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Abstract. Discontinuous sampling of water for toxic chemicals is unreliable in lotic ecosystems or in systems
subjected to sporadic discharges. Such sampling either fails to detect the contaminants or seriously
anderestimates their coneentrations. This study explored the use of resident aquatic insects as bigmonitors
of trace metal contamination in a river subjected to episodic spills of Mo mill tailings, Agquatic insects at
! sites downstream from the mill accumutated more Mo and Cu than upstream insects. Duetoa prolonged
i shuzdown at the mise, Ao taifings spills were recorded during this study and Mo and Cu levels in water and
' pottomn sediments declined 1o near background levels. However, concentrations of these metals in insccts
" declined only slightly. This study indicates that aquatic insects are useful biomoniters of trace metal
contamination in ap intermittently impacted system. Reduction of eievated trace metal concentratiens from
the insects occurred at a slower rate than from the non-living components of the river ecosystem thereby

facilitating detectien of the spilis.

1. Introduction

The adverse impact of mining and milling of ore bodies on various types of aquatic
ecosystems has been well documented {Starnes, 1983; Lewis, 1980; Jennett and Foil,
1979; Schrader and Furbish, 1978). In the western United States many mine/mill
operations are located in relatively undisturbed mountain watersheds used for recreation
or they support valuable fish and wildlife resources {Raleigh, 1977). Because streams
arc dynamic systems, inputs of toxicants may be swept away quickly with no apparent
lasting cffect. Alternatively, these materials may become trapped in bottom sediments
where they can exert chronic, adverse effects. Aquatic insects are capable of concen-
trating metals such as Pb (Nchring et al., 1979), Cd {Coiborn, 1981), Mo {Colborn,
1982). and a number of other trace metals (Namminga and Wilhm, 1977; Mathis and
Cummings, 1973; Burrows and Whitton, 1983), Insects are near the bottom of the food
chain and may be an important agent of trace metal entry into food chains (Nchring
1976; Spehar et al., 1978).

In this study, a potential source of heavy metal contamination was examined within
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Fig. 1. Map of study area showing the location of sampling sites and possible sources of anthmpogeaici
contaminants, Tsos County, NM. The slurry pipeline parallels the Red River from the Molycorp mine to'
the tailings ponds. i
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the Red River drainage basin of Taos County, New Mexico (Figure 1). The Red River,é
a tributary of the Rio Grande, drains 490 km? of land, most of which is located in thez
Carson National Forest and in the Wheeler Peak Wilderness Area of northcentral
New Mexico. Potentially significant anthropogenic impacts on water quality in the Red
River watershed are the seasonal resort towns of Red River and Questa, a state-owned:
fish hatchery, and a large Mo mining operation, The mine/mill complex is connected:
bya pif)eline to a tailings disposal pond (Pope Lake) located about 13.7 km downstream
of the mine. The pipeline is located immediately adjacent to the Red River. At least 72
breaks occurred in the pipeline between 1966 and 1981 resulting in discharges of slurries|
of processed mill tailings directly into the river {BLM, 1978; United States of America’
vs Molycorp, Inc., 1981). Contamination of the river by trace metals may also occur’
as surface drainage from the mine/mill complex, discharge from the tailings disposal:
pond, and possibly by natural weathering of exposed rock formations in the watershed.:
Potential environmental impact was recognized by Bhappu ef al. (1967) when cyanide,
used in the milling of Mo, was implicated in a fish kill in the Red River. Data gathered :
by the U.S. Geological Survey (1979) indicated that Mn, Zn, and Mo concenirationsf
in the Red River were higher (2 one order of magnitude) below Molycorp’s mine/mill
complex compared to upstream values and compared to Cabresto Creek water samples,
Cabresto Creek (Figure 1) enters the Red River between Questa and the mine, but drains
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a largely undisturbed basin of 95 km? which is located just north of the Red River
drainage. Faith (1974) reported that concentrations of Na, K, Ca, Mg, Ni, Sn, and Mo
in water and sediments collected downstream from Molycorp’s mine were clevated
compared to samples taken upstream. Garn (1985) reported highly significant increases
in Mo, specific conductance, and sulfate below the tailings pond discharge into the Red
River. Data presented by Andreasen (1981) indicated that trout were bioaccumuiating
Cd, Cu, Mo, and Zn although apparently not at acute levels.

The purpose of this study was to determine the spatial and temporal distribution of
thirtcen trace metals in water, sediment, and aguatic insects in a mountain stream
subject to contamination by a Mo mine/mill complex. In addition to examining concen-
trations of Cd, Cu, Mn, Mo. Ni. and Zn, the suitc of metals studied includes a number
of metals (As, Cr, Fe, Hg, Pb. S¢, and V) not associated with the Mo deposits that were
used for comparison of mine-induced and naturally occurring changes wzth downsiream
distance. The opportunity to study residual contamination was presem because the
mifling operation stopped in August 1981 and remained closed until September 1983,
a period which encompassed the duration of this study.

T Materials and Methods

2.1, SAMPLE COLLECTION AND TREATMENT

Samples were collected from the riffle sections of five different sites over a 27 km stretch
of the Red River extending downstream from the Wheeler Peak Wilderness to below
the tailings pond discharge. The sample sites are shown in Figure 1. Samples of water,
sediment., and aquatic insccts were collecied on cach of three dates: December 15-16,
1981 - a low flow period; May 26-27, 1982 — a period of high runoff due to snowmelt;
and again during low flow on Scptember 30, October 1, 1982.

Water was collected for trace mctal analysis by grab sampling, filtered through
0.45 um cellulose filters. placed in acid-washed polyethylene bottles, and stabilized with
redistilled HNO,. All acids were redistilled from Teflon containers.

Bottom sediments were collected as grab samples and [rozen in widemouth, acid-
washed glass jars. Prior to analysis, the samples were thawed and wet-sicved through
a stainless steel sicve (0.063 mm diameter mesh) to collect the silt-clay size fraction.
After freeze-drying (Labconco Model 5), the samples were digested in Teflon beakers
using HF, aqua regia, and HCIO, (Johnson and Maxwell, 1981).

Benthic macroinvertebrates were collected with hand-held kick screens (1.0 mm
diameter mesh, Merritt and Cummins, 1984). The organisms were sorted in the field by
taxonomic group, usually genus (Table I), placed in polyethylenc bags, and frozen. Ficld
identifications were verified by microscopic examination in the laboratory using Mermitt
and Cummins (1984). All insccts belonging to the same taxon were analyzed as a
composite sample for each sampling sitc and date. The total number and dry weight of
insects analyzed is indicated by order, colicction date, and site in Table II. For analysis,
the insects were thawed, cnumerated, weighed, freeze-dried, reweighed, and acid-
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TABLE |

Insect taxa from the Red River that were analyzed for trace metals. Numbers following the

name indicate the sampling sites where each was obtained,

Plecoptera Ephemeroptera
Nemouridae 1 Buetis sp. 1,2,3,4
Megarcys sp. 1,2 Rhithrogena sp. i 2
Pieronarcella sp. 2,3,4,5 Ameletus sp. I
lsugenoides sp. 3,4,5 Ephemerelia sp. 2,3, 4
{soperla sp. 5
Chloroperlidae i

Trichoptera Diptera
Rhayacophila sp, 1,2 Tipulidae 1,2,3,5
Arciopsyche sp. 2,3,4,5 Atherix sp. 3,4,5
Hydropsyche sp. 34,5

TABLE I

Composite number of taxa, individual insects, and their biomass for each sampling grouped by location
refdtive to the mine/mill. Fach taxon was analyzed separately for each site and sampling time.

Insect order and
sampling data

Upstream (sites 1-3)

Downstream (sites 4-3)

# taxa # individuals dry wt. # taxa # individuals dry wt.
December 1981
Ephemeropiera 2 145 0.394 0 ¢ G.000
Plecoptera 4 387 4.139 2 44 2203
Trichoptera 2 (40 0.900 2 353 3.528
Diptera 1 17 0.693 1 35 0.479
May 1982 v
Ephemeroptera 3 172 2034 1 58 0.979
Plecoptera 3 265 $.095 3 250 3.935
Trichoptera 2 237 1.754 2 228 1.459
Biptera 2 23 0.637 2 4 G311
Qctober 1982
Ephemeroptera 3 264 0.983 . 44 0.062
Piccoptera § 323 2812 2 479 2.636
Frichoptera 3 iz 0.322 2 48 0.228
Diptera 2 77 2119 1 14 0.205

digested with redistilled HNOQ, and H,0,. The digestion procedure used from 0.1 to
1.0 g of dried insects, depending on availability. If more than 1g was available, a
duplicate sample was prepared. The insects were placed in Teflon beakers with 10 mL
of concentrated HNO, and heated gently for 1 hr. The mixture was cooled, 5 mL of

30% H,0, were added, and the solution was heated
cooling and dilution to 25 mL for analysis,

‘‘‘‘‘
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2.2. ANALYSES

Trace metal analyses were performed using a Perkin-Eimer 403 atomic absorption
spectrometer equipped with a model HGA 400 graphite furnace and MHS-10 hydride
generator system. Either flame or furnace techniques were used for Cd, Cr, Cu, Fe, Mn,
Mo, Ni, Pb, V, and Zn depending on the concentration. The hydride generator system
was used for As and Se and a Coleman MAS-30 analyzer was used for Hg.
Canadian Certified Reference Material (SL-1, Canadian Atomic Energy Com-
mission) and NBS 1645 (National Bureau of Standards River Sediment) were used as
quality control standards for atomic absorption analysis of digested samples. All
digested samples were run with blanks. Duplicate analysis for at least one metal were
run on 66 and 14%, of the sediment and insect samples respectively. Trace metal EPA
quality control samples were also run to check the accuracy of the instrument when

water samples were analyzed. -

3. Results and Discussion

1,}. WATER -

Trace metal concentrations in filtered water samples collected above and below the area
of possible tailings contamination exhibited variable behavior (Tabie I1T). Increased
concentrations of Mn, Mo, Ni, and Zn were observed at downstream sites. Whether
these changes are significant could not be determined because of the small number of
samples and the extensive variation in the data.

TABLE 111 -

Mean concentrations and standard deviation (ng L") of trace metals in
filtered water samples from the Red River, NM.

Mctal Upstream {n = 9) Downstream {1 = 6)
{sites 1=-3} {sites 4, 5)
As H4. (20) 14. (18)
Cd 51 (5.3) 4.1 {3.6)
Cr 2.5 (4.4} 1.2 {L6)
Cu 44, (1M 7. M
Fe 67. (44} 93, (33)
Hg < 0.1 <.l
Mn 71 (B 499. (430}
Mo 22, (49) 10, (1409
Ni 4.1 {4.4) 2 (3
Pb i1 {09 1.3 {1m
Se 35 (A% 32 (1)
v 22 (&.D) 1.6 {0.5)

Zn 36, (94) LI, (180)
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3.2. SEDIMENTS

Stream bottom sediments were screened to collect the 230-size fraction {<0.063 mm)
to provide a size-consistent set of samples. This small-sized material should contain the
highest concentrations of metals because of the presence of clays in this fraction and
the resulting high surface area to volume ratios of the sediments. Mean values for metal
concentrations in these sediments are shown in Table IV. Concentrations of metals in
sediments were usually three to four orders of magnitude higher than in the water
column. Metals which showed large downstream increases were Mn, Mo, Ni, and Zn
while the other metals exhibited little or no downstream change. The elements Mn and
Zn show an approximate doubling of concentration from upstream to downstream sites.
Molybdenum concentrations increased by a factor of six, while Ni increased b
one and one half. Data obtained from the USGS (1982) for a single set of sediment |
samples taken in September of 1982 at the same sites as in the present study also show |
substantial downstream increases in some trace metals (Cu, Mn, Mo, Zn, but not Cd, |
Fe, or Pb). This increase is especially evident for Cu, Mn, Mo, and Zn at site 5 which -
is located below the discharge point of the tailings settling pond {Pope Lake, Figure 1).'
Concentrations of Cu, Mn, Mo, Ni, and Zn in the sediments were subjected to a;
statistical analysis using one-way ANOVA and a priori orthogonal contrasts (Nie er af,
1975). Molybdenum concentrations were significantly higher (p < 0.002) at the down-
stream sites than at the upstream sites (Table IV). No statistically significant differences
were detected for Cu, Mn, or Ni. Zinc concentrations at stations 4 and 5 were sxgmﬁ

Metal Upstream (n = 9) Downstream {n = 6}
{sites =3} (sites 4, 5)
Mean S.E. Mean S.E.
As 16. 83 18. It
Cd 18 29 58 2.9
Cr 84, 7.2 71. 7.1
Cu 220. 82 240. EIR
Fe 8664, 240. 8500, 200.
Hg G.7 0.3 0.5 0.3
"Mn 590, 56. ‘1100, 610.
Mo 9.0¢ LS 53 2.
Ni g 5.1 6 24,
Pb 41, 14 30. 17.
Se 1.4 0.3 1.0 0.2
v 120, 44, 87 29,
Zn 230, 66. 650; 140.
* p <0002,

SRR
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TABLE 1v

Mean concentrations (g ¢~ ) on a dry weight-kasis and standard errors (S.E.)
for trace metals in the: bottom sediments { < 0.063 mm} of the Red River, The
diata are grouped by sampling location relative to the ares of disturbance.
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cantly higher (p < 0.05) than stations 1 and 2 combined, but not when station 3 was
included with the other upstream sites.

Examples of changes in trace metal concentrations in sediments as one proceeds
downstream are shown in Figure 2. The behavior of Mo is also representative of the
hehavior of Mn. Ni, and Zn, all of which exhibit a notable increase in concentration at
stations 4 and 5 (below the mine/mill complex and tailings pond). The behavior of Cr
is typical of most of the other elements analyzed including As, Cd, Cu, Fe, Hg, Se, and
V: concentrations of these elements did not change significantly between upstream and
downstream sites during the sampling period. Lead behaves in an anomalous manner
as it appears to decreasc in concentration downstream of the mine/mill complex
although concentrations at sites 4 and 5 were slightly higher than at sites 1 and 2
(Figure 2). Lead had a very high mean concentration at station 3 which is almost entirely
due to a single value of 160 pg g~ ' recorded for the sediment sample collected during
the spring runoff. When this valuc is discarded, the mean becomes 48 ug g~ ' and there
is then little change from upstream to downstream locations.

Concentr~ation in ppm Dry Weight

100 - 8. Ph

80 -
80
70
60
50
40

30

Somple Stotion

Fig. 2. Concentrations {gg g~ ') of selected trace metals on a dry weight basis m the 230-{ < 8.063 mm)
size fraction of Red River sediments. Each point is an average of three analyses, one for each sampling
date.

3.3. INSECTS

A varicty of insccts representing mayflies (Ephemcroptera, 4 genera), stoneflics
(Plecoptera, 6 genera), caddisflies (Trichoptera, 3 genera), and true flics {Diptera,
2 genera) were collected and analyzed during the study (Tabie I). Not all genera were
present at all sampling sitcs nor at all sampling times.

Mean metal concentrations for insects were calculated by pooling all data from the
different insect taxa. This treatment of the data has the effect of smoothing out variation
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TABLE V

L dry weight} and standard errofs (5.E.}of metals in pooled insect
plex. The yalue n represents the numbcr\
ied by the number of times ‘i

Mean concentrations (g~
samples relative W the logation of the mine/mill com
of pooled samples and is equivalent 10 the number of sites muitipl

sampled. |
Metal Upstream {sites 1~3) Downstream {sites 4, 5) 5
| VpmmmE M!
n Mean S.E. n Mean S.E. 1
e _’____________,______.__-—-————-—————-_‘”‘
As 3 69 _03 2 .5 - %1
Cd 6 19 0.7 4 13 0.2 i
Cr 6 49 1.1 4 2.7 06
Cu 9 AT 69 6 “g20 16. t
Fe 9 210, 6 1300. 190 !
Mn 9 100, 6 nESRG, 340, ;
" Mo g 0.1 6 AT 34 i
Ni 9 0.9 6 S L 2.1
Pb 3 0.1 2 0.9 -
Se 2 - 3 0.2 A
Sn 3 0.2 2 55 - i
Zn 9 320. 60. 6 350, 55. i
____—_—______._.———-——*/f‘ !
2 p 608,
b p< 0001
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Fig. 3. Corceatrations (pgg” ! dry weight) of selected trace metals in insects by location.

that downstream Mo concentrations in insects were significantly higher than those
upstream {p < 0.001, Table V).

In addition to Mo, high levels of Mn were also detected in insects at site 5 (Figure 3).
Manganese concentrations at sites 4 and 5 {pooled) were significantly higher (p < 0.05)
than when sites | and 2 were pooled, but not when site 3 was included in the upstream
mean value (Table V). Manganese concentrations in sediments also increased sub-
stantially, but not significantly (p > 0.03), between sites 4 and 5 {this study and USGS,
1982). Corresponding Mn concentration increases in water samples were not found in
this study or in the USGS data (1982). The source of the high Mn values at site 3 is
unknown, but may result from a natural acid weathering zone produced by the oxidation
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of sulfide minerals in exposed soils above sample site 3. High Mn levels at site 5 may}
result from chemical processes in the disposal site that mobilize Mn ions. '

Concentrations of Cu, Ni, and Zn in insects did not exhibit consistent trends walh)_
respect to location (Figure 3). The nonparametric Mann—Whitney U test was used farF
the Cu and Ni concentrations for lack of homoscedasticity. Concentrations of both;
metals were significantly higher in downstream insect samples {p < 0.05) than in insects!
collected at the upstream sites (Table V). No significant differences existed between the
upstream and downstream levels of Zn in insects. -

The lower concentrations of Cu and Zn at site 5 compared to site 4 are not readﬂ}
explained. Lower levels of Zn were observed in water and sediment samples, but theg
differences were not statistically significant (p > 0.05). Mean Cu concentrations m‘
water and sediment samples increased between sites 4 and 5, but again the diﬁerences;

were not statistically significant (p > 0.05). :

3.4. TEMPORAL EXAMINATION OF WATER, SEDIMENT, AND INSECT SAMPLES ;

The mine experienced a prolonged period of inactivity between August 1981 and!
September 1983 due to low market demand for Mo. The mine ceased to be a poin:
source as no discharges to the river occurred during this interval. This presented ap,
opportunity to study depuration of contaminant metals from the system and the role ef;
the mine as a nonpoint source due 1o wind and water erosion of the tailings piles.
The Red River is normally exposed to high runoff during the late spring due 10,
snowmelt and during the summer due to frequent thunderstorms. After this period of;
high runoff, the mean dissolved Fe, Mn, Mo, and Ni concentrations apparently;

i g et e

TABLE VI

Mean concentrations (g L~ 'Y of dissolved trace metals in water samples from the Red RiverH
NM, showing the effects of streum scouring during the high runoff pericd of spring dnd

summer, 1982,
b

Metal Upstream (nr = 3) Downstream {n = 2)
Dec. 1981 Oct. 1582 Dec. 1981 Oct. 5959;
As 0.3 0.4 0.3 20 §
Cd 4.1 19 9.6 15
Cr 6.5 0.5 3.0 0.4 g
Cu 44 15.5 9.8 200

Fe 810 59.0 130.0 58.0
Hg ND* <0.1 <0.1 <01
Mn £70.0 36.0 880.0 4100 !
Mo 27 0.9 210.0 190 !
Ni 5.7 3.5 510 70 |
Pb 0.8 1.0 2.1 25 ;
Se 7.3 <0.1 6.5 <01 i
v Lo 21 1.8 06 |
Zn 110.0 <0.1 3300 <01 i
£

* Mot determined.
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decreased at the downstream sites (Table VI). Other metals either did not change in
concentration after flushing (As. Pb, V) or exhibited decreases of similar magnitude at
both the upstrecam and downstream sites (Cd, Cr, Se. Zn). The statistical significance
of these changes is unknown due to the small number of samples involved, but is
suggestive of a scouring cffect.

Concentrations of Cu, Mn, Mo, Ni, and Za in stream sediments also dropped
substantially between December 1981 and October 1982 (Table VII). Some changes in
sediment metal concentrations were also observed at the site immediately upstream
from the mine/mill complex, but the magnitude of the changes at the downstream sites
was greater than at the upstream sites. Metal concentrations for Cu, Mn, Mo, Ni, and

TABLE VH

Mean concentrations {pp g~ ' dry weight) of sclected trace metals in sediment and insect samptes showing
the effeets of stream scouring during the high runoff period of spring and summer, 1982,

Sediments Insccts
Station Station
Uipstream Prownstream Upslréhm Dovwnstream
[-3 4 5 -3 4 5
n=3 o= n=1i now= j0=11 n=2-4 7= 24

Mo

Dec. 1981 12 136, 83, 19 4. 29

May 1982 %2 14, 59. 2.2 12 15.

Oct. 1982 6.4 19, 20. 2.4 15 25,
Cu

Dec, 1981 260, 420. 584, 38 HA : 64,

May 1982 3 1646, 150. 62 93, 63.

Oct. 1982 57. 78 57, 28. 5T 56.
Mn

Dec. 1981 660, 1200, 3400, 89%. 240, 170,

May 1982 640 650, 799, 190. 100. 150.

Oct. 1982 480. 210, 1s0. 450, 37 2304,
Ni

Dec. 198§ 43, 1260, 91, 50 i3 i0.

May 1982 47, 4K, 52, 9.1 1% i4.

Oct. 1982 30. 27. 30 7.3 6.1 22
Zn

Dec, 1981 276. 1000, 860 160. 340. 250.

May 1982 320 440. 536 360, 600, 240,

Oct. 1982 106, 130 170. 460. 400, 280.
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Zn decreased by factors of 1.4 10 4.6 at the upstream stations, 4.6 to 7.5 at station 4
{below complex), and 3.1 10 10.2 at station 5 (below tailings disposal pond), respectively,
This general decline in sediment metal concentrations is attributed to flushing of the
contaminated sediments during the high flow period.

A more detailed analysis of the metal data in insects was undertaken in which the
data were pooled for upstream or downstream location across all taxa, but separated
on the basis of time of sampling (Table VII). Molybdenum concentrations in insects

were significantly higher (p < 0.01) downstream from the mine/mill complex during'

each sampling. Copper concentrations in insects were significantly higher at down-
stream sites during the December 1981 (p < 0.001) and October 1982 (p < 0.00])
samplings, but not during the May 1982 sampling. Manganese was significantiy higher

in downstream insects (p < 0.05) only during the December 1981 sampling which was|

prior to stream sediment purging by runoff. Nicke! and Zn concentrations in down-

stream insects did not differ significantly from those found in upstream insects.

Despite the flushing and apparent removal of contaminated sediments during the hlgh;
flows period, concentrations of Cu, Mo, and Ni in insects declined at station 4 only;
Metal levels at other stations either increased or remained constant relative to Decembe{
1981 values. Thus, some mobilization and downstream transport of metals did occuré
during the study, but the insect metal concentrations were declining less rapidly thar’
the sediments,

4. Conclusions and Summary

Reliance on stream water sampling is subject to considerable variation created by
changing flow regimes, partitioning between sugpended and dissolved forms, the for<
mation and location of plumes, solubility differences, and the general inability to detec’
intermittent discharges. Unless water samples are taken continuously, detection of 2
spill hours or days after the event is unlikely because of rapid flushing from the system.
Sampling of river sediments is readily accomplished; however, the significance of the
detected concentrations in sediments is difficult to ascertain, Presumably the rationale
for a toxic substance sampling program is to determine the potential impact of the
contaminant on the biological community. The question of bioavailability is lefi
unaddressed if only water or sediments are sampled. The use of resident stream
organisms solve many of the aforementioned problems, Insects are numerous, easily
sampled residents of the environment and permit the development of biclogically
relevant data. Insects may be particularly appropriate where the discharges into the
systemn are irregular, unpredictable, and of short duration.

Aquatic insects may accumulate trace metals and are useful biocindicators of episodi
discharges of trace metals to their environment. The insects below the mine/mill compier
exhibited elevated levels of Mo, Mn, and occasionally Cu when compared to those from
upstream locations. These metals are associated with the mineralization in the Mo
deposit. Other heavy metals studied as controls did not exhibit this behavior. After
nearly 15 mo of no recorded spills, metal concentrations were declining in water and
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sediments, but concentrations in insects remained relatively unchanged. Either the
metals in the sediments were slowly moving downstream and the time required for
complete depuration was longer than the sampling program or non-point sources
associated with the ming/mill complex or natural geochemical sources were contributing
significantly to the elevated levels scen in downstream insects.
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