RECEIVED By PSTB at 1:00 pm, Jun 03, 2021

Baseline Parameter Ground Water Monitoring Report May 2021

Leonard's Conoco 603 Parker Avenue Santa Rosa, New Mexico 88435 Facility # 29084 Release ID #: 755

Job No. 3288JV031

Western Technologies Inc. The Quality People

Since 1955

ALBUQUERQUE - NEW MEXICO

8305 Washington Place N.E. Albuquerque, New Mexico 87113-1670 (505) 823-4488 • fax 821-2963

Prepared For:

New Mexico Environment Department Petroleum Storage Tank Bureau District 2 Office 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, New Mexico 87505

May 26, 2021

Hob m. R

Jeff Boyd, P.E. Senior Geotechnical Engineer

Colorado Durango Pagosa Springs NEVADA NEW MEXICO Las Vegas Albuquerque Farmington UTAH SALT LAKE CITY

and C. Wagner

David C. Wagner, P.G. Senior Environmental Scientist

COTTONWOOD

FLAGSTAFF

Fort Mohave Lakeside Lake Havasu City Phoenix Sierra Vista Prescott Tucson

8305 Washington Place N.E. Albuquerque, New Mexico 87113-1670 (505) 823-4488 • fax 821-2963

May 26, 2021

New Mexico Environment Department Petroleum Storage Tank Bureau District 2 Office 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505

Attn: Tim Noger

Re: Baseline Parameter Ground Water Monitoring Report (May 2021) Job No. 3288JV031 Leonard's Conoco 603 Parker Avenue Santa Rosa, New Mexico 88435

Facility #: 29084

Release ID #: 755

WPID #: 4168-1

Western Technologies (WT) is pleased to present this Baseline Parameter Ground Water Monitoring Report for the referenced State Lead site. The original tasks were detailed in a WT workplan dated July 16, 2020. The NMED PSTB approval letter was dated March 31, 2021.

Should you have any questions or comments, please call.

Sincerely, WESTERN TECHNOLOGIES INC. Senior Environmental Services

and C. Wagner

David C. Wagner, P. G. Environmental Scientist

Copies to: Addressee (1)

Baseline Parameter Ground Water Monitoring (May 2021) Leonard's Conoco, 603 Parker Avenue, Santa Rosa, New Mexico 88435 Facility # 29084 Release ID #: 755 Job No. 3288JV031

TABLE OF CONTENTS

1.	INTE	RODUCTION	2
	Α.	Scope of work	
	В.	Monitoring Events Highlights	
2.	АСТ	IVITIES PERFORMED DURING THIS MONITORING EVENT	4
	Α.	Brief description of remediation system and date Installed	4
	В.	Description of activities performed to keep system operating	4
	С.	Monitoring activities performed	4
	D.	System performance and effectiveness	7
	Ε.	Statement verifying containment of release	7
3.	SUN	IMARY AND CONCLUSION	7
	Α.	Discussion of any trends or changes noted	
	В.	Ongoing assessment of remediation system	
	C.	Recommendations	

APPENDIX A - FIGURES

Site Location Map	.Figure	1
Site Plan and Ground Water Contour Map	.Figure	2
Dissolved Petroleum Hydrocarbon Concentration Map	.Figure	3

APPENDIX B - TABLES

Ground Water Elevation Data	Table 1
Ground Water Field Data	Table 2
Summary of Water Sample Analytical Test Results	Table 3
Current Water Sample Analytical Test Results	
Volatile Organic Analysis by EPA Method 8260B	Table 4
Summary of Water Sample Analytical Test Results	
Total Petroleum Hydrocarbons by EPA Method 8015D	Table 5
Summary of Water Sample Analytical Test Results	
Nitrate/Nitrite, Total Kjeldahl Nitrogen,	
Total Dissolved Solids, and Chemical Oxygen Demand	Table 6

- APPENDIX C Hall Environmental Analysis Laboratory Report
- **APPENDIX D** Chart 1, MW-1A Benzene and Napthalene Concentrations (logarithmic) versus Ground Water Elevations: January 1995 to Date

APPENDIX E - Field Notes

COVER PAGE FORM 1216 GROUND WATER MONITORING

Please include the following information:

- 1. Site name: Leonard's Conoco
- 2. Responsible party: State Lead Site
- 3. Responsible party mailing address (list contact person if different):

Petroleum Storage Tank Bureau 2905 Rodeo Park Drive East Building 1 Santa Fe, NM 85405

- 4. Facility number: 29084
- Address/legal description: 603 Parker Avenue, Santa Rosa, New Mexico 88435
- 6. Author/consulting company: David C. Wagner/Western Technologies Inc.
- 7. Date of report: May 26, 2021
- 8. Date of confirmation of release or date PSTB was notified of the release: June 1991

STATEMENT OF FAMILIARITY

I, the undersigned, am personally familiar with the information submitted in this report and the attached documents and attest that it is true and complete.

Signature: David C. Wagner

Name: David C. Wagner, P.G.

Affiliation: Western Technologies Inc.

Title: Environmental Scientist

Certified Scientist #: Not Applicable

Date: May 26, 2021

I. INTRODUCTION:

A. Scope of work: WPID #: 4168-1

The following tasks were detailed in a Western Technologies (WT) workplan dated July 16, 2020. The NMED PSTB approval letter was dated March 31, 2021. Western Technologies (WT) collected ground water samples from all ground water monitor wells (MW-1A, MW-2A, and MW-3) specified in the workplan during this monitoring event. This report completes the scope of work for WPID #: 4168-1.

Figures are presented in Appendix A. Tables are presented in Appendix B. The laboratory analytical report is presented in Appendix C. Appendix D presents relevant charts. Field notes are presented in Appendix E.

WT began ground water monitoring at the Site in April 2019. The location of the Leonard's Conoco (Site) is illustrated on Figure 1, Site Location Map. The Site is currently occupied by Santa Rosa Magistrate Court with the address of:

Santa Rosa Magistrate Court 1633 Route 66 Santa Rosa, NM 88435 Telephone: (575) 472-3237

Note that Google Maps and Google Earth also indicated the site has an address of 1633 Route 66 Santa Rosa, NM 88435. The 603 Parker Avenue address on NMED PSTB correspondence and was located approximately 500 feet to the east on both Google Maps and Google Earth.

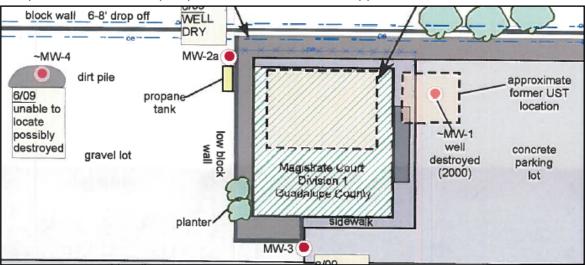
The site was along the north side of the westbound I-40 Business Loop. Adjacent to the north was the Union Pacific Railroad Company Automobile Distribution Center. Adjacent to the east was the Mi Casa Laundromat, which was formerly a gas station. A vacant graveled lot was adjacent to the west.

History

Daniel B. Stephens & Associates, Inc. (DBS&A) performed ground water from June 2016 through December 2017. The previous DBS&A monitoring report was dated March 12, 2018¹ (2018 DBS&A Report) and summarized the history of the Site.

"A confirmed petroleum release was documented during the removal of three 4,000gallon underground storage tanks (USTs) and one 560-gallon waste oil UST in June 1991. Monteverde, Inc. performed a minimum site assessment (MSA) in 1995, during which four monitor wells (MW-1, MW-2, MW-3, and MW-4) were installed.

¹ Annual Groundwater Monitoring and MW-3 Well Surface Completion Replacement Report Leonard's Conoco, 603 Parker Avenue, Santa Rosa, New Mexico Facility #29084, Release ID #755, WPID #3929 Avenue, Santa Rosa, New Mexico Facility #29084, Release ID #755, WPID #3929, Daniel B. Stephens & Associates, Inc., March 12. 2018.



FORM 1216 Leonard's Conoco State Lead Site: PSTB Facility # 29084: Release ID # 755 May 26, 2021 Page 3

Innovative Explorations (INEX) performed groundwater monitoring at the site from 1997 through 2001. In 2000, the former Leonard's Conoco building was demolished and the current building was constructed. Monitor well MW-2 was destroyed during construction, and a replacement well, MW-2A, was installed by INEX."

"In June 2009, Tecumseh Professional Associates, Inc. (TPA) performed a groundwater monitoring event at the site. TPA located monitor wells MW-2A and MW-3, but could not locate monitor wells MW-1 and MW-4. Of the two wells located, only MW-3 was sampled because well MW-2A was dry."

The June 2009, TPA map below indicates the footprint of the former Leonard's Conoco Building and the former UST location. We believe that MW-3 is in the vicinity of a former dispenser island. Note the *"6-8' drop off"* north of the block wall. The complete 2009 TPA map is presented at the end of Appendix A.

According to the 2018 DBS&A Report, "In October 2013, Haller & Associates, Inc. (HAI) performed groundwater monitoring at the site. HAI located monitor well MW-1, but was unsuccessful in locating MW-4 with a metal detector. HAI indicated that monitor well MW-4 appeared to have been destroyed."

"In March 2014, HAI plugged and abandoned monitor well MW-1 and performed groundwater monitoring at the site. Monitor wells MW-1A, MW-2A, and MW-3 were located and gauged." The MW-1A boring log is presented in Appendix E.

DBSA completed well surface completion replacement for MW-3 and conducted groundwater monitoring at the site in December 2017. The three existing monitor wells: MW-1A, MW-2A, and MW-3, were also resurveyed on January 18, 2018, by Surveying Control, Inc.

B. Monitoring Event Highlights:

Benzene concentrations in MW-1A exceeded the regulatory limit of 5.0 μ g/L. Total naphthalene concentrations in MW-1A exceeded the regulatory limit of 30 μ g/L. All other EPA Method 8260B list compounds detected were below applicable NMWQCC regulatory limits in MW-1A.

This was the first monitoring event to evaluate the baseline parameters of nitrate, nitrite, Total Kjeldhal Nitrogen (TKN), Total Petroleum Hydrocarbons (TPH), Total Dissolved Solids (TDS), and Chemical Oxygen Demand (COD). This was also the first monitoring event to evaluate ethylene dibromide (EDB) by EPA Method 504.1.

All results were below the applicable NMWQCC limits of 10.0 mg/L for nitrate and 1.0 mg/L for nitrite. Total Kjeldahl Nitrogen (TKN) results were < 2.0 mg/L. There is no NMWQCC regulatory limit for TKN.

The TDS results from MW-1A, MW-2A, and MW-3 exceeded the NMWQCC regulatory limit of 1,000 mg/L (NMAC 20.6.2.3103.B. Other Standards for Domestic Water Supply). WT believes that the average TDS of 3,000 may be normal background because no petroleum contamination was ever detected in MW-2A or MW-3.

The MW-3A COD result of 1,290 mg/L exceeded the NMWQCC regulatory limit of 125 mg/L (NMAC 20.6.2.2101.A. General Requirements). All EDB results were below the laboratory reporting limits. With the exception of 0.99 GRO in MW-1A, all TPH results were below the laboratory reporting limits.

II. ACTIVITIES PERFORMED DURING THIS MONITORING EVENT:

A. Brief description of remediation system and date installed.

No operating remediation system was present at the site.

B. Description of activities performed to keep system operating properly including: inspections, maintenance procedures and modifications, if any.

Not applicable.

C. Monitoring activities performed.

WT collected ground water samples from monitor wells MW-1A, MW-2A, and MW-3 during this monitoring event (see Figure 2, Site Plan and Ground Water Contour Map). Current and historical data is presented in Table 1, Ground Water Elevation Data. Figure 2 includes significant site features including the location of the three former USTs removed in 1993.

Before collecting ground water samples from the monitor wells, the water levels in the monitor wells were measured with a Heron[™] interface probe (IP). The IP was also used to measure free product, if any. The IP was decontaminated with an Alconox solution, then rinsed with tap water, and finally rinsed with deionized water before and after each water level measurement.

A minimum of three well volumes were removed from each well before collecting a ground water sample (see Table 2, Ground Water Field Data). The well purging was conducted with a Geotech Peristaltic Pump and disposable tubing.

During purging activities, ground water parameters of temperature, dissolved oxygen, pH, Oxidation-Reduction Potential (ORP/Eh), and specific conductivity were measured and recorded using an YSI Professional Plus[™] multiparameter water quality probe. Before and after obtaining ground water parameters from each well, the multiparameter water quality probe was decontaminated with an Alconox solution, then rinsed with tap water, and finally rinsed with deionized water.

Measurements were digitally recorded as specific volumes of ground water removed from each well. Selected digitally recorded parameters are indicated on Table 2. Note that Table 2 digitally recorded parameters do not exactly match hand written parameters in the Field Notes because the parameters vary slightly from second to second whereas digital parameters are recorded at a the beginning of a specific one-second time. The negative ORP/Eh values in MW-1A indicated petroleum contamination impacted the ground water.

Low-flow, minimal drawdown techniques were employed and the drawdown was limited to less than 0.33 feet. Ground water parameter stabilization was confirmed by assessing the last two intervals were within 10% of each other, for temperature, pH, and conductivity. WT obtained one field measurement of turbidity from each well using a Geotech[®] Portable Turbidity Meter at the end of purging (see Table 2).

All of the ground water samples collected were analyzed for:

- EPA Method 8260B Extended analysis for Volatile Organic Compounds (which includes 1-methylnaphthalene and 2-methylnaphthalene). Each EPA Method 8260B sample was placed into laboratory-supplied, 40-milliliter volatile organic analysis (VOAs) vials with Teflon[®] septums, with mercuric chloride preservative.
- EPA Method 504.1 for ethylene dibromide (EDB): Each EPA Method 8260B sample was placed into laboratory-supplied, 40-milliliter VOAs with sodium thiosulfate preservative.
- EPA 8015B for Total Petroleum Hydrocarbons (TPH): The EPA Method 8015B GRO laboratory analyses used ground water from the EPA Method 8260B VOAs. Each sample for EPA Method 8015B analyses of DRO and MRO were placed into unpreserved, 250-milliliter, amber, glass containers.

- SM 2540C for Total Dissolved Solids (TDS): Each SM 2540C sample was placed into laboratory-supplied 500-milliliter high-density polyethylene (HDPE) containers with no preservative.
- EPA Method 410.4 for Chemical Oxygen Demand (COD): Each EPA Method 410.4 sample was placed into laboratory-supplied 500-milliliter HDPE containers with no preservative.
- EPA Method 300 for Nitrite/Nitrate: Each EPA Method 300 sample was placed into laboratory-supplied 500-milliliter HDPE containers with no preservative.
- SM 4500 Norg C for Total Kjeldhal Nitrogen (TKN): All samples for SM 4500 Norg C analyses was placed into two laboratory-supplied, 500-ml, HDPE containers, one unpreserved and one preserved with sulfuric acid.

Each ground water sample container label mirrored the information on the COC. All laboratory samples were analyzed by Hall Environmental Analysis Laboratory, Inc. in Albuquerque, New Mexico (See Appendix C).

Ground Water Data

The depths to ground water ranged from 13.54 feet below top of casing (MW-2A) to 15.07 feet below top of casing (MW-1A) during this monitoring event (see Table 1, Ground Water Elevation Data). Ground water elevations ranged from 4599.99 feet (MW-2A) to 4601.77 feet (MW-3). The average ground water elevations decreased 0.25 feet since the previous ground water monitoring event of April 2019. The 0.016 ft/ft ground water gradient observed during this ground water monitoring event was generally to the northwest (see Figure 2, Site Plan and Ground Water Contour Map).

Laboratory Analytical Results

Based on the results of the EPA Method 8260B laboratory analysis, the results from MW-2A and MW-3 were below all applicable laboratory Reporting Limits (RL). (see Table 3, Summary of Water Sample Analytical Test Results).

Benzene concentration of 120 μ g/L in MW-1A exceeded the NMWQCC regulatory limit of 5.0 μ g/L. The total naphthalenes concentrations of 30 μ g/L in MW-1A exceeded the NMWQCC regulatory limit of 30 μ g/L. Benzene and total naphthalenes contours are presented on Figure 3, Dissolved Petroleum Hydrocarbon Concentration Map. Other EPA Method 8260B compounds were detected in MW-1A but were all below applicable NMWQCC regulatory limits (see Table 4, Current Water Sample Analytical Test Results: Volatile Organic Analysis by EPA Method 8260B).

Chart for MW-1A

WT prepared a Chart for contaminants of concern in MW-1A above NMWQCC regulatory limits (See Appendix D). The X-axis is linear time. The contaminant of concern values (μ g/L) are plotted against the left-hand logarithmic Y-axis. Linear ground water elevations are plotted against the right-hand Y-axis.

FORM 1216 Leonard's Conoco State Lead Site: PSTB Facility # 29084: Release ID # 755 May 26, 2021 Page 7

Chart 1, MW-1A Benzene and Napthalene Concentrations (logarithmic) versus Ground Water Elevations: January 1995 to Date, illustrates benzene and naphthalene concentrations over time. Analyses for total naphthalenes began in 2013. There was no obvious relation between ground water elevation and either benzene or total naphthalenes concentrations.

The EPA Method 8015D results for TPH are presented on Table 5: Summary of Water Sample Analytical Test Results, Total Petroleum Hydrocarbons by EPA Method 8015D. MW-1A GRO was 0.99 mg/L. The MW-1A DRO and MRO were below RLs. Laboratory results for MW-2A and MW-3A were below RLs for GRO, DRO, and MRO.

Table 6 presents the Summary of Water Sample Analytical Test Results: Nitrate, Nitrite, Total Kjeldahl Nitrogen, Total Dissolved Solids, and Chemical Oxygen Demand. All results were below the applicable NMWQCC limits of 10.0 mg/L for nitrate and 1.0 mg/L for nitrite. Total Kjeldahl Nitrogen (TKN) results were below the respective RLs. There is no NMWQCC regulatory limit for TKN.

The TDS results ranged from 2,780 mg/L (MW-2A) and 3,240 mg/L (MW-3A). The TDS results from MW-1A, MW-2A, and MW-3 exceeded the NMWQCC regulatory limit of 1,000 mg/L (NMAC 20.6.2.3103.B. Other Standards for Domestic Water Supply). The average TDS of 3,000 may be normal background.

The COD results were 27.8 mg/L (MW-1A), <20.0 mg/L (MW-2A) and 1,290 mg/L (MW-3A). The MW-3A COD result of 1,290 mg/L exceeded the NMWQCC regulatory limit of 125 mg/L (NMAC 20.6.2.2101.A. General Requirements).

D. System performance and effectiveness

Not applicable.

E. Statement verifying containment of release.

The Leonard's Conoco contamination plume was only defined to the southwest and south. The contamination plume was undefined in all other directions.

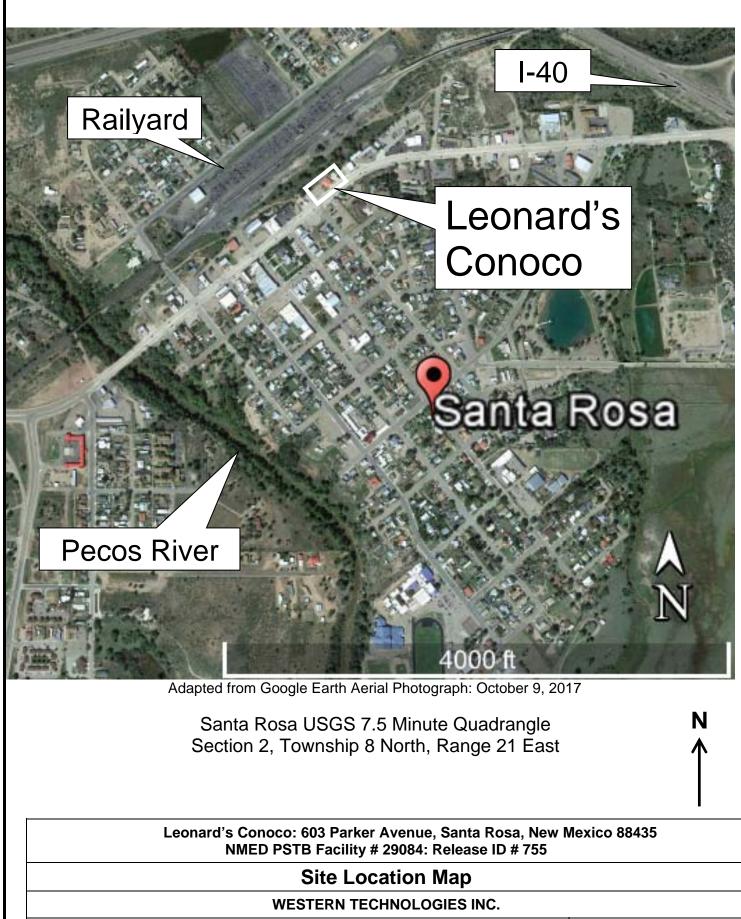
III. SUMMARY AND CONCLUSIONS:

A. Discussion of any trends or changes noted in analytical results or site conditions.

Benzene concentrations in MW-1A exceeded the NMWQCC regulatory limit of 5.0 μ g/L. The total naphthalenes concentrations in MW-1A exceeded the NMWQCC regulatory limit of 30 μ g/L. Other EPA Method 8260B compounds were detected in MW-1A but were all below applicable NMWQCC regulatory limits.

B. Ongoing assessment of remediation system.

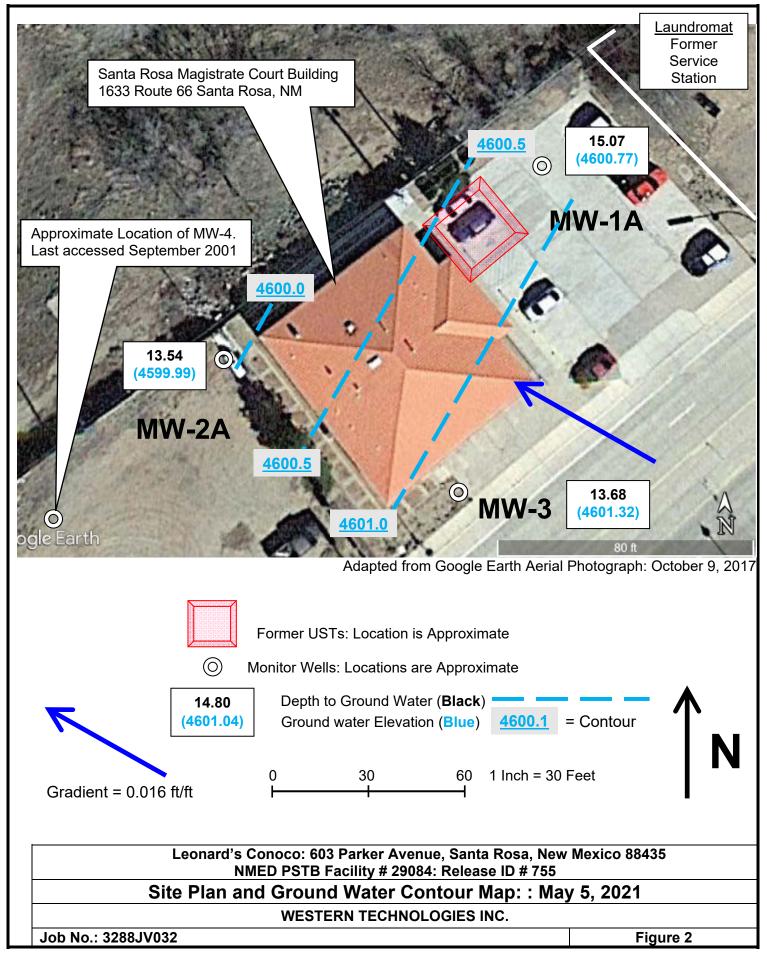
Not applicable.


C. Recommendations.

WT recommends the following:

- Annual or semi-annual ground water monitoring.
- A Continued Minimum Site Assessment including the installation of three monitor wells as indicated on Figure 3. The most important proposed monitor well, MW A is downgradient of the former USTs. However, MW A is offsite on Union Pacific Railroad land, which may preclude access.
- Continued EPA Method 504.1 ground water analysis because available historical data indicates only the May 5, 2021 water samples were analyzed for EDB.
- EPA Method 6010C ground water analysis because available historical data indicates that no ground water samples were ever analyzed for the dissolved metals: lead, manganese, and iron.

APPENDIX A Figures



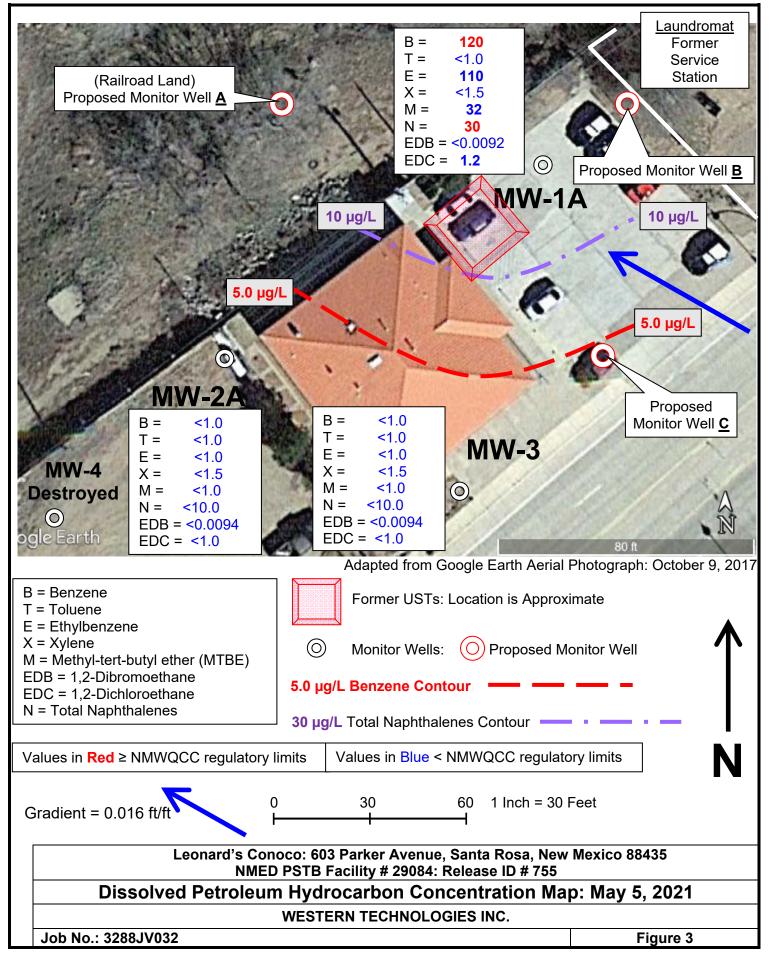

Job No.: 3288JV032

Figure 1

APPENDIX B Tables

Leonard's Conoco 1633 Historic Route 66 Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755

TABLE 1Ground Water Elevation Data

Monitor	Date	Casing Rim	Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
Well		Elevation*	Bottom	Elevation (measured)	Ground Water	Thickness	Surface Elevation
ID		(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
				Screened Int	erval Reported a	s 9.0' to 19.0'	
MW-1A	05/05/21	4615.84	18.70	4597.14	15.07	3.63	4600.77
	04/26/19	4615.84	18.70	4597.14	14.80	3.90	4601.04
а	12/12/17	4615.84	18.70	4597.14	14.54	4.16	4601.30
b	01/26/17	4615.84	18.70	4597.14	14.76	3.94	4601.08
	07/29/16	4615.84	18.70	4597.14	15.50	3.20	4600.34
	03/24/14	4615.84	18.70	4597.14	15.30	3.40	4600.54
	10/30/13	4615.84	18.70	4597.14	13.96	4.74	4601.88
				Screened Interval &	Coriginal Total D	epth: Not Available	
MW-2A	05/05/21	4613.53	19.00	4594.53	13.54	5.46	4599.99
	04/26/19	4613.53	19.00	4594.53	13.16	5.84	4600.37
а	12/12/17	4613.53	19.00	4594.53	13.05	5.95	4600.48
b	01/26/17	4613.53	19.00	4594.53	13.12	5.88	4600.41
	07/29/16	4613.53	19.00	4594.53	14.32	4.68	4599.21
	03/24/14	4613.53	19.00	Roots in casir	ng. No depth to w	ater recorded	
	10/30/13	4613.53	19.00	4594.53	12.54	6.46	4600.99
	06/11/09	4613.39	19.00	Roots in casir	ng. No depth to w	ater recorded	
	09/23/01	4613.39	19.00	4594.39	Dry		

Leonard's Conoco 1633 Historic Route 66 Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755

TABLE 1 Ground Water Elevation Data

Monitor	Date	Casing Rim	Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
Well		Elevation*	Bottom	Elevation (measured)	Ground Water	Thickness	Surface Elevation
ID		(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
				Screened Interval & Original Total Depth: Not Available			
^с МW-З	05/05/21	4615.00	27.94	4587.06	13.68	14.26	4601.32
	04/26/19	4615.00	27.94	4587.06	13.59	14.35	4601.41
а	12/12/17	4615.00	27.94	4587.06	13.27	14.67	4601.73
	01/26/17	4615.02	27.94	4587.08	14.03	13.91	4600.99
	07/29/16	4615.02	27.94	4587.08	14.64	13.30	4600.38
	03/24/14	4615.02	27.94	4587.08	14.04	13.90	4600.98
	10/30/13	4615.02	27.94	4587.08	12.50	15.44	4602.52
	06/11/09	4615.02	27.94	4587.08	13.90	14.04	4601.12
	09/23/01	4615.02	27.94	4587.08	12.49	15.45	4602.53
	03/29/95	4615.02	27.94	4587.08	10.10	17.84	4604.92
				Screened Interval &	Coriginal Total D	epth: Not Available	
^d MW-4	09/23/01	4590.18	unknown	unknown	9.57	unknown	4580.61
	03/29/95	4590.18	unknown	unknown	10.86	unknown	4579.32

Casing Elevations and screened intervals from Annual Groundwater Monitoring and MW-3 Well Surface Completion Report (3/17/18)

^a MW-1A, MW-2A and MW-3 top-of-casing elevations resurveyed on January 18, 2018 by Surveying Control, Inc.

MW-1A and MW-2A ground water normalized to January 2018 resurvey data.

^b Top of casing elevations prior to January 2018 resurvey are questionable because of elevation discrepancies.

^c MW-3 Top of casing adjusted in December 2017

^d MW-4 last located in September 2001. MW-4 may be paved over or destroyed.

Leonard's Conoco 1633 Historic Route 66 Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755

TABLE 2 Ground Water Field Data

Monitor	Depth	Date and Time	Temp.	RDO	pН	Eh	Specific	Volume	COMMENTS
Well	DTW	05/05/21	(°C)	Dissolved		ORP	Conductivity	Removed	
ID	DTB			Oxygen		(mV)	(µS/cm)*		<1/3 ft drawdown
				(mg/L)				(gallons)	
		hour:minute:second							
MW-1A	DTW	11:05:28	18.4	4.04	7.00	-152	3,130	0.0	Clear, slightly gray
	15.07	11:10:26	17.4	2.94	6.89	-183	3,197	1.0	Clear, slightly gray
	<u>TD</u>	11:12:52	17.4	1.77	6.99	-199	3,207	1.5	Clear, slightly gray
	<u>18.70</u>	11:16:18	17.5	1.91	7.07	-194	3,160	2.0	Clear, slightly gray
									Turbidity = 7.48 NTU
MW-2A	DTW	8:14:54	16.0	5.21	7.40	110	2,870	0.0	Brown, med. turbid
	13.54	8:22:46	16.1	1.47	7.24	97	2,895	1.0	Brown, med. turbid
	<u>TD</u>	8:25:50	16.3	0.91	7.21	89	2,896	1.5	Brown, med. turbid
	19.00	8:28:16	16.4	1.04	7.22	83	2,900	2.5	Brown, med. turbid
									Turbidity = 7.49 NTU
	5714	0.00.00	10.1	0.04	0.00	400	0.500		
MW-3	DTW	9:32:08	18.4	2.31	6.99	102	3,566	0.0	Clear
	13.68	9:54:17	18.4	1.06	6.91	103	3,540	2.0	Clear
	<u>TD</u>	10:07:24	18.9	1.80	7.09	135	3,599	4.0	Brown, turbid
	27.94	10:25:08	19.2	1.79	7.00	117	3,615	7.0	Brown, turbid
									Turbidity = 1.65 NTU
MW-4									Could not locate
									(Last located on 9/23/01)
			+ 1						

ORP = Oxidation Reduction Potential (Eh)

* = temperature compensated specific conductivity

NTU = Nephelometric Turbidity unit

Leonard's Conoco 1633 Historic Route 66 Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755

TABLE 3 Summary of Water Sample Analytical Test Results

		Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	MTBE	EDB	EDC	Total Naphthalenes
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L
NMWQCC Regula	.	5.0	1,000	700	620	none	100	0.005	5.0	30
MW-1A	05/05/21	120	< 1.0	110	<1.5	230	32	< 0.0092	1.2	30
	04/26/19	250	<1.0	140	<1.5	390	46	<1.0	1.9	72
	12/12/17	430	<1.0	310	<1.5	740	45	<1.0	2.1	207
	01/26/17	93	<1.0	58	<1.5	151	15	<1.0	<1.0	25
	07/29/16	100	<1.0	38	<1.5	138	21	<1.0	<1.0	37
	03/24/14	250	<5.0	250	<7.5	500	18	<5.0	<5.0	84
	10/25/13	79	<5.0	210	<7.5	289	<5.0	<5.0	<5.0	79
MW-1	03/24/14				Plugg	ged and abanc	loned			
	10/25/13				Well dry at	t 9.40 feet - n	ot sampled			
	12/31/00				Ŵ	ell not sampl	ed			
	03/20/99	57	ND	90	4.1	151	10	ND	ND	_
	10/18/98	83	2.7	71	12	168.7	43	ND	2.2	_
	11/07/97	180	2.7	36	6.5	225.2	150	ND	13	_
	03/31/95	440	26	400	81	947	320	—	—	_

Leonard's Conoco 1633 Historic Route 66 Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755

TABLE 3 Summary of Water Sample Analytical Test Results

					Total	Total				Total
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L
NMWQCC Regula	atory Limits =	5.0	1,000	700	620	none	100	0.005	5.0	30
MW-2A	05/05/21	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0094	<1.0	<10
	04/26/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<10
	12/12/17	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<10
	01/26/17	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<10
	07/29/16	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<10
	03/24/14				Well dry at	13.70 feet - I	not sampled			
	10/25/13	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<4.0
	06/11/09				Well dry at	13.97 feet - I	not sampled			
	09/23/01	ND	ND	ND	ND	ND	ND	ND	ND	
	12/31/00	ND	ND	ND	ND	ND	ND	ND	ND	_
MW-2	03/20/00				Plugged and abandoned					
	10/18/98	6.3	ND	0.7	2.5	9.5	ND	ND		_
	11/07/97	3.3	ND	1.6	2.3	7.2	1.2	ND	15	_
	03/31/95	420	6.4	540	86	1,052.4	4.5	_		_
						, -				

Leonard's Conoco 1633 Historic Route 66 Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755

TABLE 3 Summary of Water Sample Analytical Test Results

		_			Total	Total				Total
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L
NMWQCC Regula	atory Limits =	5.0	1,000	700	620	none	100	0.005	5.0	30
MW-3	05/05/21	<2.0	<2.0	<2.0	<3.0	<4.5	<2.0	< 0.0094	<2.0	<20
	04/26/19	<2.0	<2.0	<2.0	<3.0	<4.5	<2.0	<2.0	<2.0	<20
	12/12/17	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<10
	01/26/17	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<10
	07/29/16	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<10
	03/24/14	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<4.0
	10/25/13	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<4.0
	06/11/09	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	<10
	09/23/01	ND	ND	ND	ND	ND	ND	ND	ND	_
	12/31/00	ND	ND	ND	ND	ND	ND	ND	ND	_
	03/20/99	ND	ND	ND	ND	ND	ND	ND	0.6	_
	10/18/98	ND	ND	ND	ND	ND	ND	ND	0.8	_
	11/07/97	ND	ND	ND	ND	ND	ND	ND	3.2	
	03/31/95	39	8.2	6.3	15	68.5	ND	—	—	_

Leonard's Conoco 1633 Historic Route 66 Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755

TABLE 3 Summary of Water Sample Analytical Test Results

					Total	Total				Total
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	μg/L
NMWQCC Regula	atory Limits =	5.0	1,000	700	620	none	100	0.005	5.0	30
MW-4	04/26/19				W	ell Not Locat	ed			
	10/25/13				W	ell Not Locat	ed			
	06/11/09				W	ell Not Locat	ed			
	09/23/01	ND	ND	ND	ND	ND	ND	ND	ND	_
	12/31/00	ND	ND	ND	ND	ND	ND	ND	ND	_
	03/20/99	ND	ND	ND	ND	ND	ND	ND	0.3	_
	10/18/98	ND	ND	ND	ND	ND	ND	ND	0.9	—
	11/07/97	ND	ND	ND	ND	ND	ND	ND	ND	_
	03/29/95	<0.5	3.0	<0.5	2.9	5.9	<2.5	—	—	—

Total BTEX = total benzene, toluene, ethylbenzene, and xylenes

EDB = 1,2-Dibromoethane. EDB values <1.0 indicates that EDB analyzed by EPA Method 504.1.

Total Naphthalenes = total of naphthalene, 1-methylnaphthalene & 2-methylnaphthalene

NMWQCC = New Mexico Water Quality Control Commission

BOLD RED Indicates Laboratory Analytical Result ≥ NMWQCC Regulatory Limit

RED (Not bold) Indicates PQLs ≥ NMWQCC Regulatory Limit

MTBE = Methyl-tert-butyl ether

EDC = 1,2-Dichloroethane

μg/L = micrograms per Liter

"-" indicates Not Analyzed or Not Available

Leonard's Conoco			HNOLOGIES INC.	
1633 Historic Route 66	0		BLE 4	14
Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755			nple Analytical Test Re nod 8260B & EDB by El	
Sample ID =		MW-2A	MW-3	MW-4
Date =	05/05/21	05/05/21	05/05/21	04/26/19
Units =	μg/L	μg/L	μg/L	μg/L
EDB by EPA Method 504.1 =	< 0.0092	< 0.0094	< 0.0094	
Benzene	120	< 1.0	< 1.0	Not Located
Toluene	< 1.0	< 1.0	< 1.0	since 2001
Ethylbenzene	110	< 1.0	< 1.0	
Methyl tert-butyl ether (MTBE)	32	< 1.0	< 1.0	
1,2,4-Trimethylbenzene	< 1.0	< 1.0	< 1.0	
1,3,5-Trimethylbenzene	< 1.0	< 1.0	< 1.0	
1,2-Dichloroethane (EDC)	1.2	< 1.0	< 1.0 < 1.0	
1,2-Dibromoethane (EDB) Naphthalene	< 1.0 21	< 1.0 < 2.0	< 2.0	
1-Methylnaphthalene	9.0	< 4.0	< 4.0	
2-Methylnaphthalene	< 4.0	< 4.0	< 4.0	
Total Naphthalenes =	30	<10.0	<10.0	
Acetone	< 10	< 10	< 10	
Bromobenzene	< 1.0	< 1.0	< 1.0	
Bromodichloromethane	< 1.0	< 1.0	< 1.0	
Bromoform	< 1.0	< 1.0	< 1.0	
Bromomethane	< 3.0	< 3.0	< 3.0	
2-Butanone Carbon disulfide	< 10 < 10	< 10 < 10	< 10 < 10	
Carbon disulide Carbon Tetrachloride	< 1.0	< 1.0	< 1.0	
Chlorobenzene	< 1.0	< 1.0	< 1.0	
Chloroethane	< 2.0	< 2.0	< 2.0	
Chloroform	< 1.0	< 1.0	< 1.0	
Chloromethane	< 3.0	< 3.0	< 3.0	
2-Chlorotoluene	< 1.0	< 1.0	< 1.0	
4-Chlorotoluene	< 1.0	< 1.0	< 1.0	
cis-1,2-DCE cis-1,3-Dichloropropene	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
1,2-Dibromo-3-chloropropane	< 2.0	< 2.0	< 2.0	
Dibromochloromethane	< 1.0	< 1.0	< 1.0	
Dibromomethane	< 1.0	< 1.0	< 1.0	
1,2-Dichlorobenzene	< 1.0	< 1.0	< 1.0	
1,3-Dichlorobenzene	< 1.0	< 1.0	< 1.0	
1,4-Dichlorobenzene	< 1.0	< 1.0	< 1.0	
Dichlorodifluoromethane 1,1-Dichloroethane	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
1,1-Dichloroethene	< 1.0	< 1.0	< 1.0	
1,2-Dichloropropane	< 1.0	< 1.0	< 1.0	
,3-Dichloropropane	< 1.0	< 1.0	< 1.0	
2,2-Dichloropropane	< 2.0	< 2.0	< 2.0	
1,1-Dichloropropene	< 1.0	< 1.0	< 1.0	
Hexachlorobutadiene	< 1.0	< 1.0	< 1.0	
2-Hexanone Isopropylbenzene	< 10 10	< 10 < 1.0	< 10 < 1.0	
Isopropylbenzene 4-Isopropyltoluene	< 1.0	< 1.0	< 1.0	
4-Methyl-2-pentanone	< 10	< 10	< 10	
Methylene Chloride	< 3.0	< 3.0	< 3.0	
n-Butylbenzene	< 3.0	< 3.0	< 3.0	
n-Propylbenzene	13	< 1.0	< 1.0	
sec-Butylbenzene	1.5	< 1.0	< 1.0	
Styrene	< 1.0	< 1.0	< 1.0	
tert-Butylbenzene	< 1.0	< 1.0	< 1.0	
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0	
Tetrachloroethene (PCE)	< 2.0	< 2.0	< 1.0	
trans-1,2-DCE	< 1.0	< 1.0	< 1.0	
trans-1,3-Dichloropropene	< 1.0	< 1.0	< 1.0	
1,2,3-Trichlorobenzene	< 1.0	< 1.0	< 1.0	
1,2,4-Trichlorobenzene	< 1.0	< 1.0	< 1.0	
1,1,1-Trichloroethane	< 1.0	< 1.0	< 1.0	
1,1,2-Trichloroethane	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	
Trichloroethene (TCE) Trichlorofluoromethane	< 1.0	< 1.0	< 1.0 < 1.0	
1,2,3-Trichloropropane	< 2.0	< 1.0	< 2.0	
Vinyl chloride	< 1.0	< 1.0	< 1.0	
Xylenes, Total	< 1.5	< 1.5	< 1.5	

Leonard's Conoco 1633 Historic Route 66 Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755

Summary of Water Sample Analytical Test Results Total Petroleum Hydrocarbons by EPA Method 8015D

TABLE 5

MONITOR WELL	DATE	GRO (mg/L)	MRO (mg/L)	DRO (mg/L)	Total TPH (mg/L)
MW-1A	05/05/21	0.99	< 1.0	< 5.0	0.99 (GRO)
MW-2A	05/05/21	< 0.050	< 1.0	< 5.0	ND
MW-3	05/05/21	< 0.050	< 1.0	< 5.0	ND

TPH = Total Petroleum Hydrocarbons (GRO + DRO + MRO) by EPA Method 8015D

GRO = Gasoline Range Organics ND = Not Detected

DRO = Diesel Range Organics

MRO = Motor Oil Range Organics

Leonard's Conoco 1633 Historic Route 66 Santa Rosa, New Mexico 88435 PSTB Facility # 29084: Release ID #755

WESTERN TECHNOLOGIES INC. Summary of Water Sample Analytical Test Results Nitrate, Nitrite, Total Kjeldahl Nitrogen, Total Dissolved Solids, and Chemical Oxygen Demand

TABLE 6

MONITOR WELL	DATE	NITRATE (mg/L)	NITRITE (mg/L)	TKN (mg/L)	TDS (mg/L)	COD (mg/L)
	ulatory Limits =		1.0 ^a	Not Applicable	1,000 ^b	125 [°]
MW-1A	05/05/21	< 0.10	< 0.10	< 2.0	2,980	27.8
MW-2A	05/05/21	< 0.10	< 0.10	< 2.0	2,780	< 20.0
MW-3	05/05/21	< 0.50	< 0.50	< 1.0	3,240	1,290

NMWQCC = New Mexico Water Quality Control Commission

a = NMWQCC Regulations: NMAC 20.6.2.3103.A. Human Health Standards

b = NMWQCC Regulations: NMAC 20.6.2.3103.B. Other Standards for Domestic Water Supply

c = NMWQCC Regulations: NMAC 20.6.2.2101.A. General Requirements

APPENDIX C Hall Environmental Analysis Laboratory Report

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

May 25, 2021

David Wagner Western Technologies 8305 Washington Place NE Albuquerque, NM 87113-1670 TEL: (505) 823-4488 FAX (505) 821-2963

RE: Leonards Conoco

OrderNo.: 2105207

Dear David Wagner:

Hall Environmental Analysis Laboratory received 4 sample(s) on 5/5/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Lab Order 2105207

Date Reported: 5/25/2021

Hall Environmental Analysis Laboratory, Inc.

Analyses	Result	RL Qual Units DF Date Analyzed	Batch
Lab ID: 2105207-001	Matrix: AQUEOUS	Received Date: 5/5/2021 3:05:00 PM	
Project: Leonards Conoco		Collection Date: 5/5/2021 11:27:00 AM	
CLIENT: Western Technologies		Client Sample ID: MW-1A	

1 mary 505	Reput	KL	Quui	emis	ы	Dute Mulyzeu	Dutth
EPA METHOD 300.0: ANIONS						Analyst	MH
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	5/6/2021 7:56:22 PM	R77217
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	5/6/2021 7:56:22 PM	R77217
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	JMT
Total Dissolved Solids	2980	20.0	*	mg/L	1	5/13/2021 1:57:00 PM	59964
SM 4500 NORG C: TKN						Analyst	EKM
Nitrogen, Kjeldahl, Total	ND	2.0	D	mg/L	1	5/18/2021 10:21:00 AM	
EPA METHOD 8011/504.1: EDB						Analyst	mb
1,2-Dibromoethane	ND	0.0092		µg/L	1	5/13/2021 5:57:19 PM	59988
EPA METHOD 8015M/D: DIESEL RANGE				10		Analyst	SB
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	5/11/2021 2:00:52 AM	59921
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	5/11/2021 2:00:52 AM	59921
Surr: DNOP	109	63.7-164		%Rec	1	5/11/2021 2:00:52 AM	59921
EPA METHOD 8015D: GASOLINE RANGE						Analyst	ССМ
Gasoline Range Organics (GRO)	0.99	0.050		mg/L	1	5/11/2021 10:56:00 PM	
Surr: BFB	216	68.5-136	S	%Rec	1	5/11/2021 10:56:00 PM	
EPA METHOD 8260B: VOLATILES						Analyst	
Benzene	120	5.0		µg/L	5	5/12/2021 9:44:02 AM	A77339
Toluene	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731
Ethylbenzene	110	5.0		µg/L	5	5/12/2021 9:44:02 AM	A7733
Methyl tert-butyl ether (MTBE)	32	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731 ⁻
1,2-Dichloroethane (EDC)	1.2	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731 ⁻
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731 ⁻
Naphthalene	21	2.0		µg/L	1	5/11/2021 6:11:09 PM	A7731 ⁻
1-Methylnaphthalene	9.0	4.0		µg/L	1	5/11/2021 6:11:09 PM	A7731 ⁻
2-Methylnaphthalene	ND	4.0		µg/L	1	5/11/2021 6:11:09 PM	A7731
Acetone	ND	10		µg/L	1	5/11/2021 6:11:09 PM	A7731
Bromobenzene	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731
Bromodichloromethane	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731
Bromoform	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731
Bromomethane	ND	3.0		µg/L	1	5/11/2021 6:11:09 PM	A7731
2-Butanone	ND	10		µg/L	1	5/11/2021 6:11:09 PM	A7731
Carbon disulfide	ND	10		µg/L	1	5/11/2021 6:11:09 PM	A7731
Carbon Tetrachloride	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731
Chlorobenzene	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731
				1.3			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceed

 H
 Holding times for preparation or analysis exceeded

 ND
 Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limitsP Sample pH Not In Range

P Sample pH Not In Range RL Reporting Limit

Page 1 of 21

Lab Order 2105207

Hall Environmental Analys	is Laboratory, Inc	•				Lab Order 2105207 Date Reported: 5/25/202	21	
CLIENT: Western TechnologiesProject: Leonards ConocoLab ID: 2105207-001	Matrix: AQUEOUS	(Client Sample ID: MW-1A Collection Date: 5/5/2021 11:27:00 AM Received Date: 5/5/2021 3:05:00 PM					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES						Analyst	BRM	
Chloroethane	ND	2.0		µg/L	1	5/11/2021 6:11:09 PM	A77311	
Chloroform	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A77311	
Chloromethane	ND	3.0		μg/L	1	5/11/2021 6:11:09 PM	A77311	
2-Chlorotoluene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A77311	
4-Chlorotoluene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A77311	
cis-1,2-DCE	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A77311	
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A77311	
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	5/11/2021 6:11:09 PM	A77311	
Dibromochloromethane	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A77311	
Dibromomethane	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
1,2-Dichlorobenzene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
1,3-Dichlorobenzene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
1,4-Dichlorobenzene	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
Dichlorodifluoromethane	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
1,1-Dichloroethane	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
1,1-Dichloroethene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
1,2-Dichloropropane	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
1,3-Dichloropropane	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
2,2-Dichloropropane	ND	2.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
1,1-Dichloropropene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
Hexachlorobutadiene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
2-Hexanone	ND	10		μg/L	1	5/11/2021 6:11:09 PM	A7731	
Isopropylbenzene	10	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
4-Isopropyltoluene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
4-Methyl-2-pentanone	ND	10		μg/L	1	5/11/2021 6:11:09 PM	A7731	
Methylene Chloride	ND	3.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
n-Butylbenzene	ND	3.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
n-Propylbenzene	13	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
sec-Butylbenzene	1.5	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
Styrene	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
tert-Butylbenzene	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
1,1,1,2-Tetrachloroethane	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
Tetrachloroethene (PCE)	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
trans-1,2-DCE	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	5/11/2021 6:11:09 PM	A7731	
1,2,3-Trichlorobenzene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	
1,2,4-Trichlorobenzene	ND	1.0		μg/L	1	5/11/2021 6:11:09 PM	A7731	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

ND

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

1,1,1-Trichloroethane

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

µg/L

RL Reporting Limit

1.0

Page 2 of 21

1 5/11/2021 6:11:09 PM A77311

Lab Order **2105207** Date Reported: **5/25/2021**

CLIENT:Western TechnologiesProject:Leonards ConocoLab ID:2105207-001	Client Sample ID: MW-1ACollection Date: 5/5/2021 11:27:00 AMMatrix: AQUEOUSReceived Date: 5/5/2021 3:05:00 PM							
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 8260B: VOLATILES					Analyst	BRM		
1,1,2-Trichloroethane	ND	1.0	µg/L	1	5/11/2021 6:11:09 PM	A77311		
Trichloroethene (TCE)	ND	1.0	µg/L	1	5/11/2021 6:11:09 PM	A77311		
Trichlorofluoromethane	ND	1.0	µg/L	1	5/11/2021 6:11:09 PM	A77311		
1,2,3-Trichloropropane	ND	2.0	µg/L	1	5/11/2021 6:11:09 PM	A77311		
Vinyl chloride	ND	1.0	µg/L	1	5/11/2021 6:11:09 PM	A77311		
Xylenes, Total	ND	1.5	µg/L	1	5/11/2021 6:11:09 PM	A77311		
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	5/11/2021 6:11:09 PM	A77311		
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	5/11/2021 6:11:09 PM	A77311		
Surr: Dibromofluoromethane	97.4	70-130	%Rec	1	5/11/2021 6:11:09 PM	A77311		
Surr: Toluene-d8	98.8	70-130	%Rec	1	5/11/2021 6:11:09 PM	A77311		

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 21

Lab Order 2105207

Date Reported: 5/25/2021

Hall Environmental Analysis Laboratory, Inc.

Analyses		Result	RL Qual Units	DF Date Analyzed	Batch
Lab ID:	2105207-002	Matrix: AQUEOUS	Received Dat	e: 5/5/2021 3:05:00 PM	
Project:	Leonards Conoco		Collection Dat	e: 5/5/2021 8:28:00 AM	
CLIENT:	Western Technologies		Client Sample II	D: MW-2A	

		112	C				
EPA METHOD 300.0: ANIONS						Analyst	MH
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	5/6/2021 8:21:04 PM	R7721
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	5/6/2021 8:21:04 PM	R7721
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	JMT
Total Dissolved Solids	2780	20.0	*	mg/L	1	5/13/2021 1:57:00 PM	59964
SM 4500 NORG C: TKN						Analyst	EKM
Nitrogen, Kjeldahl, Total	ND	2.0	D	mg/L	1	5/18/2021 10:21:00 AM	60069
EPA METHOD 8011/504.1: EDB						Analyst	mb
1,2-Dibromoethane	ND	0.0094		µg/L	1	5/13/2021 6:12:36 PM	59988
EPA METHOD 8015M/D: DIESEL RANGE				10		Analyst	SB
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	5/11/2021 2:10:47 AM	59921
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	5/11/2021 2:10:47 AM	59921
Surr: DNOP	115	63.7-164		%Rec	1	5/11/2021 2:10:47 AM	59921
EPA METHOD 8015D: GASOLINE RANGE						Analyst	ссм
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	5/11/2021 11:16:00 PM	
Surr: BFB	95.8	68.5-136		%Rec	1	5/11/2021 11:16:00 PM	
EPA METHOD 8260B: VOLATILES						Analyst	BRM
Benzene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
Toluene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
Ethylbenzene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
1,2,4-Trimethylbenzene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
1,3,5-Trimethylbenzene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
1,2-Dichloroethane (EDC)	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
Naphthalene	ND	2.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
1-Methylnaphthalene	ND	4.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
2-Methylnaphthalene	ND	4.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
Acetone	ND	10		µg/L	1	5/11/2021 6:38:09 PM	A7731
Bromobenzene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
Bromodichloromethane	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
Bromoform	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731
Bromomethane	ND	3.0		μg/L	1	5/11/2021 6:38:09 PM	A7731
2-Butanone	ND	10		μg/L	1	5/11/2021 6:38:09 PM	A7731
Carbon disulfide	ND	10		μg/L	1	5/11/2021 6:38:09 PM	A7731
Carbon Tetrachloride	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731
Chlorobenzene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix Н

Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Р

Sample pH Not In Range RL Reporting Limit

Page 4 of 21

Lab Order 2105207

CI IENT.	Wastern Technologies			iont C.	mpla T	D • \/	W 2A				
CLIENT: Western Technologies				Client Sample ID: MW-2A Collection Date: 5/5/2021 8:28:00 AM							
Project:	Leonards Conoco										
Lab ID:	2105207-002	Matrix: AQUEOUS		Recei	ved Dat	te: 5/5	5/2021 3:05:00 PM				
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch			
EPA MET	HOD 8260B: VOLATILES						Analyst	BRM			
Chloroeth	nane	ND	2.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
Chlorofor	m	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
Chlorome	ethane	ND	3.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
2-Chlorot	oluene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
4-Chlorot	oluene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
cis-1,2-D	CE	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
cis-1,3-Di	ichloropropene	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
1,2-Dibro	mo-3-chloropropane	ND	2.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
Dibromod	chloromethane	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
Dibromor	nethane	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
1,2-Dichle	orobenzene	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
1,3-Dichle	orobenzene	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
1,4-Dichle	orobenzene	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
Dichlorod	lifluoromethane	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
1,1-Dichle	oroethane	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	oroethene	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	oropropane	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	oropropane	ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
	oropropane	ND	2.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	oropropene	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	robutadiene	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
2-Hexand		ND	10		μg/L	1	5/11/2021 6:38:09 PM	A7731			
Isopropyl		ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
4-Isoprop		ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	2-pentanone	ND	10		μg/L	1	5/11/2021 6:38:09 PM	A7731			
•	e Chloride	ND	3.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
n-Butylbe		ND	3.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
n-Propylb		ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
sec-Butyl		ND	1.0		µg/L	1	5/11/2021 6:38:09 PM	A7731			
Styrene		ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
tert-Butyl	henzene	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
-	etrachloroethane	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	etrachloroethane	ND	2.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	proethene (PCE)	ND	2.0 1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
trans-1,2-	()	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	-Dochoropropene	ND	1.0		μg/L	1	5/11/2021 6:38:09 PM	A7731			
	chlorobenzene	ND	1.0		µg/∟ µg/L	1	5/11/2021 6:38:09 PM	A7731			
	chlorobenzene	ND					5/11/2021 6:38:09 PM	A7731			
	chloroethane	ND	1.0 1.0		μg/L μg/L	1 1	5/11/2021 6:38:09 PM	A7731 A7731			

-• -

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Qualifiers:

-- -- --

.

. . .

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Analyte detected in the associated Method Blank В

Е Value above quantitation range

J Analyte detected below quantitation limits Р Sample pH Not In Range

RL Reporting Limit

Page 5 of 21

S % Recovery outside of range due to dilution or matrix

Lab Order 2105207

Date Reported: 5/25/2021

CLIENT: Western Technologies	Client Sample ID: MW-2A Collection Date: 5/5/2021 8:28:00 AM							
Project: Leonards Conoco		,	Conection Dat	e: 5/.	5/2021 8:28:00 AM			
Lab ID: 2105207-002	Matrix: AQUEOUS		Received Dat	e: 5/	5/2021 3:05:00 PM			
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 8260B: VOLATILES					Analyst	BRM		
1,1,2-Trichloroethane	ND	1.0	µg/L	1	5/11/2021 6:38:09 PM	A77311		
Trichloroethene (TCE)	ND	1.0	µg/L	1	5/11/2021 6:38:09 PM	A77311		
Trichlorofluoromethane	ND	1.0	μg/L	1	5/11/2021 6:38:09 PM	A77311		
1,2,3-Trichloropropane	ND	2.0	µg/L	1	5/11/2021 6:38:09 PM	A7731′		
Vinyl chloride	ND	1.0	µg/L	1	5/11/2021 6:38:09 PM	A7731′		
Xylenes, Total	ND	1.5	µg/L	1	5/11/2021 6:38:09 PM	A7731′		
Surr: 1,2-Dichloroethane-d4	109	70-130	%Rec	1	5/11/2021 6:38:09 PM	A7731′		
Surr: 4-Bromofluorobenzene	98.0	70-130	%Rec	1	5/11/2021 6:38:09 PM	A7731 ⁻		
Surr: Dibromofluoromethane	107	70-130	%Rec	1	5/11/2021 6:38:09 PM	A7731 ⁻		
Surr: Toluene-d8	99.0	70-130	%Rec	1	5/11/2021 6:38:09 PM	A7731 ⁻		

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 21

Lab Order 2105207

Date Reported: 5/25/2021

CLIENT: Western Technologies

2105207-003

Project: Leonards Conoco

Lab ID:

Client Sample ID: Trip Blank Collection Date:

Matrix: TRIP BLANK

NK **Received Date:** 5/5/2021 3:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8011/504.1: EDB					Analyst	: mb
1,2-Dibromoethane	ND	0.0094	µg/L	1	5/13/2021 6:27:52 PM	59988
EPA METHOD 8260B: VOLATILES					Analyst	BRM
Benzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Toluene	ND	1.0	μg/L	1	5/11/2021 7:05:07 PM	A77311
Ethylbenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	5/11/2021 7:05:07 PM	A77311
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Naphthalene	ND	2.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1-Methylnaphthalene	ND	4.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
2-Methylnaphthalene	ND	4.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Acetone	ND	10	µg/L	1	5/11/2021 7:05:07 PM	A77311
Bromobenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Bromodichloromethane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Bromoform	ND	1.0	μg/L	1	5/11/2021 7:05:07 PM	A77311
Bromomethane	ND	3.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
2-Butanone	ND	10	µg/L	1	5/11/2021 7:05:07 PM	A77311
Carbon disulfide	ND	10	µg/L	1	5/11/2021 7:05:07 PM	A77311
Carbon Tetrachloride	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Chlorobenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Chloroethane	ND	2.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Chloroform	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Chloromethane	ND	3.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
2-Chlorotoluene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
4-Chlorotoluene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
cis-1,2-DCE	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Dibromochloromethane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Dibromomethane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,2-Dichlorobenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,3-Dichlorobenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,4-Dichlorobenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Dichlorodifluoromethane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,1-Dichloroethane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,1-Dichloroethene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,2-Dichloropropane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 21

Analytical Report
Lab Order 2105207

Date Reported: 5/25/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Technologies

Leonards Conoco

2105207-003

Project:

Lab ID:

Collection Date:

Matrix: TRIP BLANK

 P BLANK
 Received Date: 5/5/2021 3:05:00 PM

Client Sample ID: Trip Blank

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	BRM
1,3-Dichloropropane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
2,2-Dichloropropane	ND	2.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,1-Dichloropropene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Hexachlorobutadiene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
2-Hexanone	ND	10	µg/L	1	5/11/2021 7:05:07 PM	A77311
Isopropylbenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
4-Isopropyltoluene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
4-Methyl-2-pentanone	ND	10	µg/L	1	5/11/2021 7:05:07 PM	A77311
Methylene Chloride	ND	3.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
n-Butylbenzene	ND	3.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
n-Propylbenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
sec-Butylbenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Styrene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
tert-Butylbenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
trans-1,2-DCE	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,1,1-Trichloroethane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,1,2-Trichloroethane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Trichloroethene (TCE)	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Trichlorofluoromethane	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
1,2,3-Trichloropropane	ND	2.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Vinyl chloride	ND	1.0	µg/L	1	5/11/2021 7:05:07 PM	A77311
Xylenes, Total	ND	1.5	µg/L	1	5/11/2021 7:05:07 PM	A77311
Surr: 1,2-Dichloroethane-d4	111	70-130	%Rec	1	5/11/2021 7:05:07 PM	A77311
Surr: 4-Bromofluorobenzene	94.6	70-130	%Rec	1	5/11/2021 7:05:07 PM	A77311
Surr: Dibromofluoromethane	111	70-130	%Rec	1	5/11/2021 7:05:07 PM	A77311
Surr: Toluene-d8	97.5	70-130	%Rec	1	5/11/2021 7:05:07 PM	A77311

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H
 Holding times for preparation or analysis exceeded

 ND
 Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Qualifiers:

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 8 of 21

Analytical Report

Lab Order 2105207

Date Reported: 5/25/2021

CLIENT:Western TechnologiesProject:Leonards ConocoLab ID:2105207-004	Matrix: AQUE	(Collect		e: 5/:	W-3 5/2021 10:38:00 AM 5/2021 3:05:00 PM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: MH
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	5/6/2021 8:45:47 PM	R77217
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	5/6/2021 8:45:47 PM	R77217
SM2540C MOD: TOTAL DISSOLVED SOLI	DS					Analyst	: JMT
Total Dissolved Solids	3240	40.0	*D	mg/L	1	5/13/2021 1:57:00 PM	59964
SM 4500 NORG C: TKN				-		Analyst	EKM
Nitrogen, Kjeldahl, Total	ND	1.0		mg/L	1	5/18/2021 10:21:00 AM	
EPA METHOD 8011/504.1: EDB				-		Analyst	: mb
1,2-Dibromoethane	ND	0.0094		µg/L	1	5/13/2021 6:43:04 PM	59988
EPA METHOD 8015M/D: DIESEL RANGE						Analyst	SB
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	5/11/2021 2:20:37 AM	59921
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	5/11/2021 2:20:37 AM	59921
Surr: DNOP	104	63.7-164		%Rec	1	5/11/2021 2:20:37 AM	59921
EPA METHOD 8015D: GASOLINE RANGE						Analyst	CCM
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	5/11/2021 11:36:00 PM	R77299
Surr: BFB	92.8	68.5-136		%Rec	1	5/11/2021 11:36:00 PM	R77299
EPA METHOD 8260B: VOLATILES						Analyst	BRM
Benzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Toluene	ND	1.0		μg/L	1	5/11/2021 7:32:03 PM	A77311
Ethylbenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
1,2,4-Trimethylbenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
1,3,5-Trimethylbenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
1,2-Dichloroethane (EDC)	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Naphthalene	ND	2.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
1-Methylnaphthalene	ND	4.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
2-Methylnaphthalene	ND	4.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Acetone	ND	10		µg/L	1	5/11/2021 7:32:03 PM	A77311
Bromobenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Bromodichloromethane	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Bromoform	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Bromomethane	ND	3.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
2-Butanone	ND	10		µg/L	1	5/11/2021 7:32:03 PM	A77311

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

10

1.0

1.0

ND

ND

ND

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

Carbon disulfide

Chlorobenzene

Carbon Tetrachloride

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix в Analyte detected in the associated Method Blank

1

1

1

5/11/2021 7:32:03 PM

5/11/2021 7:32:03 PM A77311

5/11/2021 7:32:03 PM A77311

Е Value above quantitation range

J Analyte detected below quantitation limits Р

Sample pH Not In Range RL

µg/L

µg/L

µg/L

Reporting Limit

Page 9 of 21

A77311

Analytical Report

Lab Order 2105207

Date Reported: 5/25/2021

CLIENT:Western TechnologiesProject:Leonards ConocoLab ID:2105207-004	Matrix: AQUEOUS		Collect		e: 5/5	W-3 5/2021 10:38:00 AM 5/2021 3:05:00 PM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	BRM
Chloroethane	ND	2.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Chloroform	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Chloromethane	ND	3.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
2-Chlorotoluene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
4-Chlorotoluene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
cis-1,2-DCE	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
cis-1,3-Dichloropropene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
1,2-Dibromo-3-chloropropane	ND	2.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Dibromochloromethane	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Dibromomethane	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
1,2-Dichlorobenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
1,3-Dichlorobenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
1,4-Dichlorobenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
Dichlorodifluoromethane	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
1,1-Dichloroethane	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
1,1-Dichloroethene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
1,2-Dichloropropane	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
1,3-Dichloropropane	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
2,2-Dichloropropane	ND	2.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
1,1-Dichloropropene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
Hexachlorobutadiene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
2-Hexanone	ND	10		µg/L	1	5/11/2021 7:32:03 PM	A77311
Isopropylbenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
4-Isopropyltoluene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
4-Methyl-2-pentanone	ND	10		µg/L	1	5/11/2021 7:32:03 PM	A7731′
Methylene Chloride	ND	3.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
n-Butylbenzene	ND	3.0		µg/L	1	5/11/2021 7:32:03 PM	A7731
n-Propylbenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731
sec-Butylbenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
Styrene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
tert-Butylbenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77312
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
Tetrachloroethene (PCE)	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
trans-1,2-DCE	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A77311
1,2,3-Trichlorobenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731′
1,2,4-Trichlorobenzene	ND	1.0		µg/L	1	5/11/2021 7:32:03 PM	A7731

Hall Environmental Analysis Laboratory, Inc.

B Analyte detected in the associated Method BlankE Value above quantitation range

J Analyte detected below quantitation limits

µg/L

P Sample pH Not In Range

1.0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

ND

PQL Practical Quanitative Limit S % Recovery outside of range due to dilution or matrix

Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

Not Detected at the Reporting Limit

1,1,1-Trichloroethane

Qualifiers:

*

D

Н

ND

RL Reporting Limit

Page 10 of 21

1 5/11/2021 7:32:03 PM A77311

Analytical Report

Lab Order **2105207** Date Reported: **5/25/2021**

CLIENT: Western Technologies Project: Leonards Conoco Lab ID: 2105207-004	Matrix: AQUEOUS	(e: 5/	IW-3 5/2021 10:38:00 AM 5/2021 3:05:00 PM	
Analyses	Result		Qual Units		Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	BRM
1,1,2-Trichloroethane	ND	1.0	µg/L	1	5/11/2021 7:32:03 PM	A77311
Trichloroethene (TCE)	ND	1.0	µg/L	1	5/11/2021 7:32:03 PM	A77311
Trichlorofluoromethane	ND	1.0	μg/L	1	5/11/2021 7:32:03 PM	A77311
1,2,3-Trichloropropane	ND	2.0	μg/L	1	5/11/2021 7:32:03 PM	A77311
Vinyl chloride	ND	1.0	μg/L	1	5/11/2021 7:32:03 PM	A77311
Xylenes, Total	ND	1.5	μg/L	1	5/11/2021 7:32:03 PM	A77311
Surr: 1,2-Dichloroethane-d4	107	70-130	%Rec	1	5/11/2021 7:32:03 PM	A77311
Surr: 4-Bromofluorobenzene	97.3	70-130	%Rec	1	5/11/2021 7:32:03 PM	A77311
Surr: Dibromofluoromethane	106	70-130	%Rec	1	5/11/2021 7:32:03 PM	A77311
Surr: Toluene-d8	99.1	70-130	%Rec	1	5/11/2021 7:32:03 PM	A77311

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- JAnalyte detected below quantitation limitsPSample pH Not In Range
- RL Reporting Limit

Page 11 of 21

Pace Analytical® ANALYTICAL REPORT May 18, 2021

Hall Environmental Analysis Laboratory

Sample Delivery Group:

Samples Received:

L1350177 05/08/2021

Project Number: Description:

Report To:

Jackie Bolte 4901 Hawkins NE Albuquerque, NM 87109

Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By: John V Haulins

John Hawkins Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Hall Environmental Analysis Laboratory

SDG: L1350177

DATE/TIME: 05/18/21 10:41

PAGE: 1 of 11

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2105207-001F MW-1A L1350177-01	5
2105207-002F MW-2A L1350177-02	6
2105207-004F MW-3 L1350177-03	7
Qc: Quality Control Summary	8
Wet Chemistry by Method 410.4	8
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

SAMPLE SUMMARY

2105207 0015 MM/ 1A 1 1250177 01 M/M			Collected by	Collected date/time 05/05/21 11:27	Received da 05/08/21 09	
2105207-001F MW-1A L1350177-01 WW Method	Datch	Dilution	Droparation			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 410.4	WG1671868	1	05/18/21 02:11	05/18/21 08:31	AKA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2105207-002F MW-2A L1350177-02 WW				05/05/21 08:28	05/08/21 09	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 410.4	WG1671868	1	05/18/21 02:11	05/18/21 08:31	AKA	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2105207-004F MW-3 L1350177-03 WW				05/05/21 10:38	05/08/21 09	:45
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 410.4	WG1671868	20	05/18/21 02:11	05/18/21 08:31	AKA	Mt. Juliet, TN

Ср

²Tc

Ss

⁴Cn

Sr

Qc

GI

ΆI

Sc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John V Howkins

John Hawkins Project Manager

2105207-001F MW-1A Collected date/time: 05/05/21 11:27

SAMPLE RESULTS - 01

Wet Chemistry by Method 410.4

	Res	ult <u>Qualifi</u>	er RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg	I	mg/l		date / time		2
COD	27.	}	20.0	1	05/18/2021 08:31	WG1671868	Tc

2105207-002F MW-2A Collected date/time: 05/05/21 08:28

SAMPLE RESULTS - 02

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l		date / time		2
COD	ND		20.0	1	05/18/2021 08:31	WG1671868	Tc

2105207-004F MW-3 Collected date/time: 05/05/2110:38

SAMPLE RESULTS - 03

Wet Chemistry by Method 410.4

	F	esult	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	n	ıg/l		mg/l		date / time		2
COD	1.	290		400	20	05/18/2021 08:31	WG1671868	Tc

WG1671868

Wet Chemistry by Method 410.4

QUALITY CONTROL SUMMARY L1350177-01,02,03

Method Blank (MB)

Method Blank					1
(MB) R3655626-1	05/18/21 08:27				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	1
COD	U		11.7	20.0	
					3

L1350114-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1350114-15 05/18/21	08:28 • (DUP) F	R3655626-3	05/18/21 0	8:28		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
COD	ND	ND	1	0.000		20

L1350114-23 Original Sample (OS) • Duplicate (DUP)

L1350114-23 Origin	ial Sample ((OS) • Dup	licate (E)UP)				⁷ GI
(OS) L1350114-23 05/18/2	108:30 • (DUP)	R3655626-6	05/18/21 (38:30				
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ Al
Analyte	mg/l	mg/l		%		%		
COD	ND	ND	1	6.83		20		⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3655626-2 05/18	3/21 08:28				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
COD	500	503	101	90.0-110	

L1350114-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1350114-17 05/18/21	(OS) L1350114-17 05/18/21 08:29 • (MS) R3655626-4 05/18/21 08:29 • (MSD) R3655626-5 05/18/21 08:29											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
COD	500	53.3	527	525	94.8	94.3	1	80.0-120			0.405	20

ACCOUNT:
Hall Environmental Analysis Laboratory

DATE/TIME: 05/18/21 10:41 ⁴Cn

Sr

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1350177 Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1350177 Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

	HALL ENVIRONN ANALYSIS LABORATO	do. ee	CHAIN	OF CUS	FODY I	RECORD	E: 0F: 1		Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com
ADDRE	12065	Lebanon Rd	PACE	ΓN		PHONE:	(800) 767-58	59 FAX: EMAIL:	(615) 758-5859
ITEM	Mt. Ju	Iliet, TN 37122		BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTIC	LIB50177 AL COMMENTS
L		MW-1A		500HDPEH2	Aqueous	5/5/2021 11:27:00 AM	1 COD		-01
2	2105207-002F	MW-2A		500HDPEH2	Aqueous	5/5/2021 8:28:00 AM	1 COD		-02
3	2105207-004F	MW-3			Aqueous	5/5/2021 10:38:00 AM	1 COD		-03

MOD

See.

Sample Receipt Checklist COC Seal Present/Intact: N If Applicable COC Signed/Accurate: N VOA Zero Headspace: Y N Bottles arrive intact: N Pres.Correct/Check: Y N Correct bottles used: N Sufficient volume sent: N RAD Screen <0.5 mR/hr: N

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and t	he CLIENT S	AMPLE ID on	all final reports. Please e-mail results	to lab@haller	nvironmental.c	om. Please return all coolers and blue ice. Thank you.
						50161223 7676
Relinquished By:	Date: 5/6/2021	Time: 2:19 PM	Received By:	Date:	Time:	REPORT TRANSMITTAL DESIRED:
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	FOR LASE ONLY
Relinquished By:	Date:	Time:	Received By:	Data 16/21	Time: 945	Temp of samples 1.54.312 Attempt to Cool?
TAT: Stand	lard 🕘	RUSH	Next BD 2nd BD .	3rd BI		Comments:

Client: Project:	Western Technologi Leonards Conoco	es								
Sample ID: MB	SampT	ype: mb	olk	Tes	tCode: El	PA Method	300.0: Anions	6		
Client ID: PBW	Batch ID: R77217		F	RunNo: 7	7217					
Prep Date:	Analysis D	ate: 5/	6/2021	S	SeqNo: 2	738301	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sample ID: LCS	SampT	ype: Ics	;	TestCode: EPA Method 300.0: Anions						
Client ID: LCSW	Batch	ID: R7	7217	RunNo: 77217						
Prep Date:	Analysis D	Analysis Date: 5/6/2021		SeqNo: 2738313		Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)	0.92	0.10	1.000	0	91.9	90	110			
Nitrogen, Nitrate (As N)	2.4	0.10	2.500	0	95.6	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

Page 12 of 21

RL Reporting Limit

WO#: 2105207 25-May-21

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	2105207
	25-May-21

Client: Wester	n Technologies							
Project: Leonar	ds Conoco							
Sample ID: MB-59988	SampType: MBLK	TestCode: EPA Method	8011/504.1: EDB					
Client ID: PBW	Batch ID: 59988	RunNo: 77381						
Prep Date: 5/13/2021	Analysis Date: 5/13/2021	SeqNo: 2745642	Units: µg/L					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual			
1,2-Dibromoethane	ND 0.010							
Sample ID: LCS-59988	SampType: LCS	TestCode: EPA Method 8011/504.1: EDB						
Client ID: LCSW	Batch ID: 59988	RunNo: 77381						
Prep Date: 5/13/2021	Analysis Date: 5/13/2021	SeqNo: 2745643	Units: µg/L					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual			
1,2-Dibromoethane	0.10 0.010 0.1000	0 101 70	130					
Sample ID: LCSD-59988	SampType: LCSD	TestCode: EPA Method	8011/504.1: EDB					
Client ID: LCSS02	Batch ID: 59988	RunNo: 77381						
Prep Date: 5/13/2021	Analysis Date: 5/13/2021	SeqNo: 2745644	Units: µg/L					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual			
1,2-Dibromoethane	0.093 0.010 0.1000	0 93.2 70	130 8.29	20				
Sample ID: MB-59988	SampType: MBLK	TestCode: EPA Method	8011/504.1: EDB					
Client ID: PBW	Batch ID: 59988	RunNo: 77381						
Prep Date: 5/13/2021	Analysis Date: 5/13/2021	SeqNo: 2745645	Units: µg/L					
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit	Qual			
1,2-Dibromoethane	ND 0.010							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 21

Western Technologies

Leonards Conoco

is Laborau	Laboratory, Inc.							
: MBLK	TestCode: EPA Method 8015M/D: Diesel Range							

Sample ID: MB-59921 SampType: MBLK			TestCode: EPA Method 8015M/D: Diesel Range							
Client ID: PBW	Batcl	n ID: 59	921	F	RunNo: 7	7349				
Prep Date: 5/10/2021	Analysis D	oate: 5/	11/2021	S	SeqNo: 2	744634	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	1.0								
Motor Oil Range Organics (MRO)	ND	5.0								
Surr: DNOP	1.1		1.000		107	63.7	164			
Sample ID: LCS-59921	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	sel Rang	e	
Client ID: LCSW	Batcl	n ID: 59	921	F	RunNo: 77349					
Prep Date: 5/10/2021	Analysis D	0ate: 5/	11/2021	S	SeqNo: 2	744636	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.5	1.0	5.000	0	109	70	130			

Qualifiers:

Client:

Project:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 21

WO#:	2105207
	25-May-21

Client: Project:	Western T Leonards	U	ies								
Sample ID: 2.5ug	g GRO lcs	SampT	ype: LC	S	Tes	tCode: E	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSV	N	Batch	n ID: R7	7299	F	RunNo: 7	77299				
Prep Date:		Analysis D	ate: 5/	11/2021	S	SeqNo:	2743345	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orgar	nics (GRO)	0.47	0.050	0.5000	0	93.8	80	120			
Surr: BFB		20		20.00		101	68.5	136			
Sample ID: MB	B SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range										
Client ID: PBW		Batch ID: R77299 RunNo: 77299									
Prep Date:		Analysis D	ate: 5/	11/2021	5	SeqNo:	2743346	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orgar	nics (GRO)	ND	0.050								
Surr: BFB		18		20.00		91.7	68.5	136			
Sample ID: 21052	207-001bms	SampT	ype: MS	3	Tes	tCode: E	PA Method	8015D: Gaso	line Rang	e	
Client ID: MW-1	1A	Batch	n ID: R7	7299	F	RunNo: 7	77299				
Prep Date:		Analysis D	ate: 5/	11/2021	S	SeqNo: 2	2743350	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orgar	nics (GRO)	1.6	0.050	0.5000	0.9932	113	67.3	116			
Surr: BFB		49		20.00		246	68.5	136			S
Sample ID: 21052	207-001bmsd	SampT	ype: MS	SD	Tes	tCode: E	PA Method	8015D: Gaso	line Rang	e	
Client ID: MW-1	1A	Batch	n ID: R7	7299	F	RunNo: 7	77299				
Prep Date:		Analysis D	ate: 5/	12/2021	S	SeqNo:	2743351	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orgar	nics (GRO)	1.5	0.050	0.5000	0.9932	102	67.3	116	3.80	20	
Surr: BFB		47		20.00		236	68.5	136	0	0	S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:

Western Technologies

	ls Conoco									
Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batc	n ID: A7	7311	F	RunNo: 7	7311				
Prep Date:	Analysis E	Date: 5/	11/2021	S	SeqNo: 2	743053	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	105	70	130			
Toluene	19	1.0	20.00	0	93.9	70	130			
Chlorobenzene	18	1.0	20.00	0	90.4	70	130			
1,1-Dichloroethene	19	1.0	20.00	0	96.0	70	130			
Trichloroethene (TCE)	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		113	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		99.1	70	130			
Surr: Dibromofluoromethane	11		10.00		110	70	130			
Surr: Toluene-d8	9.7		10.00		96.9	70	130			
Sample ID: 2105207-001a m	s SampT	уре: М	6	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: MW-1A	Batc	h ID: A7	ID: A77311 RunNo: 77311							
Prep Date:	Analysis E	Date: 5/	12/2021	S	SeqNo: 2	743056	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	150	1.0	20.00	111.9	1.9 197 70 130				ES	
Toluene	20	1.0	20.00	0.3684	96.0	70	130			
Chlorobenzene	19	1.0	20.00	0	93.0	70	130			
1,1-Dichloroethene	18	1.0	20.00	0	91.0	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	98.8	70	130			
Surr: 1,2-Dichloroethane-d4	11		10.00		107	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.2	70	130			
Surr: Dibromofluoromethane	11		10.00		105	70	130			
Surr: Toluene-d8	9.7		10.00		97.1	70	130			
Sample ID: 2105207-001a m	sd SampT	уре: М	SD	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: MW-1A	Batcl	n ID: A7	7311	F	RunNo: 7	7311				
Prep Date:	Analysis E	Date: 5/	12/2021	S	SeqNo: 2	743057	Units: µg/L			
Analyte	Result	PQL		SPK Ref Val			HighLimit	%RPD	RPDLimit	Qual
Benzene	140	1.0	20.00	111.9	155	70	130	5.72	20	ES
Toluene	19	1.0	20.00	0.3684	91.9	70	130	4.23	20	
		10	20.00	0	88.5	70	130	4.97	20	
Chlorobenzene	18	1.0	20.00				100	0 70		
	18 17	1.0	20.00	0	85.1	70	130	6.78	20	
1,1-Dichloroethene				0 0	85.1 94.3	70 70	130 130	6.78 4.68	20 20	
1,1-Dichloroethene	17	1.0	20.00							
1,1-Dichloroethene Trichloroethene (TCE)	17 19	1.0	20.00 20.00		94.3	70	130	4.68	20	
	17 19 10	1.0	20.00 20.00 10.00		94.3 101	70 70	130 130	4.68 0	20 0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits

Р Sample pH Not In Range RL Reporting Limit

2105207

WO#:

WO#: **2105207**

25-May-21

	rn Technolog rds Conoco	ies		
-				
Sample ID: mb		ype: MBLK	TestCode: EPA Method 8260B: VOLATILES	
Client ID: PBW	Batch	n ID: A77311	RunNo: 77311	
Prep Date:	Analysis D	Date: 5/11/2021	SeqNo: 2743073 Units: µg/L	
Analyte	Result	PQL SPK valu	ue SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qu	ıal
Benzene	ND	1.0		
Toluene	ND	1.0		
Ethylbenzene	ND	1.0		
Methyl tert-butyl ether (MTBE)	ND	1.0		
1,2,4-Trimethylbenzene	ND	1.0		
1,3,5-Trimethylbenzene	ND	1.0		
1,2-Dichloroethane (EDC)	ND	1.0		
1,2-Dibromoethane (EDB)	ND	1.0		
Naphthalene	ND	2.0		
1-Methylnaphthalene	ND	4.0		
2-Methylnaphthalene	ND	4.0		
Acetone	ND	10		
Bromobenzene	ND	1.0		
Bromodichloromethane	ND	1.0		
Bromoform	ND	1.0		
Bromomethane	ND ND	3.0		
2-Butanone Carbon disulfide	ND	10 10		
Carbon Tetrachloride	ND	1.0		
Chlorobenzene	ND	1.0		
Chloroethane	ND	2.0		
Chloroform	ND	1.0		
Chloromethane	ND	3.0		
2-Chlorotoluene	ND	1.0		
4-Chlorotoluene	ND	1.0		
cis-1,2-DCE	ND	1.0		
cis-1,3-Dichloropropene	ND	1.0		
1,2-Dibromo-3-chloropropane	ND	2.0		
Dibromochloromethane	ND	1.0		
Dibromomethane	ND	1.0		
1,2-Dichlorobenzene	ND	1.0		
1,3-Dichlorobenzene	ND	1.0		
1,4-Dichlorobenzene	ND	1.0		
Dichlorodifluoromethane	ND	1.0		
1,1-Dichloroethane	ND	1.0		
1,1-Dichloroethene	ND	1.0		
1,2-Dichloropropane	ND	1.0		
1,3-Dichloropropane	ND	1.0		
2,2-Dichloropropane	ND	2.0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2105207 25-May-21

Client: Weste	ern Technolog	ies										
Project: Leona	rds Conoco											
Sample ID: mb	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8260B: VOL/	ATILES				
Client ID: PBW		n ID: A7		F	RunNo:	77311						
Prep Date:	Analysis E	Date: 5/	11/2021	SeqNo: 2743073			Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
1,1-Dichloropropene	ND	1.0										
Hexachlorobutadiene	ND	1.0										
2-Hexanone	ND	10										
Isopropylbenzene	ND	1.0										
4-Isopropyltoluene	ND	1.0										
4-Methyl-2-pentanone	ND	10										
Methylene Chloride	ND	3.0										
n-Butylbenzene	ND	3.0										
n-Propylbenzene	ND	1.0										
sec-Butylbenzene	ND	1.0										
Styrene	ND	1.0										
tert-Butylbenzene	ND	1.0										
1,1,1,2-Tetrachloroethane	ND	1.0										
1,1,2,2-Tetrachloroethane	ND	2.0										
Tetrachloroethene (PCE)	ND	1.0										
trans-1,2-DCE	ND	1.0										
trans-1,3-Dichloropropene	ND	1.0										
1,2,3-Trichlorobenzene	ND	1.0										
1,2,4-Trichlorobenzene	ND	1.0										
1,1,1-Trichloroethane	ND	1.0										
1,1,2-Trichloroethane	ND	1.0										
Trichloroethene (TCE)	ND	1.0										
Trichlorofluoromethane	ND	1.0										
1,2,3-Trichloropropane	ND	2.0										
Vinyl chloride	ND	1.0										
Xylenes, Total	ND	1.5										
Surr: 1,2-Dichloroethane-d4	11		10.00		107		130					
Surr: 4-Bromofluorobenzene	9.8		10.00		98.0	70	130					
Surr: Dibromofluoromethane	11		10.00		106		130					
Surr: Toluene-d8	10		10.00		101	70	130					
Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: E	PA Method	8260B: VOL	ATILES				
Client ID: LCSW	Batc	n ID: A7	7339	F	RunNo:	77339						
Prep Date:	Analysis E	Analysis Date: 5/12/2021 SeqNo: 2744209 Units: µg/L										
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	22	1.0	20.00	0	111	70	130					
Surr: 1,2-Dichloroethane-d4	11		10.00		109	70	130					
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130					

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceededND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

WO#:	2105	5207

	Vestern Technolog eonards Conoco													
Sample ID: 100ng lcs	s Samp	Гуре: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES						
Client ID: LCSW	Batc	h ID: A7	7339	F	RunNo: 7	7339								
Prep Date:	Analysis [Date: 5/	12/2021	SeqNo: 2744209			Units: µg/L							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Surr: Dibromofluorometha	ane 11		10.00		110	70	130							
Surr: Toluene-d8	9.6		10.00		96.3	70	130							
	mple ID: mb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES													
Sample ID: mb	Samp	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES						
Sample ID: mb Client ID: PBW		Гуре: МЕ h ID: А7			tCode: El RunNo: 7		8260B: VOL	ATILES						
		h ID: A7	7339	F		7339	8260B: VOL	ATILES						
Client ID: PBW	Batc	h ID: A7	7339 12/2021	F	RunNo: 7	7339		ATILES %RPD	RPDLimit	Qual				
Client ID: PBW Prep Date:	Batc Analysis [h ID: A7 Date: 5/	7339 12/2021	F S	RunNo: 7 SeqNo: 2	7339 744229	Units: µg/L	-	RPDLimit	Qual				
Client ID: PBW Prep Date: Analyte	Batc Analysis I Result	h ID: A7 Date: 5 / PQL	7339 12/2021	F S	RunNo: 7 SeqNo: 2	7339 744229	Units: µg/L	-	RPDLimit	Qual				
Client ID: PBW Prep Date: Analyte Benzene	Batc Analysis I Result ND ND	h ID: A7 Date: 5/ PQL 1.0	7339 12/2021	F S	RunNo: 7 SeqNo: 2	7339 744229	Units: µg/L	-	RPDLimit	Qual				
Client ID: PBW Prep Date: Analyte Benzene Ethylbenzene	Batc Analysis I Result ND ND d4 11	h ID: A7 Date: 5/ PQL 1.0	7339 12/2021 SPK value	F S	RunNo: 7 SeqNo: 2 %REC	7339 744229 LowLimit	Units: µg/L HighLimit	-	RPDLimit	Qual				
Client ID: PBW Prep Date: Analyte Benzene Ethylbenzene Surr: 1,2-Dichloroethane-	Batc Analysis I Result ND ND d4 11 ene 10	h ID: A7 Date: 5/ PQL 1.0	7339 12/2021 SPK value 10.00	F S	RunNo: 7 SeqNo: 2 <u>%REC</u> 106	7339 744229 LowLimit 70	Units: µg/L HighLimit 130	-	RPDLimit	Qual				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 21

WO#:	2105207
	25-May-21

Client: Project:	Western 7 Leonards	Fechnologi Conoco	es								
Sample ID:	MB-59964	SampTy	/pe: ME	BLK	Tes	tCode: SN	M2540C MC	D: Total Diss	olved So	lids	
Client ID:	PBW	Batch ID: 59964 RunNo: 77368									
Prep Date:	5/12/2021	Analysis Da	ate: 5/ *	13/2021	S	eqNo: 27	745301	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	I Solids	ND	20.0								
Sample ID:	LCS-59964	SampTy	/pe: LC	S	Tes	tCode: SI	M2540C MC	D: Total Diss	olved So	lids	
Client ID:	LCSW	Batch	ID: 599	964	F	unNo: 77	7368				
Prep Date:	5/12/2021	Analysis Da	ate: 5/ *	13/2021	S	eqNo: 27	745302	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	I Solids	1030	20.0	1000	0	103	80	120			
Sample ID:	2105207-001EDUP	SampTy	/pe: DU	P	Tes	tCode: SN	M2540C MC	D: Total Diss	olved So	lids	
Client ID:	MW-1A	Batch	ID: 599	964	F	lunNo: 77	7368				
Prep Date:	ap Date: 5/12/2021 Analysis Date: 5/13/2021 SeqNo: 2745306 Units: mg/						Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved	I Solids	2980	20.0						0.134	10	*

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 21

Client: Project:		Western Technologies Leonards Conoco										
Sample ID: MB-60069 SampType: MBLK					TestCode: SM 4500 Norg C: TKN							
Client ID:	PBW	Batch	ID: 60	069	F	RunNo: 7	7463					
Prep Date:	5/17/2021	Analysis Da	ite: 5/	18/2021	S	SeqNo: 2	749357	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Nitrogen, Kjelda	ahl, Total	ND	1.0									
Sample ID:	LCS-60069	SampTy	pe: LC	S	Tes	tCode: SI	M 4500 Nor	g C: TKN				
Client ID:	LCSW	Batch	ID: 60	069	F	RunNo: 7	7463					
Prep Date:	5/17/2021	Analysis Da	ite: 5/	18/2021	SeqNo: 2749358			Units: mg/L				
Analyte Result PQL SPK value SPK Ref Val %REC LowLim						LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Nitrogen, Kjelda	ahl, Total	9.8	1.0	10.00	0	98.0	80	120				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е
- J Analyte detected below quantitation limits
- Р

Value above quantitation range

- Sample pH Not In Range RL Reporting Limit

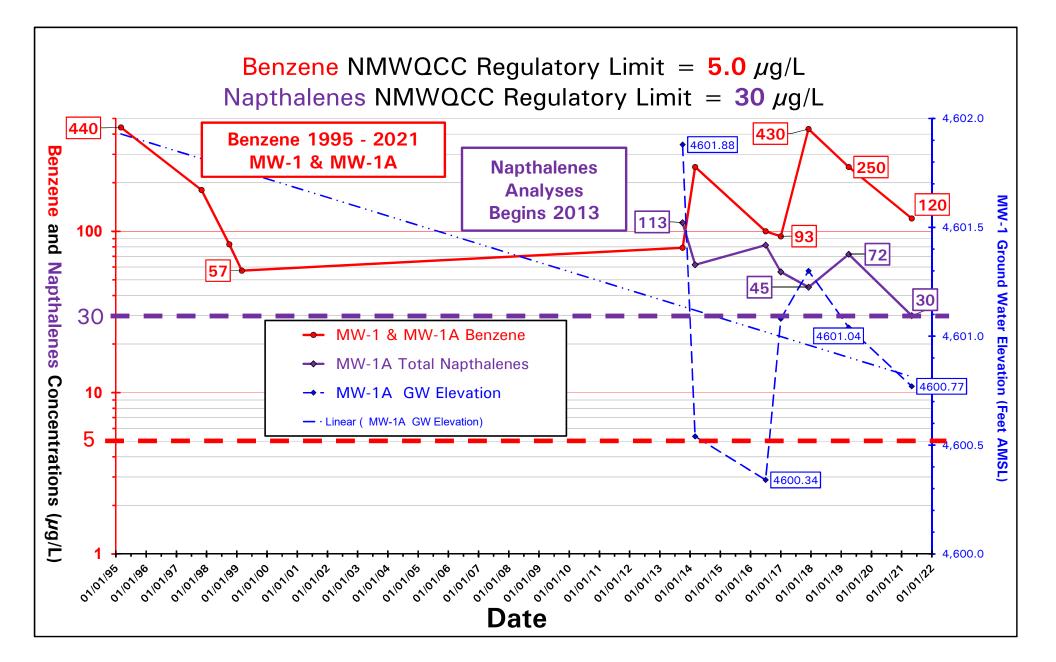
Page 21 of 21

WO#: 2105207 25-May-21

HALL ENVIRONMENTA ANALYSIS LABORATORY	AL. TEL: 505-345	nental Analysis Labora 4901 Hawkin Albuquerque, NM 8 5-3975 FAX: 505-345 ents.hallenvironmental	s NE 7109 San 4107	ample Log-In Check List						
Client Name: Western Te	chnologies Work Order Nu	mber: 2105207		RcptNo: 1						
Received By: Juan Roja	s 5/5/2021 3:05:00	PM	Heaven J							
Completed By: Isaiah Orti	z 5/5/2021 3:25:00	РМ	Inc	X						
Reviewed By: 574	5.6.21									
Chain of Custody										
1. Is Chain of Custody compl	ete?	Yes 🗹	No 🗌	Not Present						
2. How was the sample delive	ered?	Client								
Log In										
3. Was an attempt made to co	ool the samples?	Yes 🗹	No	NA 🗌						
4. Were all samples received	at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗌							
5. Sample(s) in proper contain	ner(s)?	Yes 🗸	No 🗌							
6. Sufficient sample volume for	or indicated test(s)?	Yes 🔽	No 🗌							
7. Are samples (except VOA a	and ONG) properly preserved?	Yes 🗹	No 🗌							
8. Was preservative added to	bottles?	Yes	No 🗹	NA 🗌						
9. Received at least 1 vial with	headspace <1/4" for AQ VOA?	Yes 🗹	No 🗌							
10. Were any sample contained	rs received broken?	Yes	No 🗹							
11 Door poporticity motion half		V = [4		# of preserved bottles checked						
11. Does paperwork match bott (Note discrepancies on cha		Yes ⊻	No 🛄	for pH: $\binom{6}{(<2)}$ or >12 unless noted)						
12. Are matrices correctly ident		Yes 🗸	No 🗌	Adjusted? MC						
13. Is it clear what analyses we	re requested?	Yes 🔽	No 🗌							
14. Were all holding times able (If no, notify customer for au		Yes 🗹	No 🗌	Checked by:CCC 5/6/ 4						
Special Handling (if app	licable)									
15. Was client notified of all dis	crepancies with this order?	Yes	No 🗌	NA 🔽						
Person Notified:	Date in the second secon	te	la were were and a set							
By Whom:	Via	: eMail P	hone 🦳 Fax	In Person						
Regarding:	and an early and a second and a second s		al Academic Processing and an Academic Processing							
Client Instructions:	Auf un normalis contras reasonados antes actividades de la contras de la contras de la contras de la contras de	a ann 18 fil chuir a' rhuir an rhuir nu chuid an n-rhù ne bhuirt (bhire 187	NUT YOR OLD THE DRIVE CHARLES TANKED	an na faran na faran sa an						
16. Additional remarks:										
17. Cooler Information										
Cooler No Temp °C	Condition Seal Intact Seal No	Seal Date	Signed By							
1 1.2	Good Not Present									

	Cham-or-Gustouy Record		Turn-Around	Time:						L.	AL		DIN.	/TC	20	REP		-	FA			
Client:	We	estern -	Technologies, Inc	Standard	□ Rush	1						NA										
				Project Name								ww.h						1 10.0-	~			
Mailing	Address	8305	Washington Place NE	Leonard's	Conoco				40	01 LI								074(20			
	Albua		NM 87113-1670	Project #:								ns NE			·				19			
Phone	#: 505-8			3288JV032				Tel. 505-345-3975 Fax 505-345-4107 Analysis Request														
			@wt-us.com	Project Manager:			<u> </u>	Ô				SO4										
QA/QC	Package:			David Wagner				(8021)	/ MRO)	PCB's			4, S			bser				z		
📕 Stan	dard		□ Level 4 (Full Validation)					S	DRO /				PO4,			nt/A				TKN		103
Accredi			mpliance	Sampler:	AVID FO	reman		TMB'	/ DF	8081 Pesticides/8082	4.1	178	NO ₂ ,			Total Coliform (Present/Absent)		Q		C	(TDS):	300.0 NO2/NO3
	NELAC Other EDD (Type)			On Ice: Ves INO				Е/	GRO	les/8	150				/OA	u (P		Ϋ́Ε		lorg	E	Z
	(Type)			Cooler Temp	(including CF): 1.	2-0=1.	2	MTBE	5D((sticic	sthoc	Met	Br, NO ₃ ,	(AC	emi-\	liforr	RO	RO	COD	4500 Norg	2540C	0.0
			0						TPH:8015D(GRO /	I Pe	EDB (Method 504.1)	PAHS by 8310 of RCRA 8 Metals	Ē	8260 (VOA)	8270 (Semi-VOA)	ပိ	5 C	8015 DRO MRO	4	45(254	A 30
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL		BTEX	ТРН	808	EDB	RCF RCF	CI, F,	826(827(Tota	8015 GRO	801	410.4	SM	SM 2	EP/
5(5/2)	1127	AQ	MW-1A	40 ml/6	HgCl2		100															
T		AQ	MW-1A	40 ml/2	Na2S2O3		1															
		AQ	MW-1A	250 ml glass/1	none																	
		AQ	MW-1A	500 ml HDPE/2	H₂SO₄																	
	V	AQ	MW-1A	500 ml HDPE/1	none																	
	0828	AQ	MW-2A	40 ml/6	HgCl2		002															
	1	AQ	MW-2A	40 ml/2	Na2S2O3		1															
		AQ	MW-2A	250 ml glass/1	none																	
		AQ	MW-2A	500 ml HDPE/2	H₂SO₄																	
	Ma	AQ	MW-2A	500 ml HDPE/1	none	1																
		AQ	Trip Blank	40 ml/2			003															
Date:	Time:	Relinquish	ed by:	Received by:-	∕ ^{Via:}	Date	Time	Remarks:														
552	5/201505 David Forman		V ····································	101	topo s	5/5-21		Page 1 of 2														
Date:			Received by:	Via:	Date	Time																

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.


Chain-of-Custody Record			Turn-Around Time:				1			_	_											
Client:	0.00		Technologies, Inc	Standard	d □ Rusi	.			10/10										EN			_
				Project Name:				ANALYSIS LABORATORY														
Mailing Address: 8305 Washington Place NE				Leonard's Conoco				www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109														
	Albug		NM 87113-1670	Project #:				{											09			
Phone #: 505-823-4488			3288JV032				1	Tel. 505-345-3975 Fax 505-345-4107 Analysis Request														
email or Fax#: d.wagner@wt-us.com				Project Manager:																		
QA/QC	Package:			David Wagner				(8021)	/ MRO)	n's		SI IS				nes				-		
📕 Star			□ Level 4 (Full Validation)					S	10	PCB's		OSIN		PO4,		ALAL				TKN		ő
Accred			mpliance	Sampler: Davro Forzan				TMB'	TPH:8015D(GRO / DRO	Pesticides/8082	÷.1	8270SIMS	9	NO ₂ ,		Total Coliform (Present/Absent)		0		U	S):	300.0 NO2/NO3
	AC (Type)	□ Other		On Ice: # of Coolers:	Yes	□ No		-	SR0	les/8	EDB (Method 504.1)	0 or			0200 (VUA) 8270 (Sami-VOA)			8015 DRO MRO		org	(TD	2 Z
				Cooler Temp		.2-0-1.	2	MTBE	5D(0	sticio	thod	PAHs by 8310	RCRA 8 Metals	CI, F, BY, NO3,	(F)	form	GRO	8	COD	4500 Norg	00	0.0
				Container					801	Pe	(Me	s by	8 A				Ū	D	4 C	450	2540C	30
Date	Time	Matrix	Sample Name	Type and #	Preservative Type	HEAL I		BTEX /	H	8081		AH	К К Г		0200 (VUA) 8270 (Semi-	[otal	8015	301	410.4		SM	EPA
5/5/21	1038	AQ	MW-3	40 ml/6	HgCl2		DY				_	_	-					100				쁴
	1	AQ	MW-3	40 ml/2	Na2S2O3		$\tilde{1}$										+					
		AQ	MW-3	250 ml glass/1	none										+-							-
		AQ	MW-3	500 ml HDPE/2	H₂SO₄							+		+	-	-		_				\neg
4	5	AQ	MW-3	500 ml HDPE/1	none							+							\vdash			
	,										2		+							-		_
									-			+	+	_								_
														_	-							_
										-	+	_	_		+-						-	_
						1		-	-							-					-	-
									-			-							_			_
								_	-		-				_				\rightarrow			-
Date: Time: Relinquished by:		Received by: Via: Date Time				Remarks:																
5/5/21/505 Danie Fibremen							Page 2 of 2															
Date:	Time:	Relinquishe	d by:	Received by:	Via:		ime															

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

APPENDIX D Charts

Chart 1: MW-1 Benzene and Napthalene Concentrations (logarithmic) versus MW-1A Ground Water Elevations: January 1995 to Date

APPENDIX E Field Notes

Leonard's Conoco

WESTERN TECHNOLOGIES INC.

1633 Historic Route 66

Santa Rosa, New Mexico 88435

PSTB Facility # 29084: Release ID #755

Ground Water Field Data

NOFE Z 1/3 DRAWDOWN

	5-1	5-21				E 1	Cassific	Volume	COMMENTS
Monitor	Depth	Time	Temp.	RDO	рН	Eh ORP	Specific Conductivity	purged	
Well ID	DTW DTB		(°C)	(mg/L)		(mV)	(ŵS/cm)*	(gallons)	ONE TOS READING
			10 0	h-20-	6,89	-18711	3283	63	GVERT, SVIGWELY gray
		im and	12.9		7-39	410-5	2970	non	
MW-1A	DTW	15.07		5+33	1 91		1721	ANT	
0707	13.54	06521009	17,5	4.15	the second s	219,814	Λ.	015	in the second se
-8-59WV	TD	MAD	17:4	2.13	4,88	- 204,1	13274	120	UTW AA TO ILI'S
HAR BON	18.70	1013	KT.A	1,99	7,60	-1967	32107	115	Turbiditing = 7,48 stight
1.78		14.00	17.5	2.36	7167	-18A10	3159	2,0	Sample Time: 1127 6 Borry barawin
VIID							1		
		0815	11 5	5.33	7.39	IVENT	2870	Ö	brown, medi turkid
MW-2A	DTW	0819	16.0		7.40		2892	Diti	
1	13.54	0652 819	4 4	4.21	A	A	2. 896		
2.59	TD	0922	Vloul	1.69	7:26		2. 2. 10	4.2	110 Andrew To Mark Agents
1.78	19.00	6 9 7 5	16.2	1.01	712]	89.1	2895		tonepidity = 7, 49 APR
2166		0929		1003		\$2.4			Sample Time: 0'841
		9891	1616	1104	MARI	7810	2915	276	
	DTW				1			101	
MW-3	DTW	065993	210-	42.4348	7.01	98,3	3565	0	algoont
	13.68	1690	18.7	1 1 1	0.4			1,0	
	TD	094	1-1-8, Y	1134	6,94			1.5	
232	27.94	094	8 1812	p.99	6,92	- 104+6			
6,007		695	A18/4	- W2E	16,90	10207		2,0	Sample Time: 103%
		1000	1 19.6	1187	7109	113.12	3634	- 200	3,0 the bit At = 165 NT2 4,6 brown, two bid
			TLAVE		7.04				4.6 brown, two or a
			\$18,7		Nº IN	2 13415 5 1200	8 3624	\$	6.0
		100	WE 19.0			y where	2 3624	1	7.0
1			~~ 17 . C	一種の	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

N:\2018\3288JV032-NEW MEXI-LEONARDS CONOCO\2019 Leonards Conoco Data.xlsx: FIELD SHEET