

September 8, 2016

Ms. Sarah McGrath New Mexico Environment Department Petroleum Storage Tank Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505

Re: First Semiannual Groundwater Monitoring Report

Leonard's Conoco, 603 Parker Avenue, Santa Rosa, New Mexico

Facility #: 29084, Release ID #: 755, WPID #: 3873

Dear Ms. McGrath:

Enclosed is the report summarizing groundwater monitoring conducted by Daniel B. Stephens & Associates, Inc. (DBS&A) at the above-referenced site on July 29, 2016. All activities were completed in accordance with work plan identification number (WPID #) 3873, approved by the New Mexico Environment Department Petroleum Storage Tank Bureau on June 23, 2016. This is the first of two semiannual monitoring events to be completed under the approved work plan.

DBS&A will be invoicing the full approved amount of \$4,437.37 (including 7.3125% NMGRT) for Deliverable ID 3873-1. Please do not hesitate to call me at (505) 353-9130 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

Michael D. McVey Senior Hydrogeologist

7:1).7

MDM/ed

Page 1

COVER PAGE FORM 1216 FIRST SEMIANNUAL GROUNDWATER MONITORING REPORT

Please include the following information:
1. Site name: Leonard's Conoco
2. Responsible party: State Lead
3. Responsible party mailing address (list contact person if different):
Ms. Sarah McGrath, NMED PSTB District 2
2905 Rodeo Park Drive East, Building 1
Santa Fe, New Mexico 87505
4. Facility number: 29084 (Release ID #: 755)
5. Address/legal description:
603 Parker Avenue
Santa Rosa, New Mexico 88435
6. Author/consulting company: Daniel B. Stephens & Associates, Inc.
7. Date of report: September 8, 2016
8. Date of confirmation of release or date USTB was notified of the
release: June 1991

Page 2

STATEMENT OF FAMILIARITY

I, the undersigned, am personally familiar with the information submitted in this report and the attached documents and attest that it is true and complete.

Signature:
Name: Michael D. McVey
Affiliation: Daniel B. Stephens & Associates, Inc.
Title: Senior Hydrogeologist
Date September 8, 2016

Page 3

I. INTRODUCTION

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this groundwater monitoring report in accordance with the New Mexico Petroleum Storage Tank Regulations and work plan identification number (WPID #) 3873. The former Leonard's Conoco (the site) is located at 603 Parker Avenue in Santa Rosa, New Mexico (Figure 1). The site is currently occupied by the Guadalupe County Magistrate Court Division 1.

A confirmed petroleum release was documented during removal of three 4,000-gallon underground storage tanks (USTs) and one 560-gallon waste oil UST in June 1991. Monteverde, Inc. performed a minimum site assessment (MSA) in 1995 during which four monitor wells (MW-1, MW-2, MW-3, and MW-4) were installed. Innovative Explorations (INEX) performed groundwater monitoring at the site from 1997 through 2001. In 2000, the former Leonard's Conoco building was demolished and the current building was constructed. Monitor well MW-2 was destroyed during construction, and a replacement well, MW-2A, was installed by INEX.

In June 2009, Tecumseh Professional Associates, Inc. (TPA) performed a groundwater monitoring event at the site. TPA located monitor wells MW-2A and MW-3, but could not locate monitor wells MW-1 and MW-4. Of the two wells located, only MW-3 was sampled because well MW-2A was dry (TPA, 2009).

In October 2013, Haller & Associates, Inc. (HAI) performed groundwater monitoring at the site. HAI located monitor well MW-1, but was unsuccessful in locating MW-4 with a metal detector. HAI indicated that monitor well MW-4 appeared to have been destroyed.

HAI plugged and abandoned monitor well MW-1 and performed groundwater monitoring at the site in March 2014. Monitor wells MW-1A, MW-2A, and MW-3 were located and gauged. MW-2A was found to be dry. Samples were collected from MW-1A and MW-3. Results showed benzene (250 μ g/L) and total naphthalenes (84 μ g/L) to be present at concentrations above the New Mexico Water Quality Control Commission (NMWQCC) standards in MW-1A; no contaminants of concern (COCs) were detected at concentrations above the laboratory reporting limits in the sample collected from MW-3 (HAI, 2014).

On July 24, 2015, DBS&A submitted a work plan for one year of semiannual groundwater monitoring to the New Mexico Environment (NMED) Petroleum Storage Tank Bureau (PSTB) under a new state lead contract (DBS&A, 2015). The work plan was approved on June 23, 2016 under WPID #3873 (NMED, 2016).

This report documents first semiannual groundwater monitoring conducted at the site by DBS&A on July 29, 2016.

A. Scope of Work

The scope of work included semiannual groundwater monitoring consisting of gauging fluid levels in all accessible site monitor wells, including MW-1A, MW-2A, and MW-3, and collecting groundwater samples from the wells for laboratory analysis. Groundwater samples were analyzed for volatile organic compounds (VOCs) including benzene, toluene, ethylbenzene, total xylenes, methyl tertiary-butyl ether (MTBE), 1,2-dibromoethane (EDB), 1,2-dichloroethane (EDC), and total naphthalenes (naphthalene plus methylnaphthalenes) using EPA method 8260B (full list).

Site Name: Leonard's Conoco
PSTB Facility #: 29084

Date: September 8, 2016

Page 4

I. INTRODUCTION (Continued)

B. Monitoring Highlights

The principal accomplishments of this reporting period include the following:

 Gauged fluid levels in monitor wells MW-1A, MW-2A, and July 29, 2016 MW-3

 Collected groundwater samples from monitor wells MW-1A, MW-2A, and MW-3 for laboratory analysis

Prepared Form 1216 semiannual monitoring report
 September 2016

All monitoring activities were completed in accordance with the approved work plan.

Site Name: <u>Leonard's Conoco</u>
PSTB Facility #: <u>29084</u>
Date: <u>September 8, 2016</u>

Page 5

II. ACTIVITIES PERFORMED DURING THIS MONITORING EVENT

A. Remediation System

A remediation system has not been installed or operated at the site.

B. System Operation

A remediation system has not been installed or operated at the site.

C. Monitoring Activities

Well Inventory and Inspection

On July 29, 2016, DBS&A personnel located monitor wells MW-1A, MW-2A, and MW-3. The locations of the site monitor wells are shown on Figure 2. Attempts to locate monitor well MW-4 with a metal detector were unsuccessful. The concrete pads, well vaults, and well casings for MW-1A and MW-2A were found to be intact and in good shape. The total depth (TD) tagged for MW-1A was 18.69 feet below the top of casing (btoc), slightly shallower than the TD of 19.70 feet btoc reported by HAI (2014). The TD of MW-2A could not be tagged due to an intrusion of roots into the well casing; however, DBS&A was able to push the roots down with a bailer to a depth of 14.32 feet btoc where water was encountered. HAI reported the TD of the well to be 13.70 feet btoc (HAI, 2014), but it is believed that this was an error as DBS&A was able to penetrate the roots to a greater depth.

The concrete pad for MW-3 was found to be broken. The vault, and possibly the well casing, were lifted up approximately 1 foot above grade. Photos showing the damage to the MW-3 surface completion are provided in Appendix 1. Employees working in the Magistrate Court building were not aware of what caused the damage to the well. Although the surface completion is destroyed, a total depth of 28.62 feet bloc was tagged by DBS&A, which is generally consistent with the TD of 28.80 reported by HAI in March 2014 prior to the damage (HAI, 2014).

Groundwater Monitoring

On July 29, 2016, DBS&A personnel measured the depth to water in wells MW-1A, MW-2A, and MW-3 using an electronic interface probe. Nonaqueous-phase liquid (NAPL) was not detected in any of the wells. Table 1 summarizes water level measurements and potentiometric surface elevations from this and previous monitoring events conducted at the site. The most recent water level data were used to prepare a potentiometric surface elevation map for the site, which is included as Figure 3.

Groundwater samples were collected on July 29, 2016 after purging monitor wells MW-1A MW-2A, and MW-3 in accordance with the work plan. DBS&A personnel followed standard operating procedures and the NMED Underground Storage Tank Bureau Guidelines for Corrective Action during the collection of groundwater samples. The sampling protocol is outlined in Appendix 2. Dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, specific conductivity, and temperature were measured in the field during purging using a YSI 556 Multiprobe System (MPS) meter and recorded in the field notes (Appendix 3).

Site Name: <u>Leonard's Conoco</u>
PSTB Facility #: <u>29084</u>
Date: <u>September 8, 2016</u>

Page 6

II. ACTIVITIES PERFORMED DURING THIS MONITORING EVENT (Continued)

Groundwater samples were analyzed for the constituents specified in the scope of work. All laboratory analyses were performed by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico. Analytical organic chemistry data from this and previous monitoring events are summarized in Table 2. Groundwater samples were not analyzed for inorganics during this monitoring event in accordance with the work plan. The laboratory report, including chain of custody documentation, is provided in Appendix 4. Figure 4 shows the distribution of dissolved-phase contaminants in groundwater for the wells sampled on July 29, 2016.

D. System Performance and Effectiveness

A remediation system has not been installed or operated at the site.

E. Containment of Release

Samples from monitor well MW-1A contained benzene and total naphthalene concentrations above the NMWQCC standards. No COCs were detected above laboratory reporting limits in samples collected from monitor wells MW-2A and MW-3 during this monitoring event. The dissolved-phase plume remains undefined downgradient of MW-1A.

Site Name: <u>Leonard's Conoco</u>
PSTB Facility #: <u>29084</u>
Date: <u>September 8, 2016</u>

Page 7

III.SUMMARY AND CONCLUSIONS

A. Trends or Changes in Site Conditions

Since the last monitoring event in March 2014, the water level in monitor well MW-1A decreased 0.2 foot (Table 1). The water level in monitor well MW-3 also decreased, but by how much cannot be determined because of the damage to the well. Monitor well MW-2A was reported by HAI to be dry at 13.70 feet btoc during the last monitoring event. A graph showing changes in groundwater elevations in site monitor wells over time is provided in Appendix 5. The direction of groundwater flow is to the west-northwest at a gradient of approximately 0.01 foot per foot (ft/ft) (Figure 3). Even with the damage to the well, the flow direction is generally consistent with the northwest flow direction reported by HAI in March 2014 prior to the damage (HAI, 2014).

Table 2 provides a summary of analytical organic chemistry data from this and previous groundwater monitoring events conducted at the site. Graphs showing changes in select COC concentrations in site monitor wells over time are provided in Appendix 5. The following changes were noted since the last monitoring event in March 2014:

- MW-1A: The benzene concentration decreased from 250 to 100 micrograms per liter (μg/L), and the total naphthalenes concentration decreased from 84 to 37.1 μg/L; both concentrations remain above their respective NMWQCC standards.
- MW-2A: This well was reported to be dry during the last monitoring event and was not sampled. During the current monitoring event, concentrations of all COCs remained below laboratory reporting limits. No COCs have been detected at concentrations above laboratory reporting limits since the well was first sampled in December 2000 (four monitoring events).
- MW-3: Concentrations of all COCs remained below laboratory reporting limits. No COCs have been detected at concentrations above NMWQCC standards since the well was first sampled in March 1995 (nine monitoring events).

B. Assessment of Remediation System

A remediation system has not been installed or operated at the site.

C. Recommendations

Benzene concentrations continue to fluctuate in monitor well MW-1A. Although the concentrations have decreased from the high recorded in March 1995, they have not changed significantly since November 1997, fluctuating between 57 μ g/L and 250 μ g/L. The total naphthalenes concentration data is limited to three monitoring events: October 2013, March 2014, and July 2016. The concentration decreased by about half during this monitoring event compared to the two previous monitoring events, and may be showing a decreasing trend; however, more sampling is required to confirm a trend.

It is recommended that groundwater monitoring continue at the site under the current approved work plan. It is also recommended that the surface completion for MW-3 be replaced as soon as possible. The bentonite seal has been compromised, which could provide a potential direct

Page 8

III.SUMMARY AND CONCLUSIONS (Continued)

pathway for contaminants from the surface to groundwater. Once the surface completion is replaced, a new survey should be performed to determine the top of casing elevation.

Page 9

REFERENCES

Daniel B. Stephens & Associates, Inc. (DBS&A). 2015. Work plan for semiannual groundwater monitoring, Leonard's Conoco, 603 Parker Avenue, Santa Rosa, New Mexico. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau, Santa Fe, New Mexico. July 24, 2015.

- Haller & Associates, Inc. (HAI). 2014. *Groundwater monitoring and monitor well abandonment report, Leonard's Conoco, Santa Rosa, New Mexico*. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau. April 1, 2014.
- New Mexico Environment Department (NMED). 2016. Letter from Lorena Goerger to Michael McVey, Daniel B. Stephens & Associates, Inc., regarding continued Phase 1 fixed-price work plan approval for Leonard's Conoco, 603 Parker Ave., Santa Rosa, New Mexico. June 23, 2016.
- Tecumseh Professional Associates, Inc. (TPA). 2009. Site evaluation and groundwater monitoring report 6-09, Former Leonard's Conoco, 603 Parker Avenue, Santa Rosa, New Mexico. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau. June 2009.

Figures

LIST OF FIGURES

Figu	re	Included	N/A
1	Area Map	X	
2	Site Map	X	
3	Potentiometric Surface Elevations, July 29, 2016	X	
4	Distribution of Dissolved-Phase Contaminants, July 29, 2016	Χ	

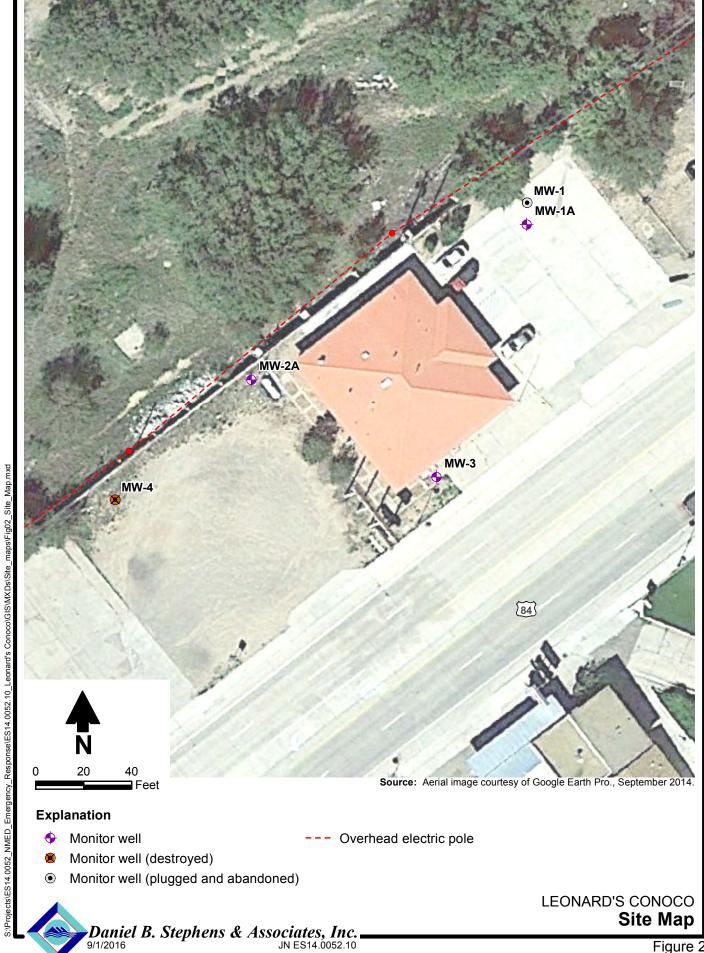


Figure 2

Figure 3

or greater than the applicable standard.

Distribution of Dissolved-Phase Contaminants July 29, 2016

Daniel B. Stephens & Associates, Inc. JN ES14.0052.10

Tables

LIST OF TABLES

Table		Included	N/A
1	Summary of Historical Fluid Level Measurements	Х	
2	Summary of Groundwater Analytical Organic Chemistry Data	Χ	

Table 1. Summary of Historical Fluid Level Measurements Leonard's Conoco, Santa Rosa, New Mexico

	Top of Casing		Depth to	Depth to	Groundwater	
	Elevation ^a	Date	Water	NAPL	Elevation	
Well Name	(ft msl)	Measured	(ft btoc)	(ft btoc)	(ft msl)	
MW-1	4595.44	03/29/95	14.40		4581.04	
		09/23/01	14.04		4581.40	
		06/11/09		Well not found		
		10/30/13		Dry at 9.40		
		03/24/14	Plug	ged and aband	oned	
MW-1A	4616.02	10/30/13	13.96		4602.06	
		03/24/14	15.30		4600.72	
		07/29/16	15.50		4600.52	
MW-2	4595.68	03/29/95	14.76	_	4580.92	
		03/20/00	Plugged and abandoned			
MW-2A	4613.39	09/23/01		_	4580.85	
		06/11/09	Dry at 13.97 b			
		10/30/13	12.54	_	4600.85	
		03/24/14		Dry at 13.70 b		
		07/29/16	14.32		4599.07	
MW-3	4615.02	03/29/95	10.10		4604.92	
		09/23/01	12.49	_	4602.53	
		06/11/09	13.90	_	4601.12	
		10/30/13	12.50	_	4602.52	
		03/24/14	14.04	_	4600.98	
		07/29/16	14.64		4600.38 ^{c,d}	
MW-4	4590.18	03/29/95	10.86	_	4579.32	
		09/23/01	9.57		4580.61	
		06/11/09		Well not found		
		10/30/13		Well not found		

Note: Data prior to July 2016 reported by Haller & Associates, Inc., April 1, 2014.

ft msl = Feet above mean sea level

NAPL = Nonaqueous-phase liquid

ft btoc = Feet below top of casing -- = Not detected

^a MW-1A, MW-2A, and MW-3 were surveyed by Dennis Engineering on November 7, 2013.

^b Roots in well casing were not penetrated beyond reported depth.

^c Top of casing elevation questionable; concrete pad, vault, and well casing lifted up approx. 1 foot above grade.

^d Groundwater elevation questionable due to unknown change in top of casing elevation.

Table 2. Summary of Groundwater Analytical Organic Chemistry Data Leonard's Conoco, Santa Rosa, New Mexico

			Concentration (µg/L) a						
	Date			Ethyl-	Total				Total
Monitor Well	Sampled	Benzene	Toluene	benzene	Xylenes	MTBE	EDB	EDC	Naphthalenes
NMWQCC .	Standard	10	750	750	620	100 ^b	0.1	10	30
MW-1	03/31/95	440	26	400	81	320			
	11/07/97	180	2.7	36	6.5	150	ND	13	
	10/18/98	83	2.7	71	12	43	ND	2.2	
	03/20/99	57	ND	90	4.1	10	ND	ND	
	12/31/00				Well r	ot sampled			
	10/25/13			W	ell dry at 9.4	0 feet - not s	ampled		
	03/24/14				Plugged a	and abandon	ied		
MW-1A	10/25/13	79	<5.0	210	<7.5	<5.0	<5.0 °	<5.0	79
	03/24/14	250	<5.0	250	<7.5	18	<5.0 °	<5.0	84
	07/29/16	100	<1.0	38	<1.5	21	<1.0 ^c	<1.0	37.1
MW-2	03/31/95	420	6.4	540	86	4.5			
	11/07/97	3.3	ND	1.6	2.3	1.2	ND	15	
	10/18/98	6.3	ND	0.7	2.5	ND	ND		
	03/20/00	Plugged and abandoned							
MW-2A	12/31/00	ND	ND	ND	ND	ND	ND	ND	
	09/23/01	ND	ND	ND	ND	ND	ND	ND	
	06/11/09		Well dry at 13.97 feet - not sampled						
	10/25/13	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0 ^c	<1.0	<4.0
	03/24/14			We	ell dry at 13.7	70 feet - not	sampled		
	07/29/16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0 ^c	<1.0	<10
MW-3	03/31/95	39	8.2	6.3	15	ND			
	11/07/97	ND	ND	ND	ND	ND	ND	3.2	
	10/18/98	ND	ND	ND	ND	ND	ND	0.8	
	03/20/99	ND	ND	ND	ND	ND	ND	0.6	
	12/31/00	ND	ND	ND	ND	ND	ND	ND	

Table 2. Summary of Groundwater Analytical Organic Chemistry Data Leonard's Conoco, Santa Rosa, New Mexico

			Concentration (µg/L) a						
	Date			Ethyl-	Total				Total
Monitor Well	Sampled	Benzene	Toluene	benzene	Xylenes	MTBE	EDB	EDC	Naphthalenes
NMWQCC :	Standard	10	750	750	620	100 ^b	0.1	10	30
MW-3 (cont.)	09/23/01	ND	ND	ND	ND	ND	ND	ND	
	06/11/09	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0 °	<1.0	<10
	10/25/13	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0 °	<1.0	<4.0
	03/24/14	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0 °	<1.0	<4.0
	07/29/16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0 °	<1.0	<10
MW-4	03/29/95	<0.5	3.0	< 0.5	2.9	<2.5			
	11/07/97	ND	ND	ND	ND	ND	ND	ND	
	10/18/98	ND	ND	ND	ND	ND	ND	0.9	
	03/20/99	ND	ND	ND	ND	ND	ND	0.3	
	12/31/00	ND	ND	ND	ND	ND	ND	ND	
	09/23/01	ND	ND	ND	ND	ND	ND	ND	
	06/11/09		Well not found						
	10/25/13				Well	not found			

Bold indicates value that exceeds the New Mexico Water Quality Control Commission (NMWQCC) standard.

Note: Data prior to July 2016 reported by Haller & Associates, Inc., April 1, 2014.

μg/L = Micrograms per liter

MTBE = Methyl tertiary-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

--- = Not analyzed

ND = Non-detect

^a Analyzed by U.S. EPA method 8260B, unless otherwise noted.

^b MTBE standard is set by the New Mexico Environmental Improvement Board.

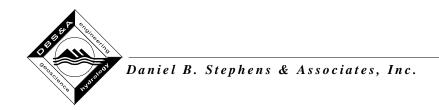
^c Laboratory reporting limit is equal to or greater than the applicable standard.

Appendices

LIST OF APPENDICES

App	endix	Included	N/A
1	Photographic Documentation	X	
2	Sampling Protocol	Χ	
3	Field Notes	Χ	
4	Laboratory Report	Χ	
5	Graphs Showing Changes in Groundwater Elevations and Contaminant Concentrations in Site Wells over Time	Х	

Appendix 1
Photographic Documentation


1. Damaged monitor well MW-3 surface completion.

2. Interior of monitor well MW-3 well vault.

Appendix 2
Sampling Protocol

Appendix 2. Sampling Protocol

2.1 Fluid Level and Parameter Measurements

Prior to collection of groundwater samples, a Solinst interface probe will be used to determine depths to water and nonaqueous-phase liquid (NAPL), if present. Water level data will be used to construct a site potentiometric surface map. A YSI 556 Multiprobe System (MPS) meter or equivalent device will be used to measure specific conductivity, pH, temperature, dissolved oxygen (DO), and oxidation-reduction potential (ORP). Field parameters will be measured at intervals of no less than once per casing volume during purging of a well for sampling.

2.2 Groundwater Monitor Well Sampling

To ensure a fresh flow of groundwater into the well bore, a minimum of three casing volumes will be removed from each well prior to sampling. If a well is purged dry, it will be sampled when the well has recharged. Wells will be purged and sampled using dedicated, disposable, polyethylene bailers. To minimize volatilization and ensure sample integrity, dedicated, disposable, polyethylene bottom-emptying devices will be used to transfer groundwater samples from the bailers to the appropriate sample containers.

Samples analyzed for volatile organic analytes (VOAs) will be collected in 40-milliliter (mL) glass bottles containing mercuric chloride preservative and capped with Teflon septa caps. Samples will be collected in a manner that prevents headspace in the bottles. Samples analyzed for dissolved iron, lead, and manganese will be field-filtered with 0.45-micron disposable filters, collected in 250-mL plastic containers, and preserved with nitric acid to a pH of less than 2. Samples analyzed for nitrate and sulfate will be collected in 500-mL plastic containers containing no preservative.

Immediately after collection, the sample containers will be placed on ice in an insulated cooler for delivery to the laboratory for analyses. Groundwater samples will be accompanied by full chain of custody documentation at all times.

Appendix 3 Field Notes

		\
Projects (continued)	7/29/16	Pro
	1150 onsite	
	HUELDE GUM	
	Weather: Cloar	78°F
	Bosin Locatina u	rells
	-X-may-3 s badly c	lamaged
	motes yer ou.	
	DES Calibrate UK	
	DA 700	
	4,4	
	100	
	50,000	
	DED 220.0	
	25,00	10.25 ng/C
	1015 300	6/2016
	100 segu gargero a	70
		a man a d
	IP WELLID DEP DEW	Comment
	Unknow (0) 11/02	100/5
	28.62 mw-3 - 14.64	Damaged
	1819 mw-1A - 15.50	
	Note: MW-3 appears	e have
	bon Dulled up to	· Labore
	ande, the moons	trate Court
	olenies Knowing	howlong
	Thom boen day	naged!
	1350 DNB EX site; Soundles	spriserved
	mice. U	x 7/29/16

Daniel B. Stephens & Associates, Inc.

GROUNDWATER MONITORING DATA SHEET

Project Nar	ne: Leonar	d's Conoco	Sa	ampler: Patr	ice Barlow	*
Project #: E	ES14.0052.	10	S	ample Date:	7/29/16	
Project Mar	nager: Mike	McVey		ample Time:)
Depth to NA Depth to Wa Total Depth Note: One casing vo	eter: APL: ater: of Well: Dlume (SCH 40)	— (fe 4.32 (fe an Khown) PVC): 2.0" ID	eet btoc) Cas	ght of Water sing Volume: ge Volume: _ ge Method: _ ft; 4.0" = 0.65 ga	pailer	(feet) (gal) (gal) 7 gal/ft
Groundwai	ter Paramet	ers:		1	1	
Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)
Initial	759	22.72	2895	7.9	4.68	
1			·			
2						jan ang mer
3						
Sample Des	scription:	3Vl	OAS Hace	2 prose well de	erved a ue to	ook
Physical Ob		clan		uh, 00	lerloss	
Analytical M	ethod(s): <u>82</u>	260B				

Daniel B. Stephens & Associates, Inc.

GROUNDWATER MONITORING DATA SHEET

Project Nar	_{ne:} Leonar	d's Conoco	Sa	ampler: Patr	ice Barlow				
Project #: E	ES14.0052.	.10	Sa	ample Date:	7/29/16				
	nager: Mike		Sa	ample Time:	130C)			
Well #: MV	V-3	_	_			2			
Well Diameter:(inches) Height of Water Column: <u>13.98</u> (feet									
Depth to NA	APL:	(fe	eet btoc) Cas	sing Volume:	2.2	<u></u> (gal)			
Depth to Wa	ater: / <	1). (a) (fe	eet btoc) Pur	ge Volume: _	6.7	(gal)			
Total Depth	of Well:	28.60	(feet) Pur	ge Method: <u></u>	pailer				
Note:	duma (CCU 40	ט מייים איני	casing = 0.16 gal/t	9- 4 0" - 0 GE ~:	al/ff: 6 0" - 1 4.	7 gal/ft			
One casing vo	Junie (SCH 40	JPVG). 2.0 ID	casing – 0. 16 gain	it, 4.0 – 0.65 ga	ai/it, 6.0 – 1.4	r gaint			
Groundwat	ter Paramet	ters:							
Casing		Temp	Conductivity	ORP	D.O.	Turbidity			
Volume	рН	(°F)	(µS/cm)	(mv)	(mg/L)	(NTU)			
Initial	7.11	20.42	3536	70.7	2.16				
1	7.10	20.24	3451	73.8	2.10				
2	7.10	19.82	34.57	78.8	1.64				
3	7.10	19.43	3/93	82.5	1.44				
		2 ((1))	4000	¥	2010 1				
Sample Des	scription:	SICH	, rigida	- prese	sues				
Physical Observations: Cloudy brown oder 685									
Analytical Method(s): 8260B									

Daniel B. Stephens & Associates, Inc.

GROUNDWATER MONITORING DATA SHEET

Duelle of New	ne: Leonard	d's Conoco	0	ampler: Patr	ice Barlow				
	ne: <u>10011a1</u> ES14.0052.			ampler: <u>1 att</u> ample Date: _	/				
	nager: Mike			ample Date:	12 26	•			
Project Mar	nager:	Wovey	১	ample lime:	1300				
Well #: MV	V-1A		_		_				
Well Diameter: (inches) Height of Water Column: 3.19 (feet)									
Depth to NAPL:(feet bloc) Casing volume:(gai)									
Depth to Water: 15.50 (feet btoc) Purge Volume: 1.53 (gal)									
Total Depth	of Well:	8.69	(feet) Pur	ge Method: <u>t</u>	pailer				
Note: One casing vo	olume (SCH 40	PVC): 2.0" ID	casing = 0.16 gal/	ft; 4.0" = 0.65 ga	al/ft; 6.0" = 1.4	7 gal/ft			
Groundwat	ter Paramet	ers:							
Casing Volume	рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)			
Initial	7.03	21.52	3144	-127.6	6.89				
1	7.06	19.76	3125	732.4	1.49				
2	7.06	19.LET	3110	-131.7	1:32				
3		24							
Sample Description: 3 VOAs H3Claproscruca.									
Physical Observations: <u>Clear, colorles</u> , HCder									
Analytical Method(s): 8260B									

Appendix 4
Laboratory Report

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

August 15, 2016

Mike McVey

Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100

Albuquerque, NM 87109 TEL: (505) 822-9400

FAX (505) 822-8877

RE: Leonards Conoco OrderNo.: 1608065

Dear Mike McVey:

Hall Environmental Analysis Laboratory received 4 sample(s) on 8/1/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **1608065**

Date Reported: 8/15/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: MW-2A

 Project:
 Leonards Conoco
 Collection Date: 7/29/2016 12:30:00 PM

 Lab ID:
 1608065-001
 Matrix: AQUEOUS
 Received Date: 8/1/2016 3:45:00 PM

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch
PA METHOD 8260B: VOLATILES			Analyst: BCN			
Benzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Toluene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Ethylbenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Naphthalene	ND	2.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1-Methylnaphthalene	ND	4.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
2-Methylnaphthalene	ND	4.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Acetone	ND	10	μg/L	1	8/9/2016 6:21:00 PM	R36332
Bromobenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Bromodichloromethane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Bromoform	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Bromomethane	ND	3.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
2-Butanone	ND	10	μg/L	1	8/9/2016 6:21:00 PM	R36332
Carbon disulfide	ND	10	μg/L	1	8/9/2016 6:21:00 PM	R36332
Carbon Tetrachloride	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Chlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Chloroethane	ND	2.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Chloroform	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Chloromethane	ND	3.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
2-Chlorotoluene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
4-Chlorotoluene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
cis-1,2-DCE	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Dibromochloromethane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Dibromomethane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,1-Dichloroethane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,1-Dichloroethene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,2-Dichloropropane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
1,3-Dichloropropane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332
2,2-Dichloropropane	ND	2.0	μg/L	1	8/9/2016 6:21:00 PM	R36332

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report

Lab Order **1608065**Date Reported: **8/15/2016**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: MW-2A

 Project:
 Leonards Conoco
 Collection Date: 7/29/2016 12:30:00 PM

 Lab ID:
 1608065-001
 Matrix: AQUEOUS
 Received Date: 8/1/2016 3:45:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES				Analyst: BCN			
1,1-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Hexachlorobutadiene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
2-Hexanone	ND	10	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Isopropylbenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
4-Isopropyltoluene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
4-Methyl-2-pentanone	ND	10	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Methylene Chloride	ND	3.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
n-Butylbenzene	ND	3.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
n-Propylbenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
sec-Butylbenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Styrene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
tert-Butylbenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
trans-1,2-DCE	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Trichlorofluoromethane	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Vinyl chloride	ND	1.0	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Xylenes, Total	ND	1.5	μg/L	1	8/9/2016 6:21:00 PM	R36332	
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	8/9/2016 6:21:00 PM	R36332	
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	8/9/2016 6:21:00 PM	R36332	
Surr: Dibromofluoromethane	99.0	70-130	%Rec	1	8/9/2016 6:21:00 PM	R36332	
Surr: Toluene-d8	99.6	70-130	%Rec	1	8/9/2016 6:21:00 PM	R36332	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1608065**

Date Reported: 8/15/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: MW-3

 Project:
 Leonards Conoco
 Collection Date: 7/29/2016 1:00:00 PM

 Lab ID:
 1608065-002
 Matrix: AQUEOUS
 Received Date: 8/1/2016 3:45:00 PM

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: BCN
Benzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Toluene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Ethylbenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Naphthalene	ND	2.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1-Methylnaphthalene	ND	4.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
2-Methylnaphthalene	ND	4.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Acetone	ND	10	μg/L	1	8/9/2016 6:44:00 PM	R36332
Bromobenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Bromodichloromethane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Bromoform	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Bromomethane	ND	3.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
2-Butanone	ND	10	μg/L	1	8/9/2016 6:44:00 PM	R36332
Carbon disulfide	ND	10	μg/L	1	8/9/2016 6:44:00 PM	R36332
Carbon Tetrachloride	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Chlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Chloroethane	ND	2.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Chloroform	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Chloromethane	ND	3.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
2-Chlorotoluene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
4-Chlorotoluene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
cis-1,2-DCE	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Dibromochloromethane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Dibromomethane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,1-Dichloroethane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,1-Dichloroethene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,2-Dichloropropane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,3-Dichloropropane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
2,2-Dichloropropane	ND	2.0	μg/L	1	8/9/2016 6:44:00 PM	R36332

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S $\,\,$ $\,$ % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical ReportLab Order **1608065**

Date Reported: 8/15/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: MW-3

 Project:
 Leonards Conoco
 Collection Date: 7/29/2016 1:00:00 PM

 Lab ID:
 1608065-002
 Matrix: AQUEOUS
 Received Date: 8/1/2016 3:45:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: BCN
1,1-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Hexachlorobutadiene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
2-Hexanone	ND	10	μg/L	1	8/9/2016 6:44:00 PM	R36332
Isopropylbenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
4-Isopropyltoluene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
4-Methyl-2-pentanone	ND	10	μg/L	1	8/9/2016 6:44:00 PM	R36332
Methylene Chloride	ND	3.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
n-Butylbenzene	ND	3.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
n-Propylbenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
sec-Butylbenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Styrene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
tert-Butylbenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
trans-1,2-DCE	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Trichlorofluoromethane	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Vinyl chloride	ND	1.0	μg/L	1	8/9/2016 6:44:00 PM	R36332
Xylenes, Total	ND	1.5	μg/L	1	8/9/2016 6:44:00 PM	R36332
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	8/9/2016 6:44:00 PM	R36332
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	8/9/2016 6:44:00 PM	R36332
Surr: Dibromofluoromethane	98.4	70-130	%Rec	1	8/9/2016 6:44:00 PM	R36332
Surr: Toluene-d8	99.6	70-130	%Rec	1	8/9/2016 6:44:00 PM	R36332

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1608065**Date Reported: **8/15/2016**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: MW-1A

 Project:
 Leonards Conoco
 Collection Date: 7/29/2016 1:25:00 PM

 Lab ID:
 1608065-003
 Matrix: AQUEOUS
 Received Date: 8/1/2016 3:45:00 PM

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: BCN
Benzene	100	10	μg/L	10	8/10/2016 5:31:00 PM	R36378
Toluene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Ethylbenzene	38	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Methyl tert-butyl ether (MTBE)	21	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,2,4-Trimethylbenzene	2.3	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Naphthalene	28	2.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1-Methylnaphthalene	9.1	4.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
2-Methylnaphthalene	ND	4.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Acetone	ND	10	μg/L	1	8/9/2016 7:07:00 PM	R36332
Bromobenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Bromodichloromethane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Bromoform	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Bromomethane	ND	3.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
2-Butanone	ND	10	μg/L	1	8/9/2016 7:07:00 PM	R36332
Carbon disulfide	ND	10	μg/L	1	8/9/2016 7:07:00 PM	R36332
Carbon Tetrachloride	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Chlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Chloroethane	ND	2.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Chloroform	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Chloromethane	ND	3.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
2-Chlorotoluene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
4-Chlorotoluene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
cis-1,2-DCE	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Dibromochloromethane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Dibromomethane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,1-Dichloroethane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,1-Dichloroethene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,2-Dichloropropane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,3-Dichloropropane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
2,2-Dichloropropane	ND	2.0	μg/L	1	8/9/2016 7:07:00 PM	R36332

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical ReportLab Order **1608065**

Date Reported: 8/15/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Client Sample ID: MW-1A

 Project:
 Leonards Conoco
 Collection Date: 7/29/2016 1:25:00 PM

 Lab ID:
 1608065-003
 Matrix: AQUEOUS
 Received Date: 8/1/2016 3:45:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: BCN
1,1-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Hexachlorobutadiene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
2-Hexanone	ND	10	μg/L	1	8/9/2016 7:07:00 PM	R36332
Isopropylbenzene	3.6	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
4-Isopropyltoluene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
4-Methyl-2-pentanone	ND	10	μg/L	1	8/9/2016 7:07:00 PM	R36332
Methylene Chloride	ND	3.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
n-Butylbenzene	ND	3.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
n-Propylbenzene	3.5	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
sec-Butylbenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Styrene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
tert-Butylbenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
trans-1,2-DCE	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Trichlorofluoromethane	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Vinyl chloride	ND	1.0	μg/L	1	8/9/2016 7:07:00 PM	R36332
Xylenes, Total	ND	1.5	μg/L	1	8/9/2016 7:07:00 PM	R36332
Surr: 1,2-Dichloroethane-d4	99.8	70-130	%Rec	1	8/9/2016 7:07:00 PM	R36332
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	8/9/2016 7:07:00 PM	R36332
Surr: Dibromofluoromethane	97.5	70-130	%Rec	1	8/9/2016 7:07:00 PM	R36332
Surr: Toluene-d8	98.2	70-130	%Rec	1	8/9/2016 7:07:00 PM	R36332

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1608065**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/15/2016

CLIENT: Daniel B. Stephens & Assoc.

Client Sample ID: TRIP BLANK

Project: Leonards Conoco Collection Date:

Lab ID: 1608065-004 **Matrix:** TRIP BLANK **Received Date:** 8/1/2016 3:45:00 PM

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: BCN
Benzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Toluene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Ethylbenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Naphthalene	ND	2.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1-Methylnaphthalene	ND	4.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
2-Methylnaphthalene	ND	4.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Acetone	ND	10	μg/L	1	8/9/2016 7:31:00 PM	R36332
Bromobenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Bromodichloromethane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Bromoform	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Bromomethane	ND	3.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
2-Butanone	ND	10	μg/L	1	8/9/2016 7:31:00 PM	R36332
Carbon disulfide	ND	10	μg/L	1	8/9/2016 7:31:00 PM	R36332
Carbon Tetrachloride	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Chlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Chloroethane	ND	2.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Chloroform	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Chloromethane	ND	3.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
2-Chlorotoluene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
4-Chlorotoluene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
cis-1,2-DCE	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Dibromochloromethane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Dibromomethane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,2-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,3-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,4-Dichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Dichlorodifluoromethane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,1-Dichloroethane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,1-Dichloroethene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,2-Dichloropropane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,3-Dichloropropane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
2,2-Dichloropropane	ND	2.0	μg/L	1	8/9/2016 7:31:00 PM	R36332

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 7 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1608065**Date Reported: **8/15/2016**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc.

Client Sample ID: TRIP BLANK

Project: Leonards Conoco Collection Date:

Lab ID: 1608065-004 **Matrix:** TRIP BLANK **Received Date:** 8/1/2016 3:45:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: BCN
1,1-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Hexachlorobutadiene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
2-Hexanone	ND	10	μg/L	1	8/9/2016 7:31:00 PM	R36332
Isopropylbenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
4-Isopropyltoluene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
4-Methyl-2-pentanone	ND	10	μg/L	1	8/9/2016 7:31:00 PM	R36332
Methylene Chloride	ND	3.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
n-Butylbenzene	ND	3.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
n-Propylbenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
sec-Butylbenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Styrene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
tert-Butylbenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
trans-1,2-DCE	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,1,1-Trichloroethane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,1,2-Trichloroethane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Trichloroethene (TCE)	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Trichlorofluoromethane	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
1,2,3-Trichloropropane	ND	2.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Vinyl chloride	ND	1.0	μg/L	1	8/9/2016 7:31:00 PM	R36332
Xylenes, Total	ND	1.5	μg/L	1	8/9/2016 7:31:00 PM	R36332
Surr: 1,2-Dichloroethane-d4	97.9	70-130	%Rec	1	8/9/2016 7:31:00 PM	R36332
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	8/9/2016 7:31:00 PM	R36332
Surr: Dibromofluoromethane	96.7	70-130	%Rec	1	8/9/2016 7:31:00 PM	R36332
Surr: Toluene-d8	101	70-130	%Rec	1	8/9/2016 7:31:00 PM	R36332

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 8 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1608065**

15-Aug-16

Client: Daniel B. Stephens & Assoc.

Project: Leonards Conoco

Sample ID vsb fridge

Sample ID 100ng lcs 2	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	n ID: R3	6332	F	RunNo: 3	6332				
Prep Date:	Analysis D	ate: 8/	9/2016	8	SeqNo: 1	126005	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	91.3	70	130			
Toluene	18	1.0	20.00	0	92.1	70	130			
Chlorobenzene	19	1.0	20.00	0	93.6	70	130			
1,1-Dichloroethene	18	1.0	20.00	0	89.7	70	130			
Trichloroethene (TCE)	18	1.0	20.00	0	88.2	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130			
Surr: Dibromofluoromethane	10		10.00		103	70	130			
Surr: Toluene-d8	10		10.00		99.8	70	130			

Client ID: PBW	Batch	n ID: R3	86332	F	RunNo: 3	6332				
Prep Date:	Analysis D)ate: 8	/9/2016	S	SeqNo: 1	126007	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

TestCode: EPA Method 8260B: VOLATILES

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 9 of 11

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1608065**

15-Aug-16

Client: Daniel B. Stephens & Assoc.

Project: Leonards Conoco

Sample ID vsb fridge	SampType: MBLK		Tes	tCode: El	PA Method	8260B: VOL	ATILES			
Client ID: PBW	Batch	n ID: R3	6332	RunNo: 36332						
Prep Date:	Analysis D	oate: 8/	9/2016	S	SeqNo: 1	126007	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
.,2,5 monoropropuno	112	2.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 10 of 11

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1608065**

15-Aug-16

Client: Daniel B. Stephens & Assoc.

Project: Leonards Conoco

Sample ID vsb fridge	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: R3	6332	F	RunNo: 3	6332				
Prep Date:	Analysis D	ate: 8/	9/2016	5	SeqNo: 1	126007	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	10		10.00		103	70	130			
Surr: Toluene-d8	10		10.00		99.6	70	130			
Sample ID 100ng Ics	SampT	ype: LC	:s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Sample ID 100ng Ics Client ID: LCSW	·	ype: LC			tCode: E		8260B: VOL	ATILES		
	·	n ID: R3	6378	F		6378	8260B: VOL. Units: μg/L	ATILES		
Client ID: LCSW	Batch	n ID: R3	6378 10/2016	F	RunNo: 3	6378		ATILES %RPD	RPDLimit	Qual
Client ID: LCSW Prep Date:	Batch Analysis D	n ID: R3 Pate: 8/	6378 10/2016	F	RunNo: 3 SeqNo: 1	6378 126802	Units: µg/L		RPDLimit	Qual
Client ID: LCSW Prep Date: Analyte	Batch Analysis D Result	n ID: R3 Pate: 8/	6378 10/2016 SPK value	F S SPK Ref Val	RunNo: 3 SeqNo: 1 %REC	6378 126802 LowLimit	Units: µg/L HighLimit		RPDLimit	Qual
Client ID: LCSW Prep Date: Analyte Benzene	Batch Analysis D Result	n ID: R3 Pate: 8/	6378 10/2016 SPK value 20.00	F S SPK Ref Val	RunNo: 3 SeqNo: 1 %REC 80.1	6378 126802 LowLimit 70	Units: µg/L HighLimit		RPDLimit	Qual
Client ID: LCSW Prep Date: Analyte Benzene Surr: 1,2-Dichloroethane-d4	Batch Analysis D Result 16 9.7	n ID: R3 Pate: 8/	6378 10/2016 SPK value 20.00 10.00	F S SPK Ref Val	RunNo: 3 SeqNo: 1 <u>%REC</u> 80.1 96.9	6378 126802 LowLimit 70 70	Units: µg/L HighLimit 130 130		RPDLimit	Qual

Sample ID rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	1D: R3	6378	F	RunNo: 3	6378				
Prep Date:	Analysis D	ate: 8/	10/2016	8	SeqNo: 1	126803	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	9.8		10.00		97.7	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	9.6		10.00		95.9	70	130			
Surr: Toluene-d8	9.9		10.00		98.9	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

D G 1 HN I D

Page 11 of 11

P Sample pH Not In Range

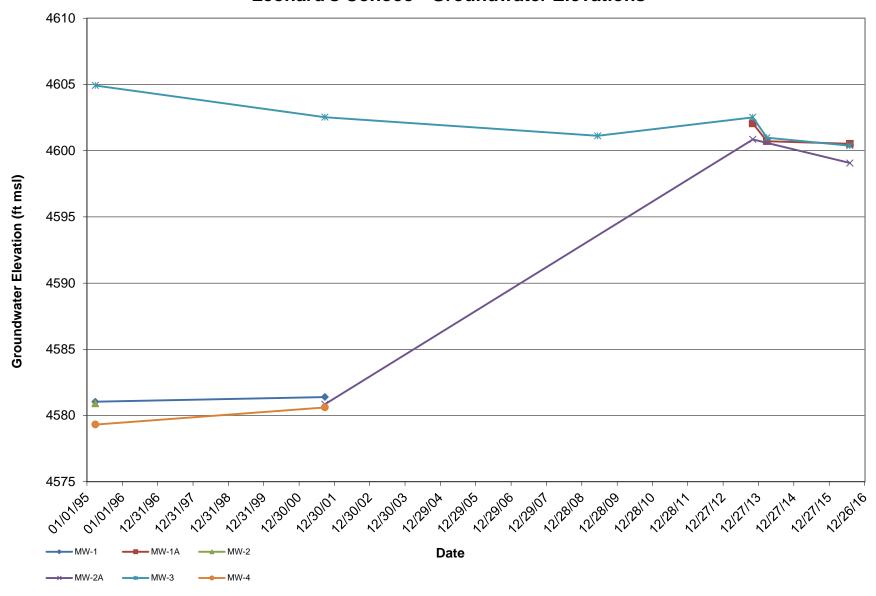
RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

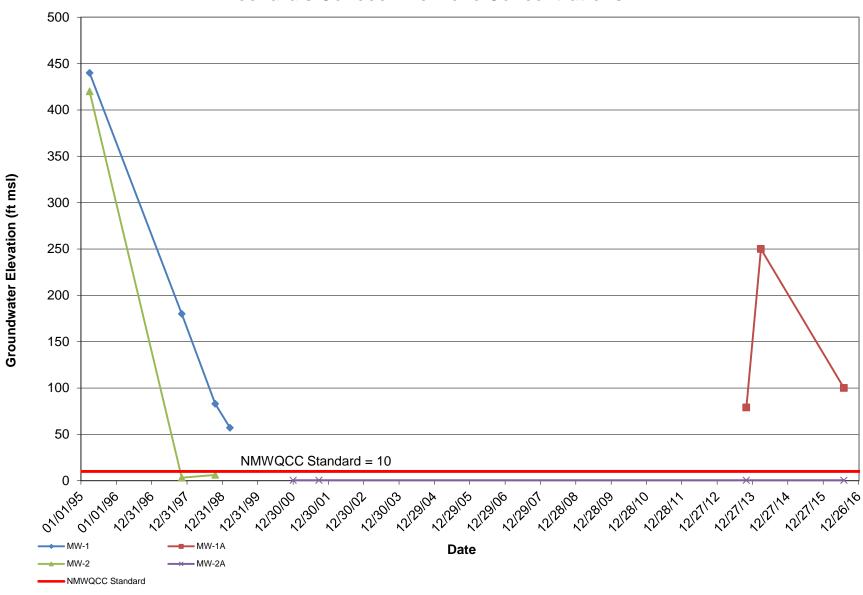
4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

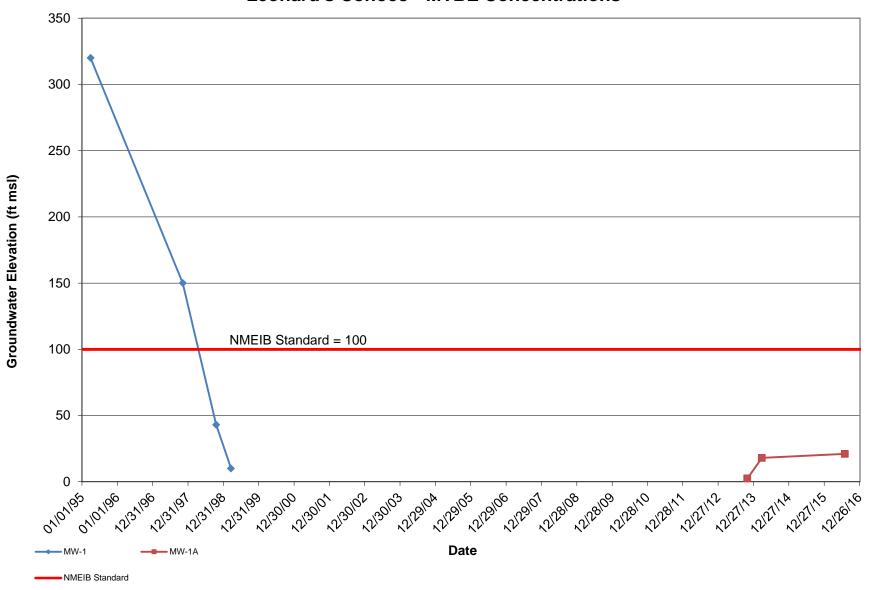
Sample Log-In Check List

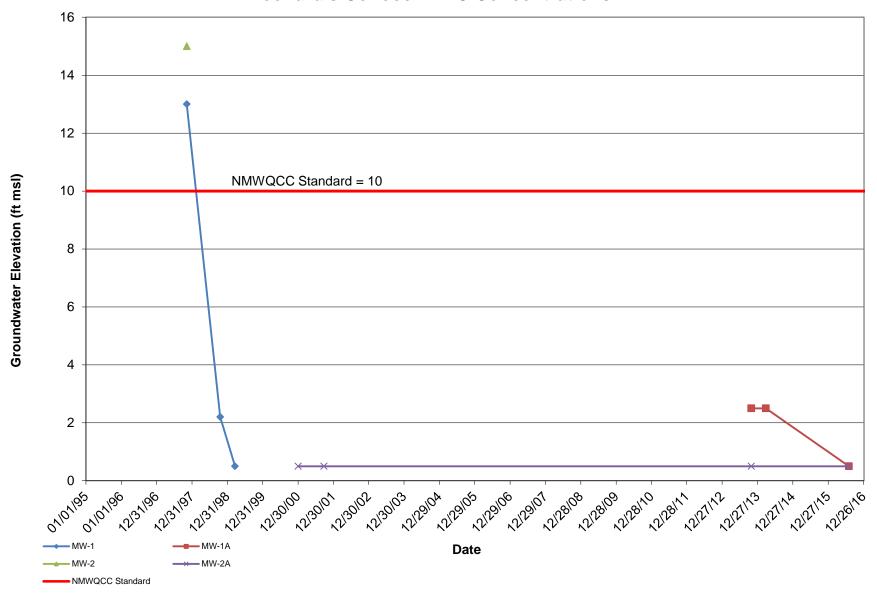

Client Name: DBS Work Order Number: 1608065 RcptNo: 1 Received by/date: Logged By: Ashley Gallegos 8/1/2016 3:45:00 PM 8/1/2016 4:21:52 PM **Ashley Gallegos** Completed By: 08/02/10 dJ\ Reviewed By: Chain of Custody Yes 🗌 No 🗌 Not Present 🗹 1. Custody seals intact on sample bottles? No 🗌 Not Present Yes 🔽 2. Is Chain of Custody complete? 3. How was the sample delivered? Client Log In No 🗌 NA 🗌 Yes 🔽 4. Was an attempt made to cool the samples? NA 🗍 Yes 🔽 No 🗆 Were all samples received at a temperature of >0° C to 6.0°C No 🗌 Yes 🗸 6. Sample(s) in proper container(s)? No 🗌 Yes 🗹 7. Sufficient sample volume for indicated test(s)? Yes 🗹 No 8. Are samples (except VOA and ONG) properly preserved? NA 🔲 Yes 🗌 No 🗸 9. Was preservative added to bottles? No 🗀 No VOA Vials Yes 🗸 10. VOA vials have zero headspace? Yes □ No 🗹 11. Were any sample containers received broken? # of preserved bottles checked Yes 🗸 No 🗀 for pH: 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗆 13. Are matrices correctly identified on Chain of Custody? Yes 🛂 Yes 🗸 Nο 14. Is it clear what analyses were requested? Yes 🗹 Checked by: No 🗔 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 No 🗌 NA 🗹 16. Was client notified of all discrepancies with this order? Person Notified: Date By Whom: eMail Phone Fax Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Seal Intact | Seal No Cooler No Temp ºC Condition Seal Date Signed By Good Not Present

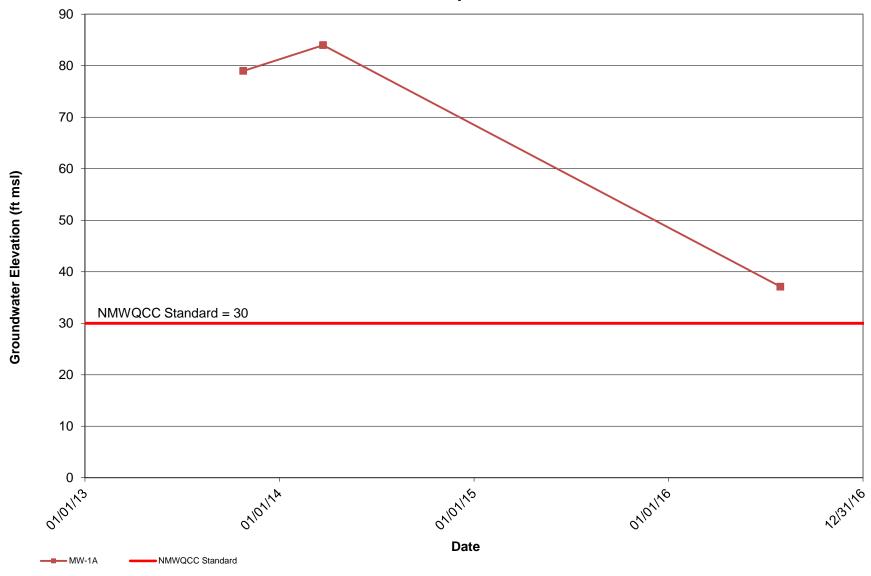
Chain-of-Custody Record	Turn-Around Time:	HALL ENVIRONMENTAL
ient:	▼Standard □ Rush	ANALYSIS LABORATORY
	Project Name:	www.hallenvironmental.com
30 20 9 or stemmi FAME Stell	Project #: ES14,0052,10	4901 Hawkins NE - Albuquerque, NM 87109
130 87119	Project #:	Tel. 505-345-3975 Fax 505-345-4107
none #: \$22-9460,	ES14,0052,10	Analysis Request
mail or Fax#: MMCVey(abbstephons	Project Manager:	S only) MRO) B's B's
A/QC Package: Standard Level 4 (Full Validation)	mike molvey	
ccreditation	Sampler: Ti Barlow	(O / DF (O / D
NELAP Other	On Ice: 1√Yes □ No	BE + TM BE + TPP (GRO / I (GRO / I) od 504.1) O or 8270 I,NO ₃ ,NC I,NO ₃ ,NC ides / 80ê ides / 80ê (Y or N)
EDD (Type)	Sample Temperature: 3-6-1-0=2-6	+ MTBE 015B (GI 015B (GI 015B (GI 015B (CI 015B (CI 0000) 8 Metals 8 Metals (VOA) (VOA) (VOA) Semi-VC
Date Time Matrix Sample Request ID	Container Preservative HEAL No.	X + MTBE + TM X + MTBE + TP 8015B (GRO / I (Method 418.1) (Method 504.1) 's (8310 or 827C A 8 Metals INS (F,CI,NO ₃ ,NC Pesticides / 80 INS (YOA) INS (Semi-VOA) INS (Semi-VOA) INS (Semi-VOA) INS (Semi-VOA) INS (Semi-VOA)
Sale Time Matrix Sample Request 10	Type and # Type Type	BTEX + MTBE + TMB's BTEX + MTBE + TPH (TPH 8015B (GRO / DR TPH (Method 418.1) EDB (Method 504.1) PAH's (8310 or 8270 SI RCRA 8 Metals Anions (F,CI,NO ₃ ,NO ₂ ,F 8081 Pesticides / 8082 8260B (VOA) 8270 (Semi-VOA) Air Bubbles (Y or N)
9/11/1230 6W MW-2A	31/2A8 Halls -001	
1/1300 1/MW-3	-002	
	1 -003	
J 1325 V MW-1A TripBlank	2VOAS V -004	
ate: Time: Relinquished by:	Received by: Date Time	Remarks:
1116 164512 2 7	08/116 1545	
ate: Time: Reinquished by:	Received by: Date Time	
		; <u></u>


Appendix 5

Graphs Showing Changes in Groundwater Elevations and Contaminant Concentrations in Site Wells over Time


Leonard's Conoco - Groundwater Elevations


Leonard's Conoco - Benzene Concentrations


Leonard's Conoco - MTBE Concentrations

Leonard's Conoco - EDC Concentrations

Leonard's Conoco - Total Naphthalenes Concentrations

