Groundwater Analysis Strategy Meeting

Presentation Overview

- Review
- Data Overview
- New analyses
- Considerations for next steps

Database

- URS Molycorp Database, V. 8.1 dated 11/30/04
- Just received new version data 2/15/05
 Will re-run analyses using this version

Preliminary List of Analytes

Aluminum	
Cadmium	
Chromium	
Cobalt	
Copper	
Iron	

Lead Manganese Molybdenum *Nickel* Sulfate *Zinc*

Conceptual Chemistry Data Analysis Approach

- What?
 - Substances
- Where?
 - R, M, T designations
 - Aquifer type
- When?
 - Pattern over time
 - Consistent, spill event
- To what degree?
 - Frequency of exceedence
 - Magnitude of exceedence Does this matter?

Water Quality Standards

- New Mexico State Standards
 - 20.6.2 NMAC, New Mexico Water Quality Control Commission Regulations
 - 20.6.2.3103 Standards for groundwater
 - Dissolved fraction only
 - 3 types of standards
 - Human Health
 - Other domestic
 - Irrigation

Data Overview

- Validated vs. non-validated data
- Sample sizes
 - M, R, T
 - Reference vs. assessment
 - Aquifer types
 - Direct comparisons for ref vs. assess
 - Time
 - Years
 - months

Sample sizes by Exposure Area

Aquifer type ("wb_zone") comparisons

Aquifer type ("wb_zone") comparisons

Reference

- Alluvial Aquifer
- Basal Alluvial Aquifer
- Basal Bedrock Aquifer
- Bedrock
- Bedrock/Colluvium
- Colluvium
- Unknown
- Upper Alluvial Aquifer

- Alluvial Aquifer
- Alluvial/Bedrock
- Alluvial/Colluvium
- Bedrock
- Colluvium
- Spring/Seep
- Unknown

Tailings

- Alluvial/Bedrock
- Basal Alluvial Aquifer
- Basal Bedrock Aquifer
- Spring/Seep
- Unknown
- Upper Alluvial Aquifer

Sample sizes by aquifer types

Number of Samples per Year

Analyses

- Exceedence analysis
 - Analytes
 - Exceed yes or no
 - Magnitude of exceedence
 - NM state standards
 - Dissolved fraction only

GIS/Mapping

- 3 sets of maps (M, R, T)
- For each analyte
- Layers for each aquifer type
- Labeled site names
- Purpose
 - Serve as a spatial scan to identify where exceedences are occurring
 - At aquifer level
 - Sample site level

Plots

- Exceedences at sample sites over time
- Too many plots to be useful until problem sites are identified
- Serve as tool to focus on specific sites later in analysis

Exceedence comparisons

- By exposure area, aquifer type and analyte
 - For direct comparison zones only
- Frequency (percent) exceedence
- Average magnitude of exceedence
- Maximum magnitude of exceedence

Next Step Considerations

- Sample size weighting
- Exceedence analysis using EPA standards
 - Diss or tot?
- Use total fraction would it make a difference?
- Lack of sulfate and fluoride reference data
- Revise analyte list?
- Further characterization of temporal trends
- Other types of analysis
 - I.e. hypothesis testing of reference vs. assessment concentrations.

