Noted

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Cowboy CDP

Closed Drain System Hydrocarbon Liquid Sampled @ 60 psig & 82 °F

Date Sampled: 09/13/2024

Job Number: 243077.042

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.013	0.004	0.005
Carbon Dioxide	0.004	0.002	0.003
Methane	0.916	0.428	0.200
Ethane	2.361	1.742	0.967
Propane	14.233	10.819	8.545
Isobutane	5.762	5.202	4.559
n-Butane	16.989	14.777	13.443
2,2 Dimethylpropane	0.216	0.229	0.212
Isopentane	7.969	8.041	7.828
n-Pentane	10.674	10.675	10.485
2,2 Dimethylbutane	0.173	0.200	0.203
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.612	0.692	0.718
2 Methylpentane	4.203	4.814	4.932
3 Methylpentane	2.114	2.380	2.480
n-Hexane	6.206	7.042	7.282
Heptanes Plus	27.556	<u>32.954</u>	<u>38.140</u>
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:

Specific Gravity	0.7432	(Water=1)
°API Gravity	58.88	@ 60°F
Molecular Weight	101.7	
Vapor Volume	22.62	CF/Gal
Weight	6.19	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.6422	(Water=1)
°API Gravity	88.85	@ 60°F
Molecular Weight	73.5	
Vapor Volume	27.06	CF/Gal
Weight	5.35	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

FESCO, Ltd. - Alice, Texas Certified:

Sampled By: (16) R. Elizondo Analyst: JL Processor: ANB Cylinder ID: W-2443

Conan Pierce 361-661-7015

FESCO, Ltd.

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.004	0.002	0.003
Nitrogen	0.013	0.004	0.005
Methane	0.916	0.428	0.200
Ethane	2.361	1.742	0.967
Propane	14.233	10.819	8.545
Isobutane	5.762	5.202	4.559
n-Butane	17.204	15.006	13.655
Isopentane	7.969	8.041	7.828
n-Pentane	10.674	10.675	10.485
Other C-6's	7.102	8.086	8.333
Heptanes	12.868	14.527	16.320
Octanes	9.175	11.336	13.185
Nonanes	1.803	2.664	3.108
Decanes Plus	0.907	1.486	1.783
Benzene	0.499	0.385	0.530
Toluene	0.974	0.899	1.221
E-Benzene	0.083	0.088	0.120
Xylenes	0.600	0.640	0.867
n-Hexane	6.206	7.042	7.282
2,2,4 Trimethylpentane	0.647	<u>0.928</u>	<u>1.006</u>
Totals:	100.000	100.000	100.000
Characteristics of Total Sample:			
Specific Gravity		0.6422	(Water=1)
°ABL Grovity		00.05	()

Specific Gravity	0.6422	(Water=1)
°API Gravity	88.85	@ 60°F
Molecular Weight	73.5	
Vapor Volume	27.06	CF/Gal
Weight	5.35	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.7708	(Water=1)
Molecular Weight	144.4	

Characteristics of Atmospheric Sample:

°API Gravity	77.69	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	17.98	psi

QUALITY CONTROL CHECK				
	Sampling			
	Conditions	Test Samples		
Cylinder Number				
Pressure, PSIG				
Skin Temperature, °F				

* Sample used for analysis

FESCO, Ltd.

TOTAL EXTENDED REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.013	0.004	0.005
Carbon Dioxide	0.004	0.002	0.003
Methane	0.916	0.428	0.200
Ethane	2.361	1.742	0.967
Propane	14.233	10.819	8.545
Isobutane	5.762	5.202	4.559
n-Butane	16.989	14.777	13.443
2,2 Dimethylpropane	0.216	0.229	0.212
Isopentane	7.969	8.041	7.828
n-Pentane	10.674	10.675	10.485
2,2 Dimethylbutane	0.173	0.200	0.203
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.612	0.692	0.718
2 Methylpentane	4.203	4.814	4.932
3 Methylpentane	2.114	2.380	2.480
n-Hexane	6.206	7.042	7.282
Methylcyclopentane	2.380	2.323	2.727
Benzene	0.499	0.385	0.530
Cyclohexane	3.173	2.980	3.636
2-Methylhexane	1.477	1.894	2.015
3-Methylhexane	1.276	1.617	1.741
2,2,4 Trimethylpentane	0.647	0.928	1.006
Other C-7's	1.608	1.954	2.172
n-Heptane	2.953	3.759	4.029
Methylcyclohexane	3.932	4.360	5.256
Toluene	0.974	0.899	1.221
Other C-8's	4.138	5.413	6.210
n-Octane	1.105	1.563	1.719
E-Benzene	0.083	0.088	0.120
M & P Xylenes	0.501	0.536	0.723
	0.100	0.104	0.144
Other C-9's	1.482	2.165	2.547
n-Nonane	0.321	0.498	0.561
Other C-10's	0.590	0.948	1.136
n-decane	0.073	0.123	0.141
Undecanes(11)	0.190	0.313	0.381
Dodecanes(12) Tridecanes(13)	0.037 0.012	0.066 0.023	0.081
			0.028
Tetradecanes(14) Pentadecanes(15)	0.001 0.001	0.002 0.002	0.003 0.002
Hexadecanes(16)	0.000	0.002	0.002
Heptadecanes(17)	0.000	0.001	0.001
Octadecanes(18)	0.000	0.001	0.002
Nonadecanes(19)	0.000	0.001	0.002
Eicosanes(20)			0.003
. ,	0.001	0.002 0.001	
Heneicosanes(21)	0.000		0.001
Docosanes(22) Tricosanes(23)	0.000 0.000	0.001 0.001	0.001 0.001
Tetracosanes(24)	0.000	0.001	0.001
. ,			
Pentacosanes(25) Hexacosanes(26)	0.000 0.000	0.000 0.000	0.001 0.000
Heptacosanes(26)	0.000	0.000	0.000
Octacosanes(28)	0.000	0.000	0.000
Nonacosanes(28)	0.000	0.000	0.000
Triacontanes(30)	0.000	0.000	0.000
Hentriacontanes (30)			0.000
Total	<u>0.000</u> 100.000	<u>0.000</u> 100.000	100.000
i otai	100.000	100.000	100.000

Page 3 of 3

For: XTO Energy Inc. 6401 N. Holiday Hill Road Midland, Texas 79707

Sample: Cowboy CDP

Condensate Overhead Compressor K2609, 2610, 2620 Spot Gas Sampled @ 240 psig & 64 °F

Date Sampled: 02/04/2022

Job Number: 221249.021

COMPONENT Hydrogen Sulfide* Nitrogen	MOL% < 0.001 0.721		GPM
Carbon Dioxide	0.170		
Methane	71.141		
Ethane	16.531		4.529
Propane	6.732		1.900
Isobutane	0.823		0.276
n-Butane	1.699		0.549
2-2 Dimethylpropane	0.008		0.003
Isopentane	0.387		0.145
n-Pentane	0.449		0.167
Hexanes	0.493		0.208
Heptanes Plus	<u>0.846</u>		<u>0.361</u>
Totals	100.000		8.137
Computed Real Characte	eristics Of Hep	tanes Plus	5:
Specific Gravity			(Air=1)
Molecular Weight		97.74	, ,
Gross Heating Value			BTU/CF
Computed Real Characte	eristics Of Tota	al Sample:	
Specific Gravity		0.7962	(Air=1)
Compressibility (Z)		0.9955	
Molecular Weight		22.96	
Gross Heating Value			
Dry Basis		1400.69	BTU/CF
Saturated Basis		1377.06	BTU/CF

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377) Results: 0.031 Gr/100 CF, 0.5 PPMV or <0.0001 Mol%

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (24) D. Morales Analyst: RG Processor: AS Cylinder ID: T-2534 Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

COMPONENT	MOL %	GPM		WT %
Hydrogen Sulfide*	< 0.001			< 0.001
Nitrogen	0.721			0.880
Carbon Dioxide	0.170			0.326
Methane	71.141			49.719
Ethane	16.531	4.529		21.654
Propane	6.732	1.900		12.932
Isobutane	0.823	0.276		2.084
n-Butane	1.699	0.549		4.302
2,2 Dimethylpropane	0.008	0.003		0.025
Isopentane	0.387	0.005		1.216
n-Pentane	0.449	0.143		1.411
2,2 Dimethylbutane	0.008	0.003		0.030
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.035	0.015		0.131
2 Methylpentane	0.144	0.061		0.541
3 Methylpentane	0.079	0.033		0.297
n-Hexane	0.227	0.096		0.852
Methylcyclopentane	0.077	0.028		0.282
Benzene	0.017	0.005		0.058
Cyclohexane	0.122	0.043		0.447
2-Methylhexane	0.048	0.023		0.210
3-Methylhexane	0.050	0.024		0.218
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.101	0.045		0.436
n-Heptane	0.112	0.053		0.489
Methylcyclohexane	0.145	0.060		0.620
Toluene	0.033	0.000		0.020
Other C8's	0.095	0.011		0.152
n-Octane	0.017	0.009		0.085
Ethylbenzene	0.000	0.000		0.000
M & P Xylenes	0.005	0.002		0.023
O-Xylene	0.001	0.000		0.005
Other C9's	0.011	0.006		0.060
n-Nonane	0.001	0.001		0.006
Other C10's	0.001	0.001		0.006
n-Decane	0.001	0.001		0.006
Undecanes (11)	<u>0.009</u>	0.006		<u>0.061</u>
Totals	100.000	8.137		100.000
Computed Real Charact	eristics of Total Sample			
	·	0.7962	(Air=1)	
Compressibility (7)		0.9955	. ,	
Molecular Weight		22.96		
Gross Heating Value		22.00		
		1400.69	BTU/CF	
		1377.06	BTU/CF	
Saturated Dasis		1377.00	DIU/CP	

Sample: Cowboy CDP

Condensate Overhead Compressor K2609, 2610, 2620 Spot Gas Sampled @ 240 psig & 64 °F

Date Sampled: 02/04/2022

Job Number: 221249.021

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.170	Grim	0.326
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	0.721		0.880
Methane	71.141		49.719
Ethane	16.531	4,529	21.654
	6.732	4.529	12.932
Propane	•••••		
Isobutane	0.823	0.276	2.084
n-Butane	1.707	0.552	4.327
Isopentane	0.387	0.145	1.216
n-Pentane	0.449	0.167	1.411
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.227	0.096	0.852
Cyclohexane	0.122	0.043	0.447
Other C6's	0.266	0.112	0.999
Heptanes	0.388	0.172	1.635
Methylcyclohexane	0.145	0.060	0.620
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.017	0.005	0.058
Toluene	0.033	0.011	0.132
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.006	0.002	0.028
Octanes Plus	0.135	0.068	0.680
Totals	100.000	8.137	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.017	(Air=1)
Molecular Weight	115.81	
Gross Heating Value	6031	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.7962	(Air=1)
Compressibility (Z)	0.9955	
Molecular Weight	22.96	
Gross Heating Value		
Dry Basis	1400.69	BTU/CF
Saturated Basis	1377.06	BTU/CF

For: XTO Energy Inc. 6401 N. Holiday Hill Road Midland, Texas 79707

Sample: Cowboy CDP

Cryo Residue Spot Gas Sampled @ 1060 psig & 72 °F

Date Sampled: 02/04/2022

Job Number: 221249.011

COMPONENT	MOL%		GPM
Hydrogen Sulfide*	< 0.001		
Nitrogen	0.814		
Carbon Dioxide	0.185		
Methane	87.298		
Ethane	11.626		3.179
Propane	0.075		0.021
Isobutane	0.002		0.001
n-Butane	0.000		0.000
2-2 Dimethylpropane	0.000		0.000
Isopentane	0.000		0.000
n-Pentane	0.000		0.000
Hexanes	0.000		0.000
Heptanes Plus	<u>0.000</u>		0.000
Totals	100.000		3.201
Computed Peol Characte	rictics Of Hon	tanas Plus	
Computed Real Characte Specific Gravity			(Air=1)
			(All = 1)
Molecular Weight Gross Heating Value			BTU/CF
Computed Real Characte	ristics Of Tota	I Sample:	
Specific Gravity		-	(Air=1)
Compressibility (Z)		0.9975	,
Molecular Weight			
Gross Heating Value			
Dry Basis		1116.63	BTU/CF
Saturated Basis			

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (24) D. Morales Analyst: RG Processor: AS Cylinder ID: T-3904 Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

COMPONENT	MOL %	GPM		WT %
Hydrogen Sulfide*	< 0.001			< 0.001
Nitrogen	0.814			1.278
Carbon Dioxide	0.185			0.456
Methane	87.298			78.483
Ethane	11.626	3.179		19.591
Propane	0.075	0.021		0.185
Isobutane	0.002	0.001		0.007
n-Butane	0.000	0.000		0.000
2,2 Dimethylpropane	0.000	0.000		0.000
Isopentane	0.000	0.000		0.000
n-Pentane	0.000	0.000		0.000
2,2 Dimethylbutane	0.000	0.000		0.000
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.000	0.000		0.000
2 Methylpentane	0.000	0.000		0.000
3 Methylpentane	0.000	0.000		0.000
n-Hexane	0.000	0.000		0.000
Methylcyclopentane	0.000	0.000		0.000
Benzene	0.000	0.000		0.000
Cyclohexane	0.000	0.000		0.000
2-Methylhexane	0.000	0.000		0.000
3-Methylhexane	0.000	0.000		0.000
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.000	0.000		0.000
n-Heptane	0.000	0.000		0.000
Methylcyclohexane	0.000	0.000		0.000
Toluene	0.000	0.000		0.000
Other C8's	0.000	0.000		0.000
n-Octane	0.000	0.000		0.000
Ethylbenzene	0.000	0.000		0.000
M & P Xylenes	0.000	0.000		0.000
O-Xylene	0.000	0.000		0.000
Other C9's	0.000	0.000		0.000
n-Nonane	0.000	0.000		0.000
Other C10's	0.000	0.000		0.000
n-Decane	0.000	0.000		0.000
Undecanes (11)	<u>0.000</u>	0.000		<u>0.000</u>
Totals	100.000	3.201		100.000
Computed Real Charact	eristics of Total Sample			
Specific Gravity		0.6177	(Air=1)	
Compressibility (7)		0.9975	· · /	
Molecular Weight		17.84		
Gross Heating Value				
		1116.63	BTU/CF	
		1097.97	BTU/CF	
		1001.01	510/01	

Sample: Cowboy CDP

Cryo Residue Spot Gas Sampled @ 1060 psig & 72 °F

Date Sampled: 02/04/2022

Job Number: 221249.011

GLYCALC FORMAT

COMPONENT	MOL%	GPM	Wt %
Carbon Dioxide	0.185	•••••	0.456
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	0.814		1.278
Methane	87.298		78.483
Ethane	11.626	3.179	19.591
Propane	0.075	0.021	0.185
Isobutane	0.002	0.001	0.007
n-Butane	0.000	0.000	0.000
Isopentane	0.000	0.000	0.000
n-Pentane	0.000	0.000	0.000
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.000	0.000	0.000
Cyclohexane	0.000	0.000	0.000
Other C6's	0.000	0.000	0.000
Heptanes	0.000	0.000	0.000
Methylcyclohexane	0.000	0.000	0.000
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.000	0.000	0.000
Toluene	0.000	0.000	0.000
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.000	0.000	0.000
Octanes Plus	<u>0.000</u>	<u>0.000</u>	<u>0.000</u>
Totals	100.000	3.201	100.000

Real Characteristics Of Octanes Plus	nes Plus:
--------------------------------------	-----------

Specific Gravity	 (Air=1)
Molecular Weight	
Gross Heating Value	 BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	0.6177	(Air=1)	
Compressibility (Z)	0.9975		
Molecular Weight	17.84		
Gross Heating Value			
Dry Basis	1116.63	BTU/CF	
Saturated Basis	1097.97	BTU/CF	

For: XTO Energy, Inc.

22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Cowboy CDP

Fuel Skid Spot Gas Sample @ 124 psig & 81°F

Date Sampled: 08/21/2024

Job Number: 243077.061

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM		
Oxygen	< 0.001			
Nitrogen	0.968			
Carbon Dioxide	0.228			
Methane	97.482			
Ethane	1.262	0.345		
Propane	0.026	0.007		
Isobutane	0.018	0.006		
n-Butane	0.016	0.005		
2-2 Dimethylpropane	0.000	0.000		
Isopentane	0.000	0.000		
n-Pentane	0.000	0.000		
Hexanes	0.000	0.000		
Heptanes Plus	0.000	0.000		
Totals	100.000	0.363		
Computed Real Characteristics Of Hentanes Plus:				

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	 (Air=1)
Molecular Weight	
Gross Heating Value	 BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.568	(Air=1)
Compressibility (Z)	0.9979	
Molecular Weight	16.42	
Gross Heating Value		
Dry Basis	1033	BTU/CF
Saturated Basis	1016	BTU/CF

Remark: Hydrogen Sulfide analysis (ASTM D-5504) yielded 2.2 ppm wt. Remark: Total Sulfur analysis (ASTM D-6667) yielded 14.1 ppm wt.

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (16) R.Elizondo Analyst: RG Processor: RG Cylinder ID: T-6009

Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

COMPONENT	MOL %	GPM		WT %
Oxygen	< 0.001			< 0.001
Nitrogen	0.968			1.651
Carbon Dioxide	0.228			0.611
Methane	97.482			95.236
Ethane	1.262	0.345		2.311
Propane	0.026	0.007		0.070
Isobutane	0.018	0.006		0.064
n-Butane	0.016	0.005		0.057
2,2 Dimethylpropane	0.000	0.000		0.000
Isopentane	0.000	0.000		0.000
n-Pentane	0.000	0.000		0.000
2,2 Dimethylbutane	0.000	0.000		0.000
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.000	0.000		0.000
2 Methylpentane	0.000	0.000		0.000
3 Methylpentane	0.000	0.000		0.000
n-Hexane	0.000	0.000		0.000
Methylcyclopentane	0.000	0.000		0.000
Benzene	0.000	0.000		0.000
Cyclohexane	0.000	0.000		0.000
2-Methylhexane	0.000	0.000		0.000
3-Methylhexane	0.000	0.000		0.000
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.000	0.000		0.000
n-Heptane	0.000	0.000		0.000
Methylcyclohexane	0.000	0.000		0.000
Toluene	0.000	0.000		0.000
Other C8's	0.000	0.000		0.000
n-Octane	0.000	0.000		0.000
Ethylbenzene	0.000	0.000		0.000
M & P Xylenes	0.000	0.000		0.000
O-Xylene	0.000	0.000		0.000
Other C9's	0.000	0.000		0.000
n-Nonane	0.000	0.000		0.000
Other C10's	0.000	0.000		0.000
n-Decane	0.000	0.000		0.000
Undecanes (11)	0.000	0.000		0.000
Totals	100.000	0.363		100.000
Computed Real Characteristics of Total Sample				
Specific Gravity	·	0.568	(Air=1)	
		0.9979	. ,	
Molecular Weight		16.42		
Gross Heating Value				
Dry Basis		1033	BTU/CF	
		1016	BTU/CF	

For:	XTO Energy, Inc.
	22777 Springswoods Village Pkwy., W4.6B.345
	Spring, Texas 77389

Sample: Cowboy CDP Fuel Gas Skid Spot Gas Sample @ 124 psig & 8 °F

Date Sampled: 08/21/2024

Job Number: 243077

SULFUR SPECIATION ANALYSIS - ASTM D5504

Compound	PPMW of Compounds
Hydrogen Sulfide	2.2
COS	3.0
Methyl Mercaptan	6.6
Ethyl Mercaptan	2.9
Dimethyl Sulfide	<0.1
Carbon Disulfide	<0.1
Isopropyl Mercaptan	<0.1
tert-Butyl Mercaptan	<0.1
n-Propyl Mercaptan	<0.1
Methylethyl Sulfide	<0.1
Thiophene	<0.1
sec-Butyl Mercaptan	<0.1
Isobutyl Mercaptan	<0.1
Diethyl Sulfide	<0.1
n-Butyl Mercaptan	<0.1
Dimethyl Disulfide	<0.1
Diethyl Disulfide	<0.1

Sampled By:	(16) RE
Analyst:	JG
Processor:	JG
Cylinder ID:	ST-6009

Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Cowboy CDP

Separator V-6808 Spot Gas Sample @ <1 psig & 137°F

Date Sampled: 08/21/2024

Job Number: 243077.031

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Oxygen Nitrogen Carbon Dioxide	< 0.001 0.453 0.138	
Methane Ethane	36.874 19.504	5.393
Propane	19.708	5.614
Isobutane	3.449	1.167
n-Butane	8.459	2.757
2-2 Dimethylpropane	0.054	0.021
Isopentane	2.450	0.926
n-Pentane	2.947	1.104
Hexanes	2.227	0.948
Heptanes Plus	<u>3.737</u>	<u>1.601</u>
Totals	100.000	19.533

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.455	(Air=1)
Molecular Weight	98.69	
Gross Heating Value	5199	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	1.299	(Air=1)
Compressibility (Z)	0.9863	
Molecular Weight	37.12	
Gross Heating Value		
Dry Basis	2193	BTU/CF
Saturated Basis	2156	BTU/CF

Remark: Hydrogen Sulfide analysis (ASTM D-5504) yielded 0.8 ppm wt. Remark: Total Sulfur analysis (ASTM D-6667) yielded 3.8 ppm wt.

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (16) R.Elizondo Analyst: RG Processor: RG Cylinder ID: T-6226

Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

TOTAL REPORT				
COMPONENT	MOL %	GPM		WT %
Oxygen	< 0.001			< 0.001
Nitrogen	0.453			0.342
Carbon Dioxide	0.138			0.164
Methane	36.874			15.938
Ethane	19.504	5.393		15.799
Propane	19.708	5.614		23.412
Isobutane	3.449	1.167		5.400
n-Butane	8.459	2.757		13.245
2,2 Dimethylpropane	0.054	0.021		0.105
Isopentane	2.450	0.926		4.762
n-Pentane	2.947	1.104		5.728
2,2 Dimethylbutane	0.037	0.016		0.086
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.186	0.079		0.432
2 Methylpentane	0.676	0.290		1.569
3 Methylpentane	0.362	0.153		0.840
n-Hexane	0.966	0.411		2.243
Methylcyclopentane	0.381	0.136		0.864
Benzene	0.125	0.036		0.263
Cyclohexane	0.539	0.190		1.221
2-Methylhexane	0.153	0.074		0.413
3-Methylhexane	0.163	0.077		0.440
2,2,4 Trimethylpentane	0.088	0.046		0.271
Other C7's	0.290	0.130		0.775
n-Heptane	0.365	0.174		0.985
Methylcyclohexane	0.541	0.225		1.431
Toluene	0.175	0.061		0.434
Other C8's	0.498	0.239		1.479
n-Octane	0.109	0.058		0.335
Ethylbenzene	0.010	0.004		0.029
M & P Xylenes	0.060	0.024		0.172
O-Xylene	0.011	0.004		0.031
Other C9's	0.177	0.093		0.602
n-Nonane	0.023	0.013		0.079
Other C10's	0.026	0.016		0.099
n-Decane	0.002	0.001		0.008
Undecanes (11)	<u>0.001</u>	0.001		<u>0.004</u>
Totals	100.000	19.533		100.000
Computed Real Charact	eristics of Total Sample			
•		1.299	(Air=1)	
		0.9863	、 ,	
Molecular Weight		37.12		
Gross Heating Value		-		
			BTU/CF	
Saturated Basis		2156	BTU/CF	

- For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389
- Sample: Cowboy CDP Separator V-6808 Spot Gas Sample @ <1 psig & 137 °F

Date Sampled: 08/21/2024

Job Number: 243077

SULFUR SPECIATION ANALYSIS - ASTM D5504

Compound	PPMW of Compounds
Hydrogen Sulfide	0.8
COS	0.9
Methyl Mercaptan	<0.1
Ethyl Mercaptan	<0.1
Dimethyl Sulfide	1.0
Carbon Disulfide	0.7
Isopropyl Mercaptan	<0.1
tert-Butyl Mercaptan	<0.1
n-Propyl Mercaptan	<0.1
Methylethyl Sulfide	<0.1
Thiophene	<0.1
sec-Butyl Mercaptan	<0.1
Isobutyl Mercaptan	<0.1
Diethyl Sulfide	<0.1
n-Butyl Mercaptan	<0.1
Dimethyl Disulfide	<0.1
Diethyl Disulfide	<0.1

Sampled By:	(16) RE
Analyst:	JG
Processor:	JG
Cylinder ID:	ST-5814

Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Cowboy CDP

Separator V-6809 Spot Gas Sample @ <1 psig & 132°F

Date Sampled: 08/21/2024

Job Number: 243077.051

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Oxygen	0.090	
Nitrogen Carbon Dioxide	1.229 0.170	
Methane Ethane	83.399 7.347	2.011
Propane	5.124	1.445
Isobutane n-Butane	0.505 0.848	0.169 0.274
2-2 Dimethylpropane	0.007	0.003
Isopentane n-Pentane	0.082 0.092	0.031 0.034
Hexanes	0.181	0.076
Heptanes Plus Totals	<u>0.926</u> 100.000	<u>0.367</u> 4.408

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.290	(Air=1)
Molecular Weight	94.97	
Gross Heating Value	4923	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.701	(Air=1)
Compressibility (Z)	0.9966	
Molecular Weight	20.25	
Gross Heating Value		
Dry Basis	1237	BTU/CF
Saturated Basis	1216	BTU/CF

Remark: Hydrogen Sulfide analysis (ASTM D-5504) yielded 2.2 ppm wt. Remark: Total Sulfur analysis (ASTM D-6667) yielded 13.0 ppm wt.

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (16) R.Elizondo Analyst: RG Processor: RG Cylinder ID: T-6241

Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

TOTAL REPORT				
COMPONENT	MOL %	GPM		WT %
Oxygen	0.090			0.142
Nitrogen	1.229			1.700
Carbon Dioxide	0.170			0.369
Methane	83.399			66.075
Ethane	7.347	2.011		10.910
Propane	5.124	1.445		11.159
Isobutane	0.505	0.169		1.450
n-Butane	0.848	0.274		2.434
2,2 Dimethylpropane	0.007	0.003		0.025
Isopentane	0.082	0.031		0.292
n-Pentane	0.092	0.034		0.328
2,2 Dimethylbutane	0.002	0.001		0.009
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.013	0.005		0.055
2 Methylpentane	0.045	0.019		0.192
3 Methylpentane	0.029	0.012		0.123
n-Hexane	0.092	0.039		0.392
Methylcyclopentane	0.063	0.022		0.262
Benzene	0.109	0.031		0.421
Cyclohexane	0.129	0.045		0.536
2-Methylhexane	0.025	0.012		0.124
3-Methylhexane	0.028	0.013		0.139
2,2,4 Trimethylpentane	0.020	0.010		0.113
Other C7's	0.057	0.025		0.279
n-Heptane	0.064	0.030		0.317
Methylcyclohexane	0.136	0.056		0.660
Toluene	0.150	0.051		0.683
Other C8's	0.080	0.038		0.435
n-Octane	0.020	0.010		0.113
Ethylbenzene	0.002	0.001		0.010
M & P Xylenes	0.015	0.006		0.079
O-Xylene	0.002	0.001		0.010
Other C9's	0.021	0.011		0.131
n-Nonane	0.003	0.002		0.019
Other C10's	0.002	0.001		0.014
n-Decane	0.000	0.000		0.000
Undecanes (11) Totals	<u>0.000</u> 100.000	<u>0.000</u> 4.408		<u>0.000</u> 100.000
Compressibility (Z) Molecular Weight Gross Heating Value		0.701 0.9966 20.25	(Air=1)	
		1237	BTU/CF	
Saturated Basis		1216	BTU/CF	

08/28/2024

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

- For:XTO Energy, Inc.22777 Springswoods Village Pkwy., W4.6B.345Spring, Texas 77389
- Sample: Cowboy CDP V-6809 Spot Gas Sample @ <1 psig & 132 °F

Date Sampled: 08/21/2024

SULFUR SPECIATION ANALYSIS - ASTM D5504

Compound	PPMW of Compounds
Hydrogen Sulfide	2.2
COS	2.0
Methyl Mercaptan	<0.1
Ethyl Mercaptan	3.4
Dimethyl Sulfide	2.0
Carbon Disulfide	<0.1
Isopropyl Mercaptan	1.6
tert-Butyl Mercaptan	<0.1
n-Propyl Mercaptan	<0.1
Methylethyl Sulfide	<0.1
Thiophene	<0.1
sec-Butyl Mercaptan	<0.1
Isobutyl Mercaptan	<0.1
Diethyl Sulfide	<0.1
n-Butyl Mercaptan	<0.1
Dimethyl Disulfide	<0.1
Diethyl Disulfide	<0.1

Sampled By:	(16) RE
Analyst:	JG
Processor:	JG
Cylinder ID:	ST-5802

Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

Job Number: 243077

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Cowboy CDP

Separator V-6858 Spot Gas Sample @ <1 psig & 145°F

Date Sampled: 08/21/2024

Job Number: 243077.071

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Oxygen	0.042	
Nitrogen	3.402	
Carbon Dioxide	0.195	
Methane	92.346	
Ethane	1.953	0.534
Propane	0.525	0.148
Isobutane	0.133	0.044
n-Butane	0.330	0.106
2-2 Dimethylpropane	0.017	0.007
Isopentane	0.142	0.053
n-Pentane	0.183	0.068
Hexanes	0.243	0.102
Heptanes Plus	0.489	<u>0.210</u>
Totals	100.000	1.272

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.442	(Air=1)
Molecular Weight	99.46	
Gross Heating Value	5256	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravity	0.619	(Air=1)
Compressibility (Z)	0.9976	
Molecular Weight	17.90	
Gross Heating Value		
Dry Basis	- 1072	BTU/CF
Saturated Basis	- 1054	BTU/CF

Remark: Hydrogen Sulfide analysis (ASTM D-5504) yielded <0.1 ppm wt. Remark: Total Sulfur analysis (ASTM D-6667) yielded 14.7 ppm wt.

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (16) R.Elizondo Analyst: RG Processor: RG Cylinder ID: T-6130

Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286 TOTAL REPORT			
ONENT	MOL %	GPM	WT %

COMPONENT	MOL %	GPM		WT %
Oxygen	0.042			0.075
Nitrogen	3.402			5.325
Carbon Dioxide	0.195			0.480
Methane	92.346			82.774
Ethane	1.953	0.534		3.281
Propane	0.525	0.148		1.294
Isobutane	0.133	0.044		0.432
n-Butane	0.330	0.106		1.072
2,2 Dimethylpropane	0.017	0.007		0.069
Isopentane	0.142	0.053		0.572
n-Pentane	0.183	0.068		0.738
2,2 Dimethylbutane	0.004	0.002		0.019
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.017	0.007		0.082
2 Methylpentane	0.071	0.030		0.342
3 Methylpentane	0.039	0.016		0.188
n-Hexane	0.112	0.047		0.539
Methylcyclopentane	0.041	0.014		0.193
Benzene	0.011	0.003		0.048
Cyclohexane	0.061	0.021		0.287
2-Methylhexane	0.022	0.010		0.123
3-Methylhexane	0.023	0.011		0.129
2,2,4 Trimethylpentane	0.011	0.006		0.070
Other C7's	0.039	0.017		0.216
n-Heptane	0.054	0.025		0.302
Methylcyclohexane	0.074	0.030		0.406
Toluene	0.025	0.009		0.129
Other C8's	0.072	0.034		0.443
n-Octane	0.017	0.009		0.109
Ethylbenzene	0.001	0.000		0.006
M & P Xylenes	0.010	0.004		0.059
O-Xylene	0.002	0.001		0.012
Other C9's	0.020	0.010		0.141
n-Nonane	0.004	0.002		0.029
Other C10's	0.001	0.001		0.008
n-Decane	0.001	0.001		0.008
Undecanes (11)	<u>0.000</u>	<u>0.000</u>		<u>0.000</u>
Totals	100.000	1.272		100.000
Computed Real Characte				
		0.619	(Air=1)	
		0.9976		
0		17.90		
Gross Heating Value				
		1072	BTU/CF	
Saturated Basis		1054	BTU/CF	

08/28/2024

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

- For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389
- Sample: Cowboy CDP V-6858 Spot Gas Sample @ Ounces psig & 145 °F

Date Sampled: 08/21/2024

SULFUR SPECIATION ANALYSIS - ASTM D5504

Compound	PPMW of Compounds
Hydrogen Sulfide	<0.1
COS	<0.1
Methyl Mercaptan	<0.1
Ethyl Mercaptan	2.5
Dimethyl Sulfide	2.0
Carbon Disulfide	<0.1
Isopropyl Mercaptan	<0.1
tert-Butyl Mercaptan	3.0
n-Propyl Mercaptan	<0.1
Methylethyl Sulfide	3.4
Thiophene	1.5
sec-Butyl Mercaptan	2.1
Isobutyl Mercaptan	<0.1
Diethyl Sulfide	<0.1
n-Butyl Mercaptan	<0.1
Dimethyl Disulfide	<0.1
Diethyl Disulfide	<0.1

Sampled By:	(16) RE
Analyst:	JG
Processor:	JG
Cylinder ID:	ST-5954

Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

Job Number: 243077

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Cowboy CDP

Separator V-6859 Spot Gas Sample @ <1 psig & 110°F

Date Sampled: 08/21/2024

Job Number: 243077.081

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

COMPONENT	MOL%	GPM
Oxygen	0.011	
Nitrogen	1.130	
Carbon Dioxide	0.210	
Methane	96.702	
Ethane	1.365	0.373
Propane	0.092	0.026
Isobutane	0.019	0.006
n-Butane	0.027	0.009
2-2 Dimethylpropane	0.008	0.003
Isopentane	0.024	0.009
n-Pentane	0.025	0.009
Hexanes	0.043	0.018
Heptanes Plus	0.344	<u>0.147</u>
Totals	100.000	0.600

Computed Real Characteristics Of Heptanes Plus:

Specific Gravity	3.511	(Air=1)
Molecular Weight	101.46	
Gross Heating Value	5310	BTU/CF

Computed Real Characteristics Of Total Sample:

Specific Gravit	у	0.582	(Air=1)
Compressibility	/ (Z)	0.9978	
Molecular Wei	ght	16.83	
Gross Heating			
Dry Basis		1052	BTU/CF
Saturated Ba	asis	1035	BTU/CF

Remark: Hydrogen Sulfide analysis (ASTM D-5504) yielded <0.1 ppm wt. Remark: Total Sulfur analysis (ASTM D-6667) yielded 2.4 ppm wt.

Base Conditions: 15.025 PSI & 60 Deg F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (16) R.Elizondo Analyst: RG Processor: RG Cylinder ID: T-6155

Conan Pierce 361-661-7015

TOTAL REPORT				
COMPONENT	MOL %	GPM		WT %
Oxygen	0.011			0.021
Nitrogen	1.130			1.881
Carbon Dioxide	0.210			0.549
Methane	96.702			92.170
Ethane	1.365	0.373		2.439
Propane	0.092	0.026		0.241
Isobutane	0.019	0.006		0.066
n-Butane	0.027	0.009		0.093
2,2 Dimethylpropane	0.008	0.003		0.034
Isopentane	0.024	0.009		0.103
n-Pentane	0.025	0.009		0.107
2,2 Dimethylbutane	0.001	0.000		0.005
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.002	0.001		0.010
2 Methylpentane	0.010	0.004		0.051
3 Methylpentane	0.007	0.003		0.036
n-Hexane	0.023	0.010		0.118
Methylcyclopentane	0.013	0.005		0.065
Benzene	0.016	0.005		0.074
Cyclohexane	0.028	0.010		0.140
2-Methylhexane	0.008	0.004		0.048
3-Methylhexane	0.010	0.005		0.060
2,2,4 Trimethylpentane	0.006	0.003		0.041
Other C7's	0.019	0.008		0.112
n-Heptane	0.025	0.012		0.149
Methylcyclohexane	0.047	0.019		0.274
Toluene	0.048	0.016		0.263
Other C8's	0.055	0.026		0.360
n-Octane	0.014	0.007		0.095
Ethylbenzene M & P Xylenes	0.002 0.016	0.001 0.006		0.013 0.101
O-Xylene	0.003	0.008		0.019
Other C9's	0.023	0.001		0.019
n-Nonane	0.005	0.012		0.038
Other C10's	0.003	0.003		0.034
n-Decane	0.004	0.002		0.034
Undecanes (11)	0.000	0.000		0.000
Totals	100.000	0.600		100.000
Computed Real Charact	eristics of Total Sample			
		0.582	(Air=1)	
Compressibility (Z)		0.9978		
Molecular Weight		16.83		
Gross Heating Value				
		1052	BTU/CF	
Saturated Basis		1035	BTU/CF	

08/28/2024

FESCO, Ltd. 1100 Fesco Ave. - Alice, Texas 78332

- For:XTO Energy, Inc.22777 Springswoods Village Pkwy., W4.6B.345Spring, Texas 77389
- Sample: Cowboy CDP V-6859 Spot Gas Sample @ Ounces psig & 110 °F

Date Sampled: 08/21/2024

SULFUR SPECIATION ANALYSIS - ASTM D5504

Compound	PPMW of Compounds
Hydrogen Sulfide	<0.1
COS	<0.1
Methyl Mercaptan	<0.1
Ethyl Mercaptan	2.3
Dimethyl Sulfide	<0.1
Carbon Disulfide	<0.1
Isopropyl Mercaptan	<0.1
tert-Butyl Mercaptan	<0.1
n-Propyl Mercaptan	<0.1
Methylethyl Sulfide	<0.1
Thiophene	<0.1
sec-Butyl Mercaptan	<0.1
Isobutyl Mercaptan	<0.1
Diethyl Sulfide	<0.1
n-Butyl Mercaptan	<0.1
Dimethyl Disulfide	<0.1
Diethyl Disulfide	<0.1

Sampled By:	(16) RE
Analyst:	JG
Processor:	JG
Cylinder ID:	ST-5806

Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

Job Number: 243077

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Cowboy CDP

Atmospheric Hydrocarbon Liquid Sampled from Slop Tank Stream from GB

Date Sampled: 08/21/2024

Job Number: 243077.022

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.000	0.000	0.000
Carbon Dioxide	0.000	0.000	0.000
Methane	0.000	0.000	0.000
Ethane	0.080	0.036	0.017
Propane	1.390	0.643	0.421
Isobutane	1.370	0.753	0.547
n-Butane	5.823	3.083	2.326
2,2 Dimethylpropane	0.093	0.060	0.046
Isopentane	4.900	3.010	2.430
n-Pentane	7.335	4.466	3.637
2,2 Dimethylbutane	0.150	0.105	0.089
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.641	0.441	0.380
2 Methylpentane	3.526	2.458	2.088
3 Methylpentane	1.861	1.276	1.102
n-Hexane	5.398	3.728	3.197
Heptanes Plus	<u>67.433</u>	<u>79.941</u>	<u>83.720</u>
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:

Specific Gravity	0.8110	(Water=1)
°API Gravity	42.98	@ 60°F
Molecular Weight	180.6	
Vapor Volume	13.89	CF/Gal
Weight	6.76	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.7744	(Water=1)
°API Gravity	51.22	@ 60°F
Molecular Weight	145.5	
Vapor Volume	16.47	CF/Gal
Weight	6.45	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

Certified: FESCO, Ltd. - Alice, Texas

Sampled By: (16) R. Elizondo Analyst: JG Processor: ANBdjv Cylinder ID: Can

Conan Pierce 361-661-7015

FESCO, Ltd.

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.000	0.000	0.000
Nitrogen	0.000	0.000	0.000
Methane	0.000	0.000	0.000
Ethane	0.080	0.036	0.017
Propane	1.390	0.643	0.421
Isobutane	1.370	0.753	0.547
n-Butane	5.916	3.143	2.372
Isopentane	4.900	3.010	2.430
n-Pentane	7.335	4.466	3.637
Other C-6's	6.178	4.280	3.659
Heptanes	11.280	7.774	7.232
Octanes	11.826	9.081	8.666
Nonanes	5.367	4.889	4.676
Decanes Plus	34.961	55.645	60.392
Benzene	0.446	0.210	0.239
Toluene	1.158	0.651	0.733
E-Benzene	0.259	0.168	0.189
Xylenes	1.527	0.991	1.114
n-Hexane	5.398	3.728	3.197
2,2,4 Trimethylpentane	<u>0.610</u>	<u>0.533</u>	<u>0.479</u>
Totals:	100.000	100.000	100.000
Characteristics of Total Sample:			
Specific Gravity		0.7744	(Water=1)
°API Gravity		51.22	@ 60°F
Molecular Weight		145.5	
Vapor Volume		16.47	CF/Gal
Weight		6.45	Lbs/Gal

Characteristics of Decanes (C10) Plus:

Specific Gravity	0.8405	(Water=1)
Molecular Weight	251.3	

Characteristics of Atmospheric Sample:

°API Gravity	51.22	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	8.70	psi

QUALITY CONTROL CHECK			
	Sampling		
	Conditions	Test S	amples
Cylinder Number			
Pressure, PSIG			
Skin Temperature, °F			

* Sample used for analysis

FESCO, Ltd.

TOTAL EXTENDED REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.000	0.000	0.000
Carbon Dioxide	0.000	0.000	0.000
Methane	0.000	0.000	0.000
Ethane	0.080	0.036	0.017
Propane	1.390	0.643	0.421
Isobutane	1.370	0.753	0.547
n-Butane	5.823	3.083	2.326
2,2 Dimethylpropane	0.093	0.060	0.046
Isopentane	4.900	3.010	2.430
n-Pentane	7.335	4.466	3.637
2,2 Dimethylbutane	0.150	0.105	0.089
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.641	0.441	0.380
2 Methylpentane	3.526	2.458	2.088
3 Methylpentane	1.861	1.276	1.102
n-Hexane	5.398	3.728	3.197
Methylcyclopentane	1.930	1.147	1.116
Benzene	0.446	0.210	0.239
Cyclohexane	2.835	1.620	1.640
2-Methylhexane	1.074	0.838	0.740
3-Methylhexane	1.091	0.842	0.751
2,2,4 Trimethylpentane	0.610	0.533	0.479
Other C-7's	1.575	1.177	1.074
n-Heptane	2.774	2.150	1.910
Methylcyclohexane	4.191	2.830	2.828
Toluene	1.158	0.651	0.733
Other C-8's	5.658	4.551	4.286
n-Octane	1.976	1.700	1.551
E-Benzene	0.259	0.168	0.189
M & P Xylenes	1.231	0.802	0.898
O-Xylene	0.296	0.189	0.216
Other C-9's	3.926	3.527	3.406
n-Nonane	1.441	1.361	1.270
Other C-10's	4.046	3.995	3.928
n-decane	0.966	0.996	0.945
Undecanes(11)	3.985	4.036	4.026
Dodecanes(12)	2.955	3.234	3.270
Tridecanes(13)	2.901	3.403	3.489
Tetradecanes(14) Pentadecanes(15)	2.384	2.996	3.113
. ,	2.083 1.621	2.804 2.332	2.949 2.474
Hexadecanes(16) Heptadecanes(17)	1.439	2.332	2.345
Octadecanes(18)	1.352	2.190	2.345
Nonadecanes(19)			
()	1.232	2.056	2.228
Eicosanes(20)	0.984	1.707	1.860
Heneicosanes(21)	0.839	1.530	1.677
Docosanes(22)	0.744	1.416	1.560
Tricosanes(23)	0.662	1.306	1.448
Tetracosanes(24)	0.584	1.193	1.328
Pentacosanes(25)	0.536	1.137	1.271
Hexacosanes(26)	0.488	1.072	1.204
Heptacosanes(27)	0.463	1.055	1.191
Octacosanes(28)	0.419	0.987	1.118
Nonacosanes(29)	0.354	0.860	0.978
Triacontanes(30)	0.328	0.822	0.937
Hentriacontanes Plus(31+)	<u>3.594</u>	<u>12.353</u>	<u>14.722</u>
Total	100.000	100.000	100.000

Page 3 of 3

FESCO, Ltd. 1100 FESCO Avenue - Alice, Texas 78332

For: XTO Energy, Inc. 22777 Springswoods Village Pkwy., W4.6B.345 Spring, Texas 77389

Sample: Cowboy CDP

North Header Hydrocarbon Liquid Sampled @ 10 psig & 74 °F

Date Sampled: 09/13/2024

Job Number: 243077.062

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2186-M

COMPONENT	MOL %	LIQ VOL %	WT %
Nitrogen	0.039	0.007	0.007
Carbon Dioxide	0.000	0.000	0.000
Methane	0.025	0.007	0.003
Ethane	0.124	0.054	0.024
Propane	1.360	0.610	0.392
Isobutane	0.977	0.521	0.371
n-Butane	3.760	1.930	1.428
2,2 Dimethylpropane	0.037	0.023	0.017
Isopentane	2.753	1.639	1.298
n-Pentane	4.151	2.449	1.957
2,2 Dimethylbutane	0.109	0.074	0.061
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.317	0.211	0.178
2 Methylpentane	2.412	1.630	1.359
3 Methylpentane	1.257	0.835	0.708
n-Hexane	3.768	2.522	2.122
Heptanes Plus	<u>78.910</u>	<u>87.487</u>	<u>90.072</u>
Totals:	100.000	100.000	100.000

Characteristics of Heptanes Plus:

Specific Gravity	0.8126	(Water=1)
°API Gravity	42.64	@ 60°F
Molecular Weight	174.6	
Vapor Volume	14.40	CF/Gal
Weight	6.77	Lbs/Gal

Characteristics of Total Sample:

Specific Gravity	0.7893	(Water=1)
°API Gravity	47.78	@ 60°F
Molecular Weight	153.0	
Vapor Volume	15.96	CF/Gal
Weight	6.58	Lbs/Gal

Base Conditions: 15.025 PSI & 60 °F

FESCO, Ltd. - Alice, Texas Certified:

Sampled By: (16) R. Elizondo Analyst: JG Processor: ANB Cylinder ID: PL-35022

Conan Pierce 361-661-7015

FESCO, Ltd.

TANKS DATA INPUT REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Carbon Dioxide	0.000	0.000	0.000
Nitrogen	0.039	0.007	0.007
Methane	0.025	0.007	0.003
Ethane	0.124	0.054	0.024
Propane	1.360	0.610	0.392
Isobutane	0.977	0.521	0.371
n-Butane	3.797	1.953	1.446
Isopentane	2.753	1.639	1.298
n-Pentane	4.151	2.449	1.957
Other C-6's	4.095	2.751	2.307
Heptanes	10.253	6.938	6.309
Octanes	13.930	10.358	9.745
Nonanes	7.073	6.185	5.861
Decanes Plus	43.066	61.159	65.125
Benzene	0.347	0.158	0.177
Toluene	1.300	0.709	0.783
E-Benzene	0.368	0.231	0.255
Xylenes	1.971	1.240	1.368
n-Hexane	3.768	2.522	2.122
2,2,4 Trimethylpentane	0.600	<u>0.508</u>	0.448
Totals:	100.000	100.000	100.000
Characteristics of Total Sample:	:		
Specific Gravity		0.7893	(Water=1)
°API Gravity		47.78	@ 60°F
Molecular Weight		153.0	

All I Glavity	47.70	@ 00 I	
Molecular Weight	153.0		
Vapor Volume	15.96	CF/Gal	
Weight	6.58	Lbs/Gal	
Characteristics of Decanes (C10) Plus:			

Specific Gravity	0.8404 (Water=1)
Molecular Weight	231.4

Characteristics of Atmospheric Sample:

°API Gravity	48.31	@ 60°F
Reid Vapor Pressure Equivalent (D-6377)	6.71	psi

QUALITY CONTROL CHECK			
	Sampling		
	Conditions	Test S	amples
Cylinder Number			
Pressure, PSIG			
Skin Temperature, °F			

* Sample used for analysis

FESCO, Ltd.

TOTAL EXTENDED REPORT - GPA 2186-M

COMPONENT	Mol %	LiqVol %	Wt %
Nitrogen	0.039	0.007	0.007
Carbon Dioxide	0.000	0.000	0.000
Methane	0.025	0.007	0.003
Ethane	0.124	0.054	0.024
Propane	1.360	0.610	0.392
Isobutane	0.977	0.521	0.371
n-Butane	3.760	1.930	1.428
2,2 Dimethylpropane	0.037	0.023	0.017
Isopentane	2.753	1.639	1.298
n-Pentane	4.151	2.449	1.957
2,2 Dimethylbutane	0.109	0.074	0.061
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.317	0.211	0.178
2 Methylpentane	2.412	1.630	1.359
3 Methylpentane	1.257	0.835	0.708
n-Hexane	3.768	2.522	2.122
Methylcyclopentane	1.431	0.824	0.787
Benzene	0.347	0.158	0.177
Cyclohexane	2.359	1.307	1.298
2-Methylhexane	1.147	0.868	0.751
3-Methylhexane	1.051	0.785	0.688
2,2,4 Trimethylpentane	0.600 1.344	0.508	0.448
Other C-7's n-Heptane	2.922	0.960 2.194	0.871
Methylcyclohexane	4.520	2.958	1.913 2.901
Toluene	1.300	0.709	0.783
Other C-8's	6.902	5.308	4.972
n-Octane	2.509	2.092	1.873
E-Benzene	0.368	0.231	0.255
M & P Xylenes	1.585	1.001	1.100
O-Xylene	0.386	0.239	0.268
Other C-9's	5.159	4.431	4.256
n-Nonane	1.915	1.754	1.605
Other C-10's	5.387	5.085	4.974
n-decane	1.271	1.270	1.182
Undecanes(11)	5.270	5.104	5.063
Dodecanes(12)	3.833	4.010	4.033
Tridecanes(13)	3.760	4.218	4.301
Tetradecanes(14)	3.042	3.656	3.778
Pentadecanes(15)	2.619	3.371	3.526
Hexadecanes(16)	2.018	2.775	2.928
Heptadecanes(17)	1.776	2.583	2.751
Octadecanes(18)	1.648	2.525	2.704
Nonadecanes(19)	1.448	2.311	2.490
Eicosanes(20)	1.148	1.904	2.064
Heneicosanes(21)	1.001	1.746	1.903
Docosanes(22)	0.887	1.612	1.768
Tricosanes(23)	0.781	1.472	1.623
Tetracosanes(24)	0.681	1.329	1.473
Pentacosanes(25)	0.613	1.243	1.383
Hexacosanes(26)	0.557	1.169	1.307
Heptacosanes(27)	0.504	1.097	1.232
Octacosanes(28) Nonacosanes(29)	0.437 0.390	0.984 0.906	1.109 1.024
Triacontanes(30)	0.340	0.908	0.924
Hentriacontanes Plus(31+)	<u>3.656</u>	<u>9.974</u>	<u>11.589</u>
Total	100.000	100.000	100.000

Page 3 of 3

For: XTO Energy Inc. 6401 N. Holiday Hill Road Midland, Texas 79707

Sample: Cowboy CDP

Oil Overhead Compressor Spot Gas Sampled @ 300 psig & 100 °F

Date Sampled: 02/04/2022

Job Number: 221249.001

COMPONENT Hydrogen Sulfide* Nitrogen	MOL% < 0.001 0.112		GPM
Carbon Dioxide	0.161		
Methane	13.738		
Ethane	39.708		10.976
Propane	34.254		9.754
Isobutane	2.022		0.684
n-Butane	4.359		1.420
2-2 Dimethylpropane	0.015		0.006
Isopentane	1.187		0.449
n-Pentane	1.645		0.616
Hexanes	1.620		0.690
Heptanes Plus	<u>1.179</u>		<u>0.488</u>
Totals	100.000		25.083
Computed Real Character	istics Of Hep	tanes Plus	:
Specific Gravity			(Air=1)
Molecular Weight		95.29	
Gross Heating Value		5182	BTU/CF
Computed Real Character	istics Of Tota	I Sample:	
Specific Gravity			(Air=1)
Compressibility (Z)			(<i>'</i>
Molecular Weight			
Gross Heating Value			
Dry Basis		2240.36	BTU/CF
Saturated Basis			

CHROMATOGRAPH EXTENDED ANALYSIS - GPA 2286

*Hydrogen Sulfide tested on location by: Stain Tube Method (GPA 2377) Results: <0.013 Gr/100 CF, <0.2 PPMV or <0.001 Mol %

Base Conditions: 15.025 PSI & 60 Deg F

Sampled By: (24) D. Morales Analyst: RG Processor: AS Cylinder ID: T-5778 Certified: FESCO, Ltd. - Alice, Texas

Conan Pierce 361-661-7015

COMPONENT	MOL %	GPM		WT %
Hydrogen Sulfide*	< 0.001			< 0.001
Nitrogen	0.112			0.083
Carbon Dioxide	0.161			0.188
Methane	13.738			5.855
Ethane	39.708	10.976		31.727
Propane	34.254	9.754		40.137
Isobutane	2.022	0.684		3.123
n-Butane	4.359	1.420		6.732
2,2 Dimethylpropane	0.015	0.006		0.029
Isopentane	1.187	0.449		2.276
n-Pentane	1.645	0.616		3.154
2,2 Dimethylbutane	0.026	0.011		0.060
Cyclopentane	0.000	0.000		0.000
2,3 Dimethylbutane	0.148	0.063		0.339
2,3 Dimethylpentane	0.531	0.003		1.216
	0.271	0.220		0.621
3 Methylpentane				
n-Hexane	0.644	0.274		1.475
Methylcyclopentane	0.236	0.086		0.528
Benzene	0.066	0.019		0.137
Cyclohexane	0.260	0.091		0.581
2-Methylhexane	0.048	0.023		0.128
3-Methylhexane	0.049	0.023		0.130
2,2,4 Trimethylpentane	0.000	0.000		0.000
Other C7's	0.130	0.058		0.343
n-Heptane	0.086	0.041		0.229
Methylcyclohexane	0.123	0.051		0.321
Toluene	0.028	0.010		0.069
Other C8's	0.058	0.028		0.170
n-Octane	0.010	0.005		0.030
Ethylbenzene	0.000	0.000		0.000
M & P Xylenes	0.003	0.001		0.008
O-Xylene	0.001	0.000		0.003
Other C9's	0.008	0.004		0.027
n-Nonane	0.001	0.001		0.003
Other C10's	0.045	0.027		0.169
n-Decane	0.008	0.005		0.030
Undecanes (11)	<u>0.019</u>	<u>0.013</u>		0.079
Totals	100.000	25.083		100.000
Computed Real Charact	eristics of Total Sample			
	·	1.3169	(Air=1)	
		0.9866	、 ,	
Molecular Weight		37.63		
Gross Heating Value				
		2240.36	BTU/CF	
		2202.03	BTU/CF	

Sample: Cowboy CDP

Oil Overhead Compressor Spot Gas Sampled @ 300 psig & 100 °F

Date Sampled: 02/04/2022

Job Number: 221249.001

GLYCALC FORMAT

COMPONENT	MOL%	GPM	W t %
Carbon Dioxide	0.161		0.188
Hydrogen Sulfide	< 0.001		< 0.001
Nitrogen	0.112		0.083
Methane	13.738		5.855
Ethane	39.708	10.976	31.727
Propane	34.254	9.754	40.137
Isobutane	2.022	0.684	3.123
n-Butane	4.374	1.426	6.761
Isopentane	1.187	0.449	2.276
n-Pentane	1.645	0.616	3.154
Cyclopentane	0.000	0.000	0.000
n-Hexane	0.644	0.274	1.475
Cyclohexane	0.260	0.091	0.581
Other C6's	0.976	0.416	2.236
Heptanes	0.549	0.232	1.358
Methylcyclohexane	0.123	0.051	0.321
2,2,4 Trimethylpentane	0.000	0.000	0.000
Benzene	0.066	0.019	0.137
Toluene	0.028	0.010	0.069
Ethylbenzene	0.000	0.000	0.000
Xylenes	0.004	0.002	0.011
Octanes Plus	<u>0.149</u>	<u>0.083</u>	<u>0.508</u>
Totals	100.000	25.083	100.000

Real Characteristics Of Octanes Plus:

Specific Gravity	4.495	(Air=1)
Molecular Weight	128.45	
Gross Heating Value	6850	BTU/CF

Real Characteristics Of Total Sample:

Specific Gravity	1.3169	(Air=1)
Compressibility (Z)	0.9866	
Molecular Weight	37.63	
Gross Heating Value		
Dry Basis	2240.36	BTU/CF
Saturated Basis	2202.03	BTU/CF

PROCESS SIMULATION COMPONENTS - CDP Flare 1, LPF V-68

	HYSYS PROCESS STREAM NAME:	V-6808
	HYSYS COMPONENTS	
	Component	Mole Frac
	Oxygen	0.0000
	H2S	0.0000
Nitrogen	Nitrogen	0.0000
CO2 Methane	CO2 Methane	0.0012 0.0603
Ethane	Ethane	0.0003
Propane	Propane	0.2024
i-Butane	i-Butane	0.2618
n-Butane	n-Butane	0.0082
22-Mpropane	22-Mpropane	0.0015
i-Pentane	i-Pentane	0.0518
n-Pentane	n-Pentane	0.0579
22-Mbutane	22-Mbutane	0.0009
Cyclopentane	Cyclopentane	0.0003
23-Mbutane	23-Mbutane	0.0024
2-Mpentane	2-Mpentane	0.0131
3-Mpentane	3-Mpentane	0.0069
	n-Hexane	
n-Hexane		0.0175
Hexanes*	Hexanes*	0.0028
Mcyclopentan	Mcyclopentan	0.0078
Benzene	Benzene	0.0033
Cyclohexane	Cyclohexane	0.0106
2-Mhexane	2-Mhexane	0.0036
3-Mhexane	3-Mhexane	0.0032
224-Mpentane	224-Mpentane	0.0004
n-Heptane	n-Heptane	0.0066
Heptanes*	Heptanes*	0.0052
Mcyclohexane	Mcyclohexane	0.0113
Toluene	Toluene	0.0033
n-Octane	n-Octane Octanes*	0.0021
Octanes* E-Benzene	E-Benzene	0.0089 0.0004
с-вепzепе m-Xylene	m-Xylene	0.0004
	o-Xylene	
o-Xylene		0.0005
p-Xylene	p-Xylene	0.0006
Nonanes*	Nonanes*	0.0030
n-Nonane Decanes*	Decanes* Undecanes_3*	0.0012
n-Decane	Dodecanes 3*	0.0004
Undecanes*	Triadecanes_3*	0.0000
Dodecanes*	Tetradecanes_3*	0.0000
Triadecanes*	Pentadecanes_3*	0.0000
Tetradecanes* Pentadecanes*	Hexadecanes_3* Heptadecanes 3*	0.0000 0.0000
Hexadecanes*	Octadecanes_3*	0.0000
Heptadecanes*	Nonadecanes_3*	0.0000
Octadecanes*	eicosanes_3*	0.0000
Nonadecanes* eicosanes*	Heneicosanes_3* Dodocosanes_3*	0.0000 0.0000
Heneicosanes*	Triacosanes_3*	0.0000
Dodocosanes*	Tetracosanes_3*	0.0000
Triacosanes*	Pentacosanes_3*	0.0000
Tetracosanes* Pentacosanes*	Hexacosanes_3* Heptacosanes 3*	0.0000 0.0000
Hexacosanes*	Octacosanes_3*	0.0000
Heptacosanes*	Nonacosanes_3*	0.0000
Octacosanes*	Triacontanes*	0.0000
Nonacosanes* Triacontanes*	C31+_2* H2O	0.0000 0.0000
C31+*	NC30*	0.0000
	n-Nonane	0.0002
	n-Decane NC31-35*	0.0001
	TexaTherm	0.0000 0.0000
	NC31-35_1*	0.0000
	со	0.0000

	CDP Flare 1 LPF V-6808
PROMAX CC	MPONENTS
Component	Mole Frac
Water	0.0000
Hydrogen Sulfide	0.0000
Nitrogen	0.0000
Carbon Dioxide	0.0012
Methane	0.0603
Ethane	0.2024
Propane	0.2818
Iso-butane	0.0682
N-butane	0.1579
Iso-pentane	0.0518
N-pentane	0.0579
Cyclopentanes	0.0001
Other Hexanes	0.0276
n-Hexane	0.0175
Methylcyclopentane	0.0078
Benzene	0.0033
Cyclohexane	0.0106
2,2,4	0.0004
Trimethylpentane	0.0001
Other Heptanes	0.0120
Methylcyclohexane	0.0113
n-Heptane	0.0066
Toluene	0.0033
Octanes	0.0110
Ethylbenzene	0.0004
M&P-Xylene	0.0016
Nonanes	0.0032
Decanes	0.0013
Undecanes	0.0005
ondecanes	0.0000
Total	1.0000
Characteristics o Specific Gravity	f Undecanes Plus 0.8533
Molecular Weight	265.400
(lb/lbmol)	200.400

PROCESS SIMULATION COMPONENTS - Cryo Flare 2, LPF V-6858

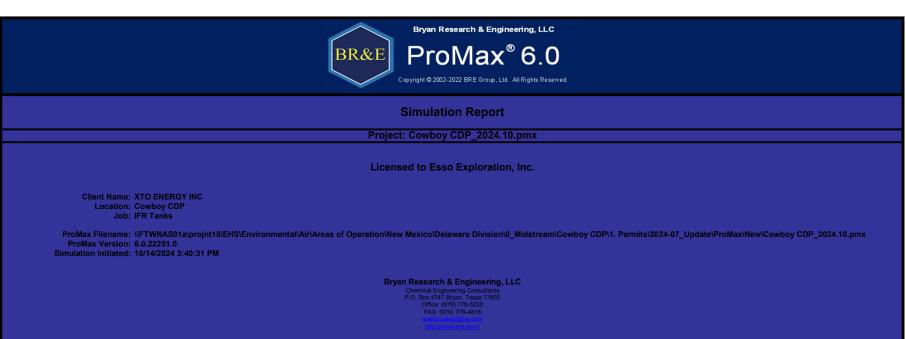
н		
	HYSYS PROCESS STREAM NAME:	V-6859
	HYSYS COMPONENTS	
	Component	Mole Frac
	Oxygen	0.0000
	H2S	0.0000
Nitrogen	Nitrogen	0.0085
CO2	CO2 Methane	0.0012 0.7395
Methane		
Ethane Propane	Ethane	0.1301
i-Butane	Propane i-Butane	0.0670
	n-Butane	0.0102 0.0233
n-Butane	22-Mpropane	0.0233
22-Mpropane i-Pentane	i-Pentane	0.0058
n-Pentane	n-Pentane	0.0067
22-Mbutane	22-Mbutane	0.0001
Cyclopentane	Cyclopentane	0.0001
23-Mbutane	23-Mbutane	0.0000
2-Mpentane	2-Mpentane	0.0001
3-Mpentane	3-Mpentane	0.0003
o mpontane		0.0004
n-Hexane	n-Hexane	0.0010
Hexanes*	Hexanes*	0.0010
Mcyclopentan	Mcyclopentan	0.0007
Benzene	Benzene	0.0001
Cyclohexane	Cyclohexane	0.0008
2-Mhexane	2-Mhexane	0.0002
3-Mhexane	3-Mhexane	0.0001
224-Mpentane	224-Mpentane	0.0000
n-Heptane	n-Heptane	0.0003
Heptanes*	Heptanes*	0.0006
Mcyclohexane	Mcyclohexane Toluene	0.0006
Toluene	n-Octane	0.0001
n-Octane Octanes*	Octanes*	0.0000
Octanes [*] E-Benzene	E-Benzene	0.0004
m-Xylene	m-Xylene	0.0000
o-Xylene	o-Xylene	0.0000
p-Xylene	p-Xylene	0.0000
Nonanes*	Nonanes*	0.0001
n-Nonane	Decanes*	0.0000
Decanes*	Undecanes_3*	0.0000
n-Decane Undecanes*	Dodecanes_3* Triadecanes 3*	0.0000 0.0000
Dodecanes*	Tetradecanes_3*	0.0000
Triadecanes*	Pentadecanes_3*	0.0000
Tetradecanes*	Hexadecanes_3*	0.0000
Pentadecanes*	Heptadecanes_3* Octadecanes_3*	0.0000 0.0000
Hexadecanes* Heptadecanes*	Nonadecanes 3*	0.0000
Octadecanes*	eicosanes_3*	0.0000
Nonadecanes*	Heneicosanes_3*	0.0000
eicosanes*	Dodocosanes_3* Triacosanes_3*	0.0000
Heneicosanes* Dodocosanes*	Triacosanes_3* Tetracosanes 3*	0.0000 0.0000
Triacosanes*	Pentacosanes_3*	0.0000
Tetracosanes*	Hexacosanes_3*	0.0000
Pentacosanes*	Heptacosanes_3*	0.0000
Hexacosanes* Heptacosanes*	Octacosanes_3* Nonacosanes 3*	0.0000 0.0000
Octacosanes*	Triacontanes*	0.0000
Nonacosanes*	C31+_2*	0.0000
Triacontanes*	H2O	0.0000
C31+*	NC30* n-Nonane	0.0000
	n-Decane	0.0000
	NC31-35*	0.0000
	TexaTherm	0.0000
	NC31-35_1*	0 0000
	NC31-35_1* CO	0.0000 0.0000

PROMAX PROCESS STREAM NAME:	Cryo Flare 2 HPF V-6859
PROMAX CO	MPONENTS
Component	Mole Frac
Water	0.0000
Hydrogen Sulfide	0.0000
Nitrogen	0.0085
Carbon Dioxide	0.0012
Methane	0.7395
Ethane	0.1301
Propane	0.0670
Iso-butane	0.0102
N-butane	0.0233
Iso-pentane	0.0058
N-pentane	0.0067
Cyclopentanes	0.0000
Other Hexanes	0.0027
n-Hexane	0.0010
Methylcyclopentane	0.0007
Benzene	0.0001
Cyclohexane	0.0008
2,2,4	0.0000
Trimethylpentane	
Other Heptanes	0.0009
Methylcyclohexane	0.0006
n-Heptane	0.0003
Toluene	0.0001
Octanes	0.0004
Ethylbenzene	0.0000
M&P-Xylene	0.0000
Nonanes	0.0001
Decanes	0.0000
Undecanes	0.0000
Total	1.000
Characteristics of	
Specific Gravity Molecular Weight	0.8533 265.400
(lb/lbmol)	205.400

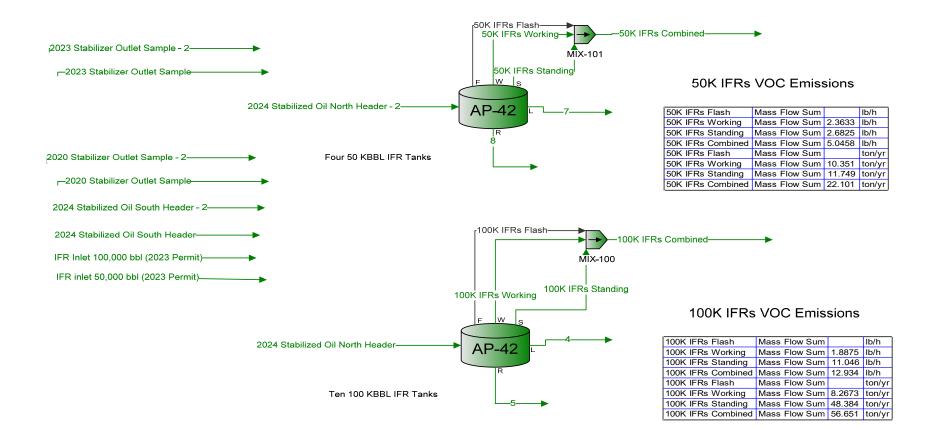
PROCESS SIMULATION COMPONENTS - INLET GAS

HYSYS PROCESS STREAM NAME:	Gas Int
HYSYS COMPO	DNENTS
Component	Mole Frac
Oxygen	0.00000
H2S	0.00000
Nitrogen	0.01480
CO2	0.00112
Methane	0.70205
Ethane	0.15319
Propane	0.08529
i-Butane	0.00984
n-Butane	0.02370
22-Mpropane	0.00011
i-Pentane	0.00377
n-Pentane	0.00378
22-Mbutane	0.00002
Cyclopentane	0.00000
23-Mbutane	0.00012
2-Mpentane	0.00042
3-Mpentane n-Hexane	0.00021 0.00046
n-Hexane Hexanes*	0.00046
nexalles	0.00000
Mcyclopentan	0.00027
Benzene	0.00006
Cyclohexane	0.00028
2-Mhexane	0.00004
3-Mhexane	0.00003
224-Mpentane n-Heptane	0.00000 0.00006
Heptanes*	0.00007
Mcyclohexane	0.00012
Toluene	0.00002
n-Octane Octanes*	0.00000 0.00003
E-Benzene	0.00000
m-Xylene	0.00000
o-Xylene	0.00000
p-Xylene Nonanes*	0.00000 0.00000
Decanes*	0.00000
Undecanes 3*	0.00000
Dodecanes_3*	0.00000
Triadecanes_3*	0.00000
Tetradecanes_3*	0.00000
Pentadecanes_3* Hexadecanes 3*	0.00000
Heptadecanes_3*	0.00000
Octadecanes_3*	0.00000
Nonadecanes_3*	0.00000
eicosanes_3* Heneicosanes 3*	0.00000 0.00000
Dodocosanes 3*	0.00000
Triacosanes_3*	0.00000
Tetracosanes_3*	0.00000
Pentacosanes_3* Hexacosanes 3*	0.00000 0.00000
Heptacosanes 3*	0.00000
Octacosanes_3*	0.00000
Nonacosanes_3*	0.00000
Triacontanes* C31+ 2*	0.00000
H2O	0.00000 0.00015
NC30*	0.00000
n-Nonane	0.00000
n-Decane	0.00000
NC31-35* TexaTherm	0.00000 0.00000
NC31-35 1*	0.00000
co –	0.00000
TOTALS	1.000

PROMAX PROCESS STREAM NAME:	Inlet G	as AMINE
PRO	MAX COMPONEN	rs
Component	Mole Frac	WT%
Hydrogen Sulfide	0.000	0.00
N2	0.015	1.82
Carbon Dioxide	0.001	0.22
Methane	0.702	49.42
Ethane	0.153	20.21
Propane	0.085	16.50
i-Butane	0.010	2.51
n-Butane	0.024	6.04
i-Pentane	0.004	1.23
n-Pentane	0.004	1.20
n-Hexane	0.002	0.83
Water	0.000	0.01
MDEA	0.000	0.00
Piperazine	0.000	0.00
02	0.000	0.00
Total	1.00000	


Specific Gravity	
Molecular Weight	
(lb/lbmol)	
VOC WT%	11.82
HAP WT%	0.826

PROCESS SIMULATION COMPONENTS - INLET GAS


HYSYS PROCESS STREAM NAME:	Gas Inlet
HYSYS COMPC	DNENTS
Component	Mole Frac
Oxygen	0.000
H2S	0.000
Nitrogen	0.016
CO2	0.001
Methane	0.735
Ethane	0.147
Propane	0.072
i-Butane	0.007
n-Butane	0.016
22-Mpropane	0.000
i-Pentane	0.002
n-Pentane	0.002
22-Mbutane	0.000
Cyclopentane	0.000
	0.000
23-Mbutane	0.000
2-Mpentane	0.000
3-Mpentane	0.000
	0.000
n-Hexane	0.000
Hexanes*	0.000
Vicyclopentan	
Benzene	0.000
	0.000
Cyclohexane	0.000
2-Mhexane	0.000
3-Mhexane	0.000
224-Mpentane	0.000
n-Heptane	0.000
Heptanes*	0.000
Vicyclohexane	0.000
Toluene	0.000
n-Octane	0.000
Octanes*	0.000
E-Benzene	0.000
n-Xylene	0.000
o-Xylene	0.000
-	
o-Xylene Nonanes*	0.000
	0.000
Decanes* Jndecanes 3*	0.000
Dodecanes_3*	0.000
Friadecanes 3*	0.000
Fetradecanes_3*	0.000
Pentadecanes_3*	0.000
Hexadecanes_3*	0.000
Heptadecanes_3*	0.000
Octadecanes_3*	0.000
Nonadecanes_3* eicosanes 3*	0.000 0.000
Heneicosanes 3*	0.000
Dodocosanes_3*	0.000
Triacosanes_3*	0.000
Tetracosanes_3*	0.000
Pentacosanes_3*	0.000
Hexacosanes_3*	0.000
Heptacosanes_3* Octacosanes_3*	0.000 0.000
Vonacosanes_3*	0.000
Triacontanes*	0.000
C31+_2*	0.000
H2O	0.000
NC30*	0.000
n-Nonane	0.000
n-Decane NC31-35*	0.000
VC31-35" TexaTherm	0.000 0.000
NC31-35 1*	0.000
CO	0.000
	1.000

PROMAX PROCESS STREAM NAME:		et Gas	
PROMAX COMPONENTS			
Component	Mole Frac	WT%	
Water	0.00015	0.01	
Hydrogen Sulfide	0.00000	0.00	
Nitrogen	0.01592	1.04	
Carbon Dioxide	0.00113	0.23	
Methane	0.73517	55.11	
Ethane	0.14720	20.68	
Propane	0.07216	14.87	
Iso-butane	0.00724	1.97	
N-butane	0.01623	4.41	
Iso-pentane	0.00208	0.70	
N-pentane	0.00192	0.65	
Cyclopentanes	0.00000	0.00	
Other Hexanes	0.00037	0.15	
n-Hexane	0.00016	0.06	
Methylcyclopentane	0.00009	0.04	
Benzene	0.00002	0.01	
Cyclohexane	0.00009	0.04	
2,2,4	0.00000	0.00	
Trimethylpentane			
Other Heptanes	0.00003	0.01	
Methylcyclohexane	0.00003	0.01	
n-Heptane	0.00001	0.00	
Toluene	0.00000	0.00	
Octanes	0.00001	0.01	
Ethylbenzene	0.00000	0.00	
M&P-Xylene	0.00000	0.00	
Nonanes	0.00000	0.00	
Decanes	0.00000	0.00	
Undecanes	0.00000	0.00	
Total	1.000	100.000	

Characteristics of Undecanes Plus		
Specific Gravity	0.8661	
Molecular Weight	262.912	
(lb/lbmol)		
VOC WT%	22.92	
HAP WT%	0.072	

Report Navigator can be activated via the ProMax Navigator Toolbar. An asterisk (*), throughout the report, denotes a user specified value. A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

) 🔽 a!b 🐁 🔘 🕢 🧱 🛃 🏮 🗐 US Eng	sh 🗸 🗸	0			
CDP - Old	Stabilized Oil No	rth Header		A 📑	个
IFR OII Storage	Composition An	alyses Notes			
Process Streams Analy	sis Name	Vapor Pressure 1			Solve
IFR inlet 50,000 bbl (2023 Pe	12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[Solve
	Results	Components			
		components			
	Phase	Deint Tennensteine		Total	05
	DELEVISION STATES	Point Temperature	<u> </u>	169.933 -3.96822	
Arr 50K IFRs Combined		oint Temperature	V V	529.867	
Sok IFRs Flash	The second second second second second second second second second second second second second second second s	oint Pressure		529.007	psig
A→ 50K IFRs Standing		/apor Pressure		11.3523	
SOK IFRs Working	22222300000000000000000000000000000000	apor Pressure		6.26842	
Arr 100K IFRs Combined	20120000000000000000000000000000000000	D6377 VPCRx Temperature		100.04	
Arr 100K IFRs Flash	ASTM	D6377 VPCRx V/L Ratio		4	1.5
A → 100K IFRs Standing	ASTM	D6377 VPCRx Vapor Pressure	V	6.49732	psia
2023 Stabilizer Outlet Sample 2023 Stabilizer Outlet Sample 2024 Stabilized Oil North Hea 2024 Stabilized Oil South Hea	/sis				:
Recoveries Energy Budgets Environments Mixed Species Collection Oils	lo ena	ble property calculation, check calculation, remove the check		v containing the pro	perty. 10

Process Streams	_	50K IFRs Combined	50K IFRs Flash 50K IFRs Standing	50K IFRs Working	100K IFRs Combined	100K IFRs Flash 100K IFRs Standing	100K IFRs Working
	Status:	Solved	Solved Solved	Solved	Solved	Solved Solved	Solved
	rom Block: To Block:	MIX-101	Four 50 KBBL IFR Tanks Four 50 KBBL IFR Tanks MIX-101 MIX-101	MIX-101	MIX-100	Ten 100 KBBL IFR Tanks Ten 100 KBBL IFR Tanks MIX-100 MIX-100	MIX-100
Mole Fraction	TO DIOCK.	%	%	%	%	%	%
Water		0	0	0	0	0	C
Hydrogen Sulfide		0	0		0	0	0
Nitrogen, Atomic		2.01497	2.56546		2.44026	2.56995	0.039
Carbon Dioxide Methane		0 1.74625	0 2.22577	0 0.025	0 2.11669	0 2.22966	0 0.025
Ethane		9.17394	2.22577 11.6951	0.025	11.1216	2.22900	0.025
Propane		24.6931	31.1933		29.6657	31.1944	1.36
Isobutane		6.69870	8.29270		7.91599	8.29075	0.977
Butane		18.1588	22.1599		21.2121	22.1527	3.797
Isopentane Pentane		5.61288 6.60808	6.40961 7.29259	2.753 4.151	6.21833 7.12629	6.40548 7.28698	2.753 4.151
Cyclopentane		0.00008	0		7.12029	7.20090	4.131
i-C6		3.29253	3.06898		3.11850	3.06576	4.095
n-Hexane		2.42562	2.05165	3.768	2.13728	2.04921	3.768
Methylcyclopentane		0	0		0	0	0
Benzene Cyclohexane		0.170583 0	0.121436 0		0.132836	0.121269 0	0.347 0
2,2,4-Trimethylpentane		0.217025	0.110333		0.135268	0.110168	0.6
i-C7		0.2.11.02.0	0		0	0	0
Methylcyclohexane		0	0		0	0	0
n-Heptane		3.61825	1.76989		2.20185	1.76702	10.253
Toluene Octane		0.394122 3.60051	0.141756 0.722843		0.200870 1.39809	0.141507 0.721267	1.3 13.93
Ethylbenzene		0.0911369	0.0140064		0.0321166	0.0139762	0.368
m-Xylene		0.481016	0.0659259		0.163406	0.0657812	1.971
Nonane		1.61813	0.0984747	7.073	0.455649	0.0982573	7.073
Decane		0	0	0	0	0	0
Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil		0	0		0	0	0
Decanes Plus - Inlet Oil		0	0		0	0	0
Decanes Plus - North Header Oil		9.38436	0.000244594		2.20712	0.000243228	
					2.20/12	0.000243220	43.069
Decanes Plus - South Header Oil		0	0	0	0	0	0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil		0	0 0	0 0	0 0	0 0	0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus		0	0	0 0	0	0	0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil		0	0 0	0 0 0	0 0	0 0	0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide		0 0 0 0 0 0 0	0 0 % 0	0 0 % 0 0	0 0 0 % 0 0 0	0 0 0 % 0 0 0	0 0 0 % 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic		0 0 % 0 0.374894	0 0 0 % 0 0 0.67605 0.07605	0 0 % 0 0 0.00353031	0 0 % 0 0 0.585877	0 0 0 % 0 0 0.677470 0 0.677470	0 0 % 0 0.00353031
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Wass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide		0 0 % 0 0.374894 0 0	0 0 % 0 0.676095 0.676095	0 0 % 0 0.00353031 0	0 0 % 0 0.585877 0	0 0 % 0 0.677470	0 0 % 0 0.00353031 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane		0 0 0 0.374894 0 0.372118	0 0 % 0 0.676095 0 0.671629 0	0 0 7 0 0.00353031 0 0.00259193	0 0 0 0 0.585877 0 0.582055	0 0 0 0 0 0.677470 0 0.673147 0 0.667314	0 0 % 0 0.00353031 0 0.00259193
Decanes Plus - South Header Oil Decanes Plus - South Header Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane		0 0 % 0 0.374894 0 0.372118 3.66420	0 0 7 0 0 0 0.676095 0 0 0.671828 6.61656	0 0 0 0 0.00353031 0.00259193 0.0240955	0 0 % 0 0.585877 0 0.585877 0 0.582055 5.73223	0 0 0 0 0 0.677470 0 0.673194 6.633094	0 0 % 0 0.00353031 0 0.00259193 0.0229193 0.0229193
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane		0 0 0 0.374894 0 0.372118	0 0 % 0 0.676095 0 0.671629 0	0 0 0 0 0.00353031 0.00259193 0.0240955	0 0 0 0 0.585877 0 0.582055	0 0 0 0 0 0.677470 0 0.673147 0 0.667314	0 0 % 0 0.00353031 0 0.00259193
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane		0 0 0 0 0.374894 0 0.372118 3.366420 14.4635 5.17174 14.0195	0 0 0 % 0 0.676095 0 0.676095 0 0.671629 6.61656 25.8800 9.06871 24.2335	0 0 0 0 0.00353031 0.0259193 0.0240965 0.387567 0.387567 0.387567 1.42625	0 0 0 0 0.585877 0 0.5852055 5.73223 22.4225 7.88646 21.1330	0 0 0 0 0 0 0.677470 0 0.677470 0 0.673194 6.63002 25.8882 9.06914 2.4.225 2.4.225	0 0 0 0 0 0.0353031 0 0.0259193 0.0259193 0.0259193 0.0240965 0.387567 0.387567 0.387567 0.387566 1.42625
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Butane Isopentane		0 0 0 0.37489 0 0.372118 3.66420 14.4635 5.17174 14.0195 5.37921	0 0 0 0 0 0.676095 0 0 0.671828 6.61656 25.8800 9.06871 24.2335 8.70097	0 0 0 0 0.0035031 0.00259193 0.0240965 0.387667 0.387667 0.366986 1.42625 1.28365	0 0 0 0 0.585877 0 0.58255 5.73223 22.4225 7.88646 21.1330 7.69020	0 0 0 0 0 0.677470 0 0 0.673194 6.63002 25.8882 9.06914 24.2325 8.69783 8.69783	0 0 0 0 0.00353031 0.0259193 0.02259193 0.02240965 0.387567 0.386596 1.42625 1.28365
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane		0 0 0 0.374894 0 0.327118 3.66420 14.4635 5.17174 14.0195 5.37921 6.33298	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.0035031 0.00259193 0.0240965 0.387667 0.387667 0.366986 1.42625 1.28365	0 0 0 0 0.585877 0 0.5852055 5.73223 22.4225 7.88646 21.1330	0 0 0 0 0 0.677470 0 0.673194 6.63002 25.8882 9.06914 24.2325 8.69783 9.98479 9.98479	0 0 0 0 0.00353031 0 0.0259193 0.022949965 0.0225493 0.022949965 0.366996 1.42625 1.28365 1.42625 1.28365
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Butane Isopentane		0 0 0 0.37489 0 0.372118 3.66420 14.4635 5.17174 14.0195 5.37921	0 0 0 0 0 0.676095 0 0 0.671828 6.61656 25.8800 9.06871 24.2335 8.70097	0 0 0 0 0.00353031 0.0259193 0.0240965 0.387567 0.387567 0.366996 1.42625 1.28365 1.28355 0.0	0 0 0 0 0.585877 0 0.582055 5.73223 22.4225 7.88646 21.1330 7.69020 8.81308	0 0 0 0 0 0.677470 0 0 0.673194 6.63002 25.8882 9.06914 24.2325 8.69783 8.69783	0 0 0 0 0 0.00353031 0 0.0250193 0.0250193 0.0250193 0.0250193 0.0250195 0.387567 0.387567 0.387567 0.386966 1.42625 1.28365 1.93550 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane Pentane Cyclopentane i-Gé n-Hexane		0 0 0 0 0.374894 0 0.32118 3.66420 14.4635 5.17174 14.0195 5.37921 6.32298 0 0 3.76892 2.77557	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.00353031 0.0259193 0.0240965 0.387567 0.366996 1.42625 1.28365 1.42625 1.28365 1.32506 0 0 2.28060	0 0 0 0 0.585877 0 0.585255 5.73223 22.4225 7.88646 221.1330 7.69020 8.81308 0 8.81308 0 4.60642 3.15704	0 0 0 0 0 0.677470 0 0.63194 6.63002 25.8882 9.06914 24.2325 8.69783 9.98947 0 9.89479 0 0 4.97223	0 0 0 0 0.00353031 0 0.0259193 0.02294985 0.0259193 0.02294985 0.0387567 0.366986 1.4.2625 1.28365 1.4.2625 1.28365 0 0 2.28060
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isobutane Butane Cyclopentane Cyclopentane -Cé n-Hexane		0 0 0 0 0.374894 0 0.372184 3.66420 14.4635 5.17174 14.0195 5.37921 6.33298 0 0 3.76882 2.77657 0	0 0 0 0 0 0 0 0.676095 0 0 0.671828 6.61656 25.8800 9.06871 24.235 8.70097 9.89962 0 0 4.97605 3.32654 0 0	0 0 0 0 0 0.00353031 0.0240965 0.387567 0.367966 1.42625 1.28365 1.42625 1.28365 1.28365 0.3550 0.022,0849 0 0	0 0 0 0 0.585877 0 0.582055 5.73223 22.4225 7.88646 21.1330 7.89200 8.81308 0 4.60642 3.15704 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0	0 0 0 0 0 0.00353031 0 0.0250193 0.02201965 0.387567 0.387567 0.387567 0.366986 1.42625 1.28365 1.28365 1.28365 2.28060 2.28849 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Bulane Isopentane Pentane Cyclopentane Pic6 n-Hexane Methylcyclopentane Benzene		0 0 0 0 0 0.374894 0 0.374184 3.66420 14.4635 5.17174 14.0195 5.37921 6.33298 0 3.366892 2.77657 0 0.176993	0 0 0 0 0 0 0.676095 0 0 0.671828 6.61656 25.8800 9.06871 24.2335 8.70097 9.89962 0 0.4.97605 3.32654 0 0.178473 0 0.178473	0 0 0 0 0.0353031 0.00259193 0.0240965 0.387667 0.366986 1.42625 1.28365 1.93550 0 2.28060 2.28060 2.09849 0 0.0.175170	0 0 0 0 0.585877 0 0.58255 5.73223 22.4225 7.88646 2.11330 7.69020 8.81308 0 0 4.60642 3.15704 0 0.177855	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0.00353031 0 0.00259193 0.02240965 0.387567 0.387567 0.386986 1.42625 1.28365 1.93550 0 2.20806 2.208049 0 0.0.175170 0 0.0.175170
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane Benzene Benzene Cyclohexane		0 0 0 0 0.374894 0 0.374184 3.66420 14.4635 5.71714 14.0195 5.37921 6.3298 0 3.76892 2.77657 0 0.176993 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.00353031 0 0.0259193 0.0240965 0.387567 0.366996 1.42625 1.28365 1.42625 1.28365 0.360996 0.228060 2.28060 0.2.59849 0 0.0175170 0 0	0 0 0 0 0.585877 0 0.585255 5.73223 22.4225 7.88646 221.1330 7.69020 8.81308 0 4.60642 3.15704 0 0 1.77855 0.177855	0 0 0 0 0 0 0.677470 0 0.673194 6.63002 25.8882 9.06914 24.2325 8.69783 9.989479 0 0 4.97223 3.32353 0 0.178278 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Bulane Isopentane Pentane Cyclopentane Pic6 n-Hexane Methylcyclopentane Benzene		0 0 0 0 0 0.374894 0 0.374184 3.66420 14.4635 5.17174 14.0195 5.37921 6.33298 0 3.366892 2.77657 0 0.176993	0 0 0 0 0 0 0.676095 0 0 0.671828 6.61656 25.8800 9.06871 24.2335 8.70097 9.89962 0 0.4.97605 3.32654 0 0.178473 0 0.178473	0 0 0 0 0.00353031 0 0.0259193 0.0240965 0.387567 0.387567 0.387567 1.42625 1.28365 1.42625 1.28365 1.42625 1.28365 0.037567 0.037567 0.037567 0.037567 0.037567 0.037567 0.037570 0.04242933	0 0 0 0 0.585877 0 0.58255 5.73223 22.4225 7.88646 2.11330 7.69020 8.81308 0 0 4.60642 3.15704 0 0.177855	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane Hentane Cyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane		0 0 0 0 0 0.374894 0 0.374118 3.66420 14.4635 5.37174 14.0195 5.37921 6.32298 0 3.76892 2.77657 0 0 0.176993 0 0 0.329297 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.00353031 0 0.0259193 0.0240965 0.387567 0.366996 1.42625 1.28365 1.39550 0 0 2.28060 2.28060 0.0.175170 0 0 0.175170 0 0 0.0.442933 0 0 0 0.0.442933 0 0 0 0 0.0.000000000000000000000000	0 0 0 0 0.585877 0 0.582055 5.73223 22.4225 7.88646 21.1330 7.69020 8.81308 0 4.60642 3.15704 0 0.264852 0 0.264852 0 0 0.264852 0 0	0 0 0 0 0 0 0.677470 0 0.637144 6.63002 25.8882 9.06914 24.2325 8.99783 9.989479 0.04 4.97223 3.32353 0 0 0.4.97223 3.32553 0 0 0.178278 0 0 0.236843 0 0 0.236843 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Oyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane Cyclohexane Sulfane Servene Servene Servene Servene Cyclohexane Cyclohexane I-Heptane		0 0 0 0 0 0.374894 0 0.372118 3.66420 14.4635 5.17174 14.0195 5.37921 6.33298 0 3.376892 2.277657 0 0.176993 0 0.329297 0 0 0.329297 0 0 0.329297 0 0 0.329297 0 0 0.329297 0 0 0.329297 0 0 0.329297 0 0 0.329297 0 0 0.329297 0 0 0 0.329297 0 0 0 0.329297 0 0 0 0.329295 0 0 0 0.329295 0 0 0 0.3295 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.0035031 0.00259193 0.0240965 0.387667 0.387667 1.42625 1.28365 1.32560 0 2.28060 2.29849 0 0 0.0.175170 0 0.0.175170 0 0.0.442933 0 0.0.442933 0 0.0.442933 0 0.0.0.175170 0 0.0.42933 0 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0 0 0 0 0.585877 0 0.58255 5.73223 22.4225 7.88646 21.1330 7.69020 8.81308 0 4.60642 3.15704 0 0.177855 0 0.264852 0 0.264852 0 0.264852 0 0.264852 0 0.264852 0 0.264852	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.00353031 0 0.0259193 0.0240965 0.387567 0.366986 1.42625 1.28365 1.93550 0 2.28060 2.09849 0 0.175170 0 0 0.175170 0 0 0.0.42933 0 0 0.0.442933 0 0 0.0.442933 0 0 0.0.442933 0 0 0.0.442933 0 0 0.0.442933 0 0 0.0.442933 0 0 0.0.442933 0 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0 0 0 0 0.585877 0 0.582055 5.73223 22.4225 7.88646 21.1330 7.6902 8.81308 0 4.60642 3.15704 0 0.177855 0 0.0.77855 0 0 0.264852 0 0 0.3.78181 0.317241	0 0 0 0 0 0 0 0.677470 0 0 0.673194 6.63002 25.8882 9.06914 24.2325 8.69783 9.89479 0 0 4.49723 3.3253 0 0 0.178278 0 0 0.178278 0 0 0.245386 0 0 0 0.245386	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isobutane Butane Sopentane Pentane Cyclopentane Pentane Cyclopentane Hentylcyclopentane Benzene Cyclohexane 2,2,4-Timethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.00353031 0 0.0259193 0.0240965 0.387567 0.366996 1.42625 1.28365 1.42625 1.28365 0 0 2.28060 2.29849 0 0 0.175170 0 0 0.0.175170 0 0 0.0.442933 0 0 0.6.63956 0.0.774099 10.2834	0 0 0 0 0 0.585877 0 0.5852055 5.73223 22.4225 7.88646 22.1.1330 7.69020 8.81308 0 4.60642 3.15704 0 0.264852 0 0 0.264852 0 0 0.3.7745	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.00353031 0.00259193 0.0240965 0.387567 0.366996 1.42625 1.23655 1.23655 0.000 2.09849 0 0.175170 0 0 0.42233 0 0 0.42233 0 0 0.42233 0 0 0.42233 0 0 0.42233 0 0 0.42233 0 0 0.42233 0 0 0.42233 0 0 0.42233 0 0 0.42233 0 0 0.42233 0 0.4225915 0 0.4225915 0 0.4225915 0.4255915 0.42591500000000000000000000000000000000000	0 0 0 0 0.585877 0 0.582055 5.73223 22.4225 7.88646 21.1330 7.6902 8.81308 0 4.60642 3.15704 0 0.177855 0 0.0.77855 0 0 0.264852 0 0 0.3.78181 0.317241	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane Pentane Cyclopentane Benzene Cyclopentane Benzene Cyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.585877 0 0.58255 5.73223 22.4225 7.88646 2.1.1330 7.69020 8.81308 0 4.60642 3.15704 0 0.177855 0 0 0.264852 0 0 0 3.378181 0.317241 2.73745 0.0564449	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Ovolopentane Ovolopentane Cyclopentane Benzene Cyclopentane Benzene Cyclopentane Benzene Cyclopexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Cyclohexane Dutane Dutane Cyclohexane Cyclohexane Cyclohexane Cyclohexane The Heptane Strimethylpentane Ethylbenzene m-Xylene Nonane Decane		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.00350031 0.00259193 0.0240965 0.387667 1.42625 1.28365 1.33550 0 2.28060 2.29849 0 0.0.175170 0 0.175170 0 0.175170 0 0.442933 0 0 0.42933 0 0 0.52489 0 0.0774099 1.2834 0.252489 1.35232 5.86261 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane Pentane Cyclopentane Pentane Cyclopentane Edhane Cyclopentane Edhane Cyclopentane Edhane Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isobutane Butane Isobutane Butane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclopentane I-C7 Methylcyclopentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane Pentane Cyclopentane Pentane Cyclopentane Edhane Cyclopentane Edhane Cyclopentane Edhane Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.00353031 0.00259193 0.0240965 0.387667 0.366986 1.42625 1.93550 0 2.28060 2.09849 0 0.175170 0 0.442933 0 0.0.474099 10.2834 0.0.774099 10.2834 0.252489 1.35232 5.86261 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isobutane Butane Sopontane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclopentane I-C7 Methylcyclopentane Benzene Cyclohexane Atthylicyclohexane n-Heptane Toluene Octane Ethylbenzene Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - North Header Oil		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0.58587 0 0.58255 5.73223 22.4225 7.88646 21.1330 7.69020 8.81308 4.60642 3.15704 0 0.177855 0 0.264852 0.054459 0.0317241 2.73745 0.0564449 0.297362 1.00171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil Undecanes Plus Mass Fraction Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - Otal		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0.00353031 0 0.00259133 0.02240965 0.387567 0.366986 1.42625 1.28365 1.93550 0 2.20806 2.09849 0 0.175170 0 0 0.0175170 0 0 0.0175170 0 0 0.0175170 0 0 0.0175170 0 0 0.0175170 0 0 0.0175170 0 0 0.0175170 0 0 0.0175170 0 0 0.0175170 0 0 0.0175170 0 0 0.00500 0 0.005000 0 0.005000 0 0.005000 0 0.005000 0 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0055000 0.0050000 0.00500000000

Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
Water	0	0	0	0	0	0	0	
Hydrogen Sulfide	0	0	0	0	0	0	0	
Nitrogen, Atomic	0.0197894	0	0.0197059	8.34560E-05	0.0813937	0	0.0813270	6.66555E-0
Carbon Dioxide	0	0	0	0	0	0	0	
Methane	0.0196428	0	0.0195815	6.12728E-05	0.0808627	0	0.0808138	4.89380E-0
Ethane	0.193420	0	0.192851	0.000569637	0.796357	0	0.795902	0.00045496
Propane	0.763478	0	0.754316	0.00916202	3.11508	0	3.10776	0.0073176
sobutane	0.272998	0	0.264322	0.00867548	1.09564	0	1.08871	0.0069290
Butane	0.740042	0	0.706325	0.0337163	2.93593	0	2.90900	0.026928
sopentane	0.283949	0	0.253604	0.0303454	1.06837	0	1.04413	0.024236
Pentane	0.334295	0	0.288540	0.0457550	1.22437	0	1.18782	0.036544
Cyclopentane	0	0	0	0	0	0	0	
C6	0.198948	0	0.145035	0.0539131	0.639952	0	0.596893	0.043059
-Hexane	0.146565	0	0.0969575	0.0496079	0.438595	0	0.398974	0.039621
fethylcyclopentane	0	0	0	0	0	0	0	
lenzene	0.00934286	0	0.00520188	0.00414098	0.0247088	0	0.0214014	0.0033073
Cyclohexane	0	0	0	0	0	0	0	
,2,4-Trimethylpentane	0.0173824	0	0.00691156	0.0104709	0.0367949	0	0.0284319	0.0083629
C7	0	0	0	0	0	0	0	
lethylcyclohexane	0	0	0	0	0	0	0	
-Heptane	0.254215	0	0.0972566	0.156958	0.525392	0	0.400031	0.12536
oluene	0.0254623	0	0.00716270	0.0182996	0.0440731	0	0.0294575	0.014615
Octane	0.288380	0	0.0452808	0.243099	0.380303	0	0.186143	0.19416
thylbenzene	0.00678425	0	0.000815460	0.00596879	0.00811953	0	0.00335231	0.0047672
n-Xylene	0.0358069	0	0.00383825	0.0319687	0.0413113	0	0.0157782	0.025533
lonane	0.145517	0	0.00692620	0.138591	0.139163	0	0.0284718	0.11069
lecane	0	0	0	0	0	0	0	
Decanes Plus - Closed Drain Oil	0	0	0	0	0	0	0	
ecanes Plus - GBS1 Oil	0	0	0	0	0	0	0	
ecanes Plus - Inlet Oil	0	0	0	0	0	0	0	
ecanes Plus - North Header Oil	1.52263	0	3.10388E-05	1.52260	1.21621	0	0.000127160	1.2160
ecanes Plus - South Header Oil	0	0	0	0	0	0	0	
Decanes Plus - Stabilizer Outlet Oil	0	0	0	0	0	0	0	
Jndecanes Plus	0	0	0	0	0	0	0	

Process Streams		50K IFRs Combined	50K IFRs Flash	50K IFRs Standing	50K IFRs Working	100K IFRs Combined	100K IFRs Flash	100K IFRs Standing	100K IFRs Working
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	MIX-101	Four 50 KBBL IFR Tanks	Four 50 KBBL IFR Tanks	Four 50 KBBL IFR Tanks	MIX-100	Ten 100 KBBL IFR Tanks	Ten 100 KBBL IFR Tanks	Ten 100 KBBL IFR Tank
	To Block:	-	MIX-101	MIX-101	MIX-101		MIX-100	MIX-100	MIX-100
Property	Units								
Temperature	°F	106.437	100.177	100.177	100.177		93.58	93.58	93.
Pressure	psig	0.15	0.15	0.15			0.15	0.15	0.
Mole Fraction Vapor	%	76.2203		100	0	93.6050		99.9991	
Mole Fraction Light Liquid	%	23.7797		0	100	6.39500		0.000940981	1
Mole Fraction Heavy Liquid	%	0		0	0	0		0	
Phase Mole Fraction	%	100		100	100	100		100	1
Molecular Weight	lb/lbmol	75.2829		53.1487	154.735	58.3398		53.1337	154.7
Mass Density	lb/ft^3	0.212610		0.116026	47.8227	0.136030		0.117449	48.00
Molar Flow	lbmol/h	0.0701175	0	0.0548398	0.0152777	0.238133	0	0.225931	0.01220
Mass Flow	lb/h	5.27865	0	2.91466	2.36398	13.8926	0	12.0045	1.888
Vapor Volumetric Flow	ft^3/h	24.8278	0	25.1207	0.0494323	102.129	0	102.211	0.03933
Liquid Volumetric Flow	gpm	3.09541	0	3.13193	0.00616299	12.7330	0	12.7431	0.004903
Std Vapor Volumetric Flow	MMSCFD	0.000638603	0	0.000499460	0.000139143	0.00216882	0	0.00205769	0.0001111
Std Liquid Volumetric Flow	sgpm	0.0165960	0	0.0105370	0.00605897	0.0482435	0	0.0434042	0.004839
Compressibility		0.750698		0.982015	0.00693644	0.919841		0.981413	0.006992
Specific Gravity				1.83509	0.766773				0.7697
API Gravity					48.8656				48.86
Enthalpy	Btu/h	-4415.29		-2463.67	-1951.62	-11743.2		-10178.4	-1564.
Mass Enthalpy	Btu/lb	-836.444		-845.269	-825.562	-845.285		-847.882	-828.7
Mass Cp	Btu/(lb*°F)	0.455212		0.416416	0.488789	0.428494		0.412619	0.4848
Ideal Gas CpCv Ratio		1.06975		1.09931	1.03448	1.09064		1.10038	1.034
Dynamic Viscosity	cP			0.00824897	0.924514				0.9755
Kinematic Viscosity	cSt			4.43835	1.20687				1.268
Thermal Conductivity	Btu/(h*ft*°F)			0.0106369	0.0695091				0.06993
Surface Tension	lbf/ft				0.00167133				0.001695
Net Ideal Gas Heating Value	Btu/ft^3	3823.11		2753.38	7662.96	3004.24		2752.63	7662.
Net Liquid Heating Value	Btu/lb	19114.7		19502.2	18637.0	19384.7		19502.3	18637
Gross Ideal Gas Heating Value	Btu/ft^3	4119.77		2984.01	8196.63	3250.34		2983.20	8196.
Gross Liquid Heating Value	Btu/lb	20610.3		21149.1	19945.8	20985.8		21149.4	19945

2024 Stabilized Oil North Header - 2 Solved	2024 Stabilized Oil North Header
-	-
Four 50 KBBL IFR Tanks	Ten 100 KBBL IFR Tanks
0	0*
0	0*
0.039	0.039* 0*
0.025	0.025*
0.124 1.36	0.124* 1.36*
0.977	0.977*
3.797	3.797*
2.753 4.151	2.753* 4.151*
0	0*
4.095 3.768	4.095* 3.768*
0	0*
0.347	0.347*
0 0.6	0* 0.6*
0	0*
0 10.253	0* 10.253*
10.253	1.3*
13.93	13.93*
0.368 1.971	0.368* 1.971*
7.073	7.073*
0	0* 0*
0 0	0*
0	0*
43.069 0	43.069* 0*
0	0*
٩/	٩/ 0*
<i>78</i> 0	0*
0	0*
0.00353031 0	0.00353031* 0*
0.00259193	0.00259193*
0.0240965 0.387567	0.0240965* 0.387567*
0.366986	0.366986*
1.42625	1.42625*
1.28365 1.93550	1.28365* 1.93550*
0	0*
2.28060 2.09849	2.28060* 2.09849*
2.09849	2.09849"
0.175170	0.175170*
0 0.442933	0* 0.442933*
0.442933	0*
0	0*
6.63956 0.774099	6.63956* 0.774099*
10.2834	10.2834*
0.252489 1.35232	0.252489* 1.35232*
1.35232 5.86261	1.35232* 5.86261*
C	0*
	0*
0	0*
0	0* 0*
0 0 64.4081	0* 64.4081*
0	0*

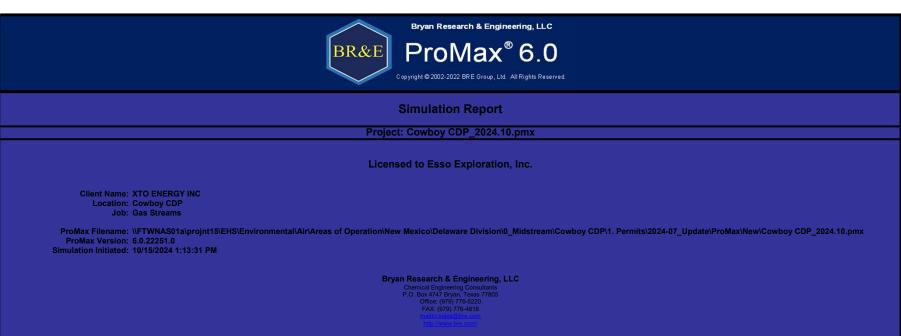
lb/h	lb/h
0*	0*
0*	0*
241.044*	241.044*
0*	0*
176.973*	176.973*
1645.27*	1645.27*
26462.5*	26462.5*
25057.2*	25057.2*
97382.0*	97382.0*
87645.8*	87645.8*
132153*	132153*
0*	0*
155716*	155716*
143281*	143281*
0*	0*
11960.3*	11960.3*
0*	0*
30242.8*	30242.8*
0*	0*
0*	0*
453339*	453339*
52854.3*	52854.3*
702137*	702137*
17239.5*	17239.5*
92334.5*	92334.5*
400290*	400290*
0*	0*
0*	0*
0*	0*
0*	0*
4.39769E+06*	4.39769E+06*
0*	0*
0*	0*
0*	0*

2024 Stabilized Oil North Header	2024 Stabilized Oil North Header - 2
Solved	Solved
-	<u> </u>
Ten 100 KBBL IFR Tanks	Four 50 KBBL IFR Tanks
74*	74
10*	10
0	(
100	10
0	(
100	10
154.735	154.73
48.5503	48.550
44126.1	44126.
6.82784E+06	6.82784E+0
140635	14063
17533.7	17533.
401.884	401.88
17500*	17500
0.0126491	0.012649
0.778439	0.77843
48.8505	48.850
-5.72256E+09	-5.72256E+0
-838.121	-838.12
0.473250	0.47325
1.03603	1.0360
1.15830	1.1583
1.48939	1.4893
0.0712049	0.071204
0.00183033	0.0018303
7662.96	7662.9
18637.0	18637.
8196.63	8196.6
19945.8	19945.8

		Tank Losses Repor Four 50 KBBL IFR Ta			
ient Name:	XTO ENERGY INC			Job:	IFR Tanks
ocation:	Cowboy CDP			Modified:	10/14/2024 15:36
owsheet:	IFR Oil Storage			Status:	Solved 3:36 PM, 10/14/2024
		Stream Connection	IS		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
2024 Stabilized Oil North Header - 2	Inlet		50K IFRs Flash	Flashing Losses Stream	MIX-101
50K IFRs Working	Working Losses Stream	MIX-101	50K IFRs Standing	Standing Losses Stream Residual Liquid Stream	MIX-101
7	Loading Losses Stream		8	Residual Liquid Stream	
	Work	ng and Standing Properties	s : Scalar Data		
nk Geometry	Internal Floating Roof T		Location	Roswell, NN	*
ell Length		.74* ft	Time Frame	Yea	
ell Diameter		100* ft	Known Liquid Bulk Temperature?	TRU	E
mber of Storage Tanks		4*	Liquid Bulk Temperature)* °F
terial Category	Light Organ	ics*	Use AP 42 Raoult's Vapor Pressure?	TRU	
sulation por Balanced Tank?	Uninsul	ated LSE	Flashing Temperature Average Daily Maximum Ambient Temperature	100.17	7 °F 8 °F
por Balanced Tank? own Sum of Increases in Liquid Level?		LSE	Average Daily Maximum Ambient Temperature Average Daily Minimum Ambient Temperature		8 °F 6 °F
m of Increases in Liquid Level?		LSE 00.6 ft/yr	Average Daily Minimum Ambient Temperature Atmospheric Pressure at Tank Location		8 psia
ell Color		Tan*	Daily Solar Insolation		2 Btu/(day*ft^2)
ell Paint Condition	Ave	age	Average Wind Speed	8.	7 mph
oof Color		Tan*	Include Short Term Emissions	FALS	
oof Paint Condition	Ave	age			
		position Subset Prove the	- Seclar Data		
omponent Subset		position Subset Properties	Species in Results	Selected Specie	<u>^</u>
omic Basis	v F/	LSE	Fraction Denominator	Selected Specie Selected Specie	
					-
	Comp	sition Subset Properties :	Tabulated Data		
	Selected Components				
Index					
Water	FA	LSE			
Hydrogen Sulfide Nitrogen, Atomic		LSE LSE			
Carbon Dioxide		LSE			
Methane		LSE			
Ethane		LSE			
Propane	т	RUE			
Isobutane		RUE			
Butane		RUE			
Isopentane	T'	RUE			
Dentene					
Pentane	TI	RUE			
Cyclopentane	TI TI	RUE			
	ד ד ד	RUE			
Cyclopentane i-C6	וד די די די די	RUE RUE RUE RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene	וד זר דר דר דר דר	RUE RUE RUE RUE RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane	וד דר דר דר דר דר דר	RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane	ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד	RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7	וד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד	RUE RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane	וד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד	RUE RUE RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane	ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז	RUE RUE RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane	וד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד	RUE RUE RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene	ז ח ח ז ח ח ח ח ח ח ח ח ח ח ח ח ח ח ח ח	RUE RUE RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-frinnethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene	ז ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד	RUE RUE RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane	ז ז ד ז ד ז ד ז ז ז ז ז ז ז ז ז ז ז ז ז	RUE RUE			
Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trinnethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane	ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז	RUE RUE RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane I-C6 n-Hexane Mettrylcyclopentane Benzene Cyclohexane 2.2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil	ת ת ת ת ת ת ת ת ת ת ת ת ת ת ת ת ת ת ת	RUE RUE RUE RUE RUE RUE RUE RUE RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil	ז ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד	RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - GB31 Oil Decanes Plus - GB31 Oil	ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז	RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - Inlet Oil Decanes Plus - North Header Oil	ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז	RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - GB31 Oil Decanes Plus - GB31 Oil	ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז	RUE RUE			
Cyclopentane i-C8 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - South Header Oil Decanes Plus - South Header Oil	ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז ז	RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - GBS1 Oil Decanes Plus - Inet Oil Decanes Plus - North Header Oil Decanes Plus - Stabilizer Outlet Oil	ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד	RUE RUE			
Cyclopentane I-C6 n-Hexane Methyloyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methyloyclohexane n-Heptane Octane Ethylbenzene m-Xylene Nonane Decane Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - GBS1 Oil Decanes Plus - GBS1 Oil Decanes Plus - Stabilizer Outlet Oil Decanes Plus - Stabilizer Outlet Oil Decanes Plus - Stabilizer Outlet Oil Decanes Plus - Stabilizer Outlet Oil	ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד ד	RUE RUE			
Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - GBS1 Oil Decanes Plus - Inet Oil Decanes Plus - North Header Oil Decanes Plus - Stabilizer Outlet Oil	T T T T T T T T T T T T T T T T T T T	RUE RUE	calar Data Slotted Guidepole/Sample Well Quantity Gauge-Float Well Type	1 Unbolted Cover, Ungasket	*

Tank Construction Welded Vacuum Breaker Quantity Primary Seal Mechanical Shoe Deck Drain Type Secondary Seal Type #1 Rim Mounted* Center Deck Leg Type Seal Fitting Tightness Average Center Deck Leg Quantity Access Hatch Type Bolted Cover, Gasketed* Rim Vent Type Weighte Access Hatch Quantity 2* Rim Vent Quantity Fixed Fool Support Column Weil Type	N/A* ed Mechanical Actuation, Gasketed 2" N/A* Adjustable, Internal Floating Roof 44" ed Mechanical Actuation, Gasketed 1" N/A* er Sleeve, Gasketed Silding Cover* 1" Welded 0.214497
Tank Construction Welded Vacuum Breaker Quantity Primary Seal Mechanical Shoe Deck Drain Type Secondary Seal Type #1 Center Deck Leg Type Seal Type #1 Center Deck Leg Type Seal Type #1 Center Deck Leg Type Seal Type #1 Center Deck Leg Quantity Seal Type #1 Center Deck Leg Quantity Seal Fitting Tightness Average Access Hatch Type Bolted Cover, Gasketed* Rim Went Type Weighte Access Hatch Quantity 2* Fixed Roof Support Column Well Cuantity 1* Ladder Weil Type Ladder Weil Type Vapor Pressure and Well Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wiper* Vapor Pressure at Average Daily Liquid Surface Temperature 7.49212 paia Vapor Pressure at Average Daily Liquid Surface Temperature 50.869 "R Product Factor Total Deck Fitting Loss Factor Tank Shof Surface Solar Absorptance 0.49 Deck Sam Loss per Unit Seam Length Factor	2* N/A* Adjustable, Internal Floating Roof 44* ad Mechanical Actuation, Gasketed 1* N/A* er Sleeve, Gasketed Silding Cover* 1* Welded
Primary Seal Mechanical Shoe Deck Drain Type Secondary Seal Type #1 Center Deck Leg Type Seal Fitting Tightness Average Center Deck Leg Type Seal Fitting Tightness Average Center Deck Leg Type Access Hatch Type Bolted Cover, Gasketed* Rim Vent Type Weighte Access Hatch Quantity 2* Rim Vent Quantity Fixed Roof Support Column Well Type Built-up Column, Ungasketed Sliding Cover Ladder-Slotted Guidepole combination Well Type Ladder Fixed Roof Support Column Well Quantity 1* Ladder-Slotted Guidepole Combination Well Type Ladder Stotted Guidepole/Sample Well Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wipe* Construction Type of Internal Floating Roof Tark Details Properties : Scalar Vapor Pressure at Average Daily Liquid Surface Temperature 7.49212 psia Vapor Pressure Function Average Daily Liquid Surface Temperature 7.49212 psia Vapor Pressure Function Tank Roof Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor Tank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	N/A* Adjustable, Internal Floating Roof 44* ed Mechanical Actuation, Gasketed 1* N/A* er Sleeve, Gasketed Silding Cover* 1* Welded
Beschart Rim Mounted* Center Deck Leg Type Seal Type #1 Average Center Deck Leg Quantity Seal Titing Tightness Average Center Deck Leg Quantity Seal Type Bolted Cover, Gasketd* Rim Vent Type Weighte Access Hatch Quantity 2* Rim Vent Type Weighte Access Hatch Quantity 2* Rim Vent Quantity Ladder-Slotted Guidepole Combination Well Type Fixed Roof Support Column Well Quantity 1* Ladder-Slotted Guidepole Combination Well Type Ladder Fixed Roof Support Column Well Quantity 1* Ladder-Slotted Guidepole Combination Well Type Ladder Slotted Guidepole/Sample Well Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wiper* Construction Type of Internal Floating Roof Tank Ladder Vapor Pressure at Average Daily Liquid Surface Temperature 74212 psia Vapor Pressure Function Vapor Pressure Function Average Daily Liquid Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor Tank Shel Surface Solar Absorptance 0.49	Adjustable, Internal Floating Roof 44" ad Mechanical Actuation, Gasketed 1* N/A" er Sleeve, Gasketed Silding Cover* 1* Welded
Seal Fitting Tightness Average Center Deck Leg Quantity Access Hatch Type Bolted Cover, Gasketed* Rim Vent Type Weighte Access Hatch Auntity 2* Rim Vent Quantity Weit Quantity Fixed Roof Support Column Well Type Built-up Column, Ungasketed Silding Cover Ladder-Slotted Guidepole Combination Well Type Ladder-Slotted Guidepole Combination Well Type Instorted Guidepole and Well Type 1* Ladder-Slotted Guidepole Combination Well Type Ladder-Slotted Guidepole Combination Well Type Instorted Guidepole and Well Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wipe* Construction Type of Internal Floating Roof Tank Verage Daily Liquid Surface Temperature 7.49212 psia Vapor Pressure Function Average Daily Liquid Surface Temperature 550.869 *R Product Factor Tank Roof Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	44* ed Mechanical Actuation, Gasketed 1* N/A* er Steeve, Gasketed Silding Cover* 1* Welded
Access Hatch Type Botted Cover, Gasketed* Rim Vent Type Weighte Access Hatch Type 2* Rim Vent Quantity Weighte Access Hatch Quantity 2* Rim Vent Quantity Rim Vent Quantity Tixed Roof Support Column Weil Type Built-up Column, Ungasketed Sliding Cover Ladder-Slotted Guidepole combination Weil Type Ladder Tixed Roof Support Column Weil Type MA* Ladder-Slotted Guidepole combination Weil Type Ladder Slotted Guidepole and Weil Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wipe* Construction Type of Internal Floating Roof Tank Ladder-Slotted Guidepole Combination Weil Quantity Slotted Guidepole/Sample Weil Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wipe* Construction Type of Internal Floating Roof Tank Vapor Pressure at Average Daily Liquid Surface Temperature 7.49212 psia Vapor Pressure Function Average Daily Liquid Surface Temperature 550.869 "R Product Factor Tank Roof Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor Tank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	ed Mechanical Actuation, Gasketed 1* N/A* er Sleeve, Gasketed Sliding Cover* 1* Welded
Access Hatch Quantity 2* Rim Vent Quantity Fixed Roof Support Column Well Type Built-up Column, Ungasketed Sliding Cover Ladder-Slotted Guidepole Combination Well Type Ladder-Slotted Guidepole Combination Well Quantity Slotted Guidepole/Sample Well Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wipe* Construction Type of Internal Floating Roof Tank Details Properties: Scal=Data Apport Pressure at Average Daily Liquid Surface Temperature 749212 psia Vagor Pressure Function 550.869 "R Product Factor Fank Shel Surface Solar Absorptance 0.49 Total Deck Filting Loss Factor Tank Shel Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	1* N/A* er Sleeve, Gasketed Sliding Cover* 1* Welded
Built-up Column Well Type Built-up Column, Ungasketed Sliding Cover Ladder Well Type ixed Roof Support Column Well Quantity 1* Ladder-Slotted Guidepole Combination Well Type Ladder-Slotted Guidepo	N/A* er Sleeve, Gasketed Silding Cover* 1* Welded
Tixed Good Support Column Well Quantity 1* Ladder-Slotted Guidepole Combination Well Type Ladder Jnslotted Guidepole and Well Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wiper* Ladder-Slotted Guidepole Combination Well Quantity Ladder-Slotted Guidepole Combination Well Type Ladder Stated Guidepole/Sample Well Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wiper* Construction Type of Internal Floating Roof Tank Ladder-Slotted Guidepole Combination Well Quantity Ladder-Slotted Guidepole Combination Well Quantity Aport Pressure at Average Daily Liquid Surface Temperature 749212 psia Vapor Pressure Function Verage Daily Liquid Surface Temperature 550.869 "R Product Factor Tank Shell Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor Tank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	er Sleeve, Gasketed Silding Cover* 1* Welded
Junicited Guidepole and Well Type N/A* Ladder-Slotted Guidepole Combination Well Quantity Construction Type of Internal Floating Root Tank Slotted Guidepole/Sample Well Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wiper* Construction Type of Internal Floating Root Tank Verage Daily Liquid Surface Temperature 7.49212 psia Vapor Pressure Function Average Daily Liquid Surface Temperature 550.860 °R Product Factor Tank Roof Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor Tank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	1* Welded
Bildled Guidepole/Sample Well Type Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wiper* Construction Type of Internal Floating Roof Tank /apor Pressure at Average Daily Liquid Surface Temperature 7.49212 psia Vapor Pressure Function /werage Daily Liquid Surface Temperature 550.669 "R Product Factor 'ank Roof Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor 'ank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	Welded
Details Properties : Scalar Data ////////////////////////////////////	
/apor Pressure at Average Daily Liquid Surface Temperature 7.49212 psia Vapor Pressure Function verage Daily Liquid Surface Temperature 550.860 °R Product Factor rank Roof Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor rank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	0.214497
Yapor Pressure at Average Daily Liquid Surface Temperature 7.49212 psia Vapor Pressure Function verage Daily Liquid Surface Temperature 550.866 °R Product Factor ank Roof Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor ank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	0.214497
verage Daily Liquid Surface Temperature 550.869 °R Product Factor ank Roof Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor Ank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	0.214497
ank Roof Surface Solar Absorptance 0.49 Total Deck Fitting Loss Factor ank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	
Fank Shell Surface Solar Absorptance 0.49 Deck Seam Loss per Unit Seam Length Factor	1
	499.91 lbmol/yr
laximum Liquid Surface Temperature 559.847 °R Deck Seam Length Factor	0 lbmol/(ft*yr)
	0 ft/ft^2
Inimum Liquid Surface Temperature 541.891 °R Area of Deck	7853.98 ft^2
apor Molecular Weight 53.1487 lb/lbmol Effective Annual Throughput	5.54013E+07 bbl/yr
verage Daily Ambient Temperature 521.37 °R Shell Clingage Factor	0.0015 bbl/(1000*ft^2)
nnual Net Throughput 2.21605E+08 bbl/yr Average Organic Liquid Density	6.54101 lb/gal
ero Wind Speed Rim Seal Loss Factor 0.6 Ibmol/(ft*yr) Saturation Factor	0.5
Ind Speed Dependent Rim Seal Loss Factor 0.4 time/(m/m/n*ft*yr) V Japor Pressure of Liquid Loaded	7.49212 psia
magac Experimental Cost action of a manufacture of a manu	70 %
verage Lineawer minis operad o inpin Collection Enderform eal-Related Wind Speed Exponent 1 Annual Net Throughput Per Tank	5.54013E+07 bbl/yr
Details Properties : Tabulated Data	
Kfa Kfb m	Kfi
Index Ibmol/yr Ibmol/(mph*m*yr)	lbmol/yr
Access Hatch Type 1.6 0 0	1.6
Fixed Roof Support Column Well Type 51 0 0	51
Stotted Guidepole/Sample Well Type 11 9.9 0.89	11
Gauge-Float Well Type 14 5.4 1.1	14
Vacuum Breaker Type 6.2 1.2 0.94	6.2
Center Deck Leg Type 7.9 0 0	7.9
Rim Vent Type 0.71 0.1 1	0.71
Ladder-Slotted Guidepole Combination Well Type 60 0 0	60
Loading Properties : Scalar Data	
Cargo Carrier Tank Truck or Rail Tank Car Truck Annual Leak Test Passed	None
and Based Mode of Operation Submerged Loading of a Clean Cargo Tank Overall Reduction Efficiency	0 %
Control Efficiency 0* %	
Results Properties : Scalar Data	
lashing Losses 0 ton/yr Standing Losses per Tank	2.93736 ton/yr
/orking Losses 10.3511 ton/yr Rim Seal Losses per Tank	0.314768 ton/yr
	0.314768 ton/yr 2.62260 ton/yr
tanding Losses 11.7495 ton/yr Deck Fitting Losses per Tank bading Losses 18984.9 ton/yr Deck Seam Losses per Tank	0.314768 ton/yr 2.62260 ton/yr 0 ton/yr
tanding Losses 11.7495 ton/yr Deck Fitting Losses per Tank oading Losses 18984.9 ton/yr Deck Seam Losses per Tank im Seal Losses 1.25907 ton/yr Flashing Losses per Tank	2.62260 ton/yr
tanding Losses 11.7495 ton/yr Deck Fitting Losses per Tank oading Losses 18984.9 ton/yr Deck Seam Losses per Tank im Seal Losses 1.25907 ton/yr Flashing Losses per Tank	2.62260 ton/yr 0 ton/yr
tanding Losses 11.7495 ton/yr Deck Fitting Losses per Tank oading Losses 1898.45 ton/yr Deck Seam Losses per Tank im Seal Losses 1.25907 ton/yr Flashing Losses per Tank dek Fitting Losses 0.4904 ton/yr Working and Standing Losses	2.62260 ton/yr 0 ton/yr 0 ton/yr
tanding Losses 11.7495 ton/yr Deck Fitting Losses per Tank vading Losses 18984.9 ton/yr Deck Seam Losses per Tank im Seal Losses 1.25907 ton/yr Flashing Losses per Tank eck Fitting Losses 10.4904 ton/yr Working and Standing Losses eck Seam Losses 0 ton/yr Working and Standing Losses per Tank	2.62260 ton/yr 0 ton/yr 0 ton/yr 22.1006 ton/yr
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank adding Losses 1898.49 ton/yr Deck Seam Losses per Tank m Seal Losses 1.25907 ton/yr Flashing Losses per Tank ack Fitting Losses 10.4904 ton/yr Working and Standing Losses per Tank ack Seam Losses 0 ton/yr Working and Standing Losses per Tank orking Losses per Tank 2.58778 ton/yr Loading Losses per Tank	2.62260 ton/yr 0 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank adarding Losses 18984.9 ton/yr Deck Seam Losses per Tank m Seal Losses 125907 ton/yr Flashing Losses per Tank cxk Fitting Losses 10.4904 ton/yr Working and Standing Losses ack Seam Losses 0 ton/yr Working and Standing Losses per Tank orking Losses per Tank 2.58778 ton/yr Loading Losses per Tank Tank 2.58778 ton/yr Tank 2.58778 ton/yr Tank 2.58778 ton/yr 2.58778 ton/	2.62260 ton/yr 0 ton/yr 20 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank bading Losses 18984.9 ton/yr Deck Seam Losses per Tank m Seal Losses 1.25007 ton/yr Flashing Losses per Tank eck Fitting Losses 10.4904 ton/yr Working and Standing Losses per Tank eck Seam Losses 0 ton/yr Working and Standing Losses per Tank orking Losses per Tank 2.58778 ton/yr Loading Losses per Tank	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr n Seal Losses Mass Flows Deck Fitting Losses Mass Flows
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank ading Losses 1898.4 btn/yr Deck Seam Losses per Tank m Seal Losses 1.25907 ton/yr Flashing Losses per Tank sck Fitting Losses 0 ton/yr Korking and Standing Losses per Tank sck Seam Losses 0 ton/yr Working and Standing Losses per Tank orking Losses per Tank 0 ton/yr Korking and Standing Losses per Tank	2.62260 ton/yr 0 ton/yr 1 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr n Seal Losses Mass Flows ton/yr ton/yr ton/yr
anding Losses in 11.7495 ton/yr Deck Fitting Losses per Tank back Seam Losses per Tank back back Seam Losses per Tank back back Seam Losses per Tank back back back back back back back bac	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr n Seal Losses Mass Flows ton/yr 0.364047 2.94986
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank Adding Losses 2007 ton/yr Deck Seam Losses 2007 ton/yr Bashing Losses per Tank Adding Losses 2007 ton/yr Bashing Losses 2007	2.62260 ton/ýr 0 ton/ýr 0 ton/ýr 22.1006 ton/ýr 5.52515 ton/ýr 4746.22 ton/ýr n Seal Losses Mass Flows ton/ýr 0.354047 0.354047 0.124063 1.03367
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank ading Losses 1898.49 ton/yr Deck Seam Losses per Tank Seal Losses 1.25070 ton/yr Flashing Losses per Tank ck Fitting Losses 10.4904 ton/yr Vorking and Standing Losses per Tank ck Seam Losses 0 ton/yr Working and Standing Losses per Tank ck Seam Losses 0 ton/yr Working and Standing Losses per Tank vkring Losses per Tank 2.58778 ton/yr Loading Losses per Tank Results Properties Table Index Tonlyr Tonlyr Conlyr Propane 0 Sobutane 0 0.037998 1.15773 Butane 0 0.147677 3.03901	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4.746.22 ton/yr n Seal Losses Mass Flows 0.354047 0.354047 2.94966 0.124063 1.03367 0.33522 2.76218
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank ading Losses 18984.9 ton/yr Deck Seam Losses per Tank Seal Losses 12.5007 ton/yr Flashing Losses per Tank Seal Losses 10.4904 ton/yr Working and Standing Losses per Tank dx Seam Losses Tank dx Seam Losses Tank dx Seam Losses Tank dx Seam Losses Tank dx Seam Losses Tank dx Seam Losses Tank dx Seam Losses Tank dx Seam Losses Tank dx Seam Losses Tank dx Seam Losses Tank dx Seam Losses Tank Tan	2.62260 ton/yr 0 ton/yr 1 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr n Seal Losses Mass Flows ton/yr ton/yr 0.354047 2.94986 0.124063 1.03367 0.331522 2.76218 0.119032 0.991754
anding Losses 11,7495 ton/yr Deck Fitting Losses per Tank ading Losses 18984.9 ton/yr Deck Seam Losses per Tank Bsal Losses 1.25070 ton/yr Flashing Losses per Tank ck: Kitting Losses 0 ton/yr Korking and Standing Losses per Tank ck: Seam Losses 0 ton/yr Working and Standing Losses per Tank ck: Seam Losses 0 ton/yr Working and Standing Losses per Tank ck: Seam Losses 0 ton/yr Working and Standing Losses per Tank ck: Seam Losses 0 ton/yr Working and Standing Losses per Tank ck: Seam Losses 0 ton/yr Working and Standing Losses per Tank ck: Seam Losses 0 ton/yr Losses ck: Seam Losses Start ton/yr Losses ck: Seam Losses Start ton/yr Losses ck: Seam Losses Start Losses Standing Losses Mass Flows flashing Losses Mass Flows Morking Losses Mass Flows Standing Losses Mass Flows flashing Losses Mass Flows Norking Losses Mass Flows Standing Losses Mass Flows Standing Losses Mass Flows lsobutane 0 0.0.0132913	2.62260 ton/yr 0 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr The Seal Losses Mass Flows ton/yr 0.354047 0.354047 0.334522 2.76218 0.1124063 0.124063 0.394754 0.136430 1.12838
anding Losses of 11.7495 fon/yr Deck Fitting Losses per Tank adding Losses (Parting Losses per Tank) adding Losses (Parting Losses) (Parting L	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr Solution Deck Fitting Losses Mass Flows ton/yr 0.364047 0.364047 0.37620 0.124063 0.124063 0.124063 0.19032 0.991754 0.136430 1.1283 0 0
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank ading Losses 1898.4.9 ton/yr Deck Seam Losses per Tank m Seal Losses 1.25007 ton/yr Flaisfing Losses per Tank sck Seam Losses 0.04904 ton/yr Working and Standing Losses per Tank sck Seam Losses 0 ton/yr Working and Standing Losses per Tank otk Seam Losses per Tank 2.58778 ton/yr Loading Losses per Tank otk Seam Losses per Tank 2.58778 ton/yr Loading Losses per Tank otk Seam Losses per Tank 2.58778 ton/yr Loading Losses per Tank Deck Fitting Losses per Tank 2.58778 ton/yr Loading Losses per Tank Corr Propane 0 0.0401297 Standing Losses Mass Flows Rin Isobutane 0 0.03079986 1.15773 3.03971 Butane 0 0.147677 3.09371 3.09371 Pentane 0 0.200407 1.26381 1.11079 Pentane 0 0.200407 1.26381 1.11079 Cyclopentane 0 0.200407 1.26381	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr m Seal Losses Mass Flows ton/yr 0.33622 0.124063 0.124063 0.124063 0.331522 2.76218 0.11032 0.331522 0.76218 0.112838 0.12838 0.12838 0.0080738 0.567179
anding Losses 11/495 ton/yr Deck Fitting Losses per Tank Andre Sear Losses 18984.9 ton/yr Deck Sear Losses per Tank Andre Sear Losses 12/5007 ton/yr Falshing Losses per Tank Andre Sear Losses 10/4904 ton/yr Working and Standing Losses per Tank Andre Sear Losses 0 ton/yr Working and Standing Losses per Tank Andre Sear Losses 0 ton/yr Working and Standing Losses per Tank Andre Sear Losses 0 ton/yr Braining Losses per Tank Andre Sear Losses Per Tank Andre Sear Losses Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andr	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr bock Fitting Losses Mass Flows bock Fitting Losses Mass Flows 10.354047 0.124063 0.124063 0.331522 2.76218 0.119032 0.991754 0.138430 0 0.091754 0.138430 0 0.0391765 0.337166 0.337166 0.337166 0.337167 0.3561779 0.0455081 0.379166 0.379166 0.379166 0.379167 0.37916
anding Losses 11 7495 ton/yr Deck Fitting Losses per Tank bading Losses 18984.9 ton/yr Deck Seam Losses per Tank m Seal Losses 12.9007 ton/yr Flashing Losses per Tank eck Seam Losses 10.4904 ton/yr Working and Standing Losses per Tank eck Seam Losses 0 ton/yr Working and Standing Losses per Tank eck Seam Losses per Tank 2.59778 ton/yr Working and Standing Losses per Tank eck Seam Losses per Tank 2.59778 ton/yr Working and Standing Losses per Tank eck Seam Losses per Tank 2.59778 ton/yr Loading Losses per Tank eck Seam Losses Per Tank 2.59778 ton/yr Kanding Losses Mass Flows Ring flashing Losses Mass Flows Morking Losses Mass Flows Standing Losses Mass Flows Ring flashing Losses Mass Flows Morking Losses Mass Flows Standing Losses Mass Flows Ring flashing Losses Mass Flows Morking Losses Mass Flows Standing Losses Mass Flows Ring flashing Losses Mass Flows 0 0.0401297 3.0390 1.15773 flashone 0 0.0200407 1.26331 1.1079 <td>2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr Deck Fitting Losses Mass Flows ton/yr 0.354047 0.354047 0.324063 0.124063 0.124063 0.124063 0.124063 0.124063 0.124063 0.135420 0.36273 0.351522 0.991754 0.1110032 0.991754 0.1110032 0.991754 0.136430 0.00580738 0.567179 0.0455081 0.379166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr Deck Fitting Losses Mass Flows ton/yr 0.354047 0.354047 0.324063 0.124063 0.124063 0.124063 0.124063 0.124063 0.124063 0.135420 0.36273 0.351522 0.991754 0.1110032 0.991754 0.1110032 0.991754 0.136430 0.00580738 0.567179 0.0455081 0.379166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
anding Losses 11/495 ton/yr Deck Fitting Losses per Tank Andre Sear Losses 18984.9 ton/yr Deck Sear Losses per Tank Andre Sear Losses 12/5007 ton/yr Falshing Losses per Tank Andre Sear Losses 10/4904 ton/yr Working and Standing Losses per Tank Andre Sear Losses 0 ton/yr Working and Standing Losses per Tank Andre Sear Losses 0 ton/yr Working and Standing Losses per Tank Andre Sear Losses 0 ton/yr Braining Losses per Tank Andre Sear Losses Per Tank Andre Sear Losses Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andre Sear Losses Per Tank Andr	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr bock Fitting Losses Mass Flows bock Fitting Losses Mass Flows 10.354047 0.124063 0.124063 0.331522 2.76218 0.119032 0.991754 0.138430 0 0.091754 0.138530 0 0.037166 0.0680738 0.367179 0.0455081 0.379166
anding Losses 11 7495 ton/yr Deck Fitting Losses per Tank bading Losses 18984.9 ton/yr Deck Seam Losses per Tank m Seal Losses 12.9007 ton/yr Flashing Losses per Tank eck Seam Losses 10.4904 ton/yr Working and Standing Losses per Tank eck Seam Losses 0 ton/yr Working and Standing Losses per Tank eck Seam Losses per Tank 2.59778 ton/yr Working and Standing Losses per Tank eck Seam Losses per Tank 2.59778 ton/yr Working and Standing Losses per Tank eck Seam Losses per Tank 2.59778 ton/yr Loading Losses per Tank eck Seam Losses Per Tank 2.59778 ton/yr Kanding Losses Mass Flows Ring flashing Losses Mass Flows Morking Losses Mass Flows Standing Losses Mass Flows Ring flashing Losses Mass Flows Morking Losses Mass Flows Standing Losses Mass Flows Ring flashing Losses Mass Flows Morking Losses Mass Flows Standing Losses Mass Flows Ring flashing Losses Mass Flows 0 0.0401297 3.0390 1.15773 flashone 0 0.0200407 1.26331 1.1079 <td>2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr Deck Fitting Losses Mass Flows ton/yr 0.354047 0.24063 0.124063 0.124063 0.124063 0.124063 0.12627 0.31522 0.991754 0.119032 0.991754 0.119032 0.991754 0.136430 1.12838 0.10680738 0.567179 0.0455081 0.379166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr Deck Fitting Losses Mass Flows ton/yr 0.354047 0.24063 0.124063 0.124063 0.124063 0.124063 0.12627 0.31522 0.991754 0.119032 0.991754 0.119032 0.991754 0.136430 1.12838 0.10680738 0.567179 0.0455081 0.379166 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank bading Losses 1898.4.9 ton/yr Deck Seam Losses per Tank ms Seal Losses 1.25907 ton/yr Flashing Losses per Tank eck Fitting Losses per Tank Seal Losses Vorking and Standing Losses per Tank eck Fitting Losses per Tank 0 ton/yr Working and Standing Losses per Tank eck Seam Losses 0 ton/yr Working and Standing Losses per Tank otting Losses per Tank 0 ton/yr Working and Standing Losses per Tank britting Losses per Tank 0 ton/yr Working and Standing Losses per Tank britting Losses per Tank 0 ton/yr Losses Morking Losses Per Tank britting Losses per Tank 0 ton/yr Losses Morking Losses Per Tank britting Losses Per Tank 0 ton/yr Losses Morking Losses Mass Flows Morking Losses Mass Flows <td>2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr book fiting Losses Mass Flows bock Fiting Losses Mass Flows 0.3564047 0.3264047 0.331522 2.76218 0.119032 0.991754 0.13430 0 1028 0 0 00 0.00680738 0.0567179 0.0455081 0 0 00 0 0 00 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0</td>	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr book fiting Losses Mass Flows bock Fiting Losses Mass Flows 0.3564047 0.3264047 0.331522 2.76218 0.119032 0.991754 0.13430 0 1028 0 0 00 0.00680738 0.0567179 0.0455081 0 0 00 0 0 00 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0
anding Losses 11.7495 ton/yr Deck Fitting Losses per Tank bading Losses 1898.4.9 ton/yr Deck Seam Losses per Tank ms Seal Losses 1.25907 ton/yr Flashing Losses per Tank eck Fitting Losses per Tank Seal Losses Vorking and Standing Losses per Tank eck Fitting Losses per Tank 0 ton/yr Working and Standing Losses per Tank eck Seam Losses 0 ton/yr Working and Standing Losses per Tank otting Losses per Tank 0 ton/yr Working and Standing Losses per Tank britting Losses per Tank 0 ton/yr Working and Standing Losses per Tank britting Losses per Tank 0 ton/yr Losses Morking Losses Per Tank britting Losses per Tank 0 ton/yr Losses Morking Losses Per Tank britting Losses Per Tank 0 ton/yr Losses Morking Losses Mass Flows Morking Losses Mass Flows <td>2.62260 ton/yr 0 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr n Seal Losses Mass Flows 0.354047 0.331522 2.76218 0.124063 1.03367 0.331522 2.76218 0.10032 0.991754 0.135430 1.12838 0 0 0 0.008078 0.0657179 0.0455081 0.339174 0.339174 0.0391754 0.0391754 0.0391754 0.002014 0 0 0 0.0020175 0.0203427 0.02</td>	2.62260 ton/yr 0 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr n Seal Losses Mass Flows 0.354047 0.331522 2.76218 0.124063 1.03367 0.331522 2.76218 0.10032 0.991754 0.135430 1.12838 0 0 0 0.008078 0.0657179 0.0455081 0.339174 0.339174 0.0391754 0.0391754 0.0391754 0.002014 0 0 0 0.0020175 0.0203427 0.02
anding Losses 11.7495 [nolyr Deck Fitting Losses per Tank ms Seal Losses 1.898.4.9 ton/yr Baing Losses per Tank eck Fitting Losses per Tank Eashing Losses per Tank eck Fitting Losses 10.4904 ton/yr Baing Losses per Tank eck Seam Losses 0 ton/yr Working and Standing Losses per Tank oth Josses per Tank 0 ton/yr Working and Standing Losses per Tank csses 0 ton/yr Working Losses per Tank csses 0 ton/yr Working and Standing Losses per Tank csses 0 ton/yr Losses csses 0 ton/yr Canding Losses Mass Flows Ring Losses Mass Flows findex ton/yr ton/yr Standing Losses Mass Flows Standing Losses Mass Flows fisbultane 0 0.04379986 1.15773 Butane 0 0.0147677 3.03930 Gespentane 0 0 0 Cyclopentane 0 0 0 Cyclopentane 0 0 0 Gespentane 0 0 0 </td <td>2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr n Seal Losses Mass Flows 0.354047 2.94986 0.124063 10.3367 0.324063 10.3367 0.331522 2.76218 0.119032 0.991754 0.135430 1.12838 0 1.12032 0.991754 0.135430 1.12838 0 0.0091754 0.0080738 0.567179 0.0680738 0.567179 0.0455081 0.33196 0 0.0031400 0.003140 0 0.0032400 0.000000000000000000000000000000000</td>	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr n Seal Losses Mass Flows 0.354047 2.94986 0.124063 10.3367 0.324063 10.3367 0.331522 2.76218 0.119032 0.991754 0.135430 1.12838 0 1.12032 0.991754 0.135430 1.12838 0 0.0091754 0.0080738 0.567179 0.0680738 0.567179 0.0455081 0.33196 0 0.0031400 0.003140 0 0.0032400 0.000000000000000000000000000000000
iandin Josses 11.7495 ton/yr Deck Fitting Losses per Tank 18984.9 ton/yr Deck Seam Losses per Tank 18984.9 ton/yr Deck Seam Losses per Tank 18984.9 ton/yr Bashing Losses per Tank 18984.9 ton/yr Bashing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 258778 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 258778 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr Working and Standing Losses per Tank 18984.9 ton/yr 18994.9 ton/yr 1899	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr n Seal Losses Mass Flows ton/yr 0.364047 0.364047 0.3654047 0.31522 2.76218 0.124063 1.03367 0.31522 2.76218 0.138430 1.12838 0 0.0991754 0.119032 0.991754 0.138430 1.12838 0 0.0991754 0.1395081 0.0991754 0.0455081 0.0991754 0.0567178 0.0567178 0.0567179 0.0455081 0 0.0203427 0.000244156 0 0.0203427 0.000324402 0.0270286 0 0.0270286 0 0
anding Losses 11,7495 ton/yr Deck Fitting Losses per Tank bading Losses 11,8494,9 ton/yr Deck Seam Losses per Tank Bsel Losses 12,5907 ton/yr Flashing Losses per Tank eck Fitting Losses 0 ton/yr Working and Standing Losses per Tank eck Seam Losses 0 ton/yr Working and Standing Losses per Tank orking Losses per Tank 2,58778 ton/yr Loading Losses per Tank orking Losses per Tank 2,58778 ton/yr Loading Losses Per Tank Orking Losses per Tank 2,58778 ton/yr Loading Losses Per Tank Orking Losses Per Tank 2,58778 ton/yr Loading Losses Per Tank Tanking Losses Mass Flows Working Losses Mass Flows Standing Losses Mass Flows Index ton/yr ton/yr ton/yr Popane 0 0,037998 1,15773 Isobutane 0 0,147677 3,09371 Isobutane 0 0,200407 1,26381 Cyclopentane 0 0,23793 0,424674 Cyclopentane 0 0,0271283 0,424674 Cy	2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr 1 Seal Losses Mass Flows ton/yr 1 Seal Losses Mass Flows 0.334047 0.34047 0.34047 0.331522 2.76218 0.124063 1.03367 0.331522 2.76218 0.124063 1.03367 0.331522 2.76218 0.124063 1.0357 0.031523 0.0091754 0.12838 0.001702 0.00204126 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020455 0.0020427 0.0020457 0.0020427 0.0
tandin Gosses (11.7495 ton/yr bek Fitting Losses per Tank (12.995 ton/yr bek Seam Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr Bashing Losses Per Tank (12.990 ton/yr	2.62260 ton/yr 0 ton/yr 1 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr 1 Seal Losses Mass Flows 1 ton/yr 0.354047 0.342063 0.331522 2.76218 0.124063 0.331522 2.76218 0.13430 0.124063 0.331522 2.76218 0.0391754 0.136430 0.12438 0.0991754 0.136430 0.0091754 0.035169 0.00204156 0.0020427 0.00244156 0.0020427 0.0024402 0.0022402 0.00204 0.0022402 0.00204 0.00240 0.002402 0.00240 0.0000 0.0000 0.00240 0.00240 0.00000 0.0000 0.000
tanding Losses (11.7495 ton/yr) Dek Fitting Losses per Tank (12507 ton/yr) Dek Saam Losses per Tank (12507 ton/yr) Dek Saam Losses per Tank (12507 ton/yr) Dek Saam Losses per Tank (12507 ton/yr) Pashing Losses per Tank (12507 ton/yr) (125058 per Tank) (2.62260 ton/yr 0 ton/yr 22.1006 ton/yr 5.52515 ton/yr 4746.22 ton/yr 1 Seal Losses Mass Flows ton/yr 1 Seal Losses Mass Flows 0.334047 0.34047 0.34047 0.331522 2.76218 0.124063 1.03367 0.331522 2.76218 0.124063 1.03367 0.331522 2.76218 0.124063 1.0357 0.031523 0.0091754 0.12838 0.001702 0.00204126 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020427 0.0020455 0.0020427 0.0020457 0.0020427 0.0

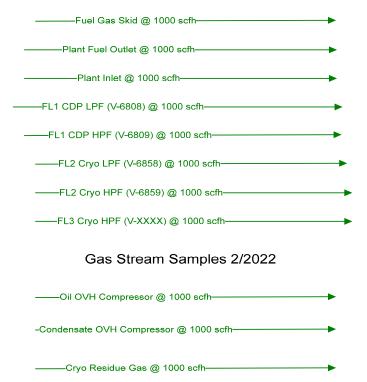
Nonane		0	0.607029	0.03033	0.00325089	0.0270
Decane		0	0		0 0	
Decanes Plus - Closed Drain Oil		0	0		0 0	
Decanes Plus - GBS1 Oil		0	0		0 0	
Decanes Plus - Inlet Oil		0	0		0 0	
Decanes Plus - North Header Oil		0	6.66898	0.0001359		0.000121
Decanes Plus - South Header Oil		0	0		0 0	
Decanes Plus - Stabilizer Outlet Oil		0	0		0 0	
Undecanes Plus		0	0		0 0	
Index	Deck Seam Losses Mass Flows ton/yr	Loading	Losses Mass Flows ton/yr	Working and Standing Losses Mass Flows ton/yr		
Propane	Compi	0	5338.47	3.344	13	
Isobutane		0	1870.67	1.195		
Butane		0	4998.83	3.241		
Isopentane		0	1794.82	1.243		
Pentane		0	2042.07	1.464		
Cyclopentane		0	2042.01		0	
i-C6		0	1026.45	0.8713		
n-Hexane		0	686.191	0.6419		
Methylcyclopentane		0	000.191		0	
Benzene		0	36.8149	0.04092		
Cyclohexane		0	0.0149		0	
2,2,4-Trimethylpentane		0	48.9148	0.07613		
i-C7		0	40.9140		0	
Methylcyclohexane		0	0		0	
n-Heptane		0	688.308	1.113		
Toluene		0	50.6921	0.1115		
Octane		0	320.463	1.263		
Ethylbenzene		0	5.77121	0.02971		
m-Xylene		0	27.1642	0.029713		
Nonane		0	49.0184	0.1306		
Decane		0	49.0104	0.8373	0	
Decane Decanes Plus - Closed Drain Oil		0	0		0	
Decanes Plus - GBS1 Oil		0	0		0	
Decanes Plus - GBS I Oli Decanes Plus - Inlet Oli		0	0		0	
Decanes Plus - Met Oil Decanes Plus - North Header Oil		0	0.219669	6.669		
Decanes Plus - North Header Oil Decanes Plus - South Header Oil		0	0.219009	0.009	0	
Decanes Plus - South Header Oli Decanes Plus - Stabilizer Outlet Oli		0	0		0	
Undecanes Plus		0	0		0	
Undecanes Plus		U	0		U	


		Tank Losses Report			
		Ten 100 KBBL IFR Ta	anks		
ient Name:	XTO ENERGY INC			Job:	IFR Tanks
ocation:	Cowboy CDP			Modified:	10/14/2024 15:36
owsheet:	IFR Oil Storage			Status:	Solved 3:36 PM, 10/14/2024
		Stream Connections	S		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
2024 Stabilized Oil North Header	Inlet		100K IFRs Flash	Flashing Losses Stream	MIX-100
100K IFRs Working	Working Losses Stream	MIX-100	100K IFRs Standing	Standing Losses Stream	MIX-100
4	Loading Losses Stream		5	Residual Liquid Stream	
	Worki	ng and Standing Properties	- Cooler Deta		
					*
ank Geometry hell Length	Internal Floating Roof Ta	50* ft	Location Time Frame	Roswell, NM Year	
hell Diameter			Known Liquid Bulk Temperature?	TRUE	
lumber of Storage Tanks		10*	Liquid Bulk Temperature		- * °F
faterial Category	Light Organi	 cs*	Use AP 42 Raoult's Vapor Pressure?	TRUE	
isulation	Uninsula	led	Flashing Temperature	93.58	
apor Balanced Tank?	FAL		Average Daily Maximum Ambient Temperature	75.0	
nown Sum of Increases in Liquid Level?	FAL	SE	Average Daily Minimum Ambient Temperature	47.6	3°F
um of Increases in Liquid Level		.32 ft/yr	Atmospheric Pressure at Tank Location		3 psia
Shell Color	Ta		Daily Solar Insolation		2 Btu/(day*ft^2)
Shell Paint Condition	Avera		Average Wind Speed		7 mph
Roof Color		an*	Include Short Term Emissions	FALSE	±
Roof Paint Condition	Avera	ge	I		
	0.000	osition Subset Preparties	· Scalar Data		
Component Pulsest		osition Subset Properties		0.1.4.2.2	
component Subset .tomic Basis	VO FAL	US	Species in Results Fraction Denominator	Selected Specie: Selected Specie:	
aonic Basis	PAL	3E	Praction Denominator	Selected Specie:	5
	Compo	sition Subset Properties : 1	Tabulated Data		
	Selected Components	sition oubset i toperties .			
Index	Colocica componenta				
Water	FAL	SE			
Hydrogen Sulfide	FAL	SE			
Nitrogen, Atomic	FAL				
Carbon Dioxide	FAL	SE			
Methane	FAL	SE			
Ethane	FAL				
Propane	TR				
Isobutane	TR				
Butane	TR				
Isopentane	TR TR				
Pentane Cyclopentane	TR				
i-C6	TR				
n-Hexane					
n-Hexane Methylcyclopentane	TR TR	UE			
n-Hexane Methylcyclopentane Benzene	TR	UE UE			
Methylcyclopentane	TR TR	UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane	TR TR TR TR	UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7	TR TR TR TR TR TR	UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane	TR TR TR TR TR TR TR TR	UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane	TR TR TR TR TR TR TR TR TR TR	UE UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2.4-Trimethylpentane FC7 Methylcyclohexane n-Heptane Toluene	TR TR TR TR TR TR TR TR TR TR TR	UE UE UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane	TR TR TR TR TR TR TR TR TR TR TR TR	UE UE UE UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 1-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane F-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Decanes Plus - Closed Drain Oli Decanes Plus - GBS1 Oli Decanes Plus - GBS1 Oli	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE UE UE			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oll Decanes Plus - Closed Drain Oll Decanes Plus - Inlet Oll	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE UE UE U			
Methylcyclopentane Benzene Cyclohexane 2.2.4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - GBS1 Oil Decanes Plus - South Header Oil Decanes Plus - South Header Oil	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE UE UE U			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - GBS1 Oil Decanes Plus - Soth Header Oil Decanes Plus - Soth Header Oil Decanes Plus - Soth Header Oil	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE UE UE U			
Methylcyclopentane Benzene Cyclohexane 2.2.4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - Suth Header Oil Decanes Plus - South Header Oil	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE UE UE U			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - GBS1 Oil Decanes Plus - South Header Oil Decanes Plus - South Header Oil Decanes Plus - South Header Oil Decanes Plus - South Header Oil	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE UE UE U			
Methylcyclopentane Benzene Cyclohexane 2.2.4-Trimethylpentane E-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Decanes Plus - Closed Drain Oli Decanes Plus - GBS1 Oli Decanes Plus - GBS1 Oli Decanes Plus - GBS1 Oli Decanes Plus - Stabilizer Outlet Oli Decanes Plus - Stabilizer Outlet Oli Decanes Plus - Stabilizer Outlet Oli Undecanes Plus	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE UE UE U			
Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - GBS1 Oil Decanes Plus - Soth Header Oil Decanes Plus - Soth Header Oil Decanes Plus - Soth Header Oil	TR TR TR TR TR TR TR TR TR TR TR TR TR T	UE UE UE UE UE UE UE UE UE UE UE UE UE U	≿alar Data Slotted Guidepole/Sample Well Quantity Gauge-Float Well Type	1 Unbolted Cover, Ungaskete	

Support Column Diameter Type	Unknown*	Gauge-Hatch/Sample Port Type	N/A*
ffective Support Column Diameter	1 ft	Vacuum Breaker Type	Weighted Mechanical Actuation, Gasketed*
ank Construction	Welded	Vacuum Breaker Quantity	2*
rimary Seal	Mechanical Shoe	Deck Drain Type	N/A*
econdary Seal Type #1	Rim Mounted*	Center Deck Leg Type	Adjustable, Internal Floating Roof
eal Fitting Tightness	Average	Center Deck Leg Quantity	49*
ccess Hatch Type	Bolted Cover, Gasketed*	Rim Vent Type	Weighted Mechanical Actuation, Gasketed
ccess Hatch Quantity	2*	Rim Vent Quantity	3*
ixed Roof Support Column Well Type	Built-up Column, Ungasketed Sliding Cover	Ladder Well Type	N/A*
xed Roof Support Column Well Quantity	7*	Ladder-Slotted Guidepole Combination Well Type	Ladder Sleeve, Gasketed Sliding Cover*
Inslotted Guidepole and Well Type	N/A*	Ladder-Slotted Guidepole Combination Well Quantity	
lotted Guidepole/Sample Well Type	Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wiper*	Construction Type of Internal Floating Roof Tank	Welded
	Details Proper	ties : Scalar Data	
apor Pressure at Average Daily Liquid Surface Temperature	7.47903 psia	Vapor Pressure Function	0.213918
verage Daily Liquid Surface Temperature	550.739 °R	Product Factor	1
ank Roof Surface Solar Absorptance	0.49	Total Deck Fitting Loss Factor	846.83 lbmol/yr
ank Shell Surface Solar Absorptance	0.49	Deck Seam Loss per Unit Seam Length Factor	0 lbmol/(ft*yr)
aximum Liquid Surface Temperature	559.729 °R	Deck Seam Length Factor	0 ft/ft^2
linimum Liquid Surface Temperature	541.750 °R	Area of Deck	13396.0 ft^2
apor Molecular Weight	53.1337 lb/lbmol	Effective Annual Throughput	2.21589E+07 bbl/yr
verage Daily Ambient Temperature	521.37 °R	Shell Clingage Factor	0.0015 bbl/(1000*ft^2)
nnual Net Throughput			
	2.21589E+08 bbl/yr	Average Organic Liquid Density	6.54101 lb/gal
ero Wind Speed Rim Seal Loss Factor	0.6 lbmol/(ft*yr)	Saturation Factor	0.5
Vind Speed Dependent Rim Seal Loss Factor	0.4 lbmol/(mph^n*ft*)		7.47903 psia
verage Effective Wind Speed	0 mph	Collection Efficiency	70 %
eal-Related Wind Speed Exponent	1	Annual Net Throughput Per Tank	2.21589E+07 bbl/yr
	Dataila Proporti	es : Tabulated Data	
	Kfa Kfa		Kfi
Index	Ibmol/yr Ibmol/(mp		lbmol/yr
Access Hatch Type	1.6		0 1.6
Fixed Roof Support Column Well Type	51	0	0 51
Slotted Guidepole/Sample Well Type	11	9.9	39 11
Gauge-Float Well Type	14		.1 14
Vacuum Breaker Type	6.2	1.2 0.9	
Center Deck Leg Type	7.9		0 7.9
Rim Vent Type	0.71	-	1 0.71
Ladder-Slotted Guidepole Combination Well Type	60		0 60
Eadder-Siotted Guidepole Combination Weir Type	00	0	0 00
	Loading Prope	rties : Scalar Data	
Cargo Carrier	Tank Truck or Rail Tank Car	Truck Annual Leak Test Passed	None
and Based Mode of Operation	Submerged Loading of a Clean Cargo Tank	Overall Reduction Efficiency	0 %
Control Efficiency		Overall Reduction Enciency	0 /8
	0* %		
Sondor Emolority	0* %		
		ties : Scalar Data	
		ties : Scalar Data Standing Losses per Tank	4.83836 ton/yr
lashing Losses	Results Proper		
ashing Losses forking Losses	Results Proper 0 ton/yr	Standing Losses per Tank	0.409790 ton/yr
lashing Losses Vorking Losses tanding Losses	Constant Con	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank	0.409790 ton/yr 4.42857 ton/yr
lashing Losses Vorking Losses tanding Losses oading Losses	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 18941.6 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr
Iashing Losses Vorking Losses Itanding Losses oading Losses im Seal Losses	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 18941.6 ton/yr 4.09790 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Flashing Losses per Tank	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr
lashing Losses Vorking Losses tanding Losses oading Losses jim Seal Losses eck Fitting Losses	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 18941.6 ton/yr 4.09790 ton/yr 44.2857 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Flashing Losses per Tank Working and Standing Losses	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 56.6509 ton/yr
lashing Losses Vorking Losses tanding Losses Jaiding Losses im Seal Losses eck Fitting Losses eck Fitting Losses	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 18941.6 ton/yr 4.09790 ton/yr 44.2857 ton/yr 0 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Flashing Losses per Tank Working and Standing Losses Working and Standing Losses per Tank	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 56.6509 ton/yr 5.66509 ton/yr
ashing Losses forking Losses tanding Losses anding Losses im Seal Losses eck Fitting Losses eck Seam Losses	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 18941.6 ton/yr 4.09790 ton/yr 44.2857 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Flashing Losses per Tank Working and Standing Losses	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 56.6509 ton/yr
lashing Losses /orking Losses tanding Losses Janding Losses im Seal Losses eck Filting Losses eck Filting Losses	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 189416 ton/yr 4.09790 ton/yr 4.2577 ton/yr 0.826734 ton/yr 0.826734 ton/yr 8.2674 8.2674	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Flashing Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr
lashing Losses forking Losses tanding Losses anding Losses eak Fitting Losses eck Fitting Losses eck Seam Losses /orking Losses per Tank	Confyr 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 18941.6 ton/yr 4.3871 ton/yr 4.3870 ton/yr 4.2857 ton/yr 0 ton/yr 0.326734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 18941.0 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank International Cosses per Tank Flashing Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Es : Tabulated Data Mass Flows Standing Losses Mass Flows	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 5.65509 ton/yr 5.65509 ton/yr 1894.16 ton/yr
ashing Losses forking Losses boading Losses boading Losses eck Fitting Losses eck Fitting Losses eck Seam Losses forking Losses per Tank	Construction 0 ton/yr 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 18941.6 ton/yr 48.3836 ton/yr 48.3836 ton/yr 48.3836 ton/yr 48.3836 ton/yr 0 ton/yr 44.2857 ton/yr 0 ton/yr 0.265734 ton/yr 0.826734 ton/yr Results Propertia Fiashing Losses Mass Flows Working Losses ton/yr 0 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Flashing Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Working and Standing Losses Standing Losses Per Tank Morking and Standing Losses per Tank Loading Losses per Tank Standing Losses Per Tank Mass Flows Standing Losses Flows yr tonlyr	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 5.66509 ton/yr 1894.16 ton/yr Rim Seal Losses Mass Flow ton/yr ton/yr
ashing Losses forking Losses tanding Losses anding Losses eck Fitting Losses eck Seam Losses forking Losses forking Losses per Tank	O ton/yr O ton/yr 8.26734 ton/yr 43.3836 ton/yr 43.3836 ton/yr 18941.6 ton/yr 4.09790 ton/yr 4.2857 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr Con/yr 0.826734 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Base Flows Standing Losses Mass Flows yr 0.0320512	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 5.66509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 1894.20 ton/yr 20 1.15288 12.45
ashing Losses forking Losses tanding Losses ading Losses im Seal Losses eck Fitting Losses eck Fitting Losses corking Losses forking Losses per Tank <u>index</u> Propane Isobutane	Constitution Constitution 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 48.3836 ton/yr 48.3836 ton/yr 189941.6 ton/yr 49.09790 ton/yr 4.2657 ton/yr 0 ton/yr 44.2657 ton/yr 0 ton/yr 0.826734 ton/yr 0 ton/yr 0.826734 ton/yr 0 ton/yr 0.826734 ton/yr Results Propertia Teshing Losses Mass Flows Working Losses ton/yr 0 0	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Fiashing Losses per Tank Working and Standing Losses Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank es : Tabulated Data Mass Flows yr tonlyr 0.0320512 13.612 0.0330491 4.7685	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 1894.20 Con/yr 1894.20 1.15288 12.45 54 0.403877 4.364
ashing Losses orking Losses anding Losses anding Losses m Seal Losses ack Fitting Losses ack Fitting Losses orking Losses per Tank Index Propane Isobutane Butane	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 48.3836 ton/yr 18941.6 ton/yr 4.98790 ton/yr 4.98790 ton/yr 44.2857 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Standing Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Base Flows Standing Losses per Tank Deck Standing Losses Working and Standing Losses Standing Losses Per Tank Doading Losses Per Tank Distributed Data Distribu	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 20 1.15288 12.455 20 1.15288 12.45 24 0.403877 4.364 14 1.07915 11.66
ashing Losses orking Losses anding Losses anding Losses m Seal Losses ck Fitting Losses ck Seam Losses orking Losses per Tank Index Propane Isobutane Butane Isopentane	Construction 0 ton/yr 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 189416 ton/yr 40.39790 ton/yr 44.2857 ton/yr 0 ton/yr 44.2857 ton/yr 0 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Wass Flows Standing Losses Per Tank 0.0320512 0.0303491 4.768 0.117948 0.105156	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.384 14 1.07915 11.66 30 0.387341 4.185
ashing Losses orking Losses anding Losses m Seal Losses exk Feitting Losses exk Ream Losses forking Losses per Tank Index Propane Isobutane Butane Isopentane Pentane	Results Proper 0 ton/yr 8.26734 ton/yr 43.3336 ton/yr 48.3336 ton/yr 1899/4.6 ton/yr 4.90790 ton/yr 44.2657 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0 0.826734 ton/yr 0 0.826734 ton/yr 0 0.826734 ton/yr 0	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Bes : Tabulated Data Mass Flows Vor 0.0320512 0.0320519 0.117948 0.117948 0.117948 0.166156 4.5733 0.160063	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.384 14 1.07915 11.66 30 0.387341 4.185
ashing Losses forking Losses anding Losses anding Losses im Seal Losses cok Fitting Losses cok Seam Losses forking Losses per Tank Index Propane Isobutane Butane Isopentane	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 198416 ton/yr 43.3836 ton/yr 198416 ton/yr 4.09790 ton/yr 4.2857 ton/yr 0 ton/yr 0.826734 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Working and Standing Losses Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank 0.0320512 13.612 0.0320512 13.612 0.0303491 4.768 0.117948 12.741 0.160063 5.2026 0 0	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.364 14 1.07915 11.66 30 0.387341 4.185 57 0.440648 4.762 0 0 0
ashing Losses orking Losses anding Losses adding Losses bading Losses exk Fitting Losses ack Seam Losses orking Losses per Tank Index Propane Isobutane Butane Butane Isopentane Pentane	Results Proper 0 ton/yr 8.26734 ton/yr 43.3336 ton/yr 48.3336 ton/yr 1899/4.6 ton/yr 4.90790 ton/yr 44.2657 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0 0.826734 ton/yr 0 0.826734 ton/yr 0 0.826734 ton/yr 0	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Bes : Tabulated Data Mass Flows Vor 0.0320512 0.0320519 0.117948 0.117948 0.117948 0.166156 4.5733 0.160063	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.364 14 1.07915 11.66 30 0.387341 4.185 57 0.440648 4.762 0 0 0
ashing Losses forking Losses anding Losses anding Losses bit Sean Losses eck Fitting Losses eck Seam Losses forking Losses per Tank Index Propane Isobutane Butane Butane Isopentane Pentane Qcicipentane	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 18941.6 ton/yr 43.3836 ton/yr 18941.6 ton/yr 4.09790 ton/yr 4.2577 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.900000000000000000000000000000000000	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Working and Standing Losses Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank 0.0320512 13.612 0.0320512 13.612 0.0303491 4.768 0.117948 12.741 0.160063 5.2026 0 0	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.364 14 1.07915 11.66 53 0.4040646 4.762 0 0 0 19 0.221429 2.392
ashing Losses forking Losses anding Losses anding Losses m Seal Losses ack Fitting Losses ack Seam Losses corking Losses per Tank	Constits Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 189416 ton/yr 43.3836 ton/yr 189416 ton/yr 44.2857 ton/yr 0 ton/yr 0 ton/yr 0 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0 0.826734 ton/yr 0 0.826734 ton/yr 0.826734 ton/yr 0	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Flashing Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Working and Standing Losses Standing Losses per Tank Loading Losses per Tank Morking and Standing Losses Standing Losses Per Tank Loading Losses per Tank 0.03020512 10.0303491 0.17948 0.117948 0.117948 0.188602 2.6143 0.17842	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.364 14 1.07915 11.66 53 0.4040646 4.762 0 0 0 19 0.221429 2.392
lashing Losses /orking Losses tanding Losses anding Losses eck Fitting Losses eck Seam Losses /orking Losses per Tank Index Isobutane Butane Isopentane Butane Isopentane Pentane Cyclopentane i+C6 n.Hexane Methylcylopentane	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 189416 ton/yr 4.09790 ton/yr 4.257 ton/yr 0.826734 ton/yr 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.90000 0.90000 0.90000 0.900000 0.900000000 0.900000000000000000000000000000000000	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Bes: Tabulated Data 0.0320512 13.612 0.0320512 13.612 0.0303031 4.768 0.117948 12.741 0.16065 4.5733 0.188602 2.6142 0 0	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.364 12.45 54 0.403877 4.364 14 1.07915 11.66 30 0.387341 4.185 57 0.440646 4.762 0 0 0 159 0
ashing Losses orking Losses anding Losses im Seal Losses exk Fitting Losses exk Seam Losses forking Losses per Tank Index Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene	Construction Construction 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 48.3836 ton/yr 18941.6 ton/yr 4.09790 ton/yr 44.2857 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr Results Properti Ton/yr Ton/yr O ton/yr 0.826734 ton/yr Ton/yr Ton/yr O ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Bes : Tabulated Data * Mass Flows Vor 0.0320512 0.0320513 0.117948 0.117948 0.117948 0.117948 0.117949 0.117948 0.117949 0.117949 0.117942 0.117943 0.117944 1.11794<	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.364 14 0.403877 4.364 14 0.403877 4.364 14 0.403877 4.364 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ashing Losses orking Losses anding Losses anding Losses sck Fitting Losses sck Fitting Losses orking Losses per Tank	Results Proper 0 ton/yr 8.26734 ton/yr 40.3836 ton/yr 43.3836 ton/yr 18941.6 ton/yr 4.99790 ton/yr 44.2857 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr 0.9200 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Working and Standing Losses Working and Standing Losses Working and Standing Losses Working and Standing Losses Vort 10.0100 Mass Flows Standing Losses Mass Flows vr tonlyr 0.03003491 4.7685 0.117948 12.741 0.106063 5.2002 0 0 0.1186602 2.6143 0 0	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 120 1.15288 20 1.15288 21 1.1528 30 0.0387341 30 0.387341 31 0.416807 32 0.0221429 22 0.00793926 0 0 0 0
ashing Losses forking Losses tanding Losses im Seal Losses eck Fitting Losses eck Seam Losses forking Losses per Tank Index Propane Isobutane Butane Butane Isopentane Butane Sopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 198416 ton/yr 40.90790 ton/yr 4.2857 ton/yr 0 ton/yr 0.826734 ton/yr 198416 ton/yr 4.2857 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr 0.9000 ton/yr	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Best Tabulated Data Mass Flows Standing Losses Mass Flows yr tonlyr 0.0320512 13.612 0.0303491 4.768 0.117948 12.741 0.160063 5.2026 0 0 0.188602 2.6141 0 0 0.144862 0.093732 0 0 0 0 0.0366299 0.12453	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1995.10 t
Iashing Losses forking Losses tanding Losses anding Losses ext Seam Losses eck Fitting Losses eck Seam Losses forking Losses per Tank Index Propane Isobutane Butane Butane Butane Butane Butane Cyclopentane - Pentane Cyclopentane - Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane - LC7	Results Proper 0 ton/yr 8.26734 ton/yr 43.336 ton/yr 43.336 ton/yr 43.336 ton/yr 43.336 ton/yr 43.09790 ton/yr 43.2857 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr Results Properti Flashing Losses Mass Flows ton/yr 0	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Base Flows Standing Losses Per Tank Names Flows Standing Losses Mass Flows yr tonlyr 0.0320512 13.612 0.03205491 4.7686 0.117948 12.741 0.106156 4.5733 0.106063 5.2026 0 0 0.188602 2.6143 0.173542 1.7475 0 0 0.0366299 0.12453 0 0	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 566.509 ton/yr 566.509 ton/yr 1894.16 ton/yr 20 1.15288 2000 1.24 20 1.15288 2000 1.24 20 1.15288 2000 1.24 21 2.45 24 0.403877 4.364 14 0.07915 1.166 30 0.387341 4.185 37 0.440646 4.762 0 0 0 39 0.221429 2.392 51 0.148007 1.599 0 0 0 22 0.0079326 0.08579 0 0 0 32 0.0019326 0.1139 0 0 0 0
ashing Losses forking Losses tanding Losses im Seal Losses eck Fitting Losses eck Seam Losses forking Losses per Tank	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 189416 ton/yr 43.3836 ton/yr 198416 ton/yr 4.09790 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Bashing Losses per Tank Working and Standing Losses Working and Standing Losses Working and Standing Losses Stabulated Data Stabulated Data Stabulated Data Mass Flows Standing Losses Mass Flows vr 0.0320512 0.0303491 0.107948 0.117948 0.160063 0 0.1886002 0 0 0.13622 0 0.0306299 0.12453 0	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 20 1.15288 12.45 24 0.403877 4.364 14 1.07915 11.66 30 0.337341 4.165 37 0.440646 4.762 0 0 0 1.599 0 0.221429 2.392 51 0.148007 1.599 0 0.00793926 0.08579 0 0.00793926 0.08579 0 0 0 32 0.00793926 0.08579 0 0 0 32 0.0105474 0.1139 0 0 0 0
Iashing Losses forking Losses tanding Losses anding Losses ext Seam Losses eck Fitting Losses eck Seam Losses forking Losses per Tank Index Propane Isobutane Butane Butane Butane Butane Butane Cyclopentane - Pentane Cyclopentane - Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane - LC7	Results Proper 0 ton/yr 8.26734 ton/yr 43.336 ton/yr 43.336 ton/yr 43.336 ton/yr 43.336 ton/yr 43.09790 ton/yr 43.2857 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr Results Properti Flashing Losses Mass Flows ton/yr 0	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Basic Standing Losses Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Basic Standing Losses Working and Standing Losses Basic Standing Losses Basic Standing Losses Basic Standing Losses 0.0320512 0.03020512 0.03020512 0.0303091 0.17948 0.117948 0.117948 0.117948 0.117948 0.117948 0.117948 0.117949 0.117942 0.1173542 0.0366299 0.12452 0 0.0366299 0.12452 0 0 0 0 0 0 0 0 0 0 <td>0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.394 14 1.07915 11.66 30 0.387341 4.185 37 0.440646 4.762 0 0 199 0.221429 2.392 51 0.148007 1.599 0 0 0 152 0.00793926 0.08579 0 0 0 152 0.00793926 0.08579 0 0 0 153 0.148399 1.603</td>	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.394 14 1.07915 11.66 30 0.387341 4.185 37 0.440646 4.762 0 0 199 0.221429 2.392 51 0.148007 1.599 0 0 0 152 0.00793926 0.08579 0 0 0 152 0.00793926 0.08579 0 0 0 153 0.148399 1.603
Iashing Losses Vorking Losses Itanding Losses Jeak Fitting Losses Veck Fitting Losses Veck Fitting Losses Veck Seam Losses Vorking Losses per Tank Index Propane Isobutane Butane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methyloyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methyloyclohexane	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 189416 ton/yr 43.3836 ton/yr 198416 ton/yr 4.09790 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Bashing Losses per Tank Working and Standing Losses Working and Standing Losses Working and Standing Losses Stabulated Data Stabulated Data Stabulated Data Mass Flows Standing Losses Mass Flows vr 0.0320512 0.0303491 0.107948 0.117948 0.160063 0 0.1886002 0 0 0.13622 0 0.0306299 0.12453 0	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 56.6509 ton/yr 56.6509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.364 14 1.07915 11.66 30 0.387341 4.185 57 0.440646 4.762 0 0 0 39 0.221429 2.392 51 0.148007 1.599 0 0 0 32 0.00793926 0.08579 0 0 0 32 0.00793926 0.08579 0 0 0 1.599 0 0 0 0 0 1.599 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Tashing Losses Vorking Losses Standing Losses Rim Seal Losses Peck Filting Losses Vorking Losses Vorking Losses per Tank	Results Proper 0 ton/yr 8.26734 ton/yr 43.3336 ton/yr 189416 ton/yr 4.09790 ton/yr 4.2857 ton/yr 0 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.826734 ton/yr 0.9300	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Deck Seam Losses per Tank Working and Standing Losses Working and Standing Losses per Tank Loading Losses per Tank Bes : Tabulated Data Mass Flows V0 0.03020512 0.03020512 0.03020512 0.117948 0.117948 0.117948 0.117948 0.117948 0.117948 0.117948 0.117948 0.117948 0.117948 0.117949 0.117949 0.114862 0.0090730 0 0.0366299 0.12452 0 0 0 0 0 0 0 0 0.0366299 0.12452 0 0	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 0 ton/yr 566.5690 ton/yr 566.5690 ton/yr 1894.16 ton/yr 20 1.15288 120555 Mass Flow ton/yr 20 1.15288 120555 12.45 24 0.403877 4.364 14 1.07915 11.66 37 0.440646 4.762 0 0 0 19 0.221429 2.392 51 0.148007 1.599 0 0 0 12 0.00793926 0.08579 0 0 0 12 0.00793926 0.08579 0 0 0 13 0.0105474 0.1139 1603 24 0.0109278 0.1180
Iashing Losses Working Losses Standing Losses Sim Seal Losses Deck Fitting Losses Deck Fitting Losses Peck Seam Losses Working Losses per Tank Index Propane Isobutane Butane Butane Isopentane Pentane Pentane Cyclopentane Pentane Cyclopentane LC6 n-Hexane Mettylcyclopentane Benzene Cyclohexane 2,2/a-Trimethylpentane 2,2/a-Trimethylpentane 2,4-Trimethylpertane Cyclohexane n-Heptane Toluene	Results Proper 0 ton/yr 8.26734 ton/yr 48.3836 ton/yr 48.3836 ton/yr 18941.6 ton/yr 4.9870 ton/yr 44.2857 ton/yr 0 ton/yr 0.826734 ton/yr 0.926734 ton/yr 0.9277 0.9277 0.9278 0.9278 0.9279 0.9279 0.9279 0.9279 0.9279 0.9279 0.9279	Standing Losses per Tank Rim Seal Losses per Tank Deck Fitting Losses per Tank Deck Seam Losses per Tank Base Standing Losses Working and Standing Losses Working and Standing Losses Standing Losses per Tank Loading Losses per Tank Standing Losses Working and Standing Losses Standing Losses Per Tank Loading Losses Per Tank Standing Losses Per Tank Standing Losses Per Tank Loading Losses Per Tank Standing Losses Per Tank Standing Losses Mass Flows y 0.0303491 0.03020512 0.117948 0.117948 0.117948 0.117948 0.117842 0.118602 0 0 0.0144862 0 0 0 0 0 0 0 0 0 0 0	0.409790 ton/yr 4.42857 ton/yr 0 ton/yr 5.66509 ton/yr 5.66509 ton/yr 1894.16 ton/yr 1894.16 ton/yr 1894.16 ton/yr 1894.16 ton/yr 1894.16 ton/yr 20 1.15288 12.45 54 0.403877 4.364 14 1.07915 11.66 30 0.387341 4.185 57 0.440646 4.762 0 0 0 13 0.221429 2.392 51 0.440647 1.599 2.392 51 0.040647 1.599 0 0 0 13 0.021429 2.392 51 0.040547 0.08579 0 0 0 14 0.1139 0 0 0 15 0.0609051 0.14809 16 0.018278 0.1180 16 0.018278 0.1180 16 0.018278 0.1180 16 0.018278 0.1180 17 0.04653 0.04655 1.590 0.04655 0.04655 1.590 0.04655 0.04555 1.590 0.045555 1.590 0.04555 1.590 0.04555 1.590 0.04555 1

Decane Decanes Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - Inlet Oil		0				
Decanes Plus - GBS1 Oil			0	0	0	
		0	0	0	0	
Decanes Plus Inlet Oil		0	0	0	0	
		0	0	0	0	
Decanes Plus - North Header Oil		0	5.32645	0.000556963	4.71726E-05	0.0005097
Decanes Plus - South Header Oil		0	0	0	0	
Decanes Plus - Stabilizer Outlet Oil		0	0	0	0	
Undecanes Plus		0	0	0	0	
Index	Deck Seam Losses Mass Flows	Loadir	ng Losses Mass Flows	Working and Standing Losses Mass Flows		
	ton/yr	<u>^</u>	ton/yr	ton/yr		
Propane		0	5328.93	13.6440		
Isobutane		0	1866.83	4.79889		
Butane		0	4988.11	12.8594		
Isopentane		0	1790.39	4.67946		
Pentane		0	2036.78	5.36273		
Cyclopentane		0	0	0		
i-C6		0	1023.50	2.80299		
n-Hexane		0	684.127	1.92105		
Methylcyclopentane		0	0	0		
Benzene		0	36.6974	0.108224		
Cyclohexane		0	0	0		
2,2,4-Trimethylpentane		0	48.7527	0.161162		
i-C7		0	0	0		
Methylcyclohexane		0	0	0		
n-Heptane		0	685.940	2.30122		
Toluene		0	50.5112	0.193040		
Octane		0	319.182	1.66573		
Ethylbenzene		0	5.74827	0.0355635		
m-Xylene		0	27.0552	0.180944		
Nonane		0	48.8211	0.609534		
Decane		0	0	0		
Decanes Plus - Closed Drain Oil		0	0	0		
Decanes Plus - GBS1 Oil		0	0	0		
Decanes Plus - Inlet Oil		0	0	0		
Decanes Plus - North Header Oil		0	0.218044	5.32700		
Decanes Plus - South Header Oil		0	0	0		
Decanes Plus - Stabilizer Outlet Oil		0	0	0		
Undecanes Plus		0	0	0		

	User Specification St	Immary		
	For Reported Object			
ilient Name: XTO ENERGY INC		Job:		IFR Ta
.ocation: Cowboy CDP		005.		in it it it
lowsheet:				
	Flowsheet : IFR Oil St	orage		
	PStream : 2024 Stabilized Oil N	orth Header		
Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header!Phases!Total!Prop	perties!Temperature		74	°F
Project!Flowsheets!!FR Oil Storage!PStreams!2024 Stabilized Oil North Header!Phases!Total!Prop			10	psig
Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header!Phases!Total!Prop	perties!Std Liquid Volumetric Flow		17500	sgpr
Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header!Phases!Total!Com	position!Mole Fraction	Nitrogen, Atomic	3.90E-02	%
		Methane	2.50E-02	%
		Ethane	0.124	%
		Propane	1.36	%
		Isobutane	0.977	%
		Butane	3.797	%
		Isopentane	2.753	%
		Pentane	4.151	%
		i-C6	4.095	%
		n-Hexane	3.768	%
		Benzene	0.347	%
		2,2,4-Trimethylpentane	0.6	%
		n-Heptane Toluene	10.253 1.3	%
		Octane	1.3 13.93	%
		Ethylbenzene	0.368	%
		m-Xylene	1.971	%
		Nonane	7.073	%
		Decanes Plus - North Header Oil	43.069	%
	PStream : 2024 Stabilized Oil No	th Header - 2		
		th Header - 2	74	
roject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure	th Header - 2	10	°F psig
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	1h Header - 2	10 17500	psig sgpr
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	th Header - 2 Nitrogen, Atomic Methane	10 17500 3.90E-02	psig sgpn %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Methane	10 17500 3.90E-02 2.50E-02	psig sgpn % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Methane Ethane	10 17500 3.90E-02 2.50E-02 0.124	psig sgpn % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Methane Ethane Propane	10 17500 3.90E-02 2.50E-02 0.124 1.36	psig sgpr % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane	10 17500 3.90E-02 2.50E-02 0.124	psig sgpr % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797	psig sgpr % % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977	psig sgpr % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Isopentane	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753	psig sgpr % % % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Isopentane Pentane	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768	psic sgpr % % % % % % % % %
Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Isopentane Pentane i-C6 n-Hexane Benzene	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095	psig sgpr % % % % % % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Isopentane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6	psig sgpn % % % % % % % % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Isopentane Pentane i-C6 n-Hexane Benzene 2.2,4-Trimethylpentane n-Heptane	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253	psig sgpr % % % % % % % % % % % % % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Isopentane Pentane i-C6 n-Hexane Benzene 2.2,4-Trimethylpentane n-Heptane Toluene	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3	psig sgpr % % % % % % % % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Isopentane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 1.3 1.393	psig sgpr % % % % % % % % % % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Isopentane Pentane i-C6 n-Hexane Benzene 2.2,4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368	psig sgpr % % % % % % % % % % % % % % % % % % %
Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2,4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971	psig sgpr % % % % % % % % % % % % % % % % % % %
rrojectlFlowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P rroject!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Isopentane Pentane Pentane i-C6 n-Hexane Benzene 2.2,4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971 7.073	psig sgpr % % % % % % % % % % % % % % % % % % %
Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2,4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971	psig sgpn % % % % % % % % % % % % % % % % % % %
Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P Project!Flowsheets!IFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!P	Properties!Pressure Properties!Std Liquid Volumetric Flow	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - North Header Oil	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971 7.073	psig sgpr % % % % % % % % % % % % % % % % % % %
roject!FlowsheetsIIFR Oil StorageIPStreams!2024 Stabilized Oil North Header - 2!Phases!TotalIP roject!FlowsheetsIIFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!TotalIP roject!FlowsheetsIIFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!Total!C	PropertiesIPressure PropertiesIStd Liquid Volumetric Flow CompositionIMole Fraction Block : Four 50 KBBL IFR	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - North Header Oil	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971 7.073	psig sppn % % % % % % % % % % % % % % % % % %
Project!FlowsheetsIIFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!TotalIP Project!FlowsheetsIIFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!TotalIP Project!FlowsheetsIIFR Oil Storage!PStreams!2024 Stabilized Oil North Header - 2!Phases!TotalIC Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper	PropertiesIPressure PropertiesIStd Liquid Volumetric Flow Composition!Mole Fraction Block : Four 50 KBBL IFR rtiesITank Geometry rtiesITank Geometry	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - North Header Oil	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971 7.073 43.069 Internal Floating Roof Tank 35.74	psig sgpr % % % % % % % % % % % % % % % % % % %
Project/FlowsheetsIIFR Oil Storage/PStreams/2024 Stabilized Oil North Header - 2!Phases!TotalIP Project/FlowsheetsIIFR Oil Storage!PStreams/2024 Stabilized Oil North Header - 2!Phases!TotalIP Project/FlowsheetsIIFR Oil Storage!PStreams/2024 Stabilized Oil North Header - 2!Phases!Total!C Project/FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper	PropertiesIPressure PropertiesIStd Liquid Volumetric Flow CompositionIMole Fraction Block : Four 50 KBBL IFR ritesITank Geometry ritesISHeII Length ritesISHeII Digmeter	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - North Header Oil	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 1.3 1.3 1.3,93 0.368 1.971 7.073 43.069	psig sgpr % % % % % % % % % % % % % %
ProjectlFlowsheetsIIFR Oil StoragelPStreams/2024 Stabilized Oil North Header - 2!PhasesITotalIP ProjectlFlowsheetsIIFR Oil StoragelPStreams/2024 Stabilized Oil North Header - 2!PhasesITotalIP ProjectlFlowsheetsIIFR Oil StoragelPStreams/2024 Stabilized Oil North Header - 2!PhasesITotalIC ProjectlFlowsheetsIIFR Oil StoragelBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper ProjectlFlowsheetsIIFR Oil StoragelBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil StoragelBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil StoragelBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil StoragelBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil StoragelBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil StoragelBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil StoragelBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil StoragelBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper	PropertiesIPressure PropertiesIStd Liquid Volumetric Flow CompositionIMole Fraction Block : Four 50 KBBL IFR rtiesITank Geometry rtiesIShell Length rtiesIShell Diameter rtiesIShell Diameter	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - North Header Oil	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971 7.073 43.069 Internal Floating Roof Tank 35.74 100 4	psig sgpr % % % % % % % % % % % % % % % % % % %
Project/FlowsheetsIIFR Oil Storage/PStreams/2024 Stabilized Oil North Header - 2!Phases!TotalIP Project/FlowsheetsIIFR Oil Storage!PStreams/2024 Stabilized Oil North Header - 2!Phases!TotalIP Project/FlowsheetsIIFR Oil Storage!PStreams/2024 Stabilized Oil North Header - 2!Phases!TotalIP Project/FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!FlowsheetsIIFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Slocks!Four 50 KBBL IFR Tanks!Working and Standing Proper Project!Flowsheets!IFR Oil Storage!Slocks!Four 50 KBBL IFR Tanks!Working and Standing Proper	PropertiesIPressure PropertiesIStd Liquid Volumetric Flow Composition!Mole Fraction Block : Four 50 KBBL IFR ritesITank Geometry ritesIShell Length ritesIShell Diameter ritesINumber of Storage Tanks ritesINumber of Storage Tanks	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - North Header Oil	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 1.3 1.3,93 0.368 1.971 7.073 43.069 Internal Floating Roof Tank 35.74 100 4 Light Organics	psig sgpn % % % % % % % % % % % % % % % % % % %
Project/FlowsheetsIIFR Oil StorageIPStreamsI2024 Stabilized Oil North Header - 2!PhasesITotalIP roject/FlowsheetsIIFR Oil StorageIPStreamsI2024 Stabilized Oil North Header - 2!PhasesITotalIP roject/FlowsheetsIIFR Oil StorageIPStreamsI2024 Stabilized Oil North Header - 2!PhasesITotalIC roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper roject/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standin	PropertiesIPressure PropertiesIStd Liquid Volumetric Flow CompositionIMole Fraction Block : Four 50 KBBL IFR tiesITank Geometry triesIShell Length triesIShell Diameter triesIMaterial Category triesIMaterial Category triesIMaterial Category triesIMaterial Category	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - North Header Oil	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971 7.073 43.069 Internal Floating Roof Tank 35.74 100 4 Light Organics Tan	psig sgpn % % % % % % % % % % % % % % % % % % %
Project/FlowsheetsIIFR Oil Storage/PStreams/2024 Stabilized Oil North Header - 2!Phases!TotalIP Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks!Working and Stan	PropertiesIPressure PropertiesIStd Liquid Volumetric Flow CompositionIMole Fraction Block : Four 50 KBBL IFR rtiesITank Geometry rtiesIShell Length rtiesINumber of Storage Tanks rtiesINumber of Storage Tanks rtiesINumber of Storage Tanks rtiesINumber of Storage Tanks	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - North Header Oil	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971 7.073 43.069 Internal Floating Roof Tank 35.74 100 4 Light Organics Tan Tan	psig sgpr % % % % % % % % % % % % % % % % % % %
Project/FlowsheetsIIFR Oil StorageIPStreams/2024 Stabilized Oil North Header - 2!PhasesITotalIP Project/FlowsheetsIIFR Oil StorageIPStreams/2024 Stabilized Oil North Header - 2!PhasesITotalIP Project/FlowsheetsIIFR Oil StorageIPStreams/2024 Stabilized Oil North Header - 2!PhasesITotalIC Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working and Standing Proper Project/FlowsheetsIIFR Oil StorageIBlocks/Four 50 KBBL IFR Tanks!Working an	PropertiesIPressure PropertiesIStd Liquid Volumetric Flow Composition!Mole Fraction Block : Four 50 KBBL IFR ritesITank Geometry ritesIShell Length ritesIShell Diameter ritesINaterial Category ritesIMaterial Category ritesIMaterial Color ritesIRoof Color ritesIRoof Color ritesIRoof Color	Nethane Ethane Propane Isobutane Butane Butane Pentane i-C6 n-Hexane Benzene 2.2.4-Trimethylpentane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - North Header Oil	10 17500 3.90E-02 2.50E-02 0.124 1.36 0.977 3.797 2.753 4.151 4.095 3.768 0.347 0.6 10.253 1.3 13.93 0.368 1.971 7.073 43.069 Internal Floating Roof Tank 35.74 100 4 Light Organics Tan	psig sgpr % % % % % % % % % % % % % % % % % % %


roject!Flowsheets!IFR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Working and Standing Properties!Use AP 42 Raoult's Vapor Pressure?	TRUE
reject/Flowsheets/FR Of Storage/Blocks/Four 50 KBBL FR Tanks/Floating Roof Properties/Shell Internal Condition	Light Rust
opert Howsteelant Non experience and the second sec	1
opertification of a sense of the sense of th	Rim Mounted
operationsheetsilfF Oil StoragelBlocksFour 50 KBL in K tanksFloating Roof Properties/Access Hath Type	Bolted Cover, Gasketed
opert/FlowsheetsIIFR Oil Storage/Blocks/Four 50 KBBL IFR Tanks/Floating Roof Properties/Access Hatch Quantity	2
opertHowsheetsIIFR OI StorageIBlocksFour 50 KBBL IFR TanksIFloating Roof Properties/Fixed Roof Support Column Well Quantity	1
reject Townseam rom exercise and a construction of the constructio	NA
Tojecti novaneesti IFR Oli StoragelBiockan our oo tode in the transmission and real providence on a contract of the storagelBiockan our of tode IFR transmission and the providence of the storagelBiockan our of tode IFR transmission and the providence of the storagelBiockan our of tode IFR transmission and the providence of the storagelBiockan our of tode IFR transmission and the providence of the storagelBiockan our of tode IFR transmission and the providence of the storagelBiockan our of tode IFR transmission and the providence of the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and the storagelBiockan our of tode IFR transmission and transmissi	Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wiper
Inject: Howsheets IFR foil Storage Blocks Four 50 KBL IFR Tanks Indaming Roof Properties/Slotted Guidepole/Sample Weil Quantity	Sasketed Silding Cover, With Tibat, Tole Sieeve, and Tole Wiper
Ingestimowsheetsilf R On Storage/BlocksFour 50 KBbL (FR TailsFoating Roof Properties/Storage-Hatch/Sample Veri Galanity roject/Flowsheetsilf R On Storage/BlocksFour 50 KBbL (FR TailsFoating Roof Properties/Storage-Hatch/Sample Port	N/A
roject/Flowsheets/FR Oil Storage/BlocksFour 50 KBbL (FR TailksFloating Roof Properties/Vacuum Breaker Quantity	2
topecur/lowsheets/IFC 01 storage/Blocks/Four 50 KBbL (FX Tains/Floating Roof Properties/Deck/Protect/Lowsheets/FQ Uperties/Deck/FD (FX Figure 1) (FX Figure	N/A
topectificowsheetsIFR Oil storageBlocksFour 50 KBbL (FR TainsFroduing Roof Properties/Deck Dain Type	N/A 44
roject/FlowsheetsI/FR Oil Storage/Blocks/Four 50 KBBL IFR Tanks/Floating Roof Properties/Rim Vent Quantity	1
roject!Flowsheets!!FR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Floating Roof Properties!Ladder Well Type	N/A
roject!Flowsheets!!FR Oil StoragelBlocks!Four 50 KBBL IFR Tanks!Floating Roof Properties!Ladder-Slotted Guidepole Combination Well Type	Ladder Sleeve, Gasketed Sliding Cover
roject/Flowsheets!!FR Oil Storage!Blocks/Four 50 KBBL IFR Tanks/Floating Roof Properties!Ladder-Slotted Guidepole Combination Well Quantity	1
roject!Flowsheets!!FR Oil Storage!Blocks!Four 50 KBBL IFR Tanks!Loading Properties!Control Efficiency	0 %
Biock : Ten 100 KBBL IFR Tanks	Internal Floating Roof Tank
Troject/Flowsheets/IFR Oil Storage/Blocks/Ten 100 KBBL /FR Tanks/Working and Standing Properties/Tank Geometry http://flowsheets/IFR Oil Storage/Blocks/Ten 100 KBBL /FR Tanks/Working and Standing Properties/Tank Used	•
roject/Flowsheets/FR Oil Storage/Blocks/Ten 100 KBBL /FR Tanks/Working and Standing Properties/Shell Length	50 ft
rojectFlowsheetsIFR Qii StorageIBlocksITen 100 KBBL IFR Tanks/Working and Standing Properties/Shell Diameter	130.6 ft
roject/FlowsheetsIJFR Oil Storage/Blocks/Ten 100 KBBL IFR Tanks/Working and Standing Properties/Number of Storage Tanks	10 Light Operation
roject!Flowsheets!!FR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Material Category	Light Organics
roject!Flowsheets!!FR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Vapor Balanced Tank?	FALSE
roject!Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Shell Color	Tan
roject!Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Roof Color	Tan
roject/Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Location	Roswell, NM
roject/Flowsheets/IFR Oil Storage/Blocks/Ten 100 KBBL IFR Tanks/Working and Standing Properties/Time Frame	Year
roject!Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Known Liquid Bulk Temperature?	TRUE
roject!Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Liquid Bulk Temperature	100 °F
roject!Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Use AP 42 Raoult's Vapor Pressure?	TRUE
roject!Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Flashing Temperature	93.58 °F
roject!Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Working and Standing Properties!Include Short Term Emissions	FALSE
roject!Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Floating Roof Properties!Shell Internal Condition	Light Rust
roject!Flowsheets!IFR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Floating Roof Properties!Number of Roof Support Columns	7
rroject!Flowsheets!!FR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Floating Roof Properties!Support Column Diameter Type	Unknown
roject!Flowsheets!!FR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Floating Roof Properties!Secondary Seal Type #1	Rim Mounted
roject/Flowsheets/IFR Oil Storage/Blocks/Ten 100 KBBL IFR Tanks/Floating Roof Properties/Access Hatch Type	Bolted Cover, Gasketed
roject/Flowsheets/IFR Oil Storage/Blocks/Ten 100 KBBL IFR Tanks/Floating Roof Properties/Access Hatch Quantity	2
roject/Flowsheets/IFR Oil Storage/Blocks/ITen 100 KBBL IFR Tanks/Floating Roof Properties/Fixed Roof Support Column Well Quantity	7
roject/FlowsheetsIJFR Oil Storage/Blocks/Ten 100 KBBL IFR Tanks/Floating Roof Properties/Unslotted Guidepole and Well Type	NA
reject Towareetain Non obstrate BlocksTen 100 KBBL IFR Tanks Floating Roof Properties/Distreted Guidepole/Sample Well Type	Gasketed Sliding Cover, With Float, Pole Sleeve, and Pole Wiper
Inject/FlowsheetsIIFR Oil Storage/BlocksITen 100 KBbL (FR TainsFloating Kool Properties/Slotted Guidepue/Sample Weil Quantity	4
Toject/Flowsheets/IFR Oil Storage/Blocks/Ten 100 KBbL /FR Tailss/Floating Kool Properties/Sidueg-Hatch/Sample Veril Quanty Toject/Flowsheets/IFR Oil Storage/Blocks/Ten 100 KBbL /FR Tailss/Floating Kool Properties/Sidueg-Hatch/Sample Port Type	N/A
rigect/howsneets/IFR OI subrage/Biocks11er 100 KBL FR Tains/Hoating Kool Properties/Jacuar Breaker Type	Weighted Mechanical Actuation, Gasketed
InjectificwsheetslifFx Oli Storage/Blockslifen 100 KbbL iFX tainsiriodauing kool Properties/Vacuum Breaker Lype TojectificwsheetslifFx Oli Storage/Blockslifen 100 KBbL iFX tainsiriodauing kool Properties/Vacuum Breaker Quantity	vieignieu viechanical Actuation, Gaskeleu
rojectirilowsneetsiirk Oii storagelsiocksiiren 100 KBL IFK Tanksirloatiing kool PropeniesiVacuum breaker Quantiy rojectificusheetsiirk Oii Storagelsiocksiiren 100 KBL IFK Tanksirloatiing kool ProperiesiDeck Drain Type	 N/A
	N/A 49
rojectFlowsheetsIIFR OI StorageBlocksTen 100 KBBL IFR TanksIFloating Roof PropertiesICenter Deck Leg Quantity encletEwerbertIEFD OI StorageBlocksTen 100 KBBL IFR TanksIFloating Roof PropertiesICenter Deck Leg Quantity	
rojectFlowsheetsIFR Oil StorageIBlocksITen 100 KBBL IFR TanksFloating Roof PropertiesIRim Vent Quantity	3 N/A
roject/Flowsheets/IFR Oil Storage/Blocks/Ten 100 KBBL/FR Tanks/Floating Roof Properties/Ladder Well Type	
rojectFlowsheetsIFR Qii StorageIBlocksTen 100 KBBL IFR TanksFloating Roof PropertiesILadder-Slotted Guidepole Combination Well Type	Ladder Sleeve, Gasketed Sliding Cover
roject/FlowsheetsIJFR Oil Storage/Blocks/Ten 100 KBBL IFR Tanks/Floating Roof Properties/Ladder-Slotted Guidepole Combination Well Quantity	1
roject!Flowsheets!!FR Oil Storage!Blocks!Ten 100 KBBL IFR Tanks!Loading Properties!Control Efficiency	0 %
Environments	
CDP - STAB Sample	
roject!Environments!CDP - STAB Sample!Flash Properties!Only Isothermal Property Flash	FALSE
roject/Environments/CDP - STAB Sample/Flash Properties/Flash Polish Step	TRUE
roject/Environments/CDP - STAB Sample/Flash Properties/Rachford-Rice Style Algorithm	TRUE

Report Navigator can be activated via the ProMax Navigator Toolbar. An asterisk (*), throughout the report, denotes a user specified value. A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

VOC (lb/kscf)

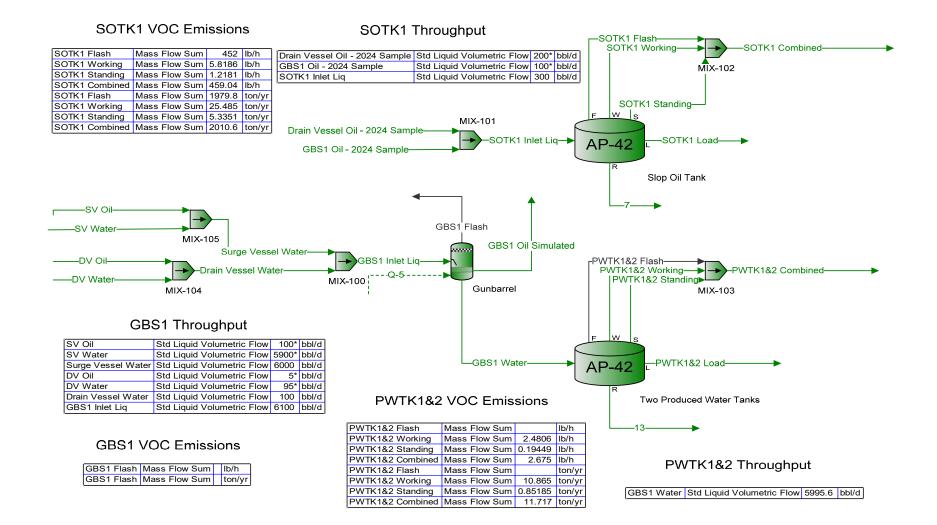
Mass Flow Sum	0.082286	lb/h
Mass Flow Sum	0.0731	lb/h
Mass Flow Sum	14.636	lb/h
Mass Flow Sum	66.002	lb/h
Mass Flow Sum	10.977	lb/h
Mass Flow Sum	3.6801	lb/h
Mass Flow Sum	1.2895	lb/h
Mass Flow Sum	0.54893	lb/h
Mass Flow Sum	61.67	lb/h
Mass Flow Sum	16.615	lb/h
Mass Flow Sum	0.090212	lb/h
Mass Flow Sum	118.31	lb/h
Mass Flow Sum	17.137	lb/h
	Mass Flow Sum Mass Flow Sum	Mass Flow Sum 14.636 Mass Flow Sum 66.002 Mass Flow Sum 10.977 Mass Flow Sum 3.6801 Mass Flow Sum 1.2895 Mass Flow Sum 0.54893 Mass Flow Sum 61.67 Mass Flow Sum 16.615 Mass Flow Sum 0.90212 Mass Flow Sum 118.31

Process Streams	Condensate OVH Compressor @ 1000 scfh	Cryo Residue Gas @ 1000 scfh	FL1 CDP HPF (V-6809) @ 1000 scfh	FL1 CDP LPF (V-6808) @ 1000 scfh
Composition Status	Solved	Solved	Solved	Solved
Phase: Total From Bio	ock:	-	_	-
To Bloc		-		-
Mole Fraction	%	%	%	%
Water	0*	0*	0*	0*
Hydrogen Sulfide	0.001* 0.721*	0.001* 0.814*	0.000117498* 2.43011*	9.06764E-05* 0.902587*
Nitrogen, Atomic Carbon Dioxide	0.721	0.185*	0.167878*	0.137751*
Methane	71.14		82.4668*	36.7250*
Ethane	16.531	11.626*	7.26471*	19.4227*
Propane	6.732*		5.06690*	19.6265*
Isobutane	0.823*	0.002*	0.499504*	3.43440*
Butane	1.707*	0*	0.847090*	8.49059*
Isopentane Pentane	0.387* 0.449*	0* 0*	0.0810339* 0.0910244*	2.43983* 2.93476*
Cyclopentane	0.449		0.0910244	2.93470
i-C6	0.266*		0.0880580*	1.25556*
n-Hexane	0.227*		0.0910785*	0.962155*
Methylcyclopentane	0*	0*	0*	0*
Benzene	0.017*		0.107914*	0.124462*
Cyclohexane	0.122*		0.127519*	0.536305*
2,2,4-Trimethylpentane i-C7	0*		0.0198069* 0*	0.0876988* 0*
Methylcyclohexane	0.145*		0.134588*	0.538752*
n-Heptane	0.388*	0*	0.223997*	1.28271*
Toluene	0.033*	0*	0.148420*	0.174120*
Octane	0.135*		0.124801*	0.843332*
Ethylbenzene	0*	0*	0.00188596*	0.0100975*
m-Xylene Nonane	0.006* 0*	0* 0*	0.0167850* 0*	0.0706828* 0*
Decane	0*	0*	0*	0*
Decanes Plus - Closed Drain Oil	0*	0*	- 0*	0*
Decanes Plus - GBS1 Oil	0*	0*	0*	0*
Decanes Plus - Inlet Oil	0*		0*	0*
Decanes Plus - North Header Oil	0*		0*	0*
Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil	0* 0*		0* 0*	0* 0*
Undecanes Plus	0*		0*	0*
Mass Fraction	%	%	%	%
Water	0*	0*	0*	0*
Hydrogen Sulfide	0.00149055*		0.000200284*	8.35999E-05*
Nitrogen, Atomic	0.441680*	0.643045*	1.70241*	0.342000*
Carbon Dioxide Methane	0.327214* 49.9139*	0.459197* 78.9862*	0.369524* 66.1688*	0.164000* 15.9380*
Ethane	21.7398	19.7165*	10.9255*	15.7990*
Propane	12.9830*	0.186525*	11.1748*	23.4120*
Isobutane	2.09208*	0.00655621*	1.45206*	5.40000*
Butane	4.33923		2.46249*	13.3500*
Isopentane	1.22117*		0.292415*	4.76200*
Pentane Cyclopentane	1.41681* 0*	0* 0*	0.328466* 0*	5.72800* 0*
i-C6	1.00254*	-	0.379538*	2.92700*
n-Hexane	0.855551	0*	0.392557*	2.24300*
Methylcyclopentane	0*	0*	0*	0*
Benzene	0.0580768*		0.421598*	0.263000*
Cyclohexane	0.449055	0*	0.536761*	1.22100*
2,2,4-Trimethylpentane i-C7	0* 0*	0* 0*	0.113160* 0*	0.271000* 0*
Nethylcyclohexane	0.622665*	0*	0.660937*	1.43100*
n-Heptane	1.70038*	0*	1.12259*	3.47700*
Toluene	0.132982*	0*	0.683970*	0.434000*
Octane	0.674443*	0*	0.713011*	2.60600*
Ethylbenzene	0*	0*	0.0100142*	0.0290000*
m-Xylene	0.0278593*		0.0891264*	0.203000*
Nonane Decane	0* 0*	0* 0*	0* 0*	0* 0*
Decane Decanes Plus - Closed Drain Oil	0*		0*	0*
Decanes Plus - GBS1 Oil	0*		0*	0*
		-	-	-

Decanes Plus - Inlet Oil	0*	0*	0*	0*
Decanes Plus - North Header Oil	0*	0*	0*	0*
Decanes Plus - South Header Oil	0*	0*	0*	0*
Decanes Plus - Stabilizer Outlet Oil	0*	0*	0*	0*
Undecanes Plus	0*	0*	0*	0*
Mass Flow	lb/h	lb/h	lb/h	lb/h
Water	0*	0*	0*	0*
Hydrogen Sulfide	0.000898085*	0.000898085*	0.000105524*	8.14351E-05*
Nitrogen, Atomic	0.266120*	0.300446*	0.896950*	0.333144*
Carbon Dioxide	0.197152*	0.214548*	0.194691*	0.159753*
Methane	30.0740*	36.9043*	34.8623*	15.5253*
Ethane	13.0986*	9.21205*	5.75631*	15.3899*
Propane	7.82251*	0.0871491*	5.88768*	22.8057*
Isobutane	1.26052*	0.00306322*	0.765046*	5.26016*
Butane	2.61446*	0*	1.29741*	13.0043*
Isopentane	0.735777*	0*	0.154064*	4.63868*
Pentane	0.853654*	0*	0.173059*	5.57967*
Cyclopentane	0*	0*	0*	0*
i-C6	0.604048*	0*	0.199967*	2.85120*
n-Hexane	0.515484*	0*	0.206826*	2.18492*
Methylcyclopentane	0*	0*	0*	0*
Benzene	0.0349923*	0*	0.222127*	0.256189*
Cyclohexane	0.270564*	0*	0.282803*	1.18938*
2,2,4-Trimethylpentane	0*	0*	0.0596208*	0.263982*
i-C7	0*	0*	0*	0*
Methylcyclohexane	0.375167*	0*	0.348228*	1.39394*
n-Heptane	1.02451*	0*	0.591459*	3.38696*
Toluene	0.0801237*	0*	0.360363*	0.422761*
Octane	0.406364*	0*	0.375664*	2.53851*
Ethylbenzene	0*	0*	0.00527618*	0.0282490*
m-Xylene	0.0167857*	0*	0.0469580*	0.197743*
Nonane	0*	0*	0*	0*
Decane	0*	0*	0*	0*
Decanes Plus - Closed Drain Oil	0*	0*	0*	0*
Decanes Plus - GBS1 Oil	0*	0*	0*	0*
Decanes Plus - Inlet Oil	0*	0*	0*	0*
Decanes Plus - North Header Oil	0*	0*	0*	0*
Decanes Plus - South Header Oil	0*	0*	0*	0*
Decanes Plus - Stabilizer Outlet Oil	0*	0*	0*	0*
Undecanes Plus	0*	0*	0*	0*
1				

Process Streams		Condensate OVH Compressor @ 1000 scfh	Cryo Residue Gas @ 1000 scfh	FL1 CDP HPF (V-6809) @ 1000 scfh	FL1 CDP LPF (V-6808) @ 1000 scfh
Properties	Status:	Solved	Solved	Solved	Solved
Phase: Total	From Block:		-	-	-
	To Block:	-		-	-
Property	Units				
Temperature	°F	64*	72*	132*	137
Pressure	psig	240*	1060*	1*	1
Mole Fraction Vapor	%	98.0440	100	100	100
Mole Fraction Light Liquid	%	1.95604	0	0	(
Mole Fraction Heavy Liquid	%	0	0	0	(
Molecular Weight	lb/lbmol	22.8646	17.7304	19.9939	36.9657
Mass Density	lb/ft^3	1.13346	4.03569	0.0433297	0.0798845
Molar Flow	lbmol/h	2.63516	2.63516	2.63516	2.63516
Mass Flow	lb/h	60.2517	46.7224	52.6869	97.410
Vapor Volumetric Flow	ft^3/h	53.1574	11.5773	1215.96	1219.39
Liquid Volumetric Flow	gpm	6.62741	1.44341	151.600	152.028
Std Vapor Volumetric Flow	MMSCFD	0.024*	0.024*	0.024*	0.024
Std Liquid Volumetric Flow	sgpm	0.333920	0.299342	0.306068	0.418381
Specific Gravity			0.612185	0.690336	1.27633
API Gravity					
Net Ideal Gas Heating Value	Btu/ft^3	1245.11	988.264	1095.43	1946.72
Net Liquid Heating Value	Btu/lb	20588.5	21121.3	20741.6	19854.0
Gross Ideal Gas Heating Value	Btu/ft^3	1368.91	1093.76	1206.99	2120.00
Gross Liquid Heating Value	Btu/lb	22643.7	23379.7	22859.2	21633.9

FL1 CDP LPF (V-6808) @ 1000 scfh - Hysys Comp	FL2 Cryo HPF (V-6859) @ 1000 scfh	FL2 Cryo HPF (V-6859) @ 1000 scfh - Hysys Comp	FL2 Cryo LPF (V-6858) @ 1000 scfh
%	%	%	%
C	* 0*	0*	0;
C		0*	5.08087E-06
C		0.85*	6.58313
0.12 6.03		0.12* 73.95*	0.188861
0.03 20.04		73.95 13.01*	89.3453 1.88945
28.18		6.7*	0.508145
6.82		1.02*	0.128703
15.79		2.33*	0.339932
5.18		0.58*	0.137283
5.79		0.67*	0.177123
0.01 2.76		0* 0.27*	0 0.126793
1.75		0.27	0.120733
0.78		0.07*	0.100000
0.33	* 0.0157683*	0.01*	0.0106408
1.06		0.08*	0.0590510
0.04		0*	0.0106114
1.2 1.33		0.09* 0.06*	0 0.0716019
1.33 0.66		0.05*	0.0716019 0.166417
0.33		0.03	0.0242436
1.1		0.04*	0.111874
0.04	* 0.00203814*	0*	0.000978630
0.16		0*	0.0115805
0.32		0.01*	0
0.13 0		0* 0*	0' 0'
0		0 0*	0
ŭ		0*	0
C		0*	0;
Q		0*	0
0		0*	0
0.05	* 0*	0*	0 [.]
C		0*	0
C		0*	1.00075E-05
0		0.530311*	5.32900
0.101669 1.86230		0.235236* 52.8427*	0.480360 82.8361
11.60250		17.4250*	3.28346
23.9220		13.1597*	1.29497
7.63110		2.64070*	0.432324
17.6679		6.03218*	1.14186
7.19482		1.86394*	0.572429
8.04208		2.15318*	0.738554 0
0.0135015 4.57882		0* 1.03639*	0.631474
2.90323		0.383848*	0.539404
1.26374		0.262408*	0.000404
0.496240	* 0.0740155*	0.0347931*	0.0480360
1.71739		0.299895*	0.287215
0.0879621		0*	0.0700525
2.31483 2.51398		0.401693* 0.262408*	0.406305
2.51398		0.133898*	0.406305
0.585350		0.0410409*	0.129097
2.41896		0.203522*	0.738554
0.0817527		0*	0.00600450
0.327011		0*	0.0710533
0.790106		0.0571282*	0
0.356085 0		0* 0*	0 0
0		0*	0
	0	0	ů


(0*		0*	0*
(0*		0*	0*
(0*		0*	0*
(0*		0*	0*
(0*		0*	0.255465*
lb/h		lb/h	lb/h	lb/h
(0*		0*	0*
4.56305E-06	0*		4.38609E-06*	0*
2.42982	0.313734*		0.825024*	0*
0.219026	0.139166*		0.240796*	0.139166*
37.7702	31.2619*		40.4266*	2.54915*
1.49714	10.3087*		1.06977*	15.8790*
0.590458	7.78532*		0.105705*	32.7448*
0.197124	1.56224*		0.0289482*	10.4456*
0.520644	3.56865*		0.0557034*	24.1841*
0.261006	1.10272*		0.0451767*	9.84839*
0.336753	1.27383*		0.0469312*	11.0081*
(0*		0*	0.0184811*
0.287928	0.613131*		0.0447381*	6.26756*
0.245948	0.227086*		0.0517559*	3.97400*
(0.155241*		0*	1.72983*
0.0219026	0.0205837*		0.0324571*	0.679262*
0.130959	0.177419*		0.0614053*	2.35080*
0.0319413	0*		0.0179830*	0.120404*
0.0010110	0.237643*		0*	3.16857*
0.185260	0.155241*		0.120179*	3.44118*
0.439422	0.0792143*		0.190356*	1.74272*
0.0588633	0.0242799*		0.115354*	0.801237*
0.336753	0.120404*		0.314483*	3.31111*
0.00273783	0*		0.00570192*	0.111905*
0.0323976	0*		0.0526331*	0.447618*
0.0323970	0.0337972*		0.0520531	1.08151*
(0*		0*	0.487415*
(0*		0*	0.487415
(
	0*		0*	0*
(0*		0*	0*
(0*		0*	0*
(0*		0*	0*
(0*		0*	0*
(0*		0*	0.349685*

FL2 Cryo LPF (V-6858) @ 1000 scf	FL2 Cryo HPF (V-6859) @ 1000 scfh - Hysys Comp	FL2 Cryo HPF (V-6859) @ 1000 scfh	L1 CDP LPF (V-6808) @ 1000 scfh - Hysys Comp
Solved	Solved	Solved	Solved
	-	-	-
-	-	-	-
1.	145*	110*	137*
	1*	1*	1*
	100	100	99.8828
	0	0	0.117153
	0	0	0
17.30	22.4504	16.6410	51.9444
0.03666	0.0476296	0.0374368	0.113240
2.63	2.63516	2.63516	2.63516
45.59	59.1603	43.8517	136.882
1243	1242.09	1171.35	1208.78
155.0	154.858	146.039	150.705
0.0	0.024*	0.024*	0.024*
0.2784	0.328655	0.281875	0.506109
0.5974	0.775154	0.574571	
949.7	1225.14	928.020	2691.07
2081	20637.0	21154.2	19512.5
1048	1347.52	1028.08	2917.18
2297	22706.2	23436.1	21164.7

FL3 Cryo HPF (V-XXXX) @ 1000 scfh	Fuel Gas Skid @ 1000 scfh	Oil OVH Compressor @ 1000 scfh	Plant Fuel Outlet @ 1000 scfh	Plant Inlet @ 1000 scfh
-	-	-	-	-
%	%			%
0*	0*	0*	0*	~ 0
4.80146E-06*	9.55674E-05*	0.001*	9.55342E-05*	0.000299999
13.4458'	0.967998*	0.112*	1.01304*	0.833997
0.189630*		0.161*	0.216008*	0.179999
84.8502*		13.738*	97.4468*	77.9478
1.27236*		39.707*	1.27005*	11.0950
0.0233792* 0.0140771*		34.254* 2.022*	0.0260010* 0.0100004*	5.19998 0.822998
0.0140771		4.374*	0.0180004	1.84999
0.00748460'		1.187*	0*	0.491999
0.00839183		1.645*	0*	0.577998
0*		0*	0*	(
0.00854502*		0.976*	0*	0.25799
0.00835513		0.644*	0*	0.18899
°0 0.0000501		0*	0*	0.01.1000
0.0102651* 0.0132218*		0.066* 0.26*	0* 0*	0.014000
0.00286510		0*20	0*	0.013000
0.00200010		0*	0*	0.010000
0.0196660*		0.123*	0*	0.080999
0.0310285*		0.549*	0*	0.22899
0.0234432*		0.028*	0*	0.019999
0.0416872*		0.149*	0*	0.10100
0.000924813		0*	0* 0*	0.00099999
0.00847745 [*] 0*		0.004* 0*	0^	0.0079999
0*		0*	0*	
0*		0*	0*	
0*		0*	0*	
0*		0*	0*	
0*		0*	0*	
0*		0*	0*	(
0*		0*	0*	
0*	0*	0*	0*	(
0*		0*	0*	(
1.01200E-05'		0.000905609*	0.000200000*	0.00047353
11.6471*		0.0416854*	0.871608*	0.54103
0.516121*		0.188279*	0.583951*	0.36689
84.1824* 2.36606*		5.85631* 31.7261*	96.0280* 2.34585*	57.915 15.451
0.0637561		40.1362*	0.0704280*	10.619
0.0506001*		3.12286*	0.0357041*	2.2154
0.0728642*		6.75540*	0.0642674*	4.9800
0.0333961*		2.27567*	0*	1.6440
0.0374441*		3.15373*	0*	1.9314:
0*		0*	0*	4 0007
0.0455401*		2.23492*	0*	1.0297
0.0445281 [*] 0*		1.47468* 0*	0* 0*	0.75433
0.0495881*		0.136991*	0*	0.050648
0.0493881		0.581442*	0*	0.33521
0.0202400*		0*	0*	0.068776
0*		0*	0*	
0.119416*		0.320911*	0*	0.36834
0.192280*		1.46177*	0*	1.0627
0.133584*		0.0685534*	0*	0.085347
0.294493*		0.452263*	0*	0.53433
0.00607201 0.0556601		0* 0.0112842*	0* 0*	0.0049170 0.039336
	0	0.0112842		
			<u>^*</u>	
0*	0*	0*	0* 0*	
	0* 0*		0* 0* 0*	C C C
0* 0*	0* 0* 0*	0* 0*	0*	(

C	0*	0*	0*	0*
C	0*	0*	0*	0*
C	0*	0*	0*	0*
C	0*	0*	0*	0*
C	0*	0*	0*	0*
lb/h	lb/h	lb/h	lb/h	lb/h
C	0*	0*	0*	0*
0.000269425	8.57978E-05*	0.000898085*	8.58276E-05*	4.31211E-06*
0.307827	0.373911*	0.0413390*	0.357287*	4.96281*
0.208749	0.250509*	0.186715*	0.264416*	0.219918*
32.9519	41.1950*	5.80766*	41.2099*	35.8699*
8.79128	1.00634*	31.4625*	0.999965*	1.00817*
6.04232	0.0302129*	39.8028*	0.0302117*	0.0271663*
1.26051	0.0153167*	3.09692*	0.0275690*	0.0215606*
2.83347	0.0275701*	6.69927*	0.0245057*	0.0310472*
0.935404	0*	2.25676*	0*	0.0142300*
1.09891	0*	3.12753*	0*	0.0159548*
(0*	0*	0*	0*
0.585879	0*	2.21636*	0*	0.0194045*
0.429190	0*	1.46243*	0*	0.0189733*
(0*	0*	0*	0*
0.028817	0*	0.135852*	0*	0.0211294*
0.19072	0*	0.576611*	0*	0.0293224*
0.039131	0*	0*	0*	0.00862423*
0.000101	0*	0*	0*	0*
0.20957	0*	0.318245*	0*	0.0508829*
0.60466	0*	1.44962*	0*	0.0819302*
0.048559	0*	0.0679838*	0*	0.0569199*
0.30401	0*	0.448505*	0*	0.125483*
0.0027976	0*	0*	0*	0.00258727*
0.022380	0*	0.0111905*	0*	0.0237166*
0.022000	0*	0*	0*	0*
	0*	0*	0*	0*
	0*	0*	0*	0*
	0*	0*	0*	0*
	0*	0*	0*	0*
	0*	0*	0*	0*
	0*	0*	0*	0*
	0*	0*	0*	0*
(0*	0*	0*	0*

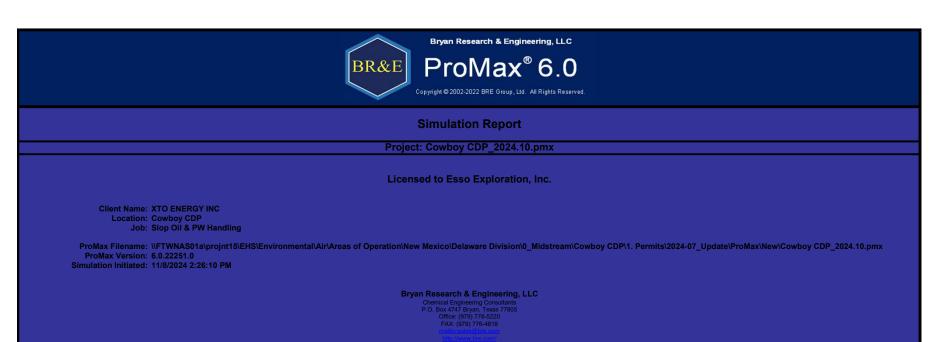
L3 Cryo HPF (V-XXXX) @ 1000 scfh	Fuel Gas Skid @ 1000 scfh	Oil OVH Compressor @ 1000 scfh	Plant Fuel Outlet @ 1000 scfh	Plant Inlet @ 1000 scfl
Solved	Solved	Solved	Solved	Solved
-	-	-	-	
	-	-	-	
110*	81*	100*	118*	11
1*	124*	300*	1145*	109
100	100	72.2616	100	99.33
0	0	27.7384	0	0.6635
0	0	0	0	
16.1697	16.2852	37.6331	16.2795	21.59
0.0363682		3.29897	3.38550	4.916
2.63516		2.63516	2.63516	2.635
42.6097	42.9139	99.1691	42.8990	56.89
1171.62	109.654	30.0607	12.6714	11.57
146.072	13.6711	3.74782	1.57981	1.442
0.024*	0.024*	0.024*	0.024*	0.03
0.259188	0.282176	0.443147	0.282087	0.3218
0.558298	0.562284		0.562088	
874.631	913.739	1987.13	913.612	1180
20520.6	21288.1	19889.7	21292.5	2068
962.670	1013.85	2164.28	1013.68	1299
22586.9	23620.9	21676.8	23625.2	2278

Process Streams	Drain Vessel Oil - 2024 Sample	Drain Vessel Water	DV Oil	DV Water	GBS1 Flash	GBS1 Inlet Liq G	BS1 Oil - 2024 Sample	GBS1 Oil Simulated	GBS1 Water
Composition Status:					Solved			Solved	Solved
Phase: Total From Bloc To Block		MIX-104 MIX-100	 MIX-104	 MIX-104	Gunbarrel	MIX-100 Gunbarrel	 MIX-101	Gunbarrel	Gunbarrel Two Produced Water Tanks
Mole Fraction	%	MIX-100 %	<u>%</u>	WIIX-104	-	Gunbarrei %	WIX-101 %	~	1wo Produced Water Tanks
Water	0*	99.2064	0*	100*		99.8432	0*	0.158017	99.9979
Hydrogen Sulfide	0*	0	0*	0*		0	0*	0	0
Nitrogen, Atomic	0.013*	0.000103170		0*		4.34610E-05	0*	0.0264390	2.48386E-06
Carbon Dioxide	0.004*	3.17447E-05		0*		5.06273E-07	0* 0*	1.28755E-05	4.87070E-07
Methane Ethane	0.916* 2.361*	0.00726954 0.0187373	0.916* 2.361*	0* 0*		0.000164962 0.000868385	0.08*	0.0243189 0.325332	0.000127464 0.000364679
Propane	14.233*	0.112956		0*		0.00489869	1.39*	2.76100	0.000620044
Isobutane	5.762*	0.0457282		0*		0.00206883	1.37*	1.28759	7.31487E-05
Butane	17.204*	0.136534	17.204*	0*		0.00753709	5.916*	4.69208	0.000264675
Isopentane	7.969*	0.0632434		0*		0.00434666	4.9*	2.77746	4.16049E-05
Pentane Cyclopentane	10.674* 0*	0.0847107 0	10.674* 0*	0* 0*		0.00636887 0	7.335* 0*	4.09547 0	2.08407E-05 0
i-C6	7.102*	0.0563627	7.102*	0*		0.00469113	6.178*	3.02074	8.93931E-06
n-Hexane	6.206*	0.0492519		0*		0.00436865	5.398*	2.81650	3.01910E-06
Methylcyclopentane	0*	0	0*	0*		0	0*	0	0
Benzene	0.499*	0.00396015		0* 0*		0.00111576	0.446*	0.513697	0.000320013
Cyclohexane 2,2,4-Trimethylpentane	0* 0.647*	0 0.00513471	0* 0.647*	0* 0*		0 0.000944157	0* 0.61*	0 0.608990	0 2.09926E-07
i-C7	0*	0.000104/1	0.047	0*		0.000344137	0.01	0.000330	2.033202-07
Methylcyclohexane	0*	0	0*	0*		0	0*	0	0
n-Heptane	12.868*	0.102123		0*		0.0165078	11.28*	10.6483	2.68059E-06
Toluene	0.974*	0.00772984	0.974*	0*		0.00261059	1.158*	1.55754	0.000196672
Octane Ethylbenzene	9.175* 0.083*	0.0728144 0.000658703		0* 0*		0.0198586 0.000483455	11.826* 0.259*	12.8115 0.305115	4.67218E-07 1.05370E-05
m-Xylene	0.6*	0.00476171		0*		0.00271898	1.527*	1.73050	3.67294E-05
Nonane	1.803*	0.0143089		0*		0.00994673	5.367*	6.41712	6.39684E-08
Decane	0*	0	0*	0*		0	0*	0	0
Decanes Plus - Closed Drain Oil	0.907*	0.00719811		0*		0.000114797	*0	0.0740446	2.66883E-08
Decanes Plus - GBS1 Oil Decanes Plus - Inlet Oil	0* 0*	0	0* 0*	0* 0*		0 0.0671905	34.96* 0*	0 43.3481	0 1.56416E-08
Decanes Plus - North Header Oil	0*	0	-	0*		0.007 1905	0*	45.5401	1.504102-00
Decanes Plus - South Header Oil	0*	0	0*	0*		0	0*	0	0
Decanes Plus - Stabilizer Outlet Oil	0*	0	0*	0*		0	0*	0	0
Undecanes Plus Mass Fraction	0*	0	0*	0*		0	0*	0	0
Water	/*	96.7707	/o 0*	100*		98.6449	/o 0*	0.0179374	99.9937
Hydrogen Sulfide	0*	0	0*	0*		0	0*	0.0110011	0
Nitrogen, Atomic	0.00242292*	7.82445E-05	0.00242292*	0*		3.33850E-05	0*	0.00233343	1.93109E-06
Carbon Dioxide	0.00234243*		0.00234243*	0*		1.22193E-06	0*	3.57047E-06	1.18981E-06
Methane	0.195536* 0.944661*	0.00631453 0.0305063		0*		0.000145134	0* 0.0163383*	0.00245827	0.000113501
Ethane Propane	0.944661 8.35127*	0.269691	8.35127*	0* 0*		0.00143201 0.0118465	0.416300*	0.0616398 0.767142	0.000608654 0.00151760
Isobutane	4.45631*	0.143910		0*		0.00659450	0.540828*	0.471557	0.000235988
Butane	13.3055*	0.429681	13.3055*	0*		0.0240249	2.33543*	1.71839	0.000853878
Isopentane	7.65056*	0.247063		0*		0.0171989	2.40116*	1.26267	0.000166615
Pentane	10.2475* 0*	0.330926	10.2475* 0*	0* 0*		0.0252003	3.59439* 0*	1.86186	8.34607E-05
Cyclopentane i-C6	8.14375*	0.262989		0*		0.0221705	3.61599*	1.64025	4.27590E-05
n-Hexane	7.11632*	0.229810		0*		0.0206465	3.15946*	1.52935	1.44411E-05
Methylcyclopentane	0*	0	0*	0*		0	0*	0	0
Benzene	0.518654*	0.0167491		0*		0.00477972	0.236618*	0.252836	0.00138747
Cyclohexane	*0	0 0.0317580	0* 0.983421*	0* 0*		0	0*	0	0
2,2,4-Trimethylpentane i-C7	0.983421*	0.0317560	0.963421	0*		0.00591472 0	0.473261* 0*	0.438328	1.33101E-06 0
Methylcyclohexane	0*	0	-	0*		0	0*	0	0
n-Heptane	17.1573*	0.554066		0*		0.0907156	7.67683*	6.72315	1.49090E-05
Toluene	1.19415*	0.0385633		0*		0.0131915	0.724679*	0.904262	0.00100583
Octane	13.9457*	0.450355		0*		0.124405	9.17506*	9.22126	2.96234E-06
Ethylbenzene m-Xylene	0.117252* 0.847604*	0.00378646 0.0273720		0* 0*		0.00281483 0.0158308	0.186757* 1.10107*	0.204107 1.15762	6.20925E-05 0.000216439
Nonane	3.07702*	0.0273720		0*		0.0699633	4.67523*	5.18596	4.55387E-07
Decane	0*	0	0*	0*		0	0*	0	0
Decanes Plus - Closed Drain Oil	1.74275*	0.0562793		0*		0.000909105	0*	0.0673713	2.13909E-07
Decanes Plus - GBS1 Oil	0*	0	0*	0*		0	59.6706*	0	0

Decanes Plus - Inlet Oil	0*	0	0*	0*		0.897269	0*	66.5095	2.11408E-07
Decanes Plus - North Header Oil	0*	0	0*	0*		0	0*	0	0
Decanes Plus - South Header Oil	0*	0	0*	0*		0	0*	0	0
Decanes Plus - Stabilizer Outlet Oil	0*	0	0*	0*		0	0*	0	0
Undecanes Plus	0*	0	0*	0*		0	0*	0	0
Mass Flow	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
Water	0*	1386.06	0*	1386.06*	0	87467.6	0*	0.214571	87467.4
Hydrogen Sulfide	0*	0	0*	0*	0	0	0*	0	0
Nitrogen, Atomic	0.0448282*			0*	0	0.0296022	0*	0.0279130	0.00168918
Carbon Dioxide	0.0433390*	0.00108348	0.00108348*	0*	0	0.00108348	0*	4.27107E-05	0.00104076
Methane	3.61775*	0.0904438	0.0904438*	0*	0	0.128689	0*	0.0294063	0.0992829
Ethane	17.4779*	0.436946	0.436946*	0*	0	1.26976	0.182686*	0.737348	0.532408
Propane	154.513*	3.86282	3.86282*	0*	0	10.5042	4.65486*	9.17671	1.32749
Isobutane	82.4495*	2.06124	2.06124*	0*	0	5.84729	6.04727*	5.64086	0.206425
Butane	246.175*	6.15438	6.15438*	0*	0	21.3027	26.1136*	20.5558	0.746913
Isopentane	141.549*	3.53871	3.53871*	0*	0	15.2501	26.8486*	15.1044	0.145743
Pentane	189.596*	4.73990	4.73990*	0*	0	22.3449	40.1907*	22.2719	0.0730055
Cyclopentane	0*	0	0*	0*	0	0	0*	0	0
i-C6	150.673*	3.76683	3.76683*	0*	0	19.6584	40.4322*	19.6210	0.0374026
n-Hexane	131.664*	3.29160	3.29160*	0*	0	18.3071	35.3275*	18.2944	0.0126321
Methylcyclopentane	0*	0	0*	0*	0	0	0*	0	0
Benzene	9.59599*	0.239900	0.239900*	0*	0	4.23814	2.64575*	3.02447	1.21367
Cyclohexane	0*	0	0*	0*	0	0	0*	0	0
2,2,4-Trimethylpentane	18.1950*	0.454874	0.454874*	0*	0	5.24453	5.29177*	5.24337	0.00116428
i-C7	0*	0	0*	0*	0	0	0*	0	0
Methylcyclohexane	0*	0	0*	0*	0	0	0*	0	0
n-Heptane	317.439*	7.93596	7.93596*	0*	0	80.4367	85.8384*	80.4237	0.0130413
Toluene	22.0939*	0.552347	0.552347*	0*	0	11.6968	8.10300*	10.8170	0.879828
Octane	258.020*	6.45050	6.45050*	0*	0	110.309	102.591*	110.307	0.00259125
Ethylbenzene	2.16936*	0.0542340	0.0542340*	0*	0	2.49589	2.08823*	2.44157	0.0543142
m-Xylene	15.6821*	0.392053	0.392053*	0*	0	14.0370	12.3117*	13.8477	0.189326
Nonane	56.9302*	1.42326	1.42326*	0*	0	62.0359	52.2760*	62.0355	0.000398340
Decane	0*	0	0*	0*	0	0	0*	0	0
Decanes Plus - Closed Drain Oil	32.2439*	0.806096	0.806096*	0*	0	0.806096	0*	0.805909	0.000187113
Decanes Plus - GBS1 Oil	0*	0	0*	0*	0	0	667.207*	0	0
Decanes Plus - Inlet Oil	0*	0	0*	0*	0	795.601	0*	795.601	0.000184925
Decanes Plus - North Header Oil	0*	0	0*	0*	0	0	0*	0	0
Decanes Plus - South Header Oil	0*	0	0*	0*	0	0	0*	0	0
Decanes Plus - Stabilizer Outlet Oil	0*	0	0*	0*	0	0	0*	0	0
Undecanes Plus	0*	0	0*	0*	0	0	0*	0	0

Process Streams		Drain Vessel Oil - 2024 Sample	Drain Vessel Water	DV Oil	DV Water	GBS1 Flash	GBS1 Inlet Liq	GBS1 Oil - 2024 Sample	GBS1 Oil Simulated	GBS1 Water
Properties	Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Phase: Total	From Block:	-	MIX-104			Gunbarrel	MIX-100		Gunbarrel	Gunbarrel
	To Block:	MIX-101	MIX-100	MIX-104	MIX-104		Gunbarrel	MIX-101	-	Two Produced Water Tan
Property	Units									
Temperature	°F	82*	81.9977	82*	82*	90*	93.8066	90*	90	
Pressure	psig	60*	60	60*	60*	0.25*	15	0.25*	0.25	C
Mole Fraction Vapor	%	0	0	0	0		0	0	0	
Mole Fraction Light Liquid	%	100	0.784235	100	100		0.155003	100	100	
Nole Fraction Heavy Liquid	%	0	99.2158	0	0		99.8450	0	0	
Aolecular Weight	lb/lbmol	75.1518	18.4687	75.1518	18.0153		18.2341	147.232	158.703	18.0
Mass Density	lb/ft^3	39.4344	61.0354	39.4344	62.1647		61.7925	47.2354	48.5080	62.0
Molar Flow	lbmol/h	24.6191	77.5535	0.615478	76.9380	0	4862.82	7.59445	7.53747	4855
Mass Flow	lb/h	1850.17	1432.31	46.2543	1386.06	0	88669.2	1118.15	1196.22	8747
Vapor Volumetric Flow	ft^3/h	46.9178	23.4670	1.17294	22.2966	0	1434.95	23.6719	24.6603	1409
Liquid Volumetric Flow	gpm	5.84949	2.92575	0.146237	2.77983	0	178.903	2.95130	3.07453	175.0
Std Vapor Volumetric Flow	MMSCFD	0.224222	0.706327	0.00560554	0.700722	0	44.2887	0.0691674	0.0686484	44.2
Std Liquid Volumetric Flow	sgpm	5.83333*	2.91667	0.145833*	2.77083*	0	177.917	2.91667*	3.04453	174.8
Specific Gravity		0.632278	0.978621	0.632278	0.996728		0.990761	0.757356	0.777761	0.995
API Gravity		87.9537	12.4946	87.9537	9.99121		10.5027	52.0551	47.3917	10.0
Net Ideal Gas Heating Value	Btu/ft^3	3843.55	30.5031	3843.55	0		12.2098	7311.16	7840.56	0.0568
Net Liquid Heating Value	Btu/lb	19249.4	-403.906	19249.4	-1059.76		-793.404	18688.6	18591.9	-1058
Gross Ideal Gas Heating Value	Btu/ft^3	4151.85	82.8606	4151.85	50.3100		63.2853	7827.05	8382.88	50.3
Gross Liquid Heating Value	Btu/lb	20806.4	671.909	20806.4	0		269.569	20018.3	19888.7	1.27

						0.0 21/4		0.071/1		
PWTK1&2 Combined	PWTK1&2 Flash	PWTK1&2 Load	PWTK1&2 Standing	PWTK1&2 Working	SOTK1 Combined					SOTK1 Working
Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
MIX-103	I wo Produced Water Tanks MIX-103	Two Produced Water Tanks	I wo Produced Water Tanks MIX-103	Iwo Produced Water Tanks MIX-103	MIX-102	Slop Oil Tank MIX-102	MIX-101 Slop Oil Tank	Slop Oil Tank	Slop Oil Tank MIX-102	Slop Oil Tank MIX-102
%	MIX-100	%	%	%	%	%	%	%	%	%
17.3441		17.3441	17.3441	17.3441	0	0	0	0	0	0
0		0	0	0		0	0	0	0	0
0.131955 0.00708318		0.131955 0.00708318	0.131955 0.00708318	0.131955 0.00708318		0.0369663 0.0110691	0.00993521 0.00305699	0.00299928 0.00951209	0.00299928 0.00951209	0.00299928 0.00951209
6.77158		6.77158	6.77158	6.77158		2.58495	0.700050	0.710720	0.710720	0.710720
19.3737		19.3737	19.3737	19.3737	6.34744	6.31880	1.82325	8.15780	8.15780	8.15780
32.9400		32.9400	32.9400	32.9400		32.8133	11.2052	35.6153	35.6153	35.6153
3.88604 14.0609		3.88604 14.0609	3.88604 14.0609	3.88604 14.0609	10.3024 26.3736	10.3053 26.3804	4.72657 14.5428	10.1159 25.9442	10.1159 25.9442	10.1159 25.9442
2.21027		2.21027	2.21027	2.21027		7.37395	7.24547	6.82902	6.82902	6.82902
1.10717		1.10717	1.10717	1.10717		8.03113	9.88682	7.37100	7.37100	7.37100
0		0	0	0		0	0	0	0	0
0.474903 0.160390		0.474903 0.160390	0.474903 0.160390	0.474903 0.160390		2.66171 1.68372	6.88416 6.01551	2.36770 1.50757	2.36770 1.50757	2.36770 1.50757
0.100390		0.100390	0.100390	0.100390		1.00372	0.01551	1.50757	0	1.50757
0.630749		0.630749	0.630749	0.630749		0.141517	0.486505	0.0751940	0.0751940	0.0751940
0		0	0	0	-	0	0	0	0	0
0.0111524 0		0.0111524 0	0.0111524 0	0.0111524 0		0.0642031 0	0.638277 0	0.0533590 0	0.0533590 0	0.0533590 0
0		0	0	0		0	0	0	0	0
0.142407		0.142407	0.142407	0.142407		1.16971	12.4936	0.956573	0.956573	0.956573
0.518961		0.518961	0.518961	0.518961	0.0839832	0.0845505	1.01738	0.0481199	0.0481199	0.0481199
0.0248211 0.0299609		0.0248211 0.0299609	0.0248211 0.0299609	0.0248211 0.0299609	0.288504 0.00327504	0.289807 0.00329650	9.79998 0.124493	0.206095 0.00191812	0.206095 0.00191812	0.206095 0.00191812
0.169274		0.169274	0.169274	0.0299609		0.0193549	0.818543	0.0110124	0.0110124	0.00191812
0.00339834		0.00339834	0.00339834	0.00339834		0.0240938	2.64322	0.0148250	0.0148250	0.0148250
0		0	0	0		0	0	0	0	0
0.00101455		0.00101455	0.00101455	0.00101455 0		0.00220973 4.28569E-06	0.693172 8.24193	0.00126945 1.89291E-06	0.00126945 1.89291E-06	0.00126945 1.89291E-06
0.000170517		0.000170517	0.000170517	0.000170517		4.20009E-00	0.24193		1.69291E-06	1.09291E-00
0		0	0	0			0	0	0	0
0		0	0	0			0	0	0	0
0		0	0	0		0	0	0	0	0
%		%	%	%	%	%	%	%	%	%
7.94504		7.94504	7.94504	7.94504			0		0	0
0 0.0469965		0 0.0469965	0 0.0469965	0 0.0469965		0 0.00944868	0 0.00151022	0 0.000774915	0 0.000774915	0 0.000774915
0.00792643		0.00792643	0.00792643	0.0469965		0.00888973	0.00151022	0.00772189	0.00772189	0.00772189
2.76225		2.76225	2.76225	2.76225		0.756748	0.121879	0.210315	0.210315	0.210315
14.8127		14.8127	14.8127	14.8127		3.46723	0.594967	4.52474	4.52474	4.52474
36.9336 5.74318		36.9336 5.74318	36.9336 5.74318	36.9336 5.74318		26.4043 10.9303	5.36221 2.98137	28.9689 10.8454	28.9689 10.8454	28.9689 10.8454
20.7806		20.7806	20.7806	20.7806		27.9803	9.17315	27.8152	27.8152	27.8152
4.05487		4.05487	4.05487	4.05487		9.70863	5.67314	9.08842	9.08842	9.08842
2.03116		2.03116	2.03116	2.03116		10.5739	7.74129	9.80972	9.80972	9.80972
0 1.04062		0 1.04062	0 1.04062	0 1.04062		0 4.18574	0 6.43817	0 3.76366	0 3.76366	0 3.76366
0.351450		0.351450	0.351450	0.351450		2.64778	5.62579	2.39642	2.39642	2.39642
0		0	0	0		0	0	0	0	0
1.25278		1.25278	1.25278	1.25278		0.201722	0.412413	0.108343	0.108343	0.108343
0 0.0323925		0 0.0323925	0 0.0323925	0 0.0323925	0 0.133502	0 0.133832	0 0.791246	0 0.112430	0 0.112430	0 0.112430
0.0323925		0.0323925	0.0323925	0.0323925		0.133632	0.791246	0.112430	0.112430	0.112430
0		0	0	0	0	0	0	0	0	0
0.362836		0.362836	0.362836	0.362836		2.13886	13.5860	1.76805	1.76805	1.76805
1.21584		1.21584	1.21584	1.21584		0.142163	1.01731	0.0817836	0.0817836	0.0817836
0.0720937 0.0808795		0.0720937 0.0808795	0.0720937 0.0808795	0.0720937 0.0808795	0.601489 0.00634599	0.604106 0.00638651	12.1486 0.143434	0.434252 0.00375628	0.434252 0.00375628	0.434252 0.00375628
0.456956		0.456956	0.456956	0.456956		0.0374974	0.943085	0.0215657	0.0215657	0.0215657
0.0110826		0.0110826	0.0110826	0.0110826		0.0563909	3.67906	0.0350728	0.0350728	0.0350728
0 000272512		0 000272542	0 000272512	0 00272512		0	0	0	0	0
0.00372513 0		0.00372513	0.00372513	0.00372513 0		0.00582285 1.96536E-05	1.08627 22.4776	0.00338131 8.77454E-06	0.00338131 8.77454E-06	0.00338131 8.77454E-06
0		0	0	0	1.340002-03	1.00000L-00	22.4770	0.77-042-00	0.774042-00	0.774042-00


0.00105577		0.00105577	0.00105577	0.00105577	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0	0
0		0	0	0	0	0	0	0	0	0
0	11. /1.	0	0	0	0	0	0	0	0	0
lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
0.285566	0	5.39209	0.0207617	0.264805	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0.00168918	0	0.0318953	0.000122810	0.00156637	0.0446576	0.0446004	0.0448282	2.86347E-05	9.90896E-06	4.73346E-05
0.000284897	0	0.00537946	2.07131E-05	0.000264184	0.0425324	0.0419620	0.0433390	0.000285339	9.87410E-05	0.000471680
0.0992829	0	1.87467	0.00721824	0.0920647	3.58760	3.57206	3.61775	0.00777156	0.00268933	0.0128468
0.532408	0	10.0530	0.0387080	0.493700	16.7006	16.3663	17.6605	0.167198	0.0578586	0.276387
1.32749	0	25.0658	0.0965137	1.23098	126.775	124.635	159.168	1.07046	0.370431	1.76953
0.206425	0	3.89774	0.0150079	0.191418	52.3953	51.5942	88.4967	0.400759	0.138682	0.662476
0.746913	0	14.1033	0.0543033	0.692609	134.129	132.075	272.289	1.02783	0.355678	1.69905
0.145743	0	2.75194	0.0105961	0.135147	46.4988	45.8275	168.397	0.335835	0.116215	0.555153
0.0730055	0	1.37850	0.00530777	0.0676977	50.6363	49.9117	229.787	0.362489	0.125438	0.599212
0	0	0	0	0	0	0	0	0	0	0
0.0374026	0	0.706239	0.00271931	0.0346833	20.0359	19.7579	191.106	0.139075	0.0481266	0.229898
0.0126321	0	0.238520	0.000918398	0.0117137	12.6753	12.4983	166.992	0.0885524	0.0306434	0.146382
0	0	0	0	0	0	0	0	0	0	0
0.0450284	0	0.850231	0.00327374	0.0417547	0.960190	0.952186	12.2417	0.00400349	0.00138540	0.00661798
0	0	0	0	0	0	0	0	0	0	0
0.00116428	0	0.0219840	8.46472E-05	0.00107963	0.640029	0.631724	23.4867	0.00415453	0.00143766	0.00686764
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0.0130413	0	0.246247	0.000948152	0.0120932	10.2266	10.0960	403.277	0.0653331	0.0226084	0.107999
0.0437007	0	0.825161	0.00317721	0.0405235	0.677090	0.671048	30.1969	0.00302207	0.00104578	0.00499563
0.00259125	0	0.0489281	0.000188393	0.00240285	2.88363	2.85155	360.611	0.0160465	0.00555285	0.0265257
0.00290703	0	0.0548908	0.000211352	0.00269568	0.0304236	0.0301461	4.25759	0.000138802	4.80322E-05	0.000229447
0.0164242	0	0.310124	0.00119410	0.0152301	0.178591	0.176998	27.9938	0.000796896	0.000275764	0.00131731
0.000398340	0	0.00752150	2.89608E-05	0.000369380	0.268771	0.266181	109.206	0.00129601	0.000448482	0.00214237
0	0	0	0	0	0	0	0	0	0	0
0.000133891	0	0.00252815	9.73439E-06	0.000124157	0.0277353	0.0274855	32.2439	0.000124946	4.32374E-05	0.000206542
0	0	0	0	0	9.34187E-05	9.27705E-05	667.207	3.24237E-07	1.12201E-07	5.35980E-07
3.79472E-05	0	0.000716523	2.75891E-06	3.51883E-05	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
							-			

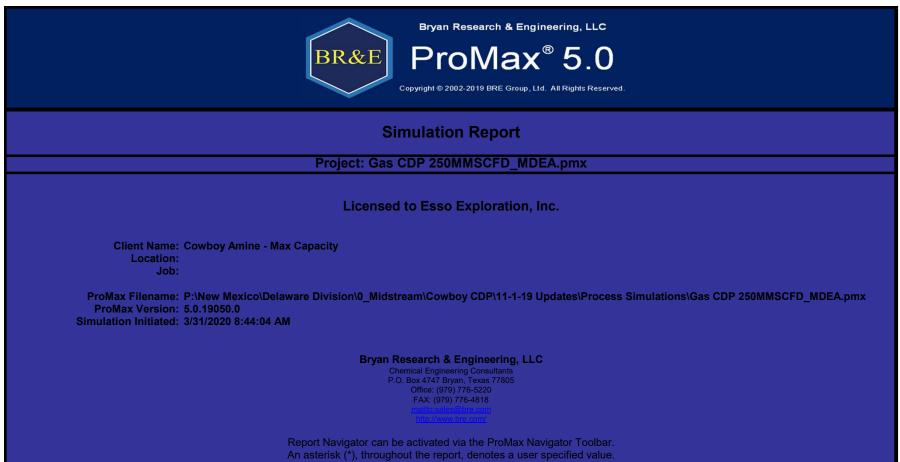
WTK1&2 Combined	PWTK1&2 Flash	PWTK1&2 Load	PWTK1&2 Standing	PWTK1&2 Working	SOTK1 Combined	SOTK1 Flash	SOTK1 Inlet Liq	SOTK1 Load	SOTK1 Standing	SOTK1 Working
MIX-103	Two Produced Water Tanks	Two Produced Water Tanks	Two Produced Water Tanks	Two Produced Water Tanks	MIX-102	Slop Oil Tank	MIX-101	Slop Oil Tank	Slop Oil Tank	Slop Oil Tank
	MIX-103	-	MIX-103	MIX-103	-	MIX-102	Slop Oil Tank	-	MIX-102	MIX-102
75.6836	75.6836	75.6836	75.6836	75.6836	75.5893	75.5893	55.7118	75.5893	75.5893	75.58
0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.25	0.15	0.15	0
85.5746		85.5746	85.5746	85.5746	100	100	17.1877	100	100	1
0.000324457		0.000324457	0.000324457	0.000324457	0	0	82.8123	0	0	
14.4251		14.4251	14.4251	14.4251	0	0	0	0	0	
39.3276		39.3276	39.3276	39.3276	54.7897	54.7988	92.1451	54.2125	54.2125	54.21
0.104449		0.104449	0.104449	0.104449	0.125576	0.125597	1.25222	0.124205	0.124205	
0.0913931	0	1.72569	0.00664462	0.0847485	8.75010	8.61384	32.2136	0.0681615	0.0235871	0.1126
3.59427	0	67.8674	0.261317	3.33296	479.415	472.028	2968.32	3.69520	1.27872	6.108
34.4119	0	649.768	2.50187	31.9100	3817.74	3758.26	2370.44	29.7508	10.2952	49.17
4.29032	0	81.0101	0.311922	3.97839	475.978	468.563	295.536	3.70919	1.28356	6.131
0.000832374	0	0.0157169	6.05167E-05	0.000771857	0.0796926	0.0784516	0.293389	0.000620789	0.000214823	0.001026
0.0138919	0	0.262309	0.00101000	0.0128819	1.71554	1.68889	8.75	0.0133316	0.00461338	0.02203
					1.89175	1.89206		1.87182	1.87182	1.871
1893.47		1893.47	1893.47	1893.47	2841.94	2842.38	4661.05	2814.24	2814.24	2814
18043.5		18043.5	18043.5	18043.5	19525.6	19525.4	19038.1	19540.4	19540.4	1954
2065.08		2065.08	2065.08	2065.08	3080.96	3081.43	5018.29	3051.41	3051.41	3051
19699.9		19699.9	19699.9	19699.9	21181.3	21181.0	20509.5	21200.8	21200.8	2120

13	7	SV Water	SV Oil	urge Vessel Water
Solved	Solved	Solved	Solved	Solved
Two Produced Water Tanks	Slop Oil Tank	-	-	MIX-105
-		MIX-105	MIX-105	MIX-100
%	%	%	%	%
99.999	0	100*	0*	99.8535
	0	0*	0*	0
	5.19106E-05	0*	0.029*	4.24933E-05
3.53747E-0	7.81090E-05	0*	0*	0
	0.00801075	0*	0.034*	4.98198E-05
	0.136066	0*	0.395*	0.000578789
	3.13078	0*	2.148*	0.00314744
	2.64722	0*	0.929*	0.00136125
(10.1308	0*	3.717*	0.00544647
(7.20073	0*	2.315*	0.00339214
	10.5827	0*	3.48*	0.00509920
	0	0*	0*	0
	8.46053	0*	2.63*	0.00385371
	7.63197	0*	2.485*	0.00364124
0.00030814	0	0*	0*	0
0.00030814	0.615545 0	0* 0*	0.73* 0*	0.00106966
	0.852426	0* 0*		0.000876242
	0.852426	0*	0.598* 0*	0.000876242
	0	0*	0*	0
	0 16.7178	0*	0- 10.319*	0.0151203
0.00018690	1.36546	0*	1.725*	0.00252762
0.00018090	13.3470	0*	12.967*	0.0190004
9.97323E-0	0.169698	0*	0.328*	0.000480614
3.35437E-0	1,11663	0*	1.833*	0.00268587
0.00407 2-0	3.62002	0*	6.74*	0.00987604
	0.02002	0*	0*	0.00001001
7.59124E-0	0.950854	0*	0*	0
	11.3155	0*	0*	0
1.24322E-0	0	0*	46.598*	0.0682795
	0	0*	0*	0
(0	0*	0*	0
	0	0*	0*	0
	0	0*	0*	0
99.997	0	% 100*	<u>%</u> 0*	98.6757
00.001	0	0*	0*	0
	6.85450E-06	0*		3.26485E-05
8.64150E-0	3.24064E-05	0*	0*	0
	0.00121151	0*		4.38408E-05
(0.0385702	0*		0.000954653
	1.30146	0*	0.574867*	0.00761305
	1.45049	- 0*	0.327714*	0.00433997
	5.55100	0*	1.31121*	0.0173645
	4.89766	0*	1.01372*	0.0134248
	7.19795	0*	1.52386*	0.0201807
(0	0*	0*	0
(6.87328	0*	1.37555*	0.0182166
(6.20016	0*	1.29971*	0.0172123
(0	0*	0*	0
0.0013360	0.453273	0*	0.346081*	0.00458320
(0	0*	0*	0
	0.917942	0*	0.414585*	0.00549041
	0	0*	0*	0
	0	0*	0*	0
(15.7921	0*	6.27554*	0.0831080
		0*	0.964645*	0.0127749
0.00095590	1.18606			
0.00095590	1.18606 14.3729	0*	8.98984*	0.119054
0.00095590 0.00095590 5.87716E-0	1.18606 14.3729 0.169840	0* 0*	0.211345*	0.00279888
0.00095590 0.00095590 1. 5.87716E-0 0.00019767	1.18606 14.3729 0.169840 1.11757	0* 0* 0*	0.211345* 1.18109*	0.00279888 0.0156413
0.00095590 5.87716E-0 0.00019767	1.18606 14.3729 0.169840 1.11757 4.37692	0* 0* 0*	0.211345* 1.18109* 5.24653*	0.00279888 0.0156413 0.0694806
0.00095590 5.87716E-0 0.00019767	1.18606 14.3729 0.169840 1.11757 4.37692 0	0* 0* 0* 0*	0.211345* 1.18109* 5.24653* 0*	0.00279888 0.0156413 0.0694806 0
0.00095590 5.87716E-0 0.00019767	1.18606 14.3729 0.169840 1.11757 4.37692	0* 0* 0*	0.211345* 1.18109* 5.24653*	0.00279888 0.0156413 0.0694806

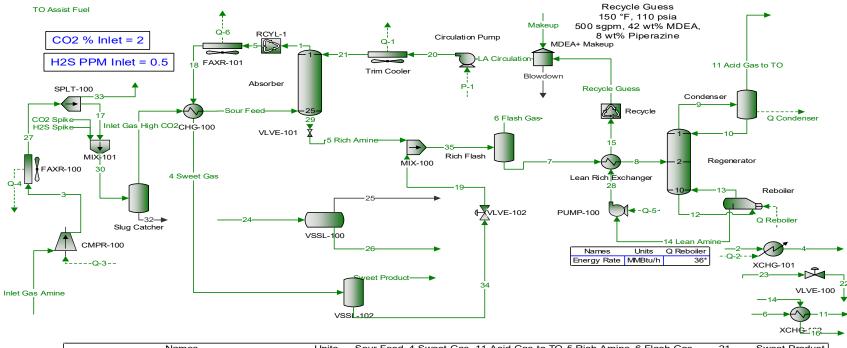
1.68033E-07	0	0*	68.8658*	0.912000
0	0	0*	0*	0.012000
0	0	0*	0*	0
0	0	0*	0*	0
0	0	0*	0*	0
ib/h	lb/h	lb/h	lb/h	lb/h
87467.1	0	86081.6*	0*	86081.6
0	0	0*	0*	0
0	0.000170602	0*	0.0284815*	0.0284815
0.000755867	0.000806566	0*	0*	0
0	0.0301534	0*	0.0382454*	0.0382454
0	0.959975	0*	0.832809*	0.832809
0	32.3922	0*	6.64139*	6.64139
0	36.1014	0*	3.78605*	3.78605
0	138.159	0*	15.1483*	15.1483
0	121.898	0*	11.7114*	11.7114
0	179.150	0*	17.6050*	17.6050
0	0	0*	0*	0
0	171.070	0*	15.8916*	15.8916
0	154.316	0*	15.0155*	15.0155
0	0	0*	0*	0
1.16864	11.2816	0*	3.99824*	3.99824
0	0	0*	0*	0
0	22.8467	0*	4.78966*	4.78966
0	0	0*	0*	0
0	0	0*	0*	0
0	393.050	0*	72.5008*	72.5008
0.836127	29.5198	0*	11.1445*	11.1445
0	357.727	0*	103.859*	103.859
0.0514071	4.22716	0*	2.44165*	2.44165
0.172901	27.8152	0*	13.6450*	13.6450
0	108.938	0*	60.6127*	60.6127
0	0	0*	0*	0
5.32214E-05	32.2161	0*	0*	0
0	667.207	0*	0*	0
0.000146978	0	0*	795.601*	795.601
0	0	0*	0*	0
0	0	0*	0*	0
0	0	0*	0*	0
0	0	0*	0*	0
13	7	SV Water	SV Oil	urge Vessel Water
Solved				
Two Produced Water Tanks	Slop Oil Tank			MIX-105
-	-	MIX-105	MIX-105	MIX-100
75,6836	75,5893	94*	94*	93,9964
0.15	0.15	94 15*	94 15*	93.9964
0.15	0.15	15	0	0

75.6836	75.5893	94*	94*	93.9964
0.15	0.15	15*	15*	15
0	0	0	0	0
100	100	100	100	0.145165
0	0	0	0	99.8548
18.0156	106.076	18.0153	164.764	18.2303
62.2268	44.0195	62.0256	48.7547	61.8041
4855.19	23.4635	4778.25	7.01179	4785.27
87469.4	2488.91	86081.6	1155.29	87236.9
1405.66	56.5409	1387.84	23.6960	1411.51
175.251	7.04926	173.029	2.95431	175.980
44.2192	0.213696	43.5185	0.0638607	43.5824
174.858	7.03446	172.083*	2.91667*	175
0.997724	0.705795	0.994498	0.781717	0.990946
9.99821	66.8183	9.99668	46.1439	10.4728
0.0211952	5339.44	0	8130.36	11.9133
-1059.29	18944.3	-1059.76	18570.0	-799.799
50.3319	5740.77	50.3100	8688.97	62.9681
0.461800	20380.1	0	19856.6	262.963

Report Navigator can be activated via the ProMax Navigator Toolbar. An asterisk (*), throughout the report, denotes a user specified value. A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.


		,	Separator Report Gunbarrel		
Client Name:	XTO ENERGY INC			Job:	Slop Oil & PW Handling
Location:	Cowboy CDP			Modified:	10/9/2024 12:36
Flowsheet:	Slop Oil & PW Handling			Status:	Solved 2:10 PM, 11/8/202
		St	ream Connections		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
GBS1 Inlet Liq	Inlet	MIX-100	GBS1 Flash	Vapor Outlet	
GBS1 Oil Simulated	Light Liquid Outlet		GBS1 Water	Heavy Liquid Outlet	Two Produced Water Tanks
Q-5	Energy				
		B	lock : Scalar Data		
Pressure Drop	14.75	psi	Main Liquid Phase	Light Liquid	
Mole Fraction Vapor	0	%	Heat Duty	-331278	Btu/h
Mole Fraction Light Liquid	0.155002	%	Heat Release Curve Type	Plug Flow	
Mole Fraction Heavy Liquid	99.8450	%	Heat Release Curve Increments	10	
			Entrainments		
		Ent	rainment Entrainment 1		
From Phase (Numerator)	Vapor*		Numerator Value	10*	%
To Phase (Denominator)	Heavy Liquid*		Entrainment Value	10	%
Numerator Basis	Fraction From Phase*		Active	TRUE	

		Tank Losses F			
		Slop Oil T	ank		
Client Name:	XTO ENERGY INC			Job:	Slop Oil & PW Handling
ocation:	Cowboy CDP			Modified:	10/14/2024 16:42
lowsheet:	Slop Oil & PW Handling			Status:	Solved 4:58 PM, 10/14/2024
		Stream Conne	actions		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
SOTK1 Inlet Liq	Inlet	MIX-101	SOTK1 Flash	Flashing Losses Stream	MIX-102
SOTK1 Working	Working Losses Stream	MIX-102	SOTK1 Standing	Standing Losses Stream	MIX-102
SOTK1 Load	Loading Losses Stream		7	Residual Liquid Stream	
	Medd		and a second proto		
ank Geometry	Vorkin Vertical Cylinder	ng and Standing Prop	Roof Type	Con	<u> </u>
hell Length	30* ft		Slope of Coned Roof	0.062	
Shell Diameter	15.5* ft		Breather Vent Pressure	0.030000	
lumber of Storage Tanks	10.0 1		Breather Vacuum Pressure	-0.030000	
Aaximum Fraction Fill of Tank	90* %		Location	Roswell, NM	
Verage Fraction Fill of Tank	50* %		Time Frame	Yea	
Ainimum Fraction Fill of Tank	10 %		Known Liquid Bulk Temperature?	FALSI	
Material Category	Light Organics*		Liquid Bulk Temperature	64.231	
nsulation	Uninsulated		Use AP 42 Raoult's Vapor Pressure?	TRUI	
Bolted or Riveted Construction?	FALSE		Flashing Temperature	75.589	3°F
/apor Balanced Tank?	FALSE		Average Daily Maximum Ambient Temperature	75.	3 °F
Known Sum of Increases in Liquid Level?	FALSE		Average Daily Minimum Ambient Temperature	47.	3°F
Sum of Increases in Liquid Level	2617.03 ft/y	r	Atmospheric Pressure at Tank Location		3 psia
Shell Color	Tan*		Daily Solar Insolation		2 Btu/(day*ft^2)
Shell Paint Condition	Average		Average Wind Speed		7 mph
Roof Color	Tan*		Include Short Term Emissions	FALSI	E
Roof Paint Condition	Average				
	Comr	osition Subset Prope	erties : Scalar Data		
Component Subset	VOCs		Species in Results	Selected Specie	
Joinponent Subset			Species in Results	Selected Specie	5
	FALSE		Fraction Denominator	Selected Specie Selected Specie	
Atomic Basis	FALSE		Fraction Denominator		
	FALSE	sition Subset Proper			
Nomic Basis	FALSE	sition Subset Proper	Fraction Denominator		
	FALSE	sition Subset Proper	Fraction Denominator		
Nomic Basis	FALSE Compo Selected Components	sition Subset Proper	Fraction Denominator		
Nomic Basis Index Water	FALSE Compo Selected Components FALSE FALSE	sition Subset Proper	Fraction Denominator		
Momic Basis Index Water Hydrogen Sulfide Nîtrogen, Atomic Carbon Dioxide	FALSE Compo Selected Components FALSE FALSE FALSE FALSE	sition Subset Proper	Fraction Denominator		
Itomic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE	sition Subset Proper	Fraction Denominator		
tomic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE	sition Subset Proper	Fraction Denominator		
Itomic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Butane Isopentane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Butane Isopentane Pentane Pentane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Fropane Isobutane Butane Isopentane Pentane Cyclopentane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane Iso6	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyckopentane I-C6 n-Hexane Methylogolopentane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Fropane Isobutane Butane Isopentane Pentane Cyclopentane LC6 n-Hexane Betzene Benzene	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
Index Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane F-C6 n-Hexane Methylcyclopentane Benzene Cyclophexane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Fropane Isobutane Butane Isopentane Cyclopentane - i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane i+C6 n-Hexane Buterae Benzene Cyclohexane 2,2,4-Trimethylpentane i+C7	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane F-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylcyclonexane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2.2.4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane EC/20hexane 1-C7 Methylcyclohexane n-Heptane Toluene Toluene	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Isopentane Focgopentane Foc8 n-Hexane Methyloyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane Fo7 Methyloyclohexane n-Heptane Toluene Octane Oc	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isobutane Butane Isopentane Pentane Cyclopentane Ecyclopentane Benzene Cyclohexane Scienter Benzene Cyclohexane Lc7 Methylcyclohexane I-C7 Methylcyclohexane I-C7 Methylcyclohexane I-C7 Methylcyclohexane Cotane Ethylbenzene	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Isopentane Focgopentane Foc8 n-Hexane Methyloyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane Fo7 Methyloyclohexane n-Heptane Toluene Octane Oc	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Pentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylcpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Heptane Toluene Octane Ethylbenzene m-Kylene	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane L-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylcpentane L-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
tomic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Butane Isopentane -Co(opentane -Co(opentane -Co(opentane -Co(a) n-Hexane Methyltycolopentane Benzene Cyclohexane 2:2.4-Trimethylpentane i-C7 Methyltycolohexane n-Heptane Toluene Cotane Ethylbenzene m-Xylene Nonane	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
Nomic Basis	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
Nomic Basis	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
Nomic Basis Index Vater Hydrogen Sulfide Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Fropane Isobutane Butane Isopentane Pentane Sopotane I-C6 n-Hexane Methylcyclopentane Enzene Cyclobexane 2.2.4-Trimethylcpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		
Momic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Isopentane Pentane Cyclopentane FCG n-Hexane Benzene Cyclohexane 2,2,4-Trimethylpentane FC7 Methylcyclohexane n-Heptane Toluene Cyclohexane n-Heptane Toluene Cotane Ethylbenzene m-Xylene Nonane Decane Decane Decane Decane Decane Decane Decane Plus - ClBS1 Oil Decanes Plus - Noth Adder Oil	FALSE Compo Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper	Fraction Denominator		

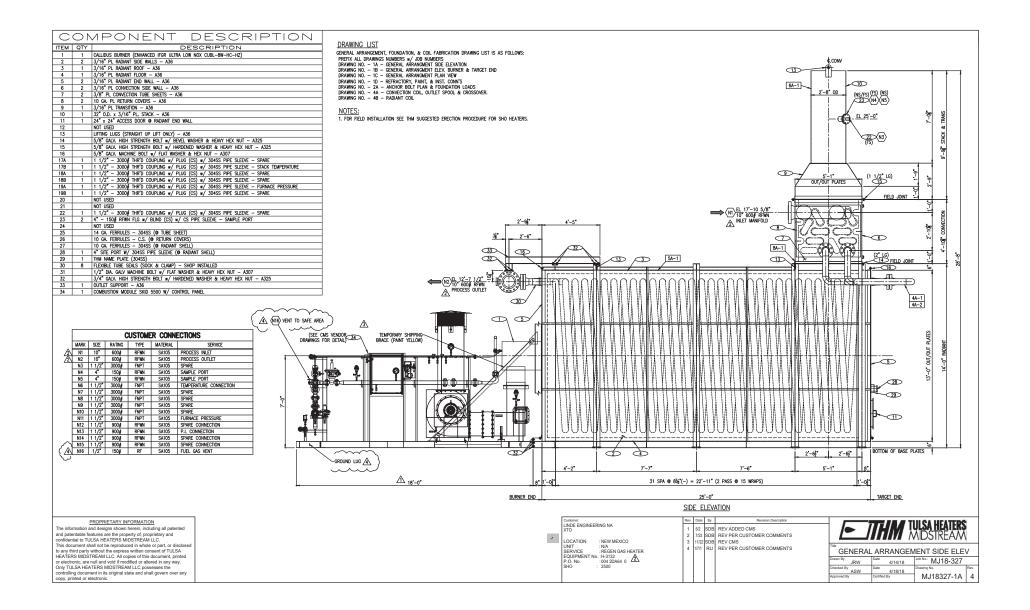

por Dyok Code property Vote Terepentate Pare 4 2002 °F (SUB 2007 °C (SUB 200			Details Properties : Sc			
sor Spee Experiator Extor (1997) Adapting (199						
min y or prive shares in water in the shares in the share						
apic Spin Oxdeg apic	ace Expansion Factor	1 1/d	day			
windp 0.1 Mode Temperature Range9.7.108 %Med Wondp 0.5.5.5.5.5.4.5.5.4.5.5.4.5.5.4.5.5.7.8.9.8.7.5.7.8.5.5.5.7.8.5.5.5.5.5.7.5.5.5.5	apor Saturation Factor	0.0989976		Vapor Molecular Weight	54.2125	lb/lbmol
varage bank produce for the server of the se	ace Outage	15.1615 ft		Average Vapor Temperature	528.024	°R
wang bar y hore series and series of a ser		37.1866 °R				
landar Varianse Stating Tangong () 0,00000 pin () Namie of Turnove (facturation) nation () 1 () 1 () 1 () 1 () 1 () 1 () 1 ()						
teor Person at Namey Daily Light Sature Tangeature 13.022 pars werge Daily Light Sature Tangeature 25.03 Pars werge Daily Light Sature Tangeature 25.03 Pars werge Daily Light Sature Tangeature 25.03 Pars teor Daily Parsen at Namey Daily Light Pars teor Daily Parsen at Namey Daily Light Pars teor Daily Daily Parsen at Namey Daily Light Pars teor Daily Dail						a oryn
vienge Duk Junie Streep relations in weige Duk Junie Streep relati						
wearsy Early in Coord Account on Coord Program22.7 mMaximum Liquid Height27.6 mMaximum Liquid Media7.6 mMaximum Liquid Height3.7 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid Media7.6 mMaximum Liquid MediaMaximum Liquid Media7.6 m7.6 mMaxim						
an k not show Absorption a show Absorption Absorption Absorption Absorption Absorption Absorption Absorption Absorption Absorption Absor						
ank Sho Shorka Shar Abonjana (0.49) Working Loais Prodit Farlor (1997) 400 (1998) 100 (Jaily Ambient Temperature Range	28.2 °R		Maximum Liquid Height	27 1	ft
face Preserve at Maximu Luid Suffice Temperature 13.204 pin Murit Setting Control Factor 1 Start Preserve Minimu Luid Suffice Temperature 53.229 R. Vapor Presure of Lipic Loaded 11.326 pin Start Preserve Minimu Luid Suffice Temperature 53.229 R. Control Efficiency 67.000 (197.000) Start Preserve Minimu Luid Suffice Temperature 67.000 (197.000) 67.000 (197.000) 67.000 (197.000) Control Efficiency 0.91 (197.000) Text Annual Leak Temperature 67.000 (197.000) Control Efficiency 0.91 (197.000) Text Annual Leak Minimu Lipid Sufficiency NSPS-Leaf Control Efficiency 0.91 (197.000) Text Annual Leak Minimu Lipid Sufficiency NSPS-Leaf Control Efficiency 0.91 (197.000) Barding Losses per Tank 5.35.00 (197.000) Control Efficiency 0.91 (197.000) Working Losses per Tank 5.35.00 (197.000) Control Efficiency 0.91 (197.000) Working Losses per Tank 5.35.00 (197.000) Control Efficiency 0.92 (197.000) Working Losses per Tank 5.35.00 (197.000) Control Efficiency 0.91 (197.000) Working Control Losses text Persec 197.27 (f Surface Solar Absorptance	0.49		Minimum Liquid Height	31	ft
face Preserve at Maximu Luid Suffice Temperature 13.204 pin Murit Setting Control Factor 1 Start Preserve Minimu Luid Suffice Temperature 53.229 R. Vapor Presure of Lipic Loaded 11.326 pin Start Preserve Minimu Luid Suffice Temperature 53.229 R. Control Efficiency 67.000 (197.000) Start Preserve Minimu Luid Suffice Temperature 67.000 (197.000) 67.000 (197.000) 67.000 (197.000) Control Efficiency 0.91 (197.000) Text Annual Leak Temperature 67.000 (197.000) Control Efficiency 0.91 (197.000) Text Annual Leak Minimu Lipid Sufficiency NSPS-Leaf Control Efficiency 0.91 (197.000) Text Annual Leak Minimu Lipid Sufficiency NSPS-Leaf Control Efficiency 0.91 (197.000) Barding Losses per Tank 5.35.00 (197.000) Control Efficiency 0.91 (197.000) Working Losses per Tank 5.35.00 (197.000) Control Efficiency 0.91 (197.000) Working Losses per Tank 5.35.00 (197.000) Control Efficiency 0.92 (197.000) Working Losses per Tank 5.35.00 (197.000) Control Efficiency 0.91 (197.000) Working Control Losses text Persec 197.27 (Il Surface Solar Absorptance	0.49		Working Loss Product Factor	1	
sipe Pearse at Minimun Ligid Surface Temperature9.8612 pipe 18.85.80 Pi 19.865 Pipe 19.865 Pipe 19.865 Pipe 19.865 Pipe 19.865 Pipe 19.865 Pipe 19.865 Pipe 19.867 Pipe 19.8					1	
tamm pigit Surface Temperature (13.82 pr)						
Internet Ligid Surface TemperatureGales in Briefmann Collection Efficiency98.7 % 99.7 %Internet Ligid Surface Towards Note Per Tank89.07 %99.7 %Stape CatrierTank Around Leak Test PersideNSP-4 Leak 90 %Submerged Loaking, Deducate Note BarnerNSP-4 Leak 90 %NSP-4 Leak 90 %Submerged Loaking, Deducate Note BarnerS-330.01 bonyNSP-4 Leak 90 %Submerged Loaking, Deducate Note BarnerS-330.01 bonyNSP-4 Leak 90 %Submerged Loaking, Deducate Note BarnerS-330.01 bonyNSP-4 Leak 90 %Submerged Loaking, Deducate Note Submerged Loaking, Deducate Note Submerged Loaking, Dessen Part Note 90 %30.8200 bonySubmerged Loaking, Dessen Part Note Submerged Loaking, Dessen Part Note 90 %30.8200 bonyNote 90.8000 bonySubmerged Loaking, Dessen BarnerSubmerged Loaking, Dessen Part Note 90.8000 bing19.0000 %19.0000 %Submerged Loaking, Dessen BarnerSubmerged Loaking, Dessen Part Note 90.8000 %19.00000 %19.00000 %Submerged Loaking, Dessen BarnerSubmerged Loaking, Dessen Part Note 90.80000 %19.000000 %19.0000000 %Submerged Loaking, Dessen BarnerSubmerged Loaking, Dessen Part Note 90.800000 %19.00000000 %19.00000000 %Submerged Loaking, Dessen Barner						
liquel heigh b 1 6 n. Leading Per Tank Based Operation Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Loading. Dedicated Namel Service Schemergel Schemergel Loading. Dedicated Namel Service Schemer						
Lacking Properties : Scalar Data Lacking Properties : Scalar Data Tark Truck or Ral Tark Car Overall Foduction: Efficiency NSF54.evert [*] Details of Colspan="2">Control Efficiency NSF54.evert [*] Details Colspan="2">Control Efficiency NSF54.evert [*] Details Colspan="2">Control Efficiency NSF54.evert [*] Details Properties : Scalar Data Standing Losses per Tark S 533510 lon'y Notice State Data Standing Losses per Tark S 533510 lon'y Vortice : Scalar Data State Data State Data State Data State Data State Data State Data Colspan= Data State Data State Data State Data State Data Data State Data State Data State Data State Data State Data State Data						
Caref of and Based Mod Operation Task Track Graft Tark Gar Mark Gar More Service 1 Totak Annual Leak Tell Passed NSP6-Level* Dord Efficiency 0 * % Overall Reduction Efficiency 0 * % Instance Service Se	/ght	15 ft		Annual Net Throughput Per Tank	87960.8	bbl/yr
Carding Carding and Saard Mode Openation Task Truck or Rall Tark Carding Control Reduction Efficiency NSP6-Level* orter of Efficiency 0 * % Overall Reduction Efficiency 0 * % control Efficiency 0 * % Standing Losses 0 * % Results Properties : Scalar Data Introl Losses 5.33510 tonlyr Version Standing Losses per Tank 5.33510 tonlyr Version Standing Losses per Tank 1979.77 tonlyr Kesuits Properties : Scalar Data Carding Losses per Tank 1979.77 tonlyr Version and Standing Lo						
Carding Carding and Saard Mode Openation Task Truck or Rall Tark Carding Control Reduction Efficiency NSP6-Level* orter of Efficiency 0 * % Overall Reduction Efficiency 0 * % control Efficiency 0 * % Standing Losses 0 * % Results Properties : Scalar Data Introl Losses 5.33510 tonlyr Version Standing Losses per Tank 5.33510 tonlyr Version Standing Losses per Tank 1979.77 tonlyr Kesuits Properties : Scalar Data Carding Losses per Tank 1979.77 tonlyr Version and Standing Lo			Loading Properties · Se	calar Data		
and BaseMode of Operation Submerged Loading: Dedicated Normal Perview Overall Reduction Efficiency 0 % Under Efficiency 0 % 0 % 0 % Under Efficiency Constructions 5.33510 Northy Standing Losses per Tank 5.33510 Northy Under Efficiency Standing Losses per Tank 5.33510 Northy Standing Losses per Tank 5.33510 Northy Under Losses Standing Losses 3.03200 Northy Standing Losses 3.03200 Northy Under Losses Standing Losses 3.03200 Northy Versing and Standing Losses 3.03200 Northy Vorting Losses for Standing Losses Standing Losses 3.03200 Northy Versing and Standing Losses 3.03200 Northy Versing and Standing Losses 3.03200 Northy Versing and Standing Losses 3.03200 Northy Versing and Standing Losses 3.03200 Northy Versing and Standing Losses 3.03200 Northy Versing and Standing Losses Versing and Standing Losses Xorthy Yorthy Yorthy Yorthy Yorthy Yorthy		T 1 T 1 D 1 T 1	Lotteling i roporties : ot		None	
Barnel Efforem 0 *% Addition of the second						
Results Properties : Scalar Data Tashing Losses 1979 77 tonly Standing Losses per Tank 5.33510 tonly Tashing Losses per Tank 5.33510 tonly Flashing Losses per Tank 5.33510 tonly Standing Losses 5.33510 tonly Working tosses 30.8206 tonly Standing Losses 5.33510 tonly Working and Standing Losses per Tank 30.8206 tonly Standing Losses 30.8206 tonly 30.8206 tonly 30.8206 tonly Vorking Losses 30.8206 tonly 30.8206 tonly 30.8206 tonly Vorking Losses Standing Losses per Tank 30.8206 tonly 30.8206 tonly Vorking Losses Standing Losses Mess Flows Yorking Losses Working Losses Morking Losses				Overall Reduction Efficiency	0 '	%
Hanhong Losses 1979.77 Tony Standing Losses per Tank 5.35510 bony Standing Losses 25.4865 tony Hanhong Losses per Tank 30.2006 bony Standing Losses 3.3510 tony Working and Standing Losses per Tank 30.2006 bony Vorking Losses 5.3510 tony Working and Standing Losses 30.2006 bony Vorking Losses 5.3550 tony Loading Losses 30.2006 bony Vorking Losses Standing Losses Standing Losses 30.2006 bony Vorking Losses Standing Losses Standing Losses Standing Losses Standing Losses Vorking Losses More Kashing Losses Standing Losses Morking and Standing Losses Vorking Losses More Kashing Losses More Kashing Losses Morking and Standing Losses Vorking Losses More Kashing Losses More <t< td=""><td>ficiency</td><td>0* %</td><td></td><td></td><td></td><td></td></t<>	ficiency	0* %				
Isability Losses 1979.7 Trony Standing Losses per Tank 5.35510 borly Isability Losses 25.4865 tonly Haining Losses per Tank 30.8206 borly Isability Losses 5.3510 long Working and Standing Losses per Tank 30.8206 borly Vorking Losses 5.3510 long Working and Standing Losses 30.8206 borly Vorking Losses 5.3510 long Working and Standing Losses 30.8206 borly Vorking Losses Standing Losses Morking and Standing Losses 30.8206 borly Vorking Losses Standing Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking Losses Morking Losses						
Isability Losses 1979.7 Trony Standing Losses per Tank 5.35510 borly Isability Losses 25.4865 tonly Haining Losses per Tank 30.8206 borly Isability Losses 5.3510 long Working and Standing Losses per Tank 30.8206 borly Vorking Losses 5.3510 long Working and Standing Losses 30.8206 borly Vorking Losses 5.3510 long Working and Standing Losses 30.8206 borly Vorking Losses Standing Losses Morking and Standing Losses 30.8206 borly Vorking Losses Standing Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking Losses Morking and Standing Losses Morking and Standing Losses Vorking Losses Morking Losses Morking Losses Morking Losses			Results Properties : So	calar Data		
Vorking Losses 25.485 Initiag Losses per Tank 197.77 ton/yr vorking and Standing Losses 3.53.10 ton/yr Working and Standing Losses per Tank 3.62.200 ton/yr vorking Losses per Tank 25.435 Unvirg 3.62.200 ton/yr vorking Losses per Tank 25.435 Unvirg 3.62.200 ton/yr vorking Losses per Tank 25.435 Unvirg 1.62.249 vorking Losses Mass Flow Vorking Losses Mass Flow Lossey Losses per Tank 0.60/ng Losses Mass Flow Vorking and Standing Losse vorking Losses Mass Flow Vorking Losses Mass Flow Lossey Losses vorking Norking and Standing Losse vorking Losses Mass Flow Vorking Losses Mass Flow Lossey Losses vorking Norking and Standing Losse vorking Losses Mass Flow Vorking Losses Mass Flow Lossey Vorking Norking and Standing Losses vorking Losses Mass Flow Vorking Losses Mass Flow Lossey Vorking Norking and Standing Losses vorking Losses Mass Flow Vorking Losses Mass Flow Lossey Vorking Norking and Standing Lossey vorking Losses Mass Flow Vorking Lossey Massey Lossey Vorking Lossey Vorking		1070 77.1			5 00510	. /
tianding Losses 5.3510 lonyir Working and Shanding Losses per Tank 3.08200 lonyir vadrig Losses 25.455 lonyir Vadrig and Shanding Losses per Tank 3.08200 lonyir Verking Losses per Tank 25.455 lonyir Vadrig and Shanding Losses per Tank 3.08200 lonyir Verking Losses per Tank Exclus Perperties: Tabulation 5.0820 lonyir Norking and Shanding Losses Naño Cantyr Longing Losses Longing Losses Norking and Shanding Losses Nork						
cading closes 15.412 Working and Shanding Losses per Tank Losses per Tank Losses to the total to the total tota						
Working Losses per Tank Loading Losses per Tank 15.4172 tonlyr Results Properties Eablated Data Loading Losses Mass Flows Loading Losses Mass Flows Loading Losses Mass Flows Loading Losses Loading Losses Mass Flows Loading Losses Loading Losses <thloading losses<<="" td=""><td>Losses</td><td>5.33510 tor</td><td>n/yr</td><td>Working and Standing Losses</td><td>30.8206 1</td><td>ton/yr</td></thloading>	Losses	5.33510 tor	n/yr	Working and Standing Losses	30.8206 1	ton/yr
Working Losses per Tank Loading Losses per Tank 15.4172 tonlyr Results Properties : Tabulated Data Results Properties : Tabulated Data Loading Losses Mass Flows Loading Losses Mass Flows Loading Losses Loading Losses <thloading losses<="" th=""> Loading Losses</thloading>	osses	15.4172 tor	n/vr	Working and Standing Losses per Tank	30.8206 1	ton/vr
Results Properties : Tabilated Data Index Flashing Losses Mass Flows tonyr Standing Losses Mass Flows tonyr Loading Losses Mass Flows tonyr Loading Losses Mass Flows tonyr Working and Standing Loss tonyr Propane 645.003 7.75052 1.62249 4.68862 Isobulane 225.982 2.90164 0.607427 1.75553 Butane 578.487 7.44185 1.55767 4.50189 Isopentane 200.724 2.43157 0.560022 1.47066 Cyclopentane 0 0 0 0 Index 86.5384 1.00685 0.210794 0.6609148 Hexane 64.17423 0.641151 0.134218 0.387859 Gercher 0 0 0 0 0 Brane 2.76695 0.0300003 0.00026967 0.018198 i-C7 0 0 0 0 0 Gercher 2.76955 0.0300003 0.00926967 0.0181968 i-C7 0 0 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Flashing Loses Mass Flows Working Loses Mass Flows Standing Loses Mass Flows Losding Loses Mass Flows Working and Standing Lose Propane 545.903 775052 1.62249 4.68862 Isobutane 225.982 2.90164 0.607427 1.75533 Butane 576.487 7.44185 1.55787 4.50189 Isopentane 20.0724 2.43157 0.509022 1.47096 Cyclopentane 0 0 0 0 0 Cyclopentane 54.7423 0.641151 0.134218 0.387859 Methylocylopentane 54.7423 0.641151 0.134218 0.387859 Methylocylopentane 0 0 0 0 0 Cyclobexane 0						
iso ¹ utane 225.982 2.9014 0.607427 1.75533 Butane 578.487 7.44185 1.55787 4.50189 Isopentane 200.724 2.43157 0.509022 1.47096 Pentane 218.613 2.62455 0.649420 1.8770 Cyclopentane 0 0 0 0 i-C6 86.5334 1.00685 0.210794 0.069148 i-C6 86.5334 1.00685 0.210794 0.069148 i-C6 86.5334 1.00685 0.210794 0.069148 Methylcyclopentane 0 0 0 0 Methylcyclopentane 0 0 0 0 Cyclobexane 0 0 0 0 0 i-C7 0 </th <th>Index</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Index					
iso ^b utane 225.92 2.9164 0.607427 1.75533 Butane 578.487 7.44185 1.55787 4.50189 Isopentane 200.724 2.43157 0.509022 1.47096 Pentane 218.613 2.62455 0.549420 1.57767 Cyclopentane 0 0 0 0 icG 86.5334 1.00695 0.210794 0.069148 icG 86.5334 1.00695 0.210794 0.069148 icG 86.5334 1.00695 0.210794 0.069148 icG 86.5334 0.641151 0.308268 0.018755 Methylcyclopentane 0 0 0 0 0 Cyclohexane 0 <	Propage	545.903	7,75052	2 1.62249	4,68862	9.373
Butane 578.487 7.44185 1.55787 4.50189 Isopentane 200.724 2.43157 0.509022 1.47096 Pentane 218.613 2.62455 5.494492 1.8570 Cyclopentane 0 0 0 0 0 h-Hexane 86.5334 1.00695 2.017074 0.609148 n-Hexane 54.7423 0.641151 0.134218 0.387859 Methylcyclopentane 0 0 0 0 0 Senzene 4.17058 0.0289867 0.000629967 0.0175353 Cyclohexane 0 0 0 0 0 L-C7 0 0 0 0 0 Methylcyclohexane 0 0 0 0 0 0 Cyclohexane 0.124919 0.018080 0.00458052 0.0132367 Genes 0.23919 0.0243215 0.0032867 0.013246 Cyclohexane 0.0243219 0.00349041 0.00607853 <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.509</td>						3.509
isopentane 200.724 2.43157 0.509022 1.47096 Pentane 218.613 2.62455 0.549420 1.5877 Cyclopentane 0 0 0 0 n-Hexane 56.5344 1.00695 0.210794 0.609148 n-Hexane 56.5342 0.641151 0.134218 0.37859 Methylcyclopentane 0 0 0 0 Cyclohexane 0.0 0 0 0 Cyclohexane 2.76695 0.0300803 0.00629697 0.0181968 Cyclohexane 0 0 0 0 0 n-Heytane 2.76695 0.0300803 0.0990246 0.286159 n-Heytane 2.76695 0.473035 0.0990246 0.286159 n-Heytane 4.4205 0.473035 0.0990246 0.286159 n-Heytane 4.4205 0.473035 0.0990246 0.0300803 Colchane 12.4989 0.161612 0.0243215 0.01702836 m-Xyte						8.999
Pentane 218.613 2.62455 0.549420 1.58770 Cyclopentane 0 0 0 0 0 L-C6 86.5394 1.0085 2.210794 0.609148 n-Hexane 64.7423 0.641151 0.134218 0.38759 Methylcyclopentane 64.7423 0.028967 0.000006805 0.017533 Cyclohexane 0 0 0 0 0 Cyclohexane 0 0 0 0 0 hC7 0 0 0 0 0 0 Methylcyclohexane 0 0 0 0 0 0 n-Heytane 44.205 0.47035 0.0990246 0.28819 0.018198 Gottane 124898 0.116182 0.0243215 0.0070286 0 Gottane 0.13204 0.0010488 0.00120381 0.000607953 0.00348041 0.000607953 0.00348041 0.000607953 0.00348041 0.000667653 0.00348041 0.0						
Cyclopentane 0 0 0 0 0 i-C6 86.5394 1.00695 0.21074 0.609148 n-Hexane 65.47423 0.641151 0.134218 0.387859 Methylcyclopentane 0 0 0 0 Benzene 4.17058 0.0289867 0.00606065 0.0175353 Cyclochexane 0 0 0 0 0 1-C7 0 0 0 0 0 Methylcyclobexane 0 0 0 0 0 N-Heptane 2.439319 0.0218089 0.00468052 0.0182867 Coctane 1.24398 0.161612 0.0242915 0.0170286 Chane 0.132040 0.00100498 0.000210381 0.00029793 Methylcyclobexane 0.120240 0.001004985 0.00120785 0.00567653 Coctane 1.4587 0.0038359 0.00120381 0.000567653 Decanes Plus - GlSt Oli 0.2003855 0.00196435 0.000567						2.940
i-C6 86.5394 1.00695 0.210794 0.609148 n-Hexane 54.7423 0.641151 0.14218 0.387859 Methylcyclopentane 0 0 0 0 Benzene 4.17058 0.0289867 0.00606805 0.0175353 Cyclohexane 0 0 0 0 0 L2.2.4.Trimethylpentane 2.76695 0.0300803 0.00629697 0.0181968 i-C7 0 0 0 0 0 Methylcyclohexane 0 0 0 0 0 Nethylcyclohexane 0 0.021809 0.00458052 0.0132367 Coctane 12.498 0.161612 0.00243215 0.00702836 Ethylbenzene 0.132040 0.00100498 0.00210381 0.000667953 Methylcyclohexane 0.75253 0.0057682 0.001207815 0.00349041 Methylcyclohexane 0.75253 0.0057682 0.001207815 0.00349041 Decanes Plus - Closed Drain Oil 0.75253	Pentane	218.613	2.62455	5 0.549420	1.58770	3.173
n-Hexane 54.7423 0.641151 0.134218 0.387859 Methylcyclopentane 0 0 0 0 0 Benzene 4.17058 0.029807 0.00606805 0.0175333 Cyclohexane 0 0 0 0 0 LC7 0 0 0 0 0 h-C7 0 0 0 0 0 h-C7 0 0 0 0 0 n-Heptane 44.2005 0.47335 0.0990246 0.288159 Toluene 2.93919 0.0218809 0.00458052 0.0132367 Octane 12.4898 0.116182 0.00248052 0.0132367 Octane 0.13244 0.0017088 0.000210381 0.000607953 Mm-Xylene 0.73253 0.00576922 0.00120785 0.00349414 Nonane 1.16587 0.003359 0.00120785 0.00349414 Decanes Plus - Otsod Drain Oil 0.000067763 0.000667653 0.0004667545	Cyclopentane	0	0	0 0	0	
n-Hexane 54.7423 0.641151 0.134218 0.387859 Methylcyclopentane 0 0 0 0 0 Benzene 4.17058 0.029807 0.00606805 0.0175333 Cyclohexane 0 0 0 0 0 LC7 0 0 0 0 0 hLC7 0 0 0 0 0 hLC7 0 0 0 0 0 n-Heptane 44.2025 0.47335 0.0990246 0.288159 Toluene 2.93919 0.0218809 0.00458052 0.0132367 Octane 12.4898 0.116182 0.00243051 0.000607953 Methylenzene 0.13204 0.00170481 0.00056753 0.0014975 Decane 0.75253 0.00576822 0.00120781 0.00056753 Mexapentaria 1.16587 0.003359 0.00120781 0.00056753 Decanes Plus - Glst Oli 0.000067553 0.000189309 0.00056765	i-C6	86.5394	1.00695	5 0.210794	0.609148	1.217
Methyloyclopentane 0 0 0 0 Berzene 4.1705 0.028967 0.0060680 0.017535 Cyclohexane 0 0 0 0 LC7 0 0 0 0 Methyloyclohexane 0 0 0 0 n-Heptane 44.2205 0.473035 0.0990246 0.2886159 Coctane 12.4989 0.016182 0.00120381 0.00020381 Coctane 12.4989 0.016182 0.00210381 0.00020381 Mthyloyclohexane 0.128492 0.00109498 0.00120381 0.00020381 Coctane 12.4989 0.01619498 0.00120381 0.00020381 Mthyloyclohexane 0.120490 0.000109498 0.000196435 0.00056763 Mthylowclohexane 0.120367 0.000196435 0.00056763 0.000196435 0.00056763 Mthylowclohexane 0.120368 0.000196456 0.000189435 0.00056763 Decanes Plus - Glosti Oli 0.00040635 2.347585-6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.7753</td>						0.7753
Benzene 4.17058 0.0289867 0.00606805 0.0175353 Cyclohexane 0 0 0 0 0 C2.2.4.Trimethylpentane 2.76695 0.030030 0.00629697 0.0181968 i-C7 0 0 0 0 0 Methylcyclohexane 0 0 0 0 0 n-Heptane 44.205 0.473035 0.0990246 0.288159 Cyclane 2.93919 0.0218809 0.00458052 0.0132367 Octane 12.4989 0.16182 0.0243215 0.00702836 Ethylbenzene 0.132040 0.00104983 0.00210381 0.000607953 Metzene 0.175253 0.00576822 0.0129785 0.00349041 Nonane 1.16587 0.003359 0.00129785 0.00349045 Decanes Plus - Closed Drain Oil 0.120386 0.000149835 0.00056763.3 Decanes Plus - Closed Drain Oil 0.120386 0.000149835 0.000149835 0.000149835 Decanes Plus - Closed Drain Oil </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.7755</td>						0.7755
Cyclohexane 0 0 0 2,2,4-Trimelhylpentane 2,76695 0.0300803 0.0029697 0.0181968 i-C7 0 0 0 0 0 Methylcyclohexane 0 0 0 0 0 0 n-Heptane 44 2020 0.071850 0.0090246 0.286159 0.0170286 Toluene 2.93919 0.0218809 0.00458052 0.0170286 Octane 2.93919 0.0218809 0.00243031 0.000607953 Chylbenzene 0.132040 0.0010498 0.000210381 0.000607953 Monane 0.132040 0.000547824 0.0019495 0.0019495 0.0019495 0.00054724 Decanes Plus - Olscid Drain Oli 0.12036 0.000938359 0.00194930 0.00054724 Decanes Plus - Closed Drain Oli 0.12036 0.000946656 0.000189360 0.00054724 Decanes Plus - Closed Drain Oli 0.00040635 2.347585-66 4.1420165-06 1.420165-06						
2,2,4-Trimethylpentane 2,76695 0.0300803 0.0629697 0.0181968 i-C7 0 0 0 0 Methylcylcohexane 0 0 0 0 n-Heptane 44.2205 0.473035 0.0990246 0.288159 Octane 2.93919 0.0218809 0.00488052 0.013286 Octane 12.498 0.0110498 0.0021031 0.0002953 Ethylbenzene 0.120360 0.00100498 0.0012035 0.00349041 Nonane 0.775253 0.00576982 0.00196435 0.00567653 Decanes Plus - Closed Drain Oil 0.120366 0.000904656 0.000189380 0.000547264 Decanes Plus - Closed Drain Oil 0.000406355 2.347565-66 4.14242-07 1.420166-06						0.03505
i-C7 0 0 0 Methylcyclohexane 0 0 0 0 n-Heptane 44 2205 0.473035 0.0990246 0.286159 Toluene 2.93919 0.0218009 0.00468052 0.0132867 Octane 12.4898 0.16162 0.00210381 0.000607953 Ethylberzene 0.13204 0.00100498 0.00120785 0.00349041 mXylene 0.775253 0.00576822 0.0194355 0.00567653 Decane 1.16587 0.00393359 0.01019435 0.000567524 Decanes Plus - Closed Drain Oil 0.120386 0.000904655 0.000189380 0.0005747264 Decanes Plus - Closed Drain Oil 0.000406355 2.247585-66 4.1442E-07 1.42016E-06			Ŭ	, ,		
Methyloyclohexane 0 0 0 n-Heptane 44.2205 0.473035 0.0990246 0.286159 Toluene 2.93919 0.021809 0.00458052 0.0132387 Octane 12.4898 0.116182 0.0201303 0.000070983 Ethylbenzene 0.132040 0.0010498 0.00120785 0.00087953 Monane 0.15253 0.00576982 0.00120785 0.0005497264 Decane Plus - Closed Drain Oil 1.16587 0.00390456 0.000189380 0.000547264 Decanes Plus - Closed Drain Oil 0.120386 2.34758E-66 4.1442E-07 1.42016E-06	2,2,4-Trimethylpentane	2.76695	0.0300803	3 0.00629697	0.0181968	0.03637
Methyloyclohexane 0 0 0 n-Heptane 44.2205 0.473035 0.0990246 0.281619 Toluene 2.93919 0.021809 0.00458052 0.0132387 Octane 12.4898 0.116182 0.0201303 0.00067953 Ethylbenzene 0.132047 0.0010498 0.00120785 0.00067953 Nonane 1.16587 0.0038359 0.0016435 0.00567634 Decane Nuo-Closed Drain Oil 0.120386 0.00014938 0.00016435 0.000547264 Decanes Plus - Closed Jrain Oil 0.120386 2.34758E-C6 4.1442E-07 1.42016E-C6	i-C7	0	0	0 0	0	
n-Heptane 44 2205 0.473035 0.0990246 0.28159 Toluene 2.93919 0.0218809 0.00458052 0.0132367 Octane 12.4898 0.116182 0.0243215 0.0702836 Ethylbenzene 0.1320367 0.000210381 0.00067953 m-Xylene 0.775253 0.00576982 0.0019435 0.00567663 Decane 0 0 0 0 0 Decanes Plus - Closed Drain Oil 0.120386 0.000904656 0.000189380 0.000547264 Decanes Plus - Closed Drain Oil 0.00040635 2.34758E-C6 4.1442E-07 1.42016E-06					0	
Toluene 2.93919 0.024809 0.0468052 0.0132367 Octane 12.4898 0.116182 0.0243215 0.0702836 Ethylberzene 0.32240 0.0100498 0.000210381 0.000607953 m-Xylene 0.775253 0.00576982 0.01197455 0.00567653 Decane 0 0 0 0 0 Decanes Plus - Closed Drin Oil 0.120366 0.000904656 0.00018930 0.00567653 Decanes Plus - GBS1 Oil 0.000406355 2.34755E-66 4.91442E-07 1.42016E-06						0.5720
Octane 12.4898 0.116182 0.0243215 0.0702836 Ethylbenzene 0.132040 0.00100498 0.000210381 0.00067953 m-Xylene 0.775253 0.00576982 0.00120785 0.00349041 Nonane 1.16587 0.0038359 0.00567653 0.00567653 Decane 0 0 0 0 0 Decanes Plus - Gbs1 Oli 0.00240355 2.24758-C6 4.91442E-07 1.42016E-06						
Ethylbenzene 0.132040 0.00100498 0.000210381 0.00087953 m-Xylene 0.775253 0.00576982 0.00120785 0.00349041 Nonane 1.16587 0.0038359 0.00196435 0.00567653 Decane 0 0 0 0 0 Decanes Plus - Closed Drain Oil 0.120386 0.000904656 0.000189380 0.000547264 Decanes Plus - GBS1 Oil 0.000406335 2.34758E-06 4.91442E-07 1.42016E-06						0.02646
m-Xylene 0.775253 0.00576982 0.00120785 0.00349041 Nonane 1.16587 0.00938359 0.00196435 0.00567653 Decane 0 0 0 0 0 Decanes Plus - Closed Drain Oli 0.120386 0.00094656 0.000198330 0.000547264 Decanes Plus - GBS1 Oli 0.000406335 2.34759E-06 4.91442E-07 1.42016E-06						0.1405
Nonane 1.16587 0.00938359 0.00196435 0.00567653 Decane 0 0 0 0 0 Decanes Plus - Closed Drain Oil 0.120386 0.00094656 0.000180380 0.000547284 Decanes Plus - GBS1 Oil 0.00040635 2.34758E-06 4.91442E-07 1.42016E-06	Ethylbenzene	0.132040			0.000607953	0.001215
Nonane 1.16587 0.00938359 0.00196435 0.00567653 Decane 0 0 0 0 0 Decanes Plus - Closed Drain Oil 0.120386 0.00094656 0.000180380 0.000547284 Decanes Plus - GBS1 Oil 0.00040635 2.24759E-06 4.91442E-07 1.42016E-06	m-Xylene	0.775253	0.00576982	0.00120785	0.00349041	0.006977
Decane 0 0 0 0 Decanes Plus - Closed Drain Oil 0.120386 0.000904656 0.000189380 0.000547264 Decanes Plus - GBS1 Oil 0.00040635 2.34758E-06 4.91442E-07 1.42016E-06						0.01134
Decanes Plus - Closed Drain Oil 0.120386 0.000904656 0.000189380 0.000547264 Decanes Plus - GBS1 Oil 0.000406335 2.34759E-06 4.91442E-07 1.42016E-06						0.01134
Decanes Plus - GBS1 Oil 0.000406335 2.34759E-06 4.91442E-07 1.42016E-06		-				
						0.001094
Decanes Plus - Inlet Oil 0 0 0 0						2.83904E-
	Decanes Plus - Inlet Oil	0	0	0 0	0	
Decanes Plus - North Header Oil 0 0 0 0 0		0	0	0	0	
	Decanes Plus - North Header Oil	-	0		0	
	Decanes Plus - South Header Oil	-	0)	<u>۸</u>	
Undecanes Plus 0 0 0 0	Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil	0	0		-	

		Tank Losses Two Produced W			
Vert Nerrer				lob	
Client Name:	XTO ENERGY INC Cowboy CDP			Job: Modified:	Slop Oil & PW Handling
location:				Status:	Solved 2:10 PM, 11/8/2024
lowsneet.	Slop Oil & PW Handling			Status.	Solved 2.10 F WI, 11/0/2024
		Stream Conne	ections		
Stream	Connection Type	Other Block	Stream	Connection Type	Other Block
GBS1 Water	Inlet	Gunbarrel	PWTK1&2 Flash	Flashing Losses Stream	MIX-103
PWTK1&2 Working	Working Losses Stream	MIX-103	PWTK1&2 Standing	Standing Losses Stream	MIX-103
PWTK1&2 Load	Loading Losses Stream		13	Residual Liquid Stream	
	Workin	g and Standing Pro	perties : Scalar Data		
ank Geometry	Vertical Cylinder	g and otalianing i to	Roof Type	Con	3
Shell Length	24* ft		Slope of Coned Roof	0.062	
Shell Diameter	15.5* ft		Breather Vent Pressure	0.030000) psig
Number of Storage Tanks	2*		Breather Vacuum Pressure	-0.030000	
Maximum Fraction Fill of Tank	90 %		Location	Roswell, NM	
Average Fraction Fill of Tank	50 %		Time Frame	Yea	
Vinimum Fraction Fill of Tank	10 %		Known Liquid Bulk Temperature?	FALSE	
Material Category	Light Organics*		Liquid Bulk Temperature	64.231	
nsulation	Uninsulated		Use AP 42 Raoult's Vapor Pressure?	FALSE	
Bolted or Riveted Construction? /apor Balanced Tank?	FALSE FALSE		Flashing Temperature	75.683 75.	
/apor Balanced Tank? Known Sum of Increases in Liquid Level?	FALSE FALSE		Average Daily Maximum Ambient Temperature Average Daily Minimum Ambient Temperature	75.4	
Known Sum of Increases in Liquid Level? Sum of Increases in Liquid Level	FALSE 32581.3 ft/yr		Average Daily Minimum Ambient Temperature Atmospheric Pressure at Tank Location		3°F 3 psia
Sum of Increases in Liquid Level Shell Color	32581.3 ft/yr Tan*		Atmospheric Pressure at Tank Location Daily Solar Insolation		2 Btu/(day*ft^2)
Shell Paint Condition	Average		Average Wind Speed		mph
Roof Color	Tan*		Include Short Term Emissions	FALSE	
Roof Paint Condition	Average		include onor renn Emissions	TAEO	-
	· · · · · · · · · · · · · · · · · · ·				
		osition Subset Prop	perties : Scalar Data		
Component Subset	VOCs FALSE		Species in Results Fraction Denominator	Selected Species Selected Species	3
Atomic Basis	FALSE		1 Taction Denominator		,
		sition Subset Prope			,
		sition Subset Proper	rties : Tabulated Data		
Atomic Basis	Compos Selected Components	sition Subset Prope			
Atomic Basis Index Water	Compos Selected Components FALSE	sition Subset Proper			
Momic Basis Index Water Hydrogen Sulfide	Compos Selected Components FALSE FALSE	sition Subset Prope		Calcula opeac	
Momic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic	Compos Selected Components FALSE FALSE FALSE	sition Subset Prope			
Momic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide	Compos Selected Components FALSE FALSE FALSE FALSE	sition Subset Prope			
Momic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE	sition Subset Prope			
Momic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE	Sition Subset Proper			
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE	Sition Subset Prope			
Momic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE	sition Subset Prope			
Momic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE	sition Subset Proper			
Momic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE	Sition Subset Prope			
Momic Basis Index Water Hydrogen Sullide Nitrogen. Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Butane Isopentane Pentane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE	sition Subset Prope			
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isobutane Butane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE	sition Subset Proper			
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Pentane Cyclopentane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE	sition Subset Prope			
Atomic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Isopentane Pentane Cyclopentane i-C6	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Prope			
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Isopentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Prope			
Index Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclophexane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Prope			
Monic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Ethane Cyclopentane i-C6 n.+texane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Momic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Butane Isopentane Pentane Cyclopentane i+C6 n.+texane Benzene Cyclohexane 2,2,4-Trimethylpentane i+C7	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Index Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylcpentane i-C7 Methylcyclohexane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2.2.4-Trimethylpentane i-C7 Methylcyclopentane n-Heptane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Index Index Water Hydrogen Sullide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Poptane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2.2,4-Trimethylcpentane i-C7 Methylcyclohexane n-Heptane Toluene	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Momic Basis Index Water Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Isopentane Foca n-Hexane Kethylcyclopentane Benzene Cyckohexane 2,2,4-Trimethylpentane FC7 Methylcyclohexane n-Heptane Toluene Cotane C	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Atomic Basis Index Vater Hydrogen Sullide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Butane Sutane Pentane Cyclopentane Fec8 n-Hexane Methylcyclopentane Benzene Cyclohexane S2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Index Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Pentane Pentane Cyclopentane FC6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylcpentane FC7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Kylene	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Nomic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Butane Isopentane Foc6 n-Hexane Methyltycolopentane Benzene Cyclopentane Benzene Cyclohexane 2:2,4-Trimethylpentane i-C7 Methyltycolohexane n-Heptane Toluene Cotane Ethylbenzene m-Xylene Nonane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Momic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Fropane Isobutane Butane Isopentane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Momic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Pentane Cyclopentane FCG n-Hexane Methyloyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Heptane Toluene Octane Ethylbenzene m-Kylene Nonane Decanee Due Cole Coran Oli	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Momic Basis Index Vater Hydrogen Sullide Nitrogen, Atomic Carbon Dioxide Methane Ethane Fropane Isobutane Butane Isopentane Pentane Cyclopentane Pentane Cyclopentane Benzene Cyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclopentane N-Heptane N-Heptane Toluene Cotane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oli Decanes Plus - Closed Drain Oli Decanes Plus - Closed Drain Oli Decanes Plus - Closed Drain Oli Decanes Plus - Closed Drain Oli Decanes Plus - Closed Drain Oli Decanes Plus - Closed Drain Oli	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Index Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Portane Cyclopentane FoG n-Hexane Methylcyclopentane Benzene Cyclohexane 2.2,4-Trimethylcpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Kylene Nonane Decanes Plus - Closed Drain Oli Decanes Plus - Closel Drain Oli Decanes Plus - Lelt Oli	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Index Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Propane Isobutane Butane Isopentane Fropane Sutane Ucyclopentane FoG n-Hexane Ccyclopentane Benzene Ccyclohexane 1-C7 Methylicyclohexane n-Heptane FC7 Methylicyclohexane n-Heptane Toluene Cotane Ethylbenzene m-Xylene Nonane Decane Decane Decane Decane Decane Decane Decane Decane Decane Nethylic - Close Drain Oli Decanes Plus - Noth Heder Oli Decanes Plus - Noth Heder Oli Decanes Plus - Noth Heder Oli Decanes Plus - Noth Hedder Oli	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			
Momic Basis Index Vater Hydrogen Sulfide Nitrogen, Atomic Carbon Dioxide Methane Ethane Ethane Propane Isobutane Butane Isopentane Pentane Pentane Cyclopentane FC6 n-Hexane Methylcyclopentane Eenzene Cyclohexane 2.2,4-Trimethylcpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Hylene Toluene Octane Ethylbenzene m-Hylene Nonane Decanes Plus - Closed Drain Oli Decanes Plus - Closel Drain Oli Decanes Plus - Closel Drain Oli Decanes Plus - Closel Orain Oli Decanes Plus - Intel Oli	Compos Selected Components FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRU	sition Subset Proper			

	Details Properties : S		0.401.000	
por Space Volume	2294.77 ft^3	Roof Outage	0.161458 ft	
apor Density	0.0798877 lb/ft^3	Tank Roof Height	0.484375 ft	
apor Space Expansion Factor	0.928682 1/day	Tank Shell Radius	7.75 ft	
ented Vapor Saturation Factor	0.114233	Vapor Molecular Weight	37.6489 lb/	
apor Space Outage	12.1615 ft	Average Vapor Temperature	528.292 °F	2
verage Daily Vapor Temperature Range	37.0284 °R	Average Daily Ambient Temperature	521.37 °F	2
verage Daily Vapor Pressure Range	0.789581 psi	Net Working Loss Throughput	6.14782E+06 ft ⁴	
reather Vent Pressure Setting Range	0.0600000 psi	Working Loss Turnover (Saturation) Factor	0.184346	o yr
apor Pressure at Average Daily Liquid Surface Temperature	12.0300 psia	Number of Turnovers per Year	1696.94	
verage Daily Liquid Surface Temperature	526.096 °R	Annual Net Throughput	2.19018E+06 bb	ol/yr
verage Daily Ambient Temperature Range	28.2 °R	Maximum Liquid Height	21.6 ft	
ank Roof Surface Solar Absorptance	0.49	Minimum Liquid Height	2.4 ft	
ank Shell Surface Solar Absorptance	0.49	Working Loss Product Factor	1	
apor Pressure at Maximum Liquid Surface Temperature	12.5434 psia	Vent Setting Correction Factor	1	
apor Pressure at Minimum Liquid Surface Temperature	11.7538 psia	Saturation Factor	0.6	
Iaximum Liquid Surface Temperature	535.354 °R	Vapor Pressure of Liquid Loaded	12.0300 ps	
finimum Liquid Surface Temperature	516.839 °R	Collection Efficiency	98.7 %	
iquid Height	12 ft	Annual Net Throughput Per Tank	1.09509E+06 bb	ol/yr
	Loading Properties : S	Scalar Data		
Cargo Carrier	Tank Truck or Rail Tank Car	Truck Annual Leak Test Passed	NSPS-Level*	
and Based Mode of Operation	Submerged Loading: Dedicated Normal Service*	Overall Reduction Efficiency	0 %	
Control Efficiency	0* %			
	Results Properties : S	calar Data		
lashing Losses	0 ton/yr	Standing Losses per Tank	0.425923 to	
Vorking Losses	10.8648 ton/yr	Flashing Losses per Tank	0 to	n/yr
tanding Losses	0.851847 ton/yr	Working and Standing Losses	11.7167 to	n/vr
oading Losses	221.235 ton/yr	Working and Standing Losses per Tank	5.85834 to	
Vorking Losses per Tank	5.43242 ton/yr	Loading Losses per Tank	110.618 to	
Vorking E0363 per Tank	0.40242 toti yi	Eodding Eoddes per Tank	110.010 10	
	Results Properties : Ta Flashing Losses Mass Flows Working Losses Mass Flows	bulated Data Standing Losses Mass Flows	Loading Losses Mass Flows	Working and Standing Losses Mass Flows
Index	Flashing Losses Mass Flows Working Losses Mass Flows ton/yr ton/yr	Standing Losses Mass Flows ton/yr	Loading Losses Mass Flows ton/yr	ton/yr
Propane	Flashing Losses Mass Flows Working Losses Mass Flows tonlyr tonlyr 0 5.3916	Standing Losses Mass Flows ton/yr 9 0.422730	ton/yr 109.788	ton/yr 5.8144
	Flashing Losses Mass Flows Working Losses Mass Flows ton/yr ton/yr	Standing Losses Mass Flows ton/yr 9 0.422730	ton/yr	ton/yr
Propane	Flashing Losses Mass Flows Working Losses Mass Flows tonlyr tonlyr 0 5.3916	Standing Losses Mass Flows ton/yr 9 0.422730 9 0.0557346	ton/yr 109.788	ton/yr 5.8144 0.90414
Propane Isobutane Butane	Flashing Losses Mass Flows Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 3.0336	Standing Losses Mass Flows ton/yr 9 0.422730 9 0.0657346 3 0.237849	ton/yr 109.788 17.0721 61.7723	ton/yr 5.8144 0.90414 3.2714
Propane Isobutane Butane Isopentane	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.33360 0 0.51916	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108	ton/yr 109.788 17.0721 61.7723 12.0535	ton/yr 5.8144 0.90414 3.2714 0.63835
Propane Isobutane Butane Isopentane Pentane	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.3036 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480	ton/yr 109.788 17.0721 61.7723 12.0535 6.03781	ton/yr 5.8144 0.90414 3.2714
Propane Isobutane Butane Isopentane Pentane Cyclopentane	Flashing Losses Mass Flows ton/yr Working Losses Mass Flows ton/yr 0 5.3916 0 0.83840 0 0.30362 0 0.51919 0 0.29651 0 0.29651	Standing Losses Mass Flows ton/yr 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.3036 0 0.5914 0 0.29651 0 0.15191 0 0.15191	Standing Losses Mass Flows 1000000000000000000000000000000000000	ton/yr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382
Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane	Flashing Losses Mass Flows ton/yr Working Losses Mass Flows ton/yr 0 5.3916 0 0.83840 0 0.30362 0 0.51919 0 0.29651 0 0.29651	Standing Losses Mass Flows 1000000000000000000000000000000000000	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.3036 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.51305 0 0.051305	Standing Losses Mass Flows 1000000000000000000000000000000000000	ton/yr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382
Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.3036 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.51305 0 0.051305	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.3036 0 0.5914 0 0.29651 0 0.15191 0 0.051305 0 0.051305 0 0.015286	Standing Losses Mass Flows tonlyr 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.04042258 0 0 6 0.0143390	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382
Propane Isobutane Butane Isopentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.3036 0 0.55194 0 0.25651 0 0.15191 0 0.061305 0 0.015191 0 0.05162 0 0.05128 0 0.05128 0 0.05128 0 0.015288 0 0.18288 0 0.18288	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 9 0.0464108 6 0.0232480 0 0.0119106 9 0.00402258 0 0 0 0 0 0	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055325 0.19722
Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.30360 0 0.5916 0 0.5916 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.51305 0 0.15126 0 0.16286 0 0.047287 0 0.0047287	Standing Losses Mass Flows Lonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 7 0.000370755	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328
Propane Isobutane Butane Isopentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.3036 0 0.5914 0 0.29651 0 0.015191 0 0.051306 0 0.051306 0 0.15286 0 0.047287 0 0.0047287	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 0 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143309 0 0 7 0.000370755 0 0	tonlyr 109,788 17.0721 61,7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055325 0.19722
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane	Flashing Losses Mass Flows toniyr Working Losses Mass Flows toniyr 0 5.3916 0 0.33940 0 0.3036 0 0.05194 0 0.05194 0 0.05194 0 0.051916 0 0.15191 0 0.051305 0 0.18288 0 0.0047287 0 0.0047287 0 0.0047287	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 0 0 7 0.000370755 0 0 0 0	tonlyr 109,788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 0 0 0 0 0 0 0 0 0 0 0	ton/yr 5.8144 0.90414 3.2714 0.68835 0.31976 0.16382 0.055325 0.19722 0.00550995
Propane Isobutane Butane Isopentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.3036 0 0.5914 0 0.29651 0 0.015191 0 0.051306 0 0.051306 0 0.15286 0 0.047287 0 0.0047287	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 0 0 7 0.000370755 0 0 0 0	tonlyr 109,788 17.0721 61,7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0	ton/yr 5.8144 0.90414 3.2714 0.68835 0.31976 0.16382 0.055325 0.19722 0.00550995
Propane Isobutane Butane Isopentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane	Flashing Losses Mass Flows toniyr Working Losses Mass Flows toniyr 0 5.3916 0 0.33940 0 0.3036 0 0.05194 0 0.05194 0 0.05194 0 0.051916 0 0.15191 0 0.051305 0 0.18288 0 0.0047287 0 0.0047287 0 0.0047287	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 7 0.000370755 0 0 0 0 0 0 0 0	tonlyr 109,788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 0 0 0 0 0 0 0 0 0 0 0	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055325 0.19722
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.3036 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.51305 0 0.0151305 0 0.018286 0 0.0052968 0 0.052968 0 0.0552968 0 0.0552968 0 0.017745	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143300 7 0.000370755 0 0 0 0 3 0.0145120 3 0.0139162	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 1.07856 3.61420	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.19722 0.0050998 0.057120 0.057120 0.19140
Propane Isobutane Butane Isopentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.30360 0 0.5916 0 0.5916 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.51305 0 0.15191 0 0.015206 0 0.029661 0 0.010524 0 0.029266 0 0.029266 0 0.029266 0 0.029266 0 0.029266 0 0.029266 0 0.010524 0 0.010524 0 0.010524 0 0.010524	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 9 0.00402268 0 0 0 0 6 0.0143390 0 0 7 0.000370755 0 0 0 0 0 0 0 0 0 0 0 0	tonlyr 109,788 17.0721 61.7723 12.0535 6.03781 0 3.09322 1.04472 0 3.72401 0 0.0962897 0 0 1.07856 3.61420 0.214305	ton/yr 5.8144 0.9041 3.2714 0.63833 0.31976 0.065322 0.065322 0.0050995 0.05712(0.05712(0.19144 0.011345
Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2.4.Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 0.3036 0 0.29651 0 0.15191 0 0.051306 0 0.0151305 0 0.0047287 0 0.052966 0 0.052966 0 0.0052966 0 0.0152962 0 0.0152962 0 0.0152962 0 0.0152962 0 0.0152962	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 0 0 7 0.000370755 0 0 0 0.04415290 3 0.0143396 5 0.000825162 1 0.000925722	tonlyr 109,788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 0 0 0 0 0 0 0 0 0 0 0	ton/yr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055326 0.055326 0.055326 0.055326 0.055326 0.055326 0.055326 0.055326 0.055326 0.055326 0.055326 0.055326 0.0557120 0.057123 0.057124 0.01344 0.01344
Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene	Flashing Losses Mass Flows toniyr Working Losses Mass Flows toniyr 0 5.3916 0 0.3340 0 0.3036 0 0.05194 0 0.05194 0 0.05194 0 0.051905 0 0.15191 0 0.051305 0 0.051305 0 0.052966 0 0.0047287 0 0.052966 0 0.052966 0 0.017745 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524 0 0.010524	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00310755 0 0.00452091 0 0.00325162 1 0.00523017 0 0.00523017	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 0.0962897 0 0.0962897 0 0 1.07856 3.61420 0.214305 0.240422 1.38834	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055326 0.19722 0.0050995 0.057120 0.057120 0.057120 0.011342 0.011342 0.012732 0.071938
Propane Isobutane Butane Isopentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 0.05919 0 0.05919 0 0.15191 0 0.061306 0 0.15191 0 0.0647287 0 0.047287 0 0.052966 0 0.052966 0 0.052966 0 0.052966 0 0.051206 0 0.051206 0 0.052966 0 0.052966 0 0.052966 0 0.052966 0 0.052966 0 0.052966 0 0.051206 0 0.051206 0 0.051206 0 0.051617 0 0.051617 0 0.0616708 0 0.00616708 0 0.00616708 <t< td=""><td>Standing Losses Mass Flows Lonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 0 0 7 0.000370755 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000825162 0 0.000825722 0 0.00523017 8 0.000126444</td><td>ton/yr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 1.07856 3.61420 0.214305 0.240422 1.35834 0.0329442</td><td>toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055326 0.19722 0.0050995 0.057120 0.057120 0.057120 0.011342 0.011342 0.012732 0.071938</td></t<>	Standing Losses Mass Flows Lonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 0 0 7 0.000370755 0 0 0 0 0 0 0 0 0 0 0 0 1 0.000825162 0 0.000825722 0 0.00523017 8 0.000126444	ton/yr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 1.07856 3.61420 0.214305 0.240422 1.35834 0.0329442	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055326 0.19722 0.0050995 0.057120 0.057120 0.057120 0.011342 0.011342 0.012732 0.071938
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylopentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 0.3036 0 0.5916 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.51305 0 0.16286 0 0.0047287 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0016307 0 0.001637 0 0.001637 0 0.001637 0 0.0016175 <	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 7 0.000370755 0 0 0 0.04415290 3 0.0139162 5 0.00025712 1 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722	tonlyr 109,788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 0.0962897 0 0 0 0 0 0 0 0 0 0 0 0 0	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.0557120 0.057120 0.017427 0.0017447
Propane Isobutane Butane Isopentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 0.05919 0 0.05919 0 0.15191 0 0.061306 0 0.15191 0 0.0647287 0 0.047287 0 0.052966 0 0.052966 0 0.052966 0 0.052966 0 0.051206 0 0.051206 0 0.052966 0 0.052966 0 0.052966 0 0.052966 0 0.052966 0 0.052966 0 0.051206 0 0.051206 0 0.051206 0 0.051617 0 0.051617 0 0.0616708 0 0.00616708 0 0.00616708 <t< td=""><td>Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 7 0.000370755 0 0 0 0.04415290 3 0.0139162 5 0.00025712 1 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722</td><td>ton/yr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 1.07856 3.61420 0.214305 0.240422 1.35834 0.0329442</td><td>toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.0557120 0.057120 0.017427 0.0017447</td></t<>	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 7 0.000370755 0 0 0 0.04415290 3 0.0139162 5 0.00025712 1 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722	ton/yr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 1.07856 3.61420 0.214305 0.240422 1.35834 0.0329442	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.0557120 0.057120 0.017427 0.0017447
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil	Flashing Losses Mass Flows toniyr Working Losses Mass Flows toniyr 0 5.3916 0 0.83840 0 0.83840 0 0.03360 0 0.051916 0 0.51916 0 0.51916 0 0.51916 0 0.51916 0 0.51916 0 0.51916 0 0.51916 0 0.51916 0 0.51916 0 0.51916 0 0.051305 0 0.16226 0 0.0052966 0 0.0052966 0 0.011622 0 0.010524 0 0.010524 0 0.0016176 0 0.0016176 0 0.000543800	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 7 0.000370755 0 0 0 0.04415290 3 0.0139162 5 0.00025712 1 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722	tonlyr 109,788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 0.0962897 0 0 0 0 0 0 0 0 0 0 0 0 0	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055326 0.19722 0.0050995 0.057120 0.057120 0.057120 0.011342 0.011342 0.012732 0.071938
Propane Isobutane Butane Isopentane Pentane Cyclopentane i-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane i-C7 Methylcyclohexane n-Heptane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 0.03396 0 0.05919 0 0.05919 0 0.15191 0 0.061306 0 0.015191 0 0.062966 0 0.0047287 0 0.052966 0 0.0152966 0 0.052966 0 0.0054280 0 0.0162266 0 0.0162266 0 0.0054280 0 0.0016176 0 0.0016176 0 0.0016176 0 0.0016176 0 0.00054380	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 0 0 6 0.0143390 0 0 7 0.000370755 0 0 0 0.0415290 3 0.0139162 5 0.000825162 1 0.000525122 0 0.00523017 8 0.000126848 0 0 7 4.26366E-05 0 0	ton/yr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 0 0.0962897 0 0 0.0962897 0 0 0.0962897 0 0 0.214305 0.214305 0.240422 1.35834 0.0329442 0.0329	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.0057427 0.017427 0.00058644
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - Cosed Drain Oil Decanes Plus - Cosed Drain Oil	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 0.3036 0 0.5916 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.51305 0 0.016286 0 0.0047287 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0052966 0 0.001624 0 0.0066706 0 0.00054380 0 0.00054380 0 0.00054380 0 0.00015412	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 0 0.0143300 0 0 0 0.000370755 0 0 0 0.00415290 3 0.0139162 5 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0.00025722 0 0 0 0 0 0 0 0 0 0 <	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 0 0.0962897 0 0 0.0962897 0 0 0.0962897 0 0 0.0962897 0 0 0.0962897 0 0 0.0962897 0 0 0.0962897 0 0 0.0962897 0 0 0.0962897 0 0 0.0962897 0 0 0 0.0962897 0 0 0 0 0.0962897 0 0 0 0 0 0 0 0 0 0 0 0 0	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.0057427 0.017427 0.00058644
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - Inlet Oil Decanes Plus - Inlet Oil	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 0.05914 0 0.5916 0 0.5916 0 0.5914 0 0.5914 0 0.5914 0 0.5914 0 0.51305 0 0.051305 0 0.061305 0 0.052968 0 0.052968 0 0.052968 0 0.016524 0 0.017745 0 0.016526 0 0.016526 0 0.016526 0 0.016526 0 0.016526 0 0.016526 0 0.016526 0 0.016526 0 0.0056708 0 0.000564386 0 0.00054386 0 0.00015412	Standing Losses Mass Flows Lonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 9 0.0462108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 0 0 7 0.000370755 0 0 0 0 0 0 0 0 0 0.00452512 0 0.000825722 0 0.000925722 0 0.000126848 0 0 7 4.26368E-05 0 0 0 0	ton/yr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 1.07856 3.61420 0.214305 0.240422 1.35834 0.0329442 0 0.0110733 0 0.00313837 0	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.0557120 0.057120 0.017427 0.0017447
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - Closed Train Oil Decanes Plus - Noth Header Oil Decanes Plus - Sotth Header Oil	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 0.05914 0 0.05914 0 0.05914 0 0.15191 0 0.061300 0 0.0151301 0 0.0047287 0 0.0052966 0 0.0152966 0 0.0152966 0 0.0152966 0 0.0152966 0 0.0052966 0 0.0152966 0 0.0052966 0 0.0054286 0 0.0015421 0 0.00054386 0 0.00015412 0 0.00015412	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 9 0.0464108 0 0 3 0.0119106 9 0.00402258 0 0 0 0 0 0 0 0 0 0 0 0.003070755 0 0 0 0.00415290 3 0.0139162 5 0.000257122 0 0.00025722 0 0.00025722 0 0.00025722 0 0.000126648 0 0 7 4.26366E-05 0 0 0 0 0 0	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 0 0.0962897 0 0 0 0.214305 0.214305 0.240422 1.35834 0.0329442 0 0.0110733 0 0 0.00110733 0 0 0 0.00313837 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.0057427 0.017427 0.00058644
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decane Plus - Closed Drain Oil Decanes Plus - GBS1 Oil Decanes Plus - GBS1 Oil Decanes Plus - Stabilizer Outlet Oil Decanes Plus - South Header Oil Decanes Plus - Stabilizer Outlet Oil	Flashing Losses Mass Flows tonlyr Working Losses Mass Flows tonlyr 0 5.3916 0 0.83840 0 0.83840 0 0.05914 0 0.05914 0 0.05914 0 0.15191 0 0.061300 0 0.0151301 0 0.0047287 0 0.0052966 0 0.0152966 0 0.0152966 0 0.0152966 0 0.0152966 0 0.0052966 0 0.0152966 0 0.0052966 0 0.0054286 0 0.0015421 0 0.00054386 0 0.00015412 0 0.00015412	Standing Losses Mass Flows Lonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 9 0.0462108 6 0.0232480 0 0 3 0.0119106 9 0.00402258 0 0 6 0.0143390 0 0 7 0.000370755 0 0 0 0 0 0 0 0 0 0.00452512 0 0.000825722 0 0.000925722 0 0.000126848 0 0 7 4.26368E-05 0 0 0 0	ton/yr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 1.07856 3.61420 0.214305 0.240422 1.35834 0.0329442 0 0.0110733 0 0.00313837 0	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.0057427 0.017427 0.00058644
Propane Isobutane Butane Isopentane Pentane Cyclopentane I-C6 n-Hexane Methylcyclopentane Benzene Cyclohexane 2,2,4-Trimethylpentane I-C7 Methylcyclohexane n-Heptane Toluene Octane Ethylbenzene m-Xylene Nonane Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - Closed Drain Oil Decanes Plus - Closed Train Oil Decanes Plus - Noth Header Oil Decanes Plus - Sotth Header Oil	Flashing Losses Mass Flows toniyr Working Losses Mass Flows toniyr 0 5.3916 0 0.83940 0 0.30360 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.5919 0 0.051305 0 0.051305 0 0.051305 0 0.052966 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0052966 0 0.0015420 0 0.0015420 0 0.00054380 0 0.00015412 0 0.00015412	Standing Losses Mass Flows tonlyr 9 0.422730 9 0.0657346 3 0.237849 5 0.0464108 6 0.0232480 0 0 9 0.0464108 0 0 3 0.0119106 9 0.00402258 0 0 0 0 0 0 0 0 0 0 0 0.003070755 0 0 0 0.00415290 3 0.0139162 5 0.000257122 0 0.00025722 0 0.00025722 0 0.00025722 0 0.000126648 0 0 7 4.26366E-05 0 0 0 0 0 0	tonlyr 109.788 17.0721 61.7723 12.0535 6.03781 0 3.09332 1.04472 0 3.72401 0 0.0962897 0 0 0 0.0962897 0 0 0 0.214305 0.214305 0.240422 1.35834 0.0329442 0 0.0110733 0 0 0.00110733 0 0 0 0.00313837 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	toniyr 5.8144 0.90414 3.2714 0.63835 0.31976 0.16382 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.055328 0.0057427 0.017427 0.00058644

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

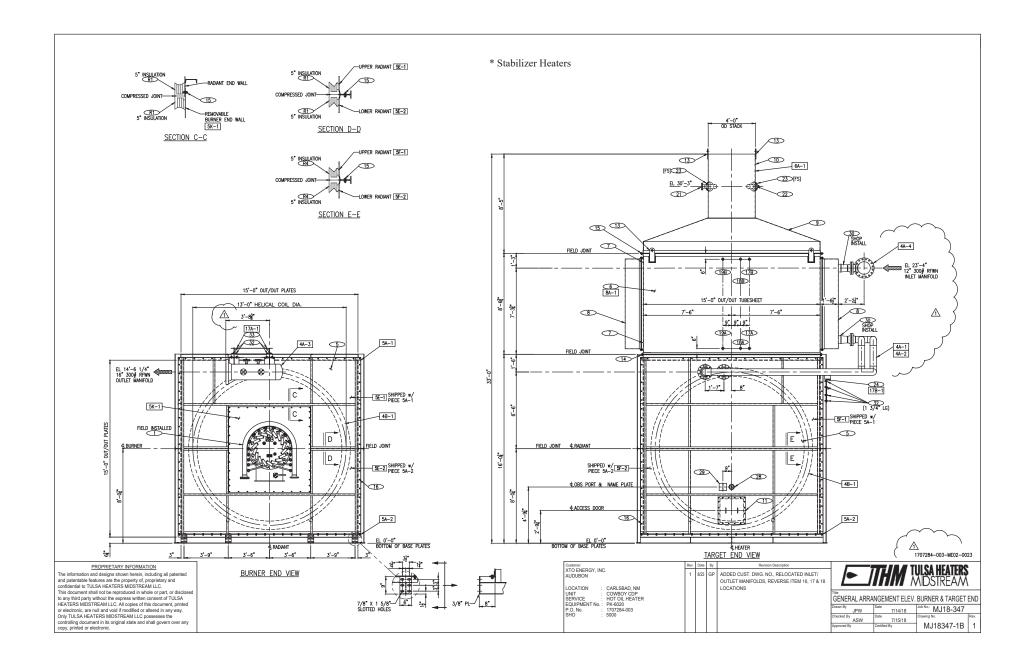
MDEA Sweetening with 50 wt% MDEA+Piperazine


Names	Units	Sour Feed	4 Sweet Gas	11 Acid Gas to TO	5 Rich Amine	6 Flash Gas	21	Sweet Product
Std Vapor Volumetric Flow	MMSCFD	251	246	5.36	76.8	0.118	72.3	246
Hydrogen Sulfide(Mole Fraction)	ppm	0.5	0.0001805	23.26	1.675	5.951	0.04447	0.0001659
Carbon Dioxide(Mole Fraction)	ppm	2e+04	5.4	9.33e+05	6.6e+04	1.28e+05	650	3.93
Carbon Dioxide(Mole Fraction)	%	2	0.00054048	93.305	6.5957	12.756	0.06505	0.00039322
Carbon Dioxide(Partial Molar Volumetric Fraction)	ppm	19315	3.9836	9.3345e+05	24612	1.2731e+05	-776.15	3.8287
Total Acid Gas Loading/Mole Amine					0.50586		0.0047004	

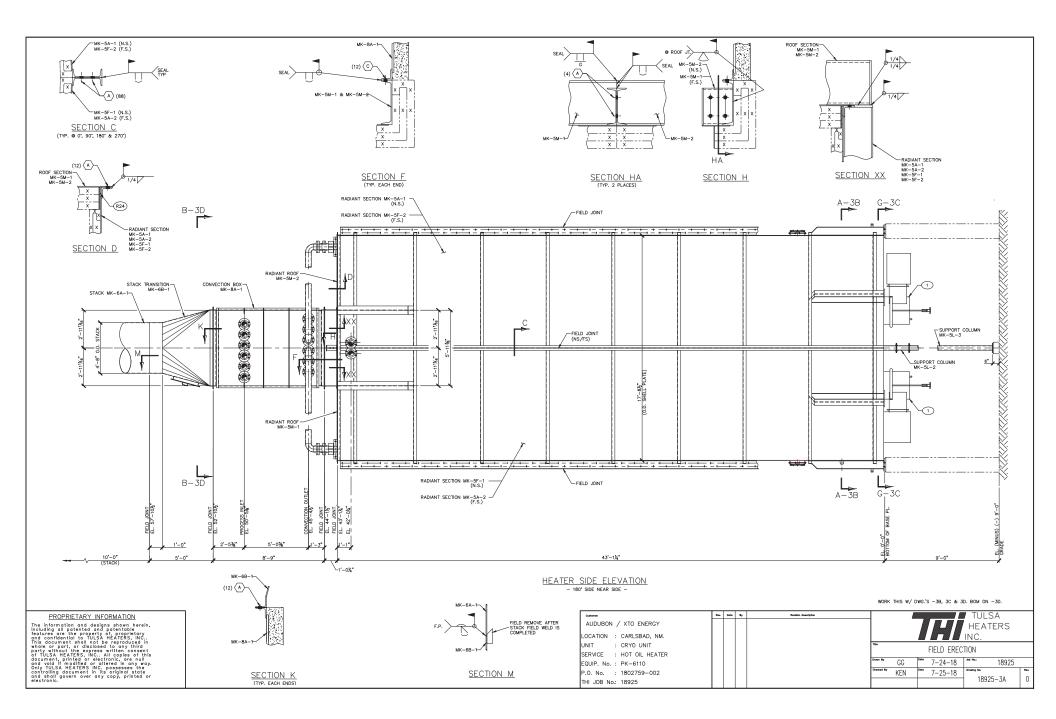
Biological biological	Process Streams		Blowdown	CO2 Spike	H2S Spike	Inlet Gas Amine	Inlet Gas High CO2	LA Circulation	Makeup	Recycle Guess	Sour Feed	Sweet Product T	O Assist Fuel	1	2	3
Non-Sold target targetNon-Sold targetNon-Sold targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold target targetNon-Sold targetNon-Sold targetNon-Sold targetNon-Sold targetNon-Sold targetNon-Sold target targetNon-Sold target <th< th=""><th></th><th>Status:</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th><th>Solved</th></th<>		Status:	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
Annual (mark) An Post of the first interval (1997) Discopted (1997) And Post of the first interval (1997) Control 1997) Contro (1997)			MDEA+ Makeup	-	-	-	Slug Catcher	MDEA+ Makeup	-	Recycle	XCHG-100	VSSL-102	-		-	CMPR-100
G Open OP OP OP Address <		To Block:	-	MIX-101	MIX-101	CMPR-100	XCHG-100	Circulation Pump	MDEA+ Makeup	MDEA+ Makeup	Absorber	-	-	RCYL-1	XCHG-101	FAXR-100
G Open OP OP OP Address <	Mole Fraction		% 4.49765E.06	% 	% 100*	% 	5 00000 05	% 4.44720E.06	<u>%</u>	% 4.49765E-06	% 5.00000E.05	1 65004E 08	%	% 1 74766E 08	<u>%</u>	0
Catcher Concede CONSEGNI CONSEGNI Concentration Concentration <thconcentration< td="" th<=""><td>N2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>1.47987</td></thconcentration<>	N2														-	1.47987
inheme 0 </td <td>Carbon Dioxide</td> <td></td> <td>0.0656401</td> <td></td> <td></td> <td></td> <td></td> <td>0.0650499</td> <td>0</td> <td>0.0656401</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.111991</td>	Carbon Dioxide		0.0656401					0.0650499	0	0.0656401						0.111991
Nogene 0 0 0 5.3562 0 0 0 5.3562 0.5262 0.52636 0.52623 0.52623 <th0.5262< td="" th<=""><td>Methane</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>70.2052</td></th0.5262<>	Methane		-					-	-	-						70.2052
Bulker 0 <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-					-	-	-						
-Balane 0 0 0 0 0 2,2350 1,2700 0 0 0 0 0 2,23500 1, 2700 7 0 2,2860 2,2410 2,2500 0 0 0 0 0,24371 0 0 0 0 0 0,24371 0 0 0 0 0 0,24471 0 0,21493 0 0 0 0 0 0,24471 0 0,21493 0 0 0 0 0 0,24471 0 0,21493 0 0 0 0 0 0,24471 0 0,21493 0 0 0 0 0 0,24471 0 0,21493 0 0 0 0 0 0,24471 0 0,21493 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			-	0				•	•	-						
Dentance Image: State in the s	n-Butane		ů	•	-			•	0	-						2.36979
Iskaare 0 0 0 0 <td>i-Pentane</td> <td></td> <td>0</td> <td>0*</td> <td>0*</td> <td>0.387662*</td> <td>0.380334</td> <td>0</td> <td>0</td> <td>0</td> <td>0.380334</td> <td>0.387758</td> <td>0*</td> <td>0.387253</td> <td>0.439635*</td> <td>0.387662</td>	i-Pentane		0	0*	0*	0.387662*	0.380334	0	0	0	0.380334	0.387758	0*	0.387253	0.439635*	0.387662
Name 65.6888 0° 0° 0.012201 0.014418 0.0030000 0.014418 0° 0.014418 0° 0.014418 0° 0.014418 0° 0.014418 0° 0.014418 0° 0.014418 0° 0.014418 0° 0.014418 0° 0.014418 0° 0.014418 0° 0.014418 0° 0.01418 0.00000000 0 0 0.01418 0° 0.01418 0° 0.0104189 0° 0.010189 0° 0.010189 0.01189 0.01189 0.01189 0.01189 0.01189 0.01189 0.01189 <t< td=""><td></td><td></td><td>Ű</td><td>0</td><td></td><td></td><td></td><td>•</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.379782</td></t<>			Ű	0				•	•							0.379782
MDEA 11.6531 0 0 0 0 10.5531 0 6.60778-07 0 0.00059799 0													-			
Sperame 2.91250 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0147201</td>																0.0147201
22 90 00 0				0		-	-				-					0
vic vic< vic< <td>02</td> <td></td> <td></td> <td>0*</td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0*</td> <td>0</td>	02			0*			0		0						0*	0
vic vic< vic< <td>Mass Fraction</td> <td></td> <td>%</td>	Mass Fraction		%	%	%	%	%	%	%	%	%	%	%	%	%	%
Sate of Dioxide 0.0022007 100° 0° 2.2162.826 3.78574 0.0022107 0.0022007 3.78574 0.0022007 3.78574 0.0022007 3.78574 0.0022007 3.78574 0.0022007 3.78574 0.0022007 3.78574 0.0022007 3.78574 0.0022007 3.78574 0.0022007 3.78574 0.0022007 3.78574 0.0022071 2.83587 0.2171 2.83587 0.2171 2.8357 0.2171 2.83787 0.2011342 2.83713 2.2172 2.73713 2.1857 2.2173 2.11827 2.2171 2.2187 2.11871 2.2287 2.2171 2.2187 2.21713 2.21871 2.21713 2.21871 2.21713 2.21871 2.21713 2.21871 2.21713 2.21871 2.21713 2.21871 2.21	Hydrogen Sulfide			-		-									-	0
Methane 0 0 0 0 0 0 0 44.8416 92 also 44.8236 48.8394 49.243 Tropane 0 0 0 0 0 0 15.9125 0 0 15.9125	INZ Carbon Dioxide		-					-	-	-						
Ethnine I 0 0 0 1 </td <td>Carbon Dioxide Methane</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>49.4240</td>	Carbon Dioxide Methane				-											49.4240
-Bulane Holane	Ethane		-		0*			0	0	-						20.2143
Headmane 0 0 0 0 5.827.3 3.0.0267 c 6.0.4427 5.468.06 6.0.443 Pertaine 0 0 0 0 0 1.227.38 1.1333 0 0 0 1.227.34 1.1333 0 0 0 1.227.34 1.1333 0.222.34 0.0112197 4.202.01 0 1.207.45 1.207.45 1.207.45 1.207.45 1.207.45 1.207.45 1.207.45 0.212.07 0.212.07 0.212.07 0.212.07 0.212.07 0.222.07 0.202.07 0.212.07 0.202.07 0.202.07 0.212.07 0.202.07 0 0 0 0 0 0 0 0.001.07.07 0 0 0.001.07.07 0 0.001.07.07 0 0.001.07.07 0 0 0.001.07.07 0 0 0.001.07.07 0 0.000.07.07 0 0.000.07.07 0 0.001.07.07 0 0.000.07.07 0 0.000.07.07 0 0.000.07.07 0 0.000.07.07	Propane		0	0*		16.5045*	15.9125	0	0	-	15.9125	16.5263	3.06854*			16.5045
-Pentane 0 0" 0" 1.22738 1.12335 0 0 1.13335 1.22423 " 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.37106 1.22738 1.22738 1.37106 1.22738 1.20134 1.4110 1.20144	i-Butane		-	-				-	-							2.50956
Spentame 0 0 0 0 0 0 1.1830 1.20422 0 1.20424 1.44455 1.2024 Water 44.6456 0 0 0.016322 0.016322 0.016932 44.9456 0.011219 0.105425 0 0.202744 0.0724513 0.011637 Mater 44.0457 0.2027 0 0 0 0 0.01637 4.2221 0.0 9.23537E45 0 0.0026821 0.0 1.0024 Mater 80.4170 0 0 0 0 0 0.012311 0.46662 0.0012311 0.46662 0.0015225 0 0.00016202 0.0 0 0.012311 0.46662 0.012311 0.46662 0.012311 0.46662 0.012311 0.0105225 0 0.00016205 0 0.00016205 0 0.00016205 0 0.00016205 0 0.00016205 0 0.00016205 0 0.00016205 0 0.00016205 0 0.00016205 0			-	-	-			-	-							
N=hexame 0 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.028765 0 0.00088221 0 0 0 0 0 0 0 0.00088225 0 0.00088255 0 0.00088251 0 0 0 0 0 0 0.00088255 0 0.00088255 0 0 0.00088255 0 0 0.00088255 0 0 0 0.00088255 0 0 0 0.00088255 0 0 0 0.00088255 0 0 0 0 0.00088255 0 0 0 0.00088256 0 0.00088256 0 0 0 0 0.00088256			-	-				-	-	-			-			
Mater 44.04.56 0* 0* 0.0112177 0.012197 49.0780 99.9533 44.04.66 0.012197 0.016425 0* 0.027744 0.072743 0.011637 Operazine 8.04170 0* 0* 0* 0 0 0 0.00068973 42.2201 0 3.456156-06 0* 0.00008173 0.016373 Operazine Mat Mat <td>n-Hexane</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>0.826294</td>	n-Hexane		-					-	-	-			-			0.826294
Diperazine 8.64170 0 ^a 0 ^a 0 ^a 0 ^a 0 ^b	Water			0*		0.0116372*	0.0112197	49.9079			0.0112197		0*	0.207744	0.0724513*	0.0116372
22 0 0* 0* 0* 0 0 0 0* 0 0* 0 Age tage 10 0* </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>																0
The New Ibit Bit Bi							-									0
v2 0 0 0 11376.5* 11209.1 0 0 11209.1 11206.9 25.03*1 11306.9 207.8 1335.8 2arbon Dioxide 0 0 2224.8* 0 330454 3304524 3304536 228628* 12644 32644* 32644* 32644* 32644* 3304524 3304524 3304524 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 330453* 32663*	-		lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h
v2 0 0 0 11376.5* 11209.1 0 0 11209.1 11206.9 25.03*1 11306.9 207.8 1335.8 2arbon Dioxide 0 0 2224.8* 0 330454 3304524 3304536 228628* 12644 32644* 32644* 32644* 32644* 3304524 3304524 3304524 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 3304534 32663* 330453* 32663*	Hydrogen Sulfide		0	0*	0.469624*	0*	0.469624	0.0120311	0	0.0120311	0.469624	0.000152825	0*	0.000161200	0*	0
Methane 0 0 0 0 30457 30439 668.68* 304390 246654* 30915 Bithane 0 0 0 0 1022443* 124590 0 0 12459 124490 868.68* 30915 Bithane 0 0 0 0 103233* 101692 101683 2257.39* 101603 2257.39* 10323 Bithane 0 0 0 0 777.46* 7562.47 0 0 37424.1 3733.4 0* 37368. 7867.47 16667.7 1666.77 1666.74 16667.7 1766.74 16667.7 1766.74 16667.7 1766.74 16667.7 1766.74 1667.7 1767.74 1667.7 1766.72 177.72 1767.74 1667.7 1766.74 1667.7 1766.74 1667.7 1766.74 1667.7 1766.72 177.72 177.72 177.72 1767.74 1667.7 1766.72 177.72 177.72 1767.74 1667.7 <	N2			-	-		11209.1	-	-	-	11209.1	11206.9		11206.9		11379.5
Effnen 0 0" 0" 126432 124450 0 0 124450 124490 827.749 12640 8262.0 1263.3 Butane 0 0" 0" 11663 37282.1 0 0 11663 3749.2 10163 3749.2 10163 3749.2 10163 3749.2 10163 3749.2 10163 3749.2 10163 3749.2 10163 3749.2 10163 3749.2 10163 3749.2 10163 3749.2 10163 3749.2 3749.2 10163 3749.2 3749.2 10163 3749.2 3749.2 10166.7 5751.6 9695.6 10366.7 5761.6 9695.6 10106.7 5168.5 10106.7 5168.5 10106.7 5168.5 10106.7 5168.5 10106.7 5168.5 10106.7 5168.5 10106.7 5168.5 10106.7 5168.5 10106.7 5168.5 1010 1010.7 1002.7 1006.7 5168.5 1006.7 5168.5 1006.7 5168.5			-										-			
Propane 0 0** 0** 101682 101682 101683 28.852* 101683 74595.8* 10323 P-Bulane 0 0** 0** 0** 37808.3* 37724.1 0 0 37234.4 0** 37233.4 0** 37233.4 0** 37233.4 28852* 37803.4 28852* 37803.4 28852* 3783.4 28852* 3783.4 28852* 3783.4 28852* 3783.4 28852* 3783.4 28852* 3783.4 28852* 3783.4 2885.4* 3783.4 2885.4* 7677.4* 7571.4* 7571.4* 7677.4* 7407.8* 7407.2* 747.7* 7407.8* 7407.2* 747.7* 7407.8* 7407.2* 747.7* 7407.8* 7407.2* 747.7* 757.7* 72.7* <td< td=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			-	-				-	-	-						
-Bulane -bula			-	•	-			-	-	-						
Pentane 0 0° 0° 0° 777.46° 752.47 0 0 7562.47 7561.69 0° 7561.69 6665.40° 7721.41 1-Pentane 0 0° 0° 0° 7521.40° 7408.35° 0 0 7407.81 0° 7407.81 0° 7407.81 740.32° 7521.40° 72.792.4° 71.7022 7643.50° 72.792.4° 71.7022 7643.50° 72.792.4° 71.7022 761.69° 0.001.212.50° 75.71.40° 76.77.40° 77.792.4° 77.77.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71 76.71	i-Butane		-	0*	0*			-	-							15697.7
Prefatame 0 0** 0** 0** 7407.81 7407.81 0** 7407.81 0** 7407.81 0** 7407.81 0** 7407.81 0** 7407.81 0** 7407.81 0** 7407.81 0** 7407.81 0** 7407.81 0** 7407.81 0** 7407.81 7407.81 0** 7407.81 7407.81 0** 7407.81 7407.81 0** 5690.82 0* 5690.82 0* 5690.82 0* 5690.82 0* 5690.82 0** 5690.82 0** 5690.82 0** 72.78*	n-Butane		-	-	0			-	0	-			-			37808.3
bit Hexame 0 <th0< td=""><td></td><td></td><td>Ű</td><td>0</td><td>•</td><td></td><td></td><td>•</td><td>•</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td></th0<>			Ű	0	•			•	•	-			-			
Mater 0 <th0< th=""> 0 <th0< th=""> <th0< th=""></th0<></th0<></th0<>			Ű	0	-			0	•	•			-			
MDEA 0 0* 0* 0* 0* 0 103609 0.0218501 103609 0 0.0212792 0* 5.47608 0* 0* Operazine 0 0* 0* 0* 0* 0 1973.4 0 0.571302 1973.4 0 0.559239 0* 13.9193 0* 0* O2 0 0* 0* 0* 0* 0 0 0 0 0 0 0* 0* 0* 0* O2 0 0* 0* 0* 0* 0* 0 0 0 0.0212792 0* 5.47608 0* O2 0 0* 0* 0* 0* 0* 0 0 0 0 0 0 0 0* 0* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <			•	0				0	•	•						
D2 0 0* 0* 0* 0 0 0 0 0 0 0* 0* 0* Process Streams Blowdown CO2 Spike H2S Spike Inlet Gas High CO2 LA Circulation Makeup Recycle Guess Sour Feed Sweet Product TO Assist Fuel 1 2 3 Properties Status: Kelvedi Kelvedi Kelvedi Kelvedi Kelvedi Recycle Guess Sour Feed Sweet Product TO Assist Fuel 1 2 3 Properties MDEA+ Makeup - - - Status: Kelvedi	MDEA		0	0*												0
Process Streams Blowdown CO2 Spike H2S Spike Inlet Gas Amine Inlet Gas High CO2 LA Circulation Makeup Recycle Guess Sourd Sourd Const Sourd Sourd<	Piperazine															0
Properties Status: Outcol: Column C	02		0	0*	0*	0*	0	0	0	0	0	0	0*	0	0*	0
Properties Status: Outcol: Column C																
Properties Status: Outcol: Column C	Process Streams		Blowdown	CO2 Spike	H2S Spike	Inlet Gas Amine	Inlet Gas High CO2	A Circulation	Makeup	Recycle Guese	Sour Feed	Sweet Product	O Assist Fuel	1	2	3
Prom Block: MDEA+ Makeup - - - Slug Catcher MDEA+ Makeup - Recycle XCHG-100 VSL-102 - Absorber - CMPR-100 rometry Units - MIX-101 MIX-101 CMPR-100 XCHG-100 VSL-102 Absorber - Absorber - CMPR-100 RCYL-1 XCHG-100 RCYL-1 XCHG-100<		Status:	Solved	Solved			Solved	Solved		-			Solved	Solved		
To Block: • MIX-101 MIX-101 CMPR-100 CMPG-100 Circulation Pump MDEA+ Makeup MDEA+ Makeup Absorber - RCYL-1 XCHG-101 FAXR-100 Property Units Units Units Units Emperature °F 100* 100* 100* 50* 84.5174 170.237 80* 170.771 98.6691 104.178 65* 134.620 50* 43.876 Pressure psia 110 1014* 1100* 1014 110 110* 110 1004 984 50* 999 1000* 43.876 Voldecular Weight Ib/lbmol 31.1962 44.095 34.809 22.7878 23.1889 31.0777 18.0219 31.1962 23.189 22.7592 18.9706 22.7536 23.1302 22.7878 23.892 22.6501 639071 615508 971.316 615808 508029 62551 Std Vapor Volumetric Flow MMSCFD 0 4.74422* 0.00125500* 250* <			MDEA+ Makeup		-	-	Slug Catcher	MDEA+ Makeup	-				-			
Pressure psia 110 1014* 1010* 1014* 110 100* 100 984 50* 999 100* 1009 Molecular Weight 1b/lbmd 31.1962 44.095 34.0809 22.7878 23.1889 31.077 18.0219 31.1962 23.1889 22.7532 18.970 22.7636 23.189 22.7878 23.889 31.077 18.0219 31.1962 23.1889 22.7592 18.970 22.7636 23.189 22.7878 23.889 31.077 18.0219 31.1962 23.1899 22.7592 18.970 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 <				MIX-101	MIX-101	CMPR-100			MDEA+ Makeup			-	-		XCHG-101	FAXR-100
Pressure psia 110 1014* 1010* 1014* 110 100* 100 984 50* 999 100* 1009 Molecular Weight 1b/lbmd 31.1962 44.095 34.0809 22.7878 23.1889 31.077 18.0219 31.1962 23.1889 22.7532 18.970 22.7636 23.189 22.7878 23.889 31.077 18.0219 31.1962 23.1889 22.7592 18.970 22.7636 23.189 22.7878 23.889 31.077 18.0219 31.1962 23.1899 22.7592 18.970 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 23.1389 22.7536 <	Property	Units												101.0		
Wolecular Weight İb/lbmol 31.1962 44.095 34.089 22.7878 23.1889 31.0777 18.0219 31.1962 23.1889 22.7592 18.976 22.756 23.1347 22.7871 Mass Flow 1b/h 0 22924.8 0.469624 625515 639071 246687 1286.26 245401 639071 615156 971.316 615808 508029 62515 Std Vapor Volumetric Flow MMSCFD 0 4.74422* 0.000125500° 250° 251 72.2939 0.66031 71.439 251 246.169 0.46632* 246.490 2787.8 248.490 257 246.199 0.46632* 246.490 251 22.939 0.65031 71.493 3402.42 3402.45 6.01693 3404.16 272.810 3458.17 Valued Volumetric Flow sgpm 0 56.0819 0.00117520 3458.13 3462.42 500° 2.56717 497.428 3462.42 3402.45 6.01693 3404.16 272.810 3458.17 Valt			440													
Mass Flow lb/h 0 22924.8 0.469624 625515 639071 246687 1286.26 245401 639071 615156 971.316 615808 508029 625515 Std Vapor Volumetric Flow MMSCFD 0 4.74422* 0.000125500* 250* 251 72.2939 0.650031 71.6439 251 246.169 0.46632* 246.490 200* 255 Std Liquid Volumetric Flow sgpm 0 56.0819 0.001125500* 3458.13 3462.42 500* 2.57177 497.428 3462.42 6.01693 3404.16 2728.109 3458.13 Mass Cp Btu/(lb**F) 0.614535 0.586905 0.816909 0.698540 0.862976 0.998589 0.8666302 0.666530 0.40455 0.717819 3458.15 Val Ideal Gas Heating Value Btu/(lb**F) 488.159 0 586.79 1222.83 1199.72 483.772 0.304496 488.159 199.72 1222.78 1030.84 1221.21 1181.12 1272.28																
Std Vapor Volumetric Flow MMSCFD 0 4.74422* 0.00125500* 250* 251 72.2939 0.650031 71.6439 251 246.169 0.46832* 246.490 200* 251 Std Liquid Volumetric Flow sgpm 0 56.0819 0.001125500* 250* 251 72.2939 0.650031 71.6439 251 246.169 0.46832* 246.490 200* 250* Std Liquid Volumetric Flow sgpm 0 56.0819 0.001125500* 3458.13 3462.42 500* 2.57177 497.428 3462.42 3402.85 6.01693 3404.16 2728.10 3458.17 Valas Cp 0.614535 0.586905 0.816909 0.698540 0.862976 0.998589 0.862662 0.666302 0.665510 0.490766 0.777674 Val Ideal Gas Heating Value Btu/(ft**) 488.159 0 586.79 1222.83 1199.72 483.772 0.0304496 488.159 199.72 1222.78 1030.84 121.21 1181.12 1222.83	Mass Flow															625515
Std Liquid Volumetric Flow sgpm 0 56.0819 0.0017520 3458.13 3462.42 500* 2.57177 497.428 3462.42 3402.85 6.01693 3404.16 2728.10 3458.17 Mass Cp Btu/(lb*F) 0.614535 0.586905 0.816909 0.698540 0.862976 0.998589 0.862662 0.666500 0.490766 0.640455 0.717819 0.7778 vel total Gas Heating Value Btu/(lb*F) 488.159 0 586.79 1222.83 1199.72 483.772 0.304496 488.159 1199.72 1222.78 1030.84 1221.21 1181.12 1221.21	Std Vapor Volumetric Flow		0											246.490	200*	250
Net Ideal Gas Heating Value Btu/ft^3 488.159 0 586.79 1222.83 1199.72 483.772 0.304496 488.159 1199.72 1222.78 1030.84 1221.21 1181.12 1222.83	Std Liquid Volumetric Flow		0										6.01693			3458.13
	Mass Cp		100.150													0.776746
				-												
	oroso lucar das ricaling value	Diu/It J	374.030	0	037.1	1340.22	1319.00	570.125	50.0339	574.030	1313.00	1343.22	1139.39	1040.00	1299.00	1343.22

4	4 Sweet Gas	5	5 Rich Amine	6	6 Flash Gas	7	8	9	10	11	11 Acid Gas to TO	12	13	14	14 Lean Amine	15
Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved	Solved
XCHG-101	XCHG-100 VSSL-102	RCYL-1 FAXR-101	VLVE-101 MIX-100	 XCHG-102	Rich Flash	Rich Flash Lean Rich Exchanger	Lean Rich Exchanger Regenerator	Regenerator Condenser	Condenser Regenerator	XCHG-102	Condenser 	Regenerator Reboiler	Reboiler Regenerator	 XCHG-102	Reboiler PUMP-100	Lean Rich Exchanger Recycle
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0 2.28810	1.80487E-08 1.47817	1.80487E-08 1.47817	0.000167534 0.000905831	0* 2.28970*	0.000595084 0.583606	0.000166184 1.27887E-05	0.000166184 1.27887E-05		4.63265E-06	0 2.28970	0.00232624 0.000183629	5.14145E-06 0	7.61524E-06 0	0* 2.33595*	4.48809E-06 0	4.48809E-06
	0.000540475		6.59567	2.09972*	12.7559	6.55916	6.55916	52.9283	0.0588414	2.09972	93.3047	0.106152	0.259539	0.00490265*	0.0656399	0.0656399
70.0718	70.1073	70.1073	0.0993760	70.1208* 13.1583*	62.2627	0.00395807	0.00395807		1.81698E-06	70.1208	0.0568330	0	0	71.5074*	0	0
13.1491 7.70360	15.2974 8.51865	15.2974 8.51865	0.0235366 0.00789564	7.70898*	14.3897 4.88050	0.00146328 0.000408082	0.00146328 0.000408082		7.48744E-07 1.60248E-07	13.1583 7.70898	0.0210109 0.00585956	0	0	13.4159* 7.86277*	0	0
0.859286	0.982818	0.982818	0.000510626	0.859887*	0.319872	1.96877E-05	1.96877E-05			0.859887	0.000282691	0	0	0.877226*	0	0
2.24813 0.439635	2.36698 0.387253	2.36698 0.387253	0.00176595 0.000127512	2.24970* 0.439942*	1.08510 0.0801470	0.000100484 4.46982E-06	0.000100484		3.74622E-08 8.39914E-10	2.24970 0.439942	0.00144283 6.41811E-05	0	0	2.29484* 0.448848*	0	0
0.469610	0.379372	0.379372	0.000153654	0.469938*	0.0958045	6.57199E-06			1.52444E-09	0.469938	9.43657E-05	0	0	0.479427*	0	0
0.579518	0.218277	0.218277	4.93621E-05	0.579924*	0.0310918	1.61391E-06			2.11654E-10	0.579924	2.31737E-05	0	0	0.591698*	0	0
0.0930397 0	0.262446 0.000169857	0.262446	80.2449 10.3100	0.0231808*	3.51479 0.000128191	80.4418 10.2833	80.4418 10.2833	47.0217 8.31424E-06		0.0231808	6.60722 7.92995E-14	88.7973 8.75693	99.5064 0.0632636	0.180543* 0.000146088*	85.9688 11.0531	85.9688 11.0531
0	0.000597097	0.000597097	2.71501	0*	1.02709E-05	2.70967	2.70967	1.01086E-05	2.33449E-05	0	3.15836E-14	2.33966	0.170741	0.000341412*	2.91250	2.91250
0	0	0	0	0*	0	0	0	0	0	0	0	0	0	0*	0	0
70	2.70338E-08	2.70338E-08	0.000178364		0.000850405	0.000177169	0.000177169	0.00141678	8.75649E-06	7 6 0	0.00187542	6.14955E-06	1.42109E-05	70 0*	4.90310E-06	4.90310E-06
2.77062	1.81988	1.81988	0.000792693	2.77213*	0.685523	1.12068E-05	1.12068E-05			2.77213	0.000121687	0	0	2.88456*	0	0
3.99155 48.5904	0.00104538 49.4293	0.00104538 49.4293	9.06772 0.0498018	3.99373* 48.6169*	23.5394 41.8828	9.02993 0.00198630	9.02993 0.00198630	73.3054 0.0162690	0.143621 1.61663E-06	3.99373 48.6169	97.1369 0.0215678	0.163953 0	0.625426	0.00951104* 50.5677*	0.0926004	0.0926004 0
17.0904	20.2157	20.2157	0.0221083	17.0997*	18.1430	0.00137637	0.00137637		1.24865E-06	17.0997	0.0149451	0	0	17.7823*	0	0
14.6834 2.15882	16.5088 2.51053	16.5088 2.51053	0.0108762 0.000927122	14.6914* 2.16000*	9.02395 0.779571	0.000562901 3.57953E-05	0.000562901 3.57953E-05		3.91903E-07	14.6914 2.16000	0.00611216 0.000388676	0	0	15.2835* 2.24752*	0	0
2.15882	6.04627	6.04627	0.00320636	2.16000° 5.65115*	2.64452	0.000182696	0.000182696			2.16000	0.00198377	0	0	2.24752** 5.87957*	0	0
1.37106	1.22793	1.22793	0.000287390	1.37181*	0.242467	1.00881E-05	1.00881E-05	8.26262E-05	3.36088E-09	1.37181	0.000109540	0	0	1.42751*	0	0
1.46455 2.15867	1.20294 0.826689	1.20294 0.826689	0.000346311 0.000132883	1.46534* 2.15985*	0.289835 0.112348	1.48325E-05 4.35062E-06	1.48325E-05 4.35062E-06			1.46534 2.15985	0.000161056 4.72404E-05	0	0	1.52476* 2.24768*	0	0
0.0724513	0.207793	0.207793		0.0180484*	2.65508	4.33002E-00	4.330022-00	26.6588	99.8561	0.0180484	2.81575	56.1419	98.1565	0.143374*	49.6456	49.6456
	0.000889552		38.3786		0.000640521	38.3319		3.11790E-05		0	2.23534E-13	36.6215		0.000767368*	42.2201	42.2201
0	0.00226036 0	0.00226036	7.30543 0	0* 0*	3.70961E-05 0	7.30110 0	7.30110	2.74014E-05 0	0.000111523	0		7.07264 0	0.805280 0	0.00129632* 0*	8.04170 0	8.04170 0
lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	ib/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	lb/h	ib/h	ib/h
0 14075.6	0.000166476 11206.9	0.000166476 11206.9	0.481493 2.13988	0* 14188.4*	0.00262967 2.11981	0.478877 0.0302912	0.478877 0.0302912		0.000710019 3.82982E-07	0 14188.4	0.466845 0.0302912	0.0174244 0	0.00539214	0* 14355.9*	0.0120323	0.0120323
20278.2	6.43751	6.43751	24478.3	20440.8*	72.7899	24407.3	24407.3	24191.7	11.6455	20440.8	24180.1	464.552	237.310	47.3346*	227.242	227.242
246854	304390	304390	134.440	248832*	129.512	5.36883	5.36883		0.000131085	248832	5.36883	0	0	251666*	0	0
86824.0 74595.8	124490 101663	124490 101663	59.6815 29.3602	87519.9* 75193.7*	56.1028 27.9044	3.72025 1.52149	3.72025 1.52149		0.000101247 3.17774E-05	87519.9 75193.7	3.72025 1.52149	0	0	88499.3* 76062.9*	0	0
10967.4	15460.0	15460.0	2.50277	11055.3*	2.41063	0.0967523	0.0967523	0.0967536	1.27333E-06	11055.3	0.0967523	0	0	11185.5*	0	0
28693.9 6965.40	37233.4 7561.69	37233.4 7561.69	8.65558 0.775812	28923.8* 7021.23*	8.17755 0.749771	0.493815 0.0272674	0.493815 0.0272674		9.79185E-06 2.72517E-07	28923.8 7021.23	0.493815 0.0272674	0	0	29261.5* 7104.44*	0	0
7440.32	7407.81	7407.81	0.934868	7499.95*	0.896246	0.0400914	0.0272074		4.94617E-07	7499.95	0.0400914	0	0	7588.44*	0	0
10966.7	5090.82	5090.82	0.358718	11054.6*	0.347409	0.0117594	0.0117594		8.20238E-08	11054.6	0.0117594	0	0	11186.3*	0	0
368.073 0	1279.61 5.47793	1279.61 5.47793	121909 103603	92.3759* 0*	8.21019 0.00198066	122532 103609	122532 103609	8797.74 0.0102895	8096.82 0.0102895	92.3759 0	700.919 5.56438E-11	159075 103765	37244.3 156.625	713.546* 3.81904*	121831 103609	121831 103609
0	13.9195	13.9195	19721.0	0*	0.000114711	19734.4	19734.4	0.00904282	0.00904282	0	1.60196E-11	20039.9	305.554	6.45153*	19734.4	19734.4
0	0	0	0	0*	0	0	0	0	0	0	0	0	0	0*	0	0
4 4	4 Sweet Gas	5	5 Rich Amine	6	6 Flash Gas	7	8	9	10	11	11 Acid Gas to TO	12	13	14	14 Lean Amine	15
Solved XCHG-101	Solved XCHG-100	Solved RCYL-1	Solved VLVE-101	Solved	Solved Rich Flash	Solved Rich Flash	Solved Lean Rich Exchanger	Solved Regenerator	Solved Condenser	Solved XCHG-102	Solved Condenser	Solved Regenerator	Solved Reboiler	Solved	Solved Reboiler	Solved Lean Rich Exchanger
_	VSSL-102	FAXR-101	MIX-100	XCHG-102		Lean Rich Exchanger	Regenerator	Condenser	Regenerator	-	-	Reboiler	Regenerator	XCHG-102	PUMP-100	Recycle
80*	104.517	134.630	115.988	100*	115.980	115.980	190*	202.590	120.000	120*	120.000	254.519	256.237	141*	256.237	170.771
1000	104.517	134.630	89.7*	956.73*	37.73*	37.73	27.73	202.590	120.000	952.73*	120.000	254.519	256.237	950.73*	256.237	170.771
23.1347	22.7536	22.7536	32.0116	23.1382	23.8486	31.9676	31.9676	31.7759	18.0306	23.1382	42.2732	28.4940	18.2630	22.6856	31.1962	31.1962
508029 200	615808 246.491	615808 246.491	269950 76.8035	511822* 201.462	309.226 0.118091	270294 77.0070	270294 77.0070	33001.3 9.45881	8108.49 4.09576	511822 201.462	24892.8 5.36306	283345 90.5661	37943.8 18.9222	497681* 199.805	245401 71.6439	245401 71.6439
2728.10	3404.16	3404.16	558.262	2749.41	1.53076	558.048	558.048	76.8347	16.2147	2749.41	60.6200	573.611	76.1824	2731.57	497.428	497.428
0.678773	0.666775 1221.21	0.640448 1221.21	0.667262 456.837	0.641496 1181.94	0.428747 962.332	0.668315	0.747892	0.283566	0.997566	0.621407	0.216219	0.939121	0.465779	0.622691	0.930976	0.862662
1181.12			450 837	1181 94	902.332	454.236	454.236	0.604559	0.00148998	1181.94	1.06512	387.773	7.68997	1205.38	488.159	488.159
1299.56	1343.56	1343.56	537.870	1300.43	1062.41	535.117	535.117	24.3217	50.2820	1300.43	4.49590	466.935	58.3874	1326.30	574.838	574.838

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	32	33	34	35
Solved XCHG-102	Solved SPLT-100	Solved FAXR-101	Solved VLVE-102	Solved Circulation Pump	Solved Trim Cooler	Solved VLVE-100	Solved	Solved	Solved VSSL-100	Solved VSSL-100	Solved FAXR-100	Solved PUMP-100	Solved Absorber	Solved MIX-101	Solved Slug Catcher	Solved SPLT-100	Solved VSSL-102	Solved MIX-100
-	MIX-101	XCHG-100	MIX-100	Trim Cooler	Absorber	-	VLVE-100	VSSL-100	-	-	SPLT-100	Lean Rich Exchanger	VLVE-101	Slug Catcher	-	-	VLVE-102	Rich Flash
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0 2.33595	0 1.47987	1.80487E-08 1.47817	1.13450E-06 0.00103384	4.44730E-06	4.44730E-06 0	0 2.33375	0* 2.33375*	0* 0*		0	0 1.47987		0.000167534 0.000905831	5.00000E-05 1.45190		0 1.47987	1.13450E-06	0.000166840 0.000906365
0.00490265		0.000540475	0.113275	0.0650499		0.000682900		0*		0	0.111991	0.0656399	6.59567	1.45190		0.111991	0.113275	6.56865
71.5074	70.2052	70.1073	0.0778747	0	0	71.4498	71.4498*	0*		0	70.2052	0	0.0993760	68.8782		70.2052	0.0778747	0.0992864
13.4159 7.86277	15.3194 8.52924	15.2974	0.0133299 0.00421561	0	0	13.4068	13.4068*	0* 0*		0	15.3194	0	0.0235366	15.0298		15.3194 8.52924	0.0133299	0.0234941 0.00788030
0.877226	0.983915	8.51865 0.982818	0.000421561	0	0	7.85615 0.876419	7.85615* 0.876419*	0*		0	8.52924 0.983915		0.00789564 0.000510626	8.36802 0.965317			0.00421561 0.000224871	
2.29484	2.36979	2.36698	0.000769357	0	0	2.29276	2.29276*	0*		0	2.36979	0	0.00176595	2.32500		2.36979	0.000769357	0.00176179
0.448848	0.387662		4.81832E-05	0	0	0.448435	0.448435*	0*		0	0.387662		0.000127512	0.380334			4.81832E-05	
0.479427 0.591698	0.379782 0.218501		5.76770E-05 1.48184E-05	0	0	0.478995 0.591136	0.478995* 0.591136*	0* 0*		0			0.000153654 4.93621E-05	0.372603 0.214371			5.76770E-05 1.48184E-05	
0.180543		0.262446	99.2205	86.0949	86.0949	0.263749		86.1729*			0.0147201	85.9688	80.2449	0.0144418		0.0147201	99.2205	80.3240
0.000146088		0.000169857	0.129702	10.9537				10.9434*		10.9434	0	11.0531	10.3100	0		0	0.129702	10.2675
0.000341412	0	0.000597097	0.439000	2.88640 0	2.88640	0.00106768	0.00106768* 0*	2.88369* 0*		2.88369 0	0	2.91250	2.71501 0	0		0	0.439000	2.70552
%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
0		2.70338E-08		4.87706E-06		0	0*	0*		0	0		0.000178364				2.09263E-06	
2.88456	1.81922	1.81988	0.00156745	0	0	2.88241	2.88241*	0*		0			0.000792693	1.75396			0.00156745	
0.00951104 50.5677	0.216285 49.4240	0.00104538 49.4293	0.269809 0.0676150	0.0921179	0.0921179 0	0.00132507 50.5368	0.00132507* 50.5368*	0* 0*		0	0.216285 49.4240	0.0926004	9.06772 0.0498018	3.79574 47.6510		0.216285 49.4240	0.269809 0.0676150	9.04651 0.0498447
17.7823	20.2143	20.2157	0.0216931	Ő	0	17.7738	17.7738*	0*		0	20.2143	0	0.0221083	19.4891		20.2143	0.0216931	0.0221073
15.2835	16.5045	16.5088	0.0100608	0	0	15.2736	15.2736*	0*		0	16.5045	0	0.0108762	15.9125		16.5045	0.0100608	0.0108742
2.24752 5.87957	2.50956 6.04436		0.000707377 0.00242017	0	0	2.24590 5.87540	2.24590* 5.87540*	0* 0*		0	2.50956 6.04436	0	0.000927122 0.00320636	2.41953 5.82753			0.000707377 0.00242017	
1.42751	1.22738		0.000242017	0	0	1.42647	1.42647*	0*		0	1.22738	•	0.000287390	1.18335			0.000188148	
1.52476	1.20243	1.20294	0.000225220	0	0	1.52369	1.52369*	0*		0	1.20243	0	0.000346311	1.15930		1.20243	0.000225220	0.000346019
2.24768	0.826294 0.0116372	0.826689 0.207793	6.91130E-05 96.7426	0 49.9079	0 49.9079	2.24598 0.209492	2.24598* 0.209492*	0* 50*		0 50	0.826294 0.0116372	0 49.6456	0.000132883 45.1596	0.796652 0.0112197		0.826294 0.0116372	6.91130E-05 96.7426	0.000132729 45.2840
0.000767368		0.207793	0.836489	49.9079	49.9079	0.209492	0.209492	50 42*		50 42	0.0110372	49.6456	38.3786	0.0112197		0.0110372	0.836489	45.2840 38.2881
0.00129632	0	0.00226036	2.04655	8	8	0.00405470	0.00405470*	8*		8	0	8.04170	7.30543	0		0	2.04655	7.29275
0	0	0	0	0	0	0	0*	0*		0	0	0	0	0		0	0	0
<u>Ib/h</u>	lb/h	0.000166476	1.36508E-05	0.0120311	0.0120311	lb/h	1b/h 0*	1b/h 0*	lb/h	1b/h 0	<u>Ib/h</u>	0.0120323	0.481493	0.469624	lb/h	lb/h	1.36508E-05	0.481507
14355.9	11209.1	11206.9	0.0102249	0.0120011	0.0120011	14356.4	14356.4*	0*		0	11379.5	0.0120020		11209.1		170.435	0.0102249	2.15010
47.3346	1332.63	6.43751	1.76004	227.243	227.243	6.59977	6.59977*	0*		0	1352.89	227.242	24478.3	24257.5		20.2628	1.76004	24480.1
251666 88499.3	304524 124550	304390 124490	0.441072 0.141510	0	0	251708 88525.9	251708* 88525.9*	0* 0*		0	309154 126443	0	134.440 59.6815	304524 124550		4630.32 1893.79	0.441072 0.141510	134.881 59.8230
76062.9	101692	101663	0.0656293	0	0	76073.0	76073.0*	0*		0	103238	0	29.3602	101692		1546.24	0.0656293	29.4259
11185.5	15462.5	15460.0	0.00461442	0	0	11186.1	11186.1*	0*		0	15697.7	0	2.50277	15462.5		235.110	0.00461442	2.50739
29261.5	37242.1 7562.47	37233.4	0.0157874	0	0	29263.5	29263.5*	0* 0*		0	37808.3	0	8.65558	37242.1		566.269	0.0157874 0.00122734	8.67137 0.777039
7104.44 7588.44	7408.75	7561.69 7407.81		0	0	7104.83 7589.02	7104.83* 7589.02*	0*		0	7677.46 7521.40	0	0.775812 0.934868	7562.47 7408.75		114.988 112.651	0.00122734	0.936337
11186.3	5091.18	5090.82	0.000450844	0	0	11186.5	11186.5*	0*		0	5168.59	0	0.358718	5091.18		77.4119	0.000450844	0.359169
713.546	71.7022	1279.61	631.079	123116	123116	1043.42	1043.42*	135705*		135705	72.7924	121831	121909	71.7022		1.09024	631.079	122540
3.81904 6.45153	0	5.47793 13.9195	5.45665 13.3502	103609 19735.0	103609 19735.0	5.21461 20.1952	5.21461* 20.1952*	113993* 21712.9*		113993 21712.9	0	103609 19734.4	103603 19721.0	0		0	5.45665 13.3502	103609 19734.4
0.43133	0	0	0	0	0	20.1352	20.1352	0*		21712.9	0	0	0	0		0	0	0
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	32	33	34	35
Solved	Solved	18 Solved	Solved	Solved	Solved	Solved	23 Solved	24 Solved	Solved	Solver	Solved	28 Solved	Solved	Solved	Solved	Solved	34 Solved	35 Solved
XCHG-102	SPLT-100	FAXR-101	VLVE-102	Circulation Pump	Trim Cooler	VLVE-100	-		VSSL-100	VSSL-100	FAXR-100	PUMP-100	Absorber	MIX-101	Slug Catcher	SPLT-100	VSSL-102	MIX-100
-	MIX-101	XCHG-100	MIX-100	Trim Cooler	Absorber	-	VLVE-100	VSSL-100		-	SPLT-100	Lean Rich Exchanger	VLVE-101	Slug Catcher	-		VLVE-102	Rich Flash
119.877	85	120*	106.328	172.737	121*	-16.5011	100*	125*	125	125	85*	256.511	112.879	84.5174		85	104.178	115.969
947.73*	1014	994	89.7*	1012.73*	1012.73	-16.5011 15*	1222.73*	125	125		05 1014*	256.511	1004	1014	1014	1014	984	89.7
22.6856	22.7878	22.7536	18.4767	31.0777	31.0777	22.6811	22.6811	31.0486		31.0486	22.7878	31.1962	32.0116	23.1889		22.7878	18.4767	31.9552
497681	616146	615808	652.328	246687	246687	498069	498069	271411	0	271411	625515	245401	269950	639071	0	9368.56	652.328	270603
199.805 2731.57	246.256 3406.34	246.491 3404.16	0.321548 1.31747	72.2939 500	72.2939 500	200 2732.66	200* 2732.66	79.6141 550*	0	79.6141 550	250 3458.13	71.6439 497.428	76.8035 558.262	251* 3462.42	0	3.74434 51.7938	0.321548 1.31747	77.1250 559.579
0.633719	0.710092	0.650734	0.981707	0.861367	0.823736	0.432798?	0.729490	0.831485	0	0.831485	0.710092	0.930740	0.665536	0.698540	5	0.710092	0.981414	0.667963
1205.38	1222.83	1221.21	19.6484	483.772	483.772	1204.44	1204.44	483.319		483.319	1222.83	488.159	456.837	1199.72		1222.83	19.6484	455.014
1326.30	1345.22	1343.56	71.2029	570.125	570.125	1325.30	1325.30	569.670		569.670	1345.22	574.838	537.870	1319.80		1345.22	71.2029	535.925


1 2 3 4 5 6 7 8	Owner: Purchaser: Manufacturer: Service: Number: SHO Duty:	Tulsa H	ingineering leaters Mid Gas Heate MMBTU/	lstream er			Owner F Purchas THM Re Project: Locatior SHO Mo	haser Ref.: 2110A4YK Ref.: MJ18-327 ect: Cowboy Cry tion: New Mexico			ıt		
9 10 11 12 13 14 15 16 17	Guarantees:	NOx SOx CO VOC UHC SPM	no quote 0.0163 0.0064 0.007	Lb/MMB ⁻ Lb/MMB ⁻ Lb/MMB ⁻ Lb/MMB ⁻ Lb/MMB ⁻		20 - 20 5 15 15	ppm ppm ppm ppm ppm						
18 19					Desig	n Case]		Maximu	ım Case		
20 21	Heat Release		LHV Basis	35		MMBTU			38	.77	MMBTU	J/hr	
22 23 24 25 26 27 28	Products of		32.00	39. 886 22,517 4,051 3,490	14 Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr	MMBTU	//hr		1,083 27,520 4,952 4,265	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr			
29 30 31 32 33 34 35		NOx SOx CO VOC UHC SPM	46.01 64.06 28.01 44.10 16.04	0.85 0.00 0.52 0.20 0.22 0.40	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr	/ 0 / 20 / 5 / 15	ppm ppm ppm ppm ppm ppm		0.93 0.00 0.57 0.22 0.24 0.44	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr	/ 0 / 20 / 5 / 15	ppm ppm ppm ppm ppm ppm	
36 37		Total		30,946	Lbm/ hr				37,821	Lbm/ hr			
38 39 40 41	Flue Gas Flue Gas Stack He Stack ID	s Exit Vel		47 52 27 3	3 1	°F Ft/sec ft in			27	7.5 7.1 32	Ft/sec ft in		
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	THM em Emissior outside tl The Maxi	issions g is above he desigi imum Ca	juarantees juarantees are for De n, high turr ase is the tl ure that the	applicable sign Case adown or s	e for fireb e operatio start-up a ed heat re	ox tempe in with air re not cor elease for	ratures at and fuel i isidered a the burne	oove 1100 n ratio cor is guarant er purchas)°F. htrol. Upse eed emiss	et conditic ions case	ns, such a s.		
56 57 58 59 60													
61 62 63													
63 64	revision	date		descriptio	on						by	chk'd	appv'd
						SA HEA	TERS						
-	USA Application SHO = Su	perior Q	uality, Flexi					MJ18	8-327-Er	mission	S-		Pg 1 of 1

1 2 3 4 5 6 7 8	Owner: Purchaser: Manufacturer: Service: Number: SHO Duty:	Hot Oil Hea 1	ers Mid			Owner Purcha THM R Project Locatio SHO M			ser Ref.: 018193001 ef.: MJ18-346 :: Cowboy CDP on: Carlsbad, NM				
9 10 11 12 13 14 15 16 17	Guarantees:	NOx 0. SOx no CO 0. VOC 0. UHC 0	quote 0163 0064 .007	Lb/MMBT Lb/MMBT Lb/MMBT Lb/MMBT Lb/MMBT Lb/MMBT	า บ บ บ	5 - 20 5 15 15	ppm ppm ppm ppm ppm						
18 19					Desigr	n Case				Maximu	ım Case]
20 21 22	Heat Releas Products of	-	′ Basis n	58.	93	MMBTU	/hr		64	.83	MMBTU	J/hr	
23 24 25 26 27 28		O2 5 N2 + Ar 5 CO2 6	MW 32.00 28.15 44.01 18.02	1,578 40,582 7,847 5,817	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr				1,778 45,725 8,841 6,554	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr			
28 29 30 31 32 33 34 35		SOx CO VOC	46.01 64.06 28.01 44.10 16.04	0.38 0.00 0.94 0.37 0.40 0.77	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr	/ 0 / 20 / 5 / 15	ppm ppm ppm ppm ppm ppm		0.42 0.00 1.03 0.41 0.44 0.85	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr	/ 0 / 20 / 5 / 15	ppm ppm ppm ppm ppm ppm	
36		Total		55,827	Lbm/ hr				62,901	Lbm/ hr			
37 38 39 40 41	Flue Gas	eight		32	.1 .6	°F Ft/sec ft in			32	2.6	Ft/sec ft in		
42 43 44 45 46 47 48 49 50 51 52 53 54 55	THM em Emissior outside ti The Max	Stack Height32.6ftStack ID48in											
56 57 58 59 60 61 62													
63 64	revision	date		descriptic	n	*****					by	chk'd	appv'd
		_				SA HEA Distre	TERS		MISSIC		RMIT D		
		ns perior Qualit Iment contains cor						MJ18	-346-Er	mission	S-		Pg 1 of 1


1 2 3 4 5 6 7 8	Owner: Purchaser: Manufacturer: Service: Number: SHO Duty:	Hot Oil I 1	n eaters Mid			Owner Ref.: Purchaser Ref THM Ref.: Project: Location: SHO Model:			PK-6010 f.: 018193001 MJ18-346 Cowboy CDP Carlsbad, NM SHO5000				
9 10 11 12 13 14 15 16 17	Guarantees:	NOx SOx CO VOC UHC SPM	no quote 0.0163 0.0064 0.007	Lb/MMBT Lb/MMBT Lb/MMBT Lb/MMBT Lb/MMBT Lb/MMBT	ับ ับ ับ ับ	20 - 20 5 15 15	ppm ppm ppm ppm ppm						
18 19					Desigr	1 Case				Maximu	ım Case]
20 21 22	Heat Releas Products of	-	_HV Basis	58.	93	MMBTU	/hr		64	.83	MMBTU	J/hr	
23 24 25 26 27 28		02 N2 + Ar CO2 H2O	MW 32.00 28.15 44.01 18.02	7,847 5,817	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr				1,778 45,723 8,841 6,554	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr			
29 30 31 32 33 34 35		NOx SOx CO VOC UHC SPM	46.01 64.06 28.01 44.10 16.04	1.54 0.00 0.94 0.37 0.40 0.77	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr	/ 0 / 20 / 5 / 15	ppm ppm ppm ppm ppm ppm		1.69 0.00 1.03 0.41 0.44 0.85	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr	/ 0 / 20 / 5 / 15	ppm ppm ppm ppm ppm ppm	
36		Total		55,827	Lbm/ hr				62,901	Lbm/ hr			
37 38 39 40 41	Flue Gas Flue Gas Stack He Stack ID	Exit Velo		48 35 32 48	.1 .6	°F Ft/sec ft in			32	3.6 2.6 18	Ft/sec ft in		
42 43 44 45 46 47 48 49	THM em Emissior	issions gi is above	uarantees are for De	applicable	e for fireb	ox tempe n with air	ratures ab and fuel ir	ove 1100 n ratio cor	ntrol. Upse	et conditio	ns, such a		
50 51 52 53 54 55 56	The Max	imum Ca		he specifie	ed heat re	lease for	the burne	r purchas	eed emiss ed. Extra				
57 58 59 60 61 62 63													
64	revision	date		descriptio	n			1			by	chk'd	appv'd
				11:1/		SA HEA Distre	TERS AAA		MISSIC				
	USA Application SHO = Su This docu	perior Qu						1	-346-Er			n consent of 1	Pg 1 of 1 гнм.

1		GAS F	UEL CHARAC	TERISTICS				REV
2	DESIGNATION		Lean Fuel	Lean Fuel	Rich Fuel			1
3			(C2 Rej.)	(C2 Rec.)				1
4	HEATING VALVE (LHV)	Btu/SCF	993	881	1152			1
5	HEATING VALVE (HHV)	Btu/SCF	1098	979	1268			1
6	SPECIFIC GRAVITY		0.639	0.568	0.759			1
7	MOLECULAR WEIGHT		18.51	16.44	21.97			1
8	FUEL TEMPERATURE @ BURNER	ft.	100	100	100			1
9	FUEL PRESSURE @ BURNER (Available)	°F	30	30	30			1
10	FUEL GAS COMPOSITION, mol %	0114	00.000/	00 750/	74.400/			<u> </u>
11	METHANE	CH4	82.33%	96.75%	71.46%			1
12	EHTANE PROPANE	C2H6 C3H8	14.67% 0.28%	0.08%	14.48% 7.55%			1
13 14	BUTANES	C4H10	0.20 /0		2.25%			1
15	PENTANES	C5H12			0.56%			1
16	HEXANES	C6H14			0.09%			1
17	ETHYLENE	C2H4			0.0070			<u> </u>
18	PROPENE	C3H6						
19	BUTENE	C4H8						
20	PENTENE	C5H10						
21	BUTADIENE	C4H6						
22	ACETYLENE	C2H2						
23	ETHONAL	C2H4O						
24	HYDROGEN	H2						
25	CARBON MONOXIDE	CO						
26	HYDROGEN SULFIDE	H2S						
27	AMMONIA	NH3						
28	BENZENE	C6H6						
29	WATER (VAPOR)	H2O	0.000/	0.0404	0.01%			1
30		CO2	0.03%	0.01%	0.12%			1
31	OXYGEN NITROGEN	02 N2	2.69%	3.17%	3.48%			
32 33	TOTAL	INZ	100.0%	100.0%	100.0%	 		1
34	TOTAL	LIQUID	FUEL CHARA		100.070	<u> </u>		
35	DESIGNATION							
36	HEATING VALUE (LHV)	Btu/Ib					
37	SPECIFIC GRAVITY		DEG. API					
38						1 1		
39	VISCOSITY @	<u>15</u> °F	cSt					
	@	15 °F 100 °F	cSt cSt					
40	@ VANADIUM							
40 41	© VANADIUM SODIUM		cSt ppm ppm					
40 41 42	@ VANADIUM SODIUM POTASSIUM		cSt ppm ppm ppm					
40 41 42 43	@ VANADIUM SODIUM POTASSIUM NICKEL		cSt ppm ppm ppm ppm					
40 41 42 43 44	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN		cSt ppm ppm ppm ppm % wt					
40 41 42 43 44 45	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR		cSt ppm ppm ppm ppm % wt % wt					
40 41 42 43 44 45 46	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH		cSt ppm ppm ppm % wt % wt % wt					
40 41 42 43 44 45 46 47	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER		cSt ppm ppm ppm ppm % wt % wt					
40 41 42 43 44 45 46 47 48	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION		cSt ppm ppm ppm % wt % wt % wt % wt					
40 41 42 43 44 45 46 47 48 49	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT		cSt ppm ppm ppm % wt % wt % wt % wt % wt					
40 41 42 43 44 45 46 47 48 49 50	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT		cSt ppm ppm ppm % wt % wt % wt % wt % wt % r F					
40 41 42 43 44 45 46 47 48 49 50 51	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT ASTM END-POINT		cSt ppm ppm ppm % wt % wt % wt % wt % wt					
40 41 42 43 44 45 46 47 48 49 50	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT		cSt ppm ppm ppm % wt % wt % wt % wt % wt % rF °F °F					
40 41 42 43 44 45 46 47 48 49 50 51 52	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT ASTM END-POINT FUEL TEMPERATURE @ BURNER	100 °F	cSt ppm ppm ppm % wt % wt % wt % wt % wt % r F					
40 41 42 43 44 45 46 47 48 49 50 51 52 53	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT ASTM END-POINT FUEL TEMPERATURE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MEC TEMPERATURE	100 °F	cSt ppm ppm ppm % wt % wt % wt % wt % wt % rF °F °F					
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT ASTM END-POINT FUEL TEMPERATURE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MED TEMPERATURE PRESSURE	100 °F	cSt ppm ppm ppm % wt % wt % wt % wt % wt % wt % rF °F °F °F					
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 OWM	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT ASTM END-POINT FUEL TEMPERATURE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MEC TEMPERATURE PRESSURE NER:	100 °F	cSt ppm ppm ppm % wt % wt % wt % wt % wt % wt % rF °F °F °F °F		CALLIDUS RE	BB-9027773		
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 OWN	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT ASTM END-POINT FUEL TEMPERATURE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MEC TEMPERATURE PRESSURE NER: XTO Energy NER REF.:	100 °F	cSt ppm ppm ppm % wt % wt % wt % wt % wt % wt % rF °F °F °F °F		CALLIDUS RE PROJECT TIT	BB-9027773-E)S	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 OWN OWN PUR	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT ASTM END-POINT FUEL TEMPERATURE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MEC TEMPERATURE PRESSURE NER: XTO Energy NER REF.: PK-6010 / 602 RCHASER: Tulsa Heaters	100 °F CHANICAL 20 / 6030 3 Midstream	cSt ppm ppm ppm % wt % wt % wt % wt % wt % wt % f °F °F °F psig °F psig)S	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 55 56 OWN OWN PUR PUR	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT ASTM END-POINT FUEL PRESSURE AVAILABLE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MEC TEMPERATURE PRESSURE NER: XTO Energy NER REF.: PK-6010 / 602 RCHASER: Tulsa Heaters RCHASER REF.: MJ18-346, M.	100 °F CHANICAL 20 / 6030 3 Midstream J18-347, MJ18-348	cSt ppm ppm ppm % wt % wt % wt % wt % wt % wt % f °F °F °F psig °F psig)S	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 0 0 WM 0 WM 0 WM 0 WM PUR PUR HEA	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM MID-POINT ASTM END-POINT FUEL PRESSURE AVAILABLE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MEC TEMPERATURE PRESSURE NER: XTO Energy NER REF.: PK-6010 / 602 RCHASER: Tulsa Heaters RCHASER REF.: MJ18-346, M. TER SERVICE Hot Oil Heate	100 °F CHANICAL 20 / 6030 3 Midstream J18-347, MJ18-348	cSt ppm ppm ppm % wt % wt % wt % wt % wt % wt % f °F °F °F psig °F psig)S	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 54 55 55 56 0 WM 0 WM PUR PUR HEA UNIT	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM END-POINT ASTM END-POINT FUEL TEMPERATURE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MEC TEMPERATURE PRESSURE NER: XTO Energy NER REF.: PK-6010 / 602 RCHASER: Tulsa Heaters RCHASER REF.: MJ18-346, M. TER SERVICE Hot Oil Heate T: T:	100 °F CHANICAL 20 / 6030 3 Midstream J18-347, MJ18-348	cSt ppm ppm ppm % wt % wt % wt % wt % wt % wt % f °F °F °F psig °F psig			BB-9027773-D)S	
40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 54 55 55 56 0 WM 0 WM PUR PUR HEA UNIT	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM END-POINT ASTM END-POINT FUEL TEMPERATURE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MEC TEMPERATURE PRESSURE NER: XTO Energy NER: WASER: UISa Heaters CHASER REF.: MJ18-346, M. TTER SERVICE Hot Oil Heate T: M NO.:	100 °F CHANICAL 20 / 6030 6 Midstream J18-347, MJ18-348 r	cSt ppm ppm ppm % wt % wt % wt % wt % wt % wt % r F °F °F psig °F psig			BB-9027773-D		
40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 54 55 55 56 0 WM 0 WM PUR PUR HEA UNIT	@ VANADIUM SODIUM POTASSIUM NICKEL FIXED NITROGEN SULFUR ASH WATER DISTILLATION INITIAL BOILING POINT ASTM END-POINT ASTM END-POINT FUEL TEMPERATURE @ BURNER FUEL PRESSURE AVAILABLE @ BURNER ATOMIZING MEDIUM : AIR / STEAM / MEC TEMPERATURE PRESSURE NER: XTO Energy NER: WASER: UISa Heaters CHASER REF.: MJ18-346, M. TTER SERVICE Hot Oil Heate T: M NO.:	100 °F CHANICAL 20 / 6030 3 Midstream J18-347, MJ18-348	cSt ppm ppm ppm % wt % wt % wt % wt % wt % wt % r F °F °F psig °F psig			BB-9027773-D	DS	

1 2 3 4 5 6 7 8	Owner: Purchaser: Manufacturer: Service: Number: SHO Duty:	XTO En Audubor Tulsa Ho Hot Oil I 1 79.30	n eaters Mids				Purchase THM Ref Project: Location:						
9 10 11 12 13 14 15 16 17	Guarantees:	NOx SOx CO VOC UHC SPM	no quote 0.0163 0.0064 0.007	Lb/MMBT Lb/MMBT Lb/MMBT Lb/MMBT Lb/MMBT Lb/MMBT	U U U U	5 - 20 5 15 15	ppm ppm ppm ppm ppm						
18 19					Desigr	Case				Maximu	m Case		
20 21 22 23 24	Heat Release Products of (LHV Basis t ion MW 32.00	94.: 2,657	54 Lbm/ hr	MMBTU	l/hr		103 2,923	3.99 Lbm/ hr	MMBTU	/hr	
25 26 27 28		N2 + Ar CO2 H2O	28.15 44.01 18.02	66,981 12,059 10,400	Lbm/ hr Lbm/ hr Lbm/ hr				73,679 13,265 11,440	Lbm/ hr Lbm/ hr Lbm/ hr			
29 30 31 32 33 34 35		NOx SOx CO VOC UHC SPM	46.01 64.06 28.01 44.10 16.04	0.63 0.00 1.54 0.61 0.66 1.23	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr	/ 0 / 20 / 5 / 15	ppm ppm ppm ppm ppm ppm		0.69 0.00 1.69 0.67 0.73 1.35	Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr Lbm/ hr	/ 0 / 20 / 5 / 15	ppm ppm ppm ppm ppm ppm	
36 37		Total		92,101	Lbm/ hr				101,311	Lbm/ hr			
37 38 39 40 41 42	Flue Gas Flue Gas Stack He Stack ID	Exit Velo		599 65 34 48	.3 .3	°F Ft/sec ft in			34	1.8 4.3 8	Ft/sec ft in		
42 43 44 45 46 47 48		_					of Design (tures above		bustion cor	nditions w/	15% exce	ess air.	
49 50 51 52 53	design, h The Maxi	igh turnd mum Cas	own or star se is the th	t-up are no	ot conside heat rele	ered as gu ase for th	uaranteed e	emissions urchased	ol. Upset co cases. . Extra dut			peration o	utside the
54 55 56													
57 58 59 60													·····
61 62													
63 64	revision	date		description	n						by	chk'd	appv'd
		_		11:1/		SA HEA DSTRE	TERS AM		EMISSIC	I ENGINE	ERING S		
		uperior Q	uality, Flexi						9-395-En			n consent of T	Pg 1 of 1 ^{тнм.}

1 2 3 4 5 6 7 8	Owner: Purchaser: Manufacturer: Service: Number: SHO Duty:	XTO Energy Audubon Tulsa Heaters M Hot Oil Heater 1 79.30 MMBT		Owner Ref.: Purchaser Ref. THM Ref.: Project: Location: SHO Model:	PK-6110 018193001 MJ18-349 Cowboy CDP Carlsbad, NM SHO5000	
9 10 11 12 13 14 15 16 17	Guarantees:	NOx 0.0334		ppm ppm ppm ppm ppm ppm		
18 19			Design Case		Maximum Case	
20 21 22	Heat Releas Products of	-	s 94.54 MMBTU	J/hr	103.99 MMBTU/hr	
23 24 25 26 27 28		MW O2 32.0 N2 + Ar 28.1 CO2 44.0 H2O 18.0	5 66,978 Lbm/ hr 1 12,059 Lbm/ hr		2,923 Lbm/ hr 73,676 Lbm/ hr 13,265 Lbm/ hr 11,440 Lbm/ hr	
29 30 31 32 33 34 35		NOx 46.0 SOx 64.0 CO 28.0 VOC 44.1 UHC 16.0 SPM 3000000000000000000000000000000000000	6 0.00 Lbm/ hr / 0 1 1.54 Lbm/ hr / 20 0 0.61 Lbm/ hr / 5	ppm ppm ppm ppm ppm ppm	3.47 Lbm/ hr / 25 ppm 0.00 Lbm/ hr / 0 ppm 1.69 Lbm/ hr / 20 ppm 0.67 Lbm/ hr / 5 ppm 0.73 Lbm/ hr / 15 ppm 1.35 Lbm/ hr / 15 ppm	
36		Total	92,101 Lbm/ hr		101,311 Lbm/ hr	
37 38 39 40 41			599 °F 65.3 Ft/sec 34.3 ft 48 in		71.8 Ft/sec 34.3 ft 48 in	
42 43 44 45 46 47 48 49 50 51 51	THM em Emissior outside t	issions guarante ns above are for he design, high t	es applicable for firebox tempe Design Case operation with air Irndown or start-up are not cor	aratures above 11 and fuel in ratio on nsidered as guara	control. Upset conditions, such as oper inteed emissions cases.	
53 54 55 56			the burner is never the limiting		ased. Extra duty is spec'd into	
57 58 59 60 61 62						
63 64	revision	date	description		by chk'd	appv'd
		-		AM	EMISSIONS PERMIT DATA AMERICAN ENGINEERING SYSTEM	SHEET
		perior Quality, Fl	exibility, Dependability & Modul al information proprietary to THM. This docu	anty	8-349-Emissions- eproduced or disclosed without the prior written consent	Pg 1 of 1 of THM.

10205 Westheimer Road, Suite 100 Houston, Texas 77042 auduboncompanies.com | LinkedIn

From: Cody Faulkenberry <<u>Cody_Faulkenberry@zeeco.com</u>>
Sent: Friday, May 4, 2018 5:30 PM
To: Kelly Jones <<u>kejones@auduboncompanies.com</u>>; Kirsten Berg <<u>Kirsten_Berg@zeeco.com</u>>; Gabriel Garcia
<ggarcia@auduboncompanies.com>
Cc: Nikki Jenlink <<u>Nikki_Jenlink@zeeco.com</u>>; Scott Reed <<u>Scott_Reed@zeeco.com</u>>; Blake Knight
<<u>Blake_Knight@zeeco.com</u>>; Alan Forman <<u>integratedcontrols@prodigy.net</u>>; John Ehlig <<u>John_Ehlig@zeeco.com</u>>; Sean O'Grady <<u>Sean_OGrady@zeeco.com</u>>
Subject: RE: 2018-02438FL-01: RFQ 018193001-AE-RFQ-ME0018 - Combustor Package - XTO Energy Cowboy Natural Gas

Kelly,

and Oil CDP

Below are the guaranteed DRE's for each piece of combustion equipment in regards to the XTO Cowboy project.

There will be no cost impact added to our proposals to meet the DRE's listed below. If a higher DRE is required, we can provide equipment that meets the request.

- 1. CDP Flare System, 98% DRE
- 2. CDP Combustor, 99% DRE
- 3. Thermal Oxidizer, 99.99% DRE

Please let us know if you have any questions or more official documentation is needed. Thanks!

Cody Faulkenberry

Applications Engineer, Sales

Zeeco Houston | Cell: +1 713 859 6047 | Direct: +1 918 893 8816

From: Kelly Jones [mailto:kejones@auduboncompanies.com]

Sent: Wednesday, May 02, 2018 7:18 AM

To: Kirsten Berg <<u>Kirsten_Berg@zeeco.com</u>>; Gabriel Garcia <<u>ggarcia@auduboncompanies.com</u>>; Cc: Nikki Jenlink <<u>Nikki_Jenlink@zeeco.com</u>>; Scott Reed <<u>Scott_Reed@zeeco.com</u>>; Blake Knight

<<u>Blake_Knight@zeeco.com</u>>; Alan Forman <<u>integratedcontrols@prodigy.net</u>>; Cody Faulkenberry

<<u>Cody_Faulkenberry@zeeco.com</u>>; John Ehlig<<u>John_Ehlig@zeeco.com</u>>

Subject: RE: 2018-02438FL-01: RFQ 018193001-AE-RFQ-ME0018 - Combustor Package - XTO Energy Cowboy Natural Gas and Oil CDP

Importance: High

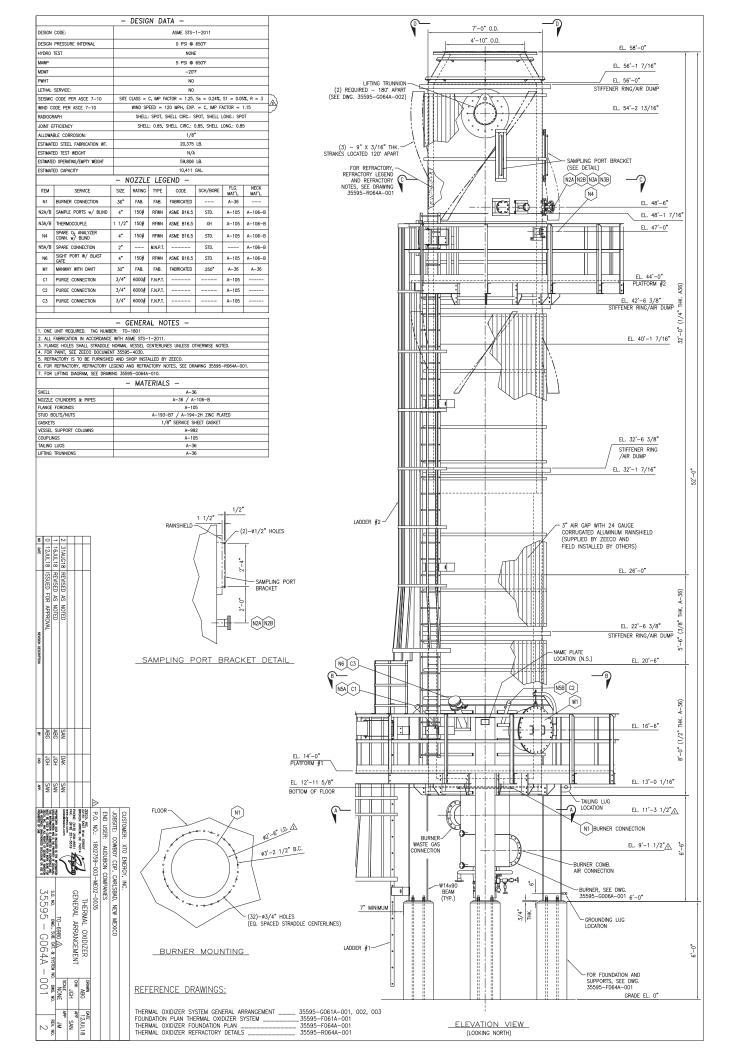
Kirsten,

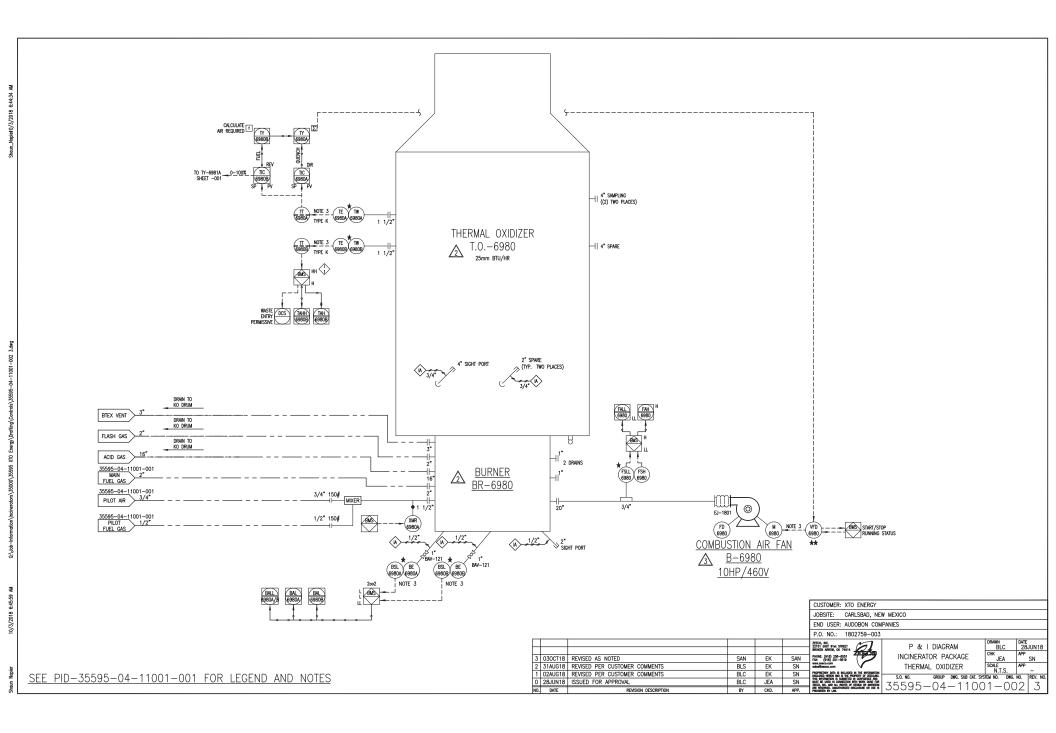
	Normal Case
COMPONENT:	lb/hr
CO ₂	22743.78
H ₂ O	3869.91
N ₂	17926.10
SO ₂	2.72
O ₂	1376.65
TOTAL	45919.16

4.4 Flue Gas at 1700°F, Normal Operation

4.5 System Performance

Stack Emission	Expected Performance
Destruction Efficiency	> 99.95% of all H2S / VOC
NOx, ppm _{vd} @ 3% O2	50
CO, ppm _{vd} @ 3% O2	50


These values are understood to apply only when the system is operated in accordance with the operating conditions stipulated in the design summary and for the waste stipulated in the design basis sections of this proposal.


Confidential and Proprietary

	Tulsa, Oklahoma					The	ermal C)xid	lizer Datasheet	Cust	omer Doc	ument No.			
	ZEE	🖓 🛛 Tulsa, Oklahoma		REV	BY	DA	ATE	DES	CRIPTION	Ze	eco Docun	ient No.			
				A	JNM		16-Jul-18		ed for Review		35595-2				
				В	SN		9-Aug-18	Issue	ed for Review		Projec	t:			
Client	t:	XTO Energy		С	SN	3	31-Aug-18	Issue	ed for Review		Cowboy -	CDP			
End L		Cowboy CDP								BY	APPR	DATE			
Job S		Carlsbad, NM								JNM	SN	16-Jul-18			
	lumber:	TO Thermal Oxidizer / TO-6980													
#	Comico			Aaid	Caslasi		DESIGN								
	Service	Flow (Max), lb/hr		_	Gas Inci			Gac)	/ 588 (BTEX w/ Stripping Gas)					
		r Operating Temp, °F)-1800		547 (Hash	uas))					
	Altitude A			3400											
5	Product Fl	ow Max, lb/hr		50,2	26										
		esign, lb/hr		26,9											
		e Release, mmBTU/HR		21.6											
		Heat Release, mmBTU/HR		24.1											
	Number R	equired		1	INC	NEDAT		CATI							
10 11	Туре			Vert	ical Ther			CATIC							
	Size				D x 52' C										
13						•• •									
	Shell Mate	rial		SA-3	6										
15	Refractory			Floo	r: 4" 200		stable back	od w	/ 2" Insulating Castable. Stac	-k· 4" 2200°E Inculat	ing Castab	ام			
10						JUICa	stable, baci	veu w		.K. 4 2300 T IIISulat	ing castau	ie			
		al Design Temp (°F) / Pressure (psig)		650	/0										
	Mastic (Y/			N	<u></u>										
	Refractory	nnection, in.		310 36"	55										
	Jacket	inection, in.			Corrugated Rainshield										
	Access Do	or		30" Manway with Davit											
	Lifting Lug					X YE			NO Two(2) lifting	trunnions 180° apa	rt				
	Slide Plate						ΈS	Х	NO						
26	Rainshield						ΈS		NO						
28				1			SPECIFICA	TION	S						
	Туре				ed Draft										
	Pilot Combustic	on Air Change in Pressure (in WC)		Pren 3	nix with	High Er	nergy Ignito	r							
		el, mmBTU/HR		25											
		s Rel, mmBTU/HR			Acid Gas	s) / 10.7	74 (Flash Ga	as) / :	10.01 (BTEX w/ Stripping Gas)					
35						•// =•··	. (,,	(- · -···/··PP···8	1					
36						1	NOZZLES								
37	Noz.	<u>Description</u>	Size (in)												
38	N1	Burner Connection	36"	1											
39	N2A/B	Sample Ports w/ Blind	4"	4											
40	N3A/B N4	Thermocouple	1-1/2" 4"	-											
41 42	N4 N5A/B	Sampling Port Spare Conn.	2"	-											
42	N5AyB N6	Sight Port w/ Blast Gate	2 4"	1											
44	M1	Manway w/ Davit	30"	1											
45				1											
46															
47															
48															
49															
50															
51															
52 53 54 55 56 57	NOTES	Reference Document for Nozzles			001										
53	NOTES	. Reference Document for Nozzles	5-22232-01	JUJA-U	JUL										
54															
56															
57															
58															
59															
60															

							Burner Datasheet						Customer Doc No.					
	ZEEL			Tulsa, Ok	lahoma	REV BY DATE DESCRIP			TION			Zeeco Doc No.						
	V					Α	JNM									35595-203		
Clier	Client: XTO Energy					В	SN	9-Aug-1	18 19	ssued fo	for Review			Project: Cowboy - CDP				
	omer:		Linere	51										BY	А	PPR	DATE	
Job S			boy C											JNM	9	SN	16-Jul-18	
Tag I 1	Number:	GB E	Burner	r / BR-6980	VESSEL DATA		I							PILOT DA				
	Firing Dire	ction			VESSEL DATA	Vertica	al				Model:			AR/GS-1				
	Refractory	y Thickness at Burner Nozzle (in.)					1				Quantity per Burner 1							
4	Type of Dra	aft (N	latura	l, Forced, Induc		Forced	ł				Size (in.)			1 1/2"				
5	BURNER MECHANICAL DA Burner Item Number								Ignition Operating Pressure	Electronic I 10	HEI							
7	Type				GB								1609/178 (methane)					
8	Quantity				1													
9 10	Location					Carlsb Bolted	ad, NM				FUEL CHARACTERISTICS Type of Fuel Rich Fuel Gas Lean Fuel Gas							
	Burner Des					None					LHV (BTU/SCF)	1153	88					
12	Burner Cas	e Ma	aterial			Carbo					Molecular Weight	21.52	16.					
13	Tile Block N		rial				lumina				Pressure Avail. (psig)	125	12					
14 15	Scanner Ty		ty/c	onnection Quan	tity	1" Swi 2	vel Scanne	er			Temperature (°F)	35-80	11	U				
15	Paint	anti	cy / CC	udli Qudli		2 Per Customer Specifications					Composition - VOL %	6	1	I			1	
17									Nitrogen	2.1448	3.1							
18									CO2	0.2038	0.0							
19 20	Maximum	BURNER PROCESS DA				TA 2.9					Methane	13.73	96.7					
21		aximum Burner Combustion Air Pressure Drop, in WC sign Combustion Air Temperature, °F			100			Propane	6.4286									
22		Design Combustion Air Flowrate, lb/hr				28,151			i-Butane	0.628								
23 24		· · · · · · · · · · · · · · · · · · ·				5,630 35%			n-Butane i-Pentane	1.6049 0.2989								
24	Maximum Excess Air (%) 3 HEAT RELEASE (mmBTU/I							n-Pentane	0.2989									
26	Case Fuel Gas								n-Hexane	0.1								
27	Heat Release					n-Heptane	0.1											
28 29									H2O	0.0192								
30			-			Total	99.9994	99.9	999									
31																		
32 33	ITEM	NOZZLE SCHEDULE 1 QTY SIZE / RATING SERVICE					RVICE											
34	B1	1		36" / FAB			ing Flange	1- 1	-									
35	B2	1		16" / 150#			Gas Conn.		.d c	Jas								
36	B3	1		20" / FAB	Co		on Air Cor	ın.										
37 38	B4 B5	1		2" / 150# 2" / 150#			Gas Conn. Gas Conn.											
39	B6	1		-1/2" / 150#	Pi		unting Cor	ın.					1					
40	B7	1		1" / 150#		Drain	w/ Blind											
41 42	B8 B9	1		1" / 150# 1" NPT	Dilot Ci		w/ Blind t Conn. w	/ Purgo										
42	B9 B10	1		2" NPT			Conn. w/ P						1					
44	B11	1		1" NPT	Main Flan	ne Scar	nner Conn.	. w/ Purge										
45	B12	1		3" / 150#	E	STEX St	ream Conr	า.										
46 47			-															
48																		
49					ents - P&ID for Burner 3													
50 51					ents - Burner General Ar	-			01 (Cu	ist. No.	1802759-003-ME02-							
52			Expected NOx & CO ppmv included in prop				sinuitatet			Emission		ected Performa						
53	3		1				Destruction											
54	NOTES	:					NOx, ppm _{vd} @						9					
52 53 54 55 56 57 58 59																		
57																		
58																		
60																		

10205 Westheimer Road, Suite 100 Houston, Texas 77042 auduboncompanies.com | LinkedIn

From: Cody Faulkenberry <<u>Cody_Faulkenberry@zeeco.com</u>>
Sent: Friday, May 4, 2018 5:30 PM
To: Kelly Jones <<u>kejones@auduboncompanies.com</u>>; Kirsten Berg <<u>Kirsten_Berg@zeeco.com</u>>; Gabriel Garcia
<ggarcia@auduboncompanies.com>
Cc: Nikki Jenlink <<u>Nikki_Jenlink@zeeco.com</u>>; Scott Reed <<u>Scott_Reed@zeeco.com</u>>; Blake Knight
<<u>Blake_Knight@zeeco.com</u>>; Alan Forman <<u>integratedcontrols@prodigy.net</u>>; John Ehlig <<u>John_Ehlig@zeeco.com</u>>; Sean O'Grady <<u>Sean_OGrady@zeeco.com</u>>
Subject: RE: 2018-02438FL-01: RFQ 018193001-AE-RFQ-ME0018 - Combustor Package - XTO Energy Cowboy Natural Gas

Kelly,

and Oil CDP

Below are the guaranteed DRE's for each piece of combustion equipment in regards to the XTO Cowboy project.

There will be no cost impact added to our proposals to meet the DRE's listed below. If a higher DRE is required, we can provide equipment that meets the request.

- 1. CDP Flare System, 98% DRE
- 2. CDP Combustor, 99% DRE
- 3. Thermal Oxidizer, 99.99% DRE

Please let us know if you have any questions or more official documentation is needed. Thanks!

Cody Faulkenberry

Applications Engineer, Sales

Zeeco Houston | Cell: +1 713 859 6047 | Direct: +1 918 893 8816

From: Kelly Jones [mailto:kejones@auduboncompanies.com]

Sent: Wednesday, May 02, 2018 7:18 AM

To: Kirsten Berg <<u>Kirsten_Berg@zeeco.com</u>>; Gabriel Garcia <<u>ggarcia@auduboncompanies.com</u>>; Cc: Nikki Jenlink <<u>Nikki_Jenlink@zeeco.com</u>>; Scott Reed <<u>Scott_Reed@zeeco.com</u>>; Blake Knight

<<u>Blake_Knight@zeeco.com</u>>; Alan Forman <<u>integratedcontrols@prodigy.net</u>>; Cody Faulkenberry

<<u>Cody_Faulkenberry@zeeco.com</u>>; John Ehlig<<u>John_Ehlig@zeeco.com</u>>

Subject: RE: 2018-02438FL-01: RFQ 018193001-AE-RFQ-ME0018 - Combustor Package - XTO Energy Cowboy Natural Gas and Oil CDP

Importance: High

Kirsten,

ZEECO, INC.

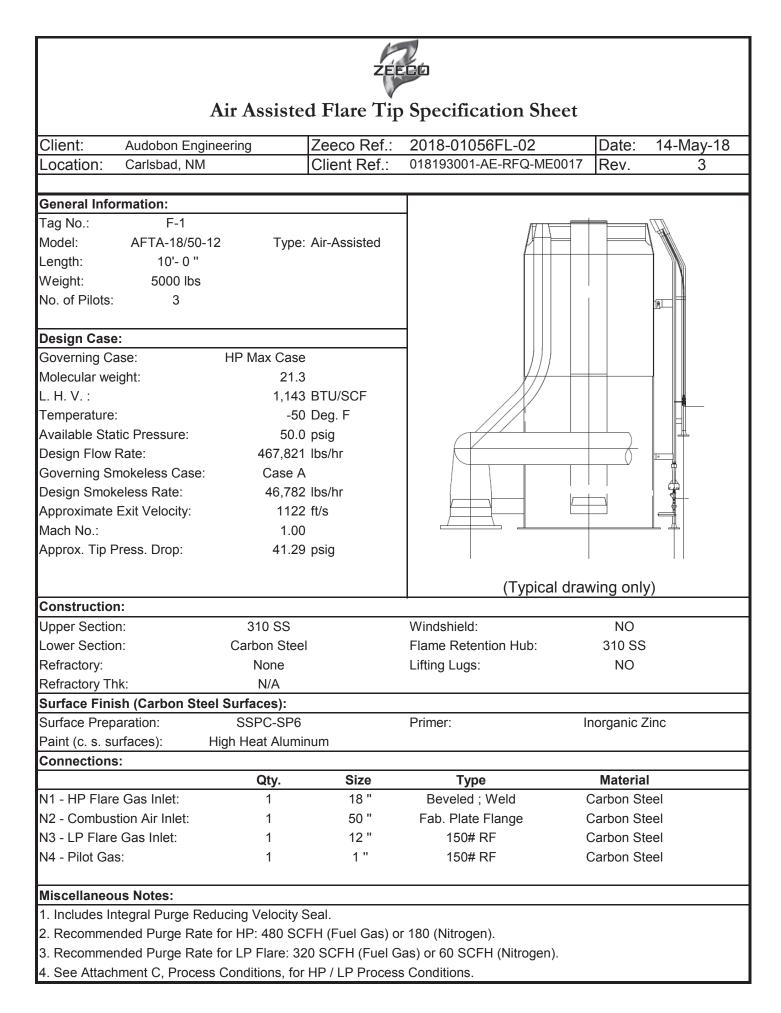
CLIENT: Audubon USER: XTO Energy PROJECT: Cowboy CDP CLIENT P.O. #: 1707284-002 / 1707285-003 DOCUMENT NO: 35284-8020 PAGES: 1258 + Cover

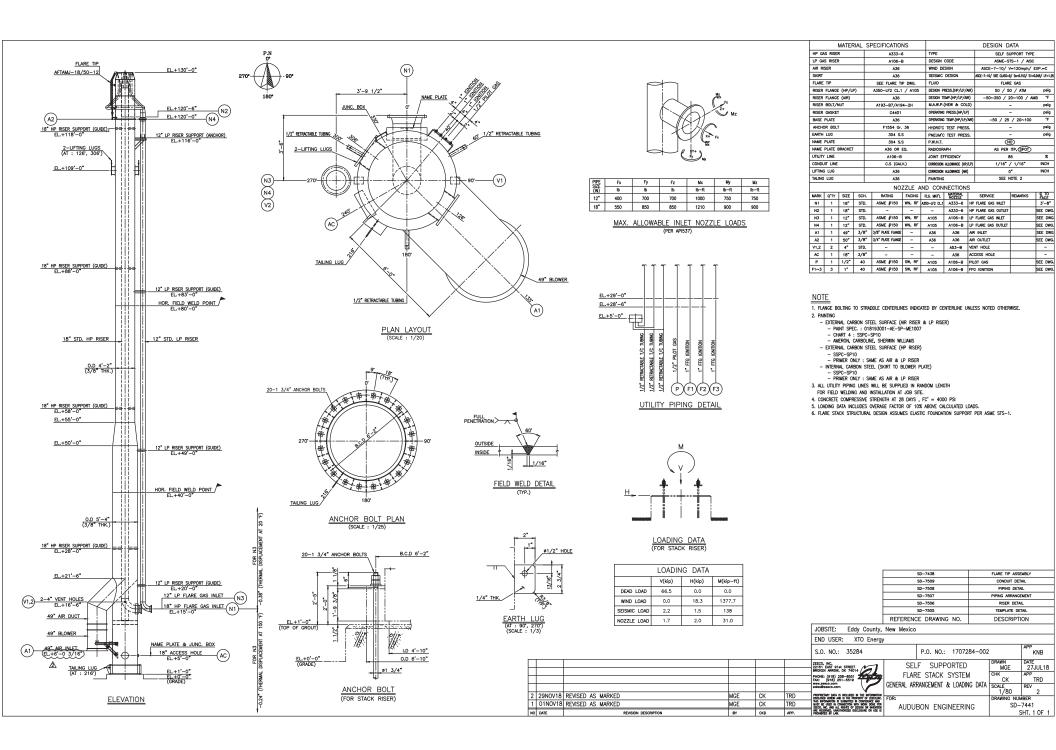
ZEECO SO: 35284

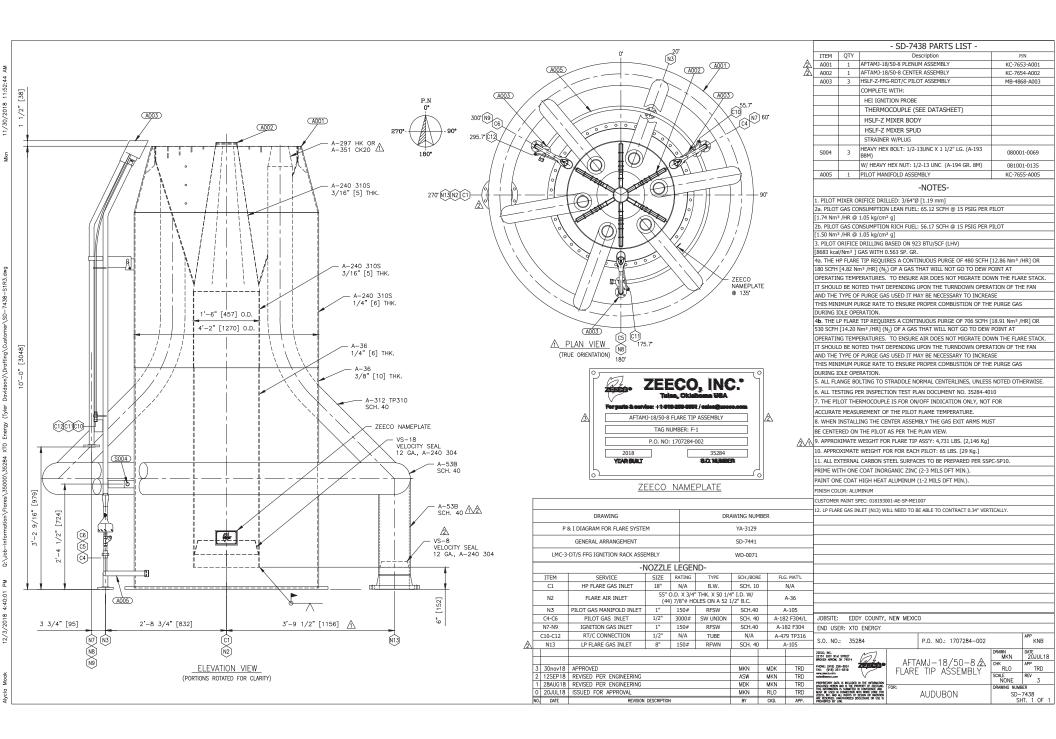
FLARE SYSTEM

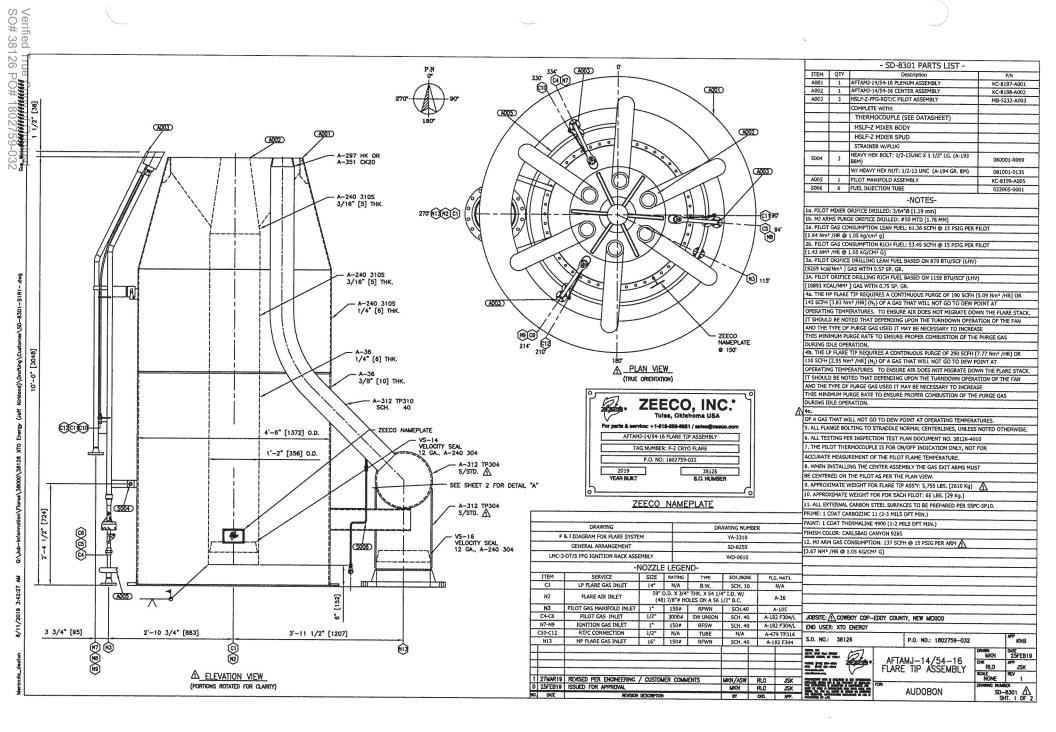
FINAL DATA BOOK

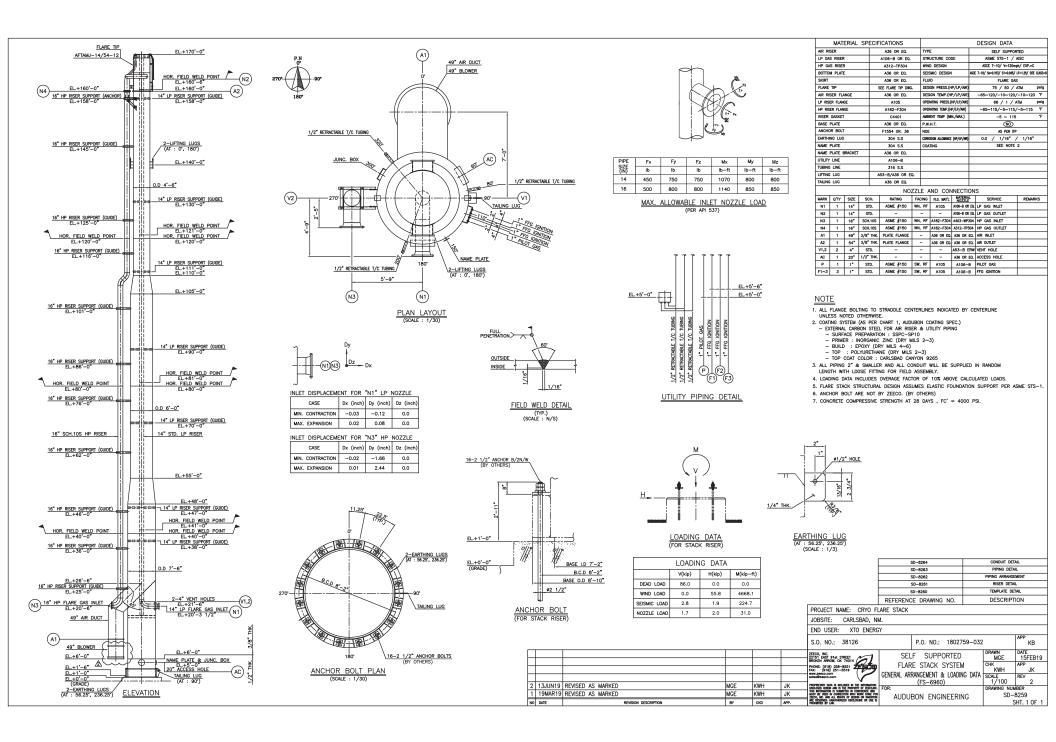
REV	DATE	BY	APP	DESCRIPTION
0	01MAY19	ADM	TRD	FOR YOUR USE


Predicted Utility Requirements


Client:	Audubon	Zeeco Ref.:	35284	Date:	11-Apr-19
Location:	New Mexico - XTO Cowboy	Client Ref.:	1707284-002 / 1707285-003	Rev.	0
Equipment	N	ormal Operations	Utility Requirements	-	
		65.12 SCFH @ 15 PS	mption (Fuel Gas): SIG Per Pilot (Lean Fuel) Per Pilot (Rich Fuel)		
HP / LP AFTAMJ-18/50- 12			as requirement: as) or 180 SCFH (N2)		
		LP Purge Ga	s Requirement:		
	706 SCFH (Fuel Gas		fold) and 50 SCFH (Fuel Gas From	n LP Riser)	
		or 530 SCFH (I	√2 From LP Riser)		
	Elect	700 W @ 120V, 60 I	er Ignition Rack (HP & Acid) Hz, 1 Ph During Ignition Hz, 1 Ph After Ignition		
		Ignitio	n Timing		
GENERAL		pulse per 3 seconds	, Timeout after 3 minutes		
GENERAL	Ignitic		On Control Rack Assembly: G (Ignition Period Only)		
	Instrun		n On Control Rack Assembly: Ignition Period Only)		


(1) Pilot fuel gas requirements are based upon a fuel gas with an LHV of 923 BTU/SCF and a specific gravity of 0.56.


(2) If ignition is made and pilot temperature returns to high temperature above setpoint before 5 minutes, then igniter will cease and timer will not timeout. System will go back to high temperature state.


(3) Electrical Consumption during ignition includes all power required for the entire panel.

10205 Westheimer Road, Suite 100 Houston, Texas 77042 auduboncompanies.com | LinkedIn

From: Cody Faulkenberry <<u>Cody_Faulkenberry@zeeco.com</u>>
Sent: Friday, May 4, 2018 5:30 PM
To: Kelly Jones <<u>kejones@auduboncompanies.com</u>>; Kirsten Berg <<u>Kirsten_Berg@zeeco.com</u>>; Gabriel Garcia
<ggarcia@auduboncompanies.com>
Cc: Nikki Jenlink <<u>Nikki_Jenlink@zeeco.com</u>>; Scott Reed <<u>Scott_Reed@zeeco.com</u>>; Blake Knight
<<u>Blake_Knight@zeeco.com</u>>; Alan Forman <<u>integratedcontrols@prodigy.net</u>>; John Ehlig <<u>John_Ehlig@zeeco.com</u>>; Sean O'Grady <<u>Sean_OGrady@zeeco.com</u>>
Subject: RE: 2018-02438FL-01: RFQ 018193001-AE-RFQ-ME0018 - Combustor Package - XTO Energy Cowboy Natural Gas

Kelly,

and Oil CDP

Below are the guaranteed DRE's for each piece of combustion equipment in regards to the XTO Cowboy project.

There will be no cost impact added to our proposals to meet the DRE's listed below. If a higher DRE is required, we can provide equipment that meets the request.

- 1. CDP Flare System, 98% DRE
- 2. CDP Combustor, 99% DRE
- 3. Thermal Oxidizer, 99.99% DRE

Please let us know if you have any questions or more official documentation is needed. Thanks!

Cody Faulkenberry

Applications Engineer, Sales

Zeeco Houston | Cell: +1 713 859 6047 | Direct: +1 918 893 8816

From: Kelly Jones [mailto:kejones@auduboncompanies.com]

Sent: Wednesday, May 02, 2018 7:18 AM

To: Kirsten Berg <<u>Kirsten_Berg@zeeco.com</u>>; Gabriel Garcia <<u>ggarcia@auduboncompanies.com</u>>; Cc: Nikki Jenlink <<u>Nikki_Jenlink@zeeco.com</u>>; Scott Reed <<u>Scott_Reed@zeeco.com</u>>; Blake Knight

<<u>Blake_Knight@zeeco.com</u>>; Alan Forman <<u>integratedcontrols@prodigy.net</u>>; Cody Faulkenberry

<<u>Cody_Faulkenberry@zeeco.com</u>>; John Ehlig<<u>John_Ehlig@zeeco.com</u>>

Subject: RE: 2018-02438FL-01: RFQ 018193001-AE-RFQ-ME0018 - Combustor Package - XTO Energy Cowboy Natural Gas and Oil CDP

Importance: High

Kirsten,

www.zeeco.com sales@zeeco.com

General Process Performance Warranty for Flare System

Zeeco Inc. warrants the process performance of this unit will meet or exceed the contract requirements. Specific process performance requirements and acceptance criteria will be defined and mutually agreed to by both parties within two (2) months of receipt of the purchase order for supply of the equipment. Performance of the system is to be defined under normal ambient conditions of temperature, wind, etc. Such performance acceptance criteria in general to be as follows:

Based on provided Datasheet 019141001-AE-DS-ME0018 and Agreed Flow Rates:

- 1) Hydrocarbon Destruction efficiency of the unit will be 99% or higher when operated and maintained per the operating instructions and industry standards for this type of equipment.
- 2) The expected NOx and CO emissions will be 124 ppm and 204 ppm (corrected to 3% O2), +/-10%, using calibrated measurement equipment under defined flow conditions at the specified gas composition in the contract and when operated and maintained per the operating instructions and industry standards for this type of equipment. The specific operating temperature required to meet all three conditions will be determined upon field testing of the equipment.

Process performance of the system, if required, will be confirmed at a performance test to take place within 90 days after the unit is fully assembled and erected at site. The cost for Zeeco Inc. personnel to be on site for any testing is at the expense of the customer. The cost for testing equipment would also be to the account of the customer, if not readily available in the process system as installed. The specific conditions of the performance test, and the measurement and acceptance criteria for the above process performance points, including specific liability points associated with each process item, are to be mutually agreed to by both buyer and seller prior to shipment of the equipment. Successful completion of the process performance test at site will be deemed as compliance with the process performance warranty for any and all reasons. In the event the site performance test is postponed or delayed for more than 90 days after completion of erection of the unit at site, prior to the test, Zeeco Inc. will inspect the unit and any required refurbishment / repair to like new condition must be completed prior to testing, at purchaser's sole expense. If the testing is not completed within 6 months of the startup of the unit, the unit will have been deemed to have met any and all performance requirements.

Enclosed Flare Stack Specification Sheet									
Client: A	udobon Eng	nineering	Zeeco Ref	.: 2018-02438FL-01	Date: 22-May-18				
	arlsbad, NN			: 018193001-AE-RF					
	,								
General Inform	ation:								
Tag No.:		EG	F-1]					
Overall Height:		40	ft	0. 25-0*					
Model No.		EF-9	9/40						
Design Criteria									
Wind Design Co		ASCE 7-10							
Seismic Design		ASCE 7-10							
Importance Fac		1.25							
Structural Desig		AISC		_ @ B					
Wind Speed (St	ructural):		mph						
Seismic Zone:		0	_	3 00					
Max. Design Te			Deg. F						
Min. Design Tei	•		Deg. F	00					
Design Pressur		Atmospheric							
Stack Corrosior	a Allow.:	0.000	in.	(Typical o	drawing only)				
Construction:									
Stack Material:		Carbon Steel	_	Ladders & Step-offs:	None				
Stack Height (a		40		Platform at tip:	None				
Stack Width (ap			ft	Additional Platforms:	None				
Flare Gas Inlet	Diameter:	8	in						
Surface Prepara	ation:	SSPC-SP-6		Primer:	Inorganic Zinc				
				Finish Paint:	Per Specification				
Utility piping:									
Miscellaneous		Attached Uti	lity Pipin	g Scope of Supp	ly				

VAPOR COMBUSTOR RENTALS

BURNERS | FLARES | THERMAL OXIDIZERS | VAPOR CONTROL | RENTALS | AFTERMARKET

Easy installation and operation on demand.

Zeeco maintains a rental fleet of skid and trailer-mounted vapor combustor units (VCU) staged around the world and available on demand. Designed with the end user in mind, our rental vapor combustors offer easy operation and installation within a matter of hours. Whether you need a simple skid-mounted design, or a fully-automated, trailer mounted ZEECO[®] Zephyr[™], users depend on our proven, reliable smokeless solutions.

Wide range of applications.

Each Zeeco vapor combustor is engineered to operate safely through a wide range of relief conditions. From low flow and low pressure hydrocarbon gas streams to contaminated air streams, Zeeco's high capacity rental vapor combustor systems provide clean flames, consistent smokeless operation, and high destruction efficiencies.

Meet regulatory requirements.

Zeeco's vapor combustors are fully enclosed to efficiently use both combustion and quench air. The combustion enclosure maintains precise chamber temperatures and ensures optimal destruction and removal efficiencies (DRE) to meet or exceed the most stringent clean-air standards. Our vapor combustor can be fully automatic or manually operated, depending on your specific needs and regulatory requirements. Typically used in liquid loading and tank degassing operations to destroy harmful emissions that emanate from fumes, vapor combustors fill diverse roles and can be used in multiple applications while maintaining optimal efficiency.

Advanced technology.

Zeeco is a pioneer in smokeless flare and vapor combustor system design. We put our nearly 40 years of experience into our rental system designs to ensure our customers benefit from the best available technologies. ZEECO ProFlame™ flame scanners provide reliable flame detection using state-ofthe-art digital signal processing for easy flame analysis, and offer an intuitive display for easy setup and installation. ZEECO Guardian™ wireless monitoring system allows operators to check on the system from anywhere via remote diagnostics and controls.

ZEECO Zephyr™ Trailer Mounted Vapor Combustor

Design Features

- Wide range of flow rates, including up to 4800 gpm for vapor loading
- Destruction efficiencies up to 99.99% with sample ports for testing
- Full turndown capability
- Smokeless performance from 0% to 100% operation
- Completely hidden flame and zero emitted radiation
- Flame arrestors on inlet for flashback prevention
- Automatic on/off operation for loading facilities based on pump operations
- Interchangeable tip designs for broad relief conditions
- Staged air assist by forced draft to facilitate better mixing and stoichiometric combustion at the burner assembly
- Natural draft dampers for chamber combustion air and temperature control of vapor combustor
- Internal ceramic fiber refractory lining
- Thermowell and thermocouple for temperature monitoring of combustion chamber
- Fully automated controls system for automatic flame ignition and monitoring with electric or solar power
- Retractable pilot can be removed and maintained without shutting down
- DOT-compliant trailer-mounted option for easy transportation
- Trailer option with hydraulic outriggers and stack lift system for simple setup without need for cranes
- Skid mounted option for longer-term usage periods
- Can be used as a thermal oxidizer, flare, or vapor combustor to meet local regulations and existing permits

Options Available

- Anti-flashback burner tips for flashback protection
- ZEECO Guardian[™] for wireless monitoring and operation
- ZEECO ProFlame[™] flame scanners
- Flame and detonation arrestors
- Assist gas for maintaining internal operating temperatures for high DRE
- Forced draft fan for smokeless operation
- Vapor blower for low/no pressure gas operation
- Solar-powered ignition system
- Auto or manual spark ignition
- · Knock out drums and instrumentation
- Integrated dock safety system loading applications

ZEECO® Engineered Enclosed Flare System

The Zeeco Difference

By concentrating on what we do best, Zeeco has grown into a worldwide leader in combustion and environmental solutions. We are a privately held company whose ownership stays highly involved in daily operations, with upper management comprised of the world's leading combustion experts.

When you call Zeeco, we answer. When you make a request, you get a quick, efficient response. We are lean and efficient, able to make decisions quickly, without bureaucracy and red tape. Our sales, engineering, and purchasing groups work hand-in-hand to deliver highly competitive quotes and heroic turnaround times. We stand ready and willing to travel anywhere in the world to discuss upcoming projects firsthand, and to ensure that every existing project runs seamlessly.

Zeeco Headquarters 22151 East 91st Street Broken Arrow, OK 74014 Learn more at zeeco.com

✓ sales@zeeco.com
▲ +1 (918) 258 8551

Certification applies to Zeeco Headquarters.

Visit zeeco.com/contact for additional Global Location contact information **GO** ZEECO

Choose to work with our dedicated, flexible, and innovative team, and you won't be disappointed. Call or email us today to request a quote or to learn more about our proprietary combustion systems.

©2022 Zeeco, Inc. All Rights Reserved. ZEEC0° and the Flaming Z logo are registered trademarks of Zeeco, Inc. in the U.S.A.

Destruction Efficiency

Client:	XTO Energy	Zeeco Ref.:	2024-10319RE-01	Date:	14-Nov-24
Location:	Midland, TX	Client Ref.:	Flare	Rev.	0

To whom it may concern,

The hydrocarbon destruction efficiency for the combustion systems providing on Zeeco Ref: 2024-10319RE-01 will be 99% or higher as long as the flare is operated and maintained within the design operating parameters and accepted industry standard practices for this type of equipment.

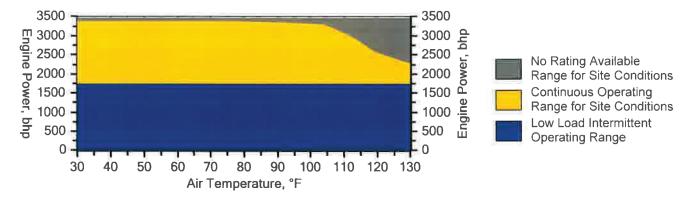
NOx = 0.18 lb/MMBtu Fired CO = 0.31 lb/MMBtu Fired

Sincerely,

Josh Kimrey josh_kimrey@zeeco.com Applications Engineer

GAS ENGINE SITE SPECIFIC TECHNICAL DATA FPIC

GENSET - WITHOUT RADIATOR	EPI	С					
ENGINE SPEED (rpm): COMPRESSION RATIO: AFTERCOOLER TYPE: AFTERCOOLER - STAGE 2 INLET (°F): AFTERCOOLER - STAGE 1 INLET (°F):	12.1 RATIN SCAC FUEL 118 192	IG STRATEGY IG LEVEL: SYSTEM: CONDITIONS:				CAT LOW	DE/AMBIENT DNTINUOUS PRESSURE D CONTROL
JACKET WATER OUTLET (°F): ASPIRATION: COOLING SYSTEM: CONTROL SYSTEM: EXHAUST MANIFOLD: COMBUSTION: NOX EMISSION LEVEL (g/bhp-hr NOx):	JW+OC+1AC, 2AC+GB FUEL ADEM4 W/ IM FUEL DRY ALTIT LOW EMISSION INLET	PRESSURE R METHANE NU LHV (Btu/scf): UDE(ft): AIR TEMPER DARD RATED	MBER: ATURE(°F):	(See note 1)		3448 br	Nat Gas 2 0-5 0 84,7 905 3400 97 np@1500rpm
SET POINT TIMING:	22 POWE	ER FACTOR: AGE(V):					0.8 4160-13800
				MAXIMUM		TING AT M	
RATING		NOTES	LOAD	RATING 100%	100%	IR TEMPEI	51%
GENSET POWER	(WITH GEARBOX, WITHOUT FAN		ekW	2414	2377	1783	1213
GENSET POWER	(WITH GEARBOX, WITHOUT FAN	(-/(-/	kVA	3018	2971	2228	1517
ENGINE POWER	(WITHOUT GEARBOX, WITHOUT FAN		bhp	3372	3320	2497	1714
INLET AIR TEMPERATURE			°F	77	97	97	97
GENERATOR EFFICIENCY		(2)	%	96.8	96_8	96.5	95.7
GENSET EFFICIENCY	(ISO 3046/1	(./(./	%	42.5	42.4	41.4	39.4
THERMAL EFFICIENCY TOTAL EFFICIENCY		(4)(6)	%	41.9	42.0	43.7	46.3
		(4)(7)	%	84.4	84_4	85.1	85.7
ENGINE D	ATA	1					
GENSET FUEL CONSUMPTION	(ISO 30/46/1	(8)	Btu/ekW-hr	8033	8043	8236	8665
GENSET FUEL CONSUMPTION	INOMINAL	(8)	Btu/ekW-hr	8310	8321	8520	8964
ENGINE FUEL CONSUMPTION AIR FLOW (@inlet air temp, 14.7 psia)	(NOMINAL (WET	(8)	Btu/bhp-hr	5950	5957	6083	6347
AIR FLOW (Winter an temp, 14.7 psia)	WET	(9) (9)	ft3/min lb/hr	6523 28923	6659 28467	4959 21197	3400 14532
FUEL FLOW (60°F, 14.7 psia)		(3)	scfm	369	364	280	200
INLET MANIFOLD PRESSURE		(10)	in Hg(abs)	139.4	137.3	103_1	71_8
EXHAUST TEMPERATURE - ENGINE OUTLE	Г	(11)	°F	736	740	800	902
EXHAUST GAS FLOW (@engine outlet temp, 1	4.5 (WET	(12)	ft3/min	15617	15416	12074	8973
psia)	WET	(10)		00005	00.405	04000	15004
EXHAUST GAS MASS FLOW	(we)	(12)	lb/hr in H2O	29935 14.08	29465 13.81	21963 9.78	15081 7 25
MAX EXHAUST RESTRICTION		(13)	in H2O	19.31	18.79	10.67	5.25
2				10101	10110	10.01	0.20
EMISSIONS DATA -	ENGINE OUT	(4.4)(4.5)		0.50	0.50	0.50	0.50
NOx (as NO2) CO		(14)(15) (14)(15)	g/bhp-hr g/bhp-hr	0.50	0.50 1.88	0.50	0.50
THC (mol. wt. of 15.84)		(14)(15)	g/bhp-hr	3 23	3.23	3.10	2.81
NMHC (mol. wt. of 15 84)		(14)(15)	g/bhp-hr	0.48	0.48	0.47	0.42
NMNEHC (VOCs) (mol. wt. of 15.84)		(14)(15)(16)	g/bhp-hr	0.39	0.39	0.37	0.34
HCHO (Formaldehyde)		(14)(15)	g/bhp-hr	0.26	0.26	0.25	0.24
CO2		(14)(15)	g/bhp-hr	416	417	425	441
EXHAUST OXYGEN		(14)(17)	% DRY	9.9	9.9	9.6	9.1
HEAT REJEC	CTION	1					
LHV INPUT		(18)	Btu/min	334354	329631	253148	181284
HEAT REJ. TO JACKET WATER (JW)		(19)	Btu/min	36555	36328	31335	25731
HEAT REJ TO ATMOSPHERE	(INCLUDES GENERATOR	(,	Btu/min	9213	9115	7544	6296
HEAT REJ. TO LUBE OIL (OC)		(19)	Btu/min	10542	10480	9402	8143
HEAT REJECTION TO EXHAUST (LHV TO 24) HEAT REJ TO A/C - STAGE 1 (1AC)	3 ⁻ F)	(19)	Btu/min	64185	63689	54198	43947
HEAT REJ TO A/C - STAGE 2 (2AC)		(19)(21) (19)(21)	Btu/min Btu/min	26561 19716	25742 19272	14223 12737	5537 7316
HEAT REJECTION FROM GEARBOX (GB)		(19)	Btu/min	1130	1112	836	574
PUMP POWER		(20)	Btu/min	859	859	859	859
		1					
		(00)	Distanta	0.4554	07000	ř.	
TOTAL JACKET WATER CIRCUIT (JW+0C+1, TOTAL STAGE 2 AFTERCOOLER CIRCUIT (2		(22) (22)	Btu/min Btu/min	84554 23609	87900 25089		
HEAT REJECTION TO EXHAUST (LHV TO 24)		(22)	Btu/min Btu/min	70603	70058		
A cooling system safety factor of 0% has been a			erennin	1.0000	10000		
		1					
		(00)	D: 1 :	0000-	0756	ř	
TOTAL JACKET WATER CIRCUIT (JW+OC+1, TOTAL STAGE 2 AFTERCOOLER CIRCUIT (2		(23)	Btu/min Btu/min	66565	65534		
HEAT REJECTION TO EXHAUST(LHV TO 248		(23)	Btu/min Btu/min	19803 54700	19365 50042		
Line in Research of the Extrador Env TO 240		[20]		001700	00042		


CONDITIONS AND DEFINITIONS Engine rating obtained and presented in accordance with ISO 3046/1, adjusted for fuel, site altitude and site inlet air temperature. 100% rating at maximum inlet air temperature is the maximum engine capability for the specified fuel at site altitude and maximum site inlet air temperature Maximum rating is the maximum capability at the specified aftercooler inlet temperature for the specified fuel at site altitude and reduced inlet air temperature. Lowest load point is the lowest continuous duty operating load allowed. No overload permitted at rating shown.

GAS ENGINE SITE SPECIFIC TECHNICAL DATA EPIC

Engine Power vs. Inlet Air Temperature

Data represents temperature sweep at 3400 ft and 1500 rpm

G3520H

GENSET - WITHOUT RADIATOR

GAS ENGINE SITE SPECIFIC TECHNICAL DATA EPIC

NOTES

1. Fuel pressure range specified is to the engine fuel control valve. Additional fuel train components should be considered in pressure and flow calculations

2 Generator efficiencies, power factor, and voltage are based on specified generator. [Genset Power (ekW) is calculated as: (Engine Power (bkW) - Gearbox Power (bkW)) x Generator Efficiency], [Genset Power (kVA) is calculated as: (Engine Power (bkW) - Gearbox Power (bkW)) x Generator Efficiency / Power Factor]

3 Rating is with two engine driven water pumps. Tolerance is (+)3, (-)0% of full load. All derates are applied without pumps , then pump power is subtracted to obtain final rating.

4 Efficiency represents a Closed Crankcase Ventilation (CCV) system installed on the engine

5. Genset Efficciency published in accordance with ISO 3046/1.

6. Thermal Efficiency is calculated based on energy recovery from the jacket water, lube oil, 1st stage aftercooler, and exhaust to 248°F with engine operation at ISO 3046/1 Genset Efficiency, and assumes unburned fuel is converted in an oxidation catalyst.

7 Total efficiency is calculated as: Genset Efficiency + Thermal Efficiency. Tolerance is ±10% of full load data.

8 ISO 3046/1 Genset fuel consumption tolerance is (+)5, (-)0% at the specified power factor. Nominal genset and engine fuel consumption tolerance is ± 1.5% of full load data at the specified power factor.

9. Air flow value is on a 'wet' basis. Flow is a nominal value with a tolerance of ± 5 %.

10 Inlet manifold pressure is a nominal value with a tolerance of ± 5 %.

11. Exhaust temperature is a nominal value with a tolerance of (+)63°F, (-)54°F=

12 Exhaust flow value is on a "wet" basis. Flow is a nominal value with a tolerance of ± 6 %.

13. Inlet and Exhaust Restrictions are maximum allowed values at the corresponding loads. Increasing restrictions beyond what is specified will result in a significant engine derate.

14. Emissions data is at engine exhaust flange prior to any after treatment.

15. NOx tolerance's are ± 18% of specified value. All other emission values listed are higher than nominal levels to allow for instrumentation, measurement, and engineto-engine variations. They indicate the maximum values expected under steady state conditions. Fuel methane number cannot vary more than ± 3. THC, NMHC, and NMNEHC do not include aldehydes

16. VOCs - Volatile organic compounds as defined in US EPA 40 CFR 60, subpart JJJJ

17 Exhaust Oxygen level is the result of adjusting the engine to operate at the specified NOx level. Tolerance is ± 0.5.

18_ LHV rate tolerance is ± 1.5%

19. Heat rejection values are representative of site conditions. Tolerances, based on treated water, are ± 10% for jacket water circuit, ± 50% for atmosphere, ± 20% for lube oil circuit, ± 10% for exhaust, ± 5% for aftercooler circuit, and ± 5% for Gearbox.

20, Pump power includes engine driven jacket water and aftercooler water pumps. Engine brake power includes effects of pump power.

21. Aftercooler heat rejection is nominal for site conditions and does not include an aftercooler heat rejection factor. Aftercooler heat rejection values at part load are for reference only.

22. Cooling system sizing criteria represent the expected maximum circuit heat rejection for the ratings at site, with applied plus tolerances. Total circuit heat rejection is calculated using formulas referenced in the notes on the standard tech data sheet with the following qualifications. Aftercooler heat rejection data (1AC & 2AC) is based on the standard rating, Jacket Water (JW), Oil Cooler (OC), and Gearbox (GB) heat rejection values are based on the respective site or maximum column. Aftercooler heat rejection factors (ACHRF) are specific for the site elevation and inlet air temperature specified in the site or maximum column, referenced from the table on the standard data sheet

23. Minimum heat recovery values represent the expected minimum heat recovery for the site, with applied minus tolerances. Do not use these values for cooling system sizing.

Constituent	Abbrev	Mole %	Norm		
Vater Vapor	H2O	0.0000	0.0000		
Methane	CH4	92.2700	92.2700	Fuel Makeup:	Nat Gas
Ethane	C2H6	2.5000	2.5000	Unit of Measure:	English
Propane	C3H8	0.5000	0.5000		
Isobutane	iso-C4H1O	0.0000	0.0000	Calculated Fuel Properties	
Norbutane	nor-C4H1O	0.2000	0.2000	Caterpillar Methane Number:	84.7
Isopentane	iso-C5H12	0.0000	0.0000	Caterpillar Methane Number.	04.7
Norpentane	nor-C5H12	0.1000	0.1000		
Hexane	C6H14	0.0500	0.0500	Lower Heating Value (Btu/scf):	905
Heptane	C7H16	0.0000	0.0000	Higher Heating Value (Btu/scf)	1004
Nitrogen	N2	3_4800	3.4800	WOBBE Index (Btu/scf):	1168
Carbon Dioxide	CO2	0.9000	0.9000		
Hydrogen Sulfide	H2S	0.0000	0.0000	THC: Free Inert Ratio:	21.83
Carbon Monoxide	CO	0.0000	0.0000		4.38%
Hydrogen	H2	0.0000	0.0000	Total % Inerts (% N2, CO2, He):	
Oxygen	02	0.0000	0.0000	RPC (%) (To 905 Btu/scf Fuel):	100%
Helium	HE	0.0000	0.0000		
Neopentane	neo-C5H12	0.0000	0.0000	Compressibility Factor:	0.998
Octane	C8H18	0.0000	0.0000	Stoich A/F Ratio (Vol/Vol):	9.45
Nonane	C9H20	0.0000	0.0000	Stoich A/F Ratio (Mass/Mass):	15.75
Ethylene	C2H4	0.0000	0.0000	Specific Gravity (Relative to Air):	0.600
Propylene	C3H6	0.0000	0.0000		
TOTAL (Volume %)		100.0000	100.0000	Fuel Specific Heat Ratio (K):	1.313

CONDITIONS AND DEFINITIONS Caterpillar Methane Number represents the knock resistance of a gaseous fuel. It should be used with the Caterpillar Fuel Usage Guide for the engine and rating to determine the rating for the fuel specified. A Fuel Usage Guide for each rating is included on page 2 of its standard technical data sheet.

RPC always applies to naturally aspirated (NA) engines, and turbocharged (TA or LE) engines only when they are derated for altitude and ambient site conditions.

Project specific technical data sheets generated by the Caterpillar Gas Engine Rating Pro program take the Caterpillar Methane Number and RPC into account when generating a site rating.

Fuel properties for Btu/scf calculations are at 60F and 14 696 psia

Caterpillar shall have no liability in law or equity, for damages, consequently or otherwise, arising from use of program and related material or any part thereof

FUEL LIQUIDS

Field gases, well head gases, and associated gases typically contain liquid water and heavy hydrocarbons entrained in the gas. To prevent detonation and severe damage to the engine, hydrocarbon liquids must not be allowed to enter the engine fuel system. To remove liquids, a liquid separator and coalescing filter are recommended, with an automatic drain and collection tank to prevent contamination of the ground in accordance with local codes and standards.

To avoid water condensation in the engine or fuel lines, limit the relative humidity of water in the fuel to 80% at the minimum fuel operating temperature.

For flares subject to Chapter 115, Subchapter H, relating to highly reactive volatile organic compounds, flow rate and composition data required by 30 TAC 115.725–26 should be used to determine emissions for any portions of 2009 that HRVOC monitors were installed and operational.

In the absence of monitoring data, selection of the most accurate method may sometimes require exercising scientific judgment. For example, when using the results of a one-time performance test, the test conditions should be compared to the flare's actual operating conditions during the inventory year to determine whether the test accurately represents the flare's performance. If test conditions do not accurately model flare operation, then engineering determinations based on detailed process evaluation may provide the best data.

NO_x and CO Emissions

To calculate NO_x and CO emissions, the net heating value of the flared gas must be known. Using the actual short-term flared gas composition and flow rate data for the inventory year, calculate the net heating value of the flared gas and the total heat release for each short time period. Use these total heat release data, in conjunction with the appropriate emission factors from TCEQ Air Permits guidance, to determine NO_x and CO emissions for each time segment. Since the calculated net heating value of the gas and the assist gas type will determine the appropriate emission factors, carefully select the correct factors for each flare from Table A-6.

Calculate emissions using the most accurate data for the gas flow rate and composition available. (See "Flared Gas Flow Rate and Composition" earlier in this supplement for more information on preferred data.)

Contaminant	Assist Type	Waste Gas Stream Net Heating Value ^{<i>a,b</i>}	Emission Factor
NO _x	Steam	High Btu	0.0485 lb/MMBtu
		Low Btu	0.068 lb/MMBtu
	Air or	High Btu	0.138 lb/MMBtu
	Unassisted	Low Btu	0.0641 lb/MMBtu
СО	Steam	High Btu	0.3503 lb/MMBtu
		Low Btu	0.3465 lb/MMBtu
	Air or	High Btu	0.2755 lb/MMBtu
	Unassisted	Low Btu	0.5496 lb/MMBtu

Table A-6. TCEQ Air Permits Flare Emission Factors

^{*a*} High Btu: > 1000 Btu/scf

^b Low Btu: 192–1000 Btu/scf

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO ₂ ^d	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASESFROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

- ^b Based on approximately 100% conversion of fuel carbon to CO₂. CO₂[lb/10⁶ scf] = (3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, 4.2×10^4 lb/10⁶ scf.
- ^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM_{10} , $PM_{2.5}$ or PM_1 emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO_2 . Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO_2 emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO_2 emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
205-82-3	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	Е
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
74-98-6	Propane	1.6E+00	Е
129-00-0	Pyrene ^{b, c}	5.0E-06	Е
108-88-3	Toluene ^b	3.4E-03	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
7440-38-2	Arsenic ^b	2.0E-04	Е
7440-39-3	Barium	4.4E-03	D
7440-41-7	Beryllium ^b	<1.2E-05	Е
7440-43-9	Cadmium ^b	1.1E-03	D
7440-47-3	Chromium ^b	1.4E-03	D
7440-48-4	Cobalt ^b	8.4E-05	D
7440-50-8	Copper	8.5E-04	С
7439-96-5	Manganese ^b	3.8E-04	D
7439-97-6	Mercury ^b	2.6E-04	D
7439-98-7	Molybdenum	1.1E-03	D
7440-02-0	Nickel ^b	2.1E-03	С
7782-49-2	Selenium ^b	<2.4E-05	Е
7440-62-2	Vanadium	2.3E-03	D
7440-66-6	Zinc	2.9E-02	Е

TABLE 1.4-4. EMISSION FACTORS FOR METALS FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. Emission factors preceeded by a less-than symbol are based on method detection limits. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by l6. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020.
^b Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

Emission Factors ^b - Uncontrolled				
Pollutant	Emission Factor (lb/MMBtu) ^c	Emission Factor Rating		
1,3-Butadiene ^d	< 4.3 E-07	D		
Acetaldehyde	4.0 E-05	С		
Acrolein	6.4 E-06	С		
Benzene ^e	1.2 E-05	А		
Ethylbenzene	3.2 E-05	С		
Formaldehyde ^f	7.1 E-04	А		
Naphthalene	1.3 E-06	С		
РАН	2.2 E-06	С		
Propylene Oxide ^d	< 2.9 E-05	D		
Toluene	1.3 E-04	С		
Xylenes	6.4 E-05	С		

Table 3.1-3. EMISSION FACTORS FOR HAZARDOUS AIR POLLUTANTSFROM NATURAL GAS-FIRED STATIONARY GAS TURBINES^a

^a SCC for natural gas-fired turbines include 2-01-002-01, 2-02-002-01, 2-02-002-03, 2-03-002-02, and 2-03-002-03. Hazardous Air Pollutants as defined in Section 112 (b) of the *Clean Air Act*.

^b Factors are derived from units operating at high loads (≥80 percent load) only. For information on units operating at other loads, consult the background report for this chapter (Reference 16), available at "www.epa.gov/ttn/chief".

^c Emission factors based on an average natural gas heating value (HHV) of 1020 Btu/scf at 60°F. To convert from (lb/MMBtu) to (lb/10⁶ scf), multiply by 1020. These emission factors can be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this heating value.

^d Compound was not detected. The presented emission value is based on one-half of the detection limit.

^e Benzene with SCONOX catalyst is 9.1 E-07, rating of D.

^f Formaldehyde with SCONOX catalyst is 2.0 E-05, rating of D.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

- $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded
- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
- T = temperature of bulk liquid loaded, $^{\circ}$ R ($^{\circ}$ F + 460)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Criteria Pollutants and Greenhouse	e Gases	
NO _x ^c 90 - 105% Load	4.08 E+00	В
$NO_x^{c} < 90\%$ Load	8.47 E-01	В
CO ^c 90 - 105% Load	3.17 E-01	С
CO ^c <90% Load	5.57 E-01	В
CO ₂ ^d	1.10 E+02	А
SO ₂ ^e	5.88 E-04	А
TOC ^f	1.47 E+00	А
Methane ^g	1.25 E+00	С
VOC ^h	1.18 E-01	С
PM10 (filterable) ⁱ	7.71 E-05	D
PM2.5 (filterable) ⁱ	7.71 E-05	D
PM Condensable ^j	9.91 E-03	D
Trace Organic Compounds		
1,1,2,2-Tetrachloroethane ^k	<4.00 E-05	Е
1,1,2-Trichloroethane ^k	<3.18 E-05	Е
1,1-Dichloroethane	<2.36 E-05	Е
1,2,3-Trimethylbenzene	2.30 E-05	D
1,2,4-Trimethylbenzene	1.43 E-05	С
1,2-Dichloroethane	<2.36 E-05	Е
1,2-Dichloropropane	<2.69 E-05	Е
1,3,5-Trimethylbenzene	3.38 E-05	D
1,3-Butadiene ^k	2.67E-04	D
1,3-Dichloropropene ^k	<2.64 E-05	Е
2-Methylnaphthalene ^k	3.32 E-05	С
2,2,4-Trimethylpentane ^k	2.50 E-04	С
Acenaphthene ^k	1.25 E-06	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINESa(SCC 2-02-002-54)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
Acenaphthylene ^k	5.53 E-06	С
Acetaldehyde ^{k,1}	8.36 E-03	А
Acrolein ^{k,1}	5.14 E-03	А
Benzene ^k	4.40 E-04	А
Benzo(b)fluoranthene ^k	1.66 E-07	D
Benzo(e)pyrene ^k	4.15 E-07	D
Benzo(g,h,i)perylene ^k	4.14 E-07	D
Biphenyl ^k	2.12 E-04	D
Butane	5.41 E-04	D
Butyr/Isobutyraldehyde	1.01 E-04	С
Carbon Tetrachloride ^k	<3.67 E-05	Е
Chlorobenzene ^k	<3.04 E-05	Е
Chloroethane	1.87 E-06	D
Chloroform ^k	<2.85 E-05	Е
Chrysene ^k	6.93 E-07	С
Cyclopentane	2.27 E-04	С
Ethane	1.05 E-01	С
Ethylbenzene ^k	3.97 E-05	В
Ethylene Dibromide ^k	<4.43 E-05	Е
Fluoranthene ^k	1.11 E-06	С
Fluorene ^k	5.67 E-06	С
Formaldehyde ^{k,1}	5.28 E-02	А
Methanol ^k	2.50 E-03	В
Methylcyclohexane	1.23 E-03	С
Methylene Chloride ^k	2.00 E-05	С
n-Hexane ^k	1.11 E-03	С
n-Nonane	1.10 E-04	С

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN ENGINES (Continued)

Pollutant	Emission Factor (lb/MMBtu) ^b (fuel input)	Emission Factor Rating
n-Octane	3.51 E-04	С
n-Pentane	2.60 E-03	С
Naphthalene ^k	7.44 E-05	С
PAH ^k	2.69 E-05	D
Phenanthrene ^k	1.04 E-05	D
Phenol ^k	2.40 E-05	D
Propane	4.19 E-02	С
Pyrene ^k	1.36 E-06	С
Styrene ^k	<2.36 E-05	Е
Tetrachloroethane ^k	2.48 E-06	D
Toluene ^k	4.08 E-04	В
Vinyl Chloride ^k	1.49 E-05	С
Xylene ^k	1.84 E-04	В

Table 3.2-2. UNCONTROLLED EMISSION FACTORS FOR 4-STROKE LEAN-BURN **ENGINES** (Continued)

^a Reference 7. Factors represent uncontrolled levels. For NO_x , CO, and PM10, "uncontrolled" means no combustion or add-on controls; however, the factor may include turbocharged units. For all other pollutants, "uncontrolled" means no oxidation control; the data set may include units with control techniques used for NOx control, such as PCC and SCR for lean burn engines, and PSC for rich burn engines. Factors are based on large population of engines. Factors are for engines at all loads, except as indicated. SCC = Source Classification Code. TOC = Total Organic Compounds. PM-10 = Particulate Matter ≤ 10 microns (μ m) aerodynamic diameter. A "<" sign in front of a factor means that the corresponding emission factor is based on one-half of the method detection limit. ^b Emission factors were calculated in units of (lb/MMBtu) based on procedures in EPA Method 19. To convert from (lb/MMBtu) to (lb/ 10^6 scf), multiply by the heat content of the fuel. If the heat content is not available, use 1020 Btu/scf. To convert from (lb/MMBtu) to (lb/hp-hr) use the following equation:

lb/hp-hr = (lb/MMBtu) (heat input, MMBtu/hr) (1/operating HP, 1/hp)

- ^d Based on 99.5% conversion of the fuel carbon to CO_2 . CO_2 [lb/MMBtu] = (3.67)(%CON)(C)(D)(1/h), where %CON = percent conversion of fuel carbon to CO_2 ,

C = carbon content of fuel by weight (0.75), D = density of fuel, 4.1 E+04 $lb/10^6$ scf, and

^c Emission tests with unreported load conditions were not included in the data set.

ELECTRONIC CODE OF FEDERAL REGULATIONS

e-CFR data is current as of August 23, 2017

Title 40 \rightarrow Chapter I \rightarrow Subchapter C \rightarrow Part 98 \rightarrow Subpart C \rightarrow Appendix

Title 40: Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING Subpart C—General Stationary Fuel Combustion Sources

TABLE C-1 TO SUBPART C OF PART 98-DEFAULT CO2 EMISSION FACTORS AND HIGH HEAT VALUES FOR VARIOUS TYPES OF FUEL

Link to an amendment published at 81 FR 89252, Dec. 9, 2016.

Default CO_2 Emission Factors and High Heat Values for Various Types of Fuel

Fuel type	Default high heat value	Default CO ₂ emission factor
Coal and coke	mmBtu/short ton	kg CO ₂ /mmBti
Anthracite	25.09	103.69
Bituminous	23.09	93.2
Subbituminous	17.25	97.1
Lignite	14.21	97.72
Coal Coke	24.80	113.6
Mixed (Commercial sector)	21.39	94.27
Mixed (Industrial coking)	26.28	93.90
Mixed (Industrial sector)	22.35	94.6
Mixed (Electric Power sector)	19.73	95.52
Natural gas	mmBtu/scf	kg CO ₂ /mmBti
(Weighted U.S. Average)	1.026 × 10 ⁻³	53.00
Petroleum products	mmBtu/gallon	kg CO ₂ /mmBtu
Distillate Fuel Oil No. 1	0.139	73.25
Distillate Fuel Oil No. 2	0.138	73.96
Distillate Fuel Oil No. 4	0.146	75.04
Residual Fuel Oil No. 5	0.140	72.93
Residual Fuel Oil No. 6	0.150	75.10
Used Oil	0.138	74.00
Kerosene	0.135	75.20
Liquefied petroleum gases (LPG) ¹		
Propane ¹	0.091	62.87
Propylene ²	0.091	67.77
Ethane ¹	0.068	59.60
Ethanol	0.084	68.44
Ethylene ²	0.058	65.96
Isobutane ¹	0.099	64.94
Isobutylene ¹	0.103	68.86
•	0.103	64.77
Butane ¹		
Butylene ¹	0.105	68.72
Naphtha (<401 deg F)	0.125	68.02
Natural Gasoline	0.110	66.88
Other Oil (>401 deg F)	0.139	76.22
Pentanes Plus	0.110	70.02
Petrochemical Feedstocks	0.125	71.02
Petroleum Coke	0.143	102.41
Special Naphtha	0.125	72.34
Unfinished Oils	0.139	74.54
Heavy Gas Oils	0.148	74.92
Lubricants	0.144	74.27
Motor Gasoline	0.125	70.22
Aviation Gasoline	0.120	69.25
Kerosene-Type Jet Fuel	0.135	72.22
Asphalt and Road Oil Crude Oil	0.158 0.138	75.36
Other fuels—solid	mmBtu/short ton	
		kg CO ₂ /mmBtu
Municipal Solid Waste	9.95 ³	90.7
Tires	28.00	85.9
Plastics	38.00	75.00

eCFR — Code of Federal Regulations

Petroleum Coke	30.00	102.41
Other fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Blast Furnace Gas	0.092 × 10 ⁻³	274.32
Coke Oven Gas	0.599 × 10 ⁻³	46.85
Propane Gas	2.516 × 10 ⁻³	61.46
Fuel Gas ⁴	1.388 × 10 ⁻³	59.00
Biomass fuels—solid	mmBtu/short ton	kg CO ₂ /mmBtu
Wood and Wood Residuals (dry basis) ⁵	17.48	93.80
Agricultural Byproducts	8.25	118.17
Peat	8.00	111.84
Solid Byproducts	10.39	105.51
Biomass fuels—gaseous	mmBtu/scf	kg CO ₂ /mmBtu
Landfill Gas	0.485 × 10 ⁻³	52.07
Other Biomass Gases	0.655 × 10 ⁻³	52.07
Biomass Fuels—Liquid	mmBtu/gallon	kg CO ₂ /mmBtu
Ethanol	0.084	68.44
Biodiesel (100%)	0.128	73.84
Rendered Animal Fat	0.125	71.06
Vegetable Oil	0.120	81.55

¹The HHV for components of LPG determined at 60 °F and saturation pressure with the exception of ethylene.

 $^2 Ethylene \; HHV$ determined at 41 °F (5 °C) and saturation pressure.

³Use of this default HHV is allowed only for: (a) Units that combust MSW, do not generate steam, and are allowed to use Tier 1; (b) units that derive no more than 10 percent of their annual heat input from MSW and/or tires; and (c) small batch incinerators that combust no more than 1,000 tons of MSW per year.

⁴Reporters subject to subpart X of this part that are complying with 98.243(d) or subpart Y of this part may only use the default HHV and the default CO₂ emission factor for fuel gas combustion under the conditions prescribed in 98.243(d)(2)(i) and (d)(2)(ii) and 98.252(a)(1) and (a)(2), respectively. Otherwise, reporters subject to subpart X or subpart Y shall use either Tier 3 (Equation C-5) or Tier 4.

⁵Use the following formula to calculate a wet basis HHV for use in Equation C-1: HHV_w = ((100 – M)/100)*HHV_d where HHV_w = wet basis HHV, M = moisture content (percent) and HHV_d = dry basis HHV from Table C-1.

[78 FR 71950, Nov. 29, 2013]

Need assistance?

ELECTRONIC CODE OF FEDERAL REGULATIONS

e-CFR data is current as of August 23, 2017

Title 40 \rightarrow Chapter I \rightarrow Subchapter C \rightarrow Part 98 \rightarrow Subpart C \rightarrow Appendix

Title 40: Protection of Environment PART 98—MANDATORY GREENHOUSE GAS REPORTING Subpart C—General Stationary Fuel Combustion Sources

TABLE C-2 TO SUBPART C OF PART 98—DEFAULT CH4 AND N2O EMISSION FACTORS FOR VARIOUS TYPES OF FUEL

Link to an amendment published at 81 FR 89252, Dec. 9, 2016.

Fuel type	Default CH₄ emission factor (kg CH₄/mmBtu)	Default N ₂ O emission factor (kg N ₂ O/mmBtu)
Coal and Coke (All fuel types in Table C-1)	1.1 × 10 ⁻⁰²	1.6 × 10 ⁻⁰³
Natural Gas	1.0×10^{-03}	1.0 × 10 ⁻⁰⁴
Petroleum (All fuel types in Table C-1)	3.0 × 10 ⁻⁰³	6.0×10^{-04}
Fuel Gas	3.0×10^{-03}	6.0 × 10 ⁻⁰⁴
Municipal Solid Waste	3.2 × 10 ⁻⁰²	4.2 × 10 ⁻⁰³
Tires	3.2×10^{-02}	4.2×10^{-03}
Blast Furnace Gas	2.2 × 10 ⁻⁰⁵	1.0 × 10 ⁻⁰⁴
Coke Oven Gas	4.8×10^{-04}	1.0×10^{-04}
Biomass Fuels—Solid (All fuel types in Table C-1, except wood and wood residuals)	3.2×10^{-02}	4.2 × 10 ⁻⁰³
Wood and wood residuals	7.2 × 10 ⁻⁰³	3.6 × 10 ⁻⁰³
Biomass Fuels—Gaseous (All fuel types in Table C-1)	3.2 × 10 ⁻⁰³	6.3 × 10 ⁻⁰⁴
Biomass Fuels—Liquid (All fuel types in Table C-1)	1.1 × 10 ⁻⁰³	1.1 × 10 ⁻⁰⁴

Note: Those employing this table are assumed to fall under the IPCC definitions of the "Energy Industry" or "Manufacturing Industries and Construction". In all fuels except for coal the values for these two categories are identical. For coal combustion, those who fall within the IPCC "Energy Industry" category may employ a value of 1g of CH₄/mmBtu.

[78 FR 71952, Nov. 29, 2013]

Need assistance?

Table II: Facility/Compound Specific Fugitive Emission Factors

Equipment/Service Compound Specific See Section I for more information		Facility Specific ¹							
	Oxide ² w/LDAR Ma w/LDAR Ter		Petroleum Marketing Terminal ^{5, 6} w/28PET	Oil and Gas ProductionOperation ⁶				Refinery 6	
					Gas	Heavy Oil < 20 API	Light Oil	Water/ Light Oil	
Valves					0.00992	0.0000185	0.0055	0.000216	
Gas/Vapor	0.000444	0.00000216	0.001105	0.0000287					0.059
Light Liquid	0.00055	0.00000199	0.00314	0.0000948					0.024
Heavy Liquid				0.0000948					0.00051
Pumps	0.042651	0.0000201	0.05634		0.00529	0.00113 ⁷	0.02866	0.000052	
Light Liquid				0.00119					0.251
Heavy Liquid				0.00119					0.046
Flanges/Connectors ¹¹	0.000555	0.00000011	0.000307		0.00086	0.0000086	0.000243	0.000006	0.00055
					0.00044	0.0000165	0.000463	0.000243	
Gas/Vapor				0.000092604					
Light Liquid				0.00001762					
Heavy Liquid				0.0000176					
Compressors	0.000767		0.000004		0.0194	0.0000683	0.0165	0.0309	1.399
Relief Valve	0.000165	0.0000162	0.02996		0.0194	0.0000683	0.0165	0.0309	0.35
Open-ended Lines ⁸	0.001078	0.0000007	0.00012		0.00441	0.000309	0.00309	0.00055	0.0051
Sampling [®]	0.000088		0.00012						0.033
Other ¹⁰					0.0194	0.0000683	0.0165	0.0309	
Gas/Vapor				0.000265					
Light/Heavy Liquid				0.000287					
Process Drains					0.0194	0.0000683	0.0165	0.0309	0.07

Endnotes Table II

- ¹ Factors give the total organic compound emission rate. Multiply by the weight percent of non-methane, non-ethane organics to get the VOC emission rate.
- ² These emission factors require the use of the 28MID fugitive program. Monitoring must occur at a leak definition of 500 ppmv. No additional control credit can be applied to these factors except 28CNTQ and 28CNTA. Emission factors are from EOIC Fugitive Emission Study, summer 1988.
- ³ These emission factors require the use of the 28MID fugitive program. Monitoring must occur at a leak definition of 50 ppmv. No additional control credit can be applied to these factors. Emission factors are from Phosgene Panel Study, summer 1988.
- ⁴ These emission factors require the use of the 28MID fugitive program. Monitoring must occur at a leak definition of 100 ppmv. No additional control credit can be applied to these factors. Emission factors are from Randall, J. L., et al., Radian Corporation. Fugitive Emissions from the 1,3-butadiene Production Industry: A Field Study. Final Report. Prepared for the 1,3-Butadiene Panel for the Chemical Manufacturers Association. April 1989.
- ⁵ Control credit is included in the factor; no additional control credit can be applied to these factors. Monthly 28 PET inspection is required.
- ⁶ Factors are taken from EPA Document EPA-453/R-95-017, November 1995, pages 2-13, 2-14, and 2-15.
- ⁷ Heavy liquid oil Pump factor was not derived during the API study. The factor is the SOCMI without C₂ Heavy Liquid – Pump factor with a 93% reduction credit for the physical inspection.

Table III: Leak Detection and Repair (LDAR) Program Instrument Monitoring Options

LDAR Program	28M	28RCT	28VHP	28MID	28LAER	28CNTQ	28CNTA
Leak Definition for Pumps and Compressors	10,000 ppmv	10,000 ppmv	2,000 ppmv	500 ppmv	500 ppmv	N/A	N/A
Leak Definition for All Other Components	10,000 ppmv	500 ppmv	500 ppmv	500 ppmv	500 ppmv	500 ppmv	500 ppmv
Applicable Vapor Pressure	>0.5 psia at 100°F	>0.044 psia at 68°F	>0.044 psia at 68°F	>0.044 psia at 68°F	>0.044 psia at 68°F	>0.044 psia at 68°F	>0.044 psia at 68°F
Monitoring Frequency	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Annually
Directed/Nondirected Maintenance	Nondirected	Nondirected	Nondirected	Directed	Directed	Nondirected	Nondirected
Most Common State/Federal Programs with Similar Requirements	40 CFR Part 60 Subpart VV 40 CFR Part 61 30 TAC §115.322	30 TAC §115.352 ¹	40 CFR Part 60 Subpart VVa 40 CFR Part 63 Subparts H, CC	N/A	Nonattainment NSR	N/A	40 CFR Part 60Subpart VVa, 40 CFR Part 63 Subparts H, CC

Endnotes Table III

¹ Except in Gregg, Nueces, and Victoria Counties where 28M applies.

Equipment/Service	28M	28RCT	28VHP	28MID	28LAER	28CNTQ	28CNTA	28PI	28AVO ⁹
Valves ¹									97%
Gas/Vapor	75%	97%	97%	97%	97%			30%	
Light Liquid	75%	97%	97%	97%	97%			30%	
Heavy Liquid⁵	0% ⁶	0% ⁶	0% ⁶	0% ⁶	30% ^{6, 8}			30% ⁸	
Pumps ¹									93%
Light Liquid	75%	75%	85%	93%	93%			30%	
Heavy Liquid⁵	0%	0%7	0%7	0% ^{8, 10}	30% ⁸			30% ⁸	
Flanges/Connectors ¹	30%	30%	30%	30%				30%	97%
Gas/Vapor					97%	97%	75%		
Light Liquid					97%	97%	75%		
Heavy Liquid ⁸					30%	30%	30%		
Compressors ¹	75%	75%	85%	95%	95%			30%	95%
Relief Valves^{1, 2} (Gas/Vapor)	75%	97%	97%	97%	97%			30%	97%
Sampling Connection ³ (pounds per hour per sample taken)	0%	0%	0%	0%	0%			0%	0%
Open Ended Lines ^{1, 4}									

Table V: Control Efficiencies for LDAR

It should be noted in the application and added to the permit conditions if any of the footnotes are applicable. For example, if components in heavy liquid service are monitored, then the application should include the monitored concentration and the concentration of saturation, in ppmv and such monitoring will be added as a separate condition.

Endnotes Table V

- ¹ Control efficiencies apply only to components that are actually monitored. Control efficiencies do not apply to components that are difficult or unsafe-to-monitor on the standard schedule. However, difficult-to-monitor gas or light liquid valves under the 28RCT, 28VHP, 28MID, or 28LAER programs that are monitored once per year may apply a 75% reduction credit.
- ² 100% control may be taken if a relief valve vents to an operating control device or if it is equipped with a rupture disc and a pressure-sensing device between the valve and disc to monitor for disc integrity. For new facilities, BACT guidelines generally require that all relief valves vent to a control device. When there are safety reasons that the relief valve cannot achieve 100% control, the relief valve can be monitored under the LDAR programs for the credit listed. This monitoring must be performed regardless of whether the relief valve is considered accessible, difficult-to-monitor or unsafe-to-monitor. Relief valves that do not achieve 100% control should not be built in locations that are unsafe-to-monitor.
- ³ Sampling connection control efficiencies are covered under other equipment and services. Sampling emissions are based on the number of samples taken per year as opposed to the number of connections. Fugitives for a closed loop sampling system are based on the component count.
- ⁴ Good design criteria for special chemicals handling and most LDAR programs require open-ended lines to be equipped with an appropriately sized cap, blind flange, plug, or a second valve. If so equipped, open-ended lines may be given a 100% control credit. Regardless of the lines given 100% credit, these lines should be mentioned in permit applications. Exceptions to the LDAR program criteria may be made for safety reasons with the approval of TCEQ management.

	Control effectiveness (%)					
Equipment type and service	Monthly monitoring 10,000 ppmv leak definition	Quarterly monitoring 10,000 ppmv leak definition	HON reg neg ^a			
Valves - gas	87	67	92			
Valves - light liquid	84	61	88			
Pumps - light liquid	69	45	75			
Connectors - all	b	b	93			

TABLE 5-2. CONTROL EFFECTIVENESS FOR AN LDAR PROGRAM AT A SOCMI PROCESS UNIT

^a Control effectiveness attributable to the requirements of the proposed hazardous organic NESHAP equipment leak negotiated regulation are estimated based on equipment-specific leak definitions and performance levels.

ω 1

^b Data are not available to estimate control effectiveness.

9

	Road Use Or	Plant	No. Of	Silt Conte	ent (%)
Industry	Surface Material	Sites	Samples	Range	Mean
Copper smelting	Plant road	1	3	16 - 19	17
Iron and steel production	Plant road	19	135	0.2 - 19	6.0
Sand and gravel processing	Plant road	1	3	4.1 - 6.0	4.8
	Material storage area	1	1	-	7.1
Stone quarrying and processing	Plant road	2	10	2.4 - 16	10
	Haul road to/from pit	4	20	5.0-15	8.3
Taconite mining and processing	Service road	1	8	2.4 - 7.1	4.3
	Haul road to/from pit	1	12	3.9 - 9.7	5.8
Western surface coal mining	Haul road to/from pit	3	21	2.8 - 18	8.4
	Plant road	2	2	4.9 - 5.3	5.1
	Scraper route	3	10	7.2 - 25	17
	Haul road (freshly graded)	2	5	18 - 29	24
Construction sites	Scraper routes	7	20	0.56-23	8.5
Lumber sawmills	Log yards	2	2	4.8-12	8.4
Municipal solid waste landfills	Disposal routes	4	20	2.2 - 21	6.4
^a References 1,5-15.					

Table 13.2.2-1. TYPICAL SILT CONTENT VALUES OF SURFACE MATERIAL
ON INDUSTRIAL UNPAVED ROADS^a

11/06

The following empirical expressions may be used to estimate the quantity in pounds (lb) of size-specific particulate emissions from an unpaved road, per vehicle mile traveled (VMT):

For vehicles traveling on unpaved surfaces at industrial sites, emissions are estimated from the following equation:

$$E = k (s/12)^{a} (W/3)^{b}$$
(1a)

and, for vehicles traveling on publicly accessible roads, dominated by light duty vehicles, emissions may be estimated from the following:

$$E = \frac{k (s/12)^{a} (S/30)^{d}}{(M/0.5)^{c}} - C$$
(1b)

where k, a, b, c and d are empirical constants (Reference 6) given below and

- E = size-specific emission factor (lb/VMT)
- s = surface material silt content (%)
- W = mean vehicle weight (tons)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

The source characteristics s, W and M are referred to as correction parameters for adjusting the emission estimates to local conditions. The metric conversion from lb/VMT to grams (g) per vehicle kilometer traveled (VKT) is as follows:

1 lb/VMT = 281.9 g/VKT

The constants for Equations 1a and 1b based on the stated aerodynamic particle sizes are shown in Tables 13.2.2-2 and 13.2.2-4. The PM-2.5 particle size multipliers (k-factors) are taken from Reference 27.

	Industria	al Roads (Equa	ation 1a)	Public Roads (Equation 1b)		
Constant	PM-2.5	PM-10	PM-30*	PM-2.5	PM-10	PM-30*
k (lb/VMT)	0.15	1.5	4.9	0.18	1.8	6.0
а	0.9	0.9	0.7	1	1	1
b	0.45	0.45	0.45	-	-	-
с	-	-	-	0.2	0.2	0.3
d	-	-	-	0.5	0.5	0.3
Quality Rating	В	В	В	В	В	В

Table 13.2.2-2. CONSTANTS FOR EQUATIONS 1a AND 1b

*Assumed equivalent to total suspended particulate matter (TSP)

"-" = not used in the emission factor equation

Table 13.2.2-2 also contains the quality ratings for the various size-specific versions of Equation 1a and 1b. The equation retains the assigned quality rating, if applied within the ranges of source conditions, shown in Table 13.2.2-3, that were tested in developing the equation:

Table 13.2.2-3. RANGE OF SOURCE CONDITIONS USED IN DEVELOPING EQUATION 1a AND 1b

			Vehicle ight		Vehicle eed	Mean	Surface Moisture
Emission Factor	Surface Silt Content, %	Mg	ton	km/hr	mph	No. of Wheels	Content, %
Industrial Roads (Equation 1a)	1.8-25.2	1.8-260	2-290	8-69	5-43	4-17ª	0.03-13
Public Roads (Equation 1b)	1.8-35	1.4-2.7	1.5-3	16-88	10-55	4-4.8	0.03-13

^a See discussion in text.

As noted earlier, the models presented as Equations 1a and 1b were developed from tests of traffic on unpaved surfaces. Unpaved roads have a hard, generally nonporous surface that usually dries quickly after a rainfall or watering, because of traffic-enhanced natural evaporation. (Factors influencing how fast a road dries are discussed in Section 13.2.2.3, below.) The quality ratings given above pertain to the mid-range of the measured source conditions for the equation. A higher mean vehicle weight and a higher than normal traffic rate may be justified when performing a worst-case analysis of emissions from unpaved roads.

The emission factors for the exhaust, brake wear and tire wear of a 1980's vehicle fleet (C) was obtained from EPA's MOBILE6.2 model ²³. The emission factor also varies with aerodynamic size range

11/06

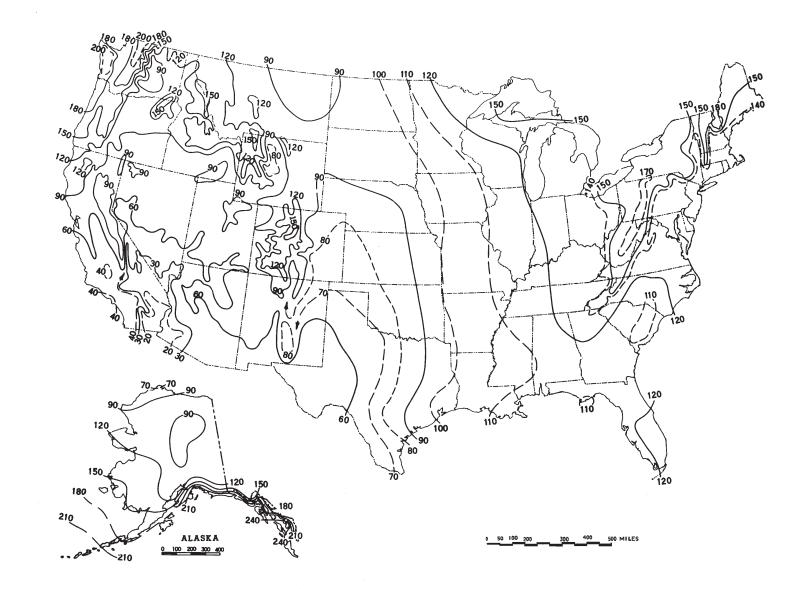
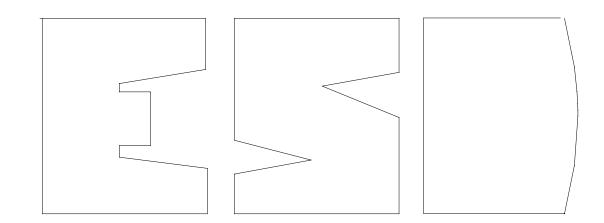


Figure 13.2.2-1. Mean number of days with 0.01 inch or more of precipitation in United States.


United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711

EPA-453/R-95-017 November 1995

Air

Protocol for Equipment Leak Emission Estimates

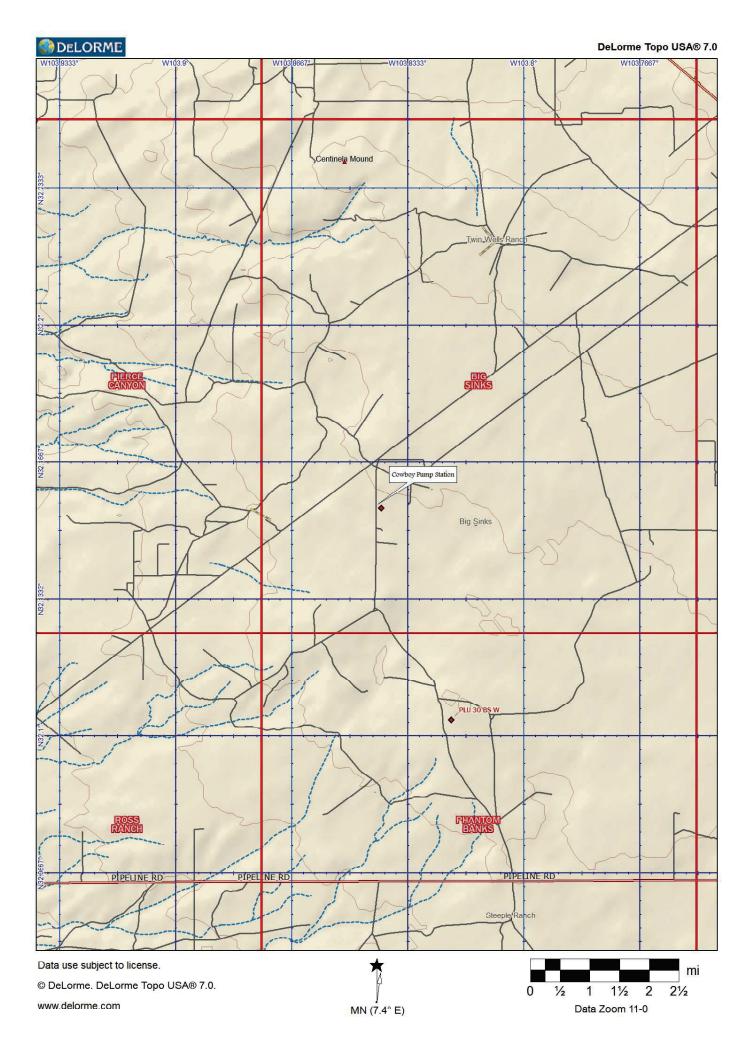
Equipment type	Service	Emission factor (kg/hr/source) ^a
Valves	Gas Light Liquid	1.3E-05 4.3E-05
Pump seals	Gas Light Liquid	6.5E-05 5.4E-04
Others (compressors and others) ^b	Gas Light Liquid	1.2E-04 1.3E-04
Fittings (connectors and flanges) ^C	Gas Light Liquid	4.2E-05 8.0E-06

TABLE 2-3. MARKETING TERMINAL AVERAGE EMISSION FACTORS

^aThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane).

^bThe "other" equipment type should be applied for any equipment type other than fittings, pumps, or valves.

C"Fittings" were not identified as flanges or non-flanged connectors; therefore, the fitting emissions were estimated by averaging the estimates from the connector and the flange correlation equations.


Section 8

Map(s)

<u>A map</u> such as a 7.5 minute topographic quadrangle showing the exact location of the source. The map shall also include the following:

The UTM or Longitudinal coordinate system on both axes	An indicator showing which direction is north
A minimum radius around the plant of 0.8km (0.5 miles)	Access and haul roads
Topographic features of the area	Facility property boundaries
The name of the map	The area which will be restricted to public access
A graphical scale	

A map is attached to this application.

Section 9

Proof of Public Notice

(for NSR applications submitting under 20.2.72 or 20.2.74 NMAC) (This proof is required by: 20.2.72.203.A.14 NMAC "Documentary Proof of applicant's public notice")

☑ I have read the AQB "Guidelines for Public Notification for Air Quality Permit Applications"

This document provides detailed instructions about public notice requirements for various permitting actions. It also provides public notice examples and certification forms. Material mistakes in the public notice will require a re-notice before issuance of the permit.

Unless otherwise allowed elsewhere in this document, the following items document proof of the applicant's Public Notification. Please include this page in your proof of public notice submittal with checkmarks indicating which documents are being submitted with the application.

New Permit and Significant Permit Revision public notices must include all items in this list.

Technical Revision public notices require only items 1, 5, 9, and 10.

Per the Guidelines for Public Notification document mentioned above, include:

- 1. A copy of the certified letter receipts with post marks (20.2.72.203.B NMAC)
- 2. ☑ A list of the places where the public notice has been posted in at least four publicly accessible and conspicuous places, including the proposed or existing facility entrance. (e.g: post office, library, grocery, etc.)
- 3. ☑ A copy of the property tax record (20.2.72.203.B NMAC).
- 4. I A sample of the letters sent to the owners of record.
- 5. 🗹 A sample of the letters sent to counties, municipalities, and Indian tribes.
- 6. 🗹 A sample of the public notice posted and a verification of the local postings.
- 7. 🗹 A table of the noticed citizens, counties, municipalities and tribes and to whom the notices were sent in each group.
- 8. 🗹 A copy of the public service announcement (PSA) sent to a local radio station and documentary proof of submittal.
- 9. ☑ A copy of the <u>classified or legal</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 10. A copy of the <u>display</u> ad including the page header (date and newspaper title) or its affidavit of publication stating the ad date, and a copy of the ad. When appropriate, this ad shall be printed in both English and Spanish.
- 11. A map with a graphic scale showing the facility boundary and the surrounding area in which owners of record were notified by mail. This is necessary for verification that the correct facility boundary was used in determining distance for notifying land owners of record.

All public notice requirements have been completed and are included in this section.

Table of Posted Notice Locations

Name	Address	City	State	Zip Code
Cowboy CDP Facility Entrance				
Carlsbad Main Post Office	301 N Canyon St	Carlsbad	NM	88220
Carlsbad Main Library	101 S Halagueno St	Carlsbad	NM	88220
Eddy County Clerk's Office	325 S Main St	Carlsbad	NM	88220

General Posting of Notices – Certification

I, <u>Carolina Kysiak</u>, the undersigned, certify that on **{12/11/2024}**, posted a true and correct copy of the attached Public Notice in the following publicly accessible and conspicuous places in the City of Carlsbad of Eddy County, State of New Mexico on the following dates:

- 1. Cowboy CDP entrance 12/11/2024
- 2. Carlsbad Main Post Office 12/11/2024
- 3. Carlsbad Main Library 12/11/2024
- 4. Eddy County Clerk's Office 12/11/2024

Signed this 11th day of December, 2024,

Contra Myske

Signature

12/11/2024

Date

Carolina Kysiak

Printed Name

Cowboy CDP Environmental Engineer

Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

December 11, 2024 at 3:29:42 PM MST +32.158827,-103.842508 ±22.22m Eddy County

NOTICE

XTO Energy Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of its facility. The expected date of application submittal to the Air Quality Bureau is December 13, 2024.

The exact location for the proposed facility known as, Cowboy Central Delivery Point (CDP), is at latitude 32.160000 and longitude -103.841667. The approximate location of this facility is 13.8 miles east-southeast of Malaga, NM in Eddy county.

The proposed modification consists of an update to the facility inlet gas, slop oil, and produced water throughputs, as well as an update to emissions from the heaters, flares, combustors, oil storage tanks, and other miscellaneous equipment.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	50	39
PM 10	48	39
PM 25	48	39
Sulfur Dioxide (SO ₂)	18	27
Nitrogen Oxides (NO _x)	724	206
Carbon Monoxide (CO)	1,417	195
Volatile Organic Compounds (VOC)	2,422	295
Total sum of all Hazardous Air Pollutants (HAPs)	105	13
Green House Gas Emissions as Total CO2e	N/A	1,030,245

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: XTO Energy Inc. 22777 Springwoods Village Pkwy Spring, TX 77389

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

December 11, 2024 at 4:33:08 PM MST +32.422664,-104.228110 ±14.45m Eddy County Post Office

NOTICE

XTO Energy Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of its facility. The expected date of application submittal to the Air Quality Bureau is December 13, 2024.

The exact location for the proposed facility known as, **Cowboy Central Delivery Point (CDP)**, is at **latitude** 32.160000 and **longitude -103.841667**. The approximate location of this facility is 13.8 miles east-southeast of Malaga, NM in Eddy county.

The proposed modification consists of an update to the facility inlet gas, slop oil, and produced water throughputs, as well as an update to emissions from the heaters, flares, combustors, oil storage tanks, and other miscellaneous equipment.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	50	39
PM 10	48	39
PM 2.5	48	39
Sulfur Dioxide (SO ₂)	18	27
Nitrogen Oxides (NOx)	724	206
Carbon Monoxide (CO)	1,417	195
Volatile Organic Compounds (VOC)	2,422	295
Total sum of all Hazardous Air Pollutants (HAPs)	105	13
Green House Gas Emissions as Total CO2e	N/A	1.030.245

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: XTO Energy Inc. 22777 Springwoods Village Pkwy Spring, TX 77389

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

and trick you into giving them your personal information and money. Don't be fooled!

Social Security will not:

December 11, 2024 at 5:43:52 PM MST +32.419934,-104.230750 ±13.40m Eddy County **Public Library** NOTICE

XTO Energy Inc. announces its application to the New Mexico Environment Department for an air quality permit for the modification of its facility. The expected date of application submittal to the Air Quality Bureau is December 13, 2024.

The exact location for the proposed facility known as, Cowboy Central Delivery Point (CDP), is at latitude 32.160000 and longitude -103.841667. The approximate location of this facility is 13.8 miles east-southeast of Malaga, NM in Eddy county.

The proposed modification consists of an update to the facility inlet gas, slop oil, and produced water throughputs, as well as an update to emissions from the heaters, flares, combustors, oil storage tanks, and other miscellaneous equipment.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	50	39
PM 10	48	39
PM 2.5	48	39
Sulfur Dioxide (SO ₂)	18	27
Nitrogen Oxides (NO _x)	724	206
Carbon Monoxide (CO)	1,417	195
Volatile Organic Compounds (VOC)	2,422	295
Total sum of all Hazardous Air Pollutants (HAPs)	105	13
Green House Gas Emissions as Total CO ₂ e	N/A	1,030,245

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: **XTO Energy Inc.** 22777 Springwoods Village Pkwy Spring, TX 77389

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

senmcac.co

UN

SECO

ARTESIA |

1701 W. M

W. Main Bap

Note: Times are

bia@state.nm.us

d and the due date

ail, or call us, and

e'll renew your

rary.org

e call

nt catalogs

esidents of

tage

you may also non-fiction

Revised 6/14/11

With your comments, please refer to the company name and facility name, or send a copy of this notice along with your comments. This information is necessary since the Department may have not yet received the permit application. Please include a legible return mailing address. Once the Department has completed its preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you or if you believe that you have ordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at Fe, NM 87502, (505) 827-2055, indee of a second second second and where to file a https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a

PMSNMLORG

00000

Spanish-speaking, 575-241-9256

Recovering Community

(575) 725-5552 // carlsbadlifehouse.com

diction?

ASIN

inforcement

supported by active.

tir loved one's

ecovery.

1-8pm ad, NM

December 11, 2024 at 4:40:19 PM MST +32.417045,-104.226854 ±5.72m Eddy County **NCTICE** County Clerk's Office

of

XTO Energy Inc.	an air quant
permit for the mounces its apply	and the Air Quality
XTO Energy Inc. announces its application to the New Mexico Enviro Bureau is December 13, 2024 . The exact logari	
The exact location of app	is at latitude ast (
32.160000 and los in the proposed facility	Delivery Point (CDF) east-south
The exact location for the proposed facility known as, Cowboy Cent 32.160000 and longitude -103.841667. The approximate location of Malaga, NM in Eddy county.	f this facility is 13.8 fille
The proposed media	d produced water

throughputs, as well as an update to emissions from the heaters, flares, combustors, oil storage tanks, a other miscellaneous equipment.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) and tons per year (tpy) and could characteristic air contaminant will be as follows in pound per hour (tph) are could characteristic air contaminant will be as follows in pound per hour (tph) are could characteristic air contaminant will be as follows in pound per hour (tph) are could characteristic air contaminant will be as follows in per hour (tph) are could characteristic air contaminant will be as follows in pound per hour (tph) are could characteristic air contaminant will be as follows in pound per hour (tph) are could characteristic air contaminant will be as follows in pound per hour (tph) are could characteristic air contaminant will be as follows in pound per hour (tph) are could characteristic ai (pph) and tons per year (tpy) and could change slightly during the course of the Department's review:

oBrith do		Tons per year
Pollutant:	Pounds per hour	39
Particulate Matter (PM)	50	39
PM 10	48	39
PM 2.5	48	27
Sulfur Dioxide (SO ₂)	18	206
Nitrogen Oxides (NO _x)	724	195
Carbon Monoxide (CO)	1,417	295
Volatile Organic Compounds (VOC)	2,422	13
Total sum of all Hazardous Air Pollutants (HAPs)	105	1,030,245
Green House Gas Emissions as Total CO2e	N/A	-,

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days per week, and

a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: **XTO Energy Inc.** 22777 Springwoods Village Pkwy

If you have any comments about the construction or operation of this facility, and you want your comments to If you have any comments about the construction or operation of this facility, and you want your comments to If you have any comments about the process, you must submit your comments in writing to this address: be made as part of the permit review Process, you must Submit Your comment; Air Quality Bureau; 535.0 be made as part of the period reaction protocol protocol period period by the second period of the period of the second period period of the second period p

to the point of bea

des. 12,500 feet MSL to 17,999 feet MSL of use. 0700 to 2200 Monday through Friday; oth

TION

Permit Programs Manager; New Mexico Construction of the comments and questions may be submitted Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

With your comments, please refer to the company name and facility name, or send a copy of this notice along With your comments. This information is necessary since the Department may have not yet received of With your comments, please refer to the company since the Department may have not yet received the with your comments. This information is necessary since the Department may have not yet received the with your comments. This information is necessary mailing address. Once the Department has completed the permit application. Please include a legible return mailing address, the Department's notice will be public. permit application. Please include a legible return quality impacts, the Department's notice will be published its preliminary review of the application and its air quality location. the legal section of a newspaper circulated near the facility location.

Attención Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, es un aviso de la oficina de Calidad por un establecimiento en esta área. Si usted desea información Attención Este es un aviso de la oficina de Calidad del Alte del miento en esta área. Si usted desea información en acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en acerca de las emisiones protector esta area. Si español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Notice of Non-Discrimination NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the NMED does not discriminate or activities, as required by applicable laws and regulations. NATE Notice of Non-Notice of Non-Notice on the basis of face, color, and regulations, disability, age or sex in the NMED does not discriminate on the basis of face, color, applicable laws and regulations. NMED is administration of its programs or activities, as required by applicable laws and regulations. NMED is administration of its programs or activities, part 7, including Title VI of the Civil Rights and non-discussion. NMED does not discriminations or activities, as required by upplied of inquiries concerning non-discrimination administration of its programs or activities, as required by upplied of inquiries concerning non-discrimination responsible for coordination of compliance efforts and receipt of the Civil Rights Act of 1964, as an implements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as an administration of its plog. administration of its plog. administration of compliance efforts and responsible for coordination of compliance efforts and responsible for coordina responsible for coordinated by 40 C.F.R. Part 7, including the Age Discrimination Act of 1975, Title IX of the Education requirements implemented by 40 C.F.R. Part 7, including the Age Discrimination Act of 1975, Title IX of the Education Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Control Act Amendments of the Education depents of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1975, adments of 1972, and Section 13 of the Federal Water Pollution Programs, policity requirements implemented by Act of 1973; the Age bills of Control Act Amendments of the Education requirements of the Rehabilitation Act of 1973; the Age bills of the Pollution Control Act Amendments of the Education Section 504 of the Rehabilitation 13 of the Federal Water Pollution Control Act Amendments of 1972. If Amendments of 1972, and Section 13 of NMED's non-discrimination programs, policies or proceeding Amendments of 1972, and Section any of NMED's non-discrimination programs, policies or proceeding and a section and this notice or any of NMED and the respect to a NMED program of the Poly Section 504 of the Rehabilitation 13 of the Federal Water of instrumination programs, policies of 1972. If you Amendments of 1972, and Section 13 of NMED's non-discrimination programs, policies or procedures of you have any questions about this notice or any of NMED, 1190 St. Francis Dr., Suite N4050, P.O. P. Amendments of 1972, and Sector or any of NMED shows with respect to a NMED programs, policies or procedures, have any questions about this notice or any of NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box of 1972. If yo or if you believe that you have been discriminated against with respect to a NMED program or activity, you or if you believe that you have been discriminator. NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469. C Amendities about this non-proceeding and the against the process of procedures, have any questions about this non-discriminated against the process of procedures, or if you believe that you have been discriminator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, You or if you believe that you have been discriminator @env.nm.gov. You may also visit our website at may contact: Non-Discrimination Coordinator@env.nm.gov. You may also visit our website at may contact: Non-Discrimination Coordinator@env.nm.gov. You may also visit our website at website at may contact: Non-Discrimination coordinator@env.nm.gov. You may also visit our website at website at may contact: Non-Discrimination coordinator@env.nm.gov. You may also visit our website at website at may contact: Non-Discrimination coordinator@env.nm.gov. You may also visit our website at website at may contact: Non-Discrimination coordinator@env.nm.gov. You may also visit our website at website at may contact: Non-Discrimination coordinator@env.nm.gov. You may also visit our website at website at may contact: Non-Discrimination coordinator@env.nm.gov. You may also visit our website at website at website at may contact: Non-Discrimination coordinator@env.nm.gov. You may also visit our website at website at website at may contact: Non-Discrimination coordinator@env.nm.gov. You may also visit our website at web or if you believe that f may contact: Non-Discrimination Coordinator, NNED, 1150 of Hands Or., Suite N4050, P.O. Boy Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at fe, NM 87502, (505) 827-2855, nd.coordinator.complaint-page/ to learn how and or if you be may contact: Non-Discrimination may contact: Non-Discrimination Fe, NM 87502, (505) 827-2855, nd.coordinator@env.inin.gov.complaint-page/ to learn how and where to Fe, NM 87502, (505) 827-2855, nd.coordinator@env.inin.gov.complaint-page/ to learn how and where to file a https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a way with out chief here

-alidad dei Aire dei Departamente

wea. Si usted desea informa

-scrimination

-s not discrim

red by app

The regulation dealing with public particle

and at the As

complaint of discrimination.

Table of Noticed Neighbors				
Name	Address	City	State	Zip Code
BUREAU OF LAND MANAGEMENT	620 E. GREENE ST.	CARLSBAD	NM	88220
STATE OF NEW MEXICO LAND OFFICE	310 OLD SANTA FE TRAIL	SANTA FE	NM	87504

Table of Noticed Municipalities				
Name	Address	City	State	Zip Code
	There are no municipalities within 10 miles of the facility	1.		
	Table of Noticed Counties			
Name	Address	City	State	Zip Code
EDDY COUNTY - COUNTY MANAGER	101 W GREENE STREET, SUITE 110	CARLSBAD	NM	88220
LEA COUNTY - COUNTY MANAGER	100 N. MAIN AVENUE, SUITE 4	LOVINGTON	NM	88260
	Table of Noticed Tribes			
Name	Address	City	State	Zip Code

There are no tribed within 10 miles of the facility.

56	U.S. Postal S CERTIFIED Domestic Mail Or	D MAIL [®] REC	EIPT
870 0001 4722 39.	For delivery informa OFF Postage Certified Fee (Endorsement Required) Restricted Delivery Fee (Endorsement Required) Total Postage & Fee	s	\$0.00 % US POSTAGE 12/10/2024 IMI 063512395454 87113 000032328
2 HTO2			

LU M	U.S. Postal S CERTIFIED Domestic Mail On	D MAIL [®] RECEIPT	
Ē	For delivery information	ation, visit our website	2
4722		\$ 0.00 SOUTH STATE	and and
	Certified Fee	000032327	
1000	Return Receipt Fee (Endorsement Required)		
	Restricted Delivery Fee (Endorsement Required)		
287	Total Postage & Feee	\$	
	Sent To	A COUNTY – COUNTY MANAGER	
7		101 N. MAIN AVENUE, SUITE 4	
7014	Street & Apt. N or PO Box No. City, State, ZIF	LOVINGTON, NM 88260	
	PS Form 3800	hole is both a said of the	s

December 17, 2024 <u>CERTIFIED MAIL 7014 2870 0001 4722 3963</u> <u>RETURN RECEIPT REQUESTED (certified mail is required, **return receipt is optional**)</u>

Dear Bureau of Land Management

XTO Energy Inc. announces its application to the New Mexico Environment Department for an air quality permit for the **modification** of its facility. The expected date of application submittal to the Air Quality Bureau is **September 27, 2024.**

The exact location for the proposed facility known as, **Cowboy Central Delivery Point (CDP)**, is at latitude 32.160000 and longitude -103.841667. The approximate location of this facility is **13.8** miles **east-southeast** of **Malaga, NM** in **Eddy** county.

The proposed **modification** consists of an emission true up to update emissions and process equipment; specifically, flare and combustor emissions as well as other miscellaneous updates.

The estimated maximum quantities of any regulated air contaminant will be as follows in pound per hour (pph) and tons per year (tpy) and may change slightly during the course of the Department's review:

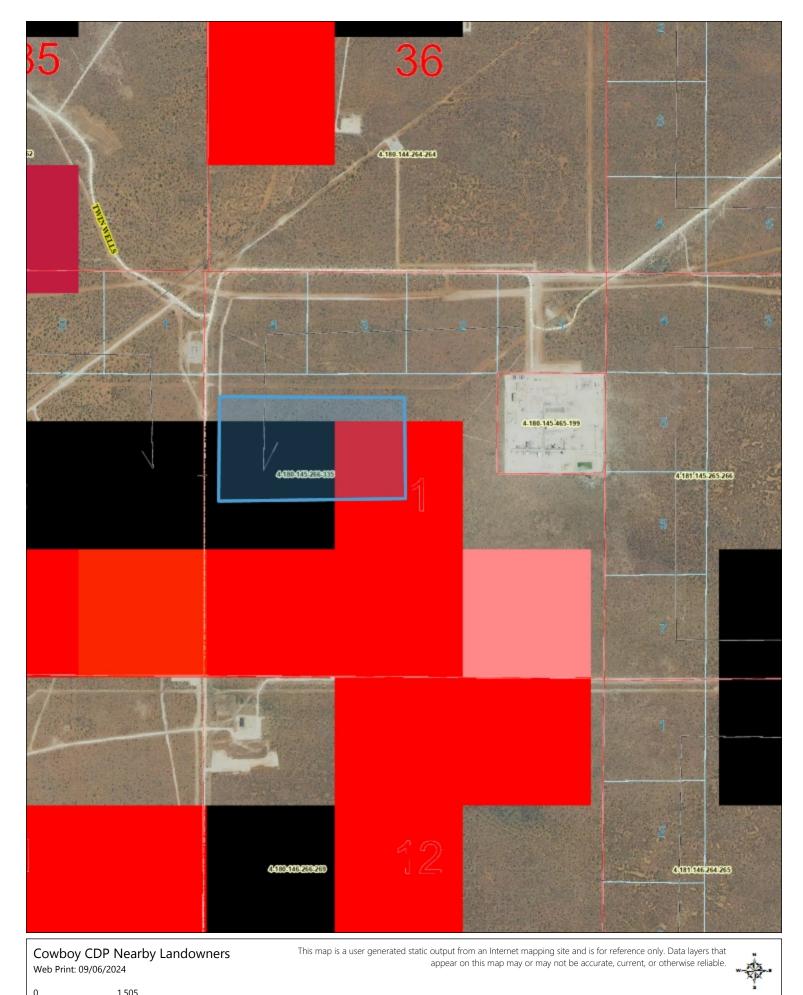
Pollutant:	Pounds per hour	Tons per year
Particulate Matter (PM)	50	39
PM 10	48	39
PM _{2.5}	48	39
Sulfur Dioxide (SO ₂)	18	27
Nitrogen Oxides (NO _x)	724	206
Carbon Monoxide (CO)	1,417	195
Volatile Organic Compounds (VOC)	2,422	295
Total sum of all Hazardous Air Pollutants (HAPs)	105	13
Green House Gas Emissions as Total CO ₂ e	N/A	1,030,245

The standard and maximum operating schedules of the facility will be 24 hours per day, 7 days per week, and a maximum of 52 weeks per year.

Owners and operators of the facility include XTO Energy Inc. 22777 Springwoods Village Pkwy Spring, TX 77389

If you have any comments about the construction or operation of this facility, and you want your comments to be made as part of the permit review process, you must submit your comments in writing to this address: Permit Programs Manager; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, New Mexico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and facility name, or send a copy of this notice along with your comments, since the Department may have not yet received the permit application. Please include a legible return mailing address with your comments. Once the Department has performed a preliminary review of the application and its air quality impacts, the Department's notice will be published in the legal section of a newspaper circulated near the facility location.


Attención

Este es un aviso de la oficina de Calidad del Aire del Departamento del Medio Ambiente de Nuevo México, acerca de las emisiones producidas por un establecimiento en esta área. Si usted desea información en español, por favor comuníquese con esa oficina al teléfono 505-629-3395.

Sincerely, XTO Energy Inc. 22777 Springwoods Village Pkwy Spring, TX 77389

Notice of Non-Discrimination

NMED does not discriminate on the basis of race, color, national origin, disability, age or sex in the administration of its programs or activities, as required by applicable laws and regulations. NMED is responsible for coordination of compliance efforts and receipt of inquiries concerning non-discrimination requirements implemented by 40 C.F.R. Part 7, including Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination Act of 1975, Title IX of the Education Amendments of 1972, and Section 13 of the Federal Water Pollution Control Act Amendments of 1972. If you have any questions about this notice or any of NMED's non-discrimination programs, policies or procedures, or if you believe that you have been discriminated against with respect to a NMED program or activity, you may contact: Non-Discrimination Coordinator, NMED, 1190 St. Francis Dr., Suite N4050, P.O. Box 5469, Santa Fe, NM 87502, (505) 827-2855, nd.coordinator@env.nm.gov. You may also visit our website at https://www.env.nm.gov/non-employee-discrimination-complaint-page/ to learn how and where to file a complaint of discrimination.

1,505 Feet

©2024 Sidwell. All rights reserved.

Submittal of Public Service Announcement – Certification

I, <u>Oliver Seekins</u>, the undersigned, certify that on **December 17th, 2024**, submitted a public service announcement to **KATK – 92.1 FM** that serves the City\Town\Village of **Carlsbad**, **Eddy** County, New Mexico, in which the source is or is proposed to be located and that KATK **DID NOT RESPOND**.

Signed this 17th day of December , 2024,

<u>12/17/2024</u> Date

Oliver Seekins Printed Name

<u>Senior Consultant</u> Title {APPLICANT OR RELATIONSHIP TO APPLICANT}

Daniel Dolce

From:	Oliver Seekins
Sent:	Tuesday, December 17, 2024 3:03 PM
То:	don@carlsbadradio.com
Cc:	Daniel Dolce
Subject:	XTO Energy - Cowboy CDP - Public Service Announcement

Dear Radio KATK - 92.1 FM,

Per New Mexico Administrative Code 20.2.72.203.B NMAC and according to the Guidance for Public Notice for Air Quality Permit Applications – (5) Notifications: Submittal of Public Service Announcement (PSA): A public service announcement required for permits and significant permit revisions must be submitted to at least one radio or television station, which services the municipality, or county which the facility is or will be located. Therefore, based on the above, we respectfully ask you to air the information shown below as a Public Service Announcement.

The public service announcement request must contain the following information about the facility or proposed facility (20.2.72.203.D NMAC).

- a. The name: Cowboy Central Delivery Point (CDP) located at latitude 32.15992 and longitude 103.84160 and type of business: Crude Petroleum Extraction.
- b. The name and principal owner or operator: **XTO Energy, Inc** owner and operator.
- c. The type of process or change for which the permit is sought: NSR Significant Revision Consisting of an update to the facility inlet gas, slop oil, and produced water throughputs, as well as an update to emissions from the heaters, flares, combustors, oil storage tanks, and other miscellaneous equipment.
- d. Locations where the notices have been posted in the City of Carlsbad, of Eddy County, NM:
 - (1) Cowboy CDP Entrance
 - (2) Carlsbad Main Post Office
 - (3) Carlsbad Main Library
 - (4) Eddy County Clerk's Office

The Department's address or telephone number to which comments may be directed: **Permits Program manager**; New Mexico Environment Department; Air Quality Bureau; 525 Camino de los Marquez; Suite 1, Santa Fe, New Mexico, 87505-1816; (505) 476-4300; 1(800) 224-7009.

Best Regards,

Oliver Seekins Senior Consultant

P: 505.266.6611 M: 918.805.5037 Email: <u>oliver.seekins@trinityconsultants.com</u> 9400 Holly Avenue NE, Building 3, Suite B, Albuquerque, NM 87122

Connect with us: <u>LinkedIn</u> / <u>YouTube</u> / <u>trinityconsultants.com</u> (UPDATED WEBSITE!)

View our capabilities in the Environmental Consulting, Built Environment, Life Sciences, and Water & Ecology markets.

Affidavit of Publication	Copy of Pu
No. 25470	
anny Scott annu Publisher	reau is December 13, 2024 . The exact location for the p Delivery Point (CDP) , is at la
ng duly sworn, sayes that be is the <u>Publisher</u> he Artesia Daily Press, a daily newspaper of General	The approximate location of Malaga, NM in Eddy Count
culation, published in English at Artesia, said county I state, and that the hereto attached	The proposed modification of slop oil, and produced water sions from the heaters, flare
Legal Ad s published in a regular and entire issue of the said	 miscellaneous equipment. The estimated maximum quibe as follows in pound per her her her slightly during the construction of the slightly during the construction.
esia Daily Press, a daily newspaper duly qualified that purpose within the meaning of Chapter 167 of e 1937 Session Laws of the state of New Mexico for	Pollutant: Particulate Matter (PM) PM 10
Consecutive weeks/day on the same	PM 2.5 Sulfur Dioxide (SO2) Nitrogen Oxides (NOx) Carbon Monoxide (CO)
st Publication December 12, 2024	Volatile Organic Compound (Including Fugitives) Volatile Organic Compound (Excluding Fugitives)
ird Publication	Total sum of all Hazardous A Pollutants (HAPs) Green House Gas Emissions
th Publication	The standard and maximum hours per day, 7 days per we a maximum of 52 weeks per
venth Publication thth Publication pscribed ans sworn before me this	The owner and/or operator of XTO Energy Inc. 22777 Springwoods Village
th day of December 2024 LATISHA ROMINE Notary Public, State of New Mexico Commission No. 1076338 My Commission Expires 05-12-2027 Add Add Add Add Latisha Romine Notary Public, Eddy County, New Mexico	Spring, TX 77389 If you have any comments facility, and you want your co- view process, you must subm Permit Programs Manager; Quality Bureau; 525 Camino ico; 87505-1816. Other com verbally. (505) 476-4300; 1 8 Please refer to the company notice along with your com yet received the permit appling address with your com a preliminary review of the Department's notice will be circulated near the facility lo
	General information about links to the regulations can www.env.nm.gov/air-quality lation dealing with public p

ublication:

PERMIT APPLICATION

s its application to the New Mexico Enviro quality permit for the modification of application submittal to the Air Quality I

roposed facility known as Cowboy Cent atitude 32.160000 and longitude -103.8416 this facility is 13.8 miles east-southeast o by.

consists of an update to the facility inlet **s** r throughputs, as well as an update to en es, combustors, oil storage tanks, and ot

antities of any regulated air contaminant v our (pph) and tons per year (tpy) and co ourse of the Department's review:

Pollutant: I	ounds per hour	Tons per ye
Particulate Matter (PM)	50	39
PM 10	48	- 39
PM 2.5	48	39
Sulfur Dioxide (SO2)	18	27
Nitrogen Oxides (NOx)	724	206
Carbon Monoxide (CO)	1,417	195
Volatile Organic Compounds (VOC)		1
(Including Fugitives)	2,422	295
Volatile Organic Compounds (VOC)		
(Excluding Fugitives)	2,414	249
Total sum of all Hazardous Air		
Pollutants (HAPs)	105	13
Green House Gas Émissions as Total C	CO2e N/A	1,030,245

ek, and year.

of the Facility is: : Pkwy

about the construction or operation of t omments to be made as part of the permit nit your comments in writing to this addr New Mexico Environment Department; o de los Marquez, Suite 1; Santa Fe, New M ments and questions may be submitted 00 224-7009.

name and site name, or send a copy of ments, since the Department may have lication. Please include a legible return m ments. Once the Department has perform application and its air quality impacts, published in the legal section of a newspa cation.

air quality and the permitting process, be found at the Air Quality Bureau's webs //permitting-section-home-page/. The re participation in the permit review proces 20 2 72 206 NMAC

culation, published in English at Artesia, said county	slop oil, and produced water through		
d state, and that the hereto attached	sions from the heaters, flares, com		
Legal Ad	miscellaneous equipment.		adara ang ang a
s published in a regular and entire issue of the said	 The estimated maximum quantities be as follows in pound per hour (pp change slightly during the course of 	oh) and tons per year	(tpy) and co
tesia Daily Press, a daily newspaper duly qualified		•	
that purpose within the meaning of Chapter 167 of	Pollutant: Particulate Matter (PM) PM 10	Pounds per hour 50 48	Tons per y 39 39
e 1937 Session Laws of the state of New Mexico for	PM 10 PM 2.5	48	39 39
1 Consecutive weeks/day on the same	Sulfur Dioxide (SO2)	18	27
General	Nitrogen Oxides (NOx)	724	206
y as follows:	Carbon Monoxide (CO)	1,417	195
st Publication December 12, 2024	Volatile Organic Compounds (VOC (Including Fugitives)	2,422	295
cond Publication	Volatile Organic Compounds (VOC		240
ird Publication	(Excluding Fugitives) Total sum of all Hazardous Air	2,414	249
urth Publication	Pollutants (HAPs)	105	13
	- Green House Gas Émissions as Tota		1,030,24
th Publication	The standard and maximum operat	ing schedules of the f	acility will b
th Publication	hours per day, 7 days per week, and		
venth Publication	a maximum of 52 weeks per year.		
the Publication	The owner and/or operator of the Fa	acility is:	
	XTO Energy Inc.		
bscribed ans sworn before me this	22777 Springwoods Village Pkwy Spring, TX 77389		
th day of December 2024		' or or o	
······································	If you have any comments about t facility, and you want your commen		
LATISHA ROMINE Notary Public, State of New Mexico	view process, you must submit your	· comments in writing	g to this add
Commission No. 1076338	Permit Programs Manager; New M	lexico Environment Ì	Department;
My Commission Expires 05-12-2027	Quality Bureau; 525 Camino de los		
	ico; 87505-1816. Other comments a verbally. (505) 476-4300; 1 800 224-		SUDINILLEU
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}			1 of
Katustia Romine	 Please refer to the company name a notice along with your comments, yet received the permit application. 	since the Departmen	nt may have
Latisha Romine	ing address with your comments.		
Notary Public, Eddy County, New Mexico	a preliminary review of the application	ation and its air qual	lity impacts,
Notary Fubic, Eduy County, New Mexico	Department's notice will be publish	ed in the legal sectior	1 of a newsp
	circulated near the facility location.		
	General information about air qua		
	links to the regulations can be foun www.env.nm.gov/air-quality/permit		
	lation dealing with public participa 20.2.72.206 NMAC.		
	Attención		
	Este es un aviso de la oficina de Ca		
	Medio Ambiente de Nuevo México		
	por un establecimiento en esta áre pañol, por favor comuníquese con e		
	Notice of Non-Discrimination	su onemu ur corerorre	305 022 22.
		1	

NMED does not discriminate on the basis of race, color, national ori disability, age or sex in the administration of its programs or activity as required by applicable laws and regulations. NMED is responsible coordination of compliance efforts and receipt of inquiries concerr non-discrimination requirements implemented by 40 C.F.R. Part 7, cluding Title VI of the Civil Rights Act of 1964, as amended; Section 504 of the Rehabilitation Act of 1973; the Age Discrimination of 1975, Title IX of the Education Amendments of 1972, and Section

	No.
e of New Mexico	
nty of Eddy:	
nny Scott//æ	un ACT
g duly sworn, sayes t	that he is the Publish
e Artesia Daily Pres	s, a daily newspaper of General
lation, published in	English at Artesia, said county
tate, and that the he	reto attached
Displ	ay Ad
published in a regul	ar and entire issue of the said
	ily newspaper duly qualified
	e meaning of Chapter 167 of
	of the state of New Mexico for
	weeks/day on the same
as follows:	
Publication	December 12, 2024
nd Publication	
Publication	
h Publication	
Publication	
Publication	
nth Publication	######################################
h Publication	
cribed ans sworn bet	fore me this
day of	December 2024
Notary Public, Commissi My Comn	A ROMINE State of New Mexico on No. 1076338 hission Expires -12-2027
Rater	& Romine
Latisha Ro	mine

Copy of Publication:

NOTICE OF AIR QUALITY PERMIT APPLICATION **XTO Energy Inc.** announces its application to the New Mexico Env ment Department for an air quality permit for the **modification** facility. The expected date of application submittal to the Air Qualit reau is **December 13, 2024**.

The exact location for the proposed facility known as Cowboy Ce Delivery Point (CDP), is at latitude 32.160000 and longitude -103.84 The approximate location of this facility is 13.8 miles east-southeas Malaga, NM in Eddy County.

The proposed modification consists of an update to the facility inle slop oil, and produced water throughputs, as well as an update to sions from the heaters, flares, combustors, oil storage tanks, and miscellaneous equipment.

The estimated maximum quantities of any regulated air contaminar be as follows in pound per hour (pph) and tons per year (tpy) and change slightly during the course of the Department's review:

Pollutant: I	Pounds per hour	Tons pe
Particulate Matter (PM)	<u>-</u> 50	39
PM 10	48	39
PM 2.5	48	39
Sulfur Dioxide (SO2)	18	27
Nitrogen Oxides (NOx)	724	. 20
Carbon Monoxide (CO)	1,417	19
Volatile Organic Compounds (VOC)	a she that if the set is a	
(Including Fugitives)	2,422	29
Volatile Organic Compounds (VOC)		
(Excluding Fugitives)	2,414	24
Total sum of all Hazardous Air		
Pollutants (HAPs)	105	1(
Green House Gas Emissions as Total	CO2e N/A	1,030,

The standard and maximum operating schedules of the facility wil hours per day, 7 days per week, and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: XTO Energy Inc. 22777 Springwoods Village Pkwy

Spring, TX 77389

If you have any comments about the construction or operation facility, and you want your comments to be made as part of the per view process, you must submit your comments in writing to this a Permit Programs Manager; New Mexico Environment Departme Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, Nev ico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy notice along with your comments, since the Department may have yet received the permit application. Please include a legible return ing address with your comments. Once the Department has perf a preliminary review of the application and its air quality impace Department's notice will be published in the legal section of a new circulated near the facility location.

an manager by	an bear within	uie meaning of Chapter 10 / of				
he 1937 Session Laws of the state of New Mexico for						
1	Consecuti	ve weeks/day on the same				
ay as fol	lows:					
irst Publ	ication	December 12, 2024				
econd P	ublication					
hird Pub	lication					
ourth Pu	blication					
ifth Publ	lication					
ixth Pub	lication					
eventh P	ublication					
ighth Pu	blication	Particular and a second and a second and a second and a second and a second and a second and a second a second				
ubscribe	d ans sworn b	before me this				
2th	day of	December 2024				
	Notary Public Commis My Con	SHA ROMINE c, State of New Mexico sion No. 1076338 nmission Expires 05-12-2027				
\square	ater	to Romine				
	Latisha R	lomine				
	Notary Pu	ublic, Eddy County, New Mexico				
		•				

Pounds per hour Tons p Pollutant: 50 Particulate Matter (PM) 3 48 PM 10 2 48 PM 2.5 18 Sulfur Dioxide (SO2) 2 Nitrogen Oxides (NOx) 724 1 1,417 Carbon Monoxide (CO) Volatile Organic Compounds (VOC) 2 2,422 (Including Fugitives) Volatile Organic Compounds (VOC) 2 2,414(Excluding Fugitives) Total sum of all Hazardous Air 105**Pollutants (HAPs)** 1,030 Green House Gas Emissions as Total CO2e N/A

The standard and maximum operating schedules of the facility windows per day, 7 days per week, and a maximum of 52 weeks per year.

The owner and/or operator of the Facility is: XTO Energy Inc. 22777 Springwoods Village Pkwy Spring, TX 77389

munde andrien) en

If you have any comments about the construction or operation facility, and you want your comments to be made as part of the pe view process, you must submit your comments in writing to this a Permit Programs Manager; New Mexico Environment Departm Quality Bureau; 525 Camino de los Marquez, Suite 1; Santa Fe, Ne ico; 87505-1816. Other comments and questions may be submitted verbally. (505) 476-4300; 1 800 224-7009.

Please refer to the company name and site name, or send a copy notice along with your comments, since the Department may h yet received the permit application. Please include a legible returing address with your comments. Once the Department has per a preliminary review of the application and its air quality impa-Department's notice will be published in the legal section of a new circulated near the facility location.

General information about air quality and the permitting proc links to the regulations can be found at the Air Quality Bureau's www.env.nm.gov/air-quality/permitting-section-home-page/. The lation dealing with public participation in the permit review pr 20.2.72.206 NMAC.

Attención

Este es un aviso de la oficina de Calidad del Aire del Departam Medio Ambiente de Nuevo México, acerca de las emisiones pro por un establecimiento en esta área. Si usted desea informació pañol, por favor comuníquese con esa oficina al teléfono 505-629 **Notice of Non-Discrimination**

NMED does not discriminate on the basis of race, color, national disability, age or sex in the administration of its programs or a as required by applicable laws and regulations. NMED is respon coordination of compliance efforts and receipt of inquiries con non-discrimination requirements implemented by 40 C.F.R. Pa cluding Title VI of the Civil Rights Act of 1964, as amended;

Section 504 of the Rehabilitation Act of 1973; the Age Discrimina of 1975, Title IX of the Education Amendments of 1972, and Se of the Federal Water Pollution Control Act Amendments of 1972 have any questions about this notice or any of NMED's non-distion programs, policies or procedures, or if you believe that you h

Written Description of the Routine Operations of the Facility

<u>A written description of the routine operations of the facility</u>. Include a description of how each piece of equipment will be operated, how controls will be used, and the fate of both the products and waste generated. For modifications and/or revisions, explain how the changes will affect the existing process. In a separate paragraph describe the major process bottlenecks that limit production. The purpose of this description is to provide sufficient information about plant operations for the permit writer to determine appropriate emission sources.

The Cowboy Central Delivery Point (CDP) is a gas processing facility with oil and NGL stabilization. The facility produces residue sales gas, Y-Grade NGL, and spec oil products. The Cowboy CDP is being built over multiple phases to reach a full processing capacity of 1.0 BCFD of Natural Gas Treatment, 600,000 BPD of Oil Stabilization and 190,000 BPD of NGL Stabilization. The overall facility will be designed to accommodate four (4) cryogenic (cryo) trains.

Natural Gas System

The Cowboy CDP gas handling system is fed by field gathering lines, delivering up to 1.6 BCFD natural gas and condensate to the facility at high pressure. At the inlet of the facility, these pipelines are routed into the slug catcher where liquid condensate is separated and routed to the NGL stabilizers to produce Y-Grade NGL product. Up to 1.0 BCFD of gas from the slug catcher will feed the four (4) cryo trains. The remaining rich gas will be routed to offsite 3rd party gas processors. Each cryo train will have a dedicated amine unit (AU1-AU4) to remove carbon dioxide (CO₂) using MDEA with piperizine additive followed by a molecular sieve dehydration unit to remove moisture. In the amine regeneration unit for each cryo train, the flash gas from the amine flash vessel and acid gas from the amine still overheads will be routed to a thermal oxidizer (TO1-TO4) to destroy hazardous air pollutants (HAPs) and volatile organic compounds (VOCs). In the dehydration unit for each cryo train, molecular sieve beds are used to dehydrate the sweetened gas via adsorption. In this three-bed design, part of the unit operates in dehydration mode while the other part operates in regeneration mode. Switching from dehydration mode to regeneration mode and vice versa is done using automatic switching valves on a timed sequence. As one bed in the dehydration unit becomes saturated with water, it is automatically switched to regeneration mode while the bed in the regeneration unit is switched to become active in dehydration mode. When a bed requires regeneration due to being saturated with water, a fired regeneration gas heater (RHTR1-RHTR4) with a maximum heat input rate of 35.25 MMBtu/hr will be used to remove adsorbed water from the molecular sieve beds via temperature swing adsorption. Following dehydration, the dried gas is cooled and expanded in the cryo units to condense and separate NGLs out of the raw gas stream. Utility hot oil systems with gas-fired auxiliary heaters are used to provide the required heat to the distillation processes in the cryogenic units. The remaining residue gas is then boosted by electric-drive residue compressors into the sales gas pipeline.

NGL System

Natural Gas Liquids (NGLs) are condensed, gathered, and pumped at surrounding field compressor stations to be delivered via pipelines into the Cowboy CDP. The NGLs in these liquid pipelines are then combined with the condensate dropout from the slug catcher and other miscellaneous streams within the facility to make a combined feed for the condensate stabilization system. The condensate stabilization system consists of two fractionation towers per train and produces a "Y-Grade" NGL and a 9 psia RVP spec oil. From the first tower, the overhead gas is compressed using electric-drive compressors and sent into the cryo trains, whereas the liquids are sent into the second tower to produce Y-Grade NGL and stabilization trains. Then, it is stored temporarily in pressurized bullets before being pumped to the NGL sales pipelines. Any uncondensed gas from the second tower is recycled back to the surrounding field compressor stations. Note that the NGLs from the cryo trains are also pumped, cooled, and exported via the same pipelines. The stabilized oil from the second tower is combined with a similar product from being blended with on-spec oil from the oil stabilization system. This occurs upstream of the internal floating roof oil storage tanks (IFR1-IFR14), where the blended product is stored temporarily, before being pumped to the oil sales pipeline. Heat for the condensate stabilization system will be provided by a subset of up to eight (8) heaters, each with a maximum heat input rate of 58.93 MMBtu/hr (SHTR1-SHTR8).

Oil System

Form-Section 10 last revised: 8/15/2011

XTO Energy Inc.

Cowboy CDP

Oil from surrounding field tank batteries is heated up before being routed to the oil inlet surge vessels, which provide the bulk phase separation of gas, oil, and produced water. Gas flashing in the oil inlet surge vessels is gathered and compressed by electric-drive compressors, referred to as vapor recovery units (VRUs). Any gas in the final discharge stage of the VRUs is recycled back to the surrounding field compressor stations. Liquids that condense out of the flash gas as it is compressed by the VRUs are pumped and mixed into the combined feed for the condensate stabilization system. Produced water removed by the oil inlet surge vessels is routed through a 1,000 bbl gunbarrel separator (GBS1). From the GBS1, skimmed oil is routed to the 500 bbl slop oil tank (OTK7), and the heavier water phase is routed to two 750 bbl produced water tanks (PWTK1-PWTK2). All these tanks are gas blanketed. Slop oil is trucked offsite or blended with the stabilized oil product, if within spec. Produced water is pumped and transported offsite via pipeline.

Oil received at the inlet of Cowboy CDP is typically sent from the inlet surge vessel through inlet pumps and into the oil stabilization system. In the base facility design, a portion of the oil may bypass the oil stabilization system, if within spec. Within the stabilization system, heat is added to drive lighter components out of the stabilized oil via distillation. Following stabilization, the stabilized oil is blended with the bypass to create an on-spec oil product that is then sent to IFR1-IFR14 for temporary storage before transporting the oil offsite via pipeline. Flash gas from oil stabilization system is recompressed by electric-drive compressors. The majority of the flash gas condenses back into liquid and is mixed into the combined feed for the condensate stabilization system. Heat for the oil stabilization system will be provided by a subset of up to eight (8) heaters, each with a maximum heat input rate of 58.93 MMBtu/hr (SHTR1-SHTR8).

Hot Oil System

Natural gas direct-fired heaters are used to supply heat input into multiple closed-loop utility hot oil systems. These hot oil systems are used to provide the required heat to the oil and NGL stabilization packages, as well as the amine and cryo units. The systems consist of fired heaters, expansion vessels, circulation pumps, and filters. All oil stabilization packages are served by a common hot oil loop operating with a supply temperature of up to approximately 400°F. By comparison, all NGL stabilization packages are served by a common hot oil loop operating with a supply temperature of up to approximately 400°F. By comparison, all NGL stabilization packages are served by a common hot oil loop operating with a supply temperature of up to approximately 500°F. The heat input to each oil/NGL stabilizer hot oil loop is provided by 58.93 MMBtu/hr burner hot oil heaters (SHTR1-SHTR8), which can be set to run at either temperature. Each of the amine/cryo trains have their own dedicated hot oil loop served by a 94.54 MMBtu/hr burner hot oil heater (CHTR1-CHTR4) and pump skid with an expansion vessel.

Flare System

All automated vents and most process reliefs are routed to either the low-pressure headers or high-pressure flare headers for the site's flare system, which consists of three dual-tip flares (FL1-FL3). The flares are permitted to manage pilot, purge, sweep, process vent, and SSM gas. Any gas that would be removed from the process during an emergency event would also be routed to FL1-FL3. The flares are permitted such that gas may be routed to one or all the flares at any given time.

Combustor

An enclosed combustor (ECD1) is used to collect and dispose of vapors emitted from GBS1, SOTK1, PWTK1-PWTK2, and SOTL. A portable backup enclosed combustor may be used if the existing combustor is out of service. Two different portable ECD models (ECD2a/ECD2b) are considered for this facility. The primary and backup combustors will not operate at the same time.

Emergency Generators

The emergency generators for Cowboy CDP (GEN1-GEN4) will be used to power safety-sensitive equipment in the event of grid power outages.

Source Determination

Source submitting under 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC

Sources applying for a construction permit, PSD permit, or operating permit shall evaluate surrounding and/or associated sources (including those sources directly connected to this source for business reasons) and complete this section. Responses to the following questions shall be consistent with the Air Quality Bureau's permitting guidance, <u>Single Source Determination Guidance</u>, which may be found on the Applications Page in the Permitting Section of the Air Quality Bureau website.

Typically, buildings, structures, installations, or facilities that have the same SIC code, that are under common ownership or control, and that are contiguous or adjacent constitute a single stationary source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes. Submission of your analysis of these factors in support of the responses below is optional, unless requested by NMED.

A. Identify the emission sources evaluated in this section (list and describe): Please refer to Table 2A.

B. Apply the 3 criteria for determining a single source:

<u>SIC Code</u>: Surrounding or associated sources belong to the same 2-digit industrial grouping (2-digit SIC code) as this facility, <u>OR</u> surrounding or associated sources that belong to different 2-digit SIC codes are support facilities for this source.

☑ Yes □ No

<u>Common</u> <u>Ownership</u> or <u>Control</u>: Surrounding or associated sources are under common ownership or control as this source.

🗹 Yes 🛛 🗆 No

<u>Contiguous</u> or <u>Adjacent</u>: Surrounding or associated sources are contiguous or adjacent with this source.

🗹 Yes 🛛 🗆 No

C. Make a determination:

- ✓ The source, as described in this application, constitutes the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes. If in "A" above you evaluated only the source that is the subject of this application, all "YES" boxes should be checked. If in "A" above you evaluated other sources as well, you must check AT LEAST ONE of the boxes "NO" to conclude that the source, as described in the application, is the entire source for 20.2.70, 20.2.72, 20.2.73, and 20.2.74 NMAC applicability purposes.
- The source, as described in this application, <u>does not</u> constitute the entire source for 20.2.70, 20.2.72, 20.2.73, or 20.2.74 NMAC applicability purposes (A permit may be issued for a portion of a source). The entire source consists of the following facilities or emissions sources (list and describe):

Section 12.A

PSD Applicability Determination for All Sources

(Submitting under 20.2.72, 20.2.74 NMAC)

<u>A PSD applicability determination for all sources</u>. For sources applying for a significant permit revision, apply the applicable requirements of 20.2.74.AG and 20.2.74.200 NMAC and to determine whether this facility is a major or minor PSD source, and whether this modification is a major or a minor PSD modification. It may be helpful to refer to the procedures for Determining the Net Emissions Change at a Source as specified by Table A-5 (Page A.45) of the <u>EPA New Source Review Workshop Manual</u> to determine if the revision is subject to PSD review.

- A. This facility is:
 - a minor PSD source before and after this modification (if so, delete C and D below).
 - □ a major PSD source before this modification. This modification will make this a PSD minor source.
 - □ an existing PSD Major Source that has never had a major modification requiring a BACT analysis.
 - □ an existing PSD Major Source that has had a major modification requiring a BACT analysis
 - □ a new PSD Major Source after this modification.

XTO Energy's Cowboy CDP is not a PSD facility however it has two (2) PSD nested sources categories. With this application the "Petroleum storage transfer units, total storage capacity over 300,000 barrels" and the "Fossil fuel boilers (or combination thereof) totaling more than 250 MMBtu/hr heat input" nested sources have changed. Below is the table for the two PSD nested source categories.

PSD NESTED SOURCE CATEGORY	NOx	со	VOC (INCLUDES HAPs)	SO2	TSP	PM _{10 & 2.5}	H₂SO₄
Table 1 (20.2.74.501 NMAC)	TPY	ТРҮ	ТРҮ	TPY	TPY	ТРҮ	ТРҮ
Fossil fuel boilers (or combination thereof) totaling more than 250 MMBtu/hr heat input	78.02	81.69	42.72	11.06	34.59	34.59	-
Petroleum storage transfer units, total storage capacity over 300,000 barrels	7.69	13.24	91.83	0.00	0.121	0.121	-
PSD Categorical Thresholds (tpy)	100	100	100	100	100	100	100
Is Project above SER?	No	No	No	No	No	No	No

Determination of State & Federal Air Quality Regulations

This section lists each state and federal air quality regulation that may apply to your facility and/or equipment that are stationary sources of regulated air pollutants.

Not all state and federal air quality regulations are included in this list. Go to the Code of Federal Regulations (CFR) or to the Air Quality Bureau's regulation page to see the full set of air quality regulations.

Required Information for Specific Equipment:

For regulations that apply to specific source types, in the 'Justification' column **provide any information needed to determine if the regulation does or does not apply**. **For example**, to determine if emissions standards at 40 CFR 60, Subpart IIII apply to your three identical stationary engines, we need to know the construction date as defined in that regulation; the manufacturer date; the date of reconstruction or modification, if any; if they are or are not fire pump engines; if they are or are not emergency engines as defined in that regulation; their site ratings; and the cylinder displacement.

Required Information for Regulations that Apply to the Entire Facility:

See instructions in the 'Justification' column for the information that is needed to determine if an 'Entire Facility' type of regulation applies (e.g. 20.2.70 or 20.2.73 NMAC).

Regulatory Citations for Regulations That Do Not, but Could Apply:

If there is a state or federal air quality regulation that does not apply, but you have a piece of equipment in a source category for which a regulation has been promulgated, you must **provide the low level regulatory citation showing why your piece of equipment is not subject to or exempt from the regulation. For example** if you have a stationary internal combustion engine that is not subject to 40 CFR 63, Subpart ZZZZ because it is an existing 2 stroke lean burn stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, your citation would be 40 CFR 63.6590(b)(3)(i). We don't want a discussion of every non-applicable regulation, but if it is possible a regulation could apply, explain why it does not. For example, if your facility is a power plant, you do not need to include a citation to show that 40 CFR 60, Subpart OOO does not apply to your non-existent rock crusher.

Regulatory Citations for Emission Standards:

For each unit that is subject to an emission standard in a source specific regulation, such as 40 CFR 60, Subpart OOO or 40 CFR 63, Subpart HH, include the low level regulatory citation of that emission standard. Emission standards can be numerical emission limits, work practice standards, or other requirements such as maintenance. Here are examples: a glycol dehydrator is subject to the general standards at 63.764C(1)(i) through (iii); an engine is subject to 63.6601, Tables 2a and 2b; a crusher is subject to 60.672(b), Table 3 and all transfer points are subject to 60.672(e)(1)

Federally Enforceable Conditions:

All federal regulations are federally enforceable. All Air Quality Bureau State regulations are federally enforceable except for the following: affirmative defense portions at 20.2.7.6.B, 20.2.7.110(B)(15), 20.2.7.11 through 20.2.7.113, 20.2.7.115, and 20.2.7.116; 20.2.37; 20.2.42; 20.2.43; 20.2.62; 20.2.63; 20.2.86; 20.2.89; and 20.2.90 NMAC. Federally enforceable means that EPA can enforce the regulation as well as the Air Quality Bureau and federally enforceable regulations can count toward determining a facility's potential to emit (PTE) for the Title V, PSD, and nonattainment permit regulations.

INCLUDE ANY OTHER INFORMATION NEEDED TO COMPLETE AN APPLICABILITY DETERMINATION OR THAT IS RELEVENT TO YOUR FACILITY'S NOTICE OF INTENT OR PERMIT.

EPA Applicability Determination Index for 40 CFR 60, 61, 63, etc: <u>http://cfpub.epa.gov/adi/</u>

Table for State Regulations:

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.1 NMAC	General Provisions	Yes	Facility	General Provisions apply to Notice of Intent, Construction, and Title V permit applications.
20.2.3 NMAC	Ambient Air Quality Standards NMAAQS	Yes	Facility	20.2.3 NMAC is a State Implementation Plan (SIP) approved regulation that limits the maximum allowable concentration of Sulfur Compounds, Carbon Monoxide and Nitrogen Dioxide. This facility is an affected facility.
20.2.7 NMAC	Excess Emissions	Yes	Facility	The entire facility is subject to emissions limits both federal and state regulation. Thus, the facility is subject to this regulation.
20.2.23 NMAC	Fugitive Dust Control	No	N/A	This regulation does not apply as the facility has no need for fugitive dust control measures. This facility does not fall under the applicability facility listed mentioned in this regulation.
20.2.33 NMAC	Gas Burning Equipment - Nitrogen Dioxide	No	N/A	None of the equipment has a heat input greater than 1,000,000 million BTU per year per unit. Thus, the regulation is not applicable to this facility.
20.2.34 NMAC	Oil Burning Equipment: NO ₂	No	N/A	This facility does not have any equipment that burns oil as fuel. Therefore, this regulation is not applicable to this facility.
20.2.35 NMAC	Natural Gas Processing Plant – Sulfur	No	N/A	SO_2 emission of this facility is below the applicable threshold limit established in this regulation. Thus, this regulation is not applicable to this facility.
20.2.37 and 20.2.36 NMAC	Petroleum Processing Facilities and Petroleum Refineries	No	N/A	These regulations were repealed by the Environmental Improvement Board. If you had equipment subject to 20.2.37 NMAC before the repeal, your combustion emission sources are now subject to 20.2.61 NMAC.
20.2.38 NMAC	Hydrocarbon Storage Facility	Yes	IFR1-14, SOTK1, GBS1, PWTK1, PWTK2	Hydrocarbon storage capacity of this facility is greater than the threshold 65,000 gal. Therefore, this facility is subject to this regulation.
20.2.39 NMAC	Sulfur Recovery Plant - Sulfur	No	N/A	This is a central distribution point (CDP) facility. The regulation is not applicable to this facility.
20.2.50 NMAC	Oil and Gas Sector – Ozone Precursor Pollutants	Yes	GEN1-4, EOOSCO MP 1-7, ECOSCO MP 1-7, ERESCOM P 1-10, ECD1, ECD2a, ECD2b, FUG, SOTK, SHTR1-8, CHTR1-4, and RHTR1-4	This regulation establishes emission standards for volatile organic compounds (VOC) and oxides of nitrogen (NOx) for oil and gas production, processing, compression, and transmission sources. 20.2.50 NMAC subparts below: 113 – The emergency generator engines (GEN1-4) will comply with the emission standards of this subpart in accordance with the dates specified in 20.2.50.113.B. Alternatively, the units will meet the emission standard exemption in 20.2.50.113(B)(9) by operating the units as emergency use engines as defined in 40 CFR 60.4211, §60.4243 or §63.6675. 114 – The electric-powered reciprocating compressors (EOOSCOMP 1-7, ECOSCOMP 1-7, and ERESCOMP 1-10) will comply with the applicable requirements of this subpart as stated in the 20.2.50.114.B(2). The electric- powered centrifugal compressors (ERESCOMP 11-14) are equipped with dry seals; therefore, the requirements of this subpart do not apply. 115 – The Combustor 1 and Combustor 2 (ECD1, ECD2a, ECD2b) are used to comply with the emission control requirements for the slop oil tank (SOTK); therefore, they will comply with the applicable requirements of this rule. The other control devices and closed vent systems at this facility are not used to

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
				comply with the requirements of this rule; therefore, the facility is not subject to the requirements of this rule.
				116 – The equipment fugitive emission components (FUG) will comply with the applicable requirements of this regulation.
				117 – The facility is not a natural gas well; therefore, it is not subject to this rule.
				118 – There are no glycol dehydrators at this facility. Thus, this regulation is not applicable to the facility.
				119 – The heaters (SHTR1-8, CHTR1-4, and RHTR1-4) have maximum capacity greater than 20 MMBtu/hr and will comply with the applicable requirements of this subpart.
				120 – Oil from SOTK1 is not routinely transferred via truck (Unit SOTL), but instead is routinely transferred to the Crude Storage and on to the oil sales pipeline. As such, SOTL is not be subject to 20.2.50.120 per 20.2.50.120.A.(1).
				121 – Individual pipeline pig launcher and receiver operations within the property boundary have a PTE less than one tpy VOC. Therefore, this facility is not subject to this subpart.
				122 – This facility uses compressed-gas pneumatic controllers. There is no drive gas emission at this facility. Thus, the regulation does not apply to this facility.
				123 – The slop oil tank (SOTK) has a VOC PTE greater than 3 tpy; therefore, it will comply with the applicable requirements of this subpart. The produced water tanks (PWTK1-2) have a VOC PTE less than 3 tpy; therefore, they are not subject to the requirements of this subpart. The oil storage tanks (IFR1-14) are internal floating roof tanks that are subject to 40 CFR 60, Subpart Kb or Kc. Therefore, these tanks are not considered "storage vessels" per 20.2.50.007.S.(6) and; therefore, they are not subject to this rule.
				124 – The facility is not a well workover; therefore, it is not subject to this rule.
				126 – This facility does not contain a produced water management unit; therefore, it is not subject to this rule.
				127 – The facility is not a flowback vessel or a preproduction operation; therefore, it is not subject to this rule.
20.2.61.109 NMAC	Smoke & Visible Emissions	Yes	SHTR1-8, CHTR1-4, RHTR1-4, FL1-3, ECD1, ECD2a/EC D2b, TO1- 4, GEN1-4	This regulation that limits opacity to 20% applies to Stationary Combustion Equipment, such as engines, boilers, heaters, and flares unless your equipment is subject to another state regulation that limits particulate matter such as 20.2.19 NMAC (see 20.2.61.109 NMAC). The facility will comply with this regulation.
20.2.70 NMAC	Operating Permits	Yes	Facility	This regulation establishes requirements for obtaining an operating permit. The facility is a major source for NOx, CO, VOC, and SO_2 . The facility will have a Title V operating permit P-297 to meet the requirements of this regulation once the permit is issued.
20.2.71 NMAC	Operating Permit Fees	Yes	Facility	This regulation establishes a schedule of operating permit emission fees. The facility is subject to 20.2.70 NMAC and is therefore subject to requirements of this regulation. The facility will meet all fee requirements under 20.2.71.110 NMAC.

<u>State</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification: (You may delete instructions or statements that do not apply in the justification column to shorten the document.)
20.2.72 NMAC	Construction Permits	Yes	Facility	This regulation establishes the requirements for obtaining a construction permit. The facility is a stationary source that has potential emission rates greater than 10 pounds per hour or 25 tons per year of any regulated air contaminant for which there is a National or New Mexico Air Quality Standard. The facility has a construction permit (NSR Permit) 7877M2 to meet the requirements of this regulation.
20.2.73 NMAC	NOI & Emissions Inventory Requirements	Yes	Facility	This regulation establishes emission inventory requirements. The facility meets the applicability requirements of 20.2.73.300 NMAC. The facility will meet reporting all applicable reporting requirements under 20.2.73.300.B.1 NMAC.
20.2.74 NMAC	Permits – Prevention of Significant Deterioration (PSD)	No	N/A	The facility does not meet the threshold value for a major PSD source. Thus, the regulation does not apply to this facility.
20.2.75 NMAC	Construction Permit Fees	Construction Permit Fees	Yes	This regulation establishes a schedule of operating permit emission fees. This facility is currently permitted under NSR #7877M2. This regulation applies to this facility and the owner will comply with this regulation.
20.2.77 NMAC	New Source Performance	Yes	GEN1-4, IFR1-14, SHTR1-8, CHTR1-4, FUG, EOOSCO MP1-7, ECOSCO MP1-7, ERESCOM P1-14, AU1-4	 This regulation establishes state authority to implement new source performance standards (NSPS) for stationary sources, as amended through January 15, 2017. GEN1-4 are subject to 40 CFR 60, Subpart JJJJ. IFR1-8 are subject to 40 CFR 60, Subpart Kb. IFR9-14 are subject to 40 CFR 60, Subpart Kc once they are constructed at the facility. SHTR1-8 and CHTR1-4 are subject to 40 CFR 60, Subpart DC. FUG, EOOSCOMP1-3, ECOSCOMP1-4, ERESCOMP1-7, and AU1 are subject to 40 CFR 60, Subpart OOO0a. ERESCOMP1-13 are dry seal centrifugal compressors; therefore, they are not subject to the rule. EOOSCOMP4-7, ECOSCOMP5-7, ERESCOMP8-10 & 14, AU2-4 will be subject to 40 CFR 60, Subpart OOO0b once they are constructed at the facility.
20.2.78 NMAC	Emission Standards for HAPS	No	Units Subject to 40 CFR 61	This regulation establishes state authority to implement emission standards for hazardous air pollutants subject to 40 CFR Part 61. This facility does not emit hazardous air pollutants which are subject to the requirements of 40 CFR Part 61 and is therefore not subject to this regulation.
20.2.79 NMAC	Permits – Nonattainmen t Areas	No	N/A	This regulation establishes the requirements for obtaining a nonattainment area permit. The facility is not located in a non-attainment area and therefore is not subject to this regulation.
20.2.80 NMAC	Stack Heights	No	N/A	This regulation establishes requirements for the evaluation of stack heights and other dispersion techniques. This regulation does not apply as all stacks at the facility follow good engineering practices.
20.2.82 NMAC	MACT Standards for source categories of HAPS	Yes	GEN1-4	This regulation established state authority to implement MACT Standards for source categories of HAPs. The facility is a area source of HAPs and four (4) emergency generators (Units: GEN1-4) are subject to 40 CFR 63 Subpart ZZZZ. Thus, this regulation applies to this facility.

Table for Applicable Federal Regulations:

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
40 CFR 50	NAAQS	Yes	Facility	This regulation defines national ambient air quality standards. The facility meets all applicable national ambient air quality standards for NOx, CO, SO ₂ , H_2S , PM_{10} , and $PM_{2.5}$ under this regulation.
NSPS 40 CFR 60, Subpart A	General Provisions	Yes	GEN1-4, IFR1-14, SHTR1- 8, CHTR1- 4, FUG, EOOSCO MP1-7, ECOSCO MP1-7, ERESCO MP1-14, AU1-44	 This regulation establishes state authority to implement new source performance standards (NSPS) for stationary sources, as amended through January 15, 2017. GEN1-4 are subject to 40 CFR 60, Subpart JJJJ. IFR1-8 are subject to 40 CFR 60, Subpart Kb. IFR9-14 are subject to 40 CFR 60, Subpart Kc once they are constructed at the facility. SHTR1-8 and CHTR1-4 are subject to 40 CFR 60, Subpart Dc. FUG, EOOSCOMP1-3, ECOSCOMP1-4, ERESCOMP1-7, and AU1 are subject to 40 CFR 60, Subpart OOO0a. ERESCOMP11-13 are dry seal centrifugal compressors; therefore, they are not subject to the rule. EOOSCOMP4-7, ECOSCOMP5-7, ERESCOMP8-10 & 14, AU2-4 will be subject to 40 CFR 60, Subpart OOO0b once they are constructed at the facility.
NSPS 40 CFR60.40a, Subpart Da	Subpart Da, Performance Standards for Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for electric utility steam generating units. This regulation does not apply because the facility does not operate any electric utility steam generating units.
NSPS 40 CFR60.40b Subpart Db	Electric Utility Steam Generating Units	No	N/A	This regulation establishes standards of performance for industrial-commercial- institutional steam generating units. This regulation does not apply because the facility does not operate any industrial-commercial-institutional steam generating units with a heat capacity greater than 100 MMBtu/hr.
40 CFR 60.40c, Subpart Dc	Standards of Performance for Small Industrial- Commercial- Institutional Steam Generating Units	Yes	SHTR1- 8, CHTR 1-4	The heaters have an input rating greater than 10 MMBtu/hr and are subject per §60.40c(a). Since the units burn only natural gas, there are no applicable control, monitoring, or reporting requirements. Only fuel use records are required per §60.48c(g).
NSPS 40 CFR 60, Subpart Ka	Standards of Performance for Storage Vessels for Petroleum Liquids for which Construction, Reconstruction, or Modification Commenced After May 18, 1978, and Prior to July 23, 1984	No	N/A	This regulation establishes performance standards for storage vessels for petroleum liquids for which construction, reconstruction, or modification commenced after May 18, 1978, and prior to July 23, 1984. The facility was not constructed prior to July 23, 1984. Thus, this rule does not apply to this facility.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
NSPS 40 CFR 60, Subpart Kb	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, or Modification Commenced After July 23, 1984, and On or Before October 4, 2023	Yes	IFR1-8	This regulation establishes performance standards for volatile organic liquid storage vessels (including petroleum liquid storage vessels) for which construction, reconstruction, or modification commenced after July 23, 1984 and on or before October 4, 2023. The tanks were constructed within the applicable dates of this rule, store volatile organic liquids, and have a design volume greater than or equal to 75 cubic meters; therefore, these oil storage tanks (IFR1-8) are subject to the applicable requirements of this rule. The tanks use internal floating roof tanks to comply with the control requirements. The slop oil tank (SOTK) stores petroleum liquid prior to custody transfer and has a design capacity less than 10,000 BBL; therefore, this tank is exempt from this rule per §60.110b(d)(4).
NSPS 40 CFR 60, Subpart Kc	Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced After October 4, 2023	Yes	IFR9-14	This regulation establishes performance standards for volatile organic liquid storage vessels (including petroleum liquid storage vessels) for which construction, reconstruction, or modification commenced after October 4, 2023. The tanks were constructed or will be constructed after the applicability date of this rule, store volatile organic liquids, and have a design volume greater than or equal to 75.7 cubic meters; therefore, these oil storage tanks (IFR1-8) are subject to the applicable requirements of this rule. The tanks use internal floating roof tanks to comply with the control requirements. The slop oil tank (SOTK) stores petroleum liquid prior to custody transfer and has a design capacity less than 10,000 BBL; therefore, this tank is exempt from this rule per §60.110c(d)(4).
NSPS 40 CFR 60.330 Subpart GG	Stationary Gas Turbines	No	N/A	The facility does not have any applicable units. Therefore, the facility is not subject to this regulation.
NSPS 40 CFR 60, Subpart KKK	Leaks of VOC from Onshore Gas Plants	No	N/A	This regulation defines standards of performance for equipment leaks of VOC emissions from onshore natural gas processing plants for which construction, reconstruction, or modification commenced after January 20, 1984, and on or before August 23, 2011. The was constructed after August 23, 2011. Therefore, this regulation does not apply to this facility.
NSPS 40 CFR Part 60 Subpart LLL	Standards of Performance for Onshore Natural Gas Processing: SO ₂ Emissions	No	N/A	This regulation establishes standards of performance for SO ₂ emissions from onshore natural gas processing for which construction, reconstruction, or modification of the amine sweetening unit commenced after January 20, 1984, and on or before August 23, 2011. The facility is not subject to this regulation as the amine sweetening unit was constructed after August 23, 2011.
NSPS 40 CFR Part 60 Subpart 0000	Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution for which construction, modification or reconstruction commenced after August 23, 2011 and before	No	N/A	The rule applies to "affected" facilities that are constructed, modified, or reconstructed after Aug 23, 2011 (40 CFR 60.5365): gas wells, including fractured and hydraulically refractured wells, centrifugal compressors, reciprocating compressors, pneumatic controllers, certain equipment at natural gas processing plants, sweetening units at natural gas processing plants, and storage vessels. The facility is not subject to this regulation as the facility was constructed after September 18, 2015.

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
	September 18, 2015			
				The rule applies to the following "affected" facilities that are constructed, modified, or reconstructed after September 18, 2011 and on or before December 6, 2022: gas wells, including fractured and hydraulically refractured wells, centrifugal compressors, reciprocating compressors, pneumatic controllers, certain equipment at natural gas processing plants, sweetening units at natural gas processing plants, and storage vessels.
NSPS 40 CFR Part 60 Subpart	40 CFR Part Which Construction.	Yes	FUG, EOOSCO MP1-3, ECOSCO MP1-4,	The reciprocating compressors used for oil stabilization gas (EOOSCOMP1-3), condensate stabilization gas (ECOSCOMP1-4), and residue gas air (ERESCOMP1-7) are subject to rule per from §60.5365a(c). The electric driven centrifugal compressors (ERESCOMP11-14) are exempt from §60.5365a(b) since they use dry seals. The electric driven screw compressors for the refrigeration gas and instrument air are exempt from the definition of centrifugal compressor per §60.5430a.
Modification or OOOOa Reconstruction Commenced After September 18, 2015 and On or Before December 6, 2022	MP	ERESCO MP1-7, AU1	IFR1-4 were constructed within the applicability dates of the rule; however, since emissions will be limited by permit to less than 6 tpy, IFR1-IFR4 are exempt per §60.5365a(e). Also, since IFR1-4 are subject to NSPS Kb they are exempt from this subpart per §60.5395a(e). IFR5-14 have been or will be constructed after the applicability date for this rule and are therefore not subject. The site uses compressed air for pneumatic controllers.	
				The site will be subject to leak monitoring from fugitive components per §60.5365a(f). Since the sweetening units process less than 2 lt/d of sulfur, they are exempt
NSPS 40 CFR Part 60 Subpart OOOOb	Standards of Performance for Crude Oil and Natural Gas Facilities for Which Construction, Modification or Reconstruction Commenced After December 6, 2022	Yes	EOOSCO MP4-7, ECOSCO MP5-7, ERESCO MP8-10, AU2-4	from §60.5365a(g). The rule applies to the following "affected" facilities that are constructed, modified, or reconstructed after December 6, 2022: gas wells, including fractured and hydraulically refractured wells, centrifugal compressors, reciprocating compressors, pneumatic controllers, certain equipment at natural gas processing plants, sweetening units at natural gas processing plants, and storage vessels. The reciprocating compressors used for oil stabilization gas (EOOSCOMP4-7), condensate stabilization gas (ECOSCOMP5-7), and residue gas air (ERESCOMP8- 10) are subject to rule per from §60.5365a(c). The electric driven centrifugal compressors (ERESCOMP11-14) are exempt from §60.5365a(b) since they use dry seals. The electric driven screw compressors for the refrigeration gas and instrument air are exempt from the definition of centrifugal compressor per §60.5430a. IFR5-14 have been or will be constructed after the applicability date of the rule; however, since IFR5-14 are subject to NSPS Kb they are exempt from this subpart per §60.5395b(e).

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
				IFR9-14 will be constructed after the applicability date of this rule; however, since emissions will be limited by permit to less than 6 tpy VOCs and less than 20 tpy methane, IFR9-IFR14 are exempt per §60.5365b(e).
				Since the sweetening units process less than 2 lt/d of sulfur, they are exempt from §60.5365b(g).
NSPS 40 CFR 60 Subpart IIII	Standards of performance for Stationary Compression Ignition Internal Combustion Engines	No	N/A	This regulation establishes standards of performance for stationary compression ignition combustion engines. The engines at this facility are not compression ignition combustion engines. This regulation does not apply.
NSPS 40 CFR Part 60 Subpart JJJJ	Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	Yes	GEN1-4	This regulation establishes standards of performance for stationary spark ignition combustion engines. The emergency generators (Units: GEN1-4) will comply with the applicable requirements of this regulation.
NSPS 40 CFR 60 Subpart TTTT	Standards of Performance for Greenhouse Gas Emissions for Electric Generating Units	No	N/A	This regulation establishes standards of performance for greenhouse gas emissions for electric generating units. This facility does not have electric generating units. This regulation does not apply.
NSPS 40 CFR 60 Subpart UUUU	Emissions Guidelines for Greenhouse Gas Emissions and Compliance Times for Electric Utility Generating Units	No	N/A	This regulation establishes emissions guidelines for greenhouse gas emissions and compliance times for electric generating units. This facility does not have electric generating units. This regulation does not apply.
NSPS 40 CFR 60, Subparts WWW, XXX, Cc, and Cf	Standards of performance for Municipal Solid Waste (MSW) Landfills	No	N/A	This facility is not a municipal solid waste landfill. This regulation does not apply.
NESHAP 40 CFR 61 Subpart A	General Provisions	No	Units Subject to 40 CFR 61	NSPS 40 CFR 61 does not apply to the facility because the facility does not emit or have the triggering substances on site and/or the facility is not involved in the triggering activity. The facility is not subject to this regulation. None of the subparts of Part 61 apply to the facility.
NESHAP 40 CFR 61 Subpart E	National Emission Standards for Mercury	No	N/A	The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and incinerate or dry wastewater treatment plant sludge
NESHAP 40 CFR 61 Subpart V	National Emission Standards for Equipment Leaks (Fugitive Emission Sources)	No	N/A	This regulation establishes national emission standards for equipment leaks (fugitive emission sources). The facility does not have equipment that operates in volatile hazardous air pollutant (VHAP) service [40 CFR Part 61.240]. The regulated activities subject to this regulation do not take place at this facility. The facility is not subject to this regulation.
MACT 40 CFR 63, Subpart A	General Provisions	Yes	GEN1-4	This regulation defines general provisions for relevant standards that have been set under this part. The facility is subject to this regulation because 40 CFR Part 63 Subpart ZZZZ applies to the emergency generators (Units: GEN1-4).

Federal Regulation Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:	
MACT 40 CFR 63.760 Subpart HH	Oil and Natural Gas Production Facilities	No	N/A	This regulation establishes national emission standards for hazardous air pollutants from oil and natural gas production facilities. As an area source of HAP, sources subject to HH include triethylene glycol (TEG) dehydration units that meet certain criteria. The facility does not have a TEB dehydration unit; therefore, this regulation does not apply.	
MACT 40 CFR 63 Subpart HHH	National Emission Standards for Hazardous Air Pollutants From Natural Gas Transmission and Storage Facilities	No	N/A	This regulation establishes national emission standards for hazardous air pollutants from natural gas transmission and storage facilities. This regulation does not apply because this facility is not a natural gas transmission or storage facility as defined in this regulation [40 CFR Part 63.1270(a)].	
MACT 40 CFR 63 Subpart DDDDD	National Emission Standards for Hazardous Air Pollutants for Major Industrial, Commercial, and Institutional Boilers & Process Heaters	No	N/A	This regulation establishes national emission standards for a major source of HAPs for industrial, commercial, and institutional boilers and process heaters. This facility is not a major source of HAPs. Therefore, this regulation does not apply to this facility.	
MACT 40 CFR 63 Subpart UUUUU	National Emission Standards for Hazardous Air Pollutants Coal & Oil Fire Electric Utility Steam Generating Unit	No	N/A	This regulation establishes national emission standards for hazardous air pollutants from coal and oil-fired electric utility steam generating units. The facility does not contain the affected units. This regulation does not apply.	
MACT 40 CFR 63 Subpart ZZZZ	National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE MACT)	Yes	GEN1-4	This regulation defines national emissions standards for HAPs from stationary reciprocating Internal Combustion Engines. The emergency generators (Units: GEN1-4) will comply with the applicable requirements of this regulation by following the requirements of NSPS JJJJ.	
40 CFR 64	Compliance Assurance Monitoring	Yes	AU1-4	This regulation defines compliance assurance monitoring. Amine sweeteners (Units: AU1-4) are subject to CAM to demonstrate continuous compliance with the control limits. These units use a control device(s) (TO1-4) to achieve compliance with such emission limitations.	
40 CFR 68	Chemical Accident Prevention	No	N/A	This regulation does not apply to this facility because the facility does not store more than the regulated quantity of regulated substances.	
Title IV – Acid Rain 40 CFR 72	Acid Rain	No	N/A	This part establishes the acid rain program. This part does not apply because the facility is not covered by this regulation [40 CFR Part 72.6].	
Title IV – Acid Rain 40 CFR 73	Sulfur Dioxide Allowance Emissions	No	N/A	This regulation establishes sulfur dioxide allowance emissions for certain types of facilities. This part does not apply because the facility is not the type covered by this regulation [40 CFR Part 73.2].	

<u>Federal</u> <u>Regulation</u> Citation	Title	Applies? Enter Yes or No	Unit(s) or Facility	Justification:
Title IV-Acid Rain 40 CFR 75	Continuous Emissions Monitoring	No	N/A	The provisions of this part apply to each affected unit subject to Acid Rain emission limitations or reduction requirements for SO_2 or NO_X . The facility is not an acid rain source and is therefore not subject to this application.
Title IV – Acid Rain 40 CFR 76	Rain Emission		N/A	This regulation establishes an acid rain nitrogen oxide emission reduction program. This regulation applies to each coal-fired utility unit that is subject to an acid rain emissions limitation or reduction requirement for SO ₂ . This part does not apply because the facility does not operate any coal-fired units [40 CFR Part 76.1].
Title VI – 40 CFR 82	Protection of Stratospheric Ozone	No	N/A	This regulation establishes a regulation for the protection of the stratospheric ozone. The regulation is not applicable because the facility does not "service", "maintain" or "repair" class I or class II appliances nor "dispose" of the appliances [40 CFR Part 82.1(a)].

Operational Plan to Mitigate Emissions

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Title V Sources (20.2.70 NMAC): By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Emissions During Startups, Shutdowns, and Emergencies</u> defining the measures to be taken to mitigate source emissions during startups, shutdowns, and emergencies as required by 20.2.70.300.D.5(f) and (g) NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.

- ✓ NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has developed an <u>Operational Plan to Mitigate Source Emissions During</u> <u>Malfunction, Startup, or Shutdown</u> defining the measures to be taken to mitigate source emissions during malfunction, startup, or shutdown as required by 20.2.72.203.A.5 NMAC. This plan shall be kept on site to be made available to the Department upon request. This plan should not be submitted with this application.
- ☑ Title V (20.2.70 NMAC), NSR (20.2.72 NMAC), PSD (20.2.74 NMAC) & Nonattainment (20.2.79 NMAC) Sources: By checking this box and certifying this application the permittee certifies that it has established and implemented a Plan to Minimize Emissions During Routine or Predictable Startup, Shutdown, and Scheduled Maintenance through work practice standards and good air pollution control practices as required by 20.2.7.14.A and B NMAC. This plan shall be kept on site or at the nearest field office to be made available to the Department upon request. This plan should not be submitted with this application.

Startup and shutdown procedures are either based on the manufacturer's recommendations or based on XTO Energy's experience with specific equipment. These procedures are designed to proactively address the potential for malfunction to the greatest extent possible. These procedures dictate a sequence of operations that are designed to minimize emissions from the facility during events that result in shutdown and subsequent startup.

Equipment located at this facility is equipped with various safety devices and features that aid in the prevention of excess emissions in the event of an operational emergency. If an operational emergency does occur and excess emissions occur, XTO Energy will submit the required Excess Emissions Report as per 20.2.7 NMAC. Corrective action to eliminate the excess emissions and prevent recurrence in the future will be undertaken as quickly as safety allows.

Alternative Operating Scenarios

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

Alternative Operating Scenarios: Provide all information required by the department to define alternative operating scenarios. This includes process, material and product changes; facility emissions information; air pollution control equipment requirements; any applicable requirements; monitoring, recordkeeping, and reporting requirements; and compliance certification requirements. Please ensure applicable Tables in this application are clearly marked to show alternative operating scenario.

Construction Scenarios: When a permit is modified authorizing new construction to an existing facility, NMED includes a condition to clearly address which permit condition(s) (from the previous permit and the new permit) govern during the interval between the date of issuance of the modification permit and the completion of construction of the modification(s). There are many possible variables that need to be addressed such as: Is simultaneous operation of the old and new units permitted and, if so for example, for how long and under what restraints? In general, these types of requirements will be addressed in Section A100 of the permit, but additional requirements may be added elsewhere. Look in A100 of our NSR and/or TV permit template for sample language dealing with these requirements. Find these permit templates at: www.env.nm.gov/air-quality/permitting-section-procedures-and-guidance/. Compliance with standards must be maintained during construction, which should not usually be a problem unless simultaneous operation of old and new equipment is requested.

In this section, under the bolded title "Construction Scenarios", specify any information necessary to write these conditions, such as: conservative-realistic estimated time for completion of construction of the various units, whether simultaneous operation of old and new units is being requested (and, if so, modeled), whether the old units will be removed or decommissioned, any PSD ramifications, any temporary limits requested during phased construction, whether any increase in emissions is being requested as SSM emissions or will instead be handled as a separate Construction Scenario (with corresponding emission limits and conditions, etc.

XTO Energy is not proposing any alternative operating scenarios for this facility.

Air Dispersion Modeling

- Minor Source Construction (20.2.72 NMAC) and Prevention of Significant Deterioration (PSD) (20.2.74 NMAC) ambient impact analysis (modeling): Provide an ambient impact analysis as required at 20.2.72.203.A(4) and/or 20.2.74.303 NMAC and as outlined in the Air Quality Bureau's Dispersion Modeling Guidelines found on the Planning Section's modeling website. If air dispersion modeling has been waived for one or more pollutants, attach the AQB Modeling Section modeling waiver approval documentation.
- 2) SSM Modeling: Applicants must conduct dispersion modeling for the total short term emissions during routine or predictable startup, shutdown, or maintenance (SSM) using realistic worst case scenarios following guidance from the Air Quality Bureau's dispersion modeling section. Refer to "Guidance for Submittal of Startup, Shutdown, Maintenance Emissions in Permit Applications (<u>http://www.env.nm.gov/aqb/permit/app_form.html</u>) for more detailed instructions on SSM emissions modeling requirements.
- 3) Title V (20.2.70 NMAC) ambient impact analysis: Title V applications must specify the construction permit and/or Title V Permit number(s) for which air quality dispersion modeling was last approved. Facilities that have only a Title V permit, such as landfills and air curtain incinerators, are subject to the same modeling required for preconstruction permits required by 20.2.72 and 20.2.74 NMAC.

What is the purpose of this application?	Enter an X for each purpose that applies
New PSD major source or PSD major modification (20.2.74 NMAC). See #1 above.	
New Minor Source or significant permit revision under 20.2.72 NMAC (20.2.72.219.D NMAC).	Х
See #1 above. Note: Neither modeling nor a modeling waiver is required for VOC emissions.	
Reporting existing pollutants that were not previously reported.	
Reporting existing pollutants where the ambient impact is being addressed for the first time.	
Title V application (new, renewal, significant, or minor modification. 20.2.70 NMAC). See #3 above.	
Relocation (20.2.72.202.B.4 or 72.202.D.3.c NMAC)	
Minor Source Technical Permit Revision 20.2.72.219.B.1.d.vi NMAC for like-kind unit replacements.	
Other: i.e. SSM modeling. See #2 above.	
This application does not require modeling since this is a No Permit Required (NPR) application.	
This application does not require modeling since this is a Notice of Intent (NOI) application (20.2.73 NMAC).	
This application does not require modeling according to 20.2.70.7.E(11), 20.2.72.203.A(4), 20.2.74.303, 20.2.79.109.D NMAC and in accordance with the Air Quality Bureau's Modeling Guidelines.	

Check each box that applies:

- □ See attached, approved modeling **waiver for all** pollutants from the facility.
- See attached, approved modeling **waiver for some** pollutants from the facility.
- Attached in Universal Application Form 4 (UA4) is a **modeling report for all** pollutants from the facility.
- Attached in UA4 is a **modeling report for some** pollutants from the facility.
- □ No modeling is required.

Universal Application 4

Air Dispersion Modeling Report

Refer to and complete Section 16 of the Universal Application form (UA3) to assist your determination as to whether modeling is required. If, after filling out Section 16, you are still unsure if modeling is required, e-mail the completed Section 16 to the AQB Modeling Manager for assistance in making this determination. If modeling is required, a modeling protocol would be submitted and approved prior to an application submittal. The protocol should be emailed to the modeling manager. A protocol is recommended but optional for minor sources and is required for new PSD sources or PSD major modifications. Fill out and submit this portion of the Universal Application form (UA4), the "Air Dispersion Modeling Report", only if air dispersion modeling is required for this application submittal. This serves as your modeling report submittal and should contain all the information needed to describe the modeling. No other modeling report or modeling protocol should be submitted with this permit application.

16-	16-A: Identification				
1	Name of facility:	Cowboy CDP			
2	Name of company:	XTO Energy, Inc.			
3	Current Permit number:	7877			
4	Name of applicant's modeler:	Bruce Ferguson			
5	Phone number of modeler:	601-824-1860			
6	E-mail of modeler:	bferguson@fce-engineering.com			

16	16-B: Brief						
1	Was a modeling protocol submitted and approved?	Yes⊠	No□				
2	Why is the modeling being done?	Other (describe below)					
	Describe the permit changes relevant to the modeling.						
3	The proposed permit revision includes updated emissions associated with flares, heaters, and combustor. The permit revision will also include the addition of a portable backup combustor to be used when the primary combustor is out of service.						
4	What geodetic datum was used in the modeling? NAD83						
5	ow long will the facility be at this location? indefinite						
6	Is the facility a major source with respect to Prevention of Significant Deterioration (PSD)?	Yes□	No⊠				

7	Identify the Air Quality Control Re	gion (AQCR) in which the facility is located	1	.55			
	List the PSD baseline dates for this region (minor or major, as appropriate).						
	List the 15D baseline dates for this						
0	NO2	3/16/1988	3/16/1988				
8	SO2	7/28/1978					
	PM10	2/20/1979					
	PM2.5	11/13/2013	11/13/2013				
9	Provide the name and distance to	Class I areas within 50 km of the facility (300 km for PS	D permits)				
	Carlsbad Caverns NP, 49.9 km						
10	Is the facility located in a non-atta	inment area? If so describe below	Ye	es□	No⊠		
	Describe any special modeling req	uirements, such as streamline permit requirements.					
11							

16	-C: Modeling Hi	story of Facility						
	Describe the modeling history of the facility, including the air permit numbers, the pollutants modeled, the National Ambient Air Quality Standards (NAAQS), New Mexico AAQS (NMAAQS), and PSD increments modeled. (Do not include modeling waivers).							
	Pollutant	Latest permit and modification number that modeled the pollutant facility-wide.	Date of Permit	Comments				
	CO	7877-M1	2/11/2022					
	NO ₂	7877-M1	2/11/2022					
1	SO ₂	7877-M1	2/11/2022					
	H ₂ S							
	PM2.5	7877-M1	2/11/2022					
	PM10	7877-M1	2/11/2022					
	Lead	7877-M1	2/11/2022					
	Ozone (PSD only)							
	NM Toxic Air Pollutants (20.2.72.402 NMAC)							

16-D: Modeling performed for this application

For each pollutant, indicate the modeling performed and submitted with this application. Choose the most complicated modeling applicable for that pollutant, i.e., culpability analysis assumes ROI and cumulative analysis were also performed.

	Pollutant	ROI	Cumulative analysis	Culpability analysis	Waiver approved	Pollutant not emitted or not changed.
	СО	\boxtimes				
	NO ₂	\boxtimes	\boxtimes			
1	SO ₂	\boxtimes				
	H ₂ S					\boxtimes
	PM2.5	\boxtimes	\boxtimes			
	PM10	\boxtimes	\boxtimes			
	Lead					
	Ozone					
	State air toxic(s) (20.2.72.402 NMAC)					

16-	16-E: New Mexico toxic air pollutants modeling								
1	List any New Mexico toxic air pollutants (NMTAPs) from Tables A and B in 20.2.72.502 NMAC that are modeled for this application. None								
	-	List any NMTAPs that are emitted but not modeled because stack height correction factor. Add additional rows to the table below, if required.							
2	Pollutant	Emission Rate (pounds/hour)	Emission Rate Screening Level (pounds/hour)	Stack Height (meters)	Correction Factor	Emission Rate/ Correction Factor			

16-F: Modeling options					
1	Was the latest version of AERMOD used with regulatory default options? If not explain below.	Yes□	No⊠		
	The model version used was 23132. The model version was updated on November 20, 2024. The not affect any of the modeling options used for the analysis.	ne changes to th	e model do		

16	16-G: Surrounding source modeling							
1	Date of surround	ling source retrieval	10/28/2024					
	sources modeled	• • •	ir Quality Bureau was believed to be inaccurate, describe how the f changes to the surrounding source inventory were made, use the					
2	AQB Source ID	Description of Corrections						
		Sources identified as SSM in the NMED surrounding source inventory were not included in the modeling per NMED Air Quality Modeling Guidelines Section 4.1.6						

16-	16-H: Building and structure downwash						
1	How many buildings are present at the facility?	1					
2	How many above ground storage tanks are present at the facility?	18					
3	Was building downwash modeled for all buildings and	tanks? If not explain why below.	Yes⊠	No□			
4	Building comments	Significant equipment structures were downwash analysis.	also included in	the			

16-I: Receptors and modeled property boundary

"Restricted Area" is an area to which public entry is effectively precluded. Effective barriers include continuous fencing, continuous walls, or other continuous barriers approved by the Department, such as rugged physical terrain with a steep grade that would require special equipment to traverse. If a large property is completely enclosed by fencing, a restricted area within the property may be identified with signage only. Public roads cannot be part of a Restricted Area. A Restricted Area is required in order to exclude receptors from the facility property. If the facility does not have a Restricted Area, then receptors shall be placed within the property boundaries of the facility.

Describe the fence or other physical barrier at the facility that defines the restricted area.

	Facility is enco	mpassed with	n a cyclone fen	ce.				
2	Receptors must Are there publi	Yes□	No⊠					
3	Are restricted area boundary coordinates included in the modeling files?					Yes⊠	No□	
	Describe the receptor grids and their spacing. The table below may be used, adding rows as needed.							
4	Grid Type	Shape	Spacing (meters)	Start distance (km) from restricted area or <mark>center of facility</mark>	End distance (km) from restricted area or <mark>center</mark> <mark>of facility</mark>	Comments		
	Cartesian	Circular	50	0	1			
	Cartesian	Circular	100	1	3			
	Cartesian	Circular	250	3	6			
	Cartesian	Circular	500	6	10			
	Cartesian	Circular	1000	10	50			

1

16-	16-I: Receptors and modeled property boundary						
5	Describe receptor spacing along the fence line.						
	50 meters						
6	Describe the PSD Class I area receptors.						
	100 meters spacing along the Class 1 boundary that is within 50-km of the nearest facility emission point. Only 5 receptors were used because only a short distance of the boundary is within 50 km of the facility.						

4 (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting Sources: Vertication Hour of Day Factor Hour of Day Factor Image: Constraint of Constraints of Constr	g transitio uld be ful ns. The fla est effectiv orary con ontrols th	ion periods, Ily aring ive mbustors to he No⊠ roup.								
scenarios were used to cover a range of SSM possibilities producing the highest emissions and the lowest diameters. Three normal operation scenarios were used to account for the allowance of portable tempor be used on-site when the facility combustor is down. Two portable combustor models were evaluated. 2 Which scenario produces the highest concentrations? Why? 2 The maximum impacts for all of the scenarios were basically the same because the facility equipment comaximum impacts and the SSM flaring does not impact the location of the highs at the same time. 3 Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) Yes□ 4 If so, describe factors for each group of sources. List the sources in each group before the factor table for (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting Sources: If so, describe factors for each group of sources. List the sources in each group before the factor table for (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting Sources: 4 Hour of Day Factor Factor Image: Source in each group is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the image is compared in the	ontrols th	ive mbustors to he No⊠ roup.								
2 The maximum impacts for all of the scenarios were basically the same because the facility equipment comaximum impacts and the SSM flaring does not impact the location of the highs at the same time. 3 Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) Yes□ 4 If so, describe factors for each group of sources. List the sources in each group before the factor table for (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting Sources: Hour of Day Factor Hour of Day Factor If a If a <td>or that gr</td> <td>No⊠ roup.</td>	or that gr	No⊠ roup.								
Ine maximum impacts for all of the scenarios were basically the same because the facility equipment commaximum impacts and the SSM flaring does not impact the location of the highs at the same time. Were emission factor sets used to limit emission rates or hours of operation? (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) Yes□ If so, describe factors for each group of sources. List the sources in each group before the factor table for (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting Sources: Hour of Day Factor Factor If so, 133	or that gr	No⊠ roup.								
3 (This question pertains to the "SEASON", "MONTH", "HROFDY" and related factor sets, not to the factors used for calculating the maximum emission rate.) Yes 4 If so, describe factors for each group of sources. List the sources in each group before the factor table for (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting sources: 4 Hour of Day Factor Hour of Day Factor If so, describe factors for each group of sources. List the sources in each group before the factor table for sources: 1 13 Image: Sources Image: Sources Image: Sources Image: Sources 2 14 Image: Sources Image: Sources Image: Sources Image: Sources Image: Sources 5 16 16 Image: Sources Image: Sources Image: Sources Image: Sources 4 13 Image: Sources Image: Sources Image: Sources Image: Sources Image: Sources Image: Sources 3 15 Image: Sources 4 13 Image: Sources Image: Sources Image: Sources Image: Sources	or that gr	roup.								
4 (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting Sources: Vertication Hour of Day Factor Hour of Day Factor Image: Constraint of Constraints of Constr	•									
Day Factor Day Factor 1 13 2 14 3 15 4 16 5 17	If so, describe factors for each group of sources. List the sources in each group before the factor table for that group. (Modify or duplicate table as necessary. It's ok to put the table below section 16-K if it makes formatting easier.) Sources:									
2 14 3 15 4 16 5 17										
3 15										
4 16										
5 17	<u> </u>									
6 18	<u> </u>									
	+									
7 19	┼────									
8 20										
9 21	+									
10 22										
11 23										
12 24										
If hourly, variable emission rates were used that were not described above, describe them below.										
6 Were different emission rates used for short-term and annual modeling? If so describe Yes		No⊠								

16-	6-K: NO2 Modeling			
	Which type Check all th	s of NO2 modeling were used? at apply.		
1		ARM2		

		-					
-	\boxtimes	100% NO_X to NO_2 conversion					
	D PVMRM						
		□ OLM					
		Other:					
2	Describe the	NO ₂ modeling.					
2	Facility impacts determined assuming 100% conversion of NOx to NO2. Surrounding sources were accounted for by adding in monitored background.						
3	Were default NO ₂ /NO _x ratios (0.5 minimum, 0.9 maximum or equilibrium) used? If not describe and justify the ratios used below. Yes No						
	Not applicable						
4	Describe the design value used for each averaging period modeled.						
4	1-hour: High Annual One	first high Year Annual Average:					

16-	L: Ozone Anal	ysis					
1	 Prevention of Significant Deterioration Permitting Program, EPA, April 17, 2018 and associated documents. NMED accepts this SIL basis and incorporates it into this permit record by reference. Complete documentation of the ozone concentration analysis using MERPS is included in the New Mexico Air Quality Bureau Air Dispersion Modeling Guidelines The MERP values presented in Table 10 and Table 11 of the NM AQB Modeling Guidelines that produce the highest concentrations indicate that facilities emitting no more than 250 tons/year of NO_x and no more than 250 tons/year of VC will cause less formation of O₃ than the O₃ significance level. 					<u>es in the</u> MED ne delines. t	
2	$[O_3]_{8-hour} = \left(\frac{250\frac{10n}{yr}}{340_{MERP_{NOX}}} + \frac{250\frac{10n}{yr}}{4679_{MERP_{VOC}}}\right) \times 1.96 \mu\text{g/m}^3$ =1.546 $\mu\text{g/m}^3$, which is below the significance level of 1.96 $\mu\text{g/m}^3$. Sources that produce ozone concentrations below the ozone SIL do not cause or contribute to air contaminant levels exceeding the ozone NAAQS.				els		
3	Does the facility emit at least 250 tons per year of NOx or at least 250 tons per year of VOCs? Sources that emit at least 250 tons per year of NOx or at least 250 tons per year of VOCs are covered by the analysis above and require an individual analysis.YesNo						
5	-	ources or PSD major m hod was used describe	odifications, if MERPs were e below.	e used to account for oz	one fill out the	e inforr	mation
5	NO _x (ton/yr)	MERP _{NOX}	VOCs (ton/yr)	MERP _{voc}	[O ₃] _{8-h}	iour	

	Select the pollutants for which plume depletion modeling was used.						
1	□ PM2.5						
	□ PM10						
	⊠ None						
2	Describe the particle size d	istributions used	d. Include the source	of information.			
2							
3	Does the facility emit at least 40 tons per year of NO_x or at least 40 tons per year of SO_2 ? Sources that emit at least 40 tons per year of NO_x or at least 40 tons per year of SO_2 are considered to emit significant amounts of precursors and must account for secondary formation of PM2.5.			of Yes□	No⊠		
4	Was secondary PM modele	dary PM modeled for PM2.5?			No⊠		
	If MERPs were used to accubelow.	ount for seconda	ary PM2.5 fill out the	nformation below. If and	other method was used describe		
	Pollutant	NO _x	SO ₂	[PM2.5] _{24-hour}			
5	MERP _{annual}	26780	14978	0.04757863			
	MERP _{24-hour}	7331	1981	[PM2.5] _{annual}			
	Emission rate (ton/yr)	196.04	25.57	0.001805512			

16	16-N: Setback Distances N/				
1	Portable sources or sources that need flexibility in their site configuration requires that setback distances be determined between the emission sources and the restricted area boundary (e.g. fence line) for both the initial location and future locations. Describe the setback distances for the initial location.				
2	Describe the requested, modeled, setback distances for future locations, if this permit is for a portable stationary source. Include a haul road in the relocation modeling.				

16-	O: PSD Increm	ent and Sou	urce IDs					
1	The unit numbers in the Tables 2-A, 2-B, 2-C, 2-E, 2-F, and 2-I should match the ones in the modeling files. Do these match? If not, provide a cross-reference table between unit numbers if they do not match below.				Yes		No□	
	Unit Number in UA-2				Unit Number	in Mo	odeling Fil	es
2	The emission rates in these match? If not, e		2-F should match the or	nes in the mode	ling files. Do	Yes	X	No□
3	Have the minor NSR e been modeled?	xempt sources or 1	itle V Insignificant Activ	ities" (Table 2-E	3) sources	Yes		No⊠
	Which units consume	increment for whic	ch pollutants?			•		
4	Unit ID	NO ₂	SO ₂	PM	10		PM2.5	
	All Facility Sources	х	x	х			х	
5	PSD increment descrip				All sources at		ty constru	icted after
		· · · · · · · · · · · · · · · · · · ·	anded emissions after b	-	baseline date	<u>)</u> .		1
			ded in Table 2A of the ap	•				
6	•	•	f PSD increment modelin ined for the missing inst	•	-	Yes	X	No□

16	16-P: Flare Modeling						
1	For each flare or flaring scenario, complete the following						
	Flare ID (and scenario)	Average Molecular Weight	Gross Heat Release (cal/s)	Effective Flare Diameter (m)			
	FL1 (Normal)	21.40	219,488.94	0.4132			
	FL2 (Normal)	21.40	345,028.41	0.5181			
	FL3 (Normal)	21.40	345,028.41	0.5181			
	FL1 (Scenario B)	51.78	94,468,503.25	7.8637			
	FL2 (Scenario B)	22.45	171,850,527.04	11.5225			
	FL3 (Scenario B)	21.40	345,028.41	0.5181			
	FL1 (Scenario C)	51.78	94,468,503.25	7.8637			
	FL2 (Scenario C)	22.45	86,035,007.99	8.1529			
	FL3 (Scenario C)	22.45	86,160,547.45	8.1588			
	FL1 (Scenario D)	22.86	43,826,817.99	5.8111			
	FL2 (Scenario D)	17.75	69,443,142.71	7.4432			
	FL3 (Scenario D)	17.75	69,568,682.18	7.4499			

16-	Q: Volume and Related Sources		
	Were the dimensions of volume sources different from standard dimensions in the Air Quality Bureau (AQB) Modeling Guidelines?		
1	If not please explain how increment consumption status is determined for the missing installation dates below.	Yes□	No⊠
	No volume sources were used.		
2	Describe the determination of sigma-Y and sigma-Z for fugitive sources.		
	Describe how the volume sources are related to unit numbers.		
3	Or say they are the same.		
4	Describe any open pits.		
5	Describe emission units included in each open pit.		

16-	R: Backg	round Concentrations					
	Were NMED provided background concentrations used? Identify the background station used below. If non-NMED provided background concentrations were used describe the data Yes□ No⊠ that was used. No No No No No						
	CO: N/A						
	NO ₂ : Outside Carlsbad (350151005)						
1	PM2.5: Hobbs-Jefferson (350450019)						
	PM10: Hobbs-Jefferson (350250008)						
	SO ₂ : N/A						
	Other:						
	Comments: US EPA Air Quality Design Values for the listed monitors were approved by October 18, 2024, email from Sufi Mustafa						
2	Were background concentrations refined to monthly or hourly values? If so, describe below. Yes No						

16-	6-S: Meteorological Data				
	Was NMED provided meteorological data used? If so select the station used.				
1	Artesia	Yes⊠	No□		
2	If NMED provided meteorological data was not used describe the data set(s) used below. Discu handled, how stability class was determined, and how the data were processed.	uss how missing	data were		

16-T: Terrain					
Was complex terrain used in the modeling? If not, describe why below.	Yes⊠	No□			
		Was complex terrain used in the modeling? If not, describe why below. Yes⊠ What was the source of the terrain data?			

16-U: Modeling Files Describe the modeling files:

File name (or folder and file name)	Pollutant(s)	Purpose (ROI/SIA, cumulative, culpability analysis, other)
SIA\CO.zip	СО	SIA
SIA\NOx.zip	NOx	SIA\CIA
SIA\PM25.zip	PM2.5, PM10	SIA
SIA\SO2.zip	SO2	SIA
SIA\NOx_CL1.zip	NOx	Class 1 SIA
SIA\PM25_CL1.zip	PM2.5, PM10	Class 1 SIA
SIA\SO2_CL1.zip	SO2	Class 1 SIA
CIA\PM10.zip	PM10	CIA
CIA\PM25.zip	PM2.5	CIA
CIA\PM25_PSD24hr.zip	PM2.5	CIA
CIA\Ambient Air Impacts outside South Eddy Cryo.xlsx	PM2.5	CIA

16-	-V: PSD New or Major Modification Applications		(N/A)			
1	A new PSD major source or a major modification to an existing PSD major source requires additional analysis. Was preconstruction monitoring done (see 20.2.74.306 NMAC and PSD Preapplication Guidance on the AQB website)?	Yes□	No			
2	If not, did AQB approve an exemption from preconstruction monitoring?	Yes□	No□			
3	Describe how preconstruction monitoring has been addressed or attach the approved preconstruction monitoring or monitoring exemption.					
4	Describe the additional impacts analysis required at 20.2.74.304 NMAC.					
5	If required, have ozone and secondary PM2.5 ambient impacts analyses been completed? If so describe below.	Yes□	No□			

16	-W: Modeling	Results									
	the source to show t pollutant. Was culpa	hat the contrik bility analysis p	oution from thi performed? If s	s source is to describe	i less than t e below.	he significanc	bability analysis is required for significance levels for the specific Yes⊠ No□				
1	The PM2.5 analysis conservatively used the H2H over 5 years of meteorological data. The PSD annual and 24 hour impacts within the significant impact area were exceeded on the Facility ID=34514 Name=South Eddy Cryo Plant property. The plot files were used to determine the maximum impacts in the significant impact area outside of the South Eddy Cryo Plant fence line (Ambient Air Impacts outside South Eddy Cryo.xlsx)										
	There was one receptor outside of the South Eddy Cryo Plant fence line within the significant impact area above the PSD 24 hr increment, using the H2H over 5 years. The analysis was run on the individual years for this receptor and the H2H of each year was below the PSD 24 hr increment.										
2	Identify the maximum necessary.	m concentratio	ons from the m	odeling ar	nalysis. Row	s may be mo	dified, add	led and re	moved from the	e table below as	5
	, Time and ard	Facility ration 13)	led ion with nding ug/m3)	ry PM 13)	วนทd ration า3)	Concentration (μg/m3) Comcentration (μg/m3)	Value of Standard (µg/m3)	Percent of Standard	Location		
	Pollutant, Time Period and Standard	Modeled Facility Concentration (µg/m3)	Modeled Concentration with Surrounding Sources (µg/m3)	Secondary PM (µg/m3)	Background Concentration (μg/m3)				UTM E (m)	UTM N (m)	Elevation (ft)
NO ₂	2 1-hr NAAQS	95.02143	N/A	N/A	38.0	133.02	188.03	70.7%	609778.11	3558478.75	1030.18
NO ₂ Annual NMAAQS ¹		5.81607	N/A	N/A	6.1	11.91	94.02	19.3%	609500.00	3559200.00	1041.41
NO2 Annual Increment ¹		5.81607	N/A	N/A	6.1	11.91	25	47.7%	609500.00	3559200.00	1041.41
NO ₂	2 Annual CL1Ann SIL ¹	0.00323	N/A	N/A	N/A	0.00323	0.1	3.2%	559318.36	3560690.07	1130.11
CO 1-hr SIL		349.68189	N/A	N/A	N/A	349.68189	2000	17.5%	609885.89	3558688.01	1036.82
CO 8-hr SIL		245.00191	N/A	N/A	N/A	245.00192	500	49.0%	609885.89	3558688.01	1036.82
SO ₂ 1-hr SIL		6.05144	N/A	N/A	N/A	6.05144	7.8	77.6%	609500.00	3559200.00	1041.41
SO ₂ 3-hr SIL		5.42058	N/A	N/A	N/A	5.42058	25	21.7%	609750.00	3559100.00	1041.56
SO_2	3-hr CL1 SIL	0.11767	N/A	N/A	N/A	0.11767	1.0	11.8%	559318.36	3560690.07	1130.11
SO ₂ 24-hr SIL		3.18896	N/A	N/A	N/A	3.18896	5	63.8%	609500.00	3559200.00	1041.41
SO ₂ 24-hr CL1 SIL		0.01713	N/A	N/A	N/A	0.01713	0.2	8.6%	559318.36	3560690.07	1130.11
SO ₂ Annual SIL		0.50014	N/A	N/A	N/A	0.50014	1	50.0%	609500.00	3559200.00	1041.41
SO ₂ Annual CL1 SIL ¹		0.00034	N/A	N/A	N/A	0.00034	0.1	0.3%	559318.36	3560690.07	1130.11
PM _{2.5} 24-hr CL1 SIL		0.03097	N/A	0.0476	N/A	0.07857	0.27	29.1%	559318.36	3560690.07	1130.11

¹ Maximum annual impact at normal operation.

, Time and ard	Facility ration 13)	leled ation with anding (μg/m3)	ry PM 13)	round ntration 'm3)	lative itration m3)	Standard (m3)	Standard	Location		
Pollutant, Ti Period an Standard	Modeled Facilit Concentration (µg/m3)	Modeled Concentration v Surrounding Sources (µg/m	Secondary F (µg/m3)	Backgro Concentr (μg/m	Cumulative Concentration (µg/m3)	Value of Stan (µg/m3)	Percent of :	UTM E (m)	UTM N (m)	Elevation (ft)
PM _{2.5} 24-hr NAAQS		12.16979	0.0476	20	32.21739	35	92.0%	610450.00	3558950.00	1037.35
PM _{2.5} 24-hr Increment		7.34006	0.0476	N/A	7.39	9	82.1%	608850.00	3558050.00	1021.59
PM _{2.5} Annual CL1 SIL ¹	0.00062	N/A	0.0018	N/A	0.00242	0.05	4.8%	559318.36	3560690.07	1130.11
PM _{2.5} Annual NAAQS		1.92079	0.0018	6.6	8.52	9	94.6%	609500.00	3559250.00	1040.97
PM _{2.5} Annual Increment		2.0447	0.0018	N/A	2.0465	4	51.1%	609450.00	3559250.00	1041.00
PM ₁₀ 24-hr Increment		7.40248	N/A	N/A	7.40248	30	24.7%	609750.00	3559100.00	1041.56
PM ₁₀ Annual Increment		2.20427	N/A	N/A	2.20427	17	13.0%	609500.00	3559250.00	1041.33
PM ₁₀ 24-hr NAAQS		7.31560	N/A	37.3	44.6	150	29.7%	609750.00	3559100.00	1041.56

16-X: Summary/conclusions A statement that modeling requirements have been satisfied and that the permit can be issued. The facility was modeled with the maximum hourly emission rates presented on UA-2 tabs 2-E and 2-F for all averaging periods using a 5-yr meteorological dataset for Carlsbad downloaded from the NMED website.. Three SSM flaring scenarios were included as well as the facility normal operation. Impacts were found to be below the Class I modeling significance levels for all pollutants and averaging periods, and no further analysis was performed for the Class I area. CO and SO₂ were found to be below the Class 2 modeling significance levels for all averaging periods and no further analysis was performed for these pollutants. Surrounding sources were accounted for by using monitored background for the NO2 analysis and no surrounding sources were explicitly modeled. Cumulative impacts of NO₂ were estimated using the significant NOx analysis and adding monitored background. The maximum modeled NOx impacts from the facility plus the monitored background are below the NO_2 standards and no further analysis was performed. Emissions of PM₁₀ and PM_{2.5} are equal for all the facility sources. The maximum modeled impacts in the PM₁₀ /PM_{2.5} significance analysis were within 100 meter spacing. The cumulative analysis was conducted with those receptors identified as above the modeling significance level in the significance analysis. The PM_{10} and $PM_{2.5}$ cumulative analysis consisted of 1 explicitly modeling the surrounding sources downloaded from the NMED website and adding the monitored background. Additionally, for the PM_{2.5} analysis the secondary formation estimated with the EPA MERPs equation was added to the PM_{2.5} impacts. Surrounding source SSM emissions were removed from the surrounding inventory and surrounding sources greater than 10 km from the Cowboy CDP were removed from the NAAQS source group.

The PM_{10} impacts were found to be below the ambient air quality standards and PSD increment. No further analysis was conducted for PM10. Cumulative $PM_{2.5}$ analysis indicated exceedances within the fence line of the South Eddy Cryo Plant. The exceedances are due to the South Eddy Cryo Plant sources. A source cannot cause or contribute to an exceedance within the facility's restricted boundary. The receptors within the South Eddy Cryo Planter were discounted in determining the maximum $PM_{2.5}$ impacts.

The maximum impact of CO and SO₂ were found to be below the modeling significance levels. The cumulative impacts for NO₂, PM_{10} and $PM_{2.5}$ were found to be below the respective ambient air quality standards and PSD increment. The modeling requirements have been satisfied and the permit can be issued.

Daniel Dolce

From:	Barron, James W < james.barron@exxonmobil.com>
Sent:	Tuesday, September 24, 2024 8:22 AM
То:	Adam Erenstein
Subject:	FW: [EXTERNAL] Modeling Protocol - Cowboy CDP

FYI – Modeling protocol approved by NMED.

James (Jamie) Barron

Environmental & Regulatory Advisor

XTO Energy Inc. (an ExxonMobil Subsidiary)

22777 Springwoods Village Parkway Spring, TX 77389 W4.5A.296 Office: 346-566-9345 Cell: 346-366-3240

From: Bruce Ferguson <bferguson@fce-engineering.com>
Sent: Monday, September 23, 2024 7:38 PM
To: Barron, James W <james.barron@exxonmobil.com>
Subject: Fwd: [EXTERNAL] Modeling Protocol - Cowboy CDP

Sent from my iPhone

Begin forwarded message:

From: "Mustafa, Sufi A., ENV" <<u>sufi.mustafa@env.nm.gov</u>> Date: September 23, 2024 at 6:21:23 PM CDT To: Bruce Ferguson <<u>bferguson@fce-engineering.com</u>> Subject: RE: [EXTERNAL] Modeling Protocol - Cowboy CDP

Bruce The modeling protocol you provided is acceptable. Thank you.

Sufi A. Mustafa, Ph.D. Manager Air Dispersion Modeling and Emission Inventory Section New Mexico Environment Department's Air Quality Bureau Office: (505) 629 6186 <u>sufi.mustafa@state.nm.us</u> 525 Camino de los Marquez Suite 1 Santa Fe, New Mexico, 87505 <u>https://www.env.nm.gov/air-quality/</u>

"Innovation, Science, Collaboration, Compliance"

From: Bruce Ferguson <<u>bferguson@fce-engineering.com</u>>
Sent: Thursday, September 12, 2024 7:20 AM
To: Mustafa, Sufi A., ENV <<u>sufi.mustafa@env.nm.gov</u>>
Cc: James Barron <<u>james.barron@exxonmobil.com</u>>
Subject: [EXTERNAL] Modeling Protocol - Cowboy CDP

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Sufi,

Please find attached a modeling protocol for modeling to support an upcoming minor NSR modification request at Cowboy CDP. If you have any questions or comments, please let me know.

Thanks

Bruce Ferguson FC&E Engineering, LLC

Office: 601-824-1860 Direct: 769-241-6069 Cell: 601-826-6376

September 12, 2024

Mr. Sufi Mustafa New Mexico Environment Department Air Quality Bureau 525 Camino de los Marquez, Suite 1 Santa Fe, New Mexico 87505-1816 Via Email: Sufi.Mustafa@state.nm.us

Re: Air Dispersion Modeling Protocol XTO Energy, LLC – Cowboy CDP Dear Mr. Mustafa:

XTO Energy, LLC is preparing to submit a construction permit application to the New Mexico Air Quality Bureau (NMAQB) requesting a modification to the Cowboy CDP construction permit (7877-M2) pursuant to 20.2.72.219.D.1.a NMAC. In support of this application, air dispersion modeling will be conducted for the following pollutants: carbon monoxide (CO), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter less than 10 microns (PM₁₀) and particulate matter less than 2.5 microns (PM_{2.5}). This protocol outlines the proposed air dispersion modeling techniques that will be used to assess impacts surrounding the facility. The modeling analysis will follow the NMED Air Dispersion Modeling Guidelines, Revised June 2024.

Facility

The facility is located approximately 14 miles southeast of Malaga in Eddy County, New Mexico. The facility center is located at 32.160715°, -103.838447°. The facility processes natural gas using amine sweetening units as needed. Sweetened gas is dehydrated then flows to cryogenic units to remove NGLs for sale. Heat for the dehydration and cryogenic processes is supplied by gas-fired auxiliary heaters. NGLs from the inlet slug catcher and surrounding compressor stations are stabilized before being transferred offsite via pipeline. Heat for the stabilization process is supplied by gas-fired auxiliary heaters. The central delivery point portion of the facility receives up to 600,000 barrels of oil/condensate (oil) per day from surrounding field production batteries. Oil is transferred directly to storage or stabilized using auxiliary heaters. Oil is transferred offsite via pipeline. Incoming water is temporarily stored onsite prior to being transferred offsite via pipeline. Water and slop oil can be transferred offsite by truck. SSM flaring emissions are routed to either the low pressure or high-pressure flare headers (FL1/FL2/FL3). SSM/M venting emissions are vented to atmosphere.

The most recent modeling submitted for the facility was included in the February 2021 NSR Modification Permit Application. The facility is proposing the following modifications:

Modeling Protocol XTO Energy Inc – Cowboy CDP September 12, 2024 Page 2

• Update emissions from the flares, enclosed combustor, heaters, storage tanks, emergency generators, and piping fugitives based upon current process knowledge and updated process samples.

Models

AERMOD (Version 23132), the US EPA preferred model for near field impacts will be used for the modeling analysis. The third-party graphical user interface (GUI) AERMOD – View (Version 1.20.0) will be used to aid in constructing the AERMOD input files.

Model Input Options

The model will be executed with the DFAULT model option ensuring that only regulatory options are used in the execution of the model.

The cumulative NO₂ analysis will be executed with the ARM2 model option to convert NOx to NO₂. The default NO₂/NOx ratios of 0.5 for the minimum ratio and 0.9 for the maximum ratio will be used in the analysis.

Terrain

National Elevation Dataset (NED) 1/3 arc second data will be incorporated into the model using the regulatory preprocessor AERMAP (Version 18081). The terrain data will be downloaded through the third-party GUI AERMOD-View. Receptor elevations, receptor hill heights and nearby source elevations will be assigned through AERMAP. As built elevations will be assigned to Cowboy CDP sources.

Receptor Grid

A cartesian grid will be used in the analysis. Receptors will be placed along the fence line at 50meter spacing. Receptor spacing will be varied based on the distance from the facility center as summarized below.

Distance from facility center (km)	Spacing (m)
1	50
1 to 3	100
3 to 6	250
6 to 10	500
10 to 50	1000

Source Inventory

Facility sources will be modeled with the emissions presented in the application on UA2 tabs 2-E, 2-F. Stack parameters used will be as presented on UA2 tab 2-H, except for the flares. The Modeling Protocol XTO Energy Inc – Cowboy CDP September 12, 2024 Page 3

flares will be modeled as point sources with the stack parameters as defined in section 5.2.3. of the NMED Air Dispersion Modeling Guideline.

Surrounding sources to include in the cumulative modeling will be downloaded from the NMED website at https://air.web.env.nm.gov/mergemaster/. Startup, shutdown and malfunction (SSM) may be removed from the surrounding source inventory for the annual analyses. Additionally, for the PM₁₀ and PM_{2.5} NAAQS analysis, sources greater than 10 km from Cowboy CDP will not be explicitly modeled.

Minor Source Baseline Dates

The facility is in the Pecos Permian Basin Air Quality Control Region. The minor source baseline dates are summarized in the table below. The facility sources were constructed after all the baseline dates and, therefore, consume increment for all pollutants.

Pollutant	Baseline Date
NO ₂	3/16/1988
SO ₂	7/28/1978
PM10	2/20/1979
PM _{2.5}	11/13/2013

Class I Areas

The nearest Class I area, Carlsbad Caverns National Park, is located 50 km to the west of the Cowboy CDP. A Class I PSD analysis is not required. The radius of impact to the Class I significance levels will be determined using the Class II analysis runs to confirm impacts disperse to levels below the Class I significance level prior to reaching the Class I area.

Meteorological Data

AERMOD ready meteorological data for Artesia will be downloaded from the NMED website at <u>cloud.env.nm.gov/resources/collection/411</u> and used in the analysis. The Artesia meteorological data has historically been used for the modeling conducted for the facility.

Background Concentrations

NMAAQS and NAAQS

Background values for CO and NO₂ will be accounted for using existing air quality monitoring data. PM_{10} and $PM_{2.5}$ background concentrations will be accounted for by explicitly modeling nearby sources within 10 km of the Cowboy CDP and adding monitored background. SO_2 background will be accounted for by explicitly modeling the nearby sources within 25 km.

Modeling Protocol XTO Energy Inc – Cowboy CDP September 12, 2024 Page 4

Background values will be obtained from the NMED Air Dispersion Modeling Guidelines, Revised June 2024. The monitoring stations are summarized below.

> CO: Del Norte High School (350010023) NO₂: Outside Carlsbad (350151005) PM2.5: Hobbs-Jefferson (350450019) PM10: Hobbs-Jefferson (350250008)

PSD Increment

Background for PSD increment will be accounted for by explicitly modeling the increment affecting sources within 25 km and very large sources greater than 1000 lb/hr within 50 km of the Cowboy CDP for the respective pollutants.

Secondary Formation

The secondary formation of PM2.5 will be calculated as presented in section 2.6.6.2 of the NMED Modeling Guidelines and added to the modeled impacts and monitored background.

Methodology

A significance analysis will be performed for the Cowboy CDP emission sources using the 5-year meteorological dataset. Maximum emissions will be defined within 100-meter spacings. Receptors with impacts above the modeling significance levels defined in Table 18 of the NMED guideline will be used in the cumulative analyses.

The cumulative analyses will be conducted with the Cowboy CDP sources and the nearby surrounding sources downloaded from the NMED website at the receptor locations determined in the significance analyses. The design values will be calculated following the NMED Guideline procedures defined in section 2.6 for the respective pollutants.

Please advise if you approve of the modeling protocol methods or any changes that are required.

Sincerely,

Ence Luguren

Bruce Ferguson FC&E Engineering, LLC

Section 17

Compliance Test History

(Submitting under 20.2.70, 20.2.72, 20.2.74 NMAC)

To show compliance with existing NSR permits conditions, you must submit a compliance test history. The table below provides an example.

No history of compliance testing.

Section 20

Other Relevant Information

Other relevant information. Use this attachment to clarify any part in the application that you think needs explaining. Reference the section, table, column, and/or field. Include any additional text, tables, calculations or clarifying information.

Additionally, the applicant may propose specific permit language for AQB consideration. In the case of a revision to an existing permit, the applicant should provide the old language and the new language in track changes format to highlight the proposed changes. If proposing language for a new facility or language for a new unit, submit the proposed operating condition(s), along with the associated monitoring, recordkeeping, and reporting conditions. In either case, please limit the proposed language to the affected portion of the permit.

No other relevant information is provided in this application.

Cowboy CDP

Section 22: Certification

nergy, Inc. Company Name:

<u>
ド
の
ん
</u>, hereby certify that the information and data submitted in this application are

true and as accurate as possible, to the best of my knowledge and professional expertise and experience.

Signed this <u>11</u> day of <u>December</u>, <u>2024</u>, upon my oath or affirmation, before a notary of the State of

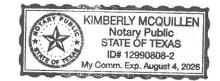
Signature

Printed Name

11/2024 P Admisor

Scribed and sworn before me on this <u>I</u> day of <u>December</u>, 2024.

My authorization as a notary of the State of <u>Texas</u> expires on the


_ day of _ august _ 202ce.

Notary's \$ignature

inberly

Date

*For Title V applications, the signature must be of the Responsible Official as defined in 20.2.70.7.AE NMAC.