

Groundwater Technology, Inc.

2501 Yale Boulevard, SE, Suite 204, Albuquerque, NM 87106 Tel: (505) 242-3113, Fax: (505) 242-1103

RECLAMATION PROPOSAL BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

PROJECT NO. 023352875

December 4, 1992

Submitted to:

New Mexico Environment Department Underground Storage Tank Bureau 4131 Montgomery Bivd. N.E. Albuquerque, New Mexico 87109

Prepared by:

Groundwater Technology, Inc. 2501 Yale Boulevard S.E., Suite 204 Albuquerque, New Mexico 87106 (505) 242-3113

Groundwater Technology, Inc. Written/Submitted by

nesa Q. Bennett

Teresa J. Bennett Hydrogeologist

NMED/BB bb.rap Groundwater Technology, Inc. Review/Approved by

Sara C. Brothers Operations Manager, New Mexico

Offices throughout the U.S., Canada and Overseas

TABLE OF CONTENTS

LIST C	LIST OF FIGURES iii						
	LIST OF TABLES						
LIST C	LIST OF APPENDICES						
1.0	INTRODUCTION 1						
2.0	2.0 SITE BACKGROUND						
	2.1 2.2	Site Location and History					
3.0	SUBSURFACE CONDITIONS 5						
	3.1 3.2 3.3 3.4	Regional Hydrogeology Site Hydrogeology Water Quality Soil Quality	6 7				
4.0	SOIL BORING AND MONITOR WELL DRILLING AND INSTALLATION						
	4.1 4.2		10 13				
5.0	SOIL VENT/AIR SPARGE PILOT TESTS 14						
	5.1	5.1.1 Soil Vent Test Equipment 5.1.2 Soil Vent Test Protocol 5.1.3 Soil Vent Test Results	15 15 16 17 18				
·	5.2	5.2.1 Air Sparge Test Equipment 5.2.2 Air Sparge Test Protocol 5.2.3 Air Sparge Test Results 5.2.4 Air Sparge Test Conclusions	19 19 19 20 21				
	5.3	5.3.1 Combination Air Sparge/Soil Vent Test Protocol 5.3.2 Combination Air Sparge/Soil Vent Test Results	22 22 22 23				

NMED/BB bb.rap •

TABLE OF CONTENTS (cont.)

6.0	SITE REMEDIATION					
	6.1	Remediation Technology				
	6.2	Remediation System Design 2				
		6.2.1 Air Sparge/Vapor Extraction (ASVE) System				
		6.2.1.1 System Layout				
		6.2.1.2 Equipment Specifications 28				
		6.2.2 Insitu Bioreclamation System				
		6.2.2.1 Biodegradation Feasibility Study				
		6.2.2.2 System Design 30				
7.0	REMEDIATION SYSTEM MONITORING AND MAINTENANCE					
	7.1	Monitoring and Maintenance				
	7.2	Reporting				
	7.3	QA/QC Procedures				
	7.0					
8.0	CONT	CONTINGENCY PLAN AND CLOSURE CRITERIA				
9.0	REGL	REGULATORY REQUIREMENTS				
10.0	REFE	REFERENCES				

.

.

.

•		
		LIST OF FIGURES
	FIGURE 1	SITE VICINITY MAP
- 9	FIGURE 2	SITE MAP
	FIGURE 3	GEOLOGIC CROSS-SECTION
-	FIGURE 4	GROUNDWATER ELEVATION CONTOUR MAP FOR JUNE 24, 1992
	FIGURE 5	DISSOLVED-PHASE HYDROCARBON DISTRIBUTION MAP, JUNE 24, AUGUST 20, AND AUGUST 24, 1992
	FIGURE 6	HYDROCARBON CONCENTRATIONS IN WATER (BASED ON AUGER HOLE DATA), 1989 - 1990
μ.	FIGURE 7	ADSORBED-PHASE HYDROCARBON DISTRIBUTION MAP, OCTOBER 1990 AND AUGUST 1992
 ,	FIGURE 8	LN OF INDUCED VACUUM VS. DISTANCE, SOIL VENT PILOT TEST, BARELAS BRIDGE GWPA SITE, AUGUST 26, 1992
	FIGURE 9	APPLIED VACUUM VS. AIR FLOW RATE, SOIL VENT PILOT TEST, BARELAS BRIDGE GWPA SITE, AUGUST 26, 1992
-	FIGURE 10	INDUCED PRESSURE VS. DISTANCE, AIR SPARGE PILOT TEST, BARELAS BRIDGE GWPA SITE, AUGUST 25, 1992
نغ	FIGURE 11	VOC CONCENTRATIONS VS. TIME FOR PR MONITOR POINTS, AIR SPARGE PILOT TEST, BARELAS BRIDGE GWPA SITE, AUGUST 25, 1992
- ,	FIGURE 12	VOC CONCENTRATIONS VS. TIME FOR MONITOR WELLS, AIR SPARGE PILOT TEST, BARELAS BRIDGE GWPA SITE, AUGUST 25, 1992
	FIGURE 13	MAXIMUM CHANGE IN VOC CONCENTRATIONS VS. DISTANCE AT 5 PSI APPLIED AIR SPARGE PRESSURE, AIR SPARGE PILOT TEST, BARELAS BRIDGE GWPA SITE, AUGUST 25, 1992
	FIGURE 14	REMEDIATION SYSTEM SITE PLAN AND RADII OF INFLUENCE OF ASVE WELLS

.

LIST OF TABLES

TABLE 1	SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO, JUNE 24, AUGUST 20, AND AUGUST 24-25, 1992
TABLE 2	SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO, AUGUST 18-20, 1992
TABLE 3	SUMMARY OF AIR SAMPLE ANALYTICAL RESULTS, AIR SPARGE/SOIL VENT PILOT TESTS, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO, AUGUST 26, 1992
TABLE 4	SUMMARY OF HYDROCARBON MASS EXTRACTION RATES, AIR SPARGE/SOIL VENT PILOT TESTS, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO, AUGUST 26, 1992
TABLE 5	INDUCED PRESSURE RESPONSE, AIR SPARGE PILOT TEST, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO, AUGUST 25, 1992
TABLE 6	MAXIMUM CHANGE IN VOC CONCENTRATIONS, AIR SPARGE PILOT TEST, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO, AUGUST 25, 1992
TABLE 7	MAXIMUM CHANGE IN DEPTH-TO-WATER AND DISSOLVED OXYGEN CONCENTRATIONS, AIR SPARGE PILOT TEST, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO, AUGUST 25, 1992
TABLE 8	SUMMARY OF MAXIMUM RADIUS OF INFLUENCE EVALUATIONS, AIR SPARGE PILOT TEST, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO, AUGUST 25, 1992
TABLE 9	MAXIMUM INDUCED PRESSURE/VACUUM RESPONSE, COMBINED AIR SPARGE/SOIL VENT PILOT TEST, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO, AUGUST 25, 1992
TABLE 10	PROJECT SCHEDULE: SOIL AND GROUNDWATER RECLAMATION, BARELAS BRIDGE GWPA SITE, ALBUQUERQUE, NEW MEXICO
TABLE 11	MONITORING AND MAINTENANCE SCHEDULE FOR REMEDIATION SYSTEM, BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO

LIST OF APPENDICES

- APPENDIX A WELL COMPLETION AND LITHOLOGIC LOGS
 - APPENDIX B GROUNDWATER SAMPLE LABORATORY CERTIFICATES OF ANALYSIS AND CHAIN-OF-CUSTODY DOCUMENTATION, JUNE 24, AUGUST 20, AND AUGUST 24-25, 1992
- APPENDIX C GROUNDWATER AND SOIL ANALYTICAL RESULTS FROM PREVIOUS INVESTIGATIONS, 1989 - 1991
- APPENDIX D SOIL SAMPLE LABORATORY CERTIFICATES OF ANALYSIS AND CHAIN-OF-CUSTODY DOCUMENTATION, AUGUST 18-20, 1992
- APPENDIX E AIR SPARGE AND SOIL VENT PILOT TESTS FIELD DATA
- APPENDIX F AIR SAMPLE LABORATORY CERTIFICATES OF ANALYSIS AND CHAIN-OF-CUSTODY DOCUMENTATION, AUGUST 26, 1992
 - APPENDIX G AIR EMISSIONS CALCULATIONS
 - APPENDIX H PRELIMINARY ENGINEERING PLANS
 - APPENDIX I GTEL ENVIRONMENTAL LABORATORIES QA/QC PLAN AND EPA PROFICIENCY TEST RESULTS

1.0 INTRODUCTION

Groundwater Technology, Inc. (Groundwater Technology) has prepared a Reclamation Proposal for the Barelas Bridge Groundwater Protection Act (GWPA) site located at 800 Bridge Boulevard, S.W., Albuquerque, New Mexico. The plan has been prepared in accordance with New Mexico Environmental Improvement Board (NMEIB) Underground Storage Tank Regulations (USTR) Part XII, Section 1212 and presents a description, schematic designs, and monitoring and maintenance procedures for a remediation system at the site incorporating a combined air sparge/vapor extraction (ASVE) system and *insitu* bioremediation. The objectives of the remediation system are two-fold:

- 1. To remove adsorbed and dissolved-phase gasoline hydrocarbons from the subsurface at the site in the vicinity of the initial leak using ASVE techniques; and
- Attenuation of dissolved-phase hydrocarbons in the downgradient portion of the plume by actively remediating the upgradient source, and by the introduction of oxygen into the aquifer (via the ASVE system) to promote natural biodegradation of hydrocarbons.

The remainder of this document addresses the following elements regarding the proposed remediation program:

- Section 2.0 presents site background information and a description of previous investigations at the former station;
- Section 3.0 describes the subsurface conditions at the site including the local hydrogeology and the soil and water quality as based on previous and current investigations;
- Section 4.0 describes the installation of five wells at the site for use in the ASVE pilot tests and the results of soil sampling and analysis;
- Section 5.0 provides a data summary and analysis of the ASVE pilot tests conducted at the site;

- Section 6.0 describes the proposed ASVE system including the system layout and specifications for remediation equipment;
- Section 7.0 provides a schedule for installation of the remediation system, and operation, maintenance, and monitoring commitments;
- Section 8.0 presents the contingency measures to be used in case of system failure and the reclamation closure criteria; and
- Section 9.0 discusses the regulatory agencies governing remediation at the site and applicable permits, ordinances, and inspections pertaining to system construction and operation.

2.0 SITE BACKGROUND

2.1 Site Location and History

The Barelas Bridge site is located at 800 Bridge Boulevard, S.W., Albuquerque (Bernalillo County), New Mexico, on the southwest corner of the intersection of Bridge Boulevard, S.W., and La Vega Drive (Figure 1). An operating Fina gasoline station and carwash facility are currently located at the property (Figure 2). Adjacent properties include an auto-parts store and several other small businesses to the north, a farm produce market to the east (formerly a Circle K gasoline station), and single family residential homes to the south and southwest. Utilities in the area include aerial telephone and electric lines and buried water, sewer, and natural gas lines. The approximate locations of the utilities at the site are included in Figure 2.

A gasoline service station has been in operation at 800 Bridge Street, S.W. since the 1940's. There are no records from the station at 800 Bridge, S.W. for the kinds or quantities of petroleum products previously stored there. The past owner, Mr. Herman Van Steenis, acquired the station in 1951 and installed new tanks in November-December of 1971. He operated the station until December 1978 and then leased the service station from 1979 to 1989. Mr. Robert Pargin bought the service station in December 1989 and is the present owner (Leggette, Brashears and Graham, Inc. (LBG), December 1990).

On August 3, 1989, four steel underground storage tanks (USTs) were excavated from an area located on the northwestern part of the property under the supervision of the Albuquerque Environmental Health Department (AEHD). The approximate area of excavation is shown in Figure 2. During removal of the tanks, petroleum hydrocarbons were discovered in the soil and groundwater in the tank pit. The former station building area was excavated in October of 1989 to a depth of approximately 11 feet below the surface, according to the current owner (personal communication between Robert Pargin and LBG, December 7, 1990). An old waste-oil tank, formerly located south of the present station building (estimated capacity 100 to 150 gallons), was removed on October 16, 1989. In January of 1990, new double-lined USTs were installed in a new tank pit located south of the building (LBG, December 1990).

2.2 **Previous Investigations**

Following removal of the old USTs, the AEHD performed an initial site investigation during the period August 1989 to August 1990. During this investigation, a total of 19 auger holes were drilled at the site and on surrounding properties (A-1 to A-9, A-11 to A-16, and auger holes NE, NW, SE, SW), four monitor wells were installed (MW-1 through MW-4), and groundwater and soil samples were collected for laboratory analysis from these borings and nearby private wells (LBG, December 1990). The results of the AEHD investigation are incorporated into this report.

LBG conducted a Hydrogeologic Investigation at the Barelas Bridge site in October - December 1990. The objectives of the investigation were to define the extent and rate of contaminant migration, define the direction and rate of groundwater flow, and to determine the hydraulic characteristics of the aquifer in the vicinity of 800 Bridge Blvd, S.W. The assessment included the drilling of five auger holes (AH-1 through AH-5), the installation of four additional monitor wells (MW-5 through MW-8), collection of soil samples for laboratory analysis, and groundwater monitoring and sampling in eight wells (MW-1 through MW-8) (LBG, December 1990).

Following completion of the Hydrogeologic Investigation, the AEHD collected water samples from select monitor wells in March 1991 (MW-1 and MW-3), August 1991 (private well located at 174 La Vega Drive, S.W.), and November 1991 (153 La Vega Drive, S.W.). The results of the Hydrogeologic Investigation and subsequent water sampling by the AEHD are incorporated into this report.

3.0 SUBSURFACE CONDITIONS

3.1 Regional Hydrogeology

The Barelas Bridge site is located on Quaternary alluvium in the inner valley of the Albuquerque Basin. The Albuquerque Basin is one of several grabens in the Rio Grande rift system, a north-south trending structural basin that extends from southern Colorado to southern New Mexico, and through which the Rio Grande flows (Kelly, 1977). Albuquerque Basin deposits consist of up to 3,700 meters (12,140 feet) of the Miocene-Pliocene Santa Fe Formation, which is typified by unconsolidated to loosely consolidated fluvial sediments (sandstone, mudstone, and conglomerate) interbedded with volcaniclastic and debris flow deposits (Bjorklund and Maxwell, 1961). Overlying the Santa Fe Group are 25 to 45 meters (80-130 feet) of Quaternary alluvial fan deposits shed from the nearby Sandia and Manzano Mountains. The alluvial fan material is composed of angular granitic material up to several inches in diameter. Recent floodplain alluvial sediments consist of clay, silt, sand, and fine gravel deposited by the Rio Grande (Kelley, 1977; U.S. Geological Survey, 1986). Interbedded with the alluvium are reworked Tertiary and Quaternary volcanic deposits throughout the Albuquerque Basin (Bjorklund and Maxwell, 1961).

The Barelas Bridge site is underlain by the Albuquerque Basin Aquifer. The aquifer ranges in thickness between 600 and 900 meters (1,970 to 2,950 feet) with saline waters occurring at depths greater than 900 meters (U.S. Geological Survey, 1972). Depth to shallow groundwater and groundwater flow direction in the inner valley of the Albuquerque Basin is controlled by the Rio Grande, riverside and interior drains, irrigation, and groundwater withdrawals at municipal well fields. Regional groundwater flow is approximately west to east on the east side of the river and from north to south, parallel to the course of the Rio Grande, on the west side of the river (U.S. Geological Survey, 1986; 1987). Numerous private water supply wells exist in the vicinity of the Barelas Bridge site and are primarily used for domestic supply and limited irrigation (Figure 1).

3.2 Site Hydrogeology

Based on the results of previous investigations and the installation of wells AS-1, VP-1, MW-9, PR-2, and PR-3 by Groundwater Technology during this investigation, the Barelas Bridge site and adjacent properties are underlain by a generally coarsening downward sequence of alluvial deposits. Immediately below the asphalt and coarse gravel-cobble base at the site, approximately 1 to 3 feet of clayey, sandy soil (often fill material) is present. A brown clay layer, variable in thickness from a few inches to 3 feet, occurs at approximately 3 to 6 feet beneath the site. Below the clay layer, a fine to medium-grained, very well sorted, quartz sand is present. At and below the water table (which occurs at approximately 9 feet below the site), this sand unit grades to a coarse to very coarse-grained sand with traces of gravel.

Based on off-site wells installed south of the site along La Vega Drive, S.W., the same general subsurface geology is present as below the station though the upper clay layer appears to occur closer to the surface (1 to 6 feet below grade) in a progressively southward direction. A cross-section illustrating the geology beneath the area is provided in Figure 3. Detailed geologic logs of all soil borings and monitor wells installed at the site to date are provided in Appendix A.

Depth-to-water typically ranges from 7.5 to 9.5 feet beneath the site and adjacent property to the south, and the potentiometric surface indicates a southerly gradient of approximately 0.003 ft/ft. A groundwater contour map, based on June 24, 1992 fluid-level measurements, is presented in Figure 4. Groundwater monitoring during previous investigations indicates a minimum groundwater fluctuation of at least 0.5 to 1 foot beneath the area, though fluid levels were collected only over a 1.5 month period and are inadequate to document seasonal changes.

Based on two aquifer tests conducted by LBG in November 1990, the transmissivity and storativy were estimated to be 80,000 gallons per day per foot (gpd/ft) and 0.1, respectively. The hydraulic conductivity and aquifer thickness were estimated to be 240 feet per day (ft/day) and approximately 50 feet, respectively (LBG, December 1990).

3.3 Water Quality

The current lateral distribution of dissolved-phase hydrocarbons, as based on the June 24, August 20, and August 24, 1992 sampling events conducted by Groundwater Technology, is illustrated in Figure 5. Maximum dissolved benzene, toluene, ethylbenzene, and total xylene (BTEX) concentrations (860 to 4,500 micrograms per liter (ug/l)) were detected in monitor wells MW-4, MW-8, MW-9, and VP-1 at the service station. Benzene concentrations in these same wells ranged from 230 to 880 ug/l, while TPH-as-gasoline concentrations ranged from 3,100 to 17,000 ug/l. Benzene and BTEX concentrations in monitor wells MW-5 through MW-7, located off-site to the south of the station, were 4 to 30 ug/l (benzene) and 5 to 260 ug/l (BTEX), respectively. The southernmost, downgradient wells, MW-1 through MW-3, contained from 1.6 to 4.1 ug/l benzene and from 1.6 to 14 ug/I total BTEX. Total petroleum hydrocarbon (TPH)-as-gasoline concentrations in wells MW-1 through MW-3 ranged from not detected (detection limit 100 ug/l) to 370 ug/l. No BTEX or TPH-asgasoline concentrations were detected in any of the three private wells sampled. No phase separated hydrocarbon (PSH) was detected in the wells at the site, though hydrocarbon sheens were observed during purging in wells MW-4, MW-8, and MW-9, and all wells (except for the private wells) contained a hydrocarbon odor. Analytical results for the June and August 1992 sampling events are summarized in Table 1, and Laboratory Certificates of Analysis and Chain-of-Custody documentation are provided in Appendix B.

The monitor wells at the site have been sampled for water quality analysis periodically since 1990. Available historical groundwater analytical results for the monitor and private wells are summarized in Appendix C. Based on the June and August 1992 sampling results, benzene and BTEX concentrations in most on and off-site wells have increased since the last complete sampling event conducted on October 30, 1990. Most notably, levels increased in off-site wells MW-5 through MW-7 from not-detected (MW-5) to 10.7 ug/l benzene in 1990, to 4 to 30 ug/l benzene in 1992. Benzene concentrations ranging from not detected to 2.6 ug/l were detected in wells MW-1 through MW-3 in 1990, compared to 1.6 to 4.1 ug/l benzene detected in these same wells in 1992.

In addition to monitor well sampling, 19 auger holes drilled by the AEHD in 1989 (NW, NE, SW, SE, and A-1 to A-9, A-11 to A-16) and 5 auger holes drilled by LBG in October 1990 (AH-1 through AH-5) were sampled for groundwater analysis. The analytical results are illustrated in Figure 6 and are tabulated in Appendix C. Because the dissolved-hydrocarbon plume is not adequately delineated by the existing monitor well network at the site, the auger hole groundwater data was used to aid in

defining the horizontal extent of hydrocarbons in groundwater, particularly to the north, east, and west of the gas station site. Figures 5 and 6 illustrate that the main portion of the hydrocarbon plume is located beneath the southeastern half of the gas station (based on analytical results from MW-4, MW-8, MW-9, and VP-1). Hydrocarbons in groundwater in excess of 10 ug/l benzene have been detected off-site as far east as auger hole A-9, on-site as far northeast as auger hole NE, and the westward extent of the plume is assumed to be the approximate area of the carwash, based on the location of the former UST area (suspected source) and the lack of significant hydrocarbon concentrations in auger holes AH-3, NW, and SW. The hydrocarbon plume extends off site approximately 300 feet to the south, based on hydrocarbon concentrations in excess of 10 ug/l benzene detected in wells MW-6 and MW-7, and in excess of 500 feet based on TPH-as-gasoline concentrations detected in wells MW-1 through MW-3.

No hydrocarbon concentrations have ever been detected in surrounding private wells since sampling began in 1989. Analysis for methyl tertiary butyl ether (MTBE) in groundwater was performed only on samples collected from auger holes AH-1 through AH-5 in October 1990. No MTBE concentrations were detected in the samples. Metal concentrations were analyzed in water samples from 11 of the auger holes drilled by the AEHD in 1989. Iron, manganese, and lead concentrations ranged from not-detected to 12.5 parts per million (ppm), from 0.36 to 1.78 ppm, and from not-detected to 0.029 ppm, respectively (no information stating whether reported metals concentrations are for dissolved or total metals or regarding sampling/analysis methods is available).

3.4 Soil Quality

Soil samples collected during the drilling of five auger holes (AH-1 through AH-5) and monitor wells MW-5 through MW-8 by LBG in October 1990, were submitted for laboratory analysis for BTEX and total volatile hydrocarbons (TVH) in accordance with EPA methods 5030/8020/8015 (Appendix C). Soil samples collected during the installation of wells PR-3, VP-1, and MW-9 in August 1992 by Groundwater Technology were also analyzed for BTEX and TPH-as-gasoline in accordance with EPA methods 5030/8015/8020 (detailed in Section 4.2). The distribution of adsorbed-phase hydrocarbons, based on these sampling events, is presented in Figure 7.

Total BTEX concentrations for soil samples collected from on-site boreholes ranged from 0.215 milligrams per kilogram (mg/kg) (AH-3, from a depth of 8 to 10 feet) to 35 mg/kg (MW-9, from a depth of 9 feet). TPH-as-gasoline (or TVH) concentrations for the on-site boreholes ranged from

not-detected (AH-3, 8 to 10 feet) to 995 mg/kg (AH-4, from a depth of 8 to 10 feet). Maximum hydrocarbon concentrations were detected in those boreholes drilled in the southeastern and eastern portion of the site (AH-4, MW-8, MW-9) (Figure 7).

Relative concentrations of volatile organic vapors (PID or HNU readings) for borings installed in the southeastern corner of the site (AH-4, PR-2, PR-3, VP-1, AS-1, and MW-9) ranged from 171 ppm to 4,172 ppm for soil samples collected from depths of approximately 2 to 10 feet below grade.

Total BTEX concentrations for soil samples collected from off-site boreholes (MW-5 through MW-7, and AH-5) ranged from 0.0045 mg/kg (AH-5, from a depth of 8 to 10 feet) to 18.9 mg/kg (MW-6, from a depth of 3 to 5 feet). TVH concentrations for these same boreholes ranged from not-detected (MW-5, 8 to 10 feet) to 548 mg/kg (MW-6, 3 to 5 feet) (Figure 7).

4.1 Drilling and Well Completion Operations

On August 18 - 20, 1992, Groundwater Technology supervised the drilling of five soil borings on the southeastern part of the site. The borings were completed as multi-purpose wells for use in the ASVE pilot tests and future remediation system to be installed at the site. The borings were also drilled to further characterize the site geology and hydrogeology, and to aid in defining the vertical and lateral extent of petroleum hydrocarbons in the subsurface. The locations of the wells are illustrated in Figures 1 and 2 and the rationale for each was as follows:

- PR-2 Nested monitoring probe screened across two discreet intervals within the vadose zone (3 to 5 feet and 7 to 9 feet below the surface) to monitor field response during air sparging and soil venting;
- PR-3 Same as above, except installed closer to, and in an opposite direction from, the air sparge and soil vent test wells than PR-2;
- VP-1 Multi-purpose well to be used as a monitoring point during the air sparge pilot test,
 as a soil vapor extraction well for use in the pilot vent test and in the future
 remediation system, and as a monitor well for groundwater sampling;
- AS-1 Air sparging well for use in the air sparge pilot tests and in the future remediation system. Can also be used as a monitor well for groundwater sampling at approximately 10 feet below the water table to determine the vertical extent of dissolved-phase hydrocarbons; and
- MW-9 Monitor well installed in the downgradient portion of the hydrocarbon plume for groundwater monitoring and sampling; also used as a monitor point for ASVE system response during pilot testing and will be used as a soil vapor extraction well in the future remediation system.

The air sparge (AS-1) and vapor extraction well (VP-1) were originally proposed for installation as one nested well, to be screened over different intervals in the same borehole. However, the

presence of heaving sands encountered below the water table precluded proper completion of the nested well pair and, therefore, two separate wells had to be installed.

Drilling was performed using a CME-75 drilling rig and nominal eight- and twelve-inch outside diameter hollow-stem augers. All downhole drilling and completion equipment was steam-cleaned prior to drilling each boring, and soil sampling devices were decontaminated with non-phosphatic soap and distilled water between each sample.

Soil samples were collected at continuous or 3 to 5 feet intervals for lithologic identification and field and laboratory analysis using a 2-foot long split-spoon or a 5-foot long core barrel sampler. Detailed geologic logs based on the samples were recorded by an experienced Groundwater Technology scientist during drilling and are presented in Appendix A. The soil samples were field-screeened for relative concentrations of volatile organic compounds using a PID calibrated to 100 ppm isobutylene gas. Soil samples for field-screeening were placed in 16-ounce glass jars, sealed with aluminum foll, agitated, and allowed to equilibrate for 5 to 10 minutes prior to analyzing. The PID results are included on the geologic logs in Appendix A. Soil samples from each boring with the highest PID readings, and/or the samples collected from directly above the water table, and/or additional samples to characterize vertical extent of adsorbed-phase hydrocarbons, were retained for laboratory analysis. The soil samples were secured in 250-ml glass jars with tefion septa, sealed, labeled, placed on ice in an insulated shipping cooler, and transported to GTEL Environmental Laboratories in Torrance, California via overnight courier. The samples were analyzed for BTEX and TPH-as-gasoline in accordance with EPA modified methods 5030/8020/8015. Laboratory Certificates of Analysis and Chain-of-Custody documentation are included in Appendix D.

Following completion of drilling, each soil boring was converted to a well. Vadose wells PR-2 and PR-3 were completed as nested monitoring probes to total depths of 9 to 9.5 feet. Each probe consists of two casing strings with nested screened intervals at 3 to 5 feet and 7 to 9 feet, and blank casing to the surface. Each well within the nested pair was completed with 2-inch diameter Schedule 40 PVC well casing and screen (0.020-inch factory-slotted). The bottom of each well was fitted with a threaded PVC plug. Each nested well screen is separated from the other in the same boring by 6 inches of 10-20 Colorado silica sand followed by approximately 16 inches of bentonite and grout seal material. The remainder of the well annulus was grouted to the surface.

NMED/BB bb.rap

11

Vapor extraction well VP-1 was drilled to a total depth of 14.5 feet. VP-1 was completed with 5 feet of 0.020-inch factory-slotted 4-inch diameter well screen below the water table, 5 feet of 0.040-inch slotted well screen above the water table, and 4.5 feet of blank casing to the surface. The bottom of the well was fitted with a threaded PVC cap. The annular space of the well was backfilled with 10-20 silica sand to 9 feet below the surface, followed by 8-12 silica sand to 3.5 feet. A 1.5 feet thick bentonite seal was placed above the sand, and the remainder of the annulus was grouted to the surface with a cement/bentonite slurry.

Air sparge point AS-1 was drilled to a total depth of approximately 22 feet below the ground surface with a screened interval installed 11 feet below the water table from 20 to 22 feet, followed by blank casing to the surface. The well was completed with 2-inch diameter, 0.020-inch slotted well screen and well casing and the bottom of the well was fitted with a PVC well cap. The annular space was backfilled with 10-20 silica sand to 17.5 feet below the surface, followed by bentonite to 15.5 feet and grout to the surface.

Monitor well MW-9 was drilled to a total depth of 20 feet and completed with 15 feet of 2-inch diameter schedule 40 PVC screen (0.010-inch slotted) and 5 feet of blank casing. The bottom of the well was fitted with a PVC cap and the annular space was backfilled to 1.5 feet above the well screen with sand pack, followed by a 1-foot thick bentonite seal and grout to the surface.

All wells were completed with locking plugs and keyed-alike padlocks in bolted, traffic-rated, steel road boxes and concrete well pads. Well completion details and well completion logs are included in Appendix A. Drill cuttings from the soil borings were placed in 55-gallon steel, DOT-approved drums, labeled, and stored on site pending laboratory analysis and off-site disposal.

Subsequent to well installation, wells AS-1, VP-1, and MW-9 were developed by purging using welldedicated 2-inch and 4-inch diameter PVC bailers until water removed from the wells was relatively free of sediment. The bailers were decontaminated prior to use in each well using a non-phosphatic detergent and distilled water. Purge water removed from the wells was placed in a 55-gallon steel drum, labeled, and stored on site pending laboratory analysis and off-site disposal. Following receipt of analytical results, the drums containing drill (soil) cuttings and purge water were transported by Rhino Tank and Line Testing, Inc. to their state-licensed landfill in Hobbs, New Mexico for final disposal on September 7, 1992.

12

4.2 Soil Analytical Results

Soil samples were field-screened with a Photovac Microtip PID during drilling for relative concentrations of volatile organic compounds. Field readings for soil samples collected from all borings ranged from 171 ppm to 4,712 ppm. Laboratory results for soil samples collected during drilling are presented in Table 2. Total BTEX concentrations for all borings samples ranged from 15 to 35 mg/kg, with maximum concentrations detected in the soil sample collected from MW-9 from a depth of 9 feet. TPH-as-gasoline concentrations for all soil samples ranged from 340 to 820 mg/kg, with maximum levels recorded in the soil sample from MW-9 at 9 feet.

5.0 SOIL VENT/AIR SPARGE PILOT TESTS

On August 24 - 26, 1992, Groundwater Technology conducted short-term air sparge (AS) and vapor extraction (VE) (soil vent) pilot tests at the Barelas Bridge site. The purpose of the pilot tests was to determine the following information:

- The effective radius of influence for a proposed ASVE remediation system at the site;
- Engineering criteria and equipment specifications for use in designing a full-scale remediation system; and
- Hydrocarbon mass extraction rates for selection of air emissions treatment methodology.

Prior to conducting the pilot tests, Groundwater Technology notified the AEHD Air Pollution Control Division (APCD) of potential air emissions as a result of the tests (Correspondence, Groundwater Technology, August 6, 1992). The AEHD/APCD responded that air emissions control would be required (Correspondence, AEHD/APCD, August 10, 1992).

Pilot testing consisted of three components: a soil vapor extraction test, an air sparge test, and a combined air sparge/soil vent test. The tests consisted of actual field operation of a soil vacuum blower and an air compressor temporarily connected to vapor extraction and air sparge wells. Induced response in the subsurface as a result of the tests was measured in surrounding monitor points. The sparge and vent tests were performed first to define the individual radii of influence and to determine the most effective operational conditions (pressure and vacuum settings) of these individual systems. The combined test documented actual field response to the optimum pressure and vacuum identified during the individual tests and allowed for balancing of the two systems.

Pilot tests at the Barelas Bridge site were performed using the newly installed air sparge (AS-1) and vapor extraction (VP-1) wells as the test wells. Monitoring points were selected to provide multidirectional data at varying distances from the test wells, and to provide information concerning potential vertical differences in response both in the unsaturated and saturated zones. The monitoring network utilized for the pilot tests consisted of three existing monitor wells (MW-4, MW-7, and MW-8), and newly installed monitor well MW-9, all screened at various intervals across the saturated and unsaturated zones, two nested probes (PR-2 and PR-3), each screened at two

intervals (3 to 5 feet and 7 to 9 feet) in the unsaturated zone, and the soil vapor extraction well (VP-1). Construction of all test wells and monitor points are detailed on the well logs included in Appendix A. Figure 2 shows the layout of the pilot test monitoring array.

5.1 Soil Vent Pilot Test

5.1.1 Soil Vent Test Equipment

Soil vapor extraction pilot tests were performed by attaching a 5-horsepower (HP) regenerative vacuum blower to the pilot test well (VP-1). The blower system included a particulate filter, vacuum gauges, and an ambient air intake valve to control flow/vacuum. The blower was powered by a portable generator. The blower exhaust was manifolded to two 200-pound carbon canisters placed in series for treatment of extracted vapors prior to atmospheric discharge. One in-line air sampling port for collection of air samples and PID measurements was installed in the blower discharge line prior to carbon treatment (influent), and another air sampling port for PID monitoring of carbon-treated air was installed in the discharge line after the second carbon canister (effluent).

Blower performance and vacuum were monitored using pre- and post-filter Ashcroft vacuum gauges with a range of 0 to 100 inches of water (in 1-inch increments). The vacuum gauges have an accuracy of \pm 1%. Air velocity measurements were obtained at a port installed in the 4-inch diameter PVC pipe at a point located approximately midway between the extraction wellhead and the blower. Measurements were obtained using a Dwyer Instruments thermal anemometer (Model 470). The thermal anemometer was calibrated following manufacturer's instructions prior to initiating each test.

Ambient air temperature and process flow temperature were measured using an Omega HH-70KF pocket thermometer, which has a range of -112 to $1,383^{\circ}F$ and an accuracy of <u>+</u> 1% for ambient air temperatures between $68^{\circ}F$ to $86^{\circ}F$. Process air stream temperature was measured during the test at inlet ports installed in the piping prior to the blower (pre-blower temperature) and on the discharge side of the blower (post-blower temperature) to monitor blower performance and for use in hydrocarbon mass extraction calculations.

Organic vapor concentrations were monitored at the air sampling ports located on the discharge side of the blower (both pre and post-carbon treatment) using a Microtip PID calibrated with 100 ppm isobutylene gas.

Induced vacuum at monitor wells surrounding the vapor extraction well was measured using a combination of Dwyer Instruments, Inc. magnehelic gauges (Model Nos. 2000-00, 2000-0C, 2002, and 2010). Gauges were attached to the pressure monitoring ports with 1- to 2-foot lengths of flexible rubber tubing.

5.1.2 Soil Vent Test Protocol

Following equipment set-up and calibration, Groundwater Technology conducted soil venting pilot tests at three separate vacuum settings; 19.5, 30, and 43 inches of water, respectively. A complete round of static pressure, temperature, velocity, and organic vapor concentration readings were collected from each of the measurement and sampling ports prior to starting the initial test. The tests were run at each vacuum setting until stabilization occurred in the monitoring parameters, usually 1 to 2 hours or less.

The following parameters were monitored during each test at approximate 5-minute intervals for the first elapsed 15 minutes, at approximate 15-minute intervals for the remainder of the first elapsed hour, and hourly thereafter. Field measurements are included in Appendix E:

- Pre- and post-filter vacuum at the blower;
- Induced vacuum at surrounding monitor points;
- Applied vacuum at the vapor extraction wellhead;
- Pre- and post-blower air stream temperature;
- Process air stream velocity; and
- Air influent (pre-carbon treatment) and effluent (post-carbon treatment) organic vapor concentrations.

An air effluent sample was collected at the end of the test (1 hour) conducted at the maximum vacuum setting (43 inches of water). The sample was collected in 3-liter Tedlar bags from the air sampling port located on the blower discharge stack prior to carbon treatment. Following sample collection, the Tedlar bags were labeled and stored at ambient air temperature inside a shipping cooler. Following completion of the soil vent pilot test, the air sample was shipped with full Chain-of-Custody documentation to GTEL Environmental Laboratories in Concord, California for analysis of BTEX and TPH-as-gasoline in accordance with EPA methods 5030/8020/8015/18, and for methane, carbon dioxide, and oxygen per method GC-TCD.

5.1.3 Soil Vent Test Results

The soil vent test was conducted at three vacuum settings; 19.5, 30, and 43 inches of water at the wellhead, respectively. To achieve these vacuum settings, the air dilution (bypass) valve on the blower was opened 100%, 80%, and 50%, respectively. The vent test could not be conducted at greater than 50% blower capacity (i.e. less than 50% dilution air) without pulling water up from the vacuum extraction well to the blower, and without exceeding recommended maximum blower operating conditions.

Maximum induced vacuum as a result of venting was observed during the test in which 43 inches of water (maximum vacuum) was applied at the wellhead. At the maximum applied vacuum of 43 inches of water, maximum induced vacuum measured at the monitor wells ranged from 0.07 inches of water in well MW-9 (located approximately 38 feet from VP-1) to 1.90 inches of water at PR-3D (located approximately 10 feet from VP-1). No vacuum (0.00 inches of water) was measured at MW-7, located approximately 147 feet from VP-1.

Vacuum in the subsurface generally decreases exponentially with distance. To calculate an effective radius of influence, the natural log (In) of the induced vacuum was plotted versus distance for each vacuum setting (Figure 8). A best fit line was then drawn through each set of data points. An effective radius of influence was then determined for each vacuum setting from the graphs. A vacuum of 0.1 inches of water was selected to define a significant response based on previous field data collected for similar soil vapor extraction systems. A more conservative estimate of the effective radius of influence was also determined by selecting the distance from the graph which corresponded to 1% of each of the applied vacuums. Using these methods, the maximum radius of

influence ranged from approximately 27 to 39 feet at 43 inches of water vacuum, with an average of 33 feet.

To aid in specifying the correct blower size for a full scale SVES, air velocity was measured at the wellhead for the various applied vacuum settings. At applied vacuums of 19.5, 30, and 43 inches of water, air velocities of 1,000, 1,250, and 1,500 feet per minute (fpm), respectively, were measured in 4-inch diameter pipe. Conversion to cubic feet per minute (cfm) yielded air flow rates of 88, 109, and 131 cfm for the three vacuum settings, respectively. A graph of air flow rate versus applied vacuum for the pilot test is provided in Figure 9.

Organic vapor concentrations in the process air stream were measured to determine emission and hydrocarbon mass removal rates. Maximum organic vapor concentrations, based on PID readings, were 1,383, 1,447, and 1,740 ppm for vacuum settings of 19.5, 30, and 43 inches of water, respectively. LEL readings in the process air stream were 100% at the start of the test at 19.5 inches of water vacuum.

Air sample analytical data collected during the pilot test at 43 inches of vacuum indicate that benzene concentrations were 220 ug/l in the air effluent, toluene concentrations were 79 ug/l, and TPH-as-gasoline concentrations were 26,000 ug/l. Methane concentrations were 3,800 parts per million volume (ppm-v) in the air samples. Carbon dioxide and oxygen in air were detected at concentrations of 18,000 ppm-v and 180,000 ppm-v, respectively. A summary of air sample analytical data obtained from well VP-1 is provided in Table 3, and Laboratory Certificates of Analysis, Chain-of-Custody documentation, and QA/QC packages are included in Appendix F.

5.1.4 Soil Vent Test Conclusions

Based on the data obtained during the soil venting pilot test performed on well VP-1, the maximum vacuum which could be applied at the wellhead (43 inches of water) produced the most effective radius of influence (in terms of induced vacuum) and the highest effluent VOC concentration. An effective radius of influence of 33 feet was achieved at an applied vacuum of 43 inches of water at the extraction wellhead.

Air sample analytical data indicate that maximum mass extraction rates of 0.09 pounds per hour (lb/hr) benzene, 0.03 lb/hr toluene, and 10.3 lb/hr TPH-as-gasoline were obtained during the vent

test on VP-1 at 43 inches of water vacuum. Emissions calculations are provided in Appendix G and results are summarized in Table 4.

5.2 Air Sparge Test

5.2.1 Air Sparge Test Equipment

The air sparge pilot test was performed by connecting a compressed air line to the top of the air sparge well. The compressed air system consisted of a 100 pounds per square inch (psi) (105 cfm) air compressor, 3/4-inch diameter air hose, an in-line oil/water filter, and a pressure regulator to control flow/pressure.

Air velocity measurements were obtained using a combination of Dwyer air flowmeters (Model Nos. RMC and VFC) plumbed into the air line at the air sparge wellhead. Induced pressure at monitoring points surrounding the air sparge well was measured using a combination of Dwyer magnehelic gauges, (Model Nos. 2000-00, 2000-0C, 2002, and 2010). Organic vapor concentrations were measured at the surrounding monitor points using a properly calibrated Microtip PID. Depth-to-water and dissolved oxygen in surrounding monitor wells screened across the water table were measured using an ORS electronic interface probe (IP) and a YSI Model 51B Dissolved Oxygen Meter, respectively.

5.2.2 Air Sparge Test Protocol

The sparge test was performed at 3 different pressures, 5 psi, 7 psi, and 10 psi (approximately 10%, 50%, and 100% over the pressure needed for air to overcome the 9 foot water column). A complete round of static pressure, dissolved oxygen (DO), fluid-level, and volatile organic compound (VOC) concentration measurements were collected from each monitor point prior to starting the sparge test.

The following parameters were collected during each pressure setting at periodic intervals. Field measurements are included in Appendix E:

- Applied air pressure at the sparge wellhead;
- Air flow rate of compressed air injected into the sparge well;

- Induced pressure at surrounding monitor points;
- VOC concentrations at the surrounding monitor points; and
- DO and depth-to-water were recorded in the monitor wells at the end of each pressure setting (removal of the pressure caps during sparging would interfere with the pressure readings).

5.2.3 Air Sparge Test Results

The air sparge test was conducted at three pressures, 5 psi, 7 psi, and 10 psi at the wellhead. At the maximum applied pressure of 10 psi, maximum induced pressure measured at the monitor wells ranged from 0.025 inches of water in well MW-9 (located approximately 43 feet from AS-1) to 11.0 inches of water at MW-8 (located approximately 29 feet from AS-1) (Table 5). No significant pressure response was detected above background in MW-7, located approximately 150 feet from AS-1. The maximum induced pressure versus distance for each of the injection pressures is plotted in Figure 10.

VOC concentrations recorded at each monitor point throughout the test are included in Appendix E and summarized in Table 6. VOCs versus time for all applied pressures during the sparging tests are plotted in Figures 11 and 12. A graph of the maximum change in VOC concentrations versus distance for the test at 5 psi applied pressure is also illustrated in Figure 13.

The most significant increase in VOC concentrations was observed following initial start-up of the sparge test at 5 psi injection pressure and in those monitor points located closest to the sparge well. VOC concentrations increased from less than approximately 500 ppm (background) to 3,000 to 5,208 ppm in the initial 15 minutes of sparging in the nested PR-3 wells and in VP-1, located 5.5 and 9 feet from AS-1, respectively. Increases in VOC concentrations were also observed in wells MW-4 (from 230 to 1,315 ppm) and MW-8 (from 26 to 840 ppm), located 19.5 and 29 feet from AS-1, respectively, indicating that sparging influence with respect to VOC concentrations generally decreased with distance away from the sparge point. VOCs in MW-9, located 43 feet from AS-1, showed a delayed response to sparging, with increased VOCs not observed until after approximately 45 minutes into the test. This may indicate that as the test progressed, the radius of influence of the sparge well slowly increased until a response was observed in the outlying wells.

Figures 11 and 12 also illustrate that the most significant increases in VOCs occurred at injection pressures of 5 psi and 7 psi, with less influence occurring at 10 psi. The figures also show that in general, as sparging time progressed, VOCs decreased from initially spiked concentrations, as initially high VOCs in the headspace of the wells and at the water table were driven off, and then stabilized at lower concentrations.

Fluid levels and the concentration of DO in water were measured in those wells screened across the water table prior to pilot testing at each sparge pressure. An increase in the DO concentration is indicative of aeration during the sparge test, which in turn indicates the transport of injected air through the aquifer. The data indicates significant increases in the DO concentrations in wells VP-1 and MW-8, from background concentrations of 0.2 ppm to maximum concentrations of approximately 7.0 ppm for both wells. No significant increases in DO concentrations were observed in wells MW-4 and MW-9 (Table 7).

An increase in the groundwater elevation as a result of sparging (i.e., water table mounding) was detected in wells MW-4, MW-8, MW-9, and VP-1. The maximum difference (pre-test minus post-test values) in depth-to-water values ranged from 0.03 feet in MW-9 (located 43 feet from AS-1) to 1.26 feet in MW-8 (located 29 feet from AS-1) (Table 7).

5.2.4 Air Sparge Test Conclusions

Aquifer sparging effectiveness was evaluated based on observed induced pressure, VOC concentration, depth-to-water observations, and DO concentrations while sparging at the maximum applied pressure of 10 psi. The resultant maximum effective radial distances for each evaluation methodology are presented in Table 8. A conservative value of 30 feet was selected as the effective radius of influence for the sparge test, based on the observed pressure responses. The remaining monitoring parameters (DO, depth-to-water, and VOC concentrations) exhibited greater variability between wells and were less conclusive.

The sparge test results appear to indicate some potential directional variability in sparging influence beneath the site. Well MW-8, located 29 feet north of the sparge well, exhibited a greater response to sparging than any other well, out-performing four other wells which were located closer (from 5.5 to 19.5 feet) to the sparge well. This may be due to the possible presence of more permeable fill material located in the fuel island/piping area in which MW-8 is located, or may be a result of the

well construction detail for MW-8. Because MW-8 is located beneath the fuel island canopy, it is the only well on site which was installed by driving a steel well point. All other wells were installed by a hollow-stem auger drill rig, using standard well completion techniques. Auger drilling of the boreholes may have resulted in a "smeared zone" in the annulus around the well screen, resulting in reduced permeability, compared to MW-8 which was driven into the natural sandpack with minimal formation disturbance.

5.3 Combination Air Sparge/Soil Vent Test

5.3.1 Combination Air Sparge/Soil Vent Test Protocol

The last phase of pilot testing consisted of a combination air sparge/soil vent test. The objective of the combination test was to ensure that a net vacuum could be established across the site under maximum operating conditions so that all sparge vapors were contained. The combination test was run at 7 psi pressure and 40 to 44 inches of water vacuum, which were the intermediate air sparge and maximum venting levels recorded during the individual vent and sparge tests. Because the air sparge system exerted a greater influence over the maximum vacuum setting, a short-term combination test was also run at a lower sparge pressure (5 psi), while the vacuum was maintained at the maximum level of 43 inches of water.

The same parameters listed above for the individual vent and sparge tests were collected periodically during the combination tests. An effluent air sample was collected at the end (1.5 hours) of the initial combination test (at 7 psi pressure and 40 to 44 inches of water vacuum). The sample was collected in 3-liter Tedlar bags from the sampling port located on the vacuum blower discharge stack prior to carbon treatment. The sample was shipped at ambient air temperature under full Chain-of-Custody to GTEL in Concord, California for analysis of BTEX and TPH-as-gasoline in accordance with EPA methods 5030/8020/8015/18.

5.3.2 Combination Air Sparge/Soil Vent Test Results

The final test involved simultaneous operation of both the vent and sparge pilot systems. Monitoring results for the combined test are included in Appendix E and summarized in Table 9. Readings taken during the corresponding vent only and sparge only tests are also presented in Table 9 for comparison.

During the combined test at 43 inches of water vacuum and 7 psi, net positive (pressure) readings were detected in wells PR-2 and MW-8, while negative (vacuum) readings were recorded for the remaining wells. Only by reducing the sparge injection pressure to 5 psi and maintaining a maximum applied vacuum of 43 inches of water, was a net negative induced vacuum observed in all monitoring points at the site.

Air sample analytical data collected during the combined test at 7 psi sparge pressure and 40 inches of water vacuum indicate that benzene concentrations were 650 ug/l in the air effluent, toluene concentrations were 110 ug/l, and TPH-as-gasoline concentrations were 32,000 ug/l. A summary of air sample analytical data obtained during the combined test from well VP-1 is provided in Table 3, and Laboratory Certificates of Analysis, Chain-of-Custody documentation, and QA/QC packages are included in Appendix F.

5.3.3 Combination Air Sparge/Soil Vent Test Conclusions

Based on the results of the combined pilot test, the optimum operating settings for the air sparge and soil vapor extraction systems were determined to be 5 psi sparge pressure and 43 inches of water vacuum. At these settings, the two system components were balanced and a zero or net negative pressure response was observed in surrounding monitor points, indicating that any sparge vapors would be contained by the vacuum system.

Air sample analytical data indicate that mass extraction rates of 0.26 lb/hr benzene, 0.04 lb/hr toluene, and 12.81 lb/hr TPH-as-gasoline were obtained during the combined test while sparging at 7 psi and venting at 40 inches of water vacuum. A comparison of the air analytical data and the hydrocarbon extraction rates for the vent only and the combined air sparge/soil vent test (Tables 3 and 4) reveals that air emission concentrations were 1.2 to 3 times higher during the combined test than for the vent only test. This indicates that sparging in conjunction with venting results in significantly increased levels of VOCs being stripped and recovered from the unsaturated and saturated zones than by venting alone. Emissions calculations are provided in Appendix G and results are summarized in Table 4.

6.1 Remediation Technology

Groundwater Technology, Inc. has identified two approaches to hydrocarbon remediation at 800 Bridge Blvd., S.W.:

- Installation and operation of an air sparge/vapor extraction (ASVE) system to remediate the main body of the hydrocarbon plume; and
- A provision for *insitu* bioreclamation near the downgradient edge of the hydrocarbon plume (if required).

Subsurface hydrocarbons have been identified in the approximate area of the former USTs beneath the southeastern corner of the site, and an ASVE system is proposed for mitigating hydrocarbons in this area. A network of combined ASVE points installed around the perimeter of the former UST area will inject air into the saturated zone, causing dissolved- and adsorbed-phase contaminants in the aquifer to volatilize. The entrained organics will be carried by the air bubbles into the vadose zone, where they will be captured by a vapor extraction system. As an added bonus, the sparged air will maintain high dissolved oxygen, which will enhance natural biodegradation of hydrocarbons.

The results of the air sparge/soil venting pilot tests conducted at the 800 Bridge Blvd., S.W. site indicate that ASVE technology is a feasible and effective means of removing adsorbed- and dissolved-phase hydrocarbons from beneath the site based on the following criteria:

- The contaminant at the site, gasoline (BTEX), is a strippable/ventable and biodegradable compound;
- The contamination extends into the saturated zone. Maximum concentrations of dissolved-phase hydrocarbons beneath the site include 880 ug/l benzene based on the most recent sampling event (August 1992);

NMED/BB bb.rap

GROUNDWATER

- The saturated zone is relatively homogeneous and of high permeability material (coarse to very coarse-grained sand) and is of known minimum thickness of 14 feet (based on the installation of air sparge well AS-1); and
- An effective radius of influence of 30 feet for the air sparge system (at approximately 5 to 10 psi) and an effective radius of influence of 33 feet for the vapor extraction system (at approximately 40 to 43 inches of water) can be induced, as determined by pilot testing at the site.

Dissolved-phase hydrocarbons in excess of state standards (including 24 - 30 ug/l benzene) are present in groundwater off-site as far south as 300 feet, based on the most recent sampling event of June 1992. Active sparging and venting of the main body of the upgradient source may effectively dissect the hydrocarbon plume and aid in mitigating hydrocarbons in groundwater east and south of the site. Oxygen is generally the limiting factor for those systems utilizing aerobic microbial processes. Feeding of atmospheric oxygen into the saturated zone via air spargers which will be installed as part of the upgradient remediation system, may also act to stimulate downgradient biodegradation. The transmissivity and hydraulic conductivity of the aquifer, concurrent with active upgradient remediation, will aid in naturally flushing and/or attenuating hydrocarbon concentrations in the downgradient portions of the aquifer. In addition, air sparging around the perimeter of the main body of the plume will create a barrier (due to mounding) to further off-site groundwater contamination. Because of the site configuration, other methods of active remediation east and south of the site would be difficult to construct and operate, due to the necessity of running recovery lines across or down La Vega Drive.

A passive bioremediation system will be considered for the off-site area to the south if, after six months of operating the upgradient ASVE system, hydrocarbon concentrations in downgradient wells are not found to be diminishing. The bioremediation system will consist of manually adding nutrients to the aquifer via an appropriate number of off-site bioinfiltration wells to augment natural biodegradation.

NMED/BB bb.rap

25

6.2 Remediation System Design

6.2.1 Air Sparge/Vapor Extraction (ASVE) System

6.2.1.1 System Layout

Based on data obtained during the pilot tests, an ASVE system was designed for the site. Figure 14 presents a schematic of the proposed ASVE system. Preliminary engineering plans for the proposed ASVE system are provided in Appendix H. A corrective action implementation schedule is provided in Table 10. The schedule presents the approximate submittal and projected approval times for the Reclamation Proposal. Based on the projected schedule, assuming no public hearings are required, and depending on the regulatory review process, procurement of equipment, and subcontractor availability, start-up of the remediation system will begin in March 1993.

A pattern of additional air sparge/vent points was developed to provide overlapping influence (negative net pressure) and favorable site coverage for the treatment system. The well spacing was overlain on the area requiring remediation to develop the overall remedial layout. Strategically placed probe nests and wells will also be used to monitor system performance. A complete list of treatment and monitor points to be installed/used at the site is provided below and all well and trench locations are illustrated in Figure 14. ASVE well completion details will be similar to that previously described in Section 4.1 for the pilot test wells:

- 7 air sparge wells (AS-1 through AS-7) (including one existing well from the pilot test, AS-1) will be installed around the perimeter of the gasoline station area (assumed to be the area of highest dissolved- and adsorbed-phase hydrocarbons beneath the site);
- 9 soil vapor extraction wells (including existing wells VP-1, MW-4, and MW-9) will be installed in close proximity to the air sparge wells;
- Horizontal vent wells will be laid in the piping trenches along the south and east side of the site. These wells will be installed at approximately 3 feet in depth and will target remediation of the upper vadoze zone (above the clay layer which occurs at approximately 3 to 6 feet) in this area;

- Horizontal wells currently located in the existing UST area will be located and tied into the soil vapor extraction system; and
- 4 monitor probe nests (PR-1 through PR-4) (including PR-2 and PR-3, previously installed during the pilot tests in August 1992) will be used to monitor remediation response, progress, and periphery conditions, along with select monitor wells already present at the site.

The soil vapor extraction system will consist of four separate legs leading back to the equipment compound:

- One leg servicing proposed wells VP-4 through VP-7;
- A second leg servicing wells MW-9, VP-1, MW-4, VP-2, and VP-3;
- A third leg serving the lateral vent well on the southern and eastern perimeter of the property; and
- A fourth leg servicing the horizontal tank pit wells.

The air sparge system will consist of three separate legs leading back to the equipment compound:

- One leg servicing proposed wells AS-6 and AS-7;
- A second leg servicing proposed wells AS-4 and AS-5; and
- A third leg servicing AS-1 through AS-3.

Because adsorbed-and dissolved-phase hydrocarbon data is insufficient for the northwest half of the site, the actual installation of the proposed north and west legs of the ASVE system will be contingent on field conditions encountered during the drilling of these wells. The four vapor extraction wells proposed for the north and west legs will be drilled first (VP-4 through VP-7). If PID screening of soil samples yields VOC concentrations in excess of 100 ppm, the wells will be completed as 4-inch diameter vapor extraction wells. If PID results are less than 100 ppm, then 2-

inch diameter monitor/vapor extraction wells will be completed in the boreholes. Water and soil samples will be collected from the wells and submitted for BTEX and TPH-as-gasoline analysis. If dissolved hydrocarbons in the wells are in excess of state standards, then the proposed air sparge weils (AS-4 through AS-7) will subsequently be installed, and both the sparge wells and the 2 or 4- inch diameter vapor extraction wells will be plumbed into the remediation system. If adsorbed-and dissolved-phase hydrocarbons are below state standards, then the four wells installed on the north and west sides of the station will be used for up- and side-gradient groundwater monitoring wells.

Four-inch diameter, schedule 40 PVC subgrade vacuum air lines will lead from the vent wells to the equipment compound. The vacuum air lines will connect to the vent wells and each well will be fitted with a ball valve for controlling individual well air streams and a 1/4-inch diameter PVC labcock sampling/monitoring port. Each vent wellhead and ball valve assembly will be completed within a 12-inch diameter traffic-rated manhole. The vacuum air lines along each leg will then be manifolded together and will lead back to the equipment compound.

One-and a-half inch diameter steel air sparge pressure lines will be connected to each of the sparge wells. At each of the wellheads, the air line will be fitted with a pressure regulator for controlling injection pressure and a flow meter for monitoring air flow rate. The sparge air lines along each leg will then be manifolded together and will lead back to the equipment compound.

All vacuum and pressure lines will be buried two to four feet below grade in the same trench. At the equipment compound, the vacuum and air pressure lines will stub-up above grade and will be manifolded to the soil vacuum and air sparge blowers, respectively. All remediation equipment, including the air sparge and vacuum blowers, the air treatment equipment, and the control panels, will be located within a fenced equipment compound in the southwestern corner of the site (Figure 14).

6.2.1.2 Equipment Specifications

The vent system will be operated at 43 inches of water vacuum and 100 scfm per vapor well for a total flow of 500 scfm. Venting will be accomplished using a 10 Hp explosion-proof (XP) soil vent system blower with a capacity of 500 scfm at 60 inches of water column. Influent vacuum/flow rate will be controlled with an ambient air intake valve. A liquid knockout tank, particulate filter, and muffler will be placed on the influent line to eliminate or reduce water generated during system

operation, solids, and noise, respectively. Sampling/monitoring ports will be placed before the blower and after the air treatment unit to monitor the air influent and effluent for chemical and physical parameters.

The sparge system will be operated at 5 psi and a flow of 10 scfm per sparge well for a total flow of 70 scfm. The sparge air will be provided by a 5 Hp liquid ring pump capable of delivering 70 scfm at 10 psi. System pressure will be controlled with a valve on the ambient air discharge line placed on the pressure side of the sparge blower. Noise reduction mufflers will also be placed on the discharge lines of the system.

Based on the results of the air sparge/soil venting pilot tests, air emission rates of approximately 10 to 13 lb/hr total petroleum hydrocarbons (as gasoline) can be expected from the ASVE remediation system installed at this site. Initial lower explosive limit (LEL) values of 100% were obtained on the air emissions from the vent test. Based on the LEL value and air analytical data collected during the pilot tests, a thermal oxidation unit is recommended for treating air emissions at the site. A heat exchanger and a catalytic module are also tentatively recommended as "add-ons" to the thermal oxidation unit, to conserve operating fuel and thereby control operating costs. The catalytic module would allow for use of a second, built-in and more cost-effective treatment technology after active venting has progressed and LEL levels have dropped below 30%.

The off-gas treatment specified for the site will consist of one natural gas-fired 230 VAC, 3 phase, 500 scfm thermal oxidizer. The oxidizer will be equipped with the housing for a catalytic element for possible future service should influent LEL concentrations stabilize at 20 - 30% LEL or lower. The thermal oxidizer will be rated for a 99% or greater destruction efficiency for non-methane hydrocarbons. The purge blower will be rated XP for mounting in Class I, Division 2 area, and the electrical control panel will be purged to meet NFPA Code 496 or will be mounted outside the hazardous classified area.

29

6.2.2 Insitu Bioreclamation System

If, after operation of the upgradient ASVE system for a six month period, hydrocarbon concentrations in wells near the downgradient edge of the plume (Figure 5) have not decreased or have increased, then an *insitu* bioreclamation system will be installed at the site. If concentrations are found to be diminishing, then quarterly monitoring of the downgradient wells, in conjunction with active remediation of the upgradient hydrocarbon source beneath the Barelas Bridge site will continue.

6.2.2.1 Biodegradation Feasibility Study

Before the field application of the *insitu* groundwater bioreclamation system (if necessary), the groundwater quality in the downgradient portion of the site will be assessed with respect to chemical and physical parameters, bacterial enumeration, and contaminant concentrations. A laboratory pilot study will be conducted to discern the biodegradability of the residual hydrocarbons and the subsurface parameters (nutrients) necessary to stimulate maximum degradation in the groundwater south of the site. Groundwater samples will be collected from select monitor wells and analyzed for microbiology (plate counts), hydrocarbon utilizers, inorganic chemical constituents, pH, conductivity, temperature, and dissolved oxygen levels. These data will also be used to form a baseline for later comparison during the biodegradation program.

6.2.2.2 System Design

Based on the results of the laboratory feasibility study, an *insitu* bioremediation system will be designed to mitigate the southern, off-site portion of the hydrocarbon plume. The passive bioremediation system will consist of manually adding nutrients into the saturated zone via strategically-placed infiltration wells to enhance natural biodegradation. The nutrients necessary to stimulate biodegradation (generally phosphorous and nitrogen) will be supplied to the groundwater as a nutrient/water mix via infiltration wells located 50 to 100 feet upgradient of the toe of the plume. Phosphorous will be supplied in one of several forms; common sources for groundwater augmentation are orthophosphate and polyphosphate salts. Common supplies of nitrogen sources are ammonium salts. If additional oxygen must be supplied to supplement the upgradient air spargers, then oxygen in the form of hydrogen peroxide will be added through the infiltration wells. Batch doses of nutrient mix will be followed with water to flush the nutrients into the formation.

MW-1 through MW-3 will be used as monitor wells downgradient of the bioinfiltration wells. These wells will be monitored for groundwater quality (dissolved oxygen, pH, inorganic water chemistry, organic water chemistry, and bacterial enumeration) during initial start-up to establish subsurface transport patterns, nutrient transport times, oxygen consumption rates, and contaminant degradation rates. Throughout operation, quarterly monitoring will ensure that optimum conditions are being maintained in the subsurface to affect maximum degradation rates. Select private wells will be monitored closely to ensure that inorganic water quality is not adversely impacted due to the nutrient augmentation.

 \odot

GROUNDWATER TECHNOLOGY

7.1 Monitoring and Maintenance

During start-up (a 1-week period), the remediation system will be monitored for LEL, effluent emissions concentrations, PID, pressure/vacuum, and depth-to-water readings at the monitor probes, operating temperature at the treatment unit, and air velocity through the system. Groundwater Technology recommends operation of the vacuum extraction system only during the first few months following start-up to remediate those areas of the site containing the highest concentrations of hydrocarbons (i.e. from the horizontal wells in the existing UST area and from the horizontal and vertical wells installed along the south and east sides of the property). Based on a maximum design capacity of 500 scfm, a total of approximately five vertical vapor extraction wells, or the horizontal tank pit wells, or the south and east perimeter horizontal wells can be operated at one time. The vacuum extraction system will be optimized to maximize hydrocarbon influent emissions. Valving adjustments will be made at the individual wells to direct greater vacuum to those areas yielding higher hydrocarbon concentrations.

Operation of the vent system only during the first few months will remove the highest, most volatile hydrocarbon concentrations from the subsurface and will reduce the risk of mobilizing hydrocarbons (possibly including methane) off-site when the sparge system is turned on. Following the first few months of venting only and after air emissions from the vent system have decreased, the sparge system will be put in operation. Sparge wells will only be operated in conjunction with their corresponding vapor extraction wells, so that all VOCs generated as a result of sparging will be captured and contained by the vent system. If water table mounding or VOC concentrations in peripheral probes and monitor wells indicate possible downgradient mobilization of dissolved or VOCs by the ASVE system, then the system vacuum rates and sparge pressures will be adjusted to compensate.

Prior to start-up, one complete round of groundwater samples will be collected to determine baseline concentrations for BTEX and TPH-as-gasoline analysis from select monitor and vapor extraction wells. Air emissions samples will also be collected from the influent and effluent air streams for baseline data on the system. After installation and start-up, the system will be monitored twice monthly, and air samples will be collected as required by the AEHD permit (assumed to be quarterly).

The maintenance and monitoring schedule for the proposed remediation system is provided in Table 11. The schedule is designed to comply with applicable permits and regulations, to maintain the system in proper working condition, and to protect human health and the environment. Groundwater Technology anticipates twice-monthly maintenance and monitoring visits following initial system start-up and adjustment.

Twice-Monthly Maintenance and Monitoring:

- Air sparging/vapor extraction blower pressures and air flow rates;
- PID/LEL and temperature readings of air sparge/vapor extraction total emissions influent and effluent; and
- Draining of moisture knock-out drums and inspection of equipment and aboveground line connections for leaks or malfunction.

Monthly Maintenance and Monitoring:

- Induced vacuum, pressure, and flow rates at vacuum extraction and air sparge wells;
- PID, DO, and vacuum/pressure readings at nested monitor probes and surrounding monitor wells to gauge effectiveness of the ASVE system;
- Fluid-level measurements in all on- and off-site monitor wells; and
- Manually add nutrients to infiltration wells, depending on dispersion rates (if necessary).

Quarterly Maintenance and Monitoring:

- Collection and analysis of influent and effluent air samples to/from air treatment unit for BTEX and TPH-as-gasoline;
- Water quality sampling in monitor and private wells (12 wells total) to gauge remediation progress and containment of soil vapors and dissolved hydrocarbons by the ASVE system, and in downgradient wells to monitor levels of organic and if necessary, inorganic water quality; and
- **Dosing of infiltration wells with dilute H_2O to prevent bio-growth and fouling in the bioinfiltration points (if installed).**

In accordance with NMEIB/USTR 1216, quarterly reports will be prepared for the system. The reports will document all work performed during the preceding quarter and will include the following information:

- Copies of all air and water quality analyses;
- Field logs of all groundwater and remediation system monitoring and maintenance conducted at the site;
- A report on the performance and efficiency of each aspect of the system;
- Hydrographs, dissolved-phase hydrocarbon concentration maps, groundwater contour maps; and
- An estimate of the total quantity of hydrocarbons removed from the site based on ASVE removal rates.

The reports will be prepared for submittal to the NMED three months after the date the preceding report was due.

Groundwater Technology will also prepare and submit all necessary monthly and quarterly reports required for the operating permits for the system, including:

- Quarterly reports to the AEHD Air Quality Program, reporting the influent and effluent concentrations to/from the air treatment unit; and
- Quarterly reports to the NMED Groundwater Bureau for discharge permit for infiltration wells (if necessary).

7.3 QA/QC Procedures

All air and groundwater samples collected and submitted for laboratory analysis during the course of site monitoring will be handled and analyzed in accordance with recommended EPA methods for the collection and analysis of environmental samples (EPA, 1986). A synopsis of the GTEL Environmental Laboratories QA/QC plan is provided in Appendix I. The EPA proficiency test results (WP Series) for the period December 1989 to June 1991 for GTEL are also included in Appendix I.

Sample containers, preservation techniques, and sample holding times are dependent upon the analyte of interest and analytical methods, and are listed by sample matrix and EPA method in Appendix I, pages 6 through 10. All samples will be logged on a Chain-of-Custody form that will remain with the samples from point of origin to time of disposal. A sample Chain-of-Custody form is included in Appendix I.

١,

8.0 CONTINGENCY PLAN AND CLOSURE CRITERIA

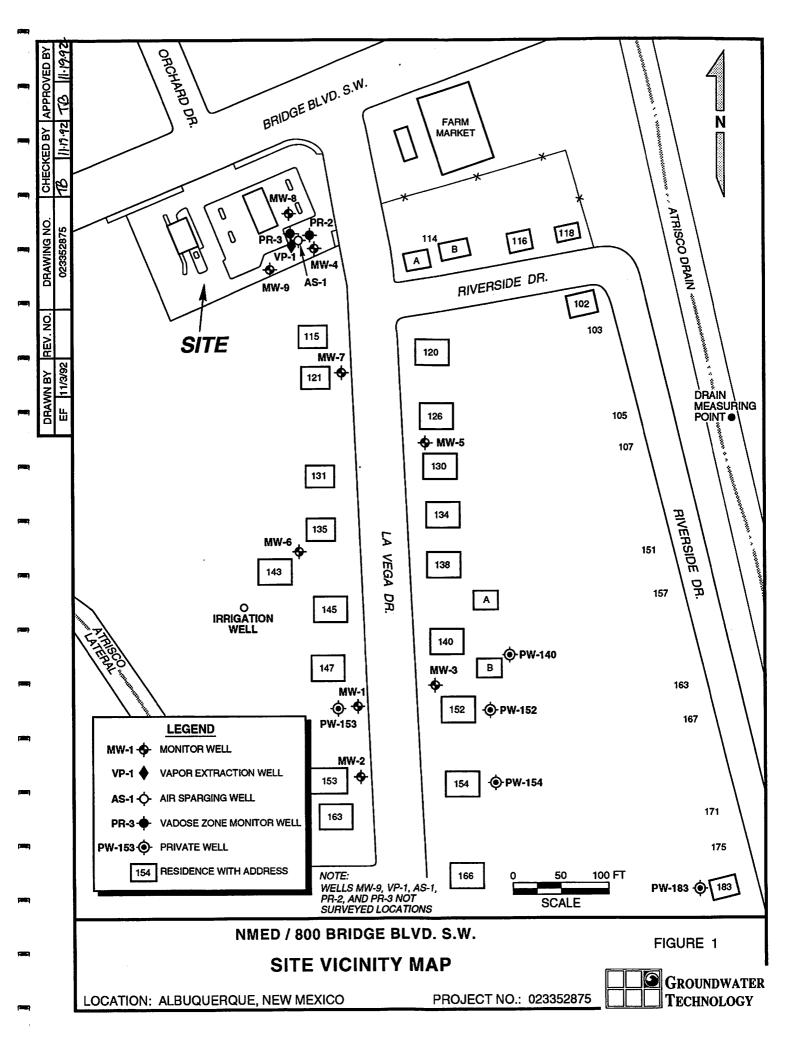
Because the system will be unmanned and inspected on a twice-monthly basis, safety interlocks will be provided to protect the equipment and to signal the operator in case of system failure. The vent blower will be of XP design and will be equipped with thermal overload motor protection. The sparge blower will be non-XP and located outside the Class I, Division II hazardous area. All electrical control panels will either be purged, XP-rated, or located outside of the classified hazardous area. The thermal oxidizer will also contain several built-in safety features including a flame arrestor on the inlet line, and alarm/automatic shutdown components for low or high gas pressure, process or combustion blower failure, loss of panel pressure, high temperature, or loss of flame. The controls for the sparge blower, vent blower, and the thermal oxidizer will be interactive such that if either the vent blower or the thermal oxidizer shuts down, all ASVE system components will automatically cease operation.

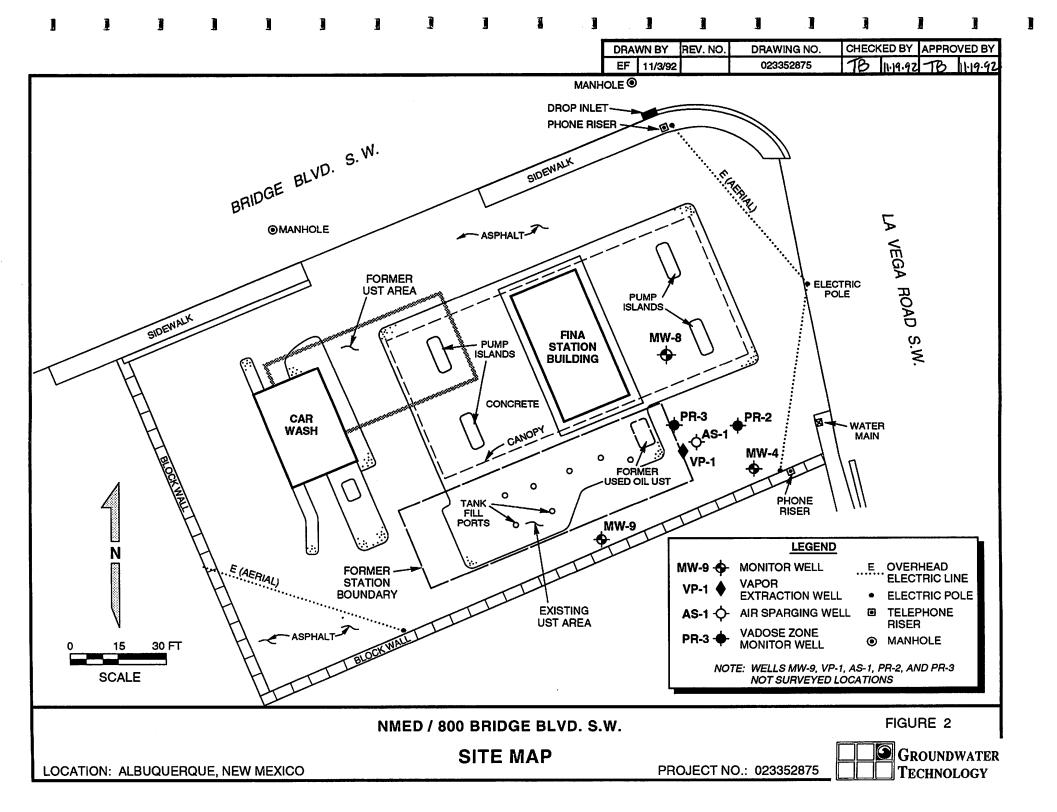
The ASVE will operate for a period of approximately six months to two years. As is typical of an ASVE, the mass removal rate of hydrocarbons by the system will decrease with time. Plots of the hydrocarbon mass removal rate versus time will be prepared from the air quality samples collected each quarter and when it is determined that no significant quantities of hydrocarbons are being removed by the system, then the system will be evaluated and modified as necessary. If at this time, levels of applicable dissolved hydrocarbon (BTEX) concentrations are below New Mexico Water Quality Control Commission (NMWQCC) Part III standards, then it will be recommended that the NMED consider approval to terminate ASVE operation pursuant to NMEIB/USTR Part XII, Section 1219. Soil borings will be drilled in the areas of former highest hydrocarbon concentrations to demonstrate that adsorbed-phase hydrocarbon concentrations have been reduced to a level which will not recontaminate the groundwater. In accordance with NMEIB/USTR Part XII, Section 1219, groundwater monitoring will then continue until the NMWQCC standards have been met in at least four compliance wells for eight consecutive quarters. When all remediation criteria have been met, the site will be submitted for consideration for closure.

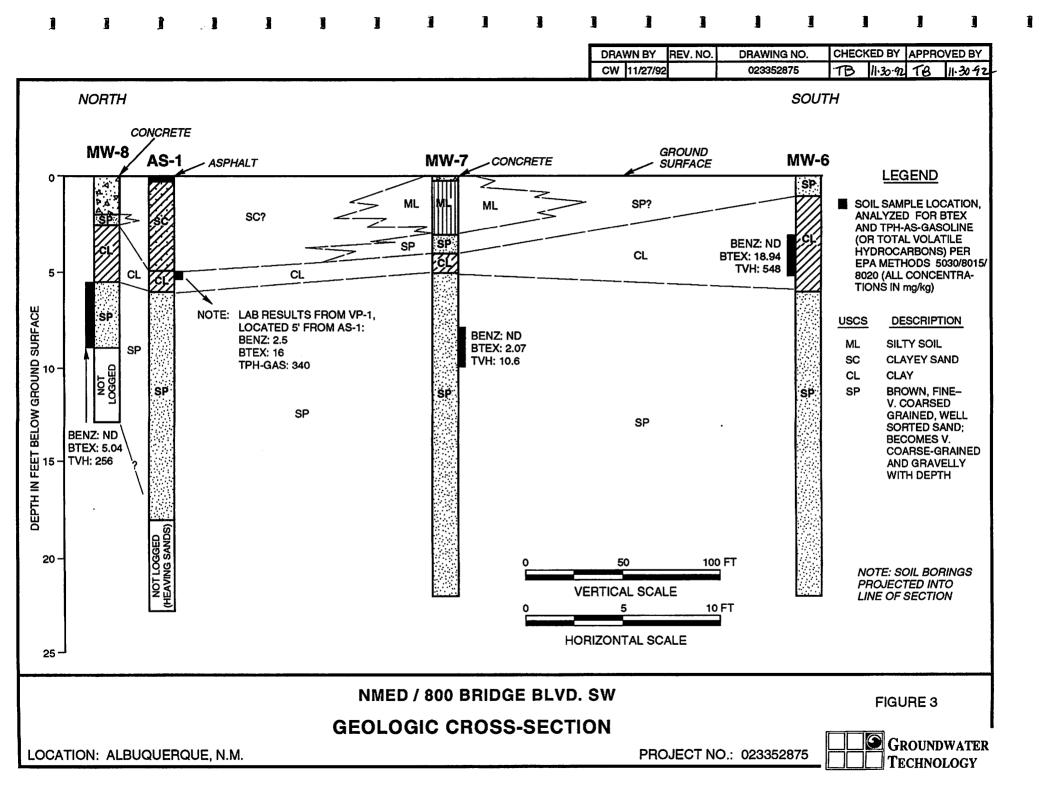
9.0 REGULATORY REQUIREMENTS

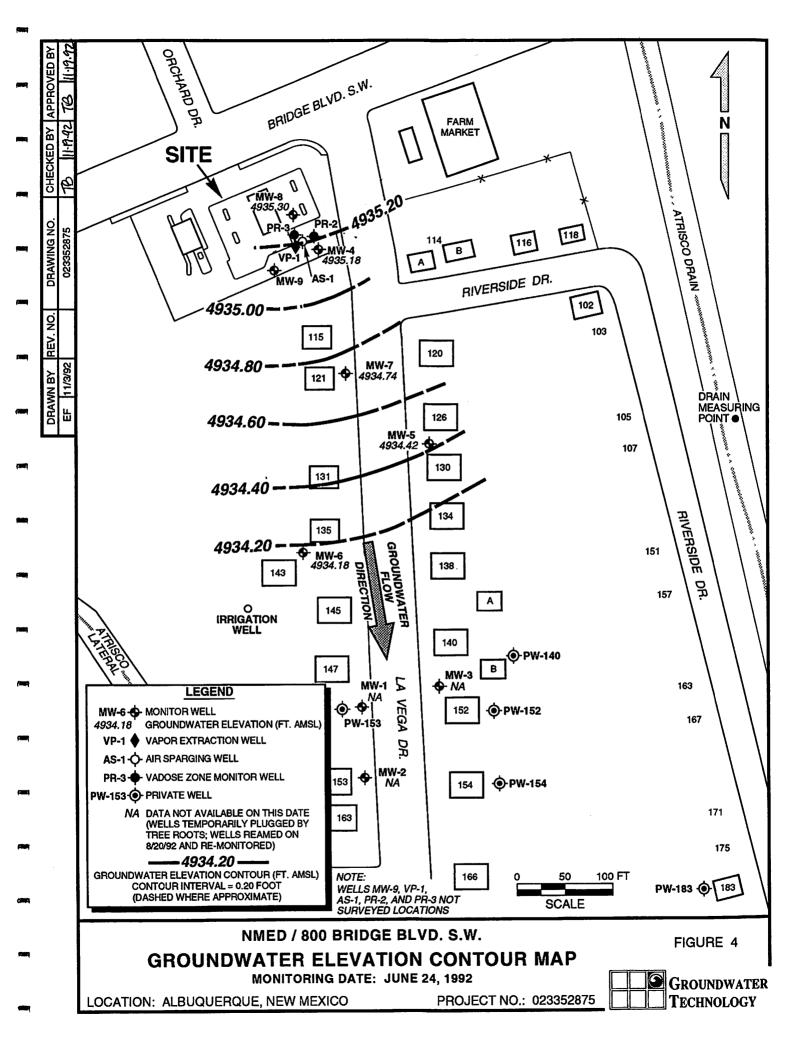
Remedial action at the 800 Bridge Blvd., S.W. site is regulated by the NMED/USTB in accordance with NMEIB/USTR, Part XII, Sections 1212 through 1222. Operation, monitoring, and maintenance of the remediation system is also regulated by NMEIB/USTR, Part XII.

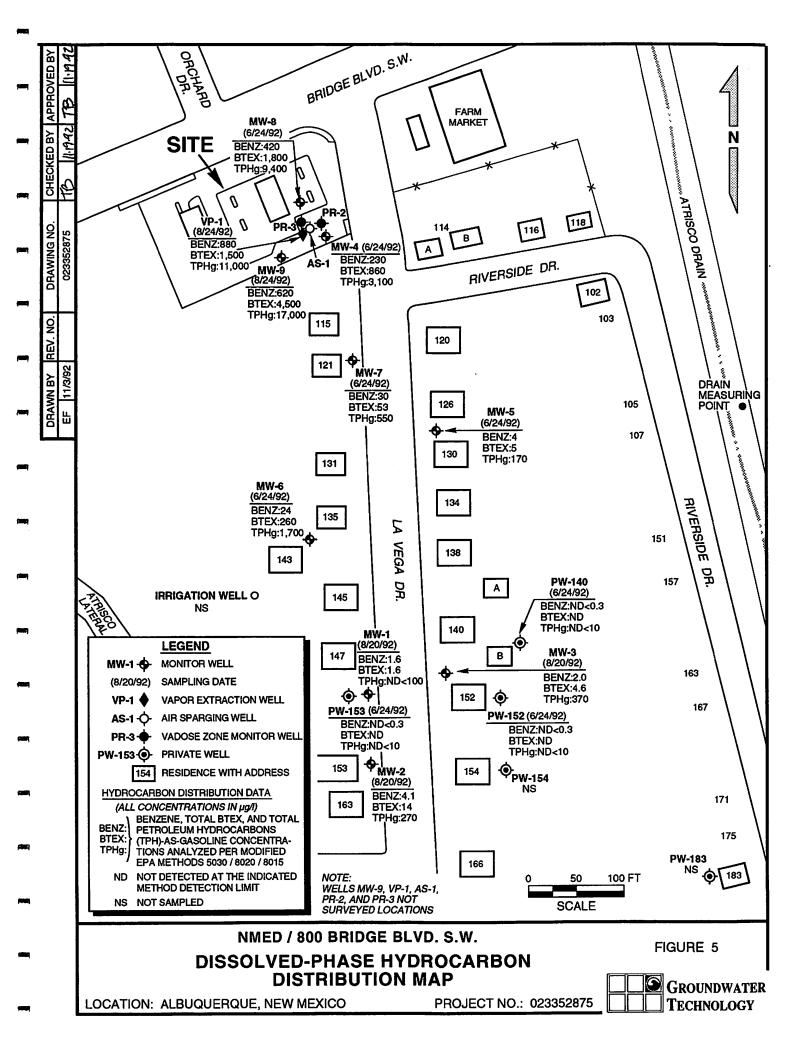
Air emissions from the ASVE system are regulated by the Albuquerque Bernalillo County/Air Quality Control Board (ABC/AQCB), and the regulations are administered by the AEHD Air Pollution Control Division (APCD) in the City of Albuquerque. Stationary sources emitting air pollutants in excess of city, county, state, or federal ambient air standards are required to obtain an air quality construction permit if the emission rate of a regulated air contaminant is greater than 10 pounds per hour, or if significant amounts of classified hazardous air pollutants for which no numeric standards have been promulgated (e.g. benzene) are emitted (ABC/AQCB, Regulation No. 20). The Application for Air Quality Construction Permit for the ASVE system will tentatively be submitted to the AEHD/APCD on or before December 14, 1992. Approval of the permit application is anticipated in 60 to 90 days from the submittal date, however, the ABC/AQCB regulations allow a time period of up to 120 days following submittal of a complete application prior to granting or disapproving a permit application.

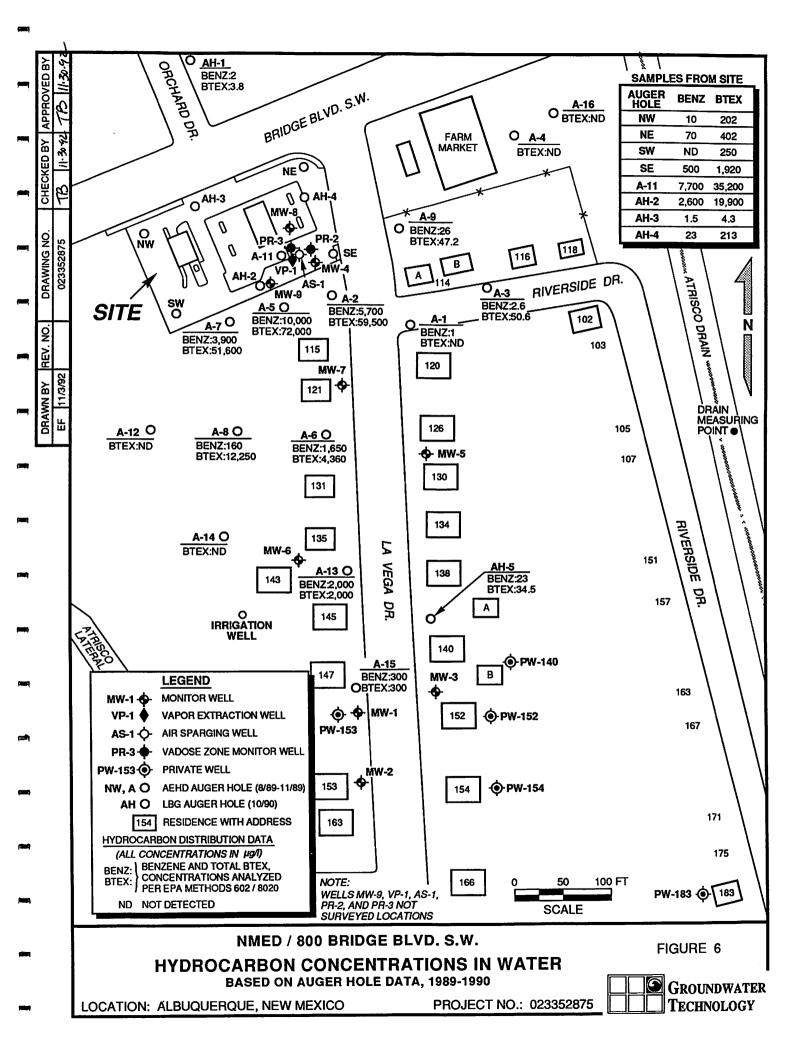

If necessary, in compliance with NMWQCC Regulations 1-201 and 3-106, a discharge permit application will be prepared for the passive bioinfiltration wells for submittal to the NMEID Groundwater Bureau. The permit application will specify the concentrations of nutrients to be added, and a monitoring schedule to ensure that groundwater quality is not impacted by remediation activities. A Notice of Intent to Discharge and a request to allow temporary batchfeeding of nutrients to the infiltration wells will initially be submitted to the NMEID Groundwater Bureau, followed by a complete discharge permit application.

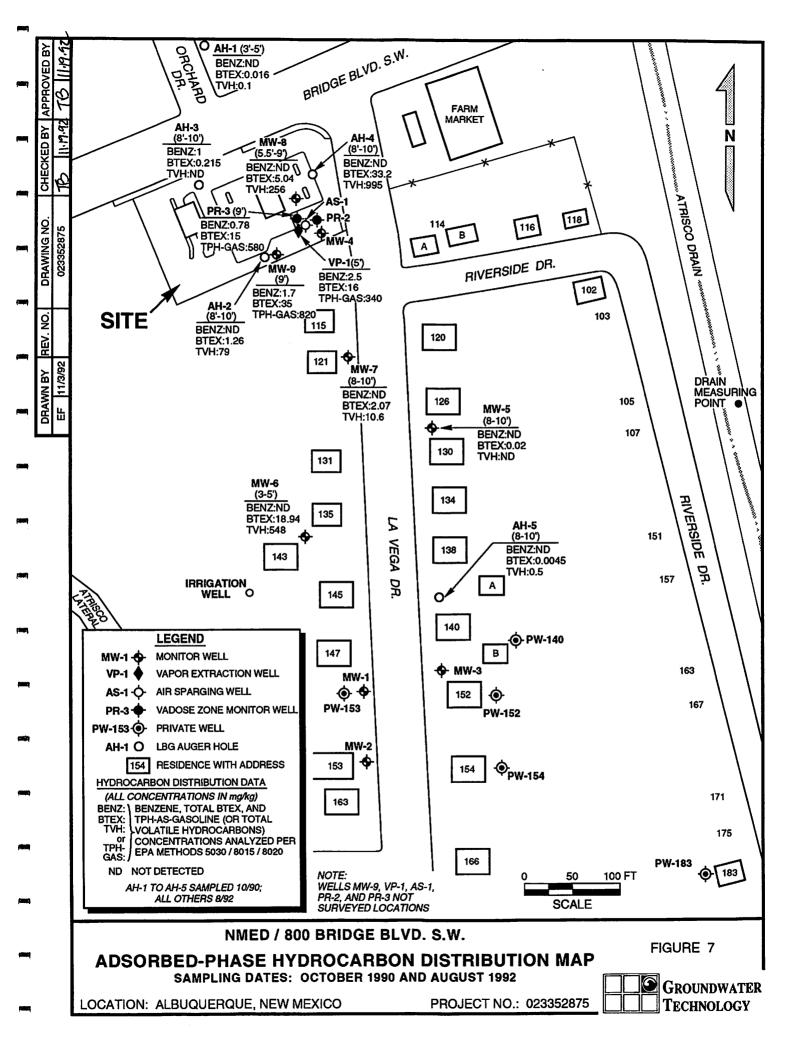

In addition, equipment compound construction will be in compliance with applicable City of Albuquerque zoning and building ordinances. Additional inspections by the Fire Marshall's office or utility companies (natural gas and electric) will be arranged if required. An access permit to install monitor probes and/or bio-infiltration wells located on off-site property to the south will be the responsibility of the NMED/USTB.

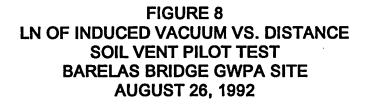


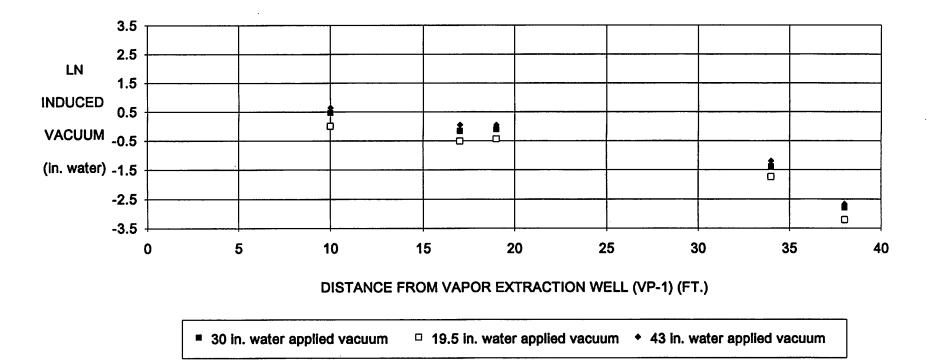

- Bjorklund, L.J., and Maxwell, B.W., 1961, "Availability of Ground Water in the Albuquerque Area, Bernalillo and Sandoval Counties, New Mexico," <u>New Mexico State Engineer Technical</u> <u>Report 21"</u>, 177 pp.
- Kelley, V.C., 1977, "Geology of the Albuquerque Basin, New Mexico," <u>New Mexico Bureau of Mines</u> and <u>Minerals Resources, Memoir 33</u>, 59 pp.
- Leggette, Brashears and Graham, Inc., 1990, "Hydrogeologic Investigation of the 800 Bridge Street Site, Albuquerque, New Mexico," unpublished report prepared for the New Mexico Environmental Improvement Division, 17 pp.
- U.S. Geological Survey, 1972, "Map Showing Estimated Thickness of Aquifers That contain Fresh Water in New Mexico, Summer, 1983," <u>U.S. Geological Survey, Open-File Map</u>.
- U.S. Geological Survey, 1986, "Ground-Water Levels and Direction of Ground-Water Flow in the Central Part of Bernalillo County, New Mexico, Summer 1983," <u>U.S. Geological Survey Water</u> <u>Resources Investigations Report 85-4325</u>.
- U.S. Geological Survey, 1987, "Ground-Water Flow and Shallow-Aquifer Properties in the Rio Grande Inner Valley South of Albuquerque, Bernalillo County, New Mexico," <u>U.S. Geological Survey</u> Water Resources Investigations Report 87-4015.

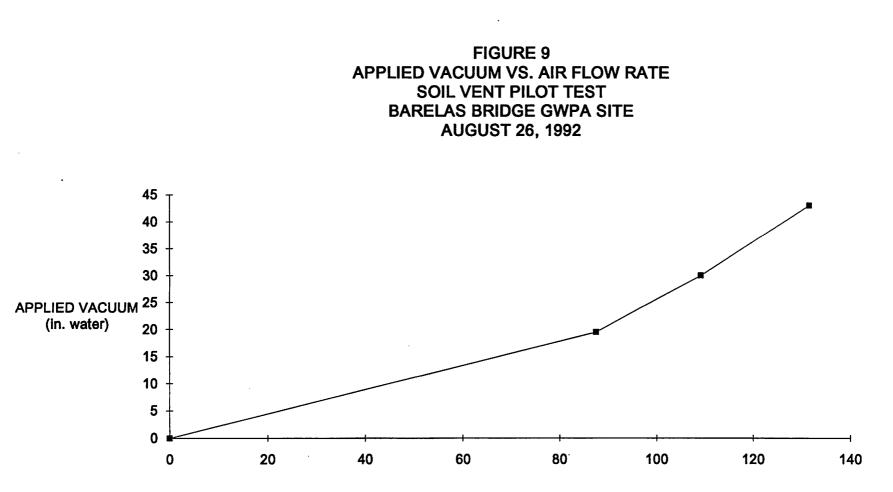











]

l

Ĵ.

]

]

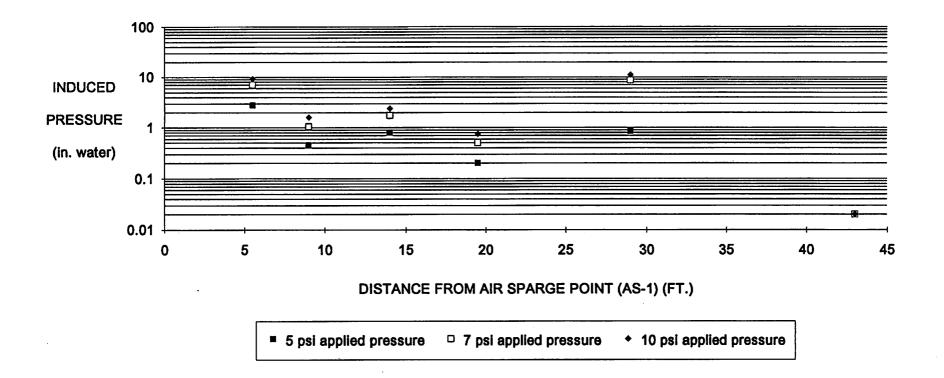
]

.1

1 1

AIR FLOW RATE (cfm)

FIGURE 10 INDUCED PRESSURE VS. DISTANCE AIR SPARGE PILOT TEST BARELAS BRIDGE GWPA SITE AUGUST 25, 1992


]

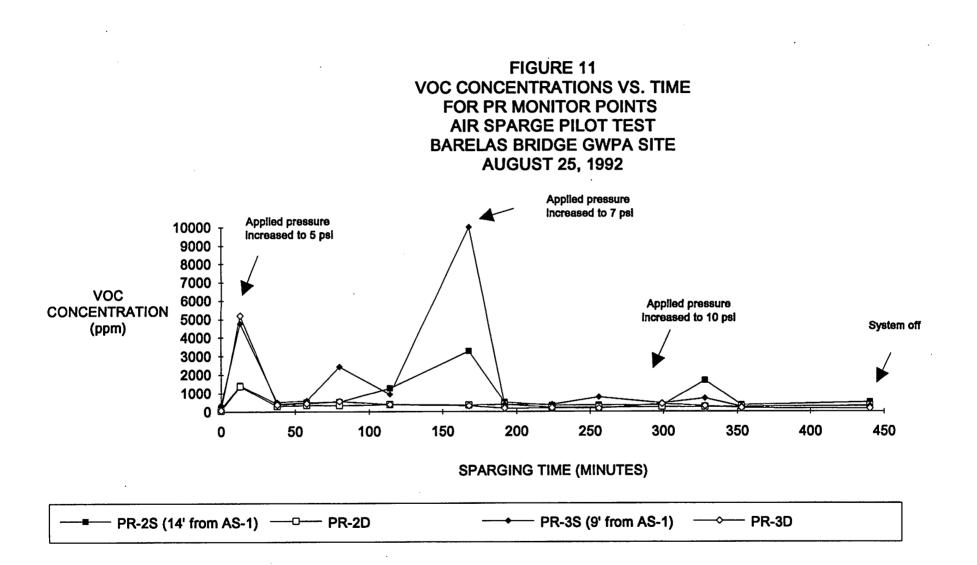
1

1

ł

1

]]]


]

1

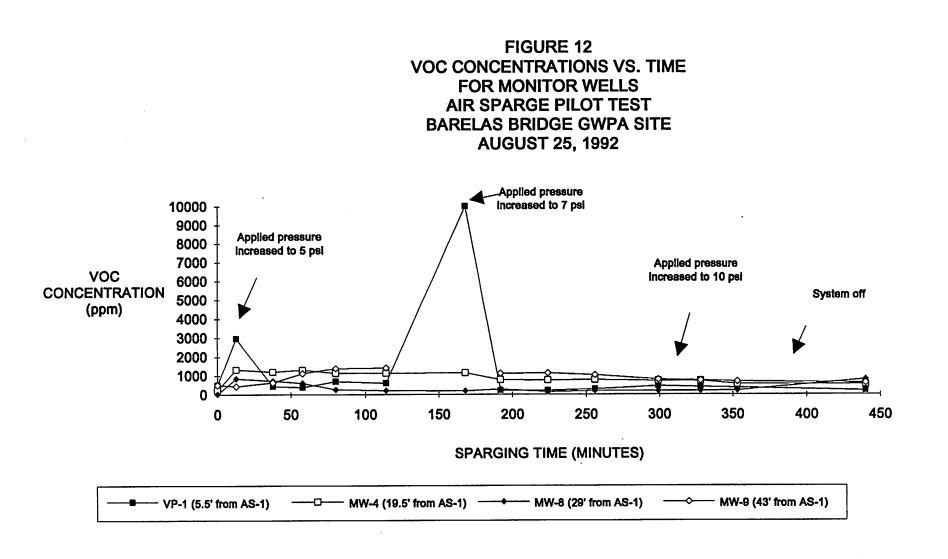
1

1.1

]

]

]


]

]

]

]

1

1

]

1

1

1

]

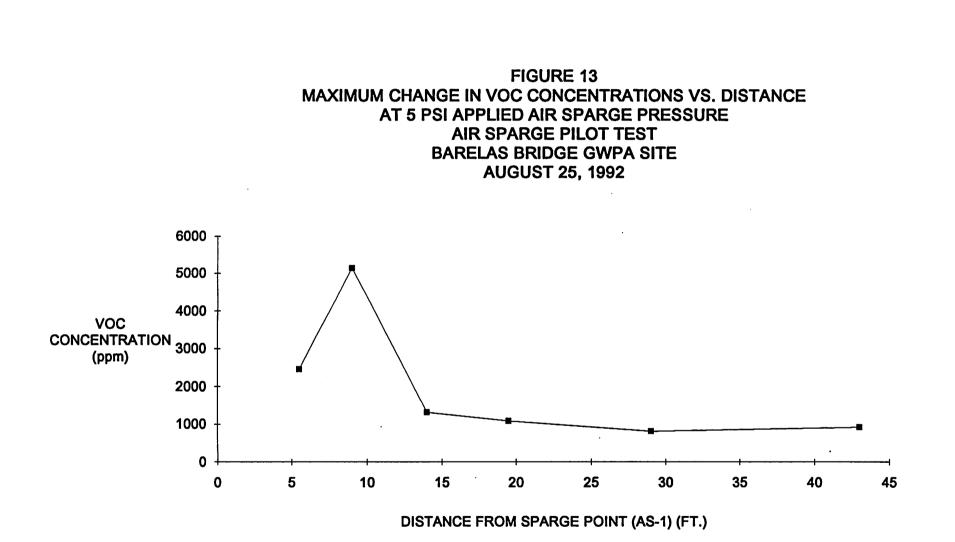
_]

1

]

]

]


]

1

]

1

]

1

]

]

1

1

1

]

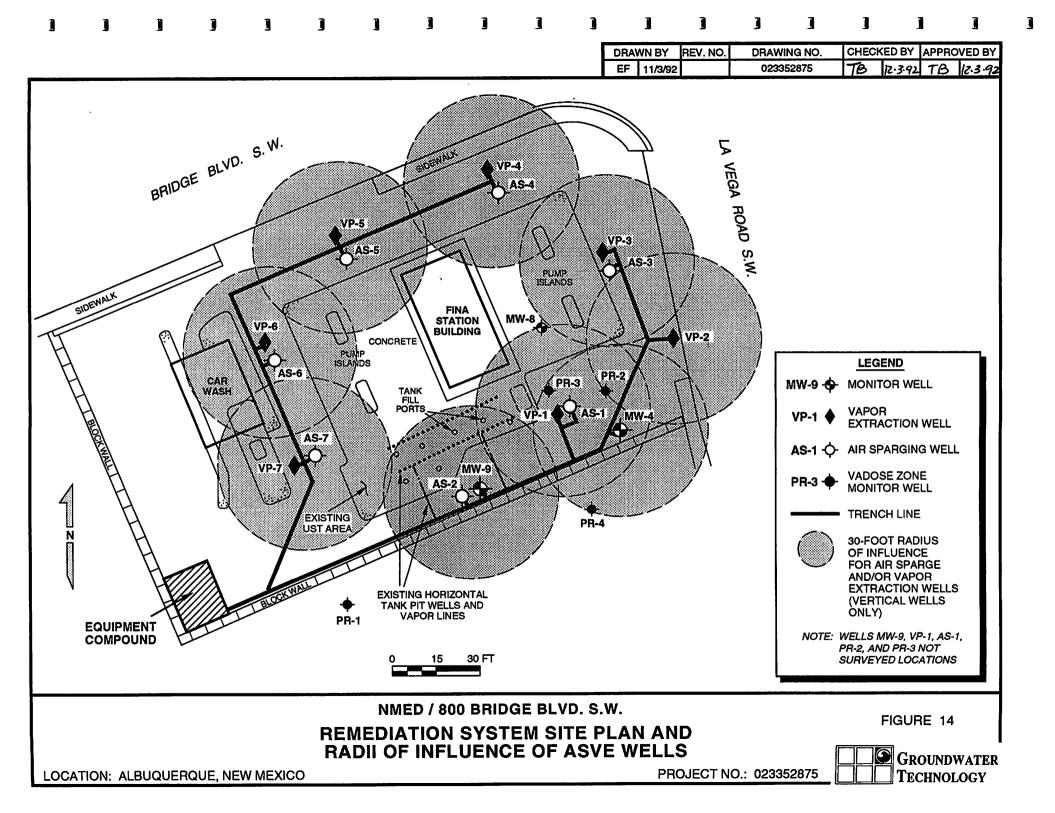
.

]

]

]]

]


]

]

1

1

GROUNDWATER

SUMMARY OF GROUNDWATER SAMPLE ANALYTICAL RESULTS⁽¹⁾ BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO JUNE 24, AUGUST 20, AND AUGUST 24-25, 1992

SAMPLE (WELL) ID	BENZENE (ug/l)	TOLUENE (ug/l)	ETHYL- BENZENE (ug/l)	TOTAL XYLENES (ug/l)	TOTAL BTEX (ug/l)	TPH-AS- GASOLINE (ug/l)
MW-3	ND ⁽²⁾	ND	ND	ND	ND	46
MW-4	230	7	200	420	860	3,100
MW-5	4	ND	0.5	0.7	5	170
MW-6	24	50	44	140	260	1,700
MW-7	30	0.3	8	15	53	550
MW-8	420	82	720	580	1,800	9,400
PW-140	ND	ND	ND	ND	ND	ND
PW-152	ND	ND	ND	ND	ND	ND
PW-153	ND	ND	ND	ND	ND	ND
MW-1 ⁽³⁾	1.6	ND	ND	ND<0.6	1.6	ND<100
MW-2 ⁽³⁾	4.1	1.6	6.7	1.4	14	270
MW-3 ⁽³⁾	2.0	1.3	0.5	0.8	4.6	370
MW-9	620	510	740	2,600	4,500	17,000
VP-1 ⁽⁴⁾	880	54	310	300	1,500	11,000
VP-1 ⁽⁵⁾	1,600	220	800	590	3,200	15,000
MDL	0.3	0.3	0.3	0.5		10

⁽¹⁾ Water samples analyzed for BTEX and TPH-as-gasoline per EPA modified methods 8015/8020.

⁽²⁾ ND - Not detected at the indicated method detection limit (MDL).

⁽³⁾ Sample collected on August 20, 1992 after rehabilitating well.

⁽⁴⁾ Sample collected on August 24, 1992, prior to air sparge pilot test.

⁽⁵⁾ Sample collected on August 25, 1992, following air sparge pilot test.

NMED/BB bb.rap

(Seed)

1

1

1

1

Ĩ

1

I.

I

1

1

SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS⁽¹⁾ BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

AUGUST 18 - 20, 1992

SAMPLE ID	SAMPLE DEPTH (ft.)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	TOTAL XYLENES (mg/kg)	TOTAL BTEX (mg/kg)	TPH-AS- GASOLINE (mg/kg)
PR3-9	9	0.78	1.4	5.1	7.6	15	580
VP1-5	5	2.5	1.0	5.2	7.4	16	340
MW-9-9	9	1.7	2.2	7.6	23	35	820
MDL ⁽²⁾	-	0.005	0.005	0.005	0.015		10

⁽¹⁾ Soil samples analyzed for BTEX and TPH-as-gasoline in accordance with EPA modified methods 8020/8015.

⁽²⁾ MDL - Method detection limit.

GROUNDWATER

1

1

1

1

NMED/BB bb.rap

1

1

1

SUMMARY OF AIR SAMPLE ANALYTICAL RESULTS⁽¹⁾ AIR SPARGE/SOIL VENT PILOT TESTS BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

AUGUST 26, 1992

SAMPLE EXTRACTION WELL		BENZENE (mg/m ³)	TOLUENE (mg/m ³)	ETHYL- BENZENE (mg/m ³)	TOTAL XYLENES (mg/m ³)	TPH-AS- GASOLINE (mg/m ³)
VP1-EFF1	VP-1	220	79	52	52	26,000
VP1-EFF2	VP-1	650	110	110	130	32,000
MDL ⁽³⁾	-	0.5	0.5	0.5	0.5	50

SAMPLE ID ⁽²⁾	EXTRACTION WELL	METHANE (ppm-v)	CARBON DIOXIDE (ppm-v)	OXYGEN (ppm-v)
VP1-EFF1	VP-1	3,800	18,000	180,000
VP1-EFF2	VP-1	NA ⁽⁴⁾	NA	NA
MDL ⁽³⁾	-	20	20	20

⁽¹⁾ Air samples analyzed for BTEX and TPH-as-gasoline in accordance with modified EPA methods 8020/8015 and for methane, carbon dioxide and oxygen per method GC-TCD.

⁽²⁾ Sample VP1-EFF1 collected during vent only pilot test; sample VP1-EFF2 collected during combined air sparge/soil vent pilot test.

- ⁽³⁾ MDL Method detection limit.
- ⁽⁴⁾ NA Not analyzed for this parameter.

GROUNDWATER

SUMMARY OF HYDROCARBON MASS EXTRACTION RATES⁽¹⁾ AIR SPARGE/SOIL VENT PILOT TESTS BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

AUGUST 26, 1992

WELL ID	PILOT TEST	BENZENE (lb/hr)	TOLUENE (lb/hr)	ETHYL- BENZENE (lb/hr)	TOTAL XYLENES (lb/hr)	TPH-AS- GASOLINE (lb/hr)
VP1-EFF1	Soil vent only	0.09	0.03	0.02	0.02	10.31
VP1-EFF2	Combined air sparge/soil vent	0.26	0.04	0.04	0.05	12.81

NMED/BB bb.rap

(1997)

INDUCED PRESSURE RESPONSE AIR SPARGE PILOT TEST BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

AUGUST 25, 1992

(Induced pressure response reported in inches of water)

MONITOR	DISTANCE	APPLIED SPARGING PRESSURE				
POINT	FROM AS-1 (FT.)	5 PSI	7 PSI	10 PSI		
VP-1	5.5	2.8	7.0	9.3		
PR-3S	9	0.35	0.83	1.20		
PR-3D	9	0.45		1.60		
PR-2S	14	0.65	1.40	2.0		
PR-2D	14	0.80	1.75	2.4		
MW-4	19.5	0.20	0.50	0.75		
MW-8	29	0.85	8.6	11.0		
MW-9	43	0	0.02	0.025		
MW-7	150	0	0	0		

MAXIMUM CHANGE IN VOC CONCENTRATIONS⁽¹⁾ AIR SPARGE PILOT TEST BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

AUGUST 25, 1992

MONITOR	DISTANCE	APPLIED SPARGING PRESSURE					
POINT	FROM AS-1 (FT.)	5 PSI	7 PSI	10 PSI			
VP-1	5.5	2,452	9,491	-49 ⁽²⁾			
PR-3D	9	5,131	236	338			
PR-2D	14	1,314	324	210			
MW-4	19.5	1,085	915	490			
MW-8	29	814	255	195			
MW-9	43	918	634	294			

(VOC concentrations reported in ppm)

(1) Calculated by subtracting the background concentration measured in each well before start-up from the maximum concentration observed in each well for each applied sparging pressure.

⁽²⁾ Bentonite seal at top of vent well (VP-1) observed to be leaking at start of 10 psi air sparge pilot test.

MAXIMUM CHANGE IN DEPTH-TO-WATER AND DISSOLVED OXYGEN CONCENTRATIONS AIR SPARGE PILOT TEST BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

AUGUST 25, 1992

MONITOR POINT	DISTANCE FROM AS-1 (FT.)	CHANGE IN DTW (FT.)	CHANGE IN DO (MG/L)
VP-1	5.5	+0.22	~6.8
MW-4	19.5	+0.06	0.1
MW-8	29	+1.26	6.7
MW-9	43	+0.03	0

TABLE 8

SUMMARY OF MAXIMUM RADIUS OF INFLUENCE EVALUATIONS AIR SPARGE PILOT TEST BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

AUGUST 25, 1992

PARAMETER	MAXIMUM RADIUS OF INFLUENCE (FT.)
Pressure Response	29
Dissolved Oxygen Response	29
Increase in Water Level	29
Increase in VOC Concentrations	43

MAXIMUM INDUCED PRESSURE/VACUUM RESPONSE COMBINED AIR SPARGE/SOIL VENT PILOT TEST BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

AUGUST 25, 1992

	(Induced pressu	re/vacuum resp	onses reported in	inches of water)		
MONITOR POINT	VACUUM ONLY (43" H ₂ O)	SPARGE ONLY (7 PSI)	COMBINED TEST (43" H ₂ O & 7 PSI)	SPARGE ONLY (5 PSI)	COMBINED TEST (43" H ₂ 0 & 5 PSI)	
PR-2S	-1.05	+1.40	+0.40	+0.65	-0.85	
PR-2D	-1.05	+1.75	+0.65	+0.80	-0.73	
PR-3S	-1.60	+0.83	-0.60	+0.35	-1.50	
PR-3D	-1.90	+1.05	-0.65	+0.45	-1.75	
MW-4	-1.05	+0.50	-0.33	+0.20	-1.05	
MW-7	0	+0.02	+0.015?	0	0	
MW-8	-0.30	+8.6	+11.25	+0.85	0	
MW-9	-0.07	+0.02	-0.03	0	-0.075	
VP-1	NA	+7.0	NA	+2.8	NA	

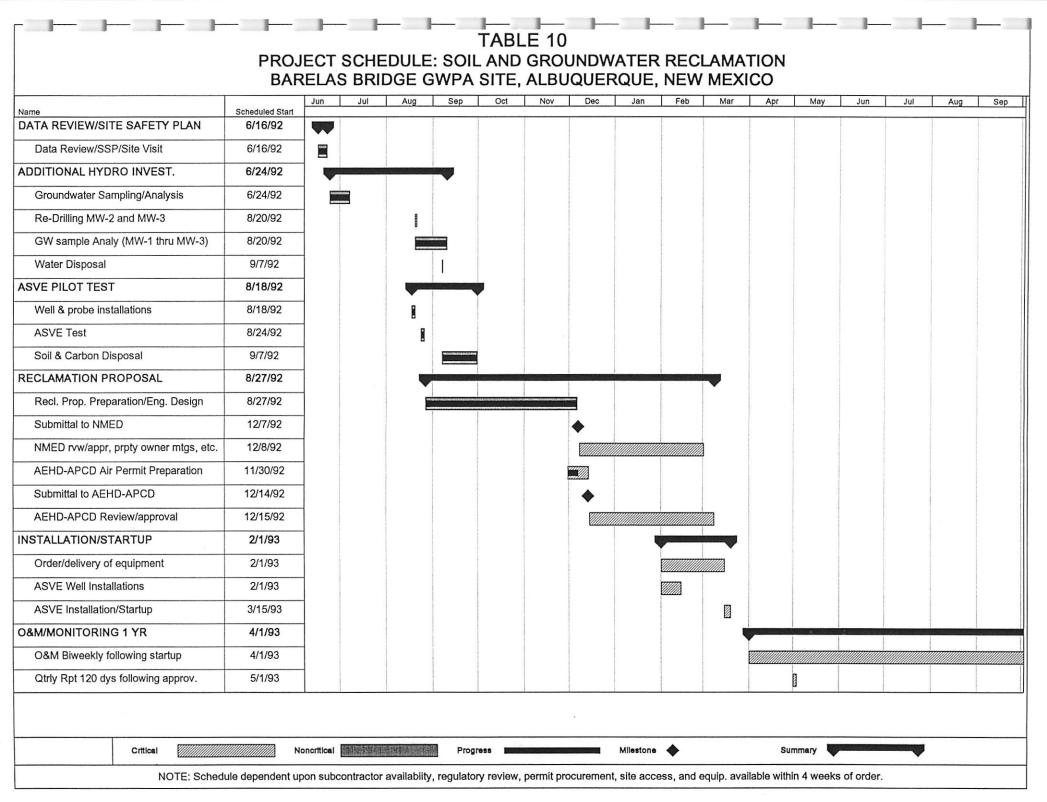


TABLE 11 MONITORING AND MAINTENANCE SCHEDULE FOR REMEDIATION SYSTEM BARELAS BRIDGE GWPA SITE, 800 BRIDGE BLVD., S.W., ALBUQUERQUE, NEW MEXICO

]

]

	MONITORING MAINTENANCE									
SYSTEM COMPONENT	REGULATORY AGENCY	BI-WEEKLY	MONTHLY	QUARTER 1	QUARTER 2	QUARTER 3	QUARTER 4	BIWEEKLY	MONTHLY	QUARTERLY
All monitor wells	NMED	NA	Fluid levels	NA	NA	NA	NA	NA	NA	NA
9 monitor or VP wells, 3 private wells	NMED	NA	NA	BTEX, TPH-GAS	BTEX, TPH-GAS	BTEX, TPH-GAS	BTEX, TPH-GAS	NA	NA	NA
ASVE System	AEHD-APCD	-PID, LEL influent/effl -Therm-oxid. oper. temp. -Blowers velocities, press., vacuum -Dilution valve settings -temp influ/efflu @ blower -Power meter rdgs.	NA	BTEX, TPH-as-gas (Air)	BTEX, TPH-as-gas (Air)	BTEX, TPH-as-gas (Air)	BTEX, TPH-as-gas (Air)	-Visual inspection of lines -Empty water knock- out drums -Clean and/or replace blower filters	NA	NA
Air sparge & vapor extraction wells and monitor probes	NA	NA	-Vacuum, pressure, flow rate at ASVE wells -Ball valve setting @ ASVE wells -Vac., press., PID, DO, DTW at monitor points	NA	N/A	NA	NA	NA	-Visual inspection wellhead lines/con- nections	
⁽¹⁾ Downgradient monitor wells MW-1 thru MW-3	NMED/GW Bureau	NA	NA	NO₃, PO₄, DO	NO ₃ , PO ₄ , DO	NO ₃ , PO ₄ , DO	NO ₃ , PO ₄ , DO	NA	NA	NA
⁽¹⁾ 4 monitor wells	NA	NA	NA	Hydrocarbon utilizers	Hydrocarbon utilizers	Hydrocarbon utilizers	Hydrocarbon utilizers	NA	NA	
⁽¹⁾ Bioinfiltration wells	NMED/GW Bureau	NA	NA	NA	NA	NA	NA	NA	Add nutrients if needed	Dosing w/H ₂ O ₂ if needed

Contingent upon installation of insitu bioremediation system

NMED = New Mexico Environment Department AEHD-APCD = Albuquerque Environmental Health Department - Air Pollution Control Division AIR -- BTEX and TPH-as-gasoline - EPA methods 8020/8015/18 WATER -- BTEX and TPH-as-gasoline - EPA methods 8020/8015

NMED/BB bb.rep

(1)

1 1 1

1

1

1

1

]

]

]

1

1

]

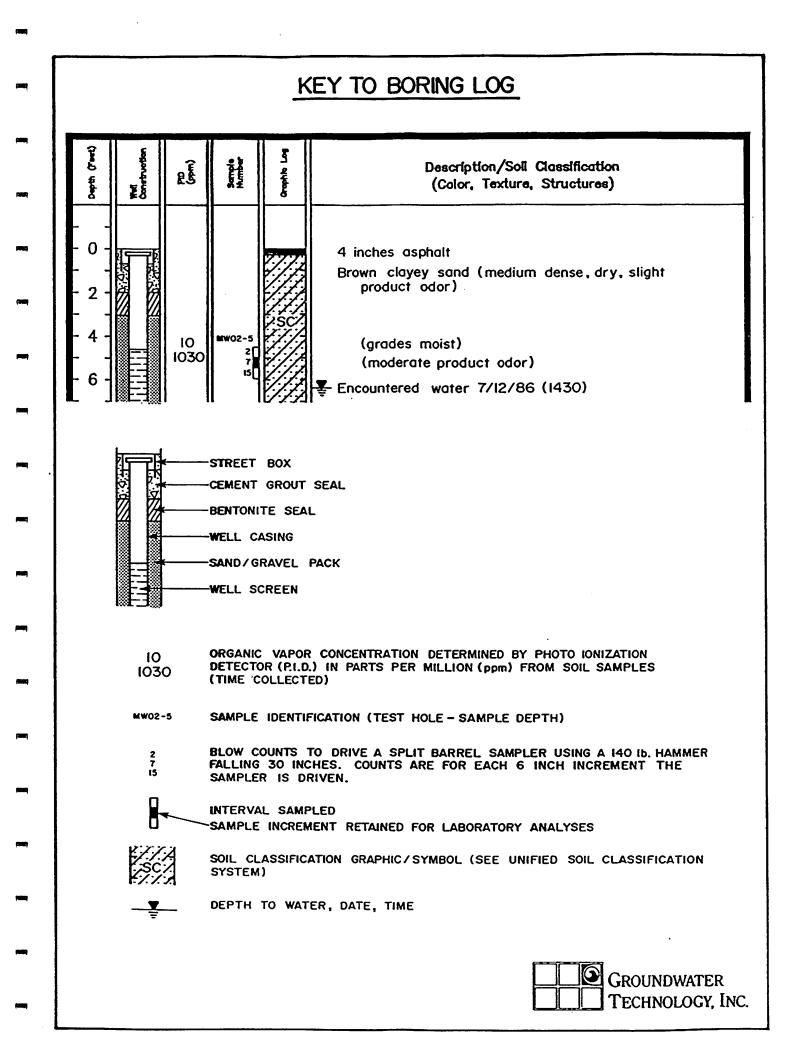
1

1

APPENDIX A

WELL COMPLETION AND LITHOLOGIC LOGS

NMED/BB bb.rap


l

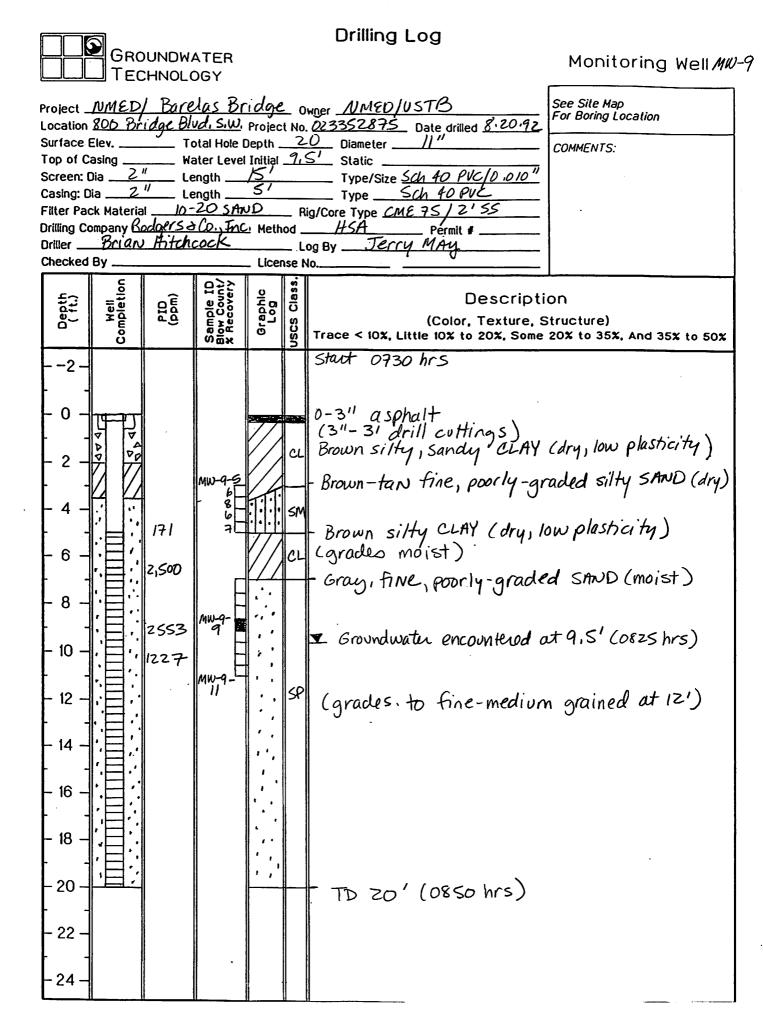
SUMMARY OF WELL COMPLETION INFORMATION BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO

	WELL ID	DATE INSTALLED	MP OR TOC ELEV. (FTAMSL)	TOTAL DEPTH OF WELL (FT)	WELL DIAMETER/ CONSTRUCTION	SCREENED INTERVAL/ SLOT SIZE	SCREEN LENGTH (FT)	STATUS/ COMMENTS
Ĺ	MW-1	02/07/90	4942.94	17	2" PVC	2'-17'/0.020"	15	
	MW-2	02/07/90	4942.36	23	2" PVC	3'-18'/0.020"	15	
	MW-3	02/07/90	4941.97	22.5	2" PVC	2.5'- 17.5'/0.020"	15	
	MW-4	02/08/90	4943.86	23.5	2" PVC	3.5'- 18.5'/0.020"	15	
	MW-5	10/16/90	4942.09	21.5	2" PVC	7'-22'/0.010"	15	
┥	MW-6	10/16/90	4943.18	22	2" PVC	7'-22'/0.010"	15	
- E	MW-7	10/18/90	4942.94	22	2" PVC	7'-22'/0.010"	15	
	MW-8	10/18/90	4944.57	13	2" STEEL	8'-13'/0.010"	5	
l. IL	MW-9	08/20/92	-	20.0	2" PVC	5'-20'/0.020"	15	
┍╺┛	VP-1	08/19/92	-	14.5	4" PVC	9.5'- 14.5'/0.020" 4.5'- 9.5'/0.040"	10	Vapor extraction well
	AS-1	08/19/92	-	22.2	2" PVC	20'- 22'/0.010"	2	Air sparge well
	PR-2	08/18/92		9	2" PVC	3'-5'/0.020" 7'-9'/0.020"	2'/2'	Nested vadose monitor probe
	PR-3	08/18/92		9.3	2" PVC	3'-5'/0.020" 7'-9'/0.020"	2'/2'	Nested vadose monitor probe

, and	GROUNDWATER TECHNOLOGY, INC.							
			•			Vapor Point <u>PR-&</u>	Drilling Log	
	Project <u>NMED/ Barelas Bridge</u> Owner <u>NMED///STB</u> Sketch Map Location <u>500 Bridge Bluck SW</u> Project Number <u>023352875</u>							
i anali	Date Drilled <u>8/8/92</u> Total Depth of Hole <u>9</u> Diameter_/2"							
	Surface ElevationWater Level Initial_ <u>NA</u> 24—hour_ <u>NA</u> Screen: Dia <u>2''</u> Length_ <u>2'/2'</u> Slot_Size_ <u>0.020''</u>							
(100)	Casing: Dia. 2" Length 7/3" Type PVC							
	Drilling Company Kodall's + (D. JOC, Drilling Method HSA/d'SS							
(2000)	Geologis	st / Er	ngineer.	T. TIN	L	Log by	Notes: Hand dug first 3' of hole	
(111)	Image: Structures Image: Structures							
	Å	\$8		<u> </u>	8	Start 0845 hrs		
	- 0 -	RR				1-3" asphalt w/coarse gravel to co	ble brise (black- e brick frasments), /drill	
Anno	- 0 - 3" asphalt w/ coarse gravel to coloble base (black- 							
			-585 (0943)		$\langle // \rangle$	dor)	ice-scined, information	
	- 4 -				ICL/			
				PRZ-5	\forall / A			
	- 6 -	4 [7.4]	- 730 (1068)	88H	•••••	- Grey-brown fine-grained, v. wel slight staining, slight hydroca	(sorted Sand Cluose, damp,	
	- 8 -	E		PRZ-7 à	SP!	(Legrades moist)		
		目:	-2207	st.				
	- 10 -		(1038)			TD 9' (1020 hrs)		
	- 12 -							
	- 14 -							
111	- 16 -				╞╶┥			
	- 18-							
	- 20-							
	- 22 -							
	-24-							
	OCTOBER 13th, 1966 - REV. F							

-

)


	Location Date Dr Surface Screen: Casing: Drilling Driller	<u>NMED</u> <u>800 B</u> illed_2 Elevat Dia Compa <u>Br(a)</u>	Bareld Fidge Style 92 Ion 2" 2" 2" ny Rodg	Blud.S Toto Wate Leng Vers+Co	GY, <u>dge</u> <u>w</u> , <u>Alec</u> <u>w</u> , <u></u>	INC. Vapor Point $PR-3$ Drilling Log Owner <u>MMED/USTB</u> Project Number 023352875 h of Hole <u>9:5' Diameter /2"</u> I Initial <u>NA</u> 24-hour <u>NA</u> 2'/2' Slot Size <u>0.020"</u> 7'/3' Type Sch 40 PVC Drilling Method <u>HSA/2'SS</u> Log by <u>T.TINL</u> Notes: Hand dug first 3' of hole
i ne i	Depth (Feet)	wei Construction	() () () () () () () () () () () () () (Sample Number	Graphic Log	Description/Soil Classification (Color, Texture, Structures)
	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0		-1899 (1349) -1622 (1400) - 565 (1434) - 2298 (1443)	PR3-1-1-1 PR3-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-		 3tart 13/9 hrs - 2" asphalt base over gravel base. Brown Fine-grained, well sorted Sand (dam P, no odor) (hydrocarbon odor and grey-stained soil at 1') - (grades to fine-medium-grained sand, poorly sorted, trace gravel, then 2" fine-grained sand, well sorted 'L hydrocarbon odor and srey staining)) Brown Gray (5674; moi's t; slight hydrocarbon odor) Brown Fine-medium grained poorly sorted (grades gray-brown, nedium-grained, well sorted sand (loose; moist, strong hydrocar bor) odor, stained)) TD 9' 3.5" (1422 hrs)

÷

, ,			_	NDWA NOLO(INC. Vapor Point <u>VP-1</u> Drilling Log
		AMAER	Bacal	las Ra	dae	
iand)	Location. Date Dril	800 led2	Bridge 8.19.9	2 Blud 2 Tota	<u>. S.W.</u> Il Deptr	_Owner_ <u>NMED/USTB</u> Sketch Map Project Number_ <u>023352875</u> Vapor Extraction Of Hole_ <u>14.5'</u> Diameter12."Well
	Surface Screen:	Elevat	ion	Wat	er Level	Initial24-hour
, ,	Casing: 1	Dla	4"	Leng		7, 5 Type P/C
	Driller	Brian	v Hita	hcock		Drilling Method <u>ASA / 2' SS</u> Log by Notes: Hand dug
(aller)	Geologist	Er	ngineer_	TIT	INL.	License No first 3'of hole
		c	T			
	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	truetlo		Sample Number	Saphia Lo	Description/Soil Classification
	a d d	Constru	a.3	ŇŹ	ð	(Color, Texture, Structures)
(1997)						start 1330 hrs
	- 0 -	Ξī			777	- 2-3" asphalt over coarse gravel and obble base sandy CLAY (damp, black-stained, strong hydrocarbon odor.) (drill cutting 0-3')
(and		0404	- 4247		CL	
			- 471Z (1400)	VP1-3_		- clayey SAND (trace gravel, damp, black-stained, strong hydrocarbon odor) (40% recovery)
(1996)	- 4 -			2	Sc	strong hydrocarbon odor") (40% recovery)
_		言:	-1829 (1421)	2		
,—,				VPI-7		- Grey-brown, fine-grained SAND (wet, grey-black-
	- 8 - [目:		5 7	ŀ.'', '	- Grey-brown, fine-grained SAND (wet, grey-black- stained, vistrong hydrocanbon odor) (80% recovery)
		曰:	- 1146 (1422)	9	- ' ' (0	
, maa						
	- 12-				- , ; -	have been been hooping
i mandi		目:			· · ·	- (Adding water to hole to keep heaving sands out of augers)
		E				TD 14.5' (1415 hrs)
ianad	- 16 -					
						9.5-14.5' 0.020" screen
(100)	- 18-					9'-14.5 10-20 Sand
	- 20-					4.5-9.5 0.040" screen
inerit.						3.5-9' 8-12 sand
	- 22-					
(101)	- 24-					
	OCTOBER 13#			<u> </u>		Page 1 of I

-

	OUNDWATER CHNOLOGY		Drilling Log	Monitoring Well AS-,
Surface Elev Top of Casing Screen: Dia Casing: Dia Filter Pack Materia Drilling Company B Driller _Brian	Total Hole Water Leve Length Length Length March Co. Ja	Depth 22 I Initial 20' nd F 2 , Method _	Type <u> PVC</u> Rig/Core Type <u>CME 75 - 5' Cont, Core</u> <u> HSA</u> Permit # .og By <u> TErry TINL</u>	COMMENTS: Air Sparge Well
Checked By Checked By Com X for Com X for Co	PID (ppm) Sample ID Blow Count/ X Recovery	Graphic Graphic USCS Class.	Descripti (Color, Texture, S Trace < 10%, Little 10% to 20%, Some	ion Structure)
Р Д Д Д Д Д Д Д Д Д Д Д Д Д Д Д Д Д Д Д	- 242 (0931) - 195 (0922) - 1455 (0921) - 1495 (0921) - 1495 (0917) - 1842 (0917) - 1842 (0919) ASI-3 - 23.2 (0930)		Stant 0746 hrs 3" asphalt over coarse gra Brown fine clayey sants (hydnocarbon odor (less clay, v. well sorted, Brown CLAY (moist, plas odor) Grey-brown fine-medium SAND (moist, black-ste carbon odor) 2 (graded brown, wet) (S (Note: Adding water to hole Keep heaving sands out (graded coarse-grained (some gravel, slight (bottom 1, 5' of sample - (no recovery; 18-22' TD 22:2' (0930)	damp, no odor) the, slight hydrocarbon , v, well sorted rined, strong hydro- 0% recovery) from 8' to TD to of hole) I, saturated) hydrocarbon odor) recovered only)

(and)

/11/90 THURSDAY 1-29-90 MONDAY EFT OFFICE @ 8:30 WENT 645 TO II · CocA-Cola TANK Pull (W.O. TANKS) SISTEM IN PLACE. iD A HEADSPACE ON Soil SP/ Consists of 2" 507-FROM UNDER VEATH TANK ON TIED TOGETHER AST SIDEDF PIT. SOLWAS TANK Excurration EALED ON TOP u/ Al- Foil And Will BE CONECT OPUT ON DUER Foil- SP/ Pipe al doine AS_HEATED_FOR 215 Min-HEN SPAMPLES W/ DUM; EXT STOPPED BY BAREIAS OGE TO GET PERMISSIO ERDING 2 JOPPM STEVE) YIER'S OUM (GASTECH) READ PAT CHAVEZ a 'OD. IT WAS DECIDED TROM KOB FARGI HAT SOME Soil REMOVAL Install Monitor WEll on HS NECESSARY. STEVE YER NIL CHECK Soil W/ HIS MACHINE PERioDICALLI. MER PROPERTY MR. PARGIN SHID IT UNE WAS ALRIGHT. MRS CHAVER 19/50 GAUE APPZOUM/ ENT TO WHITFIELD TANK NES SITE 9:30 AND HOWED STEVE DYER AROUND OR MLL (. 5hz). THEN IENT TO GESTOTRY & AMP/E WATER IN MIN. BEL MANUAY, BUT GROUND WATER 15/ HAS DROPPED TOO FAR. VO WATER.

WEDNESDA-1 2 DEFICE Q 7:50 Mm, WE 10 BARE/S Donne SHOW ED UP @ 28:30 KiG 200 MARCILLA (MN) North WEll PROPERT Som ROUP zillin G SAND Comina ON CHAVEZ 70 DRIVED 25 1057 FIN: SHED OMP/ETE QUE TO SLOUGHING 50 SCREEN (10-5 WER COMPLETED h. Black. OF SCREEN (101-51) 5 THEN 2'0E BLANK, 1824/17 0,2,1/ 5,72,-;or 6-5 0 SAND ABOVE SCREEN -10 morroe OF BENTONITE, 0 GROUT 22 FIT W/ MANUAI AND 0 2 FINICHED 3 SLOUGH: DRILLED 27 NEXT SOUTH MiNo2 Hole Completed al 5'Blank, 15'SCREEN (10'-5') AND B'B/ANK. FINSSHED ABOUT / 00

F. 1 ð, 8, THURSOM 27 办: 30 0 25/45 t TO Z WEI Fill 64 SiFE 14 STUTIONS Hou HAND PETE BAU < SBIANA 020": 10'-5 -E-E-Plue Manual WELCAP 2 U sup M. d I KING Z E // 5 ŧ. H 1._ F 日本語ので the analysis and the subscription of the subsc

Sec. 2 1HURSDAY 2 EUSDAY 81 - t. D: 30 DEFICEO LET BARE/45 E 0 TO GO 10 MONITO 6257 5 MONITOZWELL VINI3 To SITE (GAS N ORIGINA STATION Hou =9.083 7.5 ABCILLA a NINORTH E ARCILLA S(SOUTH) 8 8 PETED WAS Com = SBLAN 1:15 PM HAUEZ ARGIN 9.67 .020": 10'-= 5'SCREEN MEASUR THEN 312 BLANK 150 THEN SEALES TAPEZ. 1ES WERE WATER 2 ON CREFE Plus OF 10 BAILER MANUAY 1 (FU TITEDU < KING WE 5/ 0 LOC ARCILA N. Vol. in Well= MARCILLAS. Vol. in WELL= 2 HMOUNT OF KIPE IN HOLE - TOTAL 6 MN0-325 IN WE. -11-11 MARCINA N * = RGIN Volin WELL 21 5 257 MARCINA = MW-K 2 S. GALS MW-3 = 22.5 HAVEZ 4 = 23 MUD BELOW WATER PARGIN LEUR ARCILLA = RCILLA S 11 11 AUEZ RGIN 13 83 ~ 30 BAILERS Full would =2 101

Inter Instant Instant ii da 100 -10.1 WEDNESDAN WEDNESDA-4-14 70 ARRIVED @ KillougH 1:30 pm LEAT FOR BAREALAS DEPTH TO H20 = 34 3"TO ~ 7:45 MEASURED WATER LEVELS GRADE BA; MARCINAN IED 10 BAILERS 86 8' 0' OUT OF WEll; QN/1 2 4. OF MARCILLA S 120 IN 2 WELL SAMPLED CHANEZ 2 2:00 Pm. ANA/YZED FOR 4. PARGIN 601 ON/V. BAILED MARCINAN. 2 25BAils NEDNESDAY SAMPLED @ 9:00 AM. VERY 170 Q CARROLL VENTURES HEAVY HYDROCARBON 00025. 0:30 Jim Poner wars BAilED MARCilla 5.2 30 BAils ON SITE PURGING WELL SAMPIED @ 9:25 HyDRO CARBON TOTAL DEPTH OF WEIL 495 43. WATER LEVEL DES WAS , ODOR S. 15 OF SCREEN FROM BOTTOM OF WELL SEE SCHE-BAILED CHANEZ 2 35 BAILS SAMPLED & 9:50. HYDROCHEBON MATIC FOR DEFINI -,00041 BAILED PARGIN = 35 BAILS SAMPIED @ 10:35. VIER / STRONG HYDROCHEBON ODOR AND SHEEN.

and the constant of second the foregoing of the second EUSDA.) MONDAU 2/19/90 LEFT OFFICE @ 7:00 WODDWARD 1.) SAMPLED MARCILLA N. (M-1) DaB 2HDBUZY E 17 157 ST. STAMM Coust. Co. @ ~ 10:30 pH= 7.63 BAILED 22 BAIL NUI 5 GASOLINE ODOR 765-1200 2.) MARCILLA S. (M-2) A-685 PPN @ 2 11:30 pH = 7.6 NENT OUT TO BES a REQUEST BAil=0 35 BAils OF SHELDA MENDOZET (EID GASOLINE ODOR TEST 3 CHAVEZ (M-3) DUA TO Sol BOTTON OF #2 Q ~ 1:15 pH=7.66 TANK EXCHUM TION KAILED 30 BAILS MORE TANKS NO ODOR WASTE AD THE >+ "JPZ LOCATION 4) PARGIN (M-4) @= 1:45 pH 7.2 BAilED 30 BAils Bldg BACKFEILED #1 SHEEN ON WATER NAMES-PRESERVED WHCI MOUNTAIN NUMBERS (M-3)- PRESERVED W/ KENY, BZS& Consul Sel @ ADHERINC ID, FIED TEST MET al ED KEL MERCURIC CHIORIDE VER EI NETHOD FOR SOI 5. OUA READING - 685 PPM LANKS CONTAINED GASOLINE 1. The second the state of the state of the state of the state of the second

		GEOLOGIC LOG	OWNER	
			NMEID	•
			WELL NO.	
L	EGGI	ETTE, BRASHEARS & GRAHAM, INC.	AH-1	Page 1 of 1 Pages
		Professional Ground-Water Consultants	SCREEN TYPE	
		423 Sixth Street, N.W.		0.07.10
		Albuquerque, New Mexico 87102 (505) 247-2000	DIAMETER	SLOT NO.
LOCAT		(303) 247-2000	SETTING	I
		Bridge & LaVega		
DATE	COMPL	ETED	SAND PACK	
		10/15/90		- <u>; </u>
DRILLI	ING CC		CASING	
	NG ME		SETTING	
JUILL	WE	Hollow Stem Auger		
SAMP	LING M	ETHOD	DEVELOPMENT	
OBSE	RVER		DURATION	· · · · · · · · · · · · · · · · · · ·
		LA Hohweiler		
REFEF	RENCE	POINT (RP)	STATIC WATER LEVEL	
			DTW 9.24	· · · · · · · · · · · · · · · · · · ·
ELEVA	TION (DF RP	YIELD	
REMA	RKS	Water ph 7.98, conduct. 750 (Water sampled from te	mporary casing)	
DEPT	l (feet)			
FROM				
0	2"	Asphalt	· · · · · · · · · · · · · · · · · · ·	
2"	3'	Sand, med-fine grain, brown, minor grave	l	
3'	5'	SPOON SAMPLE, 1 ft. recovery	TVH: 620ppm(HNu), 0.1p	ppm (LAB)
		Sand, med-fine grain, brown, minor gra	vel	
		some silt, trace coal	••••••••••••••••••••••••••••••••••••••	
5'	8'	Sand, med-fine, brown, minor gravel		
8'	10'	SPOON SAMPLE, 15" recovery	TVH: 1.8ppm (HNu)	
		Sand, med-coarse, brown, quartz rich		
		TD-10'		
			- · · ·	

		GEOLOGIC LOG	OWNER	
			NMEID	
			WELL NO.	
L		ETTE, BRASHEARS & GRAHAM, INC.	AH-2	PAGE 1 OF 1 PAGES
		Professional Ground-Water Consultants 423 Sixth Street, N.W.	SCREEN TYPE	
		Albuquerque, New Mexico 87102	DIAMETER	SLOT NO.
		(505) 247-2000		
LOCAT		Bridge & LaVega	SETTING	
DATE	COMPL		SAND PACK	
		10/15/90		
DRILLI	NG CO	DMPANY Rogers	CASING	
DRILLI	ING ME		SETTING	
		Hollow Stem Auger		
SAMPL	LING M	IETHOD	DEVELOPMENT	
OBSEF	RVER		DURATION	
REFEF	RENCE	POINT (RP)	STATIC WATER LEVE	L DTW 10.02'
ELEVA	TION	DF RP	YIELD	
REMA	RKS			
		Water ph 6.59, conduct. 880, redox -10		d from temporary casing)
	l (feet)	DESC	CRIPTION	
FROM	10			
0	2"	Asphalt		
2"	.1'	Soil, brown, silty, moist		
1'	3'	Sand, very fine to fine, brown, moist		
3'	5'	SPOON SAMPLE, sand, med. grain, bro	w TVH: 5.2ppm (HNu)
		Clay, brown, lower 5"		
5'	8'	Sand, fine grain to medium, brown, HC	odor	
8'	10'	SPOON SAMPLE	TVH: 30ppm (HNu)	,79 ppm (LAB)
		6" sand,a coarse, brown, quartz rich, m	inor gravel	
		2" black sand, minor gravel		
		1' sand, coarse to very coarse, quartz r	ich, strong odor	
		TD 12'		
				<u> </u>
L	I	<u></u>		

(H

) Interior I

p

		GEOLOGIC LOG	OWNER	
			NMEID	
			WELL NO.	
L	LEGGI	ETTE, BRASHEARS & GRAHAM, INC.	AH-3	Page 1 of 1 Pages
		Professional Ground-Water Consultants 423 Sixth Street, N.W.	SCREEN TYPE	
		Albuquerque, New Mexico 87102	DIAMETER	SLOT NO.
		(505) 247-2000		
LOCA			SETTING	
DATE	COMPL	Bridge & LaVega	SAND PACK	
		10/15/90		
DRILL	ING CC	MPANY	CASING	
		Rogers		
DRILL	ING ME		SETTING	
SAMP		Hollow Stem Auger	DEVELOPMENT	
OBSE	RVER	LA Hohweiler	DURATION	
REFE	RENCE	POINT (RP)	STATIC WATER LEVEL	DTW 9.73'
-				
CLEVA	ATION (YIELD	
REMA	RKS		· · · ·	
		Water ph 6.69, conduct. 733 (Water san		ing)
	H (feet)	DESC	CRIPTION	
0	0.5'	Asphalt		
 0.5'	1'	Sand, brown, medium grain		
<u>0.5</u> 1'	3'		•	<u> </u>
<u> </u>	<u> </u>	Clay, dark brown, minor silt, slight odor		
3'	5'	SPOON SAMPLE 1'8" recovery	TVH: 60ppm (HNu)	
		2" Clay, dark brown		
		Sand, fine grain, brown		
5'	7.5'	Sand, medium grain, brown		
7.5'	8'	Sand, coarse, black, quartz rich		
8'	10'	SPOON SAMPLE 1'4" recovery	TVH: 180ppm(HNu), u	ndetected (LAB)
		Sand, coarse, black, quartz rich, wet, H		
		L		

Profes Al DOCATION Bridge DATE COMPLETED 10/15 DRILLING COMPAN Roger DRILLING METHOD Hollon SAMPLING METHOD DBSERVER LA Ha REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) FROM TO D 3" Aspl 3" 3' Soil, 3" 5' SPO Sand 3" 5' SPO	/90 IY rs w Stem Auger D D	OWNER NMEID WELL NO. AH-4 SCREEN TYPE DIAMETER SETTING SAND PACK CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	Page 1 of 1 Pages SLOT NO.
Profes Al DOCATION Bridge DATE COMPLETED 10/15 DRILLING COMPAN Roger DRILLING METHOD Hollon SAMPLING METHOD DBSERVER LA Ha REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) FROM TO D 3" Aspl 3" 3' Soil, 3" 5' SPO Sand 3" 5' SPO	ssional Ground-Water Consultants 423 Sixth Street, N.W. buquerque, New Mexico 87102 (505) 247-2000 e & LaVega /90 IY rs w Stem Auger D	WELL NO. AH-4 SCREEN TYPE DIAMETER SETTING SAND PACK CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	
Profes Al DOCATION Bridge DATE COMPLETED 10/15 DRILLING COMPAN Roger DRILLING METHOD Hollon SAMPLING METHOD DBSERVER LA Ha REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) FROM TO D 3" Aspl 3" 3' Soil, 3" 5' SPO Sand 3" 5' SPO	ssional Ground-Water Consultants 423 Sixth Street, N.W. buquerque, New Mexico 87102 (505) 247-2000 e & LaVega /90 IY rs w Stem Auger D	AH-4 SCREEN TYPE DIAMETER SETTING SAND PACK CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	
Profes Al DOCATION Bridge DATE COMPLETED 10/15 DRILLING COMPAN Roger DRILLING METHOD Hollon SAMPLING METHOD DBSERVER LA Ha REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) FROM TO D 3" Aspl 3" 3' Soil, 3" 5' SPO Sand 3" 5' SPO	ssional Ground-Water Consultants 423 Sixth Street, N.W. buquerque, New Mexico 87102 (505) 247-2000 e & LaVega /90 IY rs w Stem Auger D	SCREEN TYPE DIAMETER SETTING SAND PACK CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	
AI Bridge DATE COMPLETED 10/15 DRILLING COMPAN Roger DRILLING METHOD Hollor SAMPLING METHOD DBSERVER LA Ha REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) FROM TO D 3" Aspl 3" 3' Soil, stron 3' 5' SPO Sand 3" CI	423 Sixth Street, N.W. buquerque, New Mexico 87102 (505) 247-2000 e & LaVega //90 iY rs w Stem Auger D	DIAMETER SETTING SAND PACK CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	SLOT NO.
OCATION Bridg DATE COMPLETED 10/15 DRILLING COMPAN Roger DRILLING METHOD Hollor SAMPLING METHOD DBSERVER LA Ho REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) TROM TO D 3" Aspl 3" 3' Soil, strop 3" 5' SPO	buquerque, New Mexico 87102 (505) 247-2000 e & LaVega /90 IY rs w Stem Auger D	SETTING SAND PACK CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	SLOT NO.
OCATION Bridg DATE COMPLETED 10/15 DRILLING COMPAN Roger DRILLING METHOD Hollor SAMPLING METHOD DBSERVER LA Ho REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) TROM TO D 3" Aspl 3" 3' Soil, strop 3" 5' SPO	(505) 247-2000 e & LaVega /90 IY rs w Stem Auger D bhweller	SETTING SAND PACK CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	
Bridg DATE COMPLETED 10/15 DRILLING COMPAN Roger DRILLING METHOD Hollow SAMPLING METHOD DBSERVER LA Ha REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) TROM TO 0 3° Aspl 3° 3' Soil, strop 3° 5' SPO Sand 3° CI	/90 IY rs w Stem Auger D	SAND PACK CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	
DATE COMPLETED 10/15 DRILLING COMPAN Roger DRILLING METHOD Hollon SAMPLING METHOD DBSERVER LA Ho DBSERVER LA Ho DESERVER LA HO DESERVER SERVER SERVER DESERVER LA HO DESERVER LA HO DESERVER LA HO DESERVER LA HO DESERVER SERVER SERVER DESERVER SERVER	/90 IY rs w Stem Auger D	CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	
10/15 DRILLING COMPAN Roger DRILLING METHOD Hollow SAMPLING METHOD DBSERVER LA Ho DESERVER LA HO DESERVER SERVER DESERVER LA HO DESERVER LA HO DESERVER LA HO DESERVER SERVER DESERVER DESERVER SERVER DESER	/90 IY rs w Stem Auger D D	CASING SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	
DRILLING COMPAN Roger DRILLING METHOD Hollon SAMPLING METHOD DBSERVER LA Ho REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) TROM TO 0 3" Aspl 3" 3' Soil, strop 3" 5' SPO Sand 3" 15' SPO	IY rs W Stem Auger D D	SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	
Rogen DRILLING METHOD Hollon SAMPLING METHO DBSERVER LA Ho REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) ROM TO 0 3° Aspl 3° 3' Soil, strop 3° 5' SPO Sand 3° cl	rs) w Stem Auger D D phweller	SETTING DEVELOPMENT DURATION STATIC WATER LEVEL	
DRILLING METHOD Hollon SAMPLING METHOD DBSERVER LA Ho DBSERVER LA Ho REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) TROM TO D 3" Aspl 3" 3' Soil, stroi 3" 5' SPO Sand 3" C) w Stem Auger D D	DEVELOPMENT DURATION STATIC WATER LEVEL	
Hollon SAMPLING METHO DBSERVER LA Ha REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) FROM TO D 3" Aspl 3" 3' Soil, stron 3' 5' SPO Sand 3" cl	w Stem Auger D ohweller	DEVELOPMENT DURATION STATIC WATER LEVEL	
SAMPLING METHO DBSERVER LA Ho REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) TROM TO 0 3" Aspl 3" 3' Soil, stroi 3' 5' SPO Sand 3" cl	D	DURATION STATIC WATER LEVEL	
LA Ho REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) TO 0 3" Aspl 3" 3' Soil, 3" 3' Soil, 3" 5' SPO Sand 3" 10		STATIC WATER LEVEL	
REFERENCE POINT ELEVATION OF RP REMARKS Wate DEPTH (feet) TROM TO D 3" Aspl 3" 3' Soil, stroi 3' 5' SPO Sand 3" cl			
ELEVATION OF RP REMARKS DEPTH (feet) ROM TO 0 3" Aspl 3" 3' Soil, stroi 3' 5' SPO Sand 3" cl	Г (RP)		
REMARKS Wate DEPTH (feet) FROM TO 0 3" Aspl 3" 3' Soil, stroi 3' 5' SPO Sand 3" cl		NICI D	
REMARKS Wate DEPTH (feet) FROM TO 0 3" Aspl 3" 3' Soil, stroi 3' 5' SPO Sand 3" cl			DTW 9.70'
Wate DEPTH (feet) ROM TO 0 3" Aspl 3" 3' Soil, stron 3' 5' SPO Sand 3" cl		YIELD	
DEPTH (feet) FROM TO 3" 3" Aspl 3" 3' Soil, stroi 3' 5' SPO Sand 3" cl		I	
ROM TO 0 3" Aspl 3" 3' Soil, 3" 5' SPO 3' 5' SPO 3' 5' Sand 3" 3" cl	er ph 7.04, conduct. 901, redox 133 (\	Nater sample bailed from	temporary casing)
0 3" Aspl 3" 3' Soil, stroi 3' 5' SPO Sand 3" cl	DESCR	IPTION	
3" 3' Soil, stroi 3' 5' SPO Sand 3" cl			
3' 5' SPO Sand 3' cl	nalt		·
3' 5' SPO Sand 3' cl	black, some clay, gravel, cobbles,mo	bist,	
Sand 3" cl	ng odor		
3" cl	ON SAMPLE 20 ^e recovery	TVH: 220ppm (HNu)	
	d, very fine grain, brown, silty, moist,	odor	
	ay		
4' 88	and, medium grain, light brown, quart	z rich	
5' 8' Sand	d, medium grain, light brown HC odor		
B' 10' SPO		TVH: 300ppm (HNu),99	5ppm (LAB)
8" 54	ON SAMPLE 1.5' recovery	HE odor	
10" #	ON SAMPLE 1.5' recovery and, coarse, light brown, quartz rich, i		
10' 12' San			

•

.

		GEOLOGIC LOG	OWNER NMEID	
			WELL NO.	
t	FGGF	ETTE, BRASHEARS & GRAHAM, INC.	AH-5	Page 1 of 1 Pages
		Professional Ground-Water Consultants	SCREEN TYPE	
		423 Sixth Street, N.W.		
		Albuquerque, New Mexico 87102	DIAMETER	SLOT NO.
		(505) 247-2000		
LOCAT		140 LoVega	SETTING	
DATE	COMPL		SAND PACK	
		10/16/90		
DRILL	ING CO	DMPANY	CASING	
		Rogers		
DRILL	ING ME		SETTING	
		Hollow Stem Auger		
SAMP	LING M	IETHOD	DEVELOPMENT	
OBSE	RVER		DURATION	
DEFF		LA Hohweiler	STATIC WATER LEVEL	DTW 8.91'
	NENCE	POINT (RP)	SIANG WATCH LEVEL	<u></u>
ELEVA	TION	DF RP	YIELD	
REMA	RKS			
DEPTI	H (feet)	DES	CRIPTION	
FROM			· · · · · · · · · · · · · · · · · · ·	
0	1'	Sand, fine to medium, brown, minor gra	avel, cobbles	
1'	3'	Clay, brown, minor sand, gravel		
3'	5'	SPOON SAMPLE 20" recovery		
		2" Clay, brown		
		18" Sand, fine to medium, tan, upper 3"	moist	
5'	8'	Silty sand, fine grain, light brown, sligh		
8'	10'	SPOON SAMPLE 16" recovery	TVH: 0.5ppm(LAB)	
		12" quartz sand, coarse, brown, some g		
		Slight HC odor		· · · · · · · · · · · · · · · · · · ·
		4" quartz sand, very coarse, gravel		·····
		The quarter barrer, very coarde, graver		
1				

·

		GEOLOGIC LOG	OWNER	
			NMEID	
			WELL NO.	
i	EGGE	ETTE, BRASHEARS & GRAHAM, INC.	MW-5	Page 1 of 2 Pages
-		Professional Ground-Water Consultants	SCREEN TYPE	
		423 Sixth Street, N.W.	slotted PVC	
		Albuquerque, New Mexico 87102	DIAMETER	SLOT NO.
		(505) 247-2000	2"	10
LOCA	TION		SETTING	
		Bridge & LaVega	7.22	
DATE	COMPL	.ETED	SAND PACK	
		10/16/90	4.5 • 22'	
DRILL		MPANY	CASING	
		Rogers	PVC 2"	
DRILL	ING ME		SETTING	
		Hollow Stem Auger	4920.09 to 4942.09	
5AMP	LING M	IETHOD	DEVELOPMENT	
OBSE	RVER		DURATION	
		LA Hohweiler		
REFE	RENCE	POINT (RP)	STATIC WATER LEV	EL
		top of casing		4933.09
ELEV	ATION		YIELD	
		4942.09		
REMA	RKS			
	H (feet)	DESC	CRIPTION	
FHON	ТО		······································	
0	1'	Sand, fine grain, brown, gravel		
1'	3'	Clay, brown, minor silt		
3'	5'	SPOON SAMPLE 20" recovery		
<u> </u>	1			
		4" clay, brown, minor silt, grades to sill	t then sand (10")	·····
		6" sand, fine grain, tan		
5'	7'	Sand, medium coarse, tan, some quartz	z, moist	
7'	8'	Sand, medium-fine, dark brown, molst,	HC odor	
8'	10'	SPOON SAMPLE 17" recovery	TVH: undetected	(LAB)
	1	Sand, coarse to very coarse, dark brow	/n, gravel, wet, odor	
	1	Middle 5" medium grain		
	1	Lower 7" black stained		
				······································
10'	15'	Sand, coarse to very coarse, black, we	t, slignt odor	

WELL I			Page 2 of 2 Pages
	MW-		
DEPTH	(FEE	T) DESCRIPTION	
FROM	то		· · · · · · · · · · · · · · · · · · ·
15'	20'	Sand, fine to medium, dark brown, wet, slight odor	
		TD - 21.5'	
		·····	
	—		
	l		

ineri i

_

p

		GEOLOGIC LOG	OWNER	
			NMEID	
			WELL NO.	
	LEGG	ETTE, BRASHEARS & GRAHAM, INC.	MW-6	Page 1 of 2 Pages
		Professional Ground-Water Consultants	SCREEN TYPE	
		423 Sixth Street, N.W.	slotted PVC	
		Albuquerque, New Mexico 87102	DIAMETER	SLOT NO.
		(505) 247-2000	2 Inches	10
LOCA	ATION		SETTING	
		145 LaVega	7 - 22'	
DATE	E CON	IPLETED	SAND PACK	
001		10/16/90		
UHIL		COMPANY		
יויסח		Rogers METHOD	2" PVC SETTING	
UKIL			4921.18 to 4943.18	
CAL		Hollow Stem Auger	DEVELOPMENT	
JAIMI	r Ling	IMETHUU		
<u>NPC1</u>	ÊRVEI	a ·	DURATION	
, D 3 l		ר LA Hohweller		
REFE		CE POINT (RP)	STATIC WATER LEV	EL
		top of casing	4933.56	
ELEV		N OF RP	YIELD	
		4943.18		
REM	ARKS			
DEPT	TH (fe	DESCR	IPTION	
RO	TO			
0	1'			
	1 1	Sand, fine-medium, brown, some gravel		
		Sand, fine-medium, brown, some gravel		
1'	3'	Clay, barown		
	3'		TVH: 548ppm (LAB)	
1'	3'	Clay, barown	TVH: 548ppm (LAB)	
1'	3'	Clay, barown SPOON SAMPLE 20° recovery	TVH: 548ppm (LAB)	
<u>1'</u> 3'	3' 5'	Clay, barown SPOON SAMPLE 20" recovery 8" clay, brown 12" silty, clay, brown	TVH: 548ppm (LAB)	
1' 3' 5'	3' 5'	Clay, barown SPOON SAMPLE 20" recovery 8" clay, brown 12" silty, clay, brown Clay, brown		
<u>1'</u> 3'	3' 5'	Clay, barown SPOON SAMPLE 20" recovery 8" clay, brown 12" silty, clay, brown		
1' 3' 5'	3' 5' 6' 8'	Clay, barown SPOON SAMPLE 20" recovery 8" clay, brown 12" silty, clay, brown Clay, brown		
1' 3' 5'	3' 5' 6' 8'	Clay, barown SPOON SAMPLE 20" recovery 8" clay, brown 12" silty, clay, brown Clay, brown Sand, fine grain, tan, quartz rich, strong o SPOON SAMPLE 12" recovery	odor	ravel, strong odor
1' 3' 5' 6' 8'	3' 5' 6' 8' 10'	Clay, barown SPOON SAMPLE 20" recovery 8" clay, brown 12" silty, clay, brown Clay, brown Sand, fine grain, tan, quartz rich, strong of SPOON SAMPLE 12" recovery Sand, coarse to very coarse, quartz rich,	odor	ravel, strong odor
1' 3' 5' 6' 8' 10'	3' 5' 6' 8' 10' 13'	Clay, barown SPOON SAMPLE 20" recovery 8" clay, brown 12" silty, clay, brown Clay, brown Sand, fine grain, tan, quartz rich, strong of SPOON SAMPLE 12" recovery Sand, coarse to very coarse, quartz rich, Sand, coarse, tan, quartz rich, wet, odor	odor black stain, wet some g	
1' 3' 5' 6' 8' 10' 13'	3' 5' 6' 8' 10' 13' 15'	Clay, barown SPOON SAMPLE 20" recovery 8" clay, brown 12" silty, clay, brown Clay, brown Sand, fine grain, tan, quartz rich, strong of SPOON SAMPLE 12" recovery Sand, coarse to very coarse, quartz rich, Sand, coarse, tan, quartz rich, wet, odor Sand, coarse to very coarse, black stain,	odor black stain, wet some g	
1' 3' 5' 6' 8' 10'	3' 5' 6' 8' 10' 13' 15'	Clay, barown SPOON SAMPLE 20" recovery 8" clay, brown 12" silty, clay, brown Clay, brown Sand, fine grain, tan, quartz rich, strong of SPOON SAMPLE 12" recovery Sand, coarse to very coarse, quartz rich, Sand, coarse, tan, quartz rich, wet, odor	odor black stain, wet some g	

p i m

_

		GEOLOGIC LOG	OWNER		
			NMEID		
			WELL NO.		
L	.EGGI	ETTE, BRASHEARS & GRAHAM, INC.	MW-7	Page 1 of 2 Pages	3
		Professional Ground-Water Consultants	SCREEN TYPE		
		423 Sixth Street, N.W.	slotted PVC		
		Albuquerque, New Mexico 87102	DIAMETER	SLOT NO.	
		(505) 247-2000	2 Inches		10
-004	ATION		SETTING		
		Bridge & LaVega	7-22'		
DATE	E CON	PLETED	SAND PACK		
		10/18/90	5 - 22'		
DRIL	LING	COMPANY	CASING		
		Rogers			
JRIL	LING	METHOD	SETTING		
		Hollow Stem Auger	4920.94 to 4942.94	······································	
SAMI	PLING	METHOD	DEVELOPMENT		
000		D	DURATION		
0821	ERVE		DURATION		
DEFT	DEN		STATIC WATER L	EVEI	
nert	REN	CE POINT (RP) top of casing	4934.22		
		N OF RP	4934.22		
ELEV					
		4942.94'			
	ARKS	4942.94'			
REM	ARKS	4942.94'			
REM	ARKS	4942.94'	CRIPTION		
REM	ARKS	4942.94'			
REM	ARKS	4942.94'			
REM DEP RO 0	ARKS	4942.94' DES Soil, brown, silty	CRIPTION		
REM. DEPT RO	ARKS	4942.94' DES			
REM DEP RO 0	ARKS	4942.94' DES Soil, brown, silty SPOON SAMPLE 22" recovery	CRIPTION TVH: 142ppm(HNu)		
REM DEP RO 0	ARKS	4942.94' DES Soil, brown, silty	CRIPTION TVH: 142ppm(HNu)		
REM DEP RO 0	ARKS	4942.94' DES Soil, brown, silty SPOON SAMPLE 22" recovery	CRIPTION TVH: 142ppm(HNu)		
REM DEPT RO 0 3'	ARKS TH (fe TO 3' 5'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown	CRIPTION TVH: 142ppm(HNu) C odor		
REM DEP RO 0	ARKS	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H	CRIPTION TVH: 142ppm(HNu) C odor		
REM RO 0 3'	ARKS TH (fe TO 3' 5' 8'	4942.94' DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC	CRIPTION TVH: 142ppm(HNu) C odor odor		
REM DEPT RO 0 3'	ARKS TH (fe TO 3' 5' 8'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown	CRIPTION TVH: 142ppm(HNu) C odor		
REM RO 0 3'	ARKS TH (fe TO 3' 5' 8'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC SPOON SAMPLE 20" recovery	CRIPTION TVH: 142ppm(HNu) C odor odor		
REM RO 0 3'	ARKS TH (fe TO 3' 5' 8'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC SPOON SAMPLE 20" recovery Sand, coarse, brown, quartz rich, wet	CRIPTION TVH: 142ppm(HNu) C odor odor		
REM RO 0 3'	ARKS TH (fe TO 3' 5' 8'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC SPOON SAMPLE 20" recovery	CRIPTION TVH: 142ppm(HNu) C odor odor		
REM. DEP ⁻ RO 0 3' 5' 8'	ARKS TH (fe TO 3' 5' 8' 10'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC SPOON SAMPLE 20" recovery Sand, coarse, brown, quartz rich, wet black stain, strong odor	CRIPTION TVH: 142ppm(HNu) C odor odor TVH: 600ppm(HNu)		
REM RO 0 3'	ARKS TH (fe TO 3' 5' 8'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC SPOON SAMPLE 20" recovery Sand, coarse, brown, quartz rich, wet	CRIPTION TVH: 142ppm(HNu) C odor odor TVH: 600ppm(HNu)		
REM. DEP ⁻ RO 0 3' 5' 8'	ARKS TH (fe TO 3' 5' 8' 10'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC SPOON SAMPLE 20" recovery Sand, coarse, brown, quartz rich, wet black stain, strong odor Sand, as above, coarse to very coarse	CRIPTION TVH: 142ppm(HNu) C odor odor TVH: 600ppm(HNu)		
REM. DEP ⁻ RO 0 3' 5' 8'	ARKS TH (fe TO 3' 5' 8' 10'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC SPOON SAMPLE 20" recovery Sand, coarse, brown, quartz rich, wet black stain, strong odor	CRIPTION TVH: 142ppm(HNu) C odor odor TVH: 600ppm(HNu)		
REM. DEP ⁻ RO 0 3' 5' 8'	ARKS TH (fe TO 3' 5' 8' 10'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC SPOON SAMPLE 20" recovery Sand, coarse, brown, quartz rich, wet black stain, strong odor Sand, as above, coarse to very coarse	CRIPTION TVH: 142ppm(HNu) C odor odor TVH: 600ppm(HNu) , black stain,		
REM. DEP RO 0 3' 5' 8' 10'	ARKS TH (fe TO 3' 5' 8' 10'	4942.94 DES Soil, brown, silty SPOON SAMPLE 22" recovery 12" sand, fine grain, tan, black stain, H 10" silty clay, brown Sand, very fine to fine, black stain, HC SPOON SAMPLE 20" recovery Sand, coarse, brown, quartz rich, wet black stain, strong odor Sand, as above, coarse to very coarse wet, strong odor	CRIPTION TVH: 142ppm(HNu) C odor odor TVH: 600ppm(HNu) , black stain,		

		GEOLOGIC LOG	OWNER										
			NMEID	·····									
			WELL NO.										
L		ETTE, BRASHEARS & GRAHAM, INC.	MW-8	Page 1 of 1 Pages									
		Professional Ground-Water Consultants	SCREEN TYPE										
	Professional Ground-Wate 423 Sixth Street, N Albuquerque, New Mex (505) 247-2000 TON Fina station, Bridge & LaVe COMPLETED 10/18/90 NG COMPANY Rogers NG METHOD Hand Auger LING METHOD RVER LA Hohweller RENCE POINT (RP) top of casing TION OF RP 4944.57' RKS 1 (feet) TO 2' Concrete 2.5' Sand, medium grain, 5.5' Clay, dark brown, bla	423 Sixth Street, N.W.	slotted steel										
		Albuquerque, New Mexico 87102	DIAMETER	SLOT NO. 10									
		(505) 247-2000	2"	10									
		Fine station Bridge & LeVere	8 - 13'										
DATE			SAND PACK										
JAIL			2 - 9'										
DBILL			CASING										
			2" galvanized steel										
DRILL	_		SETTING										
• • • • • • • • •			4931.86' to 4944.57'										
SAMP			DEVELOPMENT										
OBSE	RVER		DURATION										
	-	LA Hohweiler											
REFE	RENCE	POINT (RP)	STATIC WATER LEVEL										
		top of casing	4935.66'										
ELEVA		DF RP	YIELD										
		4944.57'											
REMA	RKS												
DEPTI	H (feet)	DESC	RIPTION										
FROM	то												
0	2'	Concrete											
0	0.51	Sand modium grain brown HC adar											
2'	2.5	Sand, medium grain, brown, HC oddr											
2.5'	5.5'	Clay, dark brown, black stain, strong od	or TVH: 380ppm(HNu)										
5.5'	9'	Sand, medium grain, black stain, quartz	ri TVH: 520ppm(HNu), 250	Sppm(LAB)									
		strong odor											
	1	TD • 13'											

(The second seco

(FI)

APPENDIX B

GROUNDWATER SAMPLE LABORATORY CERTIFICATES OF ANALYSIS AND CHAIN-OF-CUSTODY DOCUMENTATION JUNE 24, AUGUST 20, AND AUGUST 24-25, 1992

NMED/BB bb.rap

painty .

Southwest Region 20000 / 300 Mariner Drive Torrance, CA 90503 (213) 371-1044 (800) 727-GTEL Fax (213) 371-8720 GTEL Client Number: 023352875.041043 Project I.D.: Barelas Bridge Work Order Number: T208181

RECEIVED SEP 1 4 1992 GTI, NM

September 1, 1992

3

Ms. Terry Tinl Groundwater Technology, Inc. 2501 Yale Blvd. S.E., Suite 204 Albuquerque, NM 87106

Dear Ms. Tinl,

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 8-21-92 under chain-of-custody record 76-5466.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified by the state of California under Certification #E723.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

GTEL Environmental Laboratories, Inc.

Minsoon Song

Laboratory Director

GTEL Client Number: 023352875.041043 Project I.D.: Barelas Bridge Work Order Number: T208181

ANALYTICAL RESULTS

Volatile Organics in Water EPA Methods Modified 8020 and Modified 8015^a

GTEL	Sample Number	08181-1	08181-2	08181-3	
	ent Identification		MW-2	MW-3	
	Date Sampled	8-20-92	8-20-92	8-20-92	
	Date Analyzed	8-25-92	8-25-92	8-25-92	
Analyte	Reporting Limit, ug/L		Concentra	ation, ug/L	
Benzene	0.3	1.6	4.1	2.0	
Toluene	0.3	<0.3	1.6	1.3	
Ethylbenzene	0.3	<0.3	6.7	0.5	
Xylene, total	0.6	<0.6	1.4	0.8	
BTEX, total		1.6	14	4.6	
TPH as Gasoline	100	<100	270	370	· · · · · · · · · · · · · · · · · · ·
Dilution Multiplier ^b		1	1	1	

a. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986. Modification for TPH as gasoline as per California State Water Resources Board LUFT Manual procedures.

b. Indicates the adjustments made for sample dilution.

Northwest Region 4080-C Pike Lane Concord, CA 94520 (510) 685-7852 (800) 544-3422 from inside California (800) 423-7143 from outside California (510) 825-0720 (FAX) Client Number: 02335P002 Project ID: 800 Bridge SW Albuquerque, NM Work Order Number: C2-06-790

July 6, 1992

Terry Tinl Groundwater Technology, Inc. 2501 Yale Blvd. SE., Ste. #204 Albuquerque, NM 87106

Enclosed please find the analytical results for samples received by GTEL Environmental Laboratories, Inc. on 06/25/92, under chain of custody record 76-5459.

A formal Quality Control/Quality Assurance (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria, unless otherwise stated in the footnotes.

GTEL is certified by the California State Department of Health Services to perform analyses for drinking water, wastewater, and hazardous waste materials according to EPA protocols.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

Sincerely, GTEL Environmental Laboratories, Inc.

You Conde

Eileen F. Bullen Laboratory Director

GTEL Concord, CA C206790.DOC

Table 1

ANALYTICAL RESULTS

Aromatic Volatile Organics and Total Petroleum Hydrocarbons as Gasoline in Water

EPA Methods 5030, 8020, and Modified 8015^a

GTEL Sample Number		01	02	03	04
Client Identification		PW-153	PW-152	PW-140	MW-3
Date Sampled		06/24/92	06/24/92	06/24/92	06/24/92
Date Analyzed		06/26/92	06/26/92	06/26/92	06/26/92
Analyte	Detection Limit, ug/L		Concentra	ation, ug/L	
Benzene	0.3	<0.3	<0.3	<0.3	<0.3
Toluene	0.3	<0.3	<0.3	<0.3	<0.3
Ethylbenzene	0.3	<0.3	<0.3	<0.3	<0.3
Xylene, total	0.5	<0.5	<0.5	<0.5	<0.5
BTEX, total			~~		
Gasoline	10	<10	<10	<10	46
Detection Limit Multiplier		1	1	1	1

a. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986. Modification for TPH as gasoline as per California State Water Resources Control Board LUFT Manual protocols, May 1988 revision.

Table 1 (Continued)

ANALYTICAL RESULTS

Aromatic Volatile Organics and Total Petroleum Hydrocarbons as Gasoline in Water

EPA Methods 5030, 8020, and Modified 8015^a

GTEL Sample Number		05	06	07	08
Client Identification		MW-6	MW-5	MW-7	MW-8
Date Sampled		06/24/92	06/24/92	06/24/92	06/24/92
Date Analyzed		06/26/92	06/26/92	07/02/92	07/02/92
Analyte	Detection Limit, ug/L		Concentratio	on, ug/L	
Benzene	0.3	24	4	30	420
Toluene	0.3	50	<0.3	0.3	82
Ethylbenzene	0.3	44	0.5	8	720
Xylene, total	0.5	140	0.7	15	580
BTEX, total		260	5	53	1800
Gasoline	10	1700	170	550	9400
Detection Limit Multiplier		1	1	1	1

a. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986. Modification for TPH as gasoline as per California State Water Resources Control Board LUFT Manual protocols, May 1988 revision.

...

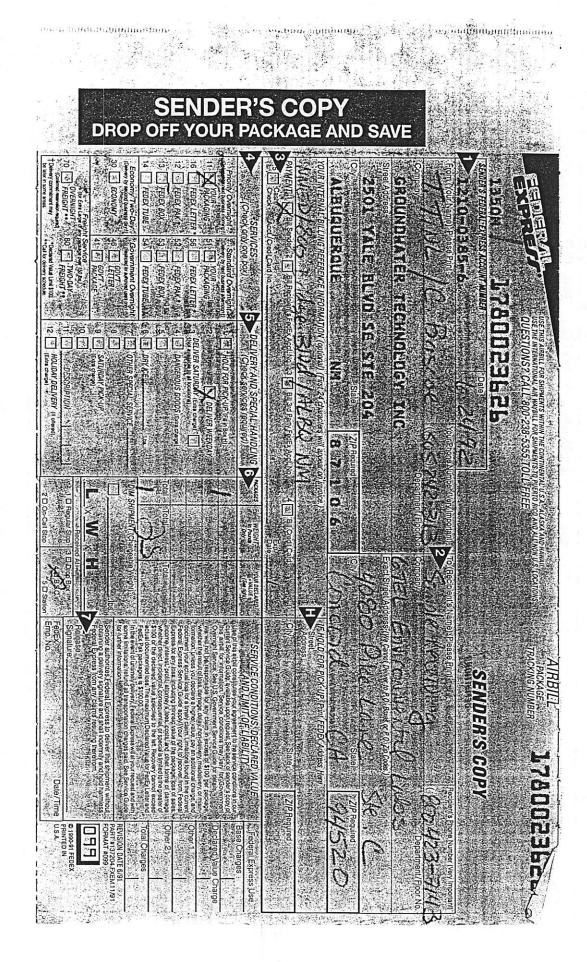
Table 1 (Continued)

ANALYTICAL RESULTS

Aromatic Volatile Organics and Total Petroleum Hydrocarbons as Gasoline in Water

EPA Methods 5030, 8020, and Modified 8015^a

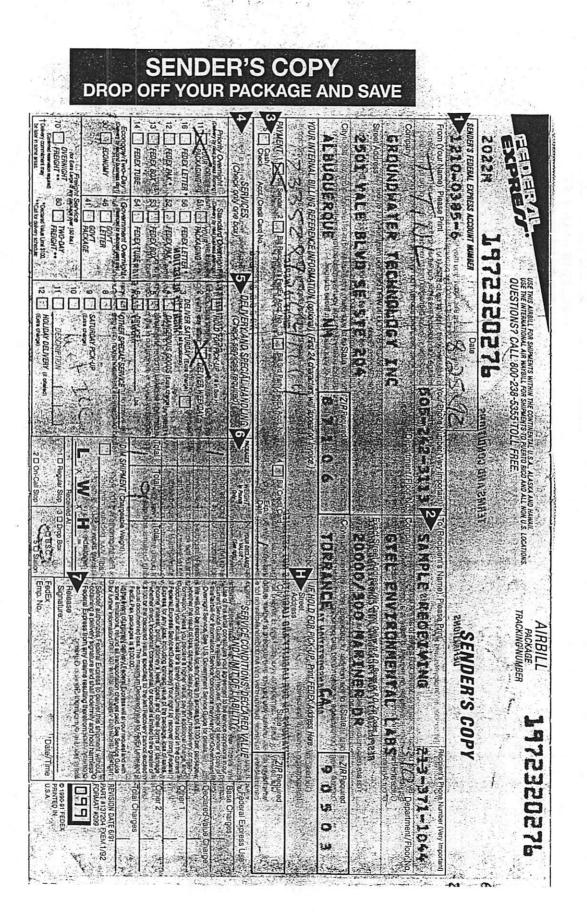
GTEL Sample Number		09			
Client Identification		MW-4			
Date Sampled		06/24/92			
Date Analyzed		07/02/92			
Analyte	Detection Limit, ug/L		Concentrati	on, ug/L	
Benzene	0.3	230			
Toluene	0.3	7			
Ethylbenzene	0.3	200			
Xylene, total	0.5	420			
BTEX, total		860			
Gasoline	10	3100			
Detection Limit Multiplier		1			


a. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986. Modification for TPH as gasoline as per California State Water Resources Control Board LUFT Manual protocols, May 1988 revision.

J

: 1	.]		.1	.•]	1]]		l	.	2			.	ľ	ł	U]]	•	J	5	23	•]]
		GTE		0 Made		- Qui	te #30			3-371	-1044				·OF VAL						ORI	2	76	j -	54	59	}	CUS	ODY	RECOR	D
•		NVIRONALAN ABORATORIES.	TAL TOTTA	nce, C/	A 905	03			80	0-727	GTEL	V) ·						_		EQ	UE	ST			.					
	Project N	Aanager.				F	Phone:	#:50 </td <td>)5-2)<-7</td> <td>42.</td> <td>-311: -1103</td> <td></td> <td></td> <td></td> <td>5034 []</td> <td>503E 🗆</td> <td></td> <td>626</td>)5-2)<-7	42.	-311: -1103				5034 []	503E 🗆															626
	Address	Groundu Groundu Le Blud Mergue	atte jech	MOLO	HILV	۲ اC 5	FAX #: Site loc	ation	: 800	Bri	dge		UMU				_						HSLD	g Leac	Reactivity D					1 6	M
,	Albud Project	ungul	NM B	106	r 	F	Project	<u>ÚЙ</u> Nam	e: N/	VED	Tex	⋽	0/8015	D Jet Fuel	201	418.1	DCA only D			NBS +15 D	NBS +25 D	VOA	Ĩ	ם כונ	Beac					Way-bill #	78002
	0233	<u>35900</u>					Project					with	0802	õ		pons	S S	ŝ		NBN		Semi	etals C							1.2	Ē
	I attest the procedure of these s	at the proper is were used amples.	field sampli during the c	ng collect	lon		Sample NUK					20 A	02/8015	Diesel	C (SIMD	Hydrocal					D Dectic	VOA 🗆 Semi VOA 🗆	utant Me	1 1 239.2	18					by Laboratory	4
	Field Sample	Source	GTEL Lab#	NERS	Ma	trix		Meth		Sa	mplir	19 8 	Gas 60	Gas	D. by G		1 8010	8020	018310	3 8240	3 8270	als 🗆	ity Poll					ă	à	JA E	٤
	ID	Sample	(Leb use only)	CONTAINERS	WATER SOIL	SLUDGE	HIN HOC	H2SO4	ICE NONE	OTHER DATE	IME	BTEX 602	BTEXTPH Gas. 602/8015 0 8020/8015 0 MTBE 0	TPH as 🛛 Gas 🛛 Diesel	Product I.D. by GC (SIMDIS)	Total Petroleum Hydrocarbons: 418.1 D	EPA 601 🗆 8010 🗆	EPA 602 0 8020 0	EPA 610 [EPA 624 🗆 8240 🗆	EPA 625 🗆 8270 🗂 🛛 NBS +25 🗇 EPT/YY: Matele 🗂 Pasticidae 🗍 Herhicidae 🛛	TCLP Metals D	EPA Priority Pollutant Metals		Corrosivity			Received by:	Received by:	Received	
	PW-153	TAP	10	2			X		<u>X</u>	1/2	K2 10:	R X		İ.		Ţ.] <u>«</u>			_
	1N-152	-HAR	OZ.	2	X		X		X	467	62 18.	15 X	-						_				┟─┤			++	\square	e li	Line	1 Tme	ET O
i	pw-MO	74	03	2)	X	++	<u> X </u>	+	X	8	12 11	45 X		+	_			+	┢			4	1	+		$\left \right $		Time (\$>20			3
1	MW-3	MONADE WELL- MONNOR	25	2)	× - -	┼┼	X	┼╌	×	- 1. 6/	16. 15			+		+	$\left \right $		+	H		F	12	+	┿	╁┼		<u>ч</u>			7
	MW-6	more	R	2)	X +	╉╋	X	╉	× X	12	X 4:	05 X		+				╉	╉─	5	=	+	$\left \cdot \right $	2		++		e \$	-e	Date	<u>J</u>
	MW-5	MONTOR MONTOR NELL	M	2	X	++	\uparrow	╉╌┨	\mathbf{x}	- Hu	Ka KS		$\frac{1}{2}$	╉╋				+	4	┝╼╡	=	+		₹				Date	Date		枹
	MW-7 MW-8	Martine	NC	2	x	┼┼	X		x	4	1/2 161	10	-						Y		Y										-
	MWY	Manne	Öď	2	хТ	$\uparrow \uparrow$	X		X	Ye.		40 1	1																		
	eee-																									\downarrow					
																												۱ · ۱		•	
	24 H(EXPE	SPECIA DURS II		NG				SPEC	IAL DI	ETEC	TION L	.IMIT	S (S	Spec	lfy)	F	REM	ARK	:8:	•								Relinquished by Sampler.			
	SEVE	N ĐÁY 🖯																										A p	Ъ р	Å. P	k
i	QAVQ	R C 、 CLP L	••••							EPOR	TING	REQL	JIRE	EME	NTS	Ī	.ab	Use	Onl	1	S	tore	ige L	.008	ation	 1		nquishε	Relinquishe	Relinquished by	
I	FAXI	mdard	TA	· · ·				Spec	iry)								ot f	‡:			V	Vork	Crd	er ‡	¢:			Relir		Reli	

.


_		<u>רו וו וו</u>		Land
	24 HOL EXPEDI SEVEN OTHER QA/QC FAX D	MW-9	Project Manager TERPM Address:Grown Address:Grown Project Mumber D233522 I attest that the pr procedures were of these samples. Field Sour	
	°~a≞⊂	well	Project Manager: 20000 Mariner TEREM TINL Torrance, CA 90 Address: Ground Juntur, Traince, CA 90 TEREM TINL Address: Ground Juntur, Train Traince, CA 90 Address: Ground Juntur, Train Traince, CA 90 Address: Ground Juntur, Train Torrance, CA 90 Address: Ground Juntur, Train Torrance, CA 90 Address: Ground Juntur, Train Torrance, CA 90 O 7 3 3 5 7 8 7 5 . OHQUID OHQUID O 7 3 3 5 7 8 7 5 . OHQUID OHQUID I attest that the proper field sampling procedures were used during the collection of these samples. N Field Source GTEL N Sample of Lab # N	in the second
		(Lab use	Torn Theid samp I during the GTEL	نست
	- HANDLING ours ours (#) BUSINESS DAYS (#) Blue Level Blue Level	NNN # CONTA	20000 Mariner Dr., Suite #300 Torrance, CA 90503 Phone # FAX #: FAX #: F	لحط
			ar Dr., Suite #300 90503 Phone #: FAX #: FAX #: FAX #: Bluck Sc NHED/E Sampler t Sampler t Matrix Matrix Matrix Matrix	نسیا
	SPECIAL (Specify)			-
	SPECIAL DETECTION LIMITS (Specify) SPECIAL REPORTING REQUIREMENTS (Specify)	NONE OTHER SXY DATE		نصد
	specify)	TPH as D Product I		
	REMARKS:	EPA 601 EPA 602	roleum Hydrocarbons: 418.1 503E B010 DCA only B020 AN	-
	HKS: Fedge	EPA 610	^{III} 8020 ^{III} 8020 ^{III} 7007 ^{III} 8030 ^{III} 9007 ^{III} 7007 ^{III} 8030 ^{III} 9007 ^{III} 7007 ^{III} 8310 ^{III} 8240 ^{III} 85+15 ^{III} 8270 ^{III} 8270 ^{IIII} 955+25 ^{III} 90 ^{III} 90 ^{III} 8270 ^{III} 955+25 ^{III} 90 ^{III} 90 ^{III} 8270 ^{III} 955 ^{IIII} 90 ^{III} 90 ^{III} 90 Metals ^{III} 955 ^{IIII} 90 ^{IIIII} 90 ^{IIIII} 90 ^{IIIIIIII ^{IIIIIIIIIIIIIIIIIIIIIIIIIIIII}}	نعد
• •	Storage Work Ord	EPTOX: I TCLP Me	ority Pollutant Metals D HSL D S S S S S S S S S S S S S S S S S S	نصد
	276 Location		20 □ 7421 □ 239.2 □ 6010 □ Org. Lead □ 7 tals □ STLC □ TTLC 0 ity □ Flashpoint □ Reactivity □ 4	lani
مميشهون فأحجبهم	Relinquished by <u>Sample</u>	Date Time, Recived	ਯ	ا نتخا ر وراریخو کر
	Relinquisited by sampler Relinquisited by:	Bizig Time, Received Bizig 1614 Date Time Received	ing J. Tokan 8-36-92 ST	<u> </u>
	Relinquished by:	Date Time Received	by Laboratory: 1972320276 RECORD	<u> </u>
			A	: 'and

•

. .

• • • •

Analyezhan al mertan

Southwest Region 20000 / 300 Mariner Drive Torrance, CA 90503 (213) 371-1044 (800) 727-GTEL Fax (213) 371-8720 RECEIVED SEP 1 8 1992 GTI, NM

必要除的物理

,但自由的特殊

GTEL Client Number: 023352875.040664 Project I.D.: NMED/Barelas Bridge Work Order Number: T208206

September 11, 1992

Ms. Terry Tinl Groundwater Technology, Inc. 2501 Yale Blvd. SE, Suite 204 Albuquerque, NM 87106

Dear Ms. Tinl,

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 8-26-92 under chain-of-custody record 76-5445.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified by the state of California under Certification #E723.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

GTEL Environmental Laboratories, Inc.

Minsoon Song

Laboratory Director

GTEL Client Number: 023352875.040664 Project I.D.: NMED/Barelas Bridge Work Order Number: T208206

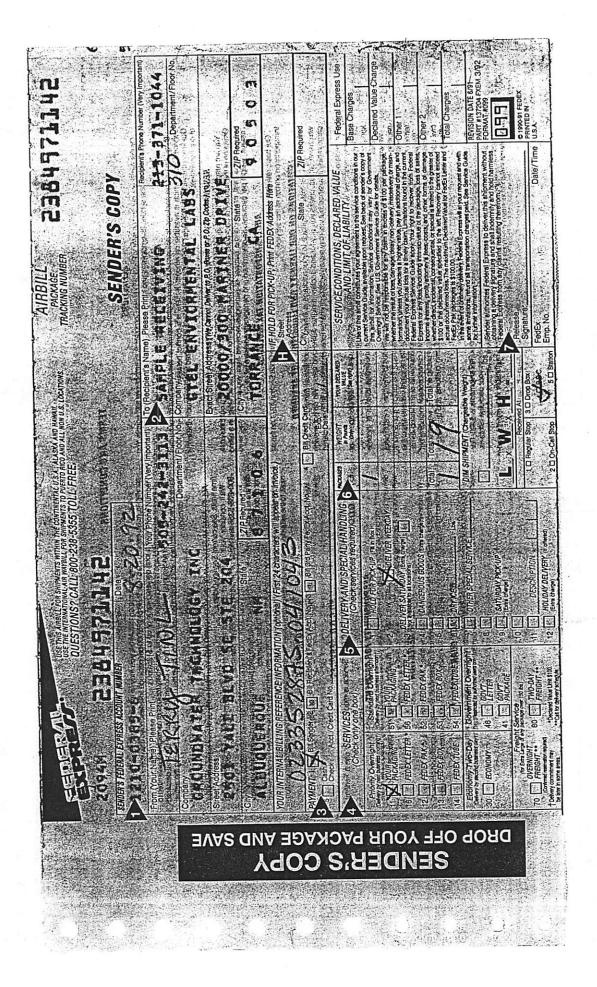
ANALYTICAL RESULTS

Volatile Organics in Water EPA Methods Modified 8020 and Modified 8015^a

			T		
GTEL S	Sample Number	08206-1	08206-2	08206-3	
Clie	nt Identification	MW-9	VP-1	VP-1	
	Date Sampled	8-24-92	8-24-92	8-25-92	
	Date Analyzed	9-1-92	9-2-92	9-1-92	
Analyte	Reporting Limit, ug/L		Concentra	ation, ug/L	
Benzene	0.3	620	880	1600	
Toluene	0.3	510	54	220	
Ethylbenzene	0.3	740	310	800	
Xylene, total	0.6	2600	300	590	
BTEX, total		4500	1500	3200	
TPH as Gasoline	100	17000	11000	15000	
Dilution Multiplier ^b		10	10	10	

a. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986. Modification for TPH as gasoline as per California State Water Resources Board LUFT Manual procedures.

b. Indicates the adjustments made for sample dilution.


GTEL Torrance, CA T208206.DOC

.

3	1]]		3]		1 - 1	.		1												1		÷	_			5	2	1				
		20000	D Ma	riner CA 9	r Dr., 8 0503	Suite	#30	: D	2	213-3	71-1(27-G	044 TEL		NE	AIN D AI			XS	RE	QL		T					Ę	54	61	6	cus	то	DY	REC	CORI
Project M TER Address: 3501 U Project N 0237 I attest the	PHTIN Croundur Hur Bive Jungur Humber SS 287 at the proper s were used				Aatri		vx #: te loc wy oject pr pr c	SC ation All Nam Sc IC IC IC IC IC IC IC IC IC IC IC IC IC	S Bringe	242 142 10 Bi 14/9 Bring	2-2 ride	3113 03 18140 1 NM	3	IS 602/8015 0 8020/8015 0 MTBE 0	TPH as D Gas D Diesel D Jet Fuel	_	Iotal Oil & Grease 413.1 U 413.2 U 503A U Trial Petroleum Hudroverhons 418.1 D 503E D			PCBs only D		NRS 425	Pesticides D Herbicides D	Ti.		2 🗆 6010 🗆 Org. Lead 🗆	CAM Metals - D STLC D TTLC	Corrosivity 🗆 Flashpoint 🗆 Reactivity 🗆			Received by.	Received by:		Received by Laboratory.	Way bill #
			ŧ	XX XX	<u>8 8 0</u>		H H V	Ξ			<u>a</u> .70.9	F IHIS			۴	<u>6</u>	2 4		, EE	Ш				12	liii I	. .	δ	ŏ	+		Rec	Her		Rec	
MW-2			1	<u>M</u>	┼┼	╉╉	$\widehat{\Pi}$		1	╞	<u> </u>	1322		1.	\vdash			ĺ.				\uparrow					·		-		ر ، ه		a	0	0
MW-3			1	敓	+		\mathbf{V}		\mathbf{V}		V	1430										: 1		Π						† -		Lime	200	Ë	
1100	:			ľ.	Π											. e			, ii] _				V
												•	' ·			Ņ				,				1			, er		•,			1	ý	•	(C) (9.1
								i,										9.5				ŀ									Date	Date	1	Date	~
		-																				ŀ	1			i. /	-			1			0	Ω	ß
																		17				• • •		j,			:					Τ			
																					;	,	1						·						
														Ŀ													-						4		
														:					5														à		
EXPE	DURS	_(#) BUSIN	IESS	S DA					:		. *	IG RE	• •	· · · · · · · · · · · · · · · · · · ·	•			REN		2	38	ed 4		71	# 	17			ء د د د <u>د</u>		Relipquished by Sampler.	lished by:	ung U D	quished by:	
FAX D								ipeci		LFU		iu ne						Lot			•••		1 1	11	Orc	日本				ĺ	E S	ling.	. V	× .	••••
1	Janda	nd -	TP	M	-			;	•									Į,		. !		-	**					81			8.			R B H	
L¥			<u></u>			ł.			:		e.		•	4 14 14		1										· ·	1				10 10 10		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

1

.

APPENDIX C

.

GROUNDWATER AND SOIL ANALYTICAL RESULTS FROM PREVIOUS INVESTIGATIONS, 1989 - 1991

NMED/BB bb.rap

TABLE 4

NEW MEXICO ENVIRONMENTAL IMPROVEMENT DIVISION RECORDS OF HYDROCARBON CONCENTRATIONS IN SOIL 800 BRIDGE SITE

		PPB	PPB	PPB	PPB	PPM
DATE	SAMPLE NO.			ETHYL-	TOTAL	
		BENZENE	TOLUENE	BENZENE	XYLENES	түн
10/15/90	AH-1	ND	- 3	1.2	12	0.1
10/15/90	AH-2	ND	ND	160	1100	79*
10/15/90	AH-3	1	58	16	140	ND
10/15/90	AH-4	ND	1300	7900	24000	9 95*
10/16/90	AH-5	ND	0.5	ND	4	0.5
10/16/90	MW-5	ND	6.3	1.9	14	ND
10/16/90	MW-6	ND	240	3700	15000	548*
10/18/90	MW-7	ND	160	210	1700	10.6
10/18/90	MW-8	ND	140	1600	3300	256*

NMEID Action Levels

* Concentration is above NMEID Action Level

10000

U = Undetected

PPB = Parts per billion

PPM = Parts per million

50

TABLE 2

NEW MEXICO ENVIRONMENTAL IMPROVEMENT DIVISION RECORDS OF WATER QUALITY COLLECTED BY LEGGETTE, BRASHEARS & GRAHAM, INC. 800 BRIDGE SITE

		PPB	PPB	PPB	PPB	PPB	PPM
DATE	SAMPLE NO.			ETHYL-	TOTAL		
		BENZENE	TOLUENE	BENZENE	XYLENES	MTBE	түн
10/5/90	TAP WATER	U	U	U	U		U
	140 LaVega						
10/5/90	TAP WATER	U	U	U	U		U
	152 LeVega						
10/11/90	TRIP BLANK	U	U	U	1.6	U	U
10/15/90	AH-1	2	1.8	U	U	U	U
10/15/90	AH-2	2600*	1400*	1900*	14000*	U	73.6
10/15/90	AH-3	1.5	0.6	1.4	0.8	U	1
10/15/90	AH-4	23*	18	150	22	U	15.7
10/15/90	TRIP BLANK	U	U	0.7	3	U	U
10/16/90	AH-5	23*	0.8	0.7	10	U	1
10/30/90	MW-1	2.6	0.5	U	1.7		U
10/30/90	MW-2	U	0.2	U	1		U
10/30/90	MW-3	U	0.4	U	1.3		U
10/30/90	MW-4	590*	35.3	518.4	1871.1*		5
10/30/90	MW-5	U	0.5	U	1.5		U
10/30/90	MW-6	10.7*	33.3	32.7	175.5		4
10/30/90	MW-7	9.8	3	20.8	4.9		1
10/30/90	MW-8	220*	120	9 60*	1140*		9
10/30/90	FIELD BLANK	U	0.5	U	0.8		U
10/30/90	TRIP BLANK	U	0.7	U	1.5		U
10/31/90	TAP WATER	U	0.6	υ	2		U
	153 LaVega						
11/27/90	TRIP BLANK	U	U	U	U		
11/28/90	MW-2	U	1.1	U	0.6		0.7
11/29/90	MW-4	49	1	8.4	14		0.9
NMEID Actic	n i evels	10	750	750	620	100	

* Concentration is above NMEID action level

U = Undetected

ppb = Parts per billion

ppm = Parts per million

TVH = Total volatile hydrocarbons

(inter

TABLE 3

NEW MEXICO ENVIRONMENTAL IMPROVEMENT DIVISION RECORDS OF WATER QUALITY SAMPLES COLLECTED BY ALBUQUERQUE ENVIRONMENTAL HEALTY DEPARTMENT 800 BRIDGE STREET SW

		PPB	PPB	PPB	PPB	PPM	PPM	PPM	PPM
SAMPLE				ETHYL-	TOTAL				
DATE	LOCATION	BENZENE	TOLUENE	BENZENE	XYLENES	IRON	MANGANESE	LEAD	ZINC
8/8/89	NW 800 BRDG	10*	190	0	2				
8/8/89	NE 800 BRDG	70*	220	68	44				
8/8/89	SW 800 BRDG	U	250	U	U				
8/8/89	SE 800 BRDG	500 *	120	930*	370				
	A-1	1	U	U	U				
9/12/89	A-2	5700*	4100*	29000*	20700*	10.2*	1.78*	0.011	0.08
9/12/89	A-3	2.6	4.1	25	18.9	U	1.12*	U	0.02
9/12/89	A-4	U	U	U	U				
9/13/89	A-5	10000*	7000*	14500*	40500*				
9/13/89		1650*	160	1620*	930*				
9/26/89	A-7	3900*	7500*	9700*	30500*	12.5*	1.55*	0.026	0.05
9/26/89	· A-8	160*	490	2100*	9500*	7.5*	0.601*	0.029	0.05
9/27/89	A-9	26*	5	8.8	7.4	0.568	1.14*	U	0.019
10/11/89	A-11	7700*	2800*	5700*	19000*	12.2*	1.35*	0.018	0.071
10/11/89	A-12	U	U	U	U	0.423	0.36*	U	0.01:
10/10/89	- A-13	2000*	U	U	U	6.96*	0.992*	0.012	0.034
11/8/89	A-14	U	U	U	U	0.859	0.451*	U	0.01
11/8/89	A-15	300*	U	U	U	2.45*	1.08*	0.003	0.021
11/8/89	A-16	U	U	U	U	0.289	0.41	U	U
2/19/90	MW-1	4.8	7.2	U	U				
2/19/90	MW-2	5.7	7.2	U	U				
2/19/90	MW-3	U	2.6	U	Ŭ				
2/19/90	MW-4	190*	25	280	865*				
9/13/89	145 LA VEGA	U	U	U	U				
8/10/89	183 RIVERSIDE	U	U	Ŭ	Ū				
8/11/89	183 RIVERSIDE	U	Ŭ	Ŭ	Ű				•
10/4/89	154 LA VEGA	Ŭ	Ŭ	Ŭ	Ŭ				
10/4/89	152 LA VEGA	Ū	Ŭ	Ŭ	Ŭ				
10/16/89	153 LA VEGA	U	U	Ŭ	Ŭ				
IMEID Acti	on Levels	10	750	750	620	1	0.2	0.05	10

U = Undetected

Ppb = Parts per blillon

Ppm = Parts per million

,,	STATE OF NEW MEXICO HEALTH AND ENVIRONM	ENT DEPARTMENT
	SCIENTIFIC LABORATORY DIVISION	
	P.O. Box 4700 700 Camino de Salud,	NE
(1999)	Albuquerque, NM 87196-4700 . [505]-841-2500	
	ORGANIC CHEMISTRY SECTION [505]-841-2570	
أعدا	March 11, 1001	Distribution
	March 11, 1991 ANALYTICAL REPORT	() User 55211
		(Submitter 303
(111)	Request SLD Accession No. OR-91-0724	(<u>*)</u> SLD Files
	ID No. 009907	
ا عد ا	Tax Dishard Dana Charistry	
• •	To: Richard Renn From: Organic Chemistry S Albuq. Environ Health & Energy Scientific Laborator	
	Albuq. Environ Health & EnergyScientific LaboratorEnvironmental Services Div.700 Camino de Salu	-
_	P.O.Box 1293 - Albuquerque, NM	•
terret.	Albuquerque, NM 87103	⁸ A ¹ E ⁶ CEIVED
	Albaqueique, 1414 87105	
	<i>Re:</i> A water, purgeable sample submitted to this laboratory on March 5, 1991	JUL 1 6 1992
inni).		
	DEMOGRAPHIC DATA	GTI, NM
	<u>COLLECTION</u> LOCATION	
ربسر	On: 5-Mar-91 By: Ren Barelas Bridge-153, MW#1	
	At: 10:15 hrs. In/Near: Albuquerque	
(1997)	ANALYTICAL RESULTS: Aromatic & Halogenated Purgeable [EPA-(501/2] Screen {754}
, ,	Parameter Value Note MDL	<u>Units</u>
	Halogenated Volatiles (42) 0.00 N 1.00	ppb
	See Laboratory Remarks for Additional Information	
ليكا	Notations & Comments:	
	MDL = Minimal Detectable Level.	
	A = Approximate Value; N = None Detected above Detection Limit; P = Compound Present, but not quantified	ed;
(and)	T = Trace (<detection <math="" limit);="">U = Compound Identity Not Confirmed.</detection>	_
	Evidentiary Seals: Not Sealed 🟹; Intact: No , Yes & Broken By:	Date:
	Laboratory Remarks:	
(1999)	Seventy compounds eluting from near benzene through the	C3 substituted
	benzene region at trace levels to 5 ppb detected by the	photoionization
	detector but not identified.	-
t1	VOLATILE ORGANICS ANALYSIS DATA SHEET	
	Lab Name: NM SCIENTIFIC LABORATORY DIVISION Contract:_	
(Inter i)	Lab Code: <u>N/A</u> Case No.: <u>N/A</u> SAS No.: <u>N/A</u>	
		<u>OR-91-0724</u>
	Sample wt/vol: <u>5.0</u> (g/mL) <u>mL</u> Lab File ID:	
(186)	Level: (low/med) Low Date Received:	
	<pre>% Moisture: not dec. N/A dec. N/A Date Extracted</pre>	: <u>N/A</u>
	Extraction: (SepF/Cont/Sonc) N/A Date Analyzed:	
	GPC Cleanup: (Y/N) No pH: Dilution Facto	
	CONCENTRATION U	
	(ug/L or ug/Kg)	:ug/L
_	This semple uses anglessed for the fallesing some	unda
1 1	This sample was analyzed for the following compo	unus
	(Continued on 2)	
(2001)	(Continued on page 2.)	

ANALYTICAL REPORT SLD Accession No. OR-91-0724 Continuation, Page 2 of 3

CAS NO. COMPOUND CONC. QUALIFI 67-64-1 Acetone 5.0 U 71-43-2 Benzene 1.0 U 108-86-1 Bromobenzene 1.0 U 74-97-5 Bromochloromethane 1.0 U 75-27-4 Bromodichloromethane 1.0 U 75-25-2 Bromoform 1.0 U 78-93-3 2-Butanone (MEK) 5.0 U 104-51-8 n-Butylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0 U 98-06-6 tert-Butyl methyl ether (MTBE) 5.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 56-23-5 Carbon tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U 67-66-3 Chloroform 1.0 U
71-43-2 Benzene 1.0 U 108-86-1 Bromobenzene 1.0 U 74-97-5 Bromochloromethane 1.0 U 75-27-4 Bromodichloromethane 1.0 U 75-25-2 Bromoform 1.0 U 78-93-3 2-Butanone (MEK) 5.0 U 104-51-8 n-Butylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0 U 98-06-6 tert-Butylbenzene 1.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 108-90-7 Chlorobenzene 1.0 U
108-86-1 Bromobenzene 1.0 U 74-97-5 Bromochloromethane 1.0 U 75-27-4 Bromodichloromethane 1.0 U 75-25-2 Bromoform 1.0 U 78-93-3 2-Butanone (MEK) 5.0 U 104-51-8 n-Butylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0 U 98-06-6 tert-Butylbenzene 1.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 108-90-7 Chlorobenzene 1.0 U
74-97-5 Bromochloromethane 1.0 U 75-27-4 Bromodichloromethane 1.0 U 75-25-2 Bromoform 1.0 U 78-93-3 2-Butanone (MEK) 5.0 U 104-51-8 n-Butylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0 U 98-06-6 tert-Butylbenzene 1.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 56-23-5 Carbon tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U
75-27-4 Bromodichloromethane 1.0 U 75-25-2 Bromoform 1.0 U 78-93-3 2-Butanone (MEK) 5.0 U 104-51-8 n-Butylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0 U 98-06-6 tert-Butylbenzene 1.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 56-23-5 Carbon tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U
75-25-2 Bromoform 1.0 U 78-93-3 2-Butanone (MEK) 5.0 U 104-51-8 n-Butylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0 U 98-06-6 tert-Butylbenzene 1.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 56-23-5 Carbon tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U
78-93-3 2-Butanone (MEK) 5.0 U 104-51-8 n-Butylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0 U 98-06-6 tert-Butylbenzene 1.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 56-23-5 Carbon tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U
104-51-8 n-Butylbenzene 1.0 U 135-98-8 sec-Butylbenzene 1.0 U 98-06-6 tert-Butylbenzene 1.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 56-23-5 Carbon tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U
135-98-8 sec-Butylbenzene 1.0 U 98-06-6 tert-Butylbenzene 1.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 56-23-5 Carbon tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U
98-06-6 tert-Butylbenzene 1.0 U 1634-04-4 tert-Butyl methyl ether (MTBE) 5.0 U 56-23-5 Carbon tetrachloride 1.0 U 108-90-7 Chlorobenzene 1.0 U
1634-04-4tert-Butyl methyl ether (MTBE)5.0U56-23-5Carbon tetrachloride1.0U108-90-7Chlorobenzene1.0U
56-23-5Carbon tetrachloride1.0U108-90-7Chlorobenzene1.0U
56-23-5Carbon tetrachloride1.0U108-90-7Chlorobenzene1.0U
67-66-3 Chloroform 1.0 U
95-49-8 2-Chlorotoluene 1.0 U
106-43-4 4-Chlorotoluene 1.0 U
96-12-8 1,2-Dibromo-3-chloropropane 1.0 U
124-48-1 Dibromochloromethane 1.0 U
106-93-4 1,2-Dibromoethane 1.0 U
74-95-3 Dibromomethane 1.0 U
95-50-1 1,2-Dichlorobenzene 1.0 U
541-73-1 1,3-Dichlorobenzene 1.0 U
106-46-7 1,4-Dichlorobenzene 1.0 U
75-71-8 Dichlorodifluoromethane 1.0 U
75-34-3 1,1-Dichloroethane 1.0 U
107-06-2 1,2-Dichloroethane 1.0 U
75-35-4 1,1-Dichloroethene 1.0 U
156-59-4 cis-1,2-Dichloroethene 1.0 U
156-60-5 trans-1,2-Dichloroethene 1.0 U
78-87-5 1,2-Dichloropropane 1.0 U
142-28-9 1,3-Dichloropropane 1.0 U
590-20-7 2,2-Dichloropropane 1.0 U
563-58-6 1,1-Dichloropropene 1.0 U
1006-01-5 cis-1,3-Dichloropropene 1.0 U
1006-02-6 trans-1,3-Dichloropropene 1.0 U
100-41-4 Ethylbenzene 1.0 U
87-68-3 Hexachlorobutadiene 1.0 U
98-82-8 Isopropylbenzene 1.0 U
99-87-6 4-Isopropyltoluene 1.0 U
75-09-2 Methylene chloride 5.0 U

. . _

(Continued on page 3.)

ANALYTICAL REPORT SLD Accession No. OR-91-0724 Continuation, Page 3 of 3

91-20-3	Naphthalene	1.0	U
103-65-1	Propylbenzene	1.0	U
100-42-5	Styrene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
109-99-9	Tetrahydrofuran (THF)	5.0	U
108-88-3	Toluene	1.0	U
87-61-5	1,2,3-Trichlorobenzene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
75-01-4	Vinyl chloride	1.0	U
95-47-6	o-Xylene	1.0	U
N/A	p- & m-Xylene	1.0	U

Qualifier Definitions:

- B Indicates compound was detected in the Lab Blank as well as in the sample.
- D Indicates value taken from a secondary (diluted) sample analysis.
- E Indicates compound concentration exceeded the range of the standard curve.
- J Indicates an estimated value for tentatively identified compounds, or for compounds detected and identified but present at a concentration less than the quantitation limit.
- N Indicates that more than one peak was used for quantitation.
- U Indicates compound was analyzed for, but not detected above the concentration listed (Quantitation Limit).

QUALITY CONTROL SUMMARY FOR VOLATILES SCREEN

METHOD BLANK: A laboratory method blank was analyzed along with this sample to assure the absence of interfering contaminants from lab reagents, instruments, or the general laboratory environment. Unless listed below, no contaminants were detected in this blank above the reported detection limit.

(Continued on page 4.)

ANALYTICAL REPORT SLD Accession No. OR-91-0724 Continuation, Page 4 of 3

COMPOUND DETECTED No Compounds Detected

CONCENTRATION (PPB)

SURROGATE RECOVERIES: SURROGATE Fluorobenzene 2-Bromo-1-chloropropane

% RECOVERY CONCENTRATION 25.0 99. ppb 15.0 111. ppb

SPIKE RECOVERY: The % recoveries for compounds in the batch spike were from 80% to 120% with the exception of the compounds listed below: **% RECOVERY** COMPOUND CONCENTRATION 72.4 25. ppb

Vinyl chloride

Analyst: Mary C. Then

Gary C. Eden Analyst, Organic Chemistry

Reviewed By: Man Richard F. Meyerhein

03/08/91 Supervisor, Organic Chemistry Section

STATE OF NEW MEXIC	· ·	•	VIRONMENT DEPARTM
	SCIENTIFIC LAB		
	P.O. Box 4700		de Salud, NE
Albuq	uerque, NM 87196-4700		341-2500
	ORGANIC CHEMISTR	Y SECTION [505]-841-2570	
			Distribution
March 11, 1991			() User 5523
	ANALYII	CAL REPORT	(I) Submitter
Request	SLD Accession	No. OR-91-0725	
ID No. 009908			
To: Richard Renn		From: Organic C	hemistry Section
Albug. Environ He	alth & Energy		Laboratory Div.
Environmental Serv			o de Salud, NE
P.O.Box 1293			ue, NM 87106
Albuquerque, NM	87103		
		••	
Re: A water, purgeable	sample submitted to this	laboratory on March 5	5, 1991
		APHIC DATA	• .
COLLECTIO			CATION
	y: Ren	Barelas Bridge-1	52, MW#3
At: 10:50 hrs. In/Nea	r: Albuquerque		
	I DECHLECK American		
			ble [EPA-601/2] Screen {7
Parameter			MDL Units
EPA 601/2 Volatile	• •	0.00 N	1.00 ppb
	ry Remarks for Add	Itional Informati	on
<u>Notations & Comments:</u>			
MDL = Minimal Detectable Level			
A = Approximate Value; N = No T = Trace (<detection limit);="" td="" u<=""><td>ne Detected above Detection Limit</td><td>it; P = Compound Present, but</td><td>not quantified;</td></detection>	ne Detected above Detection Limit	it; P = Compound Present, but	not quantified;
$\Gamma = \Gamma race (< Detection Limit); OEvidentiary Seals: Not Sealed$	-		Date:
Γ		en by	Date
Laboratory Remarks:			
	MITTE ADALITAS ANY	IVOTO DAMA CUERM	
VOL	ATILE ORGANICS ANA	LISIS DATA SHEET	
			tract: N/A
Lab Name NM SC	TENTIFIC LABORATOR	RY DIVISION Con	
	IENTIFIC LABORATOR Case No.: N/A		
Lab Code: <u>N/A</u>	Case No.: <u>N/A</u>	SAS No.: <u>N/</u>	A SDG No.:N
Lab Code: <u>N/A</u> Matrix: (soil/w	Case No.: <u>N/A</u> ater) <u>Water</u>	SAS No.: <u>N/</u> Lab Sam	<u>A</u> SDG No.: <u>N</u> ple ID: <u>OR-91-0725</u>
Lab Code: <u>N/A</u> Matrix: (soil/w Sample wt/vol:_	Case No.: <u>N/A</u> ater) <u>Water</u> <u>5.0</u> (g/mL) <u>mL</u>	SAS No.: <u>N/</u> Lab Sam	<u>A</u> SDG No.: <u>N</u> ple ID: <u>OR-91-0725</u>
Lab Code: <u>N/A</u> Matrix: (soil/w Sample wt/vol:_ Level: (low/me	Case No.: <u>N/A</u> ater) <u>Water</u> <u>5.0</u> (g/mL) <u>mL</u> d) <u>Low</u>	SAS No.: <u>N/</u> Lab Sam Lab Fil Date Re	ASDG No.:N/ ple ID: <u>OR-91-0725</u> e ID: ceived: <u>_3/5/91</u>
Lab Code: <u>N/A</u> Matrix: (soil/w Sample wt/vol:_ Level: (low/me % Moisture: not	Case No.: <u>N/A</u> ater) <u>Water</u> <u>5.0</u> (g/mL) <u>mL</u> d) <u>Low</u> dec. <u>N/A</u> dec. <u>N</u>	SAS No.: <u>N/</u> Lab Sam Lab Fil Date Re <u>V/A</u> Date Ex	<u>A</u> SDG No.: <u>N</u> ple ID: <u>OR-91-0725</u>
Lab Code: <u>N/A</u> Matrix: (soil/w Sample wt/vol:_ Level: (low/me % Moisture: not Extraction: (Se	Case No.: <u>N/A</u> ater) <u>Water</u> <u>5.0</u> (g/mL) <u>mL</u> d) <u>Low</u> dec. <u>N/A</u> dec. <u>N</u> pF/Cont/Sonc) <u>N/</u>	SAS No.: N/ Lab Sam Lab Fil Date Re Date Ex Date An Date An	A SDG No.:N ple ID: <u>OR-91-0725</u> e ID: ceived: <u>3/5/91</u> tracted: <u>N/A</u>
Lab Code: <u>N/A</u> Matrix: (soil/w Sample wt/vol:_ Level: (low/me % Moisture: not Extraction: (Se	Case No.: <u>N/A</u> ater) <u>Water</u> <u>5.0</u> (g/mL) <u>mL</u> d) <u>Low</u> dec. <u>N/A</u> dec. <u>N</u>	SAS No.: N/ Lab Sam Lab Fil Date Re Date Re V/A Date Ex Date An Dilutio CONCENTR CONCENTR	A SDG No.: N/ ple ID: OR-91-0725 e ID:
Lab Code: <u>N/A</u> Matrix: (soil/w Sample wt/vol:_ Level: (low/me % Moisture: not Extraction: (Se	Case No.: <u>N/A</u> ater) <u>Water</u> <u>5.0</u> (g/mL) <u>mL</u> d) <u>Low</u> dec. <u>N/A</u> dec. <u>N</u> pF/Cont/Sonc) <u>N/</u>	SAS No.: N/ Lab Sam Lab Fil Date Re Date Re V/A Date Ex Date An Dilutio CONCENTR CONCENTR	A SDG No.: N/ ple ID: OR-91-0725 e ID:
Lab Code: <u>N/A</u> Matrix: (soil/w Sample wt/vol:_ Level: (low/me % Moisture: not Extraction: (Se GPC Cleanup: (Y	Case No.: <u>N/A</u> ater) <u>Water</u> <u>5.0</u> (g/mL) <u>mL</u> d) <u>Low</u> dec. <u>N/A</u> dec. <u>N</u> pF/Cont/Sonc) <u>N/A</u> /N) <u>No</u> pH:	SAS No.: N/ Lab Sam Lab Fil Date Re Date Re J/A Date Ex Date An Dilutio CONCENTR (ug/L or	A SDG No.: N/ ple ID: OR-91-0725 e ID:
Lab Code: <u>N/A</u> Matrix: (soil/w Sample wt/vol:_ Level: (low/me % Moisture: not Extraction: (Se GPC Cleanup: (Y	Case No.: <u>N/A</u> ater) <u>Water</u> <u>5.0</u> (g/mL) <u>mL</u> d) <u>Low</u> dec. <u>N/A</u> dec. <u>N</u> pF/Cont/Sonc) <u>N/Z</u> /N) <u>No</u> pH: mple was analyzed	SAS No.: <u>N/</u> Lab Sam Lab Fil Date Re <u>I/A</u> Date Ex Date An Dilutio CONCENTR (ug/L or	A SDG No.: N/ ple ID: OR-91-0725 e ID:
Lab Code: <u>N/A</u> Matrix: (soil/w Sample wt/vol:_ Level: (low/me % Moisture: not Extraction: (Se GPC Cleanup: (Y	Case No.: <u>N/A</u> ater) <u>Water</u> <u>5.0</u> (g/mL) <u>mL</u> d) <u>Low</u> dec. <u>N/A</u> dec. <u>N</u> pF/Cont/Sonc) <u>N/A</u> /N) <u>No</u> pH:	SAS No.: <u>N/</u> Lab Sam Lab Fil Date Re <u>V/A</u> Date Ex Date An Dilutio CONCENTR (ug/L or for the followin nods 601 & 602	A SDG No.: N/ ple ID: OR-91-0725 e ID: ceived: 3/5/91 ceived: 3/5/91 1 tracted: N/A 1 alyzed: 3/6/91 1 n Factor: 1 1 ATION UNITS: ug/Kg): ug/L

(Continued on page 2.)

ANALYTICAL REPORT SLD Accession No. OR-91-0725 Continuation, Page 2 of 3

67-64-1	Acetone	5.0	<u> </u>
71-43-2	Benzene	1.0	U
108-86-1	Bromobenzene	1.0	<u> </u>
74-97-5	Bromochloromethane	1.0	UU
75-27-4	Bromodichloromethane	1.0	U
75-25-2	Bromoform	1.0	U
78-93-3	2-Butanone (MEK)	5.0	· U
104-51-8	n-Butylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
1634-04-4	tert-Butyl methyl ether (MTBE)	5.0	U
56-23-5	Carbon tetrachloride	1.0	U
108-90-7	Chlorobenzene	1.0	U
67-66-3	Chloroform	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
74-95-3	Dibromomethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
75-71-8	Dichlorodifluoromethane	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
156-59-4	cis-1,2-Dichloroethene	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	ប
563-58-6	1,1-Dichloropropene	1.0	U
1006-01-5	cis-1,3-Dichloropropene	1.0	U
1006-02-6	trans-1,3-Dichloropropene	1.0	U
100-41-4	Ethylbenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	UU
98-82-8	Isopropylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
75-09-2	Methylene chloride	5.0	U
91-20-3	Naphthalene	1.0	U
103-65-1	Propylbenzene	1.0	U

.

(Continued on page 3.)

ANALYTICAL REPORT SLD Accession No. OR-91-0725 Continuation, Page 3 of 3

100-42-5	Styrene	1.0	<u> </u>
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
109-99-9	Tetrahydrofuran (THF)	5.0	U
108-88-3	Toluene	1.0	U
87-61-5	1,2,3-Trichlorobenzene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
75-69-4	Trichlorofluoromethane	1.0	<u> </u>
96-18-4	1,2,3-Trichloropropane	1.0	<u> </u>
95-63-6	1,2,4-Trimethylbenzene	1.0	<u> </u>
108-67-8	1,3,5-Trimethylbenzene	1.0	<u> </u>
75-01-4	Vinyl chloride	1.0	<u> </u>
95-47-6	o-Xylene	1.0	U
N/A	p- & m-Xylene	1.0	U

Qualifier Definitions:

- B Indicates compound was detected in the Lab Blank as well as in the sample.
- D Indicates value taken from a secondary (diluted) sample analysis.
- E Indicates compound concentration exceeded the range of the standard curve.
- J Indicates an estimated value for tentatively identified compounds, or for compounds detected and identified but present at a concentration less than the quantitation limit.
- N Indicates that more than one peak was used for quantitation.
- U Indicates compound was analyzed for, but not detected above the concentration listed (Quantitation Limit).

QUALITY CONTROL SUMMARY FOR VOLATILES SCREEN

METHOD BLANK: A laboratory method blank was analyzed along with this sample to assure the absence of interfering contaminants from lab reagents, instruments, or the general laboratory environment. Unless listed below, no contaminants were detected in this blank above the reported detection limit.

COMPOUND DETECTED No Compounds Detected CONCENTRATION (PPB)

(Continued on page 4.)

ANALYTICAL REPORT SLD Accession No. OR-91-0725 Continuation, Page 4 of 3

SURROGATE RECOVERIES:		
SURROGATE	CONCENTRATION	% RECOVERY
Fluorobenzene	25.0 ppb	88.
2-Bromo-1-chloropropane	15.0 ppb	103.

SPIKE RECOVERY:The % recoveries for compounds in the batch
spike were from 80% to 120% with the exception of the compounds
listed below:
COMPOUNDCONCENTRATION
% RECOVERY
25. ppb% RECOVERY
72.4

Analyst:

Gary C. Eden Analyst, Organic Chemistry Reviewed By: Mark Ju

Richard F. Meyerhein 03/08/91 Supervisor, Organic Chemistry Section

STATE OF NEW MEXICO		DODATO		_ <u>}</u>		
S	CIENTIFIC LA	BURAIU	RY DIV	1.JON		
	P.O. Box 4700	20101101		ino de Salu	id. NE	
	rque, NM 87196-47	700		05]-841-2500	•	
	ORGANIC CHEMI			-	•	
			(
						Distribution
August 26, 1991		TICAL RE				() User 5521
	ANALT		FURI			(I) Submitter
Requested Priority 2	SLD Access	ion No. OF	R-91-2 °	782		(X) SLD Files
ID No. 009541	_		-			
To: Richard Renn		From:	Organ	ic Chemistr	v Secti	0.0
Albug. Environ Healt	h & Energy	1.1011.		ific Labora		
Environmental Servic				amino de Sa	•	
P.O.Box 1293	.cs D1v.			uerque, NM		106
	87103		Albuq	ucique, ivi	VI 07.	
Re: A water, purgeable sa	mple submitted to t	this laborator	y on Aug	ust 21, 1991	1	
	DEMOG	RAPHIC D	АТА			
COLLECTION	and the second secon			LOCATIO	N	· · · · · · · · · · · · · · · · · · ·
	Bro	Bor	rales Bri	dge, Sanche		
	Albuquerque			0,		
···· · · · · · · · · · · · · · · · · ·	• •					
ANALYTICAL	RESULTS: Aroma	tic & Haloge	nated Pu	rgeable [EP.	A-601/2	2] Screen {7:
	RESULTS: Aroma	tic & Haloge Value		rgeable [EP. MDL		2] Screen {7: its
Parameter			nated Pu <u>Note</u> N		Un	its
	(60)	<u>Value</u> 0.00	<u>Note</u> N	<u>MDL</u> 1.00	Un	
Parameter EPA 601/2 Volatiles See Laboratory	(60)	<u>Value</u> 0.00	<u>Note</u> N	<u>MDL</u> 1.00	Un	its
Parameter EPA 601/2 Volatiles	(60)	<u>Value</u> 0.00	<u>Note</u> N	<u>MDL</u> 1.00	Un	its
Parameter EPA 601/2 Volatiles See Laboratory Notations & Comments: MDL = Minimal Detectable Level. A = Approximate Value; N = None J	(60) Remarks for A Detected above Detection	Value 0.00 dditional Limit; P = Comp	<u>Note</u> N Inform	<u>MDL</u> 1.00 nation	<u>Un</u>) pr	its
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="</td"><td>(60) Remarks for A Detected above Detection Compound Identity Not C</td><td>Value 0.00 dditional Limit; P = Comp</td><td><u>Note</u> N Inform</td><td><u>MDL</u> 1.00 nation</td><td><u>Un</u>) pr</td><td>its ob</td></detection>	(60) Remarks for A Detected above Detection Compound Identity Not C	Value 0.00 dditional Limit; P = Comp	<u>Note</u> N Inform	<u>MDL</u> 1.00 nation	<u>Un</u>) pr	its ob
Parameter EPA 601/2 Volatiles See Laboratory Notations & Comments: MDL = Minimal Detectable Level. A = Approximate Value; N = None J	(60) Remarks for A Detected above Detection Compound Identity Not C	Value 0.00 dditional Limit; P = Comp	<u>Note</u> N Inform	<u>MDL</u> 1.00 nation	<u>Un</u>) pr	its
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed[]; I</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C	Value 0.00 dditional Limit; P = Comp	<u>Note</u> N Inform	<u>MDL</u> 1.00 nation	<u>Un</u>) pr	its ob
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="</td"><td>(60) Remarks for A Detected above Detection Compound Identity Not C</td><td>Value 0.00 dditional Limit; P = Comp</td><td><u>Note</u> N Inform</td><td><u>MDL</u> 1.00 nation</td><td><u>Un</u>) pr</td><td>its ob</td></detection>	(60) Remarks for A Detected above Detection Compound Identity Not C	Value 0.00 dditional Limit; P = Comp	<u>Note</u> N Inform	<u>MDL</u> 1.00 nation	<u>Un</u>) pr	its ob
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed[]; I</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C	Value 0.00 dditional Limit; P = Comp	<u>Note</u> N Inform	<u>MDL</u> 1.00 nation	<u>Un</u>) pr	its ob
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed]; I Laboratory Remarks:</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C	Value 0.00 dditional Limit; P = Comp confirmed. Broken By:	<u>Note</u> N Inform Jound Preser	<u>MDL</u> 1.00 nation	<u>Un</u>) pr	its ob
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed]; I Laboratory Remarks:</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[, Yes] & F	Value 0.00 dditional Limit; P = Comp confirmed. Broken By:	<u>Note</u> N Inform Jound Preser	<u>MDL</u> 1.00 nation	<u>Un</u>) pr	its ob
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed]; I Laboratory Remarks: VOLAT Lab Name: NM SCIE</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[], Yes 2 & F FILE ORGANICS A	Value 0.00 dditional Limit; P = Comp confirmed. Broken By:	Note N Inform ound Preser Ary (1) DATA SH SION	<u>MDL</u> 1.00 nation nt, but not quan EET Contract	<u>Un</u> pr Dz	<u>its</u> ob ste: <u>8/21/9/</u>
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None D T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed]; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[, Yes] & F FILE ORGANICS A ENTIFIC LABORA ase No.: <u>N/A</u>	Value 0.00 dditional Limit; P = Comp confirmed. Broken By:	Note N Inform ound Preser Any () OATA SH SION AS No.:	<u>MDL</u> 1.00 nation nt, but not quan EET Contract <u>N/A</u>	<u>Un</u> pr Dz Dz	<u>its</u> ob ste: <u>8/21/9/</u> No.:N/
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed]; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[, Yes] & F FILE ORGANICS A ENTIFIC LABORAS ase No.: <u>N/A</u> ter) <u>Water</u>	Value 0.00 dditional Limit; P = Comp Jonfirmed. Broken By:	Note N Inform Jound Preser Jack H DATA SH SION AS No.: Lab	<u>MDL</u> 1.00 nation ation EET Contract <u>N/A</u> Sample I	<u>Un</u>) PI atified; Dz Dz Dz	<u>its</u> ob ate: <u>8/2//9/</u> No.: <u>N/</u> -91-2782
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed□; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:5</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[, Yes] & F FILE ORGANICS A ENTIFIC LABORA ase No.: <u>N/A</u> ter) <u>Water</u> 5.0 (g/mL) <u>)</u>	Value 0.00 dditional Limit; P = Comp Jonfirmed. Broken By:	Note N Inform Jound Preser May 12 DATA SH SION AS No.: Lab Lab	<u>MDL</u> 1.00 ation ation EET Contract <u>N/A</u> Sample I File ID:	<u>Un</u> pr ntified; <u>Da</u> Da Da	<u>its</u> b ste: <u>8/2/9/</u> No.: <u>N/</u> -91-2782
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed□; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:_5 Level: (low/med)</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[, Yes] & F FILE ORGANICS A ENTIFIC LABORA ase No.: <u>N/A</u> ter) <u>Water</u> 5.0 (g/mL) <u>1</u>	Value 0.00 dditional Limit; P = Comp confirmed. Broken By: ANALYSIS I FORY DIVIS SF SF	Note N Inform oound Preser May E DATA SH SION AS No.: Lab Lab Date	<u>MDL</u> 1.00 ation ation t, but not quan (EET Contract <u>N/A</u> Sample I File ID: Receive	<u>Un</u> pr ntified; <u>Da</u> Da Da Da Da Da Da Da Da Da Da	<u>its</u> pb ste: <u>8/2//9/</u> No.: <u>N/</u> -91-2782 21/91
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed]; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:5 Level: (low/med) % Moisture: not do</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[], Yes[2] & F FILE ORGANICS A ENTIFIC LABORA ase No.: <u>N/A</u> ter) <u>Water</u> 5.0 (g/mL) <u>1</u> <u>Low</u> dec. <u>N/A</u> dec	Value 0.00 dditional Limit; P = Comp confirmed. Broken By: ANALYSIS E TORY DIVIS SP ML	Note N Inform ound Preser Aug H DATA SH SION AS No.: Lab Lab Date Date	<u>MDL</u> 1.00 ation ation t, but not quan (EET Contract <u>N/A</u> Sample I File ID: Receive Extract	<u>Un</u> p ntified; <u>D</u> D D D C C C C C C C C C C C C C C C C	$\frac{\text{its}}{\text{ob}}$ $\frac{1}{10000000000000000000000000000000000$
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed□; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:5 Level: (low/med) % Moisture: not C Extraction: (SepE</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[], Yes[2] & F FILE ORGANICS A ENTIFIC LABORAS ase No.: <u>N/A</u> ter) <u>Water</u> 5.0 (g/mL) <u>1</u> <u>Low</u> lec. <u>N/A</u> dec F/Cont/Sonc) <u>1</u>	Value 0.00 dditional Limit; P = Comp confirmed. Broken By: ANALYSIS I TORY DIVIS SA ML N/A	Note N Inform ound Preser Aug 5 DATA SH SION AS No.: Lab Lab Date Date Date	<u>MDL</u> 1.00 ation ation at, but not quan (EET Contract <u>N/A</u> Sample I File ID: Receive Extract Analyze	<u>Un</u> pp atified; <u>Da</u> Da Da Da Da SDG D: <u>OR</u> ed: <u></u> ed: <u></u> ed: <u></u> 8/	$\frac{\text{its}}{\text{ob}}$ $\frac{1}{\text{ob}}$ $\frac{1}{\text{ob}}$ $\frac{1}{\text{ob}}$ $\frac{1}{8} \frac{21/91}{21/91}$
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed]; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:5 Level: (low/med) % Moisture: not do</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[], Yes[2] & F FILE ORGANICS A ENTIFIC LABORAS ase No.: <u>N/A</u> ter) <u>Water</u> 5.0 (g/mL) <u>1</u> <u>Low</u> lec. <u>N/A</u> dec F/Cont/Sonc) <u>1</u>	Value 0.00 dditional Limit; P = Comp confirmed. Broken By: ANALYSIS I TORY DIVIS SA ML N/A	Note N Inform ound Preser Ary DATA SH SION AS No.: Lab Lab Date Date Date Date	<u>MDL</u> 1.00 ation at, but not quan t, but not quan EET Contract <u>N/A</u> Sample I File ID: Receive Extract Analyze tion Fac	<u>Un</u> pr atified; <u>D</u> D <u>D</u> D <u>D</u> d: <u>8/</u> ed: <u>8/</u> ed: <u>8/</u> ed: <u>8/</u>	$\frac{\text{its}}{\text{ob}}$ $\frac{1}{1} = \frac{1}{21/91}$
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed□; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:5 Level: (low/med) % Moisture: not C Extraction: (SepE</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[], Yes[2] & F FILE ORGANICS A ENTIFIC LABORAS ase No.: <u>N/A</u> ter) <u>Water</u> 5.0 (g/mL) <u>1</u> <u>Low</u> lec. <u>N/A</u> dec F/Cont/Sonc) <u>1</u>	Value 0.00 dditional Limit; P = Comp confirmed. Broken By: ANALYSIS I TORY DIVIS SA ML N/A	Note N Inform ound Preser Ary () OATA SH SION AS No.: Lab Lab Date Date Date Date Date	MDL 1.00 ation ation at, but not quan t, but not quan EET Contract N/A Sample I File ID: Receive Extract Analyze tion Fac NTRATION	<u>Un</u> pr atified; <u>D</u> D <u>D</u> D <u>D</u> D <u>C</u> C C C C C C C C C C C C C C C C C C	$\frac{\text{its}}{\text{ob}}$ $\frac{1}{\sqrt{2}} = \frac{8}{21/91}$ $\frac{21/91}{21/91}$ $\frac{1}{\sqrt{2}}$
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed□; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:5 Level: (low/med) % Moisture: not C Extraction: (SepE</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[], Yes[2] & F FILE ORGANICS A ENTIFIC LABORAS ase No.: <u>N/A</u> ter) <u>Water</u> 5.0 (g/mL) <u>1</u> <u>Low</u> lec. <u>N/A</u> dec F/Cont/Sonc) <u>1</u>	Value 0.00 dditional Limit; P = Comp confirmed. Broken By: ANALYSIS I TORY DIVIS SA ML N/A	Note N Inform ound Preser Ary () OATA SH SION AS No.: Lab Lab Date Date Date Date Date	MDL 1.00 ation ation at, but not quan t, but not quan EET Contract N/A Sample I File ID: Receive Extract Analyze tion Fac NTRATION	<u>Un</u> pr atified; <u>D</u> D <u>D</u> D <u>D</u> D <u>C</u> C C C C C C C C C C C C C C C C C C	$\frac{\text{its}}{\text{ob}}$ $\frac{1}{1} = \frac{1}{21/91}$
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed []; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:5 Level: (low/med) % Moisture: not d Extraction: (SepF GPC Cleanup: (Y/N</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[], Yes 2 & F FILE ORGANICS A ENTIFIC LABORA ase No.: <u>N/A</u> ter) <u>Water</u> 5.0 (g/mL) <u>1</u> Low lec. <u>N/A</u> dec F/Cont/Sonc) <u>1</u> N) <u>No</u> pH	Value 0.00 dditional Limit; P = Comp confirmed. Broken By: ANALYSIS I TORY DIVIS SF mL N/A :	Note N Inform Jound Preser May Ed DATA SH SION AS No.: Lab Lab Date Date Date Date Date Date Date	<u>MDL</u> 1.00 ation ation EET Contract <u>N/A</u> Sample I File ID: Receive Extract Analyze tion Fac NTRATION or ug/K	<u></u> <u>Un</u> pr pr pr pr pr pr pr pr pr pr	$\frac{\text{its}}{\text{ob}}$ $\frac{No.: N/}{-91-2782}$ $\frac{21/91}{/A}$ $\frac{1}{\text{S:}}$ ug/L
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed []; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:5 Level: (low/med) % Moisture: not d Extraction: (SepF GPC Cleanup: (Y/N</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[], Yes 2 & F FILE ORGANICS 2 ENTIFIC LABORA ase No.: <u>N/A</u> ter) <u>Water</u> <u>5.0</u> (g/mL) <u></u> <u>1.0W</u> dec. <u>N/A</u> dec F/Cont/Sonc) <u></u> N) <u>NO</u> pH	Value 0.00 dditional Limit; P = Comp confirmed. Broken By: ANALYSIS I TORY DIVIS SP mL N/A : ed for the	Note N Inform ound Preser Aug Fi DATA SH SION AS No.: Lab Lab Date Date Date Dilu CONCE (ug/I	<u>MDL</u> 1.00 ation ation EET Contract <u>N/A</u> Sample I File ID: Receive Extract Analyze tion Fac NTRATION or ug/K wing com	<u></u> <u>Un</u> pr pr pr pr pr pr pr pr pr pr	$\frac{\text{its}}{\text{ob}}$ $\frac{No.: N/}{-91-2782}$ $\frac{21/91}{/A}$ $\frac{1}{\text{S:}}$ ug/L
Parameter EPA 601/2 Volatiles See Laboratory <u>Notations & Comments:</u> MDL = Minimal Detectable Level. A = Approximate Value; N = None I T = Trace (<detection limit);="" u="<br">Evidentiary Seals: Not Sealed []; I Laboratory Remarks: VOLAT Lab Name: NM SCIE Lab Code: <u>N/A</u> Ca Matrix: (soil/wat Sample wt/vol:5 Level: (low/med) % Moisture: not d Extraction: (SepF GPC Cleanup: (Y/N</detection>	(60) Remarks for A Detected above Detection Compound Identity Not C Intact: No[], Yes 2 & F FILE ORGANICS A ENTIFIC LABORA ase No.: <u>N/A</u> ter) <u>Water</u> 5.0 (g/mL) <u>1</u> Low lec. <u>N/A</u> dec F/Cont/Sonc) <u>1</u> N) <u>No</u> pH	Value 0.00 dditional Limit; P = Comp confirmed. Broken By: ANALYSIS I TORY DIVIS SP mL N/A : ed for the	Note N Inform ound Preser Aug Fi DATA SH SION AS No.: Lab Lab Date Date Date Dilu CONCE (ug/I	MDL 1.00 ation ation t, but not quan t, but not quan EET Contract N/A Sample I File ID: Receive Extract Analyze tion Fac NTRATION or ug/K wing com	<u></u> <u>Un</u> pr ntified; <u></u> Dr Dr <u>OR</u> Dr <u>OR</u> d: d: d: d: d: d: d: d: d: d: d: Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr Dr	<u>its</u> b No.: <u>N/</u> -91-2782 21/91 /A 21/91 1 S: ug/L s

(Continued on page 2.)

.

.

ANALYTICAL REPORT SLD Accession No. OR-91-2782 Continuation, Page 2 of 3

67-64-1	Acetone	5.0	U
71-43-2	Benzene	1.0	U
108-86-1	Bromobenzene	1.0	UU
74-97-5	Bromochloromethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
75-25-2	Bromoform	1.0	U
78-93-3	2-Butanone (MEK)	5.0	U
104-51-8	n-Butylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
1634-04-4	tert-Butyl methyl ether (MTBE)	5.0	U
56-23-5	Carbon tetrachloride	1.0	U
108-90-7	Chlorobenzene	1.0	U
67-66-3	Chloroform	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	Ū
74-95-3	Dibromomethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	Ū
541-73-1	1,3-Dichlorobenzene	1.0	Ū
106-46-7	1,4-Dichlorobenzene	1.0	<u>u</u>
75-71-8	Dichlorodifluoromethane	1.0	<u>U</u>
75-34-3	1,1-Dichloroethane	1.0	<u>U</u>
107-06-2	1,2-Dichloroethane	1.0	<u>U</u>
75-35-4	1,1-Dichloroethene	1.0	U
156-59-4	cis-1,2-Dichloroethene	1.0	Ū
156-60-5	trans-1,2-Dichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	Ŭ
142-28-9	1,3-Dichloropropane	1.0	<u>U</u>
590-20-7	2,2-Dichloropropane	1.0	Ū
563-58-6	1,1-Dichloropropene	1.0	U
1006-01-5	cis-1,3-Dichloropropene	1.0	<u>U</u>
1006-02-6	trans-1,3-Dichloropropene	1.0	U
100-41-4	Ethylbenzene	1.0	<u>U</u>
87-68-3	Hexachlorobutadiene	1.0	Ū
98-82-8	Isopropylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	U
75-09-2	Methylene chloride	5.0	<u>U</u>
90-12-0	1-Methylnaphthalene	1.0	<u>U</u>
91-57-6	2-Methylnaphthalene	1.0	<u>_</u>

-,

(Continued on page 3.)

.

•

.

ANALYTICAL REPORT SLD Accession No. OR-91-2782 Continuation, Page 3 of 3

91-20-3	Naphthalene	1.0	U
103-65-1	Propylbenzene	1.0	U
100-42-5	Styrene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	U
79-34-5	1,1,2,2-Tetrachloroethane	1.0	U
127-18-4	Tetrachloroethene	1.0	U
109-99-9	Tetrahydrofuran (THF)	5.0	U
108-88-3	Toluene	1.0	U
87-61-5	1,2,3-Trichlorobenzene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1.0	U
75-01-4	Vinyl chloride	1.0	U
95-47-6	o-Xylene	1.0	U
N/A	p- & m-Xylene	1.0	U

Qualifier Definitions:

- B Indicates compound was detected in the Lab Blank as well as in the sample.
- D Indicates value taken from a secondary (diluted) sample analysis.
- E Indicates compound concentration exceeded the range of the standard curve.
- J Indicates an estimated value for tentatively identified compounds, or for compounds detected and identified but present at a concentration less than the quantitation limit.
- N Indicates that more than one peak was used for quantitation.
- U Indicates compound was analyzed for, but not detected above the concentration listed (Quantitation Limit).

QUALITY CONTROL SUMMARY FOR VOLATILES SCREEN

METHOD BLANK: A laboratory method blank was analyzed along with this sample to assure the absence of interfering contaminants from lab reagents, instruments, or the general laboratory environment. Unless listed below, no contaminants were detected in this blank above the reported detection limit.

(Continued on page 4.)

ANALYTICAL REPORT SLD Accession No. OR-91-2782 Continuation, Page 4 of 3

. -,

.

COMPOUND DETECTED No Compounds Detected	CONCENTRATION (PPB)
SURROGATE RECOVERIES: SURROGATE Fluorobenzene 2-Bromo-1-chloropropane	CONCENTRATION% RECOVERY50.0ppb91.830.0ppb95.
spike were from 80% to 120% listed below:	eries for compounds in the batch with the exception of the compounds
COMPOUND Vinyl chloride	CONCENTRATION * RECOVERY 25. ppb 71.6
Analyst: Gary C. Eden Analyst, Organic Chemistry	Reviewed By: Richard F. Meyerhein 08/26/91 Superviser, Organic Chemistry Section

. .

ligned.	STATE OF NEW MEXICO
	SCIENTIFIC LABORATORY DIVISION
	P.O. Box 4700 700 Camino de Salud, NE
, 1	Albuquerque, NM 87196-4700 [505]-841-2500
	ORGANIC CHEMISTRY SECTION [505]-841-2570
	Distribution
(and	November 26, 1991
	ANALYTICAL REPORT
	Requested Priority 2 SLD Accession No. OR-91-3554 (X) SLD Files
	ID No. 024594
	To: Richard Renn From: Organic Chemistry Section
	10. Richard Renn Albug Environ Health Dept Scientific Laboratory Div.
	Terrisonmental Services Div /00 Camino de Salud, NE
	P.O.Box 1293 Albuquerque, NM 87106
(mart)	Albuquerque, NM 87103
	Re: A water, purgeable sample submitted to this laboratory on November 21, 1991
÷.	DEMOGRAPHIC DATA
	<u>COLLECTION</u> <u>LOCATION</u>
	On: 21-Nov-91 By: Ren 153 Lavega SW
(anna)	At: 11:20 hrs. In/Near: Albuquerque
	ANALYTICAL RESULTS: Aromatic & Halogenated Purgeable [EPA-601/2] Screen {754}
	Voluo Note Mill, Units
(2007)	$\frac{1}{1.00 \text{ ppb}}$
	See Laboratory Remarks for Additional Information
	Notations & Comments:
(22)	The second secon
	the second present, but not quantified,
(****)	T = Trace (<detection 0="Compound" community<br="" for="" identity="" limit);="">Evidentiary Seals: Not Sealed X; Intact: No, Yes & Broken By: Date:</detection>
	Laboratory Remarks:
	THE ADDRESS AND VETS DATA SHEET
	VOLATILE ORGANICS ANALYSIS DATA SHEET
	Lab Name: NM SCIENTIFIC LABORATORY DIVISION Contract: N/A
	M/Λ SAS NO.: N/A ODO NOT
11	Matrix: (soil/water) Water Lab Sample ID. OK 22 Content
_	Level: (low/med) Low Date Received
()	\times MOISTURE: NOU dec. N/A dec. $\frac{1}{2}$
	Extraction. (Sepir cond) sense pilution Factor: 1
_	GPC Cleanup: (1/N) PPU CONCENTRATION UNITS:
(1	(ug/L or ug/Kg):ug/L
	This sample was analyzed for the following compounds
	using EPA Methods 601 & 602
	CAS NO. COMPOUND 5.0 U
	67-64-1 Acetone 5.0 0
·	
	(Continued on page 2.)

٠.

ANALYTICAL REPORT SLD Accession No. OR-91-3554 Continuation, Page 2 of 3

71-43-2	Benzene	1.0	U
108-86-1	Bromobenzene	1.0	U
74-97-5	Bromochloromethane	1.0	U
75-27-4	Bromodichloromethane	1.0	U
75-25-2	Bromoform	1.0	U
78-93-3	2-Butanone (MEK)	5.0	U
104-51-8	n-Butylbenzene	1.0	U
135-98-8	sec-Butylbenzene	1.0	U
98-06-6	tert-Butylbenzene	1.0	U
1634-04-4	tert-Butyl methyl ether (MTBE)	5.0	U
56-23-5	Carbon tetrachloride	1.0	U
108-90-7	Chlorobenzene	1.0	U
67-66-3	Chloroform	1.0	U
95-49-8	2-Chlorotoluene	1.0	U
106-43-4	4-Chlorotoluene	1.0	U
96-12-8	1,2-Dibromo-3-chloropropane	1.0	U
124-48-1	Dibromochloromethane	1.0	U
106-93-4	1,2-Dibromoethane	1.0	U
74-95-3	Dibromomethane	1.0	U
95-50-1	1,2-Dichlorobenzene	1.0	U
541-73-1	1,3-Dichlorobenzene	1.0	U
106-46-7	1,4-Dichlorobenzene	1.0	U
75-71-8	Dichlorodifluoromethane	1.0	U
75-34-3	1,1-Dichloroethane	1.0	U
107-06-2	1,2-Dichloroethane	1.0	U
75-35-4	1,1-Dichloroethene	1.0	U
156-59-4	cis-1,2-Dichloroethene	1.0	U
156-60-5	trans-1,2-Dichloroethene	1.0	U
78-87-5	1,2-Dichloropropane	1.0	U
142-28-9	1,3-Dichloropropane	1.0	U
590-20-7	2,2-Dichloropropane	1.0	U
563-58-6	1,1-Dichloropropene	1.0	U
1006-01-5	cis-1,3-Dichloropropene	1.0	U
1006-02-6	trans-1,3-Dichloropropene	1.0	Ū
100-41-4	Ethylbenzene	1.0	U
87-68-3	Hexachlorobutadiene	1.0	U
98-82-8	Isopropylbenzene	1.0	U
99-87-6	4-Isopropyltoluene	1.0	<u>U</u>
75-09-2	Methylene chloride	1.0	U
90-12-0	1-Methylnaphthalene	1.0	Ū
91-57-6	2-Methylnaphthalene	1.0	Ū
91-20-3	Naphthalene	1.0	U

(Continued on page 3.)

ANALYTICAL REPORT SLD Accession No. OR-91-3554 Continuation, Page 3 of 3

103-65-1	Propylbenzene	1.0	U
100-42-5	Styrene	1.0	U
630-20-6	1,1,1,2-Tetrachloroethane	1.0	<u> </u>
79-34-5	1,1,2,2-Tetrachloroethane	1.0	Ū
127-18-4	Tetrachloroethene	1.0	U
109-99-9	Tetrahydrofuran (THF)	5.0	U
108-88-3	Toluene	1.0	U
87-61-5	1,2,3-Trichlorobenzene	1.0	U
120-82-1	1,2,4-Trichlorobenzene	1.0	U
71-55-6	1,1,1-Trichloroethane	1.0	U
79-00-5	1,1,2-Trichloroethane	1.0	U
79-01-6	Trichloroethene	1.0	U
75-69-4	Trichlorofluoromethane	1.0	U
96-18-4	1,2,3-Trichloropropane	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1.0	<u> </u>
108-67-8	1,3,5-Trimethylbenzene	1.0	U
75-01-4	Vinyl chloride	1.0	<u> </u>
95-47-6	o-Xylene	1.0	U
N/A	p- & m-Xylene	1.0	U

Qualifier Definitions:

- B Indicates compound was detected in the Lab Blank as well as in the sample.
- D Indicates value taken from a secondary (diluted) sample analysis.
- E Indicates compound concentration exceeded the range of the standard curve.
- J Indicates an estimated value for tentatively identified compounds, or for compounds detected and identified but present at a concentration less than the quantitation limit.
- N Indicates that more than one peak was used for quantitation.
- U Indicates compound was analyzed for, but not detected above the concentration listed (Quantitation Limit).

QUALITY CONTROL SUMMARY FOR VOLATILES SCREEN

METHOD BLANK: A laboratory method blank was analyzed along with this sample to assure the absence of interfering contaminants from lab reagents, instruments, or the general laboratory environment. Unless listed below, no contaminants were detected in this blank above the reported detection limit.

(Continued on page 4.)

ANALYTICAL REPORT SLD Accession No. OR-91-3554 Continuation, Page 4 of 3

COMPOUND DETECTED No Compounds Detected	CONC	ENTRATION (PPB)
SURROGATE RECOVERIES:		
SURROGATE	CONCENTRATION	% RECOVERY
Fluorobenzene	50.0 ppb	107.3
2-Bromo-1-chloropropane	30.0 ppb	128.
listed below: COMPOUND Vinyl chloride	CONCENTRATION 25. ppb	* RECOVERY 68.4
Analyst: Gary C. Eden Analyst, Organic Chemistry		F.Meyerhein 11/26/91 organic Chemistry Section

APPENDIX D

SOIL SAMPLE LABORATORY CERTIFICATES OF ANALYSIS AND CHAIN-OF-CUSTODY DOCUMENTATION AUGUST 18-20, 1992

NMED/BB bb.rap

、

Southwest Region 20000 / 300 Mariner Drive Torrance, CA 90503 (213) 371-1044 (800) 727-GTEL Fax (213) 371-8720 GTEL Client Number: 023352875.040664 Project I.D.: Barelas Bridge Work Order Number: T208182

RECEIVED

SEP 1 4 1992

GTI, NM

September 9, 1992

Ms. Terry Tinl Groundwater Technology, Inc. 2501 Yale Blvd. S.E., Suite 204 Albuquerque, NM 87106

Dear Ms. Tinl,

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 8-21-92 under chain-of-custody record 76-5465.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified by the state of California under Certification #E723.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

GTEL Environmental Laboratories, Inc.

Minsoon Song

Laboratory Director

ANALYTICAL RESULTS

Total Recoverable Petroleum Hydrocarbons in Soil EPA 418.1/Standard Methods 503E^a

	nple ication	Date Sampled	Date Extracted	Date Analyzed	Reporting Limit, mg/kg	Concentration, mg/kg	Percent Solids, %
GTEL No.	Client ID						
08182-4C	COMP	8-20-92	9-2-92	9-3-92	5	1100	86.9

a. EPA 600/4-79-020, March 1983 revision. Extraction by EPA Method 3550. Results are calculated on a wet weight basis.

ANALYTICAL RESULTS

Flash Point of Soil Modified EPA Method 1010^a

	nple ication	Date Sampled	Date Analyzed	Flash Point ^b , °F	Percent Solids, %
GTEL No.	Client ID				
08182-4	COMP	8-20-92	8-24-92	>160	86.9

Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986. Modified to allow a determinations on soil.

1000

b

< 75 indicates a flash point of less than 75 $^{\circ}$ F; > 160 indicates that the test termination point of 160 $^{\circ}$ F was reached without ignition.

t i

ANALYTICAL RESULTS

Metals in TCLP Leachatea

	GTELS	Sample Number	08182-04		1	
	Clie	nt Identification	COMP			
		Date Sampled	8-20-92			
		Date Leached	8-24-92			
	Date Analyzed	(Method 7420)	8-25-92			
Analyte	Methodb	Reporting Limit, mg/L		Concentra	ation, mg/L	
Lead	7420	0.50	<0.50			

a. Federal Register, June 29, 1990, 40 CFR, Part 261, Appendix II - Method 1311. These data are corrected for analytical bias as required by Method 1311 by applying a correction determined by matrix spike recovery.

b. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA, November 1986; Digestion by Method 3010 (except for mercury).

•

ANALYTICAL RESULTS

Volatile Organics in Soil EPA Methods Modified 8020 and Modified 8015^a

GTEI	Sample Number	08182-1A	08182-2A	08182-3A	
С	lient Identification	PR3-9	VP1-5	MW-9-9	
	Date Sampled	8-18-92	8-19-92	8-20-92	101
	Date Extracted	8-24-92	8-24-92	8-24-92	
	Date Analyzed	8-26-92	8-26-92	8-26-92	क्सो कि राष्ट्र
Analyte	Reporting Limit, mg/kg		Concentrat	tion, mg/kg	
Benzene	0.005	0.78	2.5	1.7	
Toluene	0.005	1.4	1.0	2.2	
Ethylbenzene	0.005	5.1	5.2	7.6	- 「佐子雞」
Xylene, total	0.015	7.6	7.4	23	
BTEX, total		15	16	35	n i në j
TPH as Gasoline	10	580	340	820	
Dilution Multiplier ^b		5	5	5	123
Percent solids, %		80.6	90.0	90.1	1.1.7

a. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986. Modification for TPH as gasoline as per California State Water Resources Board LUFT Manual procedures. Results are calculated on a wet weight basis.

b. Indicates the adjustments made for sample dilution.

	GTE		0 Mari			iite #	300		2	13-37	71-10)44					CU YSI							76	<u>}-</u>	<u>54</u>	65	С	UST	TODY	' RE	CORD
	NVIRONMEN BORATORIES,	TAL Torra	nce, C	A 908	503				80	00-72	?7-G	TEL						AN	AL	YSI	S R	EQ	JE	ST								
0233 attest that	TINL Growndwy L Blod Se umgue, N umber: 52875 t the proper s were used	04066 field sampli	,나 ng	tion Ma	1 Te strix	FAX Site AIb Proj Sam	H: Contractions of the second	tion: US Iame Name Name Name Name Name Name		Print): Pri	Ig M Ig Ig Ig M Ig M)3 Blue 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	BTEX 602 D 8020 D with MTBE D	602/8015 L	TPH as 🗆 Gas 🗖 Diesel 🗖 Jet Fuel Product I D. by GC (siMDIS) 🗆	Total Oil & Grease: 413.1 0 413.2 0 503A 0		EPA 601 0 8010 0 DCA only 0				EPTOX: Metals D Pesticides D Herbicides D	18	EPA Priority Pollutant Metals D HSL D	LEAD 7420 0 7421 0 239.2 0 6010 0 0 0 Lead 0 CAM Matals 1 STI C 0 TTI C	8	15AD 418.1	צוו		Received by:	Received by Laboratory:	Way bill #
2R3-9			250 m		SLUDGE	H P P	HNO3	H2S04	4	\$.	IS-92	IH 141		X X BTEX	Prod	Total	Total	EPA	EPA	EPA	EPA	EPTC	TCLF	EPA		Corre	βr	Becei	Ś	Recei	+	How we have
	<i>1-9-9</i>		V	X				Š	<u>ل</u>	\$.	20.92	2 042	P	Ŷ	-					-									∞		Time	g'ssh
Comp		1	som	X				X		8.	2092	123														X	XX	Date	8-20-92	Date	Date	8-34-92
EXPED SEVEN OTHEI QA/QC FAX D	DURS DITED 48 H N DAY R CLP Le	_(#) BUSIN ovel ⊡ B				-	SPI		LR	<i>c</i>	6	N LIN G RE					La	а	38 se C		97	w	orag	ge Lo	or #:		- - 2	Relinquished by Sampler	1 Tim	Relinquishe¢ by.	Relinquished by:	

Respects Phone Number (Very Import 213-371-1044 Department/Fiport LARS International Control of the State VZD Rober July 231
LABS Internet Contract
InZip Codes July 231
ORIVE
State of the State
Address Here of Core Core Core Core Core Core Core Core
ALSIATE Z/P Required
CLARED VALUE
Is the service conditions in our / Lee back to sender is cory of a set in the service of the sender is cory of a set in the set is t
delivery misdelivery or misin- () 1.37411 () 1.57411 ()
right to recover from Federal of the package, loss of sales."
and other forms of damage in Other 2
E Frank

APPENDIX E

AIR SPARGE AND SOIL VENT PILOT TESTS FIELD DATA

.

NMED/BB bb.rap

i.

1

ľ

SOIL VENTING PILOT TEST FIELD DATA **BARELAS BRIDGE GWPA SITE** 800 BRIDGE BLVD. S.W. ALBUQUERQUE, NEW MEXICO

Vent Test Well:

]

]

]

]

1

VP-

3

8.26.92 Date: T. TINL/C. Briscot Measured by:

]

]

1

			Pre/Post	Pre-Blower		Hrelfost	Carbon		Vacuum	i at Obs	ervation	Wells (ins. H2(J)		
Time	Elapsed	Vacuum	Vacuum	Anemom.	Pre/Post	Vapor Concer			Distanc	***************						
	Time	at Test Well	at Blower	Reading	Blower	PID	LEL Meter									ft
	(min.)	(ins. H2O)	(ins. H2O)	(ft/min.)	Temp (oF)	(ppmv)	(%LEL)	MW-4	PR3-S	PR3-D	PRZ-D	PRZ-S	Mw-8	MW-9	MW-7	Tank Veni
0801	0	0	0	0		4.110.00	0/0	0	.005	0	.01	.005	.01	·005	.01	
	Dilut	ion Val	re 100	% clos	ld; stor	t Blow	2 082	<u>р</u>								
	Suger	No Water	; Strep		- : Adiy	st bung	ss value.	050	2%	lose	<u>d</u> C	823	SUCKI	19 10	tte	
	Hđ	West Bup	as's to	20% 0	losed DE	126 1						·	1			
	,	- /'					•									·
0831	5	32	33/40	1500	82/110	1358/11.4/2.	8	0.80	1,30	1.50	.80	•75	0.25	.04	0	
0838	12	3/	32/40	laso	81/131	1383 / 1.8	100 %+	0.80	1.30	1.55	.85	.85	0.25	.06	.01	
0846	20	30	32/39	1250	84/ 131	1376 10	·	0.80	1.35	1.55	.85	.85	125	.055	- X-lana	
0901	35	30	31/38	1250	831139	1385/0		0.85	1.35.	1.55	.85	.85	125	.06		
0916	50	30	31/38	1250	841 144	14401010		.85	1.35	1.60	.85	.85	125	.05		.005
0931	65	30	31/38	1250	811 146	143810	х	.85	1.35	1.60	.85		.25		0.00	
01031	125	30	3//37	1250	78/157	1497 331/0		• 85	1.35	1.60	.90	.90	.25	.055	.005	
	" To	ok an	sample	. 1040		., ,										
- <u></u>	Open	diluto	I value	- 0º/0 C	osld (100	0% open	1045									
;t				,)									
1046	- 1.	19.5	19/28	1000	77/154	1337/0		0.60	1.0	1.20	.65	.65	175			
1104	19	19.5	19128	1000	801156	1383/0		0.60	1.0	1.20	.65	.65	175	.04		
107		````	,		*	,,										
	Ca	ik down	- 10 20	2/2 CLOS	ed again	- 11:08	•									
110	2	31	32/38			1465	685 mil	len								

DTW VP-1 = 9.25' 0708

Air sample 1396 ppm at effluent at 1040 - Destroyed an somple

- Whisperviolt Model DCA-40SSI SZ HP, 23 KW Generator (Dirsel)

PI

1

SOIL VENTING PILOT TEST FIELD DATA BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD. S.W. ALBUQUERQUE, NEW MEXICO

Vent Test Well.

1]

]

VP-1

]

"J. Z.]

]]

]

Date:	8.26.92
Measured by:	T.TINL/C.Briscol

ĵ

1

]

V

1

11 11 2-5 MW-4 MW-9 M 10 1.00 0.06	0
	0
	0
510507	
51.05 07 0	2
2 / 00 06	

Air Sample VP-1EH61 1207 3 bacop, 1953 ppm

1]]]] .	800 E] E PILOT TES S BRIDGE G RIDGE BLVE ERQUE, NEV	WPA SITE). S.W.	I A		1,1	I I F	.,]]
Date Measured b		8.25 T.T.M		15000	7		Air Sparge I		AS-1		200]
		omspargewalli	1					Ma Ma	mmer Sch del 105 5 cfm	100 p	SI NADDIR	
. 29 ft NW-8	43 ft MW-9	9 11 1 PR3	711 H PRZ	19.611 MW-4		<u>/c/ ft</u> MW-7	ft		hose 3/41		- 0	
						·····			/woter 7			
Time	Elapsed	Pressure at	Pressure at	Air flow at Sparge	Maniloring	Dissolved Oxygen	DTW	Vacor Coase	ntration at MP		Pressure at MP	
	Time (min.)	Regulator (psl)	Sparge Well (psl)	Well	Politi (MP)	atiMP (mg/l)	in MP (ft)	PID (ppmv)	LEL Meter (%LEL)	02 (%世纪)	(in H2O)	
D740	0	0	0	0	MW-9	0.2	9.32	503			0	
					MW-4	0.2	9.25/9.26	230			0	-
					VP-1 A5-1	<u> </u>	9,25	508 · NA		De la hour	+ 20-27/	ł
0836	inpressor	e warm up	ff		MW-8	1.6	9.06 9.80/9.81	25.7		10 tailin a	<u>+ 20-22 '</u> 0	{
0850	<u></u>				PR-35	NA	NA	359			0	1
					PR-3D	NA.	NA	76.6			0	1
Finish	- backg	spind Me	asurement	5	PR-25		NA NA	172	52		0]
0830					PR-2D	NA	NA .	57.4			0	
	•			· · · · · · · · · · · · · · · · · · ·	MW-7	NA	8.75	35.5	*		0	1
					ļ		· ·		10 A			-
Stort	an my	ert at o	901 at	5 psi		·····						\mathbf{I}
0904	3	5	NA	2:5-7.5								1

.275 .05 .05 2960 5208 4773 0914 13 5 2-7.5 VP-1 NA +100% ļ 15 -PR3-D PR3-S PR2-D • <u>|37|</u> |434 •175 •150 PRZ-S MW-8 •05 •05 840 1315 428 MW-4 2.005 MW-9 MW-7 36.1 435 511 371 ond 0934 0939 VP-1 PR3-5 PR3-5 MW-8 1.55 38 5 NA 2-6 p.15. 0.20 723

8:25:92 T. TINL/C sparge well to ment	loring politi (f)	fi fit	Air Sparge Testi	Weili <u>AS-/</u>	
T: TINL/C spargeswallstormanis	loring politi (t) (t)	fi fi	-		
fi	ft ft ft		ft		
fi	ft ft ft		ft		
	<u>Yan an a</u>	general de Marganet de la constant br>A constant de la const			
• · · · · · · · · · · · · · · · · · · ·					•
					1
	Air flow at	Dissolved	DEDA		Pressure
	ssure af Sparge inge Well Well	Menitoring Oxygen Point at MP	DITW Ver In MP	or Concentration at M PID LEE Mete	
	(psi) (scim)	(MP) (mg/l)			(%LEL)
		PR2-D		302	0.35
		PRZ-S		421	0.25
		MW-9		(139	0.00
5 1	VA: 2-6	MW-4	/	205	0.10
		VP-1		376	1,50
		PR3-D		441	0.20
	n an	PR3-S		602	Go /5
		MW-8		61	0.25
	1	PR2-D		359	0.40
· · ·		PRZ-5		512	0.15
		MW-4		292	0.05
		MW-9		120	0.00
			·····	01	
4,8 4	8 5.5-10.15	VP-1		28/	1.0
		PR3-D		566	.25
		PR3-5 MW-8	Ø	426	.20
				261	
· · · · · · · · · · · · · · · · · · ·		PR2-5		200	
		KKZ-D			0.40. 0.50 0.15
21-03	410 (-in E			285	0.15
301 316 1	MT 10-10.5		/	200	
· I	A 5-9.5	VD-	· · · · · · · · · · · · · · · · · · ·	05	2.8
<u> </u>		OR3-D		392	·45 ·35 ·85
5^		DR3-5		aur	135
<u> 5 </u>				44.5	
	5 /	5 NA 5-9.5	5.1-5.2 NA 6-10.5 MW-9	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

1))	3]]	800 B] E PILOT TEST S BRIDGE GV RIDGE BLVD ERQUE, NEW	VPA SITE . S.W.] A]]]]	p,3]]
Date: Measured by		8.25. T.TIN		1SCOR]		Air Sparges	estweik	AS-	/
ft	Distance froi ft	nsparge well to ft	lateleliojitelejeje j	ft ft	fi	ft	ft			
				1889 - Maria Mariana 1990 - Maria Mariana 1990 - Maria br>1990 - Maria Mari	•]		
Time	Elapsed Time	Pressure at Regulator	Pressure af Sparge Well		Menitoring Point	Dissolved Oxygen at MP	DTW in MP	Vapot Concar PID	LEL Meter	
	(min.)	(psi)	(psi)		MP) PRZ-D PRZ-S	(m9/l)	(ft)) 	(ppmV) 38/ 1270 //25	(%LEL)	0.80
erd III	3				MW-4 MW-9		jë.	1421		0,20 0,
					MW-4 MW-9 MW-8	0.2 0.2 5.1	9,20 9.29 9.40			
Adjust	Proposto				VP-I	6.2	9.75			
1134	······································	7.2	7.2	14-17						
1149	1.68.)	7.5	7.5	13,5-17-	VP-1 PR3-5 PR3-D	•	7. 7.	9999+ 9999+ 313		4.2 0.60 0.75
					MW-8 PRZ-D			203		1,35
	•	7.5	75	13:5-17	MW-4 MW-7			3263 1145 40,5		0.40 0.02
1207		7.5	7.5		MW-9	•		FAULT		0.02
123	Mate Pl 192)	2 + <u>riconed</u> 7.5	1010 7.5	13.5-17	PR3-S PR3=D			210 393, 187 381	· · · · · · · · · · · · · · · · · · ·	6.8 0.75 0.95 1.60
					PRZ-S		I	503		1.30

]	3	3]]	BARELA 800 E] E PILOT TEST S BRIDGE GV BRIDGE BLVD ERQUE, NEW	/PA SITE S.W.] A]]]	
Dates			5.92]		Air Sparge	est Well	As-	/
Measurediby		<u> </u>	INL /C.Br	<u>iscoe</u>	_					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	omeniloring po	[1]		2	ft	8		
ft	ft	fi	l fi	tt (t	fi	ft	I.C.			
				149-1347-149-149-149-149-149-149-149-149-149-149	•					· · · · · · · · · · · · · · · · · · ·
				Air flow at		Dissolved				Pressure
Time	Elapsed Time	Pressure at Regulator	Pressure at Sparge Well	Sparge Well	Monitoring Point	©xygen at:MP	DTRW In MIE	Vapor Concer PID	ntration at MP	at MP 02 (in H2O)
	(៣)៣)	(DSI)	(psi)	(S((f(t)))	(MP)	(()(9)())	(it)	(00mV)		(%LEL)
				- Description	MW-8			281		7:6
					MW-4 MW-9		· · · · ·	769.		/0.5 0.0Z
1233		7-8	7-8	13-17	MW-7			102		. 0.02
						. • .		2 T1		
1245	224	7-8		13-17-	PR3-S			383		7.0
		· · · · · · · · · · · · · · · · · · ·			PR3-D			194		1.0
				• • • • • • • • • • • • • • • • •	MW-8			140		6.9
					PRZ-D			230		1.60
					PR2-5			340		
				-	MW-4	· · ·	ļ	75/		0.50
					MW-7	•	· · · · · · · · · · · · · · · · · · ·	107- 1137		0.01
1300		7-7.5		15-18	MW-9	·		11 37		0.01
1317	256	7-8	· ·	14-18	VP-T			278.		6.6
					PR3-5 PR3-D MW-8 PR2-5		· .	793 184		0.825
					PR3-D			184		1.05
					MW-8			204	· .	8.6.
					PR2-5		<u> </u>	348		8.6 1.60 1.75 0.50
· · ·					PRZ-D			2/10		1. +5.
				· ·	- MW-4			766 157		0.005-0.01
1334	273	7.5-8		15-18	PRZ-D MW-4 MW-7 MW-7			1024	· · · · · · · · · · · · · · · · · · ·	0.905-0.01 D. 02-
12 4					VP-1	7.0	9,10			
	·				NW-4	0,3	9.25			
	•				MW-8	6.5	8.70	l	L	
	-				MW- ĝ	0.2	9.30			

<b>)</b>	] ]	]	<b>]</b> ]	BARELA 800 E	] E PILOT TES S BRIDGE G BRIDGE BLVI ERQUE, NEV	<b>Ģ. S.W.</b>	<b>]</b> A	] ]	]	<b>]</b>	<b>3</b> ] 5
Date: Measured b	/.	8.25.92 T. Tiul/C	. Briscoe/P:	564:4 (C. Sta	parsa		All Sparge I	est Well	AS:	-/	
fl		msparge wellitt ft	noniloring pol n		in in in its second sec	fi	ft.				
Fime	Elapsed Time (min.)	Pressure at Regulator (psl)	Pressure at Sparge Well (psl)	Aintiowiat Sparge Well (stim)	Monitoring Point (MP)	Dissolved Oxygen at MP (mg/l)	DTW in MP (ft)	PID	ntration at MP LEL Meter (%LEL)	02 (생반판)	Pressure at MP (in H20)
Adjust 1344	pressure	to 9,6psi	(200%)	19-22			<u>.</u>	· · · · ·			<u>.</u>
1400	299	9-10	9-10	20-22	VP-1	seal Ilak	ina	459			7.0.7
					PR3-D	·	0	415			1,3
					PR3-S			455			10
					MW-8			200			8,3 -
					PRZ-S			345			1. 75
			•	in the state of	PRZ-D			247			2.10
					MW14			715			0.625
					MW-7			209			0:02:
1408	End	9.10		20-22	MW -9			797			0,025
1429	328)	9.5-10		20-23	VP-1		· · · · · ·	402			9.00
			1.		PR3-D			299	1		1.40
			· ·	1	PR3-5			715			1.10
	•				MW-8			205			10.6 2.3
		····			PRZ-D PRZ-S MW-4			258			2.3
		7			PRZ-S			1679			1.8
			I		1MW-4		;	720			0.70
					1 MW-+			250			.015
1442				•	MW2-9			206 258 1679 720 250 733			0.025
1454	353	9,5-10		20-23	VP-1			363	100+	19.	9.3
<u> </u>					PR3-D			363			1.6
				1	PR3-5		<u>_</u>	274		1	1.2
terre al constantes a constantes de la constant	<u> </u>	······································		1	PR3-5 MW-9			221		•	1.2
•	_	•									

1 ] ] 1 1 Ip. 1 1 1 1 1 1 T 1 1 1 1 AIR SPARGE PILOT TEST FIELD DATA . BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD, S.W. ALBUQUERQUE, NEW MEXICO Air Sparge Test Well AS-1 8.25.92 Dates Measured by T. TINLI C. BRISCOL Distance from sparce well to monitoring point - A ft ft ft fi ft ft Dissolved Pressure Air flow at Vapor Concentration at MP at MP DTW Pressure at Sparge Oxygen. Time Elapsed Pressure at Manitoring in MP PID LEL Meter Time Regulator Sparce Well Well Point atMP 02 (in H2O) (%LEL) (%LEL) (MP) (mg/l) (ft.) (opmv) (psi) (psi) (scim) (min.) 353 2.0 PRZ-S 2.4 PRZ-D 267 MW-4 561 0.75 271 MW-7 ,015 1504 MW-9 689 .020 1513 9,5-10 20-22 VP-1 9.03 7.0 MW-4 9.25 2-13 MW-8 6.9 8.55 (1523 MW-9 9.30 12-13 • • MW-7 .2-.3 down connecture 1523 Surt 12 sallers VP-1 & Sampled dK snew - HC, Oder selter -1538 Purad Samplerl 1447 - Z UDAS 1 7KS = 1556 sparac piping from Unkinker 440) VP-215 0 1.621 81 MW-8 0  $\mathcal{D}$ PRZ-D 312 . 513 OPRZ-5 299 Ô PR3-5  $\overline{\mathcal{O}}$ 170 PR3-D MW-4 554 345 0 MW-7 AS-1 .8

] ] ] Ī ] ] ] B.∓ 1 1 1 1 ] ] ] ] ] AIR SPARGE PILOT TEST FIELD DATA **BARELAS BRIDGE GWPA SITE**  $t_{1}$ 800 BRIDGE BLVD. S.W. ALBUQUERQUE, NEW MEXICO AS-8.25.92 Air Sparge Test Well Date Measured by: T. TINL/ C. Brische Distance from sparge well to monitoring point fi - **(** - Alft ft ft ft Pressure Dissolved Air flow at DTW Vapor Concentration at MP at MP Time Pressure at Monitoring Oxygen Elaosed Pressure at Sparge Well at MP in MP PD LEL Meter 02 (in H2O) Point Time Regulator Sparge Well (ppmv) (%LEL) (%LEL) (psi) (psi) (scim) (MP) (mg/l) (ft.) (min:) 612 MW-9 0 1/P-1 3.2 9.35 MW-4 2.0 MW-8 • . , ·

#### AIR SPARGE/SOIL VENTING PILOT TEST FIELD DATA BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD. S.W. ALBUQUERQUE, NEW MEXICO

.

Air Sparge Test Well:	AS-1	
Vent Test Well:	VP-1	

.. ..

p.1

Date:	8.26.92
Measured by:	TITING C. Briscol

...

- 、

Time	Elapsed	Pressure at	Pressure at	Air flow at Sparge	Vacuum at Vent		Pre-Blower		Vapor Con. at Blower	Monitoring	Dissolved Oxygen	DTW	Vapor Conco	ntration at MP		Pressure/ Vacuum
	Time	Regulator	Sparge Well	Well	Well	at Blower	Reading	Blower	(eff) PID	Point	at MP	in MP	PID	LEL Meter	02	at MP
1011		(psi)	(psi) .	(scím)	(ins. H2O)	(ins. H2O)	(ft/min)	Temp (oF)	(ppmv)	(MP)	(mg/l)	. (ft.)	(ppmv)	(%LEL)	(%LEL)	(in H2O)
1245	0	0	0	0	0	010	0	87/80	88.4/0.	PR3-5		•	565	T	1	Ò
								/		PR3-D			162			0
										MW-8	0.5	9.79	1119			0
										PRZ-S			559 860			0
										PRZ-D			860			0
										MW-4	0.2	9.24/ #3A	210			0
					i					MW-9			475 549			0
										MW-7-			549			0
				Clark		1=1-										
				STUT	Blower	1310	PILUTO	n iou	Ne 50%	closed:	Start Co	reproser	4.5-10 p	si 1311-	D Pross in	wello
				SoutP	Jenner of	3 1312	- 180	ower o	2:500	6 pypas	2=13/5	· Comp	ason to	si 1311 7.5 psi		
1327	12	7.7.5	7-7.5		11	Sec. 2. 8			1			5 1		1		
Der	10	7.7.5	7-715	14-18	44	45/49	1500-1600	74/169	1226 /14.8	MW-8	1		16.50			+.20 475 50
<u> </u>								<b>I</b> ^	1	PR3-S		•	0			475
									1	PR3-D			0			50
									1,	PR2-S			650	-		t-10:
									1	PR2-D			777.			+,25
									-	MW-4			7			20
									1	MW-9			445			005
12110									1	1400-7		20 5	640			0
1342									146	MW-8						10.85
1348	33	7-7.5	2-7 6	111 10 0												:
1570		7-7.5	7-7,5	14-17.8	4.1	42/48	1500	74/ 172	1549/64	PR3-D PR3-S			0			-0.50
						- 1			.'				512			-0.50
										MW-8			1891			1+3.4
										PRZ-S			1145			+.35
										PRZ-D			1389			+.55
										MW-4			240			122
· · · ·										MW-9			240			102
		Chart	en / Ca	tom to	00				/151	MW-7			529			+.025
L		narg	cout can	NON 1	107 35	ysiem	en h	nish	14/2							

#### AIR SPARGE/SOIL VENTING PILOT TEST FIELD DATA BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD. S.W. ALBUQUERQUE, NEW MEXICO

Date:	8.26.92	
Measured by:	T. TINL/C. Briscoe	
	1. 11:- 0: 011300-0	-

-

Air Sparge Test Well:	AS-1	*
Vent Test Well:	VP-1	

Time	Elapsed	Pressure at	Pressure at	Air flow at Sparge	Vacuum at Vent	Pre/Post Vacuum	Pre-Blowe	r Pre/Post	Vapor Con. at Blower	Monitoring	Dissolved Oxygen	DTW	Vapor Concer	stration at MP		Pressure/ Vacuum
	Time	Regulator	Sparge Well	Well	Well	at Blower	Reading	Blower	(eff) PID	Point	at MP	in MP	PID	LEL Meter	02	at MP
	(min.)	(psi)	(psi) 7-7,5	(scfm)	(ins. H2O	(ins. H2O)	(it/min)	Temp (oF)	(vmqq)	(MP)	(mg/l)	(ft.)	(ppmv)		(%LEL)	(in H2O)
1421	66	7-7.5	7-7.5	14-18.5	40	41/47	1500	72/166	1610/0	PR3-D		·····	11			-,65
										PR3-5 MW-8			195			-0.60
										MW-8			626			-0.60 711,25
										PRZ-D		9	564			+0.65
						1				PRZ-S MW-4			878			+10.40 33 +.015 03
										MW-4			20.5			33
										MW-7			584			1.015
11/10										MW-9			270			03
1442			Contractor and		1 000	-1-			1731 1443							
					Colle	tod an	Sange	p. at	1443	VPI-EBZ	- (Ibag	) .				
				01:00		1	and the second second second		mint		v					
1444			4.9-6.0	Adjusto 2-5.5	comp	posor r	0.9.8-	S psi	1949				-			
1515	120		5.0	2-5.5	39	20/11	11100	01/122	105110	02-5						
	100	1.	5.0	0-2.2	- 39	39/46	1900	81/172	185110	PR3-D			5.5			-1.75 - -1.55
									and the second s	PR3-S			209			-1.55
									1	PR2-5			1324			-0.70.
				and the second se			124-12			PR2-D			1961			-0.70 -0.55 +1.00
										MW-8			410			+1.00.
										MW-4			134			-1.0
-										MW-9			447- 531			06
										MW-7			531			$t,\infty s$
					Increa	had	acuin	1.10	a M	1 1000			1		×	
					moutu	per v	mun	12:00	10 000	a 1565	LIVIAX poss	ible wp	ut orecheat	ing blown	)	4 66
1527			4,9-5.0							MW-8				-´		+.55
1531			-11-510	0.5	7		1790		1863							
1527- 1531 1555	160 .	,	5.0	2-55	43	45/51	1700	88/191	1953/0	MW-8			1210			1.00
						1400	1700	00/17/	135/0	PR3-D			1210			0.00
										PR3-5			90.5			-1.75 -1.50
										PR2-D			34			- 77
			,							PRZ-5			1500+			725

· · · · · · · · · · · · ·

p.Z

...........

#### AIR SPARGE/SOIL VENTING PILOT TEST FIELD DATA BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD. S.W. ALBUQUERQUE, NEW MEXICO

Date:	8.26.92	
Measured by:	TITINL	

Air Sparge Test Well:	AS-1	
Vent Test Well:	VP-1	

Time	Elapsed	Pressure at		Air flow at Sparge	at Vent	Vacuum	Pre-Blowe Anemom.	Pre/Post	Vapor Con. at Blower	Monitoring	Dissolved Oxygen	DTW	Vapor Conce	entration at MP		Pressure Vacuum
	Time (min.)	Regulator (psl)	Sparge Well (psi)	Well (scfm)	Well (ins, H2O)	at Blower (Ins. H2O)	Reading	Blower	(eff) PID (ppmv)	Point (MP)	at MP (mg/l)	in MP (ft.)	PID (ppmv)	LEL Meter (%LEL)	02 (%LEL)	at MP
										MWY			308			-1.05
							·			MW-7			308 645 188			1000
606										MW-9			188			-,07
000										MW-8	7.5	9.95				
75					Jack	an co	mpiloo	n to 1	0 p51 /61 /531	/						
25									1531							
BZ	197	10-10.5		21 -21		31.50 St. 1.		,	/138							
200	_///	10-10.5		21-24	48	49/53	1700	88/195	1602/242	MW-8			1799			+1.50
							2	/		PRZ-S			1419			+ 100
						5	_			PRZ-D			969			+.60 +.90
_									1-1-	MW-4			174			-0.10
				• •					1.	PR3-5	•		205		× .	-,25
										PR3-D			.34.6 659 636			25
					<u></u>					MW-7			159			
										MW-9			636		•	7.05
										MW-8	7.3	9.75				
43					· \				1661							
50	ZIS							,	1001.	10-1	/ 7	0.5/				
										VP-1	6.3	9.36				
	1		1. P. 1.							PR3-5				4.8 TD 7	TOC _	
			5							007 0				5.10 6roun	d	
1. 2	2 · · ·									PR3-D				9.15 TD	9.50 Grai	and .
										PRZ-5				4.85 TD TO	2 5.15	brnd.
										PRZ-D				5.10 6104 9.15 TD 4.85 TD TO 8.70 TD	WC 9,2	Grnd
	· ·			н				1					-	· · · ·		
1												in the second second				

p.3

# **APPENDIX F**

# AIR SAMPLE LABORATORY CERTIFICATES OF ANALYSIS AND CHAIN-OF-CUSTODY DOCUMENTATION AUGUST 26, 1992

NMED/BB bb.rap





Southwest Region 20000 / 300 Mariner Drive Torrance, CA 90503 (310) 371-1044 (800) 727-GTEL Fax (310) 371-8720 RECEIVED

OCT 1 9 1992

GTI, NM

GTEL Client Number: 023352875 Project I.D.: NMED/ Barelas Bridge Work Order Number: T208215

October 16, 1992

Ms. Terry Tinl Groundwater Technology, Inc. 2501 Yale Blvd. SE, Suite 204 Albuquerque, NM 87106

Dear Ms. Tinl,

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 8-26-92 under chain-of-custody record 74-6941.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified by the state of California under Certification #E723.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

GTEL Environmental Laboratories, Inc.

Soug/smc uson

Minsoon Song Laboratory Director

GTEL Torrance, CA T208215.DOC

GTEL Client Number: 023352875 Project I.D.: NMED/ Barelas Bridge Work Order Number: T208215

# ANALYTICAL RESULTS

## Volatile Organics in Air EPA Methods Modified 8020 and Modified 8015^a

in a second s Second second s Second second	GTEL Sample Number	08215-1A	08215-2A	
	<b>Client Identification</b>	VPI-EFF1	VPI-EFF2	
	Date Sampled	8-26-92	8-26-92	
	Date Analyzed	8-27-92	8-27-92	
Analyte	Reporting Limit, mg/m ³		Concentrat	ion, mg/m ³
Benzene	0.5	220	650	
Toluene	0.5	79	110	
Ethylbenzene	0.5	52	110	
Xylene, total	0.5	52	130	
BTEX, total		400	1000	
TPH as Gasoline	50	26000	32000	
Dilution Multiplier ^b		1	1	

a. Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, US EPA November 1986. Modification for TPH as gasoline as per California State Water Resources Board LUFT Manual procedures.

b. Indicates the adjustments made for sample dilution.



	]	]	3		]		1					]		]		-	]		]			]		]			1			]		]		]		]
		GTE		101 11dw 211	RR Way	400 ogie	C.E 209	1	CA	•		300-6	633-79	)36		CHA NNC	NN D A	-OF NAI	-CL LYS	IST IS Fi	OD NEG	Y R QUE	EC ST	OR	<b>0</b> ]	N		74	-{	<b>594</b>	1		CUS	TODY	Y REG	CORD
		VIRONMEN BORATORIES,	TAL W	/ichit	a, KS	<del>3 07</del>	209			F/	AX 3	316-9	945-05	606							AN/	ALY	SIS	RE	QU	JES	T						•		6	3
ľ	Project Ma	nager:	•				F	hon	e #: ;	505		टप	2-3	13				Т		<u>j</u>	Γ		Τ	Τ					Ī	0		-3	14		2	2
	TE	RRYT	INL_		<del>,</del>		F	AX	<b>#:</b>	508	<u> </u>	дy	2-1	103	,	ATBE			503A 🗆	ŝ					cide	l§		Lead		Reactivity 🗆		>	2 9 - 9			~
		rovidua	th Tech	ind		4	S	ite l	ocati D	on: \$ A/b(	300 2001		rict. Au	1103 e Blu e NY	ľ 🗆	50									Herbicides	Semi VOA	HSLD	ğ		Head			5-4P			2≡ ' ⊘#
ŀ	AT DE	guilgu	e, was	g	Ħ	26									1BE	108/0	Fuel		413.2 🛛			Ъ Го	14	2   K	31			2					Ż		12	Way bill
	•		5.040	066	54		NA	le	D/	Ba	rel	las	Bri	idge	with MTBE	BTEX/TPH Gas. 602/8015 [] 8020/8015 [] MTBE []	D Jet Fuel		l é	DCA only D		PCBs only	NDC 416		Pesticides			LEAD 7420 🗆 7421 🗖 239.2 🗆 6010 🗆 Org. Lead 🗆		Flashpoint D			]			≥ /
ŀ	I attest that	the proper fi	ield sampling				S	amr	lor N	lamo	(Pri	nt):		•	3	015 C		Product I.D. by GC (SIMDIS)	Total Oil & Grease: 413.1 🛛 Total Petroloum Hudrocarbor						estic	NOA 🗆	EPA Priority Pollutant Metals	239.2					12	•	Š	
	of these sa		luring the col	iectic	n		T	h	ug	K	<u>B</u>	<u>r[S</u>	CO	<u>e</u>	8020	502/8	Diesel	C (S	9 4 4								utant	5		TPH			16		Received by Laboratory;	
	Field Sample	Source of	GTEL Lab #	EBS		Mat	rix			letho eserv			Sam	pling	8	Gas.	as	βÂ	Greas	EPA 601 0 8010 0	EPA 602 🗆 8020 🗆	0808 8080	EPA 610 0 8310 0		EPTOX: Metals		Pol	7							Lab	Å
	ID	Sample	(Lab use	TAIN	~		щ				Т	<b>.</b>			11 202	ТРН	0	<u> </u>	Dil & (		20				Wei	Metal	lo it	7420	Aetals			Å V		p p	Â	الإر
			only)	# CONTAINERS	ATE		SLUDGE	0	-Son H	H SO	NON	OTHER	DATE	TIME	BTEX 602 🗆	TEX	TPH as 🗆 Gas	ňpo		PA 6	PA 6(	EPA 608 🗆	PA 6		١Ô	TCLP Metals	PAP	EAO	CAM Metals	PTEX .		- avrie	Building of	Received by:	Seive	N.S
<u>;</u>  ;	IPI-EF7	21		2	1-1-	א א	1 S C		Ξ	ΞļΞ				1207			-	•		·   Ш	Ш	ш					<u> </u>				$\left  \right $	┦₫		Hec	<b>B</b>	1 1
r	VPI-EFF			19	┼┼	k		┢			╉╍		2692	7442		$\left  - \right $			+	+		$\left  \cdot \right $	+	╋	┼╴	╈	+	+	+	Ŕ	╢╌┼╴	-[	5	-		08:45
1		Ø		1	$\uparrow \uparrow$	T		╀╴						111-		$\square$							╈			┢	$\square$		$\uparrow$				6ht	Lime	Time	
ſ																																		t		ő
					$\downarrow \downarrow$													_							$\perp$				$\downarrow$		$\square$		5	6	6	8/27/92
-					$\downarrow$							$\square$						_		_					-	_			$\downarrow$		$\square$	Date	592.	Date	Date	27
┝					++	+-	┝╌┠╴	-			-							-	_	-						-		_		_			40			8
┢					┼┼	+-	┠╌┠╴	┝	$\left  \right $	+	+	$\left  \right $				$\left  \cdot \right $			┿	┢	-		╋	┾╸	┼╌	┢		-+	┽		┝╌┼╸	-		ļ		
┢					┼┼	+-	┠╌╂╴	┢	$\square$	+	+	$\vdash$	<u> </u>				_		+-	+				┿	┼─			-+	-							
ŀ						╋		┼─		+	╀╴	$\left  \right $				$\square$		+	╈	+	-			+	+				╈			-				
ľ		SPECIA	L HANDLIN	IG			<u> </u>		S	PECI	- <b>L</b>	DETE	CTIO		TS (	(Spe	cify	)		REN	/AR	KS:	F	ed	les	ـــــــــــــــــــــــــــــــــــــ	#	-				iolec –	$\mathcal{D}$			
			<b></b>																		6:	7-0	,8'	95	22	20	8	$\mathcal{D}$				Samol	518			
		DITED 48 H																		ł	Č I	14	U	ι	<del>ر</del> ر		-	-				A p		٢	ă	
	OTHE		(#) BUSII	NES	SDA	YS		_			-								.   .													Relinauinshed	Ä	shed	Relinquished by:	
			vel 🗆 🛛 Blue							PECIA pecify		EPC	RTIN	g rec	UIR	EME	ENT	S		Lab I	Use	Only	1	S		-		tion					B	Relinquish	į'np	
	FAX D TAT	AS NOL	ded to Me_	<u>)</u>	NU	et	-													Lot #	:			<b>T</b> .				er #:		15	•	Relir	١	Relir	Relir	
-	hold	ing th	Me_																																	

]

a	The # 1 4	1. J. S. S. S.		SENDER'S COP	<b>4</b>
From (Your Name) Please Print	A ) Pour Phone N	umber (Very Important)	To (Recipient's Name) Plea	se Print	Recipient's Phone Number (Very Impor
Company	SHNULDGY INC	Department/Floor.No.	Company	Environmen	tzel Lab
Street Address	SE STE 204	A-W (an Induction) C (k) As Malica	Exact Street Address (We Ca	not Deliver to P.O. Boxes or P.O. Zin · Codes.)	. Ste 300
City ALBUQUERQUE	State ZIP Requir	108	TO RHEPAR	State ICENTRALENAL	SC SC S
YOUR INTERNAL BILLING REFERENCE INFORM	ATION (First 24 characters will appear on involce	Year and	Street	FOR PICK-UP, Print FEDEX Address Here	and por
PAYMENT 1 Bill Sender , 2 Bill Recipient's	a FedEx Acct. No. 3 Aiii 3rd Party FedEx Acct. I	No. ) 4 Bill Credit Carc	City	Slate	ZIP Required
SERVICES (Check only one box)	DELIVERY AND SPECIAL HANDLING	PACKAGES WEIGHT	YOUR DECLARED OVER SIZE	RVICE CONDITIONS, DECLARED VAL AND LIMIT OF LIABILITY	LUE Federal Express Us Base Charges
Priority Overnight Standard Overnight Service	1 HOLD FOR PICK-UP. (Fill in Box H)	ei de la serier o	Use of thi in our cu sender's	s airbill constitutes your agreement to the service rrent Service Guide, available upon request. S copy of this airbill for information.	ee beck of Declared Value Charc
(Delivery by next business morningt) business afternoon()		All Dicession and a second strategy of the se	State of the second state	the reenoneble for any claim in excess o	f \$100 per
11 DE PACKAGING 51	3 DELIVER SATURDAY (Extra charge)	1 - Warder - Article	an addit claim, M	Note of response to the second of the second	or a timely of a timely of Federal
Contrational Maller man Backenser on	A DANGENUUS GUUUS (Extra charge)		CALICOSA	or any loss including intrinsic value of the nack	age loss of Other 2
16 FEDEX LETTER * 56 FEDEX LETTER * 12 FEDEX PAK * 52 FEDEX PAK *	4 DANGEROUS GOODS (Edita charge) (CSS not available for Dangerous Goods Shipment (CSN starts available for Dangerous Goods Shipment 5 July (Constants) (Reises Scharture Not Accounting)	Total Total	Total sales, inc	ome interest, profit, attorney's fees, costs, and oth	her forms of
16 FEDEX LETTER * 56 FEDEX LETTER *	MANGTANT CURVENT ANCE OUT (CCC)		to the gr Recovery	Service Guide, apply, Your right to recover, fro or any loss, including intrinsic value of the pack one interest; profit, attorney's fees, costs, and of whether direct, incidental, consequential, or spec- sater, of \$100 or the, declared value specified cannot exceed actual documented loss. (19)	Total Charges
16 FEDEX LETTER * 56 FEDEX LETTER * 12 FEDEX PAK * 52 FFEDEX PAK * 1.	5 CONSTANT SURVEILLANCE SVC. (CSS) (Extra charge) (Release Signature Not Applicatie):	Total Total	weight Services Only)	ater of \$100 or the declared value specified cannot exceed actual documented loss (15) int of untimely delivery, Federal Express will at y come limitations, refund all transportation charge	Total Charges
16         FEDEX LETTER * 56         FEDEX LETTER *           12         FEDEX PAK *         52         FEDEX PAK * ***           13         FEDEX PAK *         53         FEDEX PAK * **	6 DRY CC	Total Total	weight Services Only)	cannot exceed actual documented loss, 173-1	to the ten. Total Charges spaid See REVISION DATE 11/89 DOT MUSCI FOR 11/89

and the set and the set and the set and the set and the set and the set and the

SENDER'S COPY

٢



Northwest Region 4080-C Pike Lane Concord, CA 94520 (510) 685-7852 (800) 544-3422 from inside California (800) 423-7143 from outside California

(510) 825-0720 (FAX)

Client Number: 023352875 Project ID: 800 Bridge Blvd. SW Albuquerque, NM Work Order Number: C2-08-679

September 11, 1992

RECEIVED

SEP 1 4 1992

GTI, NM

Terry Tinl Groundwater Technology, Inc. 2501 Yale Blvd. SE, #204 Albuquerque, NM 87106

Enclosed please find the analytical results for samples received by GTEL Environmental Laboratories, Inc. on 08/27/92, under chain of custody record 74-2075.

A SHORAG

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria, unless otherwise stated in the footnotes.

GTEL is certified by the California State Department of Health Services to perform analyses for drinking water, wastewater, and hazardous waste materials according to EPA protocols.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

GTEL Environmental Laboratories, Inc.

Eleen F. Bullen / R.M.

Eileen F. Bullen Laboratory Director

# Table 1

# ANALYTICAL RESULTS

# Methane, Carbon Dioxide, and Oxygen in Air

# Method: GC-TCDa

GTEL Sample Number		01			
Client Identification		VP1-EFF1			
Date Sampled		08/26/92			
Date Analyzed		08/31/92			
Analyte	Detection Limit, ppm-V		Concentra	ition, ppm-V	
Methane	20	3800			
Carbon dioxide	20	18000			
Oxygen	20	180000			
Quantitation Limit Multiplier		1			



ENVIRONMENTAL LABORATORIES, INC. ι.

			On	CU.	J	17	A													NEC(	DRD	1	10	7	' <b>4</b> -	-2	07	5	CUE	STODY RECORD		D	
		42	11 M Ichita	av Av	/enue	9			FAX	800- 316-	633-79 945-05	36 06	A	ND	AN	ALY.	515		AUE	is i Isis	REC	QUE	ST		•		:		<u> </u>	Τ			
Project Man TERY Address: G Address: G Addre	hager: 24 T./N Aundu UL Olva Juliguu Moer: 52875 the proper fil	L SE, St , OHOG eld sampling	еси 84 64		N N	FA Site Pro	X #: a loc 3 J J J ject E D mple	S( ation: 200 Name / B	15- 150 150 150 150 150 150 150 150 150 150	-24 2 Bi 1910 1911 Vint):	2-3 2-1 ridg 1, 1 2 Bi	103 e VM	with MTBE 🗆		Sei L Jet Fuei MDIS) D	t13.2 🗆		DCAonly	PCBs bring	All the second	Placet Sen	s C Hendi		1 2292 1 6010 1 C Lead 1	атс	- <b>LL</b> I '	memana					tory. Avay bill #	KAUL
of these sar		•	1				·B		_	9e					LI Diesel	ase: 41	n Hydn				8270 0	tals (		7421	ם shc		7					abora	13
Field Sample ID	Source of Sample	GTEL Lab # (Lab use	# CONTAINERS	WATER	Aatri:	OTHER >		Pres OSH	erve I I	<b>_</b>		pling WI	BTEX 602 C	BTEX/TPH Gas.	TPH as Cas LUesel UJ	Total Oil & Grease: 413.1	tion tion				EPV 625 B 8	З,	TCLP WITH L			Comosivity []			Received by:	Received by:		Received by Laboratory.	) km
IPI-EFF	F1 (	31	1	50	X	<u>"</u> 0			Ē		8.264	1207							×					1			X	1	<u> </u>			œ	×
																							+						Life Life	HING P		Time	11.2
										+-						+									Ĺ		1		Date	<u>C6-1C7</u> Date		Date	7 64
	· · ·									$\top$								1					1			Z				3" 2			R
					╁┤		2			+-													+		0	XX 1.			-				
				$\left  \right $	┼┼	╉	┝╌┼	+-			+		┼──	$\left  \right $		+										H							
EXPE SEVE OTH	OURS [] EDITED 48   EN DAY [] ER	(#) BUS	INES									, bí hat	く	5					ARKS	71		LU 78							Relinquinshed by Sampler.	S S		Relinquished by:	
FAX	DC CLPL	evel 🗆 Blu - TIA-	ie Le	vel (	]				ecify							,		.ot #:					-	)rder	•				Relind	Relinquishe		Reling	

OUESTI ADM B7L69 Sender's Federal Express Account Number	STIONS? CALL 800-238-5355 TOLL FREE.	LL FREE.			
1210-038546	26.96.3	and the second second second		SENUER S CULI	
From (Your Name) Please Print		Your Phone Number (Very Important) To (Recipient's Name). Please Print, <b>605 - 242 - 311 3</b>	Scipient's Name	たいしょう	Recipient's Phone Number (Very Important)
COMPANY U CANDAN CANDAN CANDANA	LOGY INC	Department/Floor No. Comp	731	OFEL ENVIRTHINGEL	Department/Floor No.
Street Address 2501 VALE BLVD SE	E STE ROA	Exact	Street Address	East Street Address (Me Amont Deliver is P.D. Bours or P.D. Zo . Cotta) S. H C.	6-0
ALBUQUERQUE	State ZIP Required NM	ZIP Required City	12.5	oncond CAssie	ZIP Required 20
OUR INTERNAL BILLING REFERENCE INFORMATION (FI	((Filst 24 character) will appear on invoice.) L-) (, (, (, (, )))	A CARL		IF HOLD FOR PICK-UP, Print FEDEX Address Here	
PANNENT. 1 Service: 2 Bill Recipient's FedEx Acct. No 3 Bill 3rd Party FedEx Acct. No 4	Acct. No 3 Bill 3rd Party FedEx Acct, No	Date Credit Card	16.27	City	ZIP Required
SERVICES (Check only one box), HAVAN, REA	DELIVERY AND SPECIAL HANDLING	MCKGES MEIGHT TOUR D	TOUR DECLARED OVER	SERVICE CONDITIONS, DECLARED VALUE AND LIMIT OF LIABILITY	
12 - 1 - 2			· 中 · · · · · · · · · · · · · · · · · ·	Use of the activity current control of the activity of the act	More Base Charges incode Dectared Value Charge Dectared Value Charge herry herry Othor 1
FEDK LETTEN' 56FEDK LETTEN'A 	Control of Contro	Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total	Constanting of the second s	Express Service Guide apply. You right to rescent the reverse terms resolution for the relation of the relation of the reverse service the relation of the relation of the relation of the relation asset. Increment length, the relation of the relation of the relation of the gradient of the relation of the relation of the relation of the gradient of the relation of the relation of the relation of the gradient of the relation of the relation of the relation of the gradient of the relation of the relation of the relation of the gradient of the relation of the relation of the relation of the effect of the relation of the relation of the relation of the effect of the relation of the relation of the relation of the effect of the relation of the relation of the relation of the effect of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relation of the relat	Adria
	Strutter of the second s	Received Stop 3		service on the strength and the answer of the strength of the	1350 REVISION DATE 1109 PART HENSIS FXEM 1700 FART 11501 FXEM 1700 FORMAT 1014 01401 FXEM 1700 01401 FXEM 1700 014000 014000 01400000000000000

# SENDEB'S COPY

L

-¢-

.

# **APPENDIX G**

# AIR EMISSIONS CALCULATIONS

NMED/BB bb.rap



# **AIR SPARGE/SOIL VENT PILOT TEST** HYDROCARBON MASS EXTRACTION RATE CALCULATIONS **BARELAS BRIDGE GWPA SITE** 800 BRIDGE BLVD., S.W. **ALBUQUERQUE, NEW MEXICO** AUGUST 26, 1992

Air sample effluent analytical data were used to calculate maximum extraction rates for the soil vent and the combined air sparge/soil vent pilot tests on well VP-1 (analytical data attached).

$$ER = Q \times C \times \frac{28.32l}{ft^3} \times \frac{lb}{454 \times 10^8 ug} \times \frac{60 \text{min}}{hr}$$

Where:

ER = Extraction rate (lb/hr)

- Q = Air velocity under standard temperature and pressure conditions (scfm) C = Soil vapor concentration (ug/l) (1 mg/m³ = 1 ug/l)

and final three terms are conversion factors

$$SCFM = cfm \times \frac{P_{field}}{P_{lab}} \times \frac{(T_{lab} + 460^{\circ}R)}{(T_{field} + 460^{\circ}R)}$$

Where:

cfm	=	Air velocity in cubic feet per minute (fpm x $\pi$ x r ² )
P _{field}	=	Pressure in field (in inches of mercury)
Plab	=	Standard Pressure (29.92 inches Hg at sea level)
T _{field}	=	Average Temperature in field (°F)
T _{field} T _{lab} °R	=	Standard Temperature (60°F, standard laboratory temperature)
°Ř	=	Temperature in Rankin
P _{field}	=	25 inches Hg (average for Albuquerque, NM; National Weather Service)



## AIR SPARGE/SOIL VENT PILOT TEST HYDROCARBON MASS EXTRACTION RATE CALCULATIONS BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO AUGUST 26, 1992 (cont.)

١.

SVES Extraction Rate Calculations - Well FSY-7-Vent Pilot Test

- Air sample VP1-EFF1 collected 221 minutes (3.7 hours) after start of soil vent test at 43 inches water vacuum.
- Air sample VP1-EFF2 collected 92 minutes (1.5 hrs) after start of combination air sparge/soil vent test at 7 psi and 40 inches water vacuum.

Extraction rates in pounds per hour (lb/hr) were calculated in the following manner:

- A. <u>TPH-as-Gasoline Calculations</u>
  - 1. Sample VP1-EFF1

$$(106scfm) \times (26,000ugl) \times 3.74 \times 10^{-\infty} \frac{l-lb-min}{ft^3-ug-hr}$$

= 10.3 lb/hr TPH-as-Gasoline

2. Sample VP1-EFF2

(107scfm) x (32,000ugl) x 3.74 x 
$$10^{-\infty} \frac{l-lb-min}{ft^3-ug-hr}$$

- = 12.8 lb/hr TPH-as-Gasoline
- B. Benzene Calculations
  - 1. Sample VP1-EFF1

(106scfm) x (220ugli) x 3.74 x 
$$10^{-10}$$
  $\frac{l-lb-min}{ft^3-ug-hr}$ 

= 0.09 lb/hr Benzene

NMED/BB bb.rap



AIR SPARGE/SOIL VENT PILOT TEST HYDROCARBON MASS EXTRACTION RATE CALCULATIONS BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO AUGUST 26, 1992 (cont.)

2. Sample VP1-EFF2

 $(107 scfm) \times (650 ugl) \times 3.74 \times 10^{-6} \frac{l-lb-min}{ft^3-ug-hr}$ 

= 0.26 lb/hr Benzene

C. <u>Toluene Calculations</u>

1. Sample VP1-EFF1

(106scfm) x (79ugl) x 3.74 x  $10^{-\infty} \frac{I-Ib-min}{ft^3-ug-hr}$ 

= 0.03 lb/hr Toluene

$$(107 scim) \times (110 ugl) \times 3.74 \times 10^{-\infty} \frac{l-lb-min}{ft^3-ug-hr}$$

= 0.04 lb/hr Toluene

D. <u>Ethylbenzene Calculations</u>

1. Sample VP1-EFF1

$$(106scfm) \times (52ugl) \times 3.74 \times 10^{-6} \frac{l-lb-min}{ft^3-ug-hr}$$

= 0.02 lb/hr Ethylbenzene

NMED/BB bb.rap



# AIR SPARGE/SOIL VENT PILOT TEST HYDROCARBON MASS EXTRACTION RATE CALCULATIONS BARELAS BRIDGE GWPA SITE 800 BRIDGE BLVD., S.W. ALBUQUERQUE, NEW MEXICO AUGUST 26, 1992 (cont.)

2. Sample VP1-EFF2

$$(107 scfm) \times (110 ugll) \times 3.74 \times 10^{-\infty} \frac{l-lb-min}{ft^3-ug-hr}$$

= 0.04 lb/hr Ethylbenzene

E. <u>Total Xylenes Calculations</u>

1. Sample VP1-EFF1

$$(106 scfm) \times (52 ugl) \times 3.74 \times 10^{-6} \frac{l-lb-min}{ft^3-ug-hr}$$

= 0.02 ib/hr Total Xylenes

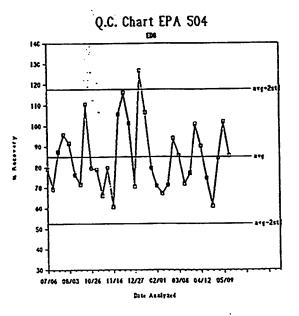
2. Sample VP1-EFF2

$$(107 schm) x (130 ugh) x 3.74 x 10^{-10} \frac{l-lb-min}{ft^3-ug-hr}$$

= 0.05 lb/hr Total Xylenes



# **APPENDIX I**


# GTEL ENVIRONMENTAL LABORATORIES QA/QC PLAN AND EPA PROFICIENCY TEST RESULTS

NMED/BB bb.rap



# GTEL QA/QC Plan Synopsis

Issue Date: August 1, 1990



# Table of Contents

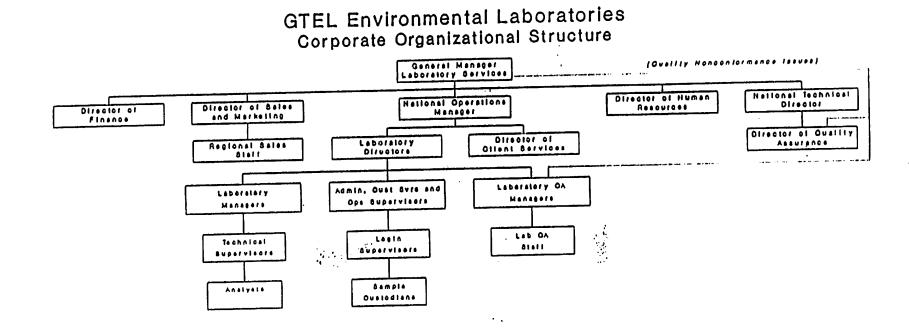
	1
1 Introduction	1
Qualty Deligy	1
Fields of Testing Covered	1
	•
	2
2 Organization and Responsibility Responsibility for the Quality Assurance System	2
Responsibility for the Quality Assurance System Quality Assurance Officer Organizational Structure	2
	2
Organizational Structure Senior Management	2
Regional Management	2
Regional Management	
	3
3 Quality Assurance Objectives Precision	3
Precision	3
Accuracy	3
Accuracy Representativeness	3
Representativeness Completeness	3
Completeness Comparability	
4 Systems Quality Assurance	3
4 Systems Quality Assurance	3
Required Equipment	5
Sample and Reagent Storage Temperature Monitoring	5
Sample and Reagent Storage Temperature Worktowng Reagent Water Quality Glassware Cleaning Cleaning of Sampling Containers	5
Glassware Cleaning	5
Cleaning of Sampling Containers	5
Sampling Quality Assurance	5
Sampling Quality Assurance Recommended Containers, Preservation, Holding Times	J
5 Sample Custody and Handling	10
Sample Receiving Documentation	11
Documentation Sample Identification Sample Tracking and Management Confidentiality	11
Sample Tracking and Management	12
Confidentiality	12
Security of Project Data and Samples	12
Confidentiality Security of Project Data and Samples Sample Disposal	12
Sample Dispose	
	. 13
Periodic Calibration Records	. 13
The state of Collimation Reference Materials	
Standards Preparation Generation and Acceptance of a Standard Curve	. 13
Generation and Acceptance of a Standard Carto manufacture	
7 Analytical Procedures	. 14
Method Descriptions	. 15
Method Descriptions Laboratory Reference Documents	. 17
Standard Operating Procedures	. 19
Standard Operating Procedures	. 19
8 Data Collection, Reduction, and Reporting	. 19
Report Revisions Records Retention	22
Records Hetention	

.

	22
Quality Control QC Frequency	22
QC Frequency	22
Quality Control Program Elements	22
Method Detection Limit	~~
	25
0 Audits	25
External Audits	25
Systems Alidits	25
Report Audit	25
Blind Sample Audits	23
1 Preventative Maintenance	25
	25
12 Procedures to Assess Data Quality	26
Precision	26
Accuracy	
Representativeness	26
Completeness	26
Comparability	26
Detection Limit	26
Method Control	27
Method Control	
13 Corrective Action	27
Initiation and Completion of Corrective Action	27
Inflation and Completion of Conective Action	27
Feedback Systems	
14 Quality Assurance Reporting	27
Report QA Deliverables	27
Report UA Deliverables	28
Periodic Reports	28
Reports to Management	

.

4


.

•

•

•

÷



. •

# **Revision No: 3**

# **3 QUALITY ASSURANCE OBJECTIVES**

The following GTEL Environmental Laboratories quality assurance objectives are described below: precision, accuracy, representativeness, completeness, and comparability (PARCC).

#### Precision

The laboratory objective for precision is to equal or exceed the precision demonstrated for these analytical methods on similar samples and to meet or exceed precision data for these analyses published by the U.S. EPA. Precision is defined as the degree of reproducibility of the measurements under a given set of conditions. Precision is documented on the basis of replicate analyses.

#### Accuracy

The laboratory objective for accuracy is to equal or exceed the accuracy demonstrated for these analytical methods on similar samples and to perform better than the recovery data published by the U.S. EPA. Accuracy is defined as the bias in a measurement system. Accuracy is documented on the basis of recovery of matrix spikes, and spiked reference materials introduced into selected samples of a particular matrix.

#### Representativeness

The laboratory objective for representativeness is to provide data which is representative of the sampled medium. Representativeness is defined as the degree to which data represent a characteristic of a set of samples. The representativeness of the analytical data is a function of the procedures and carefulness used in processing the samples. The representativeness can be documented by the difference between separately procured, but otherwise identical samples or sample aliquots.

#### Completeness

The completeness objective for an analysis is to provide sufficient data of acceptable quality such that the goals of the analytical project can be achieved within the time frame required. The overall project completeness is expressed as the percentage of unqualified data for the entire project.

## Comparability

The comparability objective is to provide analytical data for which the accuracy, precision, representativeness, completeness and detection limit are similar to these quality indicators for data generated by other laboratories for similar samples, and for data generated by GTEL over time. The comparability objective is documented by interlaboratory studies carried out by regulatory agencies or carried out for specific projects or contracts, and by comparison of periodically generated statements of accuracy, precision and detection limits.



#### **4 SYSTEMS QUALITY ASSURANCE**

This section is concerned with the quality of the laboratory support systems, the infrastructure which supports the analytical equipment and processes, sample integrity and sample handling processes, and the clients' sampling programs.

### **Required Equipment**

Overall analytical system quality begins with the timely acquisition of high quality equipment to assure efficient operation of the laboratory. GTEL purchases equipment and supplies that meet or exceed the specifications of the analytical methods. Glassware, reagents, gases and replacement parts for analytical instruments are purchased from reputable suppliers with a history of quality customer service. All supplies meet or exceed the specifications set forth in the method or of recognized professional groups such as the American Chemical Society (ACS), American Society for Testing and Materials (ASTM), and the Association of Official Analytical Chemists (AOAC).

# Facilities, Safety, and Environmental Factors

Factors in the environment of the laboratory affect the proper and safe functioning of equipment, and chemical procedures. Every GTEL facility is designed and maintained such that the environmental specifications of the respective instrument manufacturers are met. Safety and design features provide an environment conducive to efficient and effective work on the part of analysts.

# Prevention of Cross-Contamination

Design features which are intended to control cross contamination include, where feasible, the physical separation of extractable and volatile organics operations, the installation of hoods and air handling equipment in order to vent vapors out of solvent and sample handling areas, and segregated sample storage areas.

# Sample and Reagent Storage Temperature Monitoring

For storage of aqueous reagents and samples requiring refrigeration, all refrigerators normally maintain an internal temperature of 1° to 4°C (34° to 40°F) throughout the compartment. For storage of organics dissolved in flammable materials, an explosion proof model is used. Freezers used to store volatile organic standards maintain an internal temperature of -10° to -20°C (14° to -4°F) throughout their compartments. The temperature of each refrigeration unit is recorded daily from in-place thermometers or thermocouples.

# **Reagent Water Quality**

Reagent, analyte-free or laboratory pure water means distilled or deionized water meeting the specifications of ASTM Type II reagent water. This water will be free of contaminants that may interfere with the analytical test in question. The metals analysis laboratory has more restrictive requirements, where reagent deionized water shall have a resistivity of 18 megohm-cm.

# **Glassware Cleaning**

Glassware cleaning procedures are posted in the glassware cleaning area. The glassware cleaning procedure is documented in an SOP and meets EPA requirements. Only phosphate free, laboratory grade detergents are used for the cleaning of glassware.

# Cleaning of Sampling Containers

GTEL Laboratories normally purchases pre-cleaned sampling containers for use by clients. These are obtained from reputable container manufacturers. All sampling containers and sampling container cleaning procedures meet EPA criteria.

# Sampling Quality Assurance

The overall quality of data can be no better than the quality of the sample provided to the analyst. GTEL takes particular care to help clients document and to assure that analysts maintain and document the quality of the samples they handle. The laboratory cannot accept responsibility for improper sampling of client-procured samples and will analyze the samples as delivered. However, the detailed analysis request and custody documentation procedures developed by GTEL provide a means for keeping track of preservation and sample handling factors which affect sample integrity. Recommended quality assurance practices for sampling and preservation, along with the holding time criteria to be met in the laboratory, are outlined in the QA/QC Plan.

# Recommended Containers, Preservation, Holding Times

The preservation and holding criteria specified in Tables 1, 2, 3, and 4 come from a variety of regulatory sources. The tables are organized by analysis type as follows: water and wastewater; soil and waste; groundwater regulated under the federal Resource Conservation and Recovery Act (RCRA); and air. The information contained in these tables is subject to regulatory revision at irregular intervals. GTEL

Laboratories makes every effort to update and circulate any revisions as soon as they are announced. However, it is the responsibility of the individual to confirm the information contained in these tables. A telephone call to the local GTEL laboratory customer service representative is recommended.

# TABLE 1

# Recommended Containers, Preservation, Storage, and Holding Times for Water and Wastewater

Description	Method	Matrix	Sample Container ¹	Preservation ²	Prep/Analysis Holding Time	Volum
	601	H ₂ O			14 days	40 mL3.
GC-Purgeable Halocarbons		n ₂ U	G (b) TetSeo	Cool 4*C2	14 0895	
Ethylene Dibromide (EDB)	504	H2Q	G (b) Te(Sep	Cool 4°C	28 days	40 mL3.
GC-Purgeable Aromatics	602	H ₂ O	G (b) TefSep	Cool 4°C HCI pH<22,5	14 days ⁵	40 mL3.
GC-Pest. & PCBs	608	H ₂ O	AG (a) TefSep	Cool 4°C 5 <ph<9<sup>2</ph<9<sup>	7/40 days ⁶	1[3,4
HPLC or GC -PAHs	610	H ₂ O	AG (a) TetCap	Cood 4°C2	7/40 days ⁶	1[3,4
GC/MS Purgeables	624	H ₂ O	G (b) TefSep	Cool 4°C HCI pH<22.5	. ^{14 days5}	40 mL3.
GC/MS Semivolaties	625	H ₂ Ö	AG (a) TetCap	• Cool 4°C	7/40 days ⁶	1[2,3
Oil and Grease	413.1. 413.2	H ₂ O	AG (a) TelCap	Cool 4℃,H2SO4 pH₹2	28 days ⁷	113
Total Recoverable Petroleum Hydrocarbons	418.1	H ₂ O	AG (a) TelCap	Cool 4°C HCI pH<2	28 days ⁷	1[3
Gasoline Hydrocarbons	Mod. 602	H ₂ O	G (b) TefSep	Cool 4°C HCI pH<2	14 days ⁵	40 mL ³
Gasoline Hydrocarbons	CALUFT	H ₂ O	G (b) TefSep	Cool 4°C HCI pH <2	14 days ⁵ .	40 mL ³
Diesel Hydrocarbons	Mod. CA	H ₂ O	G (a) .TefCao	Cocl 4°C	14/40 days ⁶	113
Hydrocarbon Screen	GTEL	H ₂ O	G (a) TefCap	Cool 4°C	14/40 days ⁶	1L ³
Petroleum Profile	Mod. ASTM D2887	H ₂ O	G (a) TefCap	Cool 4°C	14/40 days ⁶	1L ³
AAS Metals	200 . series	H ₂ O	P or G (c)	HNO3 pH<2	. 6 mos	500 m
ICP Metals	200.7	∷ H ₂ O	P or G (c)	HNO3 pH<2	6 mos	500 m
Mercury	245.1	H ₂ O	P or G (c)	HNO3 pH<2	28 days ⁸	500 m
Lead, Organic	CALUFT	H ₂ O -	G (a) TefCap	Cool 4°C	Analyze immediately	1L ³
Acidity	305.1 SM 402	H ₂ O	P or G	Cool 4°C	14 days	500 m
Alkalinity	310.1 SM 403	H ₂ O	P or G	Cool 4°C	14 days	500 m
Ammonia	350.1, 350.3	H ₂ O	P or G	Cool 4°C H2SO4 pH<2	28 days	500 m
Ion Chromatography Anions	300.0	H ₂ O	P or G (b)	Cool 4°C	28 days ⁹	500 m
BOD	405.1	H ₂ O	P or G	Cool 4°C	48 hrs.	500 m
Bromide	320.1	H ₂ O	PorG	N/A	28 davs	500 m
Chloride	325.9250	· H ₂ O	P or G	None	28 days	500 m
Chlorine, total residual	330.1 SM 408	H ₂ O	P or G	• None	Analyze immediately	500 m
Chromium VI	7196 SM 3128	H ₂ O	P or G	Cool 4°C	24 hrs.	500 m
COD	410.1	H ₂ O	P or G	Cool 4°C H2SO4 pH<2	28 days	500 m

**Revision No: 3** 

# TABLE 1 (Continued)

Description	Method	Matrix	Sample Container ¹	Preservation ²	Prep/Analysis Holding Time	Volume
	110.3	H ₂ O	PorG	Cool 4°C	48 hrs.	500 mL
Color Cyanide, total	335.2	H ₂ O	P or G(a)	Cool 4°C NaOH pH>12 ²	14 days	11
Cyanide, free	SM 412H	H ₂ O	AG (a)	Cool 4°C N ₂ OH pH > 12 ²	14 days	16
Fluoride	340.2 SM 413	H ₂ O	Р	None	28 days	500 mL
Hardness	242.1 200.7	H ₂ O	PorG	HNO3 pH<2, H2SO4 pH<2	6 mos.	500 mL
Kjeldahl nitrogen	351.2	H ₂ O	P or G	Cool 4°C H2SO4 pH<2	28 days	1L
Nitrate	353.2. 9200	H ₂ O	PorG	Cool 4°C	48 hrs.	500 mL
Nitrate-nitrite	352.1	H ₂ O	P or G	Cool 4°C H2SO4 pH<2	. 28 days	500 mL
Nitrite	354.1	H ₂ O	PorG	Cool 4°C	48 hrs.	500 mL
Orthophosphate	365.2	H ₂ O	PorG	Filter immediately. Cool 4°C	48 hrs.	500 mL
Oxvgen, Dissolved	360.2	H ₂ O	G Bottle and too	None	Analyze immediately	250 mL
pH	150.1	H ₂ O	PorG	None	Analyze immediately	500 mL
Phenois	420.1, 9065	H ₂ O	G	Cool 4°C H2SO4 pH<2	28 days	1 [3
Phosphorus (total)	365.2	H ₂ O	PorG	Cool 4°C H2SO4 pH<2	28 days	500 mL
Residue, Filterable (TDS)	160.1 -	H ₂ O	P.or G	Cool 4°C	7 davs	
Besidue, Nonfilterable (TSS)	160.2	H ₂ O	PorG	Cool 4°C	7 days	_500 mL
Residue, total	160.3	H ₂ O ·	PorG	Cool 4°C	7 days	500 mL
Specific conductance	120,1	HoO	PorG	Cool 4°C	28 days	500 mL
Standard Plate Count	SM 907C10	H ₂ O	PorG	Cool 4°C	6 hrs.	500 mL ²
Sulfate	375.2.9035	H ₂ O	PorG	: Cool 4°C	28 days	500 mL
Suffide	376, 9030	H ₂ O.	PorG	Cool 4°C pH>911	7 days	500 mL
Sulfite	377.1	H ₂ O	PorG	None	Analyze immediately	• 500 mL
Surfactants	425.1	·H ₂ O	PorG	Cool 4°C	48 hrs.	500 mL_
Temperature	170.1	H ₂ O	PorG	None	Analyze immediately	N/A
TOC	415.1	H ₂ 0:	AG(a)	Cool 4°C H2SO4 pH<2	28 days	500 mL
Total Coliform	SM 909A10	H ₂ O 、	PorG	Cool 4°C	6 hrs.	500 mL ²
Turbidity	180,1	H ₂ O	PorG	Cool 4°C	48 hrs.	500 mL

# Recommended Containers, Preservation, Storage, and Holding Times for Water and Wastewater

G(x) = glass; AG(x) = amber glass; P(x) = plastic; TetSep = Tetlon septum; TetCao = Tetlon lined cap; x = cleaning protocol as follows: a = acid wash + solvent wash + oven dry; b = oven dry; c = acid wash.1

For organics and bacteriological analysis, sodium thiosulfate is required for all chlorinated waters. For cyanide, use 0.69 ascorbic acid. 2

Samples must be provided in duplicate to cover for breakage and provide sufficient sample for OC procedures. Labs using whole sample autosamplers for volatiles, GC or GC/MS, will require vials in triplicate. Extractable organics with matrix spike/matrix spike duplicate QC protocols require a triplicate sample. 3

Fill completely to avoid volatile loss.

Samples with purgeable aromatics must be acidified with HCI to <pH2 in order to have a 14 day holding time, unacidified samples potentially with purgeable aromatics have only a 7 day holding time. GC/MS analysis not including aromatics has the 14 day holding time without acidification. 5

7 days from sampling date for extraction, 40 days from extraction date for analysis of the extract. 14 days until extraction if listed as 14/40. 6

EPA has not recommended petroleum hydrocarbon holding times. The holding time given is the laboratory practice by analogy with Oil and Grease. State of NJ holding time is 7 days. California LUFT is 14 days. 7

EPA allows only 14 days holding time for mercury in plastic bottles for drinking water analysis. Certain anions require special handling, Holding times and preservation for a particular sample will be determined by the requirement for the anion of interest with the shortest holding time, e.g. nitrate and nitrite - 48 hours; 0 - phosphate - filter and -9 48 hours.

10Standard Methods for the Examination of Water and Wastewater, 16th Edition, 1985.

11Zinc Acetate and NaOH to pH>9.

Prep/Analysis	Sample
ຂອກເປັ ຍາເຢເ	TABLE 2 Recommended Containers, Preservation, Storage, and Ho for Soils, Soilds, and Wastes

-						
100g or 100g or	<b>V</b> qA2A	Cool Cool	PorG	Waste	SW 846, Section 7.3	Reactivity
156 208 1009 cr	· · T9A2A	001 Cool	PorG	JISEM	S≯06/0≯06 ∀d∃	Conosivity
955 Jac 208	syed 41	1.C (00)	G (b) TetSep or G (a) TetSep	biupi_\fio2	0101 A93	ຊາເກີດຮາກດູໃ
1000 cr 156, Jac	sysd AI	4.C Cool	(s)	10°S	A93 thenO	XOT
1003 or	syed \$1	4.C Cool	G (a) Te(Cap	16o2	0906 'Pow	201
100 001	sysd 21	4.C Cool	P or G (c)	110S	3327-СГЪМ	Syande
156, -308 100 001	not to exceed Table 1 specification in water	℃•⊅	િ બ ઉ (c) ₂	Rog	sono Series	General knorganics
2009 of	ylətsibəmmi əzylsnA	4.Cs Cool	(s) D Tei(Cap	EoS	CAULFT	Lead, Organic
100g or 156, 208	sysb 82	4.C	(c) 5 :a q	Pos .	1272	γγειζητιλ
100g of	.zom ð	Cool 2*1	P or G (c)	.fio2	0109	SIEJSM 4CH
10 2001 160 July 208	.som д	4.C	P or G (c)	fos	0002	AA-2l\$19M
10 2001 1208	s/5d 21	anoN	G (a) TeiCap	No EO Soli	Par Bomb & BPA 300.0	Total Halide
120 203 100 2001	2460 4.604/41	τ <b>.</b> Cool	G (b) TetSep or G (a) TetCap	Product	78850 MT2A	ಅಗಿರಾಳಿ ಗಾಗು ಖಂಗತಿಗೆ
7203 70 2001	2450 4.604/41	۲۰۵ ۲۰۵	G (b) TetSep or G (a) TetCap	10S	GIEL	Hydrocarbon Screen
1005 of	2460 4.604/41	Ç.2 2.2 000	G (3) Te(Cap	lio2	Mod. CA	Diesel Hydrocarbons
100g or	2450 2.602/21	Cool 4°C	G (b) TetSep Or G (a) TetCap	Fo2	പനം	Gasoline Hydrocarbons
1009 or	sysd 41	1.C Cool	G (b) TetSep or G (a) TetCap	1502	Wod- 8050	Casoline Hydrocarbons
100g or 150 JSU 208	2450 2.502/21	4°C Cool	G (3) TefC3p	1502	1.814 .boM	Total Recoverable Petroleum Hydrocarbons
1000 or 1000 or	sked *.604/21	4°C	G (3) TefCap	koZ	2.514 .bom	Oil and Grease
10 5001	s/ed ⁶ 04/41	رموا دموا	AG(a) TelCap	50S	0168	ныс (ран)
10 2001 1009 01	2450 504/41	4.C Cool	AG(a) AG(a)	9726W\bo2	0228	20\\Securivalatiles
1005 CT	2460 ³ days	100) J°L	(5) DA Q5)197	Soil/Waste	0908	GC/Pest. & PC8s
2,12, 202 1000 or	sysb 21	المحافظ 1•C	G (b) TetSep or TetCap	ersew/ho2	8240	20/WS-Purgeables
2727 -204 1000 or	syed ar	رموا ۲۰۵	G (b) TeiSep or TeiCap	szew/lio2	-0108 8020	səldsəples
əmuloV	Prep/Analysis 9miT pnibloH	Preservation	Sample Container 1	xittsM	Method	Description

Revision No: 3

nuloV	SisylenA/q9r9	eldms2
	• • • •	for Soils, Solids, and Wastes
	samit Duidh	Recommended Containers, Preservation, Storage, and Ho
		TABLE 2 (Continued)

16 = (X) 94 :22510 = (X) 9	mper glasses Pixt	= plastic: + dise	vib navo + deev ig	= 0:51 = 0:51 = Tet = 0:51 = 0:51 = Tet	ton lined cap: Acid wash.	
(Stub) sotsed2A	minetral AGB bortheM	ցույչ	G (b) TelSep or G (a) TelSap	ənoN	arinitabni	ມີm 0≯ ກັນກາ່າດາກ
moliloD letoT	SE16 A93	pilos/lios	P or G (sterile)	4rC Cool	6 hrz.	1000 or 1000 or
Standard Plate Count	DLOG WS	Sofid/ Sofid/	P or G (sterite)	4.C Cool	6 hrs.	100g or
சாலராம	1310/1311 EPA	972EW/fio2	inorganics only: P or G(c) or (2) w/organics: G(2)	Cool 4°C if spropriate	sisylsns/sysb 41 bortism yd sidsinsv	3202 Jar ⁸
Description	роцтэм	XiteM	Container	Preservation	ami fonibioh	ομηιολ

·U(X) = Qi355. AU(X) = Rimpet Gia555. P(X) = Gia506. 161560 = 16100 septum; 1615.00 = 16100 lined Cap; X = deaning protocol as follows à = acid wash + solvent wash + oven diy; b = oven diy; c = acid wash. ZFill completely to avoid volatile losss; if pre-weighed VOA vials are used, sample cannot exceed half the volume of the vial. 314 days from sampling, 40 days from eutaction date for analysis of extract analogy to extraction and gresse or, petroleum hydrocarbons or EDB holding times in soil. The holding time given is by "EPA has not recommended and gresse or, petroleum hydrocarbons or EDB holding times in soil. The holding time given is by "EPA has not recommended and gresse or, petroleum hydrocarbons or EDB holding times in soil. The holding time size analogy to extraction and and gresse or, petroleum hydrocarbons or EDB holding times in soil. The holding time size 5 hold washed to the total total to the set of 
Acid washed containers are not appropriate for nitrate and other N analyses. Use glass container ordered with cleaning protocol

6Fil completely to avoid volatile loss. If vials are used, a minimum of 4 are required. 7 Not to exceed 14 days. If suffice reactivity is sought, then not to exceed 7 days. 87CLP samples with liquid require more. For example, a sample with 10% solids requires a minimum of 2000g. Aqueous samples should routinely be provided as 3 liters in order to cover for beakage and provide enough sample for laboratory OC.

#### E 3J8AT

Recommended Containers, Preservation, Storage, and Holding Times for Water for ARDA Programs

2 alqms2

Prep/Analysis

Total Coliform	SELE VAB	Огн				
		_	Pore	Cod 4°C2	-2rd ð	ן 200 שך
Standard Plate Count	0206 WS	OZH	Pare	Cool 4°C2	6 prs.	שך 005
10X, TOC	0906'0205	о ^г н	P or G(2) TefCap	H ⁵ 204 pH<2 Cool 4°C	28 qays	ור
Vanide Sanide And other inorganics	sənə2 0009	О ^г н	P or G(c)	as per Table 1	not to exceed Table	
Mercury	0272	O ^Z H	P or G(c)	HUO3 PH<2	SAED 82	רעיד דעי 005
CP Metals	0109	O2H	Por G(c)	2>Hq 5ONH	e mos.	<u>אר מטס אר</u> שר 005
AA-21639N	0002	OSH	Por G(c)	HNO3 PH<2	.5011.0	עסט שר 200
Tydrocarbons Petroleum Tydrocarbons	1.814	О ^г н	AG (a) TefCap	HCI bH <s5< td=""><td>58 qsAze</td><td><u>دیں در</u> دارع</td></s5<>	58 qsAze	<u>دیں در</u> دارع
HPLC (PAH)	0158	O ^Z H	(s)ƏA QsƏtəT	वडप्रस् <u>ट</u> Cool 4.C/	sved 04/۲	513
selitelovimeS-SM/OS	0/28	0 ² H	-AG(a) TelCap	qark2 Cool toC/	Sever 04/7	513
567Pest & PC8s	0808	OSH	(s) ĐA qsCh9T	व्यप्रस्टू CooqteC/	S2VED 04/7	573
S/WS-Purgeables	8540	О ^г н	G (b) TetSep	HCI bH <s5< td=""><td>sysb 41</td><td>*.EJm0*</td></s5<>	sysb 41	*.EJm0*
saideagies	-0108	·O2H	CetSep G (b)	HCI bH<55 Cool 4.C	syed 41	+.6.m.2.4
noitqinose	Method	xittsM	¹ nenietno J	Preservation ²	emil pnibloH	эшиюу

G(x) = diass: AG(x) = amber diass: P(x) = plastic: TetSeo = Tetlon septum: TetCap = Tetlon lined cap. x = deaning protocol as follows: a = acd wash + solvent wash + oven diy, b = oven diy, c = acid wash.

For organics and bacteriological analysis, sodium thiosultate is required for all chlorinated waters. For cyanide, use 0.6g ascorbic acid. z

Samples must be provided in dupficate to mover for preakage and provide sufficient sample for QC procedures. Labs using whole samples to voltailes, GC or GC/MS, will require vals in triplicate.

with Ori and Grease. Slare of W howing time is 7 days from exuaction date for analysis of the extract. 7 days from samptime date for extraction, 40 days from extraction date for analysis of the extract. 7 days from samptime date of W howing time is 7 days. California UP-1 is 14 days. q

E :ON noiziv9A

# TABLE 4

<b>Recommended Containe</b>	rs, Preservation, Storage, and Holding Times	
••••	tor Air Anahreig	

Description	Method	Matrix	for Air Analysis Sample Container	Preservation	Prep/Analysis Holding Time	Volume
Volatiles in Air	EPA Method 18	Air	Tenax or Tediar Bag1	Tenax: Cool 4*C; Bags: ambient temperature2	Tenax: 14 days Bags: 72 hrs.	variable ³
Gasoline Hydrocarbons	· GC/FID	Air	Tenax or Tediar Bag 1	Tenax: Cool 4°C Bags: ambient temperature ²	Tenax: 14 days Bags: 72 hrs.	variable ³
Volatiles in Air	EPA TO1	Air	Tenax ¹ /glass	Cool 4°C	14 days	variable ³
Asbestos (Air)	NIOSH 7400	Air	Millipore aerosol monitor case or equivalent (permanent slide mount)	None	indefinite	variable

Tenax tubes must be sealed and both tubes and bags must be packaged with activated carbon, and segregated from sources of organics.

2 Keep bags out of direct sunlight and minimize temperature variation in order to prevent condensation.

3 Caution must be taken to avoid exceeding breakthrough volume of Tenax tubes. Recommendation: take replicate samples at different volumes to demonstrate that breakthrough has not occurred.



# **5 SAMPLE CUSTODY AND HANDLING**

The sample handling procedures discussed below are intended to maintain the integrity of both the samples and the documentation necessary to support the analytical data for evidenciary purposes should the need arise.

#### Chain of Custody

All client samples analyzed by GTEL are handled as if they are of an evidenciary nature. The possession of samples must be traceable from the time samples are collected in the field until the analysis is completed and samples are released for disposal.

Custody is defined as:

- a) In actual physical possession;
- b) In the view after being in physical possession;
- c) In a locked area after being in physical possession; and
- d) In a designated, locked storage area.

GTEL provides sample labels and a Chain of Custody (COC)/Analysis Request Form for use by clients. Additional documents described below are used by the laboratory to document sample custody within the laboratory and to formalize the procedures for sample distribution, sub-sampling, and disposal.

The COC and all other forms used to document the proper handling of the samples contain a location(s) for appropriate signatures. All individuals who have custody of the sample are required to sign the forms in black ink and date the entry.

# **Sample Receiving**

Samples are received by the Login Staff, who are laboratory personnel properly trained to handle samples of evidenciary nature. The two following custody related steps occur in the sample receipt procedure and care is taken to document them properly.

 a) Transfer of samples to the laboratory by use of a common carrier is documented on the COC form. The shipping documents become part of the permanent project file. b) A Sample Custodian (a member of the Login Staff) is responsible for maintaining custody of the samples during the login and distribution processes and for assuring that all records documenting that possession are properly completed.

Sample integrity upon receipt is documented by the Login Staff. Primary factors such as sample temperature and record of preservation are checked. Proper sampling and preservation in the field is the responsibility of the client. The GTEL Chain of Custody/Analysis Request Form contains a sampling validation statement for the sampler to initial, thereby verifying that proper sampling and preservation was carried out.

# Documentation

The primary custody elements which are completed and retained are as follows:

- a) Chain of Custody/Analysis Request Form
- b) Shipping documents, for example the bill of lading or air bill; and
- c) Internal Chain of Custody Record.

# Sample Identification

Every sample container received by GTEL and every sample generated by sub-sampling in order to allow different analyses to be performed on the same sample are individually identified by a GTEL sample number as follows:

#### L9-04-123-01A

where:

L = Lab identifier:

N = Milford U = Torrance X = Wichita C = Concord F = Florida

9 = year 04 = month

L9-04-123 = work order number which identifies a batch of samples to be analyzed by a particular test listed on the COC.

-01 = sequential number (01 to 99) identifying each client sample in the batch.

A = a sequential letter code (A,B,C...) which identifies each replicate sample container for each client sample.

# Sample Tracking and Management

GTEL maintains sample information records in a laboratory information management system computer system. This chronological record contains all samples received or generated by sub-sampling in order to allow a single sample to be analyzed by different analyses. All identifying information and cross referencing data described above is maintained in the computer for tracking purposes. A written Login Record, which contains cross referencing information for all sets of samples received and distributed, is kept if a computerized system is not functional.

Any sample sets which have special handling or urgent analysis or holding time requirements are immediately recorded into a tracking record, assuring that all projects get handled and completed as requested by the client or required by the circumstances. Project folders which have a special handling status are color coded.

#### Confidentiality

Each laboratory has the GTEL standard operating procedure (SOP), readily available to all personnel, concerning confidentiality and security. The following items are covered by the SOP and listed in the personnel manual:

1. No client's name, neither a person's name or a company's name, or site location will go on analytical reports unless specifically requested.

2. No client's name, neither a person's nor a company's name, will be written on correspondence or be verbally transmitted in reference to a particular project except to the client, persons named on the Chain of Custody (COC)/Analysis Request Form, or their designated representative.

3. Any request for analytical data or project information by anyone, other than those noted on the COC/Analysis Request Form, will not be fulfilled without a written release by one of the people so designated.

4. Information not on the COC/Analysis Request Form associated with a specific work order will not be incorporated into an analytical report, except by instruction in writing by the client or the client's designated representative.

#### Security of Project Data and Samples

The SOP on confidentiality and security also includes the following security items:

1. Visitors to GTEL must sign in at the reception area and be escorted while inside the facility.

2. Sample storage refrigerators, freezers, or the rooms containing them and data storage areas are kept locked when not supervised.

3. Samples will remain in locked sample storage areas until removed for sample preparation or analysis. Each supervisor maintains a list of the location of all sample storage area keys or maintains personal possession of them.

4. The location of the stored samples is recorded in the sample tracking computer or in the internal COC record.

5. Only the Sample Custodians and supervisory personnel have keys to the sample storage areas.

- 6. Managers are responsible for knowing which employees are in the building after hours.
- 7. Employees are responsible for registering all guests accompanying them.

8. Keys are issued to individual employees only upon written approval by the employee's immediate supervisor. Keys are returned by terminating employees during an exit interview.

9. All new employees are indoctrinated concerning confidentiality and security procedures within the first week of employment.

#### Sample Disposal

The laboratory information management computer can be used to identify and locate all samples older than thirty days beyond the date that the analytical report was mailed. Assigned laboratory personnel are given the responsibility for removing all old samples from the secure storage and assuring of their proper disposition. Hazardous samples are explicitly handled as hazardous waste.



# **6 CALIBRATION PROCEDURES**

Tolerances maintained in calibration are specific to the analytical methods used for particular regulatory purposes. Specific procedures for individual instruments and analytical methods are not delineated in this document. Two types of calibration are discussed, operational and periodic. Operational calibration is carried out routinely as part of instrument usage. The operational calibration program involves initial calibration, QC check samples, and continuing calibration verification. Periodic calibration is a distinct process carried out for general purpose equipment, such as analytical balances.

# **Operational Calibration Records**

A bound notebook is kept by the analyst for every instrument. This notebook contains a record of each analysis, calibration, sample analysis and QC performed. Each of the following is assembled chronologically by instrument and stored together as a laboratory working record or entered in its entirety into the instrument notebook:

- calibration data: a)
- calibration verification data; and b)
- method blank data. c)

Corrective action resulting in a recalibration requires the approval by the supervisor upon completion.

# **Periodic Calibration Records**

Periodic calibrations, and a discussion of any adjustments made, are maintained in a bound notebook for each piece of equipment which receives periodic calibration. Corrective action resulting in a recalibration requires the approval by the supervisor upon completion.

# Traceability of Calibration Reference Materials

Calibration reference materials for organic analysis are a minimum of 97% purity from a reputable supplier. Reference materials used to generate quality control samples (used to verify calibration) are from a source independent of the calibration standards, or if not available from a reliable independent source, are from stock standards prepared separately from calibration standards.

Low ppb level calibration standards for metals are prepared fresh daily with dilutions of ppm level standards. These stock standards are prepared by dilution of commercially available 1000 ppm stock solutions. Standards from a source independent from the calibration standards are used for initial calibration verification.

Records of the source of the calibration standards and QC reference materials, are maintained.

# **Standards Preparation**

Standards are prepared as specified in the respective methods. In order to assure the accuracy of standards the following guidelines are followed:

- The best available solvent is used. A reagent blank analysis on the solvent (by lot number) is on a) file, verifying the absence of analytes of interest;
- ACS reagent grade or better chemicals are used; b)
- Only Class A volumetric glassware are used; c)
- Only properly calibrated balances, pipettors and other general laboratory equipment are used; d) and
- Only dedicated glassware, pipets, and syringes are used for standards preparation. e)

# Generation and Acceptance of a Standard Curve

The standard curve is generated by the analysis of a reagent or method blank and a series of standard solutions over a concentration range appropriate for the samples to be analyzed and plotting the

instrument response versus the known concentration. The number and concentration of calibration standards required is specific to the method and is given in the method SOP. A minimum of three standards is necessary to demonstrate linearity.

The key characteristics evaluated for acceptance of the curve are as follows:

- a) the degree of variation of the response factor with concentration (i.e. curvature);
- b) the working range of the curve;
- c) the consistency of the response factor with past experience;
- d) the sensitivity of the response as it relates to detection limit and system performance; and
- e) the blank bias.



# 7 ANALYTICAL PROCEDURES

The analytical procedures used by the laboratory fulfill the precision and accuracy objectives of Section 3. The major methods and method categories covered by this document are described in Table 5.

# ک aldsT Method Descriptions

•			
Colorimetric technique following strong acid distillation.	photometry UV/VIS Spectro-	fio2 ni sbinsy3 lstoT	CLP-M (K) EPA 335.2
Colorimetric, etc., techniques dependent on various sample prep and treatment methods to separate samples from matrix and prevent interferences.	method specific, (Colorimetric)	Various Inorganic Parameters, (Total Cyanide in Water)	0000 ATE Series (C), 300 (B) series (S.252, 0109)
Graphite Furrace and Cold Vapor techniques sensitive to ppb level in water. Zeeman background correction necessary for As, Se in certain matrices.	AA Spectrometry, Rame, Furnace, Manual Cold Vapor	Sibitals	EPA 3050 ² /7000 series (C), 200 series (B)
Sensitive to wide variety of metals, some to the ppb level in water. Interference check samples are used to monitor degree of Fe. Al, etc. interference.	ICb	. sistem	EPA 3050 ² /6010 (C), 200.7 (B)
Very sensitive to halogenated compounds, sometimes needs special deanup to remove interferences.	ec/eco	Pesticides and PCBs	EPA 3550/8080 (C) <b>.</b> 608 (A)
Very sensitive to high molecular weight aromatics which fluoresce (10 ppt in water for some). Susceptible to interferences. Very useful for fuel oil spills.	HPLC/UV and fluorescence	Polycydic Aromatic Hydrocathons (PAH) or Polynuclear Aromatics (PUA)	A9 0168\10226 (A) 010 (A)
Discems most organics, with specific ID by mass spectrometry (MS). Can provide tentatively identified compounds (TICs). Less sensitive than by GC or HPLC.	column GC/MS, capillery	Semi-volatile Organics	EPA 8270 (C). 625 (A)
504 water only. A volatile organics technique for water, with 20ppt detection limit Susceptible to interferences. A non-standard technique must be used for soils.	GC/ECD, micro- extraction	808	EPA 504 (F)
Discerns most volatile organics, with specific ID by mass spectrometry (MS). Can provide tentatively identified compounds (IICs); slightly less sensitive than by GC.	column capillary or packed COlumn	Volatile Organics	EPA 8240, (A)
Specific to halogenated compounds: subject to interference only by unknown halocarbons. Solids generally performed by methanol extraction (high level).	column Column CC/ELCD, P&T,		A93 (C) 0108/0503 (A) (A)
Sensitive to benzene, substituted benzenes, and oxygenated compounds, e.g. MTBE, less so to interfering aliphatics. Solids generally performed by methanol extraction (high level 5030).	Dextorian or decked		
Description/Application	າດນຳຮາກອຸສາມາຊາໃ	sətyisnA	Меthod (Яеference)

^{1 3550} is a sonication extraction for solids; 3510, a liquid/liquid extraction followed with concentration, is available for waters

^{2 3050} is a vigorous acid digestion for soils and sludges; 3010 and 3020 digestion is available for total metals in clean metals in waters, and simple metals for waters filtered at the time of sampling.

# Table 5 (Continued) Method Descriptions

EPA 9020 (C)		Cosa or Dohrmann TOX Analyzer	Activated carbon adsorption followed by high temperature reduction with microcoulimetric detection.
Draft EPA Method, Contract # 68-03-2984(V)		Dohrmann TOX Anaiyzer	Extraction of soils by sonication followed by pyrolysis/microcoulometry. Fluorine containing species are not detected.
EPA 9060 (C), 415.1 (B)	Total Organic Carbon (TOC) in Water	FID or IR	Organic/inorganic carbon separation followed by oxidation and detection as $CO_2$ by IR or as CH ₄ by FID.
EPA 418.1 (B), 3550/418.1 (GTEL)	Total Recoverable Petroleum Hydrocarbons (TPH) in water and soil	IR Spectrometry	0.5 ppm detection level for water. For petroleum contaminated soils, 3550 sonication extraction (high level method, 10 ppm detection limit) adapted to 418.1. Silica gel used to remove biogenic material from the freon extract. Some loss of volatiles expected.
EPA 413.1 (B), EPA 9071 (C)	Total Recoverable Oil and Grease	Gravimetric	For use at greater than 5 ppm in water and 200 ppm in soil. Total of all freon extractable organics.
EPA 413.2 (B), SM503 B&D (D)	Total Recoverable Oil and Grease	IR Spectrometry	Same methodology as EPA 418.2 except without silica gel to remove biogeni material.
SM503 D&E (D)	Total Recoverable Petroleum Hydrocarbons (Soil)	IR Spectrometry	An exhaustive extraction of soils or sludge by Soxhlet extractor. Otherwise the same a TPH (418.1). Significant loss of volatile expected; 5 ppm detection level if specified
CA LUFT (G)	Gasoline Hydrocarbons	GC/FID, P&T	Purge and trap with chromatograph adapted for quantitation of gasoline in soi and dissolved in water as per California LUF protocol.
CA LUFT (E,G)	Diesel Hydrocarbons	GC/FID, capillary column	California LUFT protocol for waters and soil modified for soils by use of 3550 sonication extraction.
GTEL	Simulated Distillation Petroleum Profile	GC/FID, capillary column	Product identification and matchin technique for product samples, depender on unique composition of boiling poil profile of various products. Modification ASTM 2887.
GTEL	Hydrocarbon Screen	GC/FID, capillary column	Product identification and quantitation water and soil based on a source produ profile. Some loss of volatiles expected
EPA Method 18 (H)	Volatile Organics in Air	GC/PID/FID	Source monitoring method utilizing so absorbents or Tedlar bag. Susceptible usual GC interferences:

1990

.

### Table 5 (Continued) Method Descriptions

EPA TO1 (I)	Volatile Organics in Air		Ambient monitoring method utilizing Tenax solid adsorbent. Advantages of selective detectors configured in series to cover all analytes of interest, with very low detection limits.
EPA 1010 (C)	Ignitability	Pensky-Martens Flash Point	Closed-Cup technique for liquids. Can be extended to 200° for DOT classification tests.
EPA 1010 (C), modified	Flash Point of Soil	Pensky-Martens Flash Point, modified	Closed-Cup technique for soils, taken to 160°F. Flashpoint of soils is not regulated by EPA and there is no standard test for Ignitability for soils.
EPA SW-846 Section 7.3	Sulfide and Cyanide Reactivity	Colorimetric (9010) and Tritrametric (9030)	Applicable to solid and liquid wastes. Results in value less than or equal to total cyanide and sulfide. Total cyanide and sulfide are acceptable methods for showing wastes are below the regulatory limit.
EPA 1311 (W)	TCLP (Toxicity Characteristic Leaching Procedure)	EPA SW-846 methods as required	Leachate procedure followed by analyte specific analysis of the mobility extract to characterize hazardous waste, as of September 1990. Special QA and data reduction as per June 29, 1990 Federal Register. For unique analytes and limits for Land Disposal Restrictions (CCWE) prior notification is required.
EPA 9040, 9045 (C)	pH, Corrosivity	pH Electrode	Direct reading electrode method; 1:1 reagent water paste for soils.
SM 907C (D)	Standard Plate Count	Membrane Filter Technique	Filters retaining bacteria are cultured and counted.
EPA 9132 (C)	Total Coliform in Water	Membrane Filter Technique	Filters retaining bacteria are selectively enriched and cultured, followed by colony count.
EPA 300.0 (B)	Inorganic Anions in Water, (Total Halide in Oil and Soil)	lon Chromatography (IC): (Parr Bomb-IC)	Aqueous solutions are prepared and evaluated directly with suppressed IC. (Parr Bomb prep for oils and petroleum contaminated soil, with summing of C ⁻ , Br-, and I ⁻ by IC.).
EPA (T) Interin Method	n Bulk Asbestos in Building Materials	Polarized Light Microscopy - Dispersion Staining (PLM-DS	Estimation of % content.
NIOSH 7400 (U)	Asbestos in Air	Phase Contrast Microscopy	Quantitation by count of asbestos and other fibers greater than 0.25um in diameter collected on filters.

### Laboratory Reference Documents

The following documents are the primary references from which the GTEL standard methods are derived. Each is preceded with a brief outline of the type of methods covered. These documents are to be available in the laboratory. At a minimum, the Quality Assurance Manager will keep a copy.

A. Organics in water EPA Methods 601, 602, 608, 610, 624 and 625: "Test Procedures for Analysis of Organic Pollutants", <u>Code of Federal Regulations</u>, 40CFR Section 136, Appendix A, July 1988 edition.

B. Metals in water, inorganic parameters, oil and grease, and petroleum hydrocarbons: <u>Methods for</u> <u>Chemical Analysis of Water and Waste</u>, EPA-600/4-79-020, USEPA EMSL, Cincinnati, OH, Revised, March 1983, including Method 300.0, EPA-600/4-84-017, March 1984.

C. Metals and organics in soils and mobility extracts; metals and organics in groundwater for RCRA compliance; hazardous material characterization: <u>Test Methods</u> for <u>Evaluating Solid Waste</u>, SW-846, 3rd edition, USEPA OSW, Washington, D.C., November 1986, including Revision 1, December 1987.

D. Pesticides, wet chemistry, and petroleum hydrocarbons in waters, soils and sludges: <u>Standard</u> <u>Methods for Examination of Water and Wastewater</u>. 16th edition, American Public Health Association, 1985.

E. General organic, inorganic, and physical methods: <u>Annual Book of ASTM Standards</u>, Vols.11.01 and 11.02 for water, Vols. 5.01, 5.02, 5.03, 5.04 for petroleum products, Vol. 11.03 for Occupational Health and Safety. American Society for Testing and Materials, Philadelphia, PA. The most current version is usually cited.

F. Organics in water (drinking water): <u>Methods for the Determination of Organic Compounds in</u> <u>Finished Drinking Water and Raw Source Water</u>, USEPA EMSL, Cincinnati, OH, September 1986.

G. Organics, TPH by gas chromatography, and toxics in soil and groundwater: <u>Leaking Underground</u> Fuel Tank (LUFT) Manual, State of California Water Resources Control Board, May 1988 Revision.

H. Air sampling and analysis methods organics and toxics, ambient air and stationary sources: <u>Quality Assurance Handbook for Air Pollution Measurement Systems</u>, Volume I, II, and III, including Section 3.16, EPA/600/4-77/027a,b,c, USEPA EMSL, Research Triangle Park, NC, August 1986.

I. Organics in ambient air: <u>Compendium of Methods for the Determination of Toxic Organic</u> <u>Compounds in Ambient Air</u>, EPA-600/4-84-041, USEPA EMSL, Research Triangle Park, NC, April 1984, including Supplements, September 1986.

J. Organics in water and soit: <u>USEPA Contract Laboratory Program Statement of Work for Organics</u> Analysis, February 1988.

K. Inorganics in water and soil: <u>USEPA Contract Laboratory Program Statement of Work for</u> <u>Inorganics Analysis</u>, SOW 788, July, 1988.

L Microbiological analysis of water and wastes: <u>Microbiological Methods for Monitoring the</u> Environment, EPA-600/8-78-017, USEPA EMSL, Cincinnati, OH, December 1878.

M. General and clinical analytical practices: <u>Good Laboratory Practices Manual</u>, PB88-180708, USFDA, St. Louis, MO, November 1987

N. Toxics research laboratory practices: <u>Good Laboratory Practice Standards</u>, 40 CFR, Part 792, USEPA, 1988 edition.

O. Laboratory QA/QC practices: <u>Handbook for Analytical Quality Control in Water and Wastewater</u> Laboratories, EPA-600/4-79-019, USEPA EMSL, Cincinnati, OH, March 1979.

P. Calibration for organics in air. <u>Standard Operating Procedure for the Preparation and Use of</u> <u>Standard Organic Mixtures in a Static Dilution Bottle</u>, EMSL/RTP-SOP-MDAD-036, USEPA EMSL, Research Triangle Park, NC, September 1987.

Q. General analytical practices and specifications: <u>Manual for the Certification of Laboratories</u> <u>Analyzing Drinking Water</u>, EPA-570/9-82-002, USEPA EMSL, Cincinnati, OH, October 1982. R. QA practices, organics in soil and water. <u>Laboratory Data Validation</u>, <u>Functional Guidelines for</u> <u>Evaluating Organics Analysis</u>, USEPA Hazardous Site Evaluation Division, Washington, D.C., February 1988.

S. QA practices, inorganics in soil and water. <u>Laboratory Data Validation</u>, <u>Functional Guidelines for</u> <u>Evaluating Inorganics Analysis</u>, USEPA Hazardous Site Evaluation Division, Washington, D.C., July 1988.

T. Analytical techniques for bulk asbestos in building materials: 40 CFR, Part 763 (F), App. A.

U. Analytical techniques for occupational health and OSHA compliance: <u>NIOSH Manual of Analytical</u> <u>Methods, 3rd Edition, February 1984, NIOSH, Cincinnati, OH, including 1985 and 1987 supplements.</u>

V. Extractable Organic Halides in Solids: <u>Development and Evaluation of Methods for Total Organic</u> <u>Halide and Purgeable Organic Halide in Wastewater</u>, App. D, R.M. Riggin, et al, US EPA Contract #68-03-2984, 600/4/84-008, June 1983.

W. TCLP: Federal Register, June 29, 1990, 40 CFR Part 261, Appendix II.

.

### **Standard Operating Procedures**

Standard operating procedures are generated through a formalized process involving: draft generation by analyses; peer review for accuracy and completeness; management review by the Lab Director and National Operations Manager; and final review by the lab QA Director. Completed and approved SOPs are available in the laboratory for the analysts. The Quality Assurance Manager is responsible for carrying out the record keeping and document control procedures for the SOPs.

#### Method Start-up QC

As a minimum, when a new instrument is brought into service, a new standard method is implemented, and after a new analyst receives training, four spikes of known concentration are analyzed in reagent water or a blank solid matrix and the results approved by the Quality Assurance Manager. All calibration and QC procedures specified by the SOP are in place before sample analysis begins.



### 8 DATA COLLECTION, REDUCTION, AND REPORTING

Data collection protocols are critical to the quality assurance program and are described below. The data validation practices described are followed to insure that data is not altered and that an audit trail is developed in the data reduction and reporting process. The data flow is summarized in Figure 2.

#### Data Collection

All analyses are recorded in a bound notebook. The following information is included for each analysis:

- a) Analyst's signature (once per analytical batch)
- b) Date
- c) GTEL laboratory sample number (the work order number and dash number)
- d) Any undocumented or non-standard analysis set-up conditions, e.g. dilutions, auto-sampler position number, or other instrument conditions not covered by an SOP or instrument printout.

For instrumental analysis, the analysis notebook is instrument-specific and referred to as an instrument log. For other types of analysis, this logbook also contains all raw data collected by the analyst. Any blank sections left open on a page are crossed out. All logbook entries are signed and dated by the individual making the entry.

### **Blank Correction**

In projects for which a QA deliverables package (including a blank summary) is being prepared, data will not be blank-corrected and will be flagged if blanks do not meet acceptability criteria. The blank results reported will be in the same units as the samples and will be discussed in the quality assurance narrative in such a manner, including the effect of dilution factors, such that the data user can evaluate the relative effect of the blank contamination on each sample. Any result that is less than ten times the value of the blank will be considered biased. Routine analyses are normally blank corrected. For blank correction, the systematic bias is removed from the sample analytical data by subtracting the amount contributed by the blank from the total sample result.

	Login and	
	Sample Distribution	Sample Numbers Assigned
	· ·	Internal COC Initiated
		Project File Established
	¥	Sample Integrity Verified
	Analusia	
· · · · · · · · · · · · · · · · · · ·	Analysis	Sample Preparation Data
		Instrument Notebook
		QC Data to Central File
1	•	
То		
Corrective	No Is QC	
Action	- ск ?	
Loop		
	Yes	
	· · · · · · · · · · · · · · · · · · ·	
	Data Reduction	Calculations Performed
		Draft Report Prepared
		]
	Data Validation	File Contents Completeness
	1	Corrective Action Documentation
		Independant Data Review
	Ļ	
	[	<b>]</b>
	Reporting	Proofing
		Review and Sign
	1	_
	Records Retention	Notebooks and Records Archival
		Records Purge (to Client)

Figure 2 GTEL DATA FLOW

### Data Validation

Data validation involves the checking of data quality and documentation. Data validation requires the use of the following:

- Dated and signed entries on worksheets and in log books used for all samples; a)
- The use of sample tracking and numbering systems to logically follow the progress of samples b) through the laboratory; and
- The use of quality control criteria to reject or accept specific data. c)

The supervisor, or an analyst designated by the supervisor, recalculates a minimum of 5 percent of the results on each report. These individuals are responsible for determining whether or not the results are acceptable using the quality control criteria set forth in the method and this plan. Every project file has a project log into which the analysts and persons validating data enter descriptions of problems encountered in the course of analysis and validation, along with corrective actions taken. All entries into the project log are signed and dated.

#### **Documentation Reported**

Standard laboratory reports contain, as a minimum, the following information:

- Identification of the laboratory: a)
- GTEL sample ID number; b)
- Client sample identification; **c)**
- Date sampled (it is on the Chain of Custody Form attached to the report); d)
- Date analyzed: e)
- Date of extraction, if applicable to the verification of sample integrity; f)
- The name(s) (first initial, last name) of the analyst(s) performing the analysis, if required;
- g) Parameters measured; h)
- Units in which each parameter is reported; i)
- Analytical methods used; D
- Detection limits; k)
- Certification statement by the person responsible for validation of the data concerning sample I) integrity and QA acceptance; and
- A copy of the Chain of Custody form. സ്

Reporting limits, referred to as quantitation limits, which are above the detection limits, are utilized for applications where the detection limits are not of importance to the application. When analytical data are to be used to determine whether a regulatory limit is exceeded, the critical issue is whether the data are above the lower limit of reliability. The term "quantitation limit" describes this lower limit above which the data are of predictable accuracy. The quantitation limit is often substantially above the method detection limit. Reports using a quantitation limit indicate the quantitation limits used rather than the detection limits. Both levels are indicated for certain applications.

### **Report Revisions**

For all report revisions and reissues involving a change in a datum value, the revised/reissued reports are accordingly labelled and the date of the previous revision is referenced. All reissues involving a change in a datum value are reviewed by the Quality Assurance Manager, or designee, and noted in the Reports to Management. A written justification for the change is included in the project file.

### **Records Retention**

The data worksheets, copies of all hardcopy data output, and other project records are stored together in a secure location. The retention period is not less than one year and as governed by local, state and government agencies.



### 9 QUALITY CONTROL

The internal quality control checks routinely implemented by the laboratory are described in this section. This outline includes the minimum required degree of effort (the amount of quality control samples expressed as a percentage of the total number of client samples), and the control limits applied to maintain method control.

#### **QC Frequency**

The required frequency of QC samples is a function of the particular method, the particular regulatory program under which the results will be evaluated, or particular contract requirements. The frequencies indicated in the program description which follows are the absolute minimum requirements for the various categories of analysis listed. Table 9.1 defines frequency requirements for particular analyses and regulatory programs.

### **Quality Control Program Elements**

The quality control program elements cover both instrument and method quality control. The frequency of instrument control checks are based on the analytical batch as introduced to the instrument. For example, QC check samples and mid-range standards used for instrument calibration verification may be specified by certain methods to be introduced at the beginning, after every ten samples, and at the end of an analytical run. The frequency of method control checks, on the other hand, is based on the analytical batch as handled in the sample preparation, digestion, or extraction process.

The analytical batch is limited to the client's samples for projects for which the client is paying for the method quality control results. Hence, the method quality control samples will be selected from this batch and the minimum number of matrix spikes and laboratory duplicates associated with the samples for that particular project set is one per analytical batch per matrix regardless of the size of the sample set.

The control limits for instrument control are set at levels published in the source method, or are set by laboratory practice if an authoritative source is not available. These tolerances for instrument operation are absolute and are not to be abrogated without the approval of the Laboratory Director and the Corporate Quality Assurance Officer.

For method control elements (blank, matrix spike, laboratory duplicate or matrix spike duplicate, surrogate spike, laboratory control sample, QC check sample, and method detection limit) statistical evaluation is often the source for the control limits.

#### **Method Detection Limit**

The method detection limit (MDL) is determined for all analyses annually. As the blank acceptance criteria are affected by the MDL, it is critical that the detection limit study be performed properly and regularly.



	Frequency	r of Method Quality	uency of Method Quality Control Samples ¹	Samples		
A children A	Methods	Method Blanks	Duplicate	Spike	Surrogates	QC Check
Allalytes		Callu	5%2	10%	100%	1%4
GC-Purgeables	209-109	Dally	e423	55	100%	1%4
GC/MS-Purgeables	624	Daliy	0000	201	3001	1%4
GC.Pest. PCBs	608	EAB	6%×10	801	2001	1924
	610	EAB	6%2,3	801	V/N	204
	825	EAB	5%2,3	6%	100%	R
GC/MS-Settil-Volaties	412 4 412 9	EAB	6%2	10%2	N/A	×01.
Oll and Grease	1011 11011	FAB	<b>5%</b> ²	10%2	N/A	10%
Petroleum Hydrooarpons		CAR	5%2	10%	N/A	EAB/6%0
AAS Metals	2014 201102		<b>e</b> 42	10%	N/A	EAB/5% ⁶
ICP Metals	200.7	EAB	-20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Cyanide, ion chromatography	amit Sarlas	EAB	. 5%2	10%	N/A	10%
s other inorganics		EAR	5%3	5%	N/A	10%
TOC, COD		ŀ	54	: N/A	N/A	10%
BOD	1		222	N1/A	N/A	10%
Hydrogen Ion (pH), alkalinity	150.1, 310.1	A/A	80	V/N	N/A	10%
Residue - TSS, TDS	160.2, 160.1	EAB	0%	AVA AVA	N/M	N/A6
Stenderd Plate Count	SM 907C	EAB	100%	N/AG		N/A6
	EPA 9132, SM 909	EAB	10%	- N/A°	D/A	
te Drinking Water Act	R03 1.R04	Daliv	10%	EAB/5%	100%7	EAB
Organio 500 Series, inciuding EUD		Dally	EAB/6%	EAB/6%	100%	EAB/6%1
GC-Purgeables	0010-00-0	Cally	EAB/5%3	EAB /5%	100%	EAB/5% ⁴
GC/MS-Purgeables	0000	CAR	EAB/5%3	EAB/5%	100%	EAB/6%4
GC-Pest. & PCBs	8000	CAD CAD	EAR/R%3	EAB/6%	100%	EAB/5%4
GC/MS Semi-volatiles	8270		EAD LEV.3	EAR/5%	N/A	EAB/5% ⁴
HPI C.PAH	8310	EAB	EVENOR			

A 10% (requency will be used at a particular laboratory if required by applicable state certification programs, which specify adherence to the Handbook for Analytical Ouality Control for Water and Wastlewatter was near possible at the 500/4-04 specifies at the certification programs, which specify adherence to the Handbook for Analytical Ouality Control Duplicate matrix spikes may replace duplicate samples. Doc Check Samples will also be analyzed after every matrix spike outside of control limits. Laboratory control samples for method OC; these methods also require one OC check sample, which does not go through digestion, per Initial calibration. Laboratory control samples for method OC; these methods also require one OC check sample, which does not go through digestion, per Initial calibration. Cuantitive checks is spikes) are not possible. However, qualitative checks are negative organisms for each stock prepated and at least once per month.

0450

]

1

Method 504 for EDB does not require a aurrogate spike. N/A Not Applicable. ~

	Methods	Method Blanks	Duplicate	Matrix Spike	Surrogates	QC Check
Analytes		EAB	EA0/5%	EAB/5%	N/A	EAB/5%5
AS Motals	7000+	EAB	EAB/5%	EAB/5%	N/A	EAB/5%5
CP Metals	6010	EVB			N/A	EAB/5%4
yanide, ion chromatography	selies 0008	EAB	EAB/5%	EAB/5%	N/A	EAB/5%4
OX, TOC	9020.9060	EAB	EAB/5%	EAB/5%	and the second	EAB/5% ⁴
asoline Hydrocarbons	Mod, 5030/8020	EAB	EAB/5%	EAB/5%	100%	EAB/5%4
	Mod. CA LUFT	EAB	EAB/5%	EAB/5%	100%	EAD/3 A
Diesel Hydrocarbons	03559 503 18:1E	EAB	EAB/5%	EAB/5%	N/A	EAB/5%4
Petroleum Hydrocarbons	and the second se	and the second se	EAD/5%	N/A	100%	EAB/5%
Potroloum Profile	ASTM D2887	<u>EAB</u>	EAB/5% ⁷	N/A	100%	EAB/5%
/olatiles in Air	EPA Method 18	Dally	EAB/5%7	N/A	100%	EAB/5%
/olailles in Air	EPA TO1	Daily	EAB/5%	N/A	N/A	EAB/5%
gnitability	EPA 1010	N/A	EAB/5%	N/A	N/A	EAB/5%
Corrosivity	EPA 9040/9045	EAB	EAB/5%	N/A	N/A	EAB/5%
Reactivity	SW 848, Sec. 7.3	EAB		N/A	N/A	N/A
PTOX/TCI P	EPA 1310	FAB	<u>. 5%</u> 10% ⁸	N/A	N/A	wookly9
Asbestos (Bulk)	EPA Interim Method	N/A	10%8	N/A	EAB/5%	N/A
Asbestos (Alr)	NIQSH 7400	<u>'EAB</u>	EAB/5%3	EAB/5%	100%	EAB/6%4
3C/MS Purgoables	624-CLP	'Dally	EAB/5%3	EAB/5%	100%	EAB/5%4
3C-Pest & PCBs	608-CLP	EAB	EAB/5%3	EAB/5%	100%	EAB/5%4
GC/MS Semi-volatiles	625-CLP	EAB	EAB/6%	EAB/5%	N/A	EAB/5%5
AAS Metals	200-CLP	EAB	EAB/5%	EAB/5%	N/A	EAB/5%5
ICP Metals	200.7-CLP	EAB	CLO/RO	EA9/6%	N/A	EAB/5%5
Cyanida EAB/5% = one QC sample for ea A 10% frequency will be used at a for Waler and Wastewater Labora	335.2-CLP	EAB	CAD/D70		<u>a ann an a</u>	

]

Ì

]

tor water and wastewater Laboratories, EPA 600/4-79-019. Duplicate matrix spikes may replace duplicate samples. QC Check Samples will also be analyzed after every matrix spike outside of control limits. Laboratory control samples for method QC; these methods also require one QC check sample, which does not go through digestion, per initial calibration. QC sample in duplicate each analytical batch. Duplicate Tenax tubes must be supplied from the field. Duplicate control by second analyst. Otrantitative determination not applicable. Refractive index 1.68 with Amosite permanently mounted serves as a QC check for color dispersion weekly. Other permanently mounted esbosics types must be available for comparison with types found in each analytical batch. N/A. Not Applicable.

]

I

I

#### 10 AUDITS

Audits measure laboratory performance and insure compliance with certification programs. Audits may be of four main types: external, system, report, and blind sample audits.

#### External Audits

External audits are performed when certifying agencies or clients submit samples for analysis and/or conduct on-site inspections. It is GTEL's policy to cooperate fully with certifying agencies. It is also GTEL's policy to comply fully with system audits conducted by regulatory agencies and clients. The laboratory is involved in external performance audits conducted semi-annually by the EPA in which EPA performance evaluation samples are analyzed. Additional performance audits are conducted as required by clients and state certifying agencies.

#### Systems Audits

Systems audits are a primary responsibility of the Laboratory QA Manager. Systems audits are also be performed by the corporate QA office. Systems audits evaluate procedures and documentation in the laboratory. Systems audits encompass all aspects of the analysis, checking for adherence to criteria in this QA plan and in the method SOP. As a minimum, items covered are sample custody, calibration history, quality control, instrument control, data reduction and validation, method start-up QC, and records. Representative analytical projects are reviewed from inception to completion. Representative methods of each type of analysis are done at least annually by the Laboratory QA Manager.

#### **Report Audit**

Report audits which evaluate the correctness and appearance of the laboratory reports are performed routinely by the Laboratory QA Manager. Routine analytical reports are audited at a minimum rate of 1 in 20. Audits of all GTEL reports containing extended QC data (e.g. "CLP" and "Blue" level) are conducted before the report is issued. Report audits are performed by the corporate QA Director to assure that consistent quality and content is being delivered to clients from all of the laboratories.

#### **Blind Sample Audits**

Blind sample audits are performed by submitting a sample of known characteristics through ordinary sample handling procedures and comparing the reported concentrations with the known values. Blind sample audits are carried out annually.



ः इन्द्र

### **11 PREVENTATIVE MAINTENANCE**

The objective of preventative maintenance is to produce stability and predictability in the laboratory operation. It is a management tool which has a direct bearing on the efficiency and productivity of the laboratory. Preventative maintenance procedures are specified in each method SOP.



### 12 PROCEDURES TO ASSESS DATA QUALITY

The procedures and formulas required to assess data quality and overall method performance are described in this section.

#### Precision

The precision of laboratory test results will be expressed as the percent relative standard deviation (RSD) or relative percent difference (RPD). RPD is derived from the absolute difference between duplicate results,  $D_1$  and  $D_2$ , divided by the mean value of the duplicates.

$$RPD = \frac{|D_1 - D_2|}{(D_1 + D_2)/2} \times 100$$

#### Accuracy

Accuracy for the laboratory is expressed as the average percent recovery of spiked samples.

$$R = \frac{SSR - SR}{SA} \times 100$$

where:

R = % Recovery

SSR = spiked sample result

SR = sample result

SA =amount of spike

#### Representativeness

Representativeness is evaluated by comparison of duplicate analyses and by the results of audits which establish that the procedures to protect the integrity of samples are being followed.

#### Completeness

Completeness (C) is evaluated by dividing the total number of verifiable data points by the maximum number of data points possible and expressing the ratio as a percent.

#### Comparability

Comparability is evaluated for most of the common analyses in the inter-laboratory performance evaluations carried out by the EPA, state agencies, and GTEL clients. Split samples are another form of inter-laboratory study carried out by GTEL clients. The laboratory, in its audit program, also collects comparability data for the various GTEL facilities. This information is in the form of accuracy and precision statements, detection limit study results, and summaries of specified variations of standard methods found in the individual method SOP's used in each laboratory.

#### **Detection Limit**

For methods operating under this document the Method Detection Limit (MDL) is defined according to Test Methods For Evaluating Solid Waste, SW-846, Third Edition, Revision 1, December, 1987.

### "The minimum concentration that can be measured and reported with 99% confidence that the value is above zero."

It is approximately 3 times the standard deviation of a set of seven replicates at a concentration very near (within 5 times) the detection limit. The MDL is used to judge the significance of a single measurement of a future sample, and defines a limit above which false positives are very unlikely.

#### **Method Control**

Method control is based on published EPA performance criteria, on a statistical evaluation of quality control results or on provisional limits set while statistical evaluation is pending. Method control is documented as a quality control chart or tabulation. In certain instances where the method explicitly references a control limit, the referenced control limit is used unless the evaluation of the statistical control indicates that laboratory performance is significantly better than the referenced limit. As a minimum, GTEL maintains control charts or tabulations for matrix spikes for accuracy, and either duplicate matrix spikes or duplicate samples for precision.



#### **13 CORRECTIVE ACTION**

The corrective action scheme for investigating suspected data quality problems is presented in this section. The means by which the laboratory discovers, tracks, and completes the investigation of problems is discussed.

### Initiation and Completion of Corrective Action

The investigation of suspected data quality problems is initiated as a result of quality control criteria being exceeded, audit findings indicating systematic problems, or as a result of client inquiries.

#### Feedback Systems

The Laboratory Quality Assurance Manager serves as a focal point for feedback concerning problems. By means of accuracy and precision statements and the system report audits, problems which may have been overlooked by the laboratory supervisors in the course of daily work can be detected and corrected. All client complaints regarding data quality and operational quality (for example turn-around times) are reported to the Laboratory Director and to the quality assurance office.

All problems, internal and client related, handled by the quality assurance office are documented by means of a quality assurance action report (QAAR). A QAAR form is filled out at the time of receipt of a complaint or discovery of a problem. All actions taken and the status of in-process actions are reported to the Laboratory Director on a bi-weekly basis.

. I. Mart	
1 TETIVIT	

### 14 QUALITY ASSURANCE REPORTING

Quality assurance reporting documents the quality control and quality assurance activities in the laboratory and provides a communication and accountability link among analysts, management and clients.

#### **Report QA Deliverables**

The standard analytical report includes no quality control documentation. However, a certification that all QC requirements were met is signed by the manager responsible for the report. The elements of reports for clients needing quality control documentation are determined by the application. Two examples are the categories of Blue or CLP Level packages. Other types of client required QC deliverables have elements similar to these packages, but the specific requirements should be determined prior to the initiation of sampling and analysis.

#### **Periodic Reports**

Certain projects under regulatory review require establishment of explicit quality assurance objectives and quarterly summaries of QA conformance and corrective action. The laboratory technical and quality assurance staff provide any information required to establish and document achievement of the quality assurance objectives for particular projects.

#### **Reports to Management**

The Quality Assurance Manager submits a bi-weekly summary of QA activities to the Laboratory Managers, Laboratory Director, and Corporate Quality Assurance Director.



	ſ		Reli	Relii	Relir	<u>.                                    </u>		:	# 1 <del>0</del>	٥rd	οικ	M				:#	‡ 10.	וי									(٨)	loed	S)						8 🗆 ləvə		QAQ FAX [
			Relinguished by	Relinquished by:	Relinquished by Sampler.			ioit.	800.	9 <del>6</del>	0189	is		<u>ا</u> ۸			M3	-												-					NSU8 (#)	С 2804 1 84 ОЭТІС 1 7 АО И 2 7 АО И 8	expei Sevei Othe
					ļ		<del></del>	-r-			<b>-</b> -1	.				τ-				Т		Т	T	-		T	Т				Т	Π	Τ				
					ļ		┼╌┼	+	_	┢	$\left  - \right $	+	-+	┿	╋	┿			-+		╉	╋	╋	+		╈	+-					Π					
							++	+		+-	$\left  - \right $	+	+	+	+	┢	┼─		$\left  - \right $	+	┽	╈	$\uparrow$				╈	1			Τ						
						_+-	++	-+-		+	$\left  - \right $	÷	+	+	+	┽	-		┝─┨	+	╈	╈	╈														
	ł						┼┼	╉		╈	+	-	-		┼	┼╴	+-			1	1		┭											<u> </u>			
			Date	Date	Date	-+-	┼┼	+		╈	+		-	+		$\uparrow$																$\downarrow$					
			۳	Ű	Ű	-	╆╋	+	+	+			-†	╈		Τ		Γ	$\square$									$\perp$			$\perp$	$\downarrow$					
;	ł		-	-			++		+	1			1													$\square$		<u>  </u>				$\left  \right $					
:			=	ㅋ	크		$\dagger$	┭														$\downarrow$				$\square$	+-					++					
			Time	Time	Time															_	_		╞			$\square$	+	+-				++	_	+-			
•			Received	Received by:	Received by:			Corrosivity	CAM Metals D STLC	EPA Prio	TCLP Me	EPTOX: N	EPA 625 🗆 8270 🗆	EPA 624 🗆 8240 🗆	EPA 610 0 8310 0		EPA 601 0 8010 0	Total Petroleum Hydrocarbons: 418.1 U	Total Oil & Grease: 413.1 0 413.2 0	Product I.D. by GC (SIMDIS)	TPH as D Gas D Diesel D Jet Fuel	BTEX/TPH Gas. 602/8015 D 8020/8015 D MT	BTEX 602 D	TIME	DATE	OTHER		Ş			OTHER	AIR	SOIL	# CONTAINERS	# dßJ өви dsJ) (\lao	to 9lqms2	elqmsč DI
			by	l by:	l by:			2	als		] slei	fetals	82	82	8			oleun	Grea	). by	Gas	ြန	10	Build	lme2		/eq pq	n n n n e t h c	M 919		X	inte	W	ERS	GTEL	Source	FIeld
			Received by Laboratory.					Flashpoint D	O STLC	EPA Priority Pollutant Metals D risc D	TCLP Metals VOA C Semi VOA C	EPTOX: Metals D Pesticides D Herbicid	70 🗆	ð				h Hydroca	lse: 413.1	GC (SIMD	🗆 Diesel	502/8015	8020 0					msV		dwŧ	s		uol	llect D	tield sampling tring the co	were used	attest that rocedures these sai
		_	3					ji D			Sen	cides	NB	NB		B.	.   ខ្ល	bons		2	ي د	8020	¥.					ទ៣ទ	NI 12	າອເດ	u al					nedmi	רס∣פכז Nu
· .		Way bill #						Re	ဂြ		Ĭ		NBS +25 🛛	NBS +15 🛛		PCRs onk D	DCA only L	418.1	3.2 [		tFue	80	with MTBE D						14 14								
		)   =   #						Reactivity				erbic	0						11			5 0 2	ö	•	_			:uoj		ol el							/ddress:
								7		ă	וי	8						503E U	503A 🗆			뗾	ſ							# X'						าคริยม	sM toelor
																		Ċ	;  <b>-</b>				$ \rightarrow $				_		:# (	BUO	19						
										L	.SE	ິດເ												73.	27-GT	2-00	90		00	)E#	ទរហេទ	203 )L'' 2	1 90 1 90	Marir 0, CA	ўі Топалс 20000 і		
		anos	ЭЯ	YQO	TSUD		29	79	<u> </u>	-9	Ζ	a	ЧO	ST EC	NE K B	EG DD	DTS DTS	515 50	г <i>х</i> : 5-3	0-1 AN	NI VI	IN /H:	9 0	77	01-12											372	
ſ	Ĺ			E		E		E		E	- -		E			E		Į	E		E			Ĩ		E		E			E		Į	[	<b>E</b>		

DATE: 12/21/90

## WATER POLLUTION STUDY NUMBER WP025

TORT: CA070

TES	SATPLE NUMBER	REPORT VALUE	TRUE Vàlue≠	ACCEPTANCE LILITS	WARNING LIMITS	PERFORMANCE EVALUATION
TRACE SE	TALS IN MICH	ROGRAMS	PER LIT	ER:		
	1	1420	1428	1150- 1680	1220- 1620	ACCEPTABLE
	1 2		45.7		28.6- 77.ú	ACCEPTABLE
1	-					ACCEPTABLE
NIC	1	326	312 -		267- 358 42.3- 59.1	ACCEPTABLE
9	2	52.8	51.9	39.4- 61.9	42.3- 39.1	
1			806	669- 917	693- 884	ACCEPTABLE
LIUN	1 2	800 20.1	20.9	16.2- 25.5	17.4- 24.4	ACCEPTABLE
1	Z	2001	2003		_	
	1	12.2	6.35	4.20- 8.85	4.76- 8.27 1	NOT ACCEPTABLE
LOR		68.7	72.0	60.4- 82.5	63.2- 79.7	ACCEPTABLE
•				500	209- 693	ACCEPIABLE
LT	1	431			398- 493 23.6- 30.9	ACCEPTABLE
	2	27.1	27.2	22.6- 32.2	ZJ • 0 = JV • .	
9		11.4	11.0	5.57- 16.3	7.00- 14.9	ACCEPTABLE
HINR	1	105	106	82.0- 124	87.3- 119	ACCEPTABLE
	2	103	200			
ER	1	715	720		657- 773	ACCEFTABLE
C R	2	31.0	25.2	19.9- 31.0	21.3- 29.5	CHECK FOR ERRO
					25.8- 45.5	ACCSPTABLE
•	. 1	31.8	32.5	22.5- 43.9 1070- 1390	1110- 1350	ACCEPTASLS
	2	1220	1230	1010-1390	1110 1357	
		522	551	468- 628	488- 508	ACCEPIABL
BANESE	1	18.5	19.3	15.4- 23.6	16.4- 22.ú	ACCEPTABLE
	<u> </u>		-			ACCEPTABL
KEL .	· . 1	906	940	820- 1050		ACCEPTABL
KEL		42.5	41.9	33.8- 49.5	35.8- 47.5	ACCE: INCE
- -					26.7- 38.7	ACCEPTEBL
D	1		32.2	24.7- 40.7 1140- 1550		ACCEPTABL
• •	2	1280	1344	TT40- T000		
· · ·	4	29.3	30.0	20.1- 36.8	22.2- 34.7	ACCEPTABL
EN IUM	1		130	90.7- 155		ACCEPTABL

BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN NECESSARY.

PÅGE 1

WATER POLLUTION STUDY NUMBER WP025

• •.

ANALYTES	SAMPLE	REPORT	TRUE				ING	PERFORMANC
	NUMBER	VALUE	VALJS≉	* LI#	ITS 	LI3	ITS	EVALUATION
TRACE METAL	S IN MIC	ROGRAMS	PSR LIT	ER:				
VANADIUM	1	57.4	59.1	46.6-	69.8	49.7-	66.7	ACCEPTAB
	2	25 2	255	218-	291	226-	281	ACCEPTAB
LINC	1	30.1	25.4	17.6-	36-9	20.1-	3#_5	ACCEPTAB
	2	730	768	671-	853	694-	<u>9</u> 31	ACCEPTAB ACCEPTAB
NTIMONY								ACCEPTAB
	4	150	157	110-	201	122-	189	ACCEPTAE
ILVER	3	1.21	1.20	0.748-	1.61	0.856-	1-50	ACCEPTAB
	4	12.6	12.4	9.58-	15.2	10.3-	14.5	ACCEPTAB
HALLIUM	3	11.0	11.0	6.79-	15.9	7.96-	14.7	ACCEPTAS
	4	59.8	67.9 _.	51.1-	85.1	55.7-	90.5	ACCEPTAB
OLYBDENUM	3	10.5	9.56	4.74-	14.3	6.09-	12.9	ACCEPTAB
· ·	4	57.5	56.0	33.8-	74.7	39.6-	68.9	ACCEPTAE
MINERALS IN	MILLIGR	LES PER 1	LITER:	(EXCEP:	T AS N	OTED)		
H-UNITS	3	4.58	4.60	4.52-	4.68	4.54-	4.66	ACCEPTAS
	Ę	8.19	8.33	7.96-	8.50	9.03-	8.44	ACCEPTAB
PEC. COND.	1	66.1	67.8	57.5-	76.4	59.0-	74.0	ACCEPTAB CHECK FOR ER
JAHOS/CH AT 25 C)	2	679	779	676-	838	696-	618	CHECK FOR ER
S AT 180 2	1	41.0	32.8	11.0-	58.8	16.9-	52.9	LCCEDTLR
•:*	2	452	412	- 294-	542	325-	511	ACCEPTAB ACCEPTAB
DTAL HARDNESS	1	13.8	12.0	8-28-	15.6	9.19-	111 6	
S CACO3)	2	•		183-	216	187-	212	ACCEPTAB ACCEPTAB
LCIUM	1	3.28	3.00	2-49-	3,58	7.63-	3.111	ACCEPTAB
	2	50.2	55.4	48.1-	62.1	49.8-	60-7	ACCEPTAB

BASED UPON THEORETICAL GALCULATIONS, OR A REFERENCE VALUE WHEN NECESSARY.

PAGE 2

DATE: 12/21

:

.

DATE: 12/21/90

### WATER POLLUTION STUDY NUMBER WP025

BORATORY: CA070

.

•. •

HALYTES			SANPLE NUMBER	REPOR VALUE	TRUE VALOE	ACCEP LIM	TANCE ITS 	RARN LIM	ING ITS	PERFORMANCE EVALUATION
<b></b> 1	MINERALS	IK	MILLIGR	ACS PER	LITER:	(EXCEP	T AS N	IOTED)		<b>6</b> .
GNESIU	n		1	1.38	1.10	0.929-	1.31	0.978-	1.25	NOT ACCEPTABL
<b>23</b>			2	17.9	15.0	12.9-	17.1	13.4-	16.5	NOT ACCEPTABLE
DIUM			1	6.91	5.85	11 117-	5 50		<pre></pre>	
_			2	62.4	59.7	44.7-	56.0	46.1-	54.5	NOT ACCEPTABLE NOT ACCEPTABLE
TASSIU	n		1	6.74	3.00	7.01-	2 40	2 5/:	2 21	NOT ACCEPTABLE
			2	31.7		21.6-	30.9	22.8-	29.ª	NOT ACCEPTABLE NOT ACCEPTABLE
TAL AL	MALINITY		1	8.56	6.69	2.62-	9.74	3.51-	8.45	ACCEPTABL
AS CACO			2	50.0	47.3	39.5-	50.4	40.6-	49.1	CEECK FOR ERRO
LORIDE			1	06.80	9.65	7.19-	71.7	7.75-	11.1	ACCEPTABL
			2		142	131-	154	134-	151	ACCEPTABLE
UORIDE			1	9.165	0.180	0.110-0	0.256	0.126-0	.233	ACCEPTAEL
1			2	0-828	0.910	0.772-	1.03	0.804-0	.997	ACCEPTABL
LFATE			1	6.89	8.00	5.00-	10.5	5.70-	9.54	ACCEPTABL
i			2	87.1	90.0	74.7-	102	78.1-	95.6	ACCEPTABL
<b>1</b>	NUTRIENTS	i Ia	MILLIG	RAMS PER	LITER:					
MONIA-	NITEOGEN		1	ő.59	8.76	5- 77-	10.4	7.36-	10.3	ACCEPTABL
_			2	1.70	1.60	1.20-	1.99	1.29-	1.93	ACCEPTABLE
	NITROGEN		9	2 47	2 2 2				_	
			2	2.57	3.20 0.550	2.52-	3.85	2.66- 0.515-0	3.69	
-	• '• '		-	00040	0.000	V•• /3-(	J•3∠0	0.212-0	- 120	ACCEPTABL
THOPHO	SPHATE		. 1	0.205	0.199	0.145-0	.235	0.155-0	.224	ACCEPTÍBLI
		•	. 2	5.09	5.30	4.48-	6.10	<b>q.67</b> -	5.90	ACCEPTABLI
TAL PH	OSPHORUS		3	7.78	8.20	6.32-	9.62	6.77-	0,73	ACCEPTABL
			4	0.593	0.625	0.449-0	1.777	0.486-0	733	ACCEPTABLE

PAGE 3

.

.

(**111**)

30

•

### WATER POLLUTION STUDY NUMBER WP025

ANALYTES	SAMPLE NUMBER	REPCRI VALUE		ACCEPTANCE CLIMITS	WARNING LIMITS	PERFORMANCE EVALUATION
DEMANDS IN	KILLIGR	AMS PER I	ITER:			
COD	1 2	104 16.6	121 18.2	96.0- 138 9.16- 20.3	101- 133 10.7- 25.8	ACCEPTABL ACCEPTABL
PCB'S IN E	ICROGRAMS	S PER LIT	ER:			
PCB-AROCLOR 1016/1	242 2	4.60	5.50	2.29- 8.35	3.13- 9.01	ACCEPTABL
CB-AROCLOR 1248	2	3.62	-	D.LD.L.	D.L D.L.	NOT ACCEPTABL
CB-AROCLOR 1260	1	4.15	4.27	1.22- 6.16	1.35- 5.52	ACCEPTABL
PC8'S IN 0	IL IN MIL	LIGRAMS	PER KIL	OGEA# :		
CB IN OIL- 1254	1	30.2	26.3	4.94- 46.7	9.50- 41.2	ACCEPTABL
CB IN OIL- 1260	2	55.0	50.0	1.58- 82.7	12.0- 72.3	ACCEPTABL
PESTICIDES	IN RIC30	GRAMS PE	R LITER	· ·		
HLOR DAN E	- 4	1.55 7.25	1.50 5.73	0.744- 1.98 3.36- 8.78	0.902- 1.82 4.06- 8.09	ACCEPTABI ACCEPTABI
LDRIN	1 2	0.113 0.381	0.158 0.483	•0409-0•224 •0955-0•654	• 9643-0• 201 0•166-0•583	ACCEPTABL ACCEPTABL

PAGE 4

DATE: 12/21/9

### PERFORMANCE EVALUATION REPORT DATE: 12/21/90

WATER POLLUTION STUDY NUMBER #P025

· .

	AMPLE UMBER			ACCEPTANCE LIMITS	WARNING LIMITS	PERFORMANCY EVALUATION
PESTICIDES IN	nICRO	GRAMS PE	ER LITER	:		
JIELDRIN	1	0.115	0.142	.0478-0.215	.0694-0.140	ACCEPTABLE
	2	C•438	0.508	0.211-0.716	0.275-0.552	ACCEPTABLE
DD	1	0.135	0.181	.0585-0.311	.0907-0.27?	ACCEPTRELE
9	2	0.624	0.773	0.406- 1.98	0.491-0.991	ACCEPTABLE
DDE	1	0.162	0.217	.0902-0.308	0.118-0.280	
900	2	0.348	0.425	0.173-0.602	0.226-0.547	ACCEPTA EL S
DT	1	0.207	0.173	.0421-0.306	.0756-0.273	ACCEPTABLE
	2	0.701	0.553	0.252-0.812	0.323-0.740	ACCEPTABLE
" EPTACHLOR	1	0.166	0.193	.0680-0.255	.0917-0.231	ACCEPIABL
			0.523		0.226-0.21-	ACCEPTABL
VOLATILE HALO	CAREON	S IN BI	CROGRAMS	S PER LITER:		
1,2 DICHLOROETHANE	1	9.52	13.3	8.79- 18.3		CHECK FOR ERR
	2	27.9	25.7	18.3- 36.0	20.5- 33.7	ACCEPTABL
CELOROFORE	1	7.67	9.74	6.16- 13.4		ACCEPTABL
•	. 2	32.7	37.4	24.4- 49.7	27.5- 46.4	ACCEPTABL.
1,1,1 TRICHLOROETHANE	: 1	6.20	7.96	4.44- 11.7	5.37- 10.7	ACCEPTABL
	• 2	46.8	59.3	35.9- 77.2	41.1- 72.0	ACCEPTABL:
TRICHLOROETHESE	1	6.10	19.5 ·	6.43- 13.7	7.36- 12.0	NOT ACCEPTABL
	2	31.6	47.u		34.0- 56.9	CHECK FOR ERR
CARBONTETRACELORIDE	1	4.62	6.81	3.72- 9.98	4.52- 9.13	ACCEPTABL
m	2	49.1	54.7	34.1- 77.0	39.6- 71.5	ACCEPTAEL
- CETRACHLOROETHENE	1	8-41	11.7	6:64- 16.4	7.88- 15.2	ACCEPTABL
. 51 NACHLOAVE I HENE	2	n0-n	54.0	.32.1- 74.1	37.4- 64.2	ACCEPTABL

PAGE 5

DATE: 12/21/90

.

ł

WATER POLLUTION STUDY NUMBER XP025

BOR	ATC	RX:	C A 0 7 0
-----	-----	-----	-----------

.

-

30

••.

	SAMPLE NUMBER		TRJE VALUS≑	ACCEPTANCE LIMITS	WARNING LINITS	PERFORMANCE EVALUATION
GVOLATILE HAL	OCAR BONS	IN MIC	ROJPAMS	PER LITER:	•	
DEODICHLORONETHANE	: 1					NOT ACCEPTABLE
	2	52.8	62.5	43.3- 33.7	4 <b>ð</b> •5- 78•5	ACCEPTABLE
ROMOCHLOROMETHAKE	1	8.83	12.5	7.63- 17.8		CAECK FOE EERO
<b>.</b> .	2	35.2	44.7	29.1- 51.1	33.2- 57.0	ACCEPTABLE
EOFORM	1	9.67	14.4	7.78- 19.5	9.26- 18.0	ACCEPTABLE
	2	56.5	65.1	40.4- 95.6	47.5- 88.5	ACCEPTABLE
HYLENE CHLORIDE	1 _	9.51	12.3	6.29- 17.4	7.70- 16:0	- ACCEPTABLE
	2	34.1	42.6	23.1- 58.1	27.5- 53.7	ACCEPTABLE
OROBENZENE	1	10.1	13.9	8.97- 15.7	10.2- 17.4	CHECK FOR EERC
	2	49.8	63.0	43.1- 79.7	47.8- 75.0	CCEPTABLE
VOLATILE ARC	MATICS I	N MICEO	GRAMS PI	ER LITER:	·	
ZENE	1	19.3	17.8	11.9- 23.7	13.4- 22.2	
	2	86.2	32.0	55.7- 107	62.2- 100	ACCEPTABLE
ILBENZENE	1	10.7	9.60	5.43- 12.9	5.38- 12.0	ACCEPTABLE
	2	60.4	58.4	39.1- 76.5	43.9- 71.8	ACCEPTABLE
.UENE	1	14.0	12.9	9.30- 16.8	9.33- 15.8	ACCEPTABLE
	2	96-2	93.8	. 62.5- 119	69.8- 112	1CCEPTABL
DICHLOROBENZENE	1	17.0	13.5	8.69- 17.9	9.90- 16.7	CHECK FOR ERRO
	2	50.2				ACCEPTABLE
-DICHLOROBENZENE	1	21.8	19.7	. 12.1- 26.0	13.9- 24.2	ACCEPTABLE
						ACCEPTABLE
-DICHLOROB ENZENE	1	18.8	15.3	9.55- 21.1	11.1- 19.6	ACCEPTABL
	2				35.2- 51.2	

PAGE 6

.

DATE: 12/21/90

WATER POLLUTION STUDY NUMBER WP025

DRATORY: CA070

. ....

	SAMPLE UMBER	REPOR VALUE	TRUE	ACCEPTANCE E LIMITS	WARNING LIMITS	PERFORMANCE EVALUATION
MISCELLAREOUS	5 PARAN	ETERS:		 . <b>4</b>		
TAL CYANIDE	1	0.250	0.540	0.392-0.681		NOT ACCEPTABLE
MG/L)	2	0.049	0.110	.0513-0.146		NOT ACCEPTABLE
N-FILTERABLE RESIDO	JE 1	15.7	15.6	11.9- 21.2	13.1- 20.0	ACCEPTABLE
E MG/L)	2	43.2	42.4	34.9- 50.0	36.7- 48.1	ACCEPTABLE
L AND GREASE	1	30.2	39.0	23.9- 45.1	26.6- 42.5	ACCEPTABLE
K MG/L)	2	15.4	20.0	10.6- 25.4	12.4- 23.5	ACCEPTABLE
AL PHENOLICS	1	3.52	3.14	1.63- 4.66	2.01- 4.27	ACCEPTABLE
( MG/L)	2	0.386	0.372	0.149-0.596	0.205-0.539	ACCEPTABLE
AL RESIDUAL CHLORI	INT 1	0.150	0 <b>.175</b>	D.L0.351	•0376-0.304	ACCEPTABLE
M MG/L)	2	1.25	1.65	1.07- 1.99	1.19- 1.97	ACCEPTABLE

BASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE THEN HECESSARY. . STANDS FOR DETECTION LIMIT

PAGE 7 (LAST PAGE)

### PERFCRAISCE EVALUATION REPORT

CATE: 6/13/90

1

WATER POLLOTICS STUDY NUMBER NP024

### ABCRATCRY: CA070

••••••

N & L YTES	SARPLE NOMBER	EEPCRT VALOE	T 80 E \$1 L J E \$1 L J E	ACC2P LIM	TANCE ITS	WAENI! Liti		
TRACZ M	ETALS IN EICH	CGRAMS A	PER LIT	: F3				
LUMINDA	1		1200				1380	CSEC3 FOR ERA
	2	610	750	592-	910	628-	869	CHECK FOR 533
SENIC	1			20.6-			15.5	NOT ACCEPTABL
	2	147	130	139-	215	149-	205	CHECK FOR E33
RY LLIJ M	1			53.4-				
-	2	172	190	153-	206	159	199	ACCEPTAEL
DAIGA		274	300	244-	343	257-		
	2	104	110	32.9-	12/1	96 7-	1 7.5	1
BALT		718	750	651 <del>-</del>	851	677- 270-	825	δ λ λcceptlel
	2	268	30 0	259-	342	270-	332	ACCEETABL
ROMINA	1	41.2				40.2- 5		
	2	590	790	562-	819	595-	787	CHECK FOR ERR
PPER	1		95.0	72.3-	94.5	75.6- 9	91.8	ACCEPTAEL
	2	507	500	444-	547	457 <del>-</del>	534	ACCEPTABL
СЯ	r	598	550	559-	737	581-	715	ACCEPTABL
	2	1530	1650	14 20 -	1960	1480- 1	.910	LEAT 92026
RCJRY	1	3.25	7.00	5.19-	8.74	5.64- 3	1.30	NOT ACCEPTABL
	2	0.75	1.25 (	.729-	1.98	0.873- 1	74	CHECK FOR ERR
NGANESE	1	136	200	173-	217	133-	212	. ACCEPTASL
	2	604	650	535-	707	601-	692	ACCEPTABL
CZET	1			172-	227	179-	220	ACCEFIAEL
	2	743	300	695-	979	721-	97'1	ACCEPTABL
A D	1		100			81.5-	115	ACCEPTABL
	2	27 8	275	234-	309		299	ACCEPTABL

PAGE 1

·

. ...

DATE: 6/18/90

WATER POLLOTICS STODY NUMBER WP024

MEOSATORY: CA070

•

ALTTES H	412 L Z 049 E 3	FEPCET VALUE	TEUE VALUE⇒	ACCEPTANCE LIMITS	HARNING LIMITS	FERFORMANCZ
						EVALUATION
TRACE SETALS	TN MICI	BUCSTRC	0 E 0 T F 1			
-1		LU CR MIS I	YEX LLI			
LENIUA		66.9	70.0	47.9- 81.1	52.0- 77.0	ACCEPTAELE
_	2	11.5	16.0	9.71- 19.7	11.0- 19.5	ACCEPTABLE
LUICAR	1	1130				
	2	1130 1689	1150	995-1300		ACCEPTABLE
_	۷	TCCA	1900	1650- 2150	1710- 2C8C	ACCEPTABLE
ึ่งC	1	845	900	797- 1000	810- 976	
•	2	517	550	733- LUUU H77_ 61H	910- 316	
_	-			··//= 014	494 - 597	ACCEPTABLE
YRONIT		14.4	19.5	10-5-27-2	12.6- 25 1	ACCEPTABLE
	4		79.4	45.4- 87.7	50.7-82.3	
• * = =			-		30010 3263	ACCEFTABLE
LYSR	3	3.09			3.57- 5.28	ICT ACCEPTABLE
	4	1.19	1.63	1.14- 2.24	1.29-2.11	CHECK FOR ELE
ALLIUN	2	6 0 2				
<b>F</b>	ส ว	6.93 54.3	4.75	2.65- 6.53	3.15- 5.08	SOT ACCEPTABLE
· · · · ·	4	24 • 3	34.5	63.1- 107	69.1- 101	NOT ACCEPTABLE
LYBDENUM	З					ACCEPTABLE
4	4		3_20	$0 - 60 R_{-} - 6 - 07$	30+34 30+4 1 334 5 35	ACCEPTABLE ACCEPTABLE
						ACCE FTABLE
MINERALS IN HI	LLIGRA	NS PER L	.ITE9:	(EICEPT AS M	(GETC	
" • 7 N I T S						
		5.97	5.00	5.35- 6.12	5.89- 5.09	ACCEPIABLE
	••	8.47	3.50	9.17- 8.94	8.27- 8.76	ACCEPTABLE
C. CCND.	1	710	. 770	6 H C - 700		
HOS/CM AT 25 C)	1 2	632	723	545- 789	663- 771	ACCEPTABLE
	~	004	<b>د ۲</b> ۰	529- 738	649- 753	ACCEPTABLE
AT 130 C	1	386	441	215- 628	367 677	
	2	390	395	287- 515	267- 577 316- 486	ACCEPTABLE
			- / -	207- 313	316- 48 <del>6</del>	ACCEPTABLE
	1	27G	267	242- 293	247- 278	1002541312
TAL HARDNESS CACO3)	*			47.9- 61.4	477 474	ACCEPIABLE

21G3 2

:

•

WATER FOLLCTICN STUDY MUNSER WF024

÷

ANALYTES	SAMPLE NUMBER	REPCRT Vilue 	VALU E≉	ACCEPTANCE LIMITS	WARNING LIMITS	FERFCSE E7ALUATI
ZINERALS IN	MILLIGR.	ANS PER			01201	
CALCIUN					•	_
	2	10.8	12.9	34.0- 42.2 10.3- 14.0	35.0 - 41.2 11.2 - 13.5	CHECK FOR
AGNESIUS	1	38.6	49-0	34.0- 45.8		
	2	5.25	5.80	4.91- 6.66	5.13- 6.44	ACCEP1 ACCEP1
GO LUM	1	7.69	6.72	5.73- 7.94	6.01-7.66	
•				109- 135	112- 132	ACCEP:
POTASSIUM	1	23.6	24.0	20.0- 27.2	20.9- 25.3	10023
	2	6.85	7.00	5.73- 8.46	6.07- 8.12	ACCE PI
OTAL ALXALINITY	1	28.3	9.10	5.59- 13.9	7.58- 13.0	BOT ACCEPT
AS CACC3)	2	93.5	37.5	91.5- 93.7	83.1- 92.2	CHECK FCR
HLORIDE	1	185	194	177- 205	130- 201	ACCEPT
	2	102	95.0	36.4- 101	88.2- 99.2	NOT ACCEPT
LUORIDE	1	G.67	0.58	9.472-0.682	0.499-0.656	ROT ZOED
	2	2.52	2.30	2.03-2.52	2.09- 2.45	CHECK LOS
OLFATE	1	25.0	25.0	19.0- 29.3	20.2- 23.0	ACCEPT
	2	97 <b>.</b> C	100	93.4- 113	87.2- 110	ACCEP1
DEMANDS IN M	ILLIGEAS	IS 2E3 L3	ITER:			
00	1	86.7	75.2	58-3-93-6	62.7- 89.7	ACCERT
	2	51.1	50.0	35.3- 52.4	39.1- 59.1	
PCB'S IN MIC	ROGRAMS	PER LITS	22:			
C9-AROCLOR 1248	2	2 1 2	2 70	1 10 7 70	1.45- 3.54	ACCEPT

PAGE 3

.

ъ

Π

[

DATE: 6/

DATE: 6/18/90

. .

PATES POLLOTICE STUDY NUMBER 3P024

ABORATORY: CA070

3

:

. .

NALYTES	SACPLE Numeer	329295 3014 V 5014 V	TRUZ ¢3LJE¢	ACC2PTANCE LIMITS	WARNING LIZITS	PERFORMANCE EVALUATION
PCS'S IN EIC:	ROGRAMS	PES LIT	58:			
B-AROCLOR 1254	1	9.22	19.2	4.79- 13.5	5.87- 12.4	ACCEPTAELE
PC2'S IN CIL	IN MIL	LIGALES	PER KIL	ogaaa:		
CB IN CIL- 1016/1242	2 1	44.9	45.0	7.35- 69.3	15.2- 61.5	ACCEPTAELE
28 IN OIL- 1254	2	58.3	50.0	3.77- 63.4	11.3- 55.9	CHECK FOR ESEC
PESTICICES IN	TICROG	SALS PE	S LITER	:		
	3	11.9	3,17	3.65-11.2	1 60 - 10 7	NOT ACCEPTABLE
	4	1.46	1.09	C.539 - 1.47	0.708- 1.36	CBECK FOR EARCE
KI SC.	1	0.352 (				ACCEFTABLE
	2			.0349-0.270	.0643-9.241	ACCEPTABLE
🗝 LD RI N	1	0.498 (	.650	0-350-0-978	0 #28-0 900	ACCEPTABLE
1				0.137-0.389	C.169-C.358	ACCEPTABLE
1.p	1	0.705	1.13	0-597- 1-63	0.713-1.50	CHECK FOR ESSO
	2	0.109 0	).133	0353-0.227	.0597-0.203	ACCEPTABLE
÷E	1	0.457 (	603 (	). 79 <b>7</b> -0 90 7	0 360 -0 835	ACCEPTAELE
	2	0.241 0	.292	0961-0.443	0.140-0.490	ACCEPTAELS
IT	1					
<b>—</b>			-250	).410- 1.38 .0659-0.438	0.531 - 1.26 0.112 - 0.391	ACCEPTA BLE ACCEPTA BLE
PTACH LCR					0.228-0.621	
	_			•T 07-0 •030	•0290-0.125	ACCEPTABLE

PAGE 4

.

•. :

٠.

•

	SAMPIE NUMEER	REPOR ⁴ VAIUE		ACCEPTANCE	WAENING LINITS	FERFCHPA Evaluati
PESTICIDES I	N MICRO	GRAMS P	ER LITE	A:		
EPTACELOR EFOXIDE				0.230-0.590	0.275-0.545	ACCEPT
	2	0.250	0.293	0.149-0.400	0.180-0.369	ACCEPT
VOLATILE HAL	OCLR BOX	S IN MI	CROGRAM	S'PER LITER:		
,2 DICHLOROETHANE	1	49.4	50.5	32.5- 69.9	37.3- 65.1	ACCEPT
	2	6_44	6.73	4.78- 9.81	5.41- 9.18	ACCEFT
BLCROFCRM	1	37.7	42.1	28.8- 53.7	32.0- 50.6	ACCEFI
	2	8.11	8.57	4.81- 12.8		ACCEPT
,1,1 TRICHLOROETHAN	E 1	47.2	66.0	38.9- 97.2	46.4- 89.7	ACCEPT
	2	6.29	12.1	5.21- 17.3	7.60- 15.9	
RICHLOROETHENE	1	43.8	54.7	34.9- 72.5	39.7- 67.7	ACCEPT
	2	9.70		5.97- 15.9	9.10- 14.7	
ABBONTETRACHLORIDE	1	40.4	60.8	35.4- 88.1	43.0- 81.5	CHECK FOR
	2	4.16	14.7	8.47- 21.5		NOT ACCEPT
ETRACHLORCETHENE	1	36.C	47.5	27.7- 65.4	32.5- 60.6	ACCEPT
	2	2.49	4.42	2.42- 6.73	2.96- 6.19	
ROMODICHLORCMETHANE	1	45.0	49.2	34.3- 63.1	38.0- 59.5	ACCEPT
	2	11.1	14.2		10.4- 17.9	
IBROHOCHLOROZZIHLNE	1	55.6	58-1	38.2- 79.4	43.5- 74.1	ACCEPT
	2		9.35		6.36- 12.1	
RCEOFORM		35.8	. 37.1	20.9- 54.3	25.1- 50.3	ACCED"
	2	3.73	5.33	2.25- 8.36	3.01- 7.59	ACCEPT
ETHYLENE CHLCEIDE	1	36.7	<b>77</b> 1	21.6- 53.3	25.7- 49 7	100923
LINIDERE CADURIDE	2	6.53	5.36	2.29-10.9	3.37-9.77	ACCEPT

PAGE 5

2

. ל 11 T T T T

. د

ን

### PERFCENARCE EVALUATION REPORT

DATE: 6/13/90

### WATER FOLLUTION STUDY NUMERS WF024

								FEGFORMANCE
LYTES Lecter	8083ER	VALUZ	¥ 7 72 5¢	LIN]	:1S	LIN]	[15 	EVALUATION
VOLATILE HAL		: TV 4TC		020 1	****			
	CLAREUNI		JUGUANJ					
OROSENZENE	1	45.2	51.1	35.1-	67.4	39.3-	63.3	ACCEPTABLE
:	2	11.0	12.1	7.81-	16.3	8.90-	15.2	ACCEPTABLE
VOLATILE ARO	NATICS 1	IN MICRO	GRANS P	er lit:	28:		·	
NZENE	1	13.2	13.0	3.44-	17.7	9-62-	15-5	ACCIPTABLZ
14632 M		53.3		36.5-		40.7-		
-	_					-		
HYLSENZENE	1	21.6	21.0	14.7-	27.4	16.3-		ACCEPTABLE
<b>-</b>	. 2	93.C	93.1	62.9-	120	70.1-	113	ACCEPTABLE
LJENE	1 .	15.4	15.3	11.2-	21.1	12.5-	-	ACCEPTABLE
۹	2	65.6	57.1	45.4-	1.85	50.8-	82.8	ACCEPTABLE
2-DICHLCRCEENZENE	1	17.7	17.0	10.9-	22.9	12.3-	21.2	ACCEPTABLE
-	2	70.3	65.1	42.1-	86.1	47.9-	80.3	ACCEPTABLE
- DICHLOROBENZENE	1	11.5	11.1	5.23-	15.1	7.39-	14.0	ACCEPTABLE
	2	84.ć	79.1	51.5-	191	59.0-	94.3	ACCEPTAELI
	1	23.5	23.9	14.4-	32.3	16.8-	30.0	ACCEPTAEL
<i>J</i> 20% 202020000000			34.0					
TISCELLANEGO	IS PARAM	ETERS:						
N-FILTERARLE BESIG	HF 1	69.1	73.0	61.3-	78.0	63-3-	75.9	ACCEPTABLE
5G/L)	2	5á.Z	60.0	49.5-	62.0	50.2-	60.3	ACCEPTABL
L AND GREASE	1	77.7	13-0	10.6-	23.2	12.2-	21 <b>.7</b>	CHECK FOR ERR
" MG/L)	2	13.6	10.0	3.51-	15.2	4.97-	13.8	ACCEPTAEL
TAL FRENOLICS	1	C.190	0.162	.0775-	0.261	0.101-	0.237	ACCEPTABL
≓ ‼G/L)	2	C.58	C.531	0.297-	0.795	0.351-	0.731	ACCEPTAEL

•

-

· PAGE б

27

PERFORMANCE STALUATION REPORT DATE: WATER POLLUTION STUDY NUMBER WP024 LABORATCRY: CA070 SAMPLE REPCET TBUZ ACCEPTANCE VAR 51 SG - a . . PERFORM ANALYTES NUMBER VALOE VALOE≈ LINITS LI HITS EAVEDY 1241014 MISCELLANEOUS PARAMETERS:

TOTAL RESIDUAL CHLCRINE (IN MG/L)	1 2	0.715	1.50 0.220	0.895- 1.82 .0829-0.333	1.02- 1.70 HOT 0.116-0.300 m.	ACCEP.
	1 IC	AL CAIC	ULATIONS	S, OR A REPER	ENCE VALUE AREN	NECES

FAGE 7 (LAST PAGE)

7

1.3 Million 1.

DATE: 12/21/39

# WUTER POLLUTION STUDY SUBSER 4P023

ALYTES	SA MILE NUME ER	YALGE	TRUE VALUE*	ACCOPIANCE LIMITS	WARNING LIMITS	PERFORMANCE EVALUATION
	(					
TRACE M	ETALS IN MICR	OGRAMS	PER LIT			
<b>4</b> <b>_</b>	1	198	152	113- 181	126- 173 N	INT ACCEPTABLE
ENIC		3.26	7.20	4.05- 10.1	4.81- 9.30	ACCEPTABLE
	-	<b>E</b> 14	590	434- 553	450- 538	ACCEPIABLE
YLLIUM	1	514 11.3	13.9	8.15- 20.0	9.68- 13.5	ACCEPTABLE
				110 1/10	117- 144	ACCEPTABLE
DMIUM	1	124	133 3.55	112- 149 1.42- 5.43	1.92- 4.93	ACCEPTABLE
Í	2	3.54	3.33			
	4	3.30	3.43	2.73- 14.9	4.30-13.3	A COEPTA BLE
BALT	1 2	154		121- 175	128- 168	ACCEPTABLE
		24.2	9.24	595- 974	731- 940	ACCEPTABLE
Romiun	1	€•Ĵ; S#3	5.55		3.21- 9.43	ACCEPTABLE
	÷	0.2.	.,.,.	•		ACCEPTABLE
PPER	<u>1</u>	565	579	•.• •••	514- 615	ACCEPTABLE
1	<u>1</u> 2	16.0	15.0	11.5- 20.5	12.7- 19.4	
		1570	1704	1500- 1890	1550- 1340	ACCEPTABLE
RO.	1	13.5	11.0	2.75- 25.3	5.63- 22.9	ACCEPTABL
•	. *	10 V -	-		<i>(<i>n c -</i> <b>7 )</b> 7</i>	ACCEPTABL
NGANESE	. 1	630		<b>VJJ</b>	645- 737 10.7- 20.5	ACCEPTABL
	2	16.2	15.3	9.00- 22.2	10. := 20.5	
<b>.</b>		<i>c</i> n 0	506	532- 675	550- 657	ACCEPIABL
CREL	1 2	27.5	12.4	3.93- 21.5	6.04-19.3	NOT ACCEPTABL
-	2	21 e J				
AD	1	1120	1108	942- 1270	983- 1230	ACCEPTABL ACCEPTABL
4.J	2	15.7	15.3	1).5- 23.7	12.2- 22.1	
•			140	00 11- 160	107- 152	NOT ACCEPTABL
TENION	1	151	11 1	99.4- 160 5.91- 15.2	6.39- 14.0	ACCEPTABL
	2					
INC	1	1230	1267	1110- 1420	1150- 1380	ACCEPTABL ACCEPTABL
LIC	2	12.7	12.5	7.71- 16.8	8.94- 15.7	AUG271804

PAGE 1

(and a

DATE: 12/21/

| .

.

W. (TER POLLUTION STUDY NUMBER #PC23

LABORATORY: CA	0	70	
----------------	---	----	--

•

ANALYTES		REPORT VALUE		ACCEPTANCE LIMITS	WARNING LIMITS	PERFORMANCE EVALUATION
TRACE METAI	s in mic	ROGRAMS	PER LII	'ER:		 
ANTIMONY	.3	147	135	83.5- 169	94.5- 158	ACCEPTABL
	4	15.0	15.0	7.57- 20.4	9.24-13.7	ACCEPTABL
SILVER	3	0.600	9.560	0.250-0.827	0.324-0.753	ACCEPTABL
	4	8.00			6.65- 9.55	ACCEPTABL
HALLIUM	3	14.5	13.8	9.25- 19.5	10.6- 18.1	ACCEPTABI
	4	40.5	40.0		32.9- 48.9	ACCEPTABL
OLYBDENUM	3	22.0	29.2	15.5- 38.4	18.6- 35.3	ACCEPTABI
	4	5.05			3.09- 8.22	ACCEPTABL
MINERALS IN	MILJIGR	AMS PER	LITER:	(EXCEPT AS :	IOTED)	
H-UNITS	3	7.68	7.9	7.62- 8.12	7.58- 3.06	ACCEPTABL
	4	4.17	4.2	4.12- 4.23	4.14- 4.26	ACCEPTABI
PEC. COND.	1	234			220- 252	ACCEPTABL
UMHOS/CM AT 25 C)	2	1020	1030	922- 1140	949- 1110	ACCEPTABL
DS AT 180 C	1	133	133	90.2- 179	101- 163	ACCEPTABL
	2	712	647	380- 967	453- 894	ACCEP TABL
OTAL HARDNESS	1	50.0	50.6	43.4- 59.0	45.2- 56.2	ACCEPTABL
AS CACO3)	2	352	342	312- 368	319- 361	ACCEPTABL
ALCIUM	1	17.2	19.0	15.5- 22.2	17.2- 21.5	ACCEPTABI
	2	84.0	93.3	80.9- 103		CHECK FOR ERR
AGNESIUM	1	1.69	0.771	0.599-0.934	0.641-0.892	NOT ACCEPTABI
	2	36.7	26.5	22.5- 30.5	23.5- 29.5	NOT ACCEPTABL
ODIU:	1	17.7	14.9	12.9- 16.9	13.4- 15.4	NOT ACCEPTAB
	2	77.5	35.2	31.3- 39.2	32.3- 38.2	NOT ACCEPTABL

PAGE 2 7

DATE: 12/21/3

WATER POLLUTION STUDY NUMBER WP023

1 2 1	AMS PER 17.0 45.0	14.0	(EXCEPT AS ) 11.7-15.8	12.2- 15.3	~~~~~~~~~~~~~
1 2 1	17.0 45.9	14.0	11.7- 15.9	12.2- 15.3	
2	45.9	14.) 36.5	11.7- 15.9	12.2- 15.3	
1		1041		22 2 40 2	NOT ACCEPTABLE
1	~ ~ ~				
<u> </u>	23.3	23.4	20.4- 27.9	21.3- 27.0	ACCEPTABLE
			63.4- //.1	65.1- 75.4	ACCEPTABLE
CROC: 2A MS	PER LIT	ER:			
2	19.3		D.L D.L.	D.L D.L.	NOT ACCEPTABLE
1	1.15	1.20	0.558- 1.79	0.716- 1.53	ACCEPTABLE
L IN MIL	LIGRAMS	PER KIL	OGRAN:		
42 2	12.6	21.2	1.30- 30.8	5.53- 27. <u>1</u>	ACCEPTABLE
1	7.85	3.20	0.727- 12.2	2.20- 10.7	ACCEPTABLE
IN MICRO	GRAMS PE	R LITER	:		
3	3.52	2,83	1 29- 2 7/	1 60 0 00	
4	17.9	13.7	6.07-19.5	7.66-16.9	CHECK FOR ERRO
2	0.455	9.450 9.450	•U1/1-0.155 0.132-0.521	.0347-0.137 0.194-0.558	ACCEPTABLE ACCEPTABLE
HEOR:TIC.	AL CALCU				
	CROC: 7A 35 2 1 1 L IN MIL 42 2 1 IN MICRO 3 4 1 2 HEOR: TIC	CROCEANS PER LIT 2 19.3 1 1.15 L IN MILLIGRAMS 42 2 12.6 1 7.85 IN MICROGRAMS PE 3 3.52 4 17.9 1 0.982 2 0.455	CROCEANS PER LITER: 2 19.3 1 1.15 1.20 L IN MILLIGRAMS PER KIN 42 2 12.6 21.2 1 7.85 3.20 IN MICROGRAMS PER LITER 3 3.52 2.83 4 17.9 13.7 1 0.982 0.100 2 0.455 0.450 HEOR:TICAL CALCULATIONS ETECLION LIMIT	CROCHAMS PER LITER: 2 19.3 D.L D.L. 1 1.15 1.20 0.553- 1.79 L IN MILLIGRAMS PER KILOGRAM: 42 2 12.6 21.2 1.30- 30.9 1 7.85 3.20 0.727- 12.2 IN MICROGRAMS PER LITER: 3 3.52 2.83 1.38- 3.74 4 17.9 13.7 6.07- 19.5 1 0.982 0.100 .0171-0.155 2 0.455 0.450 0.132-0.621 HEORITICAL CALCULATIONS. OR A REFER	CROCHAMS PER LITER:         2       19.3         1       1.15         1       1.15         1       1.15         1       1.15         1       1.15         1       1.15         1       1.15         1       1.15         1       1.15         1       1.15         1       1.20         0.553-       1.79         0.716-       1.63         L       IN MILLIGRAMS PER KILOGRAM:         42       2       12.6         1       7.85       3.20       6.727-         1       7.85       3.20       6.727-       12.2         1       7.85       3.20       6.727-       12.2       2.20-         1       7.85       3.20       6.727-       12.2       2.20-       10.7         IN MICROGRAMS PER LITER:       3       3.52       2.03       1.38-       3.74       1.68-       3.44         4       17.9       13.7       6.97-       19.5       7.66-       16.9         1       0.982       0.190       .0171-0.155       .0347-0.137       2       0.455

7

.

DATE: 12/21/39

WITER POLLUTION STUDY NUMBER W2923

•

51:	- 1 1' 1L 2	REPORT	<u> </u>	ACCEPTA	 VCE	MARNI	 KG	PE:	RFORM:	ANCE
	9·2?	YALUE				LIMI 	TS 	¥2	ALUAT: 	
PESTICIDES IN :	1:1030	GRAMS PE	E LITER	:						
IELDRIN			0.117	.0531-0.3		2702-0			ACCEP	
	2	0.393	0.400	0.173-0.0	633 <u>)</u> ,	.236-0	• 57 5		ACCEP	TABL
DD	1	0.202	0.250	0.102-0.		139-0			ACCEP	
	2	<b>9.567</b>	0.525	0.285-0.	975 9.	,361-0	.300		ACCEP	TABL
DE	1	0.114		.0501-0.3		0720-0			YCCED	
	2	0.453	0.432	0.232-0.	578 0.	. 239-0	•621		ACCEP	TABL
DŢ	1	3.119		.0349-0.		0507-0	. 211		ACCEP	• •
	2	0.598	0.533	0.279-0.	915 0	.350-0	• 8 3 4		ACCEP	TABL
EPTACHLOR	1	0.158	0.233	.0757-0.	-	.108-0			ACCEP	
	3	0.440	0.517	0.149-0.	747 Û	.225-0	.570		ACCEP	TABL
EPTACHLOR EPOXIDE	1	0.151	0.175	.0916-0.		.111-0			A CC EP	
	2	0.630	0.525	0.360-0.	825 0	.420-0	•765		ACCEP	TABLE
VOLATILE HALOC	koenia	S IN MIC	ROGRAMS	PER LIT	ER:					
HLOROFORM	1	10.7	15.9	19.1- 2				CH EC	K FOR	ERR
	2	48.9	52.0	35.3- 6	9.1	33.9-	64.0		ACCEP	TABL
,1,1 TRICHLOROETHANE	1	8.03	5.74	3.59- 1		a að-			ACCEP	
	2	52.0	42.3	24.4- 5	7.4	23.6-	53.2		ACCEP	TABL
RICHLOROETHENE	1	11.1	7.55	4.24- 1						
	2	<u>4</u> 2.9	23.1	17.2- 3	8.3	22.0-	36.1	NOT	ACCEP	TA SI
ARBONTETRACHLORIDE	1	17.4	4.83	2.33- 7	.53	3.00-	6.87	NOT	ACCEP	TABLE
	2	60 <b>.</b> 0	52.1	30.3- 7	5.6	36.2-	70.7	:	ACCEP	TABI
ETRACHLOROETHENE	1	12.5	12.2	5.63- 1	u.5	6.82-	13.5	:	YCCEP	TABLE
	2	43.6	33.1	21.7- 5	51.7	25.5-	47.9		YCCED	TABI

PAGE 4

# PERFORMANCE EVALUATION RSPORT DATE: 12/21/39

WATER POLLUTICN STUDY NUMBER W2023

LABORATORY: CA070

•

	( SANILE	22PORT					
ALYTES	NUMIER	VALUE	VALUE≎	LIS	ITACE ITS	VAENING LIHITS	FERFORMANCE SYALUATION
•	( ·						
VOLATILE HAD	ROGMEDON	S IN NIC	ROJRAMS	PER L	ITER:		
ONODICHLORO YETHAN:		12.0	3.48	5.29-	11.1	5.32-10.	3 NOT ACCEPTABL
- - -	2	46.8	37.0	24.3-	46.3	27.1-43.	6 NOT ACCEPTABL
BROMOCHLOROME THANE			5.30	2.53-	8.10	3.37- 7.4	1 NOT ACCEPTABL
<b>1</b> 3	2	56.4	42.3	27.3-	59.0		1 CHECK FOR ERR
ONOFORM	1		2.63	4.15-	12.9	5, 78- 11.	8 CHICK FOR ERR
•	2	96.6	53.0	31.)-	85.4	33.0- 73.	4 NOT ACCEPTABL
THYLENE CHLORIDE	1		9.24	4.29-	15.3	5.70- 13.	9 NOT ACCEPTABL
n .	2	69.5			92.5		4 ACCEPTABL
LOROBENZENE	1		ō.95	4.12-	9.70	4,33- 3,9	8 NOT ACCEPTABL
9	2	50.5			43.7	25.2- 45.	3 NOT ACCEPTABL
VOLATILE ARO	MAT: CS	IN MICROG	RAMS PE	CR LIT	ER:		
TZENR	12	55.3	66.1	42.3-	87.5	49.6- 31.	
	2	3.67	4.27	2.31-	5.48	2.34- 5.91	9 ACCEPTABL 4 ACCEPTABL
HYLBENZENE	1	91.8	87.0	54.4-	115	52.0- 100	
	2			8.41-	23.7	12.4- 21.9	ACCEPTABLE ACCEPTABLE
LUENE	1	93.1	35.1	60 8-	107		
	. 1			5.21-	13.9	66.7- 101 7.19- 13.0	ACCEPTABL
2-DICHLOROBENZENE	1	100	34.0	"0 2	115		
<b>H</b>	2			13.4-		57.6- 107	
-DICHLOROBENZENE	1	01 0					
	2	19.3	63.2 15.0	35.8-	87.9	43.3- 21.4	NOT ACCEPTABLE CHECK FOR ERRO
	-						
-DICHLOROBENZENE	·1 2	76.0	73.0	47.1-	109	55.0- 101	ACCEPTABLE ACCEPTABLE
	2		1.7	111 7-	16. 7	110_ 7/ 7	1.000001.011

PAGE 5

	P.	ERFORMAN	CE EVA	LUNTION REPOR	<b>.</b>	DATE: 12/217
LABORATORY: CA070		POLLUTI	ON STUI	оч иливен ньо	23	
ANALYTES	5 A.Y ILE S A.Y ILE ND.19-ER VD.19-ER	REPORT VALUE	TRUE VALUE*	ACCEPTANCE LIMITS	VARNING LIMITS	PERFORMAN EVALUATION
MISCELLAN	SOUS PLIRAME	TERS:				
OIL AND GREASE (IN MG/L)	1 2	19.0	43.9 15.0	20.9- 54.5 6.97- 21.5	25.1- 50.3 8.79- 19.7	ACCEPTA: ACCEPTA:
	THEOR'TICA	L CALCUL PAGE		, OR A REFERE LAST PAGE)	NCE VALUE WH	EN NECESSARY

İ

Γ

.

DATE: 6/24/91

•

# WATER POLLUTION STUDY NUMBER #PO20

SORATORY: CA070

ALYTES	SAMPLE NUMBER	REPORT VALUE	TRUE VALUE				NING NITS	FERFORTANCE EVALUATION
	TALS IN MIC	ROGRAMS	PER LI1	ER:				
MINUM M	•	970						
	1 2	879 324C	870 2200	720-				ACCEFTABL
<b>- \</b> /	2	3240	3200	2/30-	3630	2840-	3510	ACCEPTABL
ENIC N	1	66.3				<b>.</b>		
,	2	184	- 59.9		82.8			ACCEPTABLE
n	<b>~</b>	104	200	158-	234	168-	225	ACCEPTABLE
YLLIUM Be	1	9.15	11.1	7 7 7 7	<b>4</b> 11 <b>-</b>			
	2	123	130		14.7			ACCEPTABL
,	-	LCJ .	130	104-	128	111-	152	ACCEPTABLE
sius Cd	1	4.71	5.07	3-42-		2.05	<i></i>	•
	2	183	190	161-			6.40	ACCEPTABLE
	-	200	200	101-	210	1ó6-	211	ACCEPTABLE
ALT CO_	1	784	815	706-	015	733-		
	· 2	172	180	154-	205		888 198	ACCEPTABLE
			200	4.3.4	205	101-	1.38	ACCEPTABLE
CAINA C	1	73.7	74.0	56-7-	90.2	60.8-	92 A	
	2	402		334-	u77	352-		ACCEPTABLE
					~ ~ ~ ~	JJ2-	433	ACCEPTABLE
PEZ Cu	ĺ 1 .	42.8	43.0	34.9-	50.2	36.8-	48.3	ACCEPTAELE
	2	727	730	656-	-817	676-	797	ACCEPTABLE
				-		070		ACCOPIACES
a Fe	1		340	293 <del>-</del>	391	305-	179	ACCEPTABLE
7	. 2	<b>583</b>	1000	887-	1140-		1110	ACCEFTABLE
		•	•					ACCLI INDEL
LUEY HQ		0.550 (	) <b>.</b> 543(	.246-0	.903	0.329-0	). <del>0</del> 20	ACCEPTABLE
- /	2	3.69	3.40	2.54-	4.41	2.78-	4.18	ACCEPTABLE
LANESE MA	-							
CARESE POR	1	408		385-		394-	451	ACCEPTAELE
<b>-</b>	2	897	920	850-	1010	869-	986	ACCEPTABLE
EL NA								
	1	1610		1420-		1460-	1720	ACCEPTABLE
· •	2	43C	430	383-	485	396-	472	ACCEPTABLE
ի թե	•	704						
1-	. 1	306	320	271-		283-		ACCEPTAELE
	2	45.2	47.9	38.3-	58.3	40.8-	55.8	ACCEPTABLE

ASED UPON THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN NECESSARY.

PAGE 1

WATER FOLLUTION STUDY NUMBER #P026

ABORATORY: CA070

.

NALVITES	SAMPLZ NUMBER	BEPCET VALUE		ACCEPTANCE LIMITS		PERFORMANCE EVALUATION
TRACE						
INACE A	ETALS IN EICH	CGRAES .	PER LII	ER:		
elenium Se	1	10.2	10.0	5,97-131	6.82- 12.2	
•	2		36.0	60.7- 105	66.1- 99.1	
,/					0001- 3301	ACCEPTABLE
NADIUM V	1	1960	2000	1760- 2240	1820- 2180	ACCEPTABLE
	2	46GG	4600			ACCEPTAELE
sic En	1	184C	1900		1720- 2060	ACCEPTABLE
	2	107	110	88.5- 133	94.1- 128	ACCEPTABLE
TIMONY 86	3	16 6	17 4			
		16.6 95.5		8.31- 26.0	10.5-23.8	
		3303	31.J	55.9- 128	64.9- 118	ACCEPTAELE
LVER A9	٦	1.01 0	976	0.460- 1.16	0 550 1 07	
~ )	4		6.80	5.14 - 8.20	0.550- 1.07 5.54- 7.94	
				2474- 0024	3.34- 1.94	ACCEPTABLE
ALLIUM TR	3	7.75	6.75	4.11- 9.43	4.81- 8.73	ACCEPTABLE
•	4	94.8	97.1	76.6- 118	31.9- 112	ACCEPTABLE ACCEPTABLE
·						NCCLEIRDLU
LYBDENUM MO		26.9	27.3	17.0- 36.6	19.8- 33.9	ACCEPTABLE
	. 4	<b>4.25</b>	4:01	1.21- 6.99	2.03- 6.17	ACCEPTABLZ
	-			·	• •	
a in shal:	S IN MILLIGRA	NS PER L	ITEA:	(EXCEPT AS N	OTED)	
-UNITS	2	A C 2	2 20	0 4 6 0 0 0		
		8.92 5.57	5.52	8.40- 9.24	8.55- 9.14	ACCEPTABLE
	. •			3.42- 3.90	5.45- 5.64	ACCEPTABLE
EC. COND.	10	89.7	/119	104- 178	107- 125 8	
SHOS/CS AT 25	c) 2		901	799- 926	107- 125 N 822- 963 N	OI ACCEPTABLE
			•		•	OT ACCEPTADLE
S AT 180 C -70	S 1	75.7	59.1	31.9- 90.0	39-2- 82-7	ACCEPIABLE
	2	525	521	387- 671	422- 636	ACCEPTABLE
	•				*	
TAL HABDNESS	-		18.5	14.7- 22.4	15.6- 21.5	ACCEPTABLE
S CACO3)	2	260	253	233- 270	237-266	ACCEPTAELE

UPCN THEORETICAL CALCULATIONS, OR A REFERENCE VALUE WHEN NECESSARY.

PAGE 2

ı.

DATE: 6/24/91

ל י •

### WATER POLLUTION STUDY NUMBER #P026

MATORY: CA070

LTES		SAMPLE NUMBER	REPCE VALUE				WARN LIN		FERFOREANCE EVALUATION
#INEEL	LS IN	MILLIGR.	AMS PER	LITER:	(EXCEPI	[ 15 N	101 ED)		
UE · C	در			1.30	0.909-	1.61	0.997-	1.52	ACCEPIABLE
_		2	<b>ö9.</b> 2	71.0	61.8-	80.3	64.1-	77.9	ACCEPTABLE
SIUN M	g	1	3.68	3.70	3.16-	4.25	3.29-	4.11	ACCEPTABLE
	•	2		13.5	16.0-	21.0	16.6-	20.4	ACCEPTABLE
- <i>6</i>	Na	1	9.14	9.44	8.29-	10.8	8.60-	10.5	ACCEPTABLE
		2	59.0	55+8	49.3-	61.8	50.9-	60.3	ACCEPTABLE
	$\leq$	1	8.79	8.95	7-43-	10.3	7.80-	9.97	ACCEPIABLE
	· · ·	2					25.9-		ACCEPTABLE
- ALKALINI	TY	1	20.8	18.2	14.7-	23.0	15.7-	22. C	ACCEPTABLE
ACO3)		2					99.1-		ACCEPTABLE
AIDE ()	L	1	12.9	13.4	10-6-	15.5	11.2-	14.5	ACCEPTABLE
<b>V</b>	~ /	2		181	154-	201	109-	196	ACCEPIABLE
<u>e</u> lde ⁴	THE FA	2 +1	0.500	ũ.750.	0.636-0	0_852	J.604-1	0.825	NOT ACCEPTABLE
		2	2.77	2.90	2.36-	3.27	- 2.50-	3.16	ACCEPTABLE
ATE	saf	1	9.51	11.0	8.35-	13.4	ô.98-	12.8	ACCEPTABLE
	57	2	34.0	35.5	28.0-	41.9	29.8-	40.1	ACCEPTABLE
NUTRIE	NTS IN		RAMS PEI	R LITEX:					
- IA-KITROG	ER	1	15.4	18.0	14.4-	21.3	15.2-	20.4	ACCEPTABLE
		2		4.20					CHECK FOR ERRO
TE-HITECO	FN	1	7.90	00 BT	6.U7-	9.52	6-83-	9,15	ACCEFTABLE
a d a d d d d d d d d d d d d d d d d d	· • • •	2	10-2	10.0	8-09-	11.9	. c. 55-	11.4	ACCEPTABLE
"PHOS PHATE	2	1	1,16	1.40	1.75-	7.63	1:20-	1.57	CHECK FOR EARO
. Loot unit		2	0.300	0.320	0.251-0	0.385	ٕ267-	0.369	CHECK FOR EARO. ACCEFIABLE

PAGE 3

.

(199

DATE: 6/24/91

ł

WATER POLLOTION STUDY NUMBER WP026

	SAMPLE			ACCEPTANCE		PERFORMANCE
ALYTES 	NUMBE8	VALUE	¢aloe≎	LIMITS	LIXITS	EVALUATION
NUTHIENTS I.	N MILLIG	RADS PER	LITER:			
CAL PHOSPHOBUS	3	3,32	3.60	2 3/1 - // 36	3.02- 4.11	
	4	1.47	1.80	1.38- 2.13	1.47 - 2.04	ACCEPTABL
DEMANDS IN	MILLIGEA					
)	1	40.4	46.6	32.5- 57.1	35.6- 54.0	100227151
· ·	2	59.7	65.4	49.3- 75.8	52.7- 72.5	ACCEPTABLI
PCE'S IN MIC	ROGRANS	PER LIT	ER:			. ••••
-ARGCLGE 1232	1	3.39	3.77	1.93- 5.06	2.33- 4.66	ACCEPIABLE
-AROCLOR 1254	2	ō•67	8.37	3.36- 11.0	4.76- 10.1	ACCEPTABLE
PCB'S IN OII	. IN MIL	LTGRAMS P		002584		
IN OIL- 1016/124	12 1	15.2	32.4	5.9345.6	11.0- 40.5	YCCESIJ9FI
IN OIL- 1260	2	15.5	18.5	2.32- 29.5	ó.25- 26.0	ACCEPTABLE
PESTICIDES 1	IN MICROG	GRAds PER	LITER		- -	
ORDANE	3	0.791	1.13 (	3 - 5 / 3 - 1 / 9 = 0	0.661- 1.37	
-			8.88	4.60- 11.5	5.48- 10.0	ACCEPTABLE ACCEPTABLE

PAGE 4

-

.

# PEBFCELANCE EVALUATION REPORT DATE: 6/24/91

### WATER POLLUTION STUDY NULBER #P026

MORATORY: CA070

	NUKBEE NUKBEE	REPOI Value			VARNING LIMITS	FERFOREANCE EVALUATION
				*****		
PESTICIDES I	N RICEO	GEACS P	EE LITE	E:		
PHIR	1	0.169	0.227	.0496-0.315	.0628-0.282	ACCEPTAELE
,	. 2	0.523	0.606	0.134-0.891	0.229-0.797	ACCEPTABLE
ELDRIN	1	0.145	C.208	0.104-0.300	0.129-0.275	ACCEPTABLE
• ·	2	0.390	'0.467	0.209-0.650	0.317-0.603	ACCEPIABLE
5	1	6.172	0.157	•0504-0 <u>•</u> 272	.0767-0.244	ACCEPTABLE
<b>م</b>	2	0.639	0.882	0.436- 1.13	0.523- 1.04	ACCEPTABLE
E	1	0.127		.0715-0.274	.0974-0.249	ACCEPILBLE
<b>9</b>	2		~6.417	0.170-0.626	0.227-0.569	ACCEPTABLE
· •	. 1	0.214	0.217	.0782-0.352	0.113-0.317	ACCEPTABLE
• ·	2	0.663	0.780	0.383-1.13		. ACCEPTABLE
TACHLOR		C.C67		.0284-0.174	.0456-0.155	ACCEPTABLE
-	2	6.373	C.587			ACCEFIABLE
TACHLOE EFOXIDE	. 1	C.C76	6-168	.0568-0.148	.0682-0.137	ACCEPIABLE
-	2	0.285	0-350	0.192-0.490	0.229-0.453	ACCEPTABLE
VOLATILE HALO	CARBONS	5 IN MI	CROGRAMS	PER LITER:		
DICHLCROETHANE	1	23.1	17.2	10.5- 23.1	12 1- 21 5 4	CHECK FOR ERRO
	2	49.3	38.9	26.8- 52.3		CHECK FOE LARO CHECK FCE ERRO
ofoer	1	16.0	13.3	ô.35- 17.4	9-49- 16-3	NCI ACCEPIABLE
-	2	64.3	64.4	41.1- 82.8	46.4- 77.0	ACCEPTABLE
.1 THICHLOROETHANE	: 1	17.5	14.3	8.15- 18-5	9-44- 17-7 (	CHECK FOR ERRG
<b>-</b> ,		42.5	36.6	21.5- 48.6	24.9- 45.2	ACCEPTABLE
CHLCROETHENE	1	17.9	13.9	d.68- 18-6	9,94- 17.7	CHECK FCE EEBC
	2	46.4	38.9	25.9- 50.2	29.0- 47.1	CHECK FOR EARO

BASEE UPON THEORETICAL CALCULATIONS, OH & REFERENCE VALUE THEN NECESSARY.

.

PAGE 5

•

# PERFCREANCE EVALUATION REPORT CATE: 6/24/91

---

### WATER FOLLUTION STUDY NUMBER #P026

4

ABCENTORY: CA07C

΄,

ALYTES	SAMPLE NUMBER		TRUE VALUE≑			WARNING LIMITS	FERFORMANCE EVALUATION
VGLATILE EAI	LOCARECUS	IN WICH	RCGRAMS	PER L	ITEA:		
RBONTETRACHLORIDE	1	14.8	11.7	6-46-	16.2	7.68- 15.0	ACCEPTABLE
•			46.6		64.2		
TRACHLOROETHENE			15.1	9.27-	20.4	10.7- 19.0	ACCEPTABLE
	2	61.6	63.9	40.5-	85.0	46.2- 79.3	ACCEPTABLE
UZODICHLOROMETHANE					20.7		ACCEPIAELE
	2	54.8	53.5	37.0-	70.5	41.3- 66.2	ACCEPTABLE
BROACCHLOROMET HANE					20.6	11.1- 19.2	ACCEPTABLE
•	2	52.2	52.5	36.0-	69.7	40.3- 65.4	ACCEPTABLE
ONOFCRM						11.7- 23.1	
	2	49.9	54.0	32.8-	76.2	38.3- 70.7	ACCEPTABLE
THYLENE CHLOHIDE	1					11.1- 23.1	
	<b>Ž</b>	50.6	54.6	29.0-	77.3	35.1- 71.2	ACCEPTABLE
LCRGBENZENE						12.4- 20.3	
	2	70.8	ō8.4 .	45.5-	90.2	51.2- 84.5	ACCEPTABLE
VOLATILE ARO	MATICS I	i MICROG	RAMS PE	R LITI	Ea:	: ·	
azeae	. 1	13.6	11.8	7.72-	16.1	3.78- 15.0	ACCEPTABLE
	. 2	52.0				35.1- 57.2	ACCEFTABLE
HYL BENZEN E	1	18.C	15.3	9.78-	20.0	11.1- 18.7	ACCEPTABLE
	2	75.0	66•2	43.9-	86.2	49.2- 80.8	ACCEPTABLE
LUENE	1	21.1	18.9	12.8-	24.6	14.3- 23.1	ACCEPTABLE
	2					42.7- 62.6	
2-DICHLOROBENZENE						12.1- 19.2	
-	2	76.1	71.8	49.4-	90.9	54.7- 95.6	ACC22TA BL E

PAGE 6

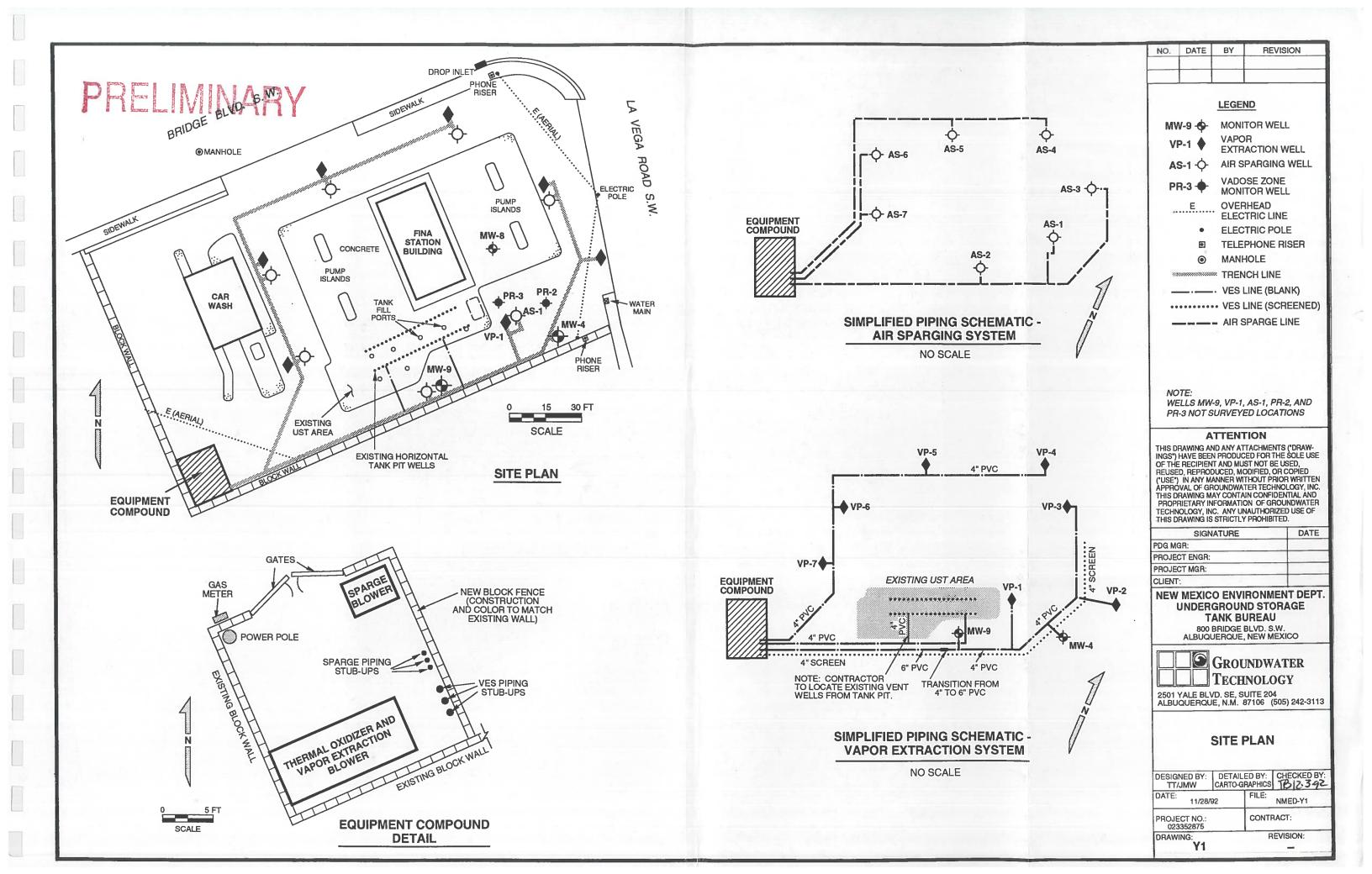
### WATER POLLUTION STUDY NUMBER WP026

		EEPCR Value		ACCEPTANCE LIMITS	WARNING LIMITS	FEBFORMANCE EVALUATION
VCLATILE ARCEA	TICS	IN BICE	OGRAES E	PER LITER:		
-DICHLCKCBENZENE	1	12.9	14.3	10.5- 18.3	11.5- 17.4	ACCEFIABLE
a .	2	49.1	47.2	31.8- 60.3	35.4- 56.6	ACCEPTABLE
DICHLOROEENZENE	1	17.4	17.2	11.4- 23.0	12.9- 21.5	ACCEPTABLE
	2		55.4		42.3- 67.2	
9	_	•				
BISCELLANEOUS	PA BA B	ETEES:	•	·		•
•	1	0.051	0.020	D.L0352	.00200304	NOT ACCEPTABLE
EG/L) MACYO		0.570			0.404-0.637	ACCEPTABLE
FILTERABLE RESIDUE	: 1	48.3	63.3-	46-1-67-2	48.7- 64.5	CHECK FCE ERRO
HG/L)	2		23.9			ACCEPTABLE
LAD GREASE	-	14 7	17 0	6 11 0- 17 7	7 24- 16 3	ACCEPIABLE
MG/L)				9.07= 22.1		ACCEPTABLE
•				· · ·		
L PHENOLICS		_	0.455	0.195-0.714		
₫G/L)	2	C.014	.0146	.00250266	.00560230	ACCEPTABLE
L RESIDUAL CHLORIN	E 1	1.45	2.00	1.27- 2.25	1.40- 2.12	ACCEPTABLE
NG/L)	2	0.115		D.L0.246		ACCEPTABLE

BASEE UPON THEORETICAL CALCULATIONS, OF A REFERENCE VALUE WHEN NECESSARY. STANDS FOR DETECTION LIEII

PAGE 7 (LAST PAGE)

. - _


**APPENDIX H** 

### PRELIMINARY ENGINEERING PLANS

NMED/BB bb.rap

5





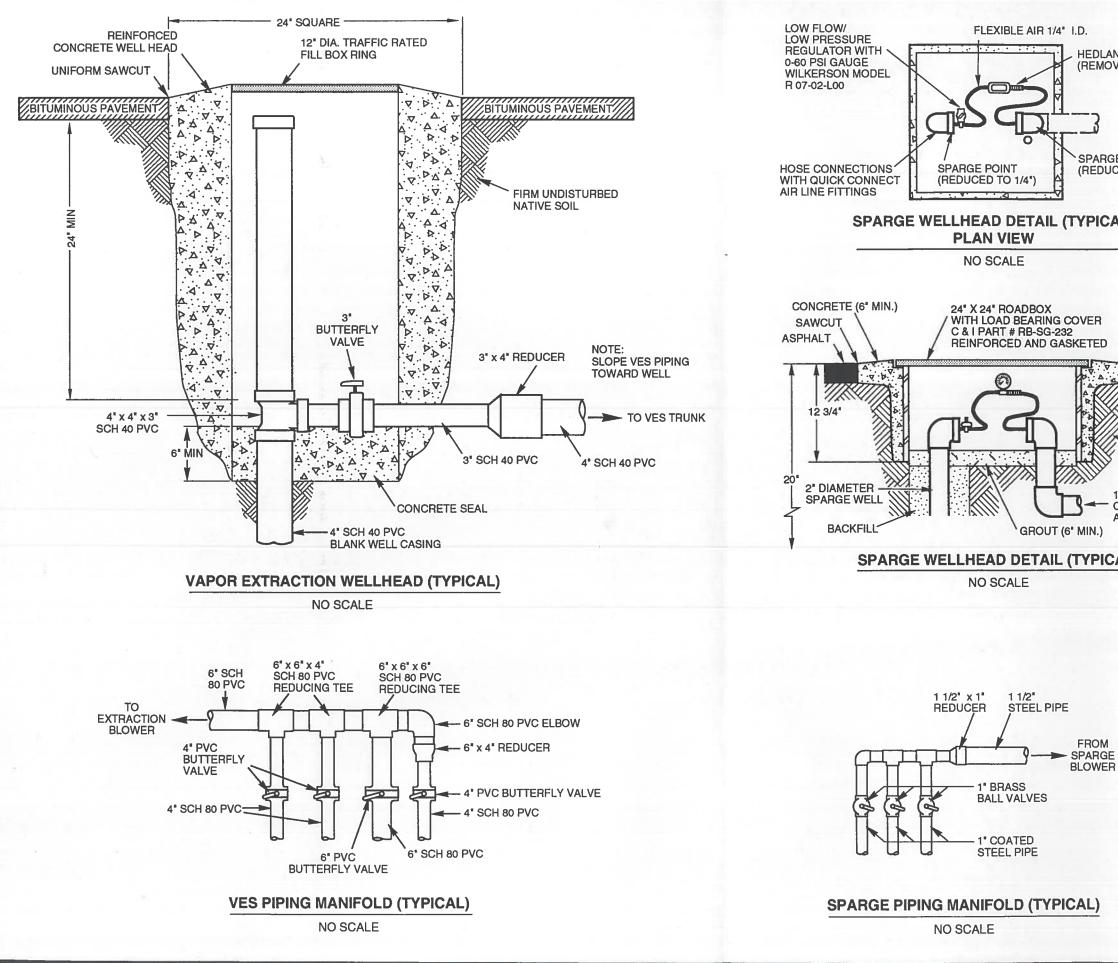
# SOIL VAPOR EXTRACTION AND AIR SPARGE REMEDIATION SYSTEM

800 BRIDGE BLVD. S.W. ALBUQUERQUE, NEW MEXICO

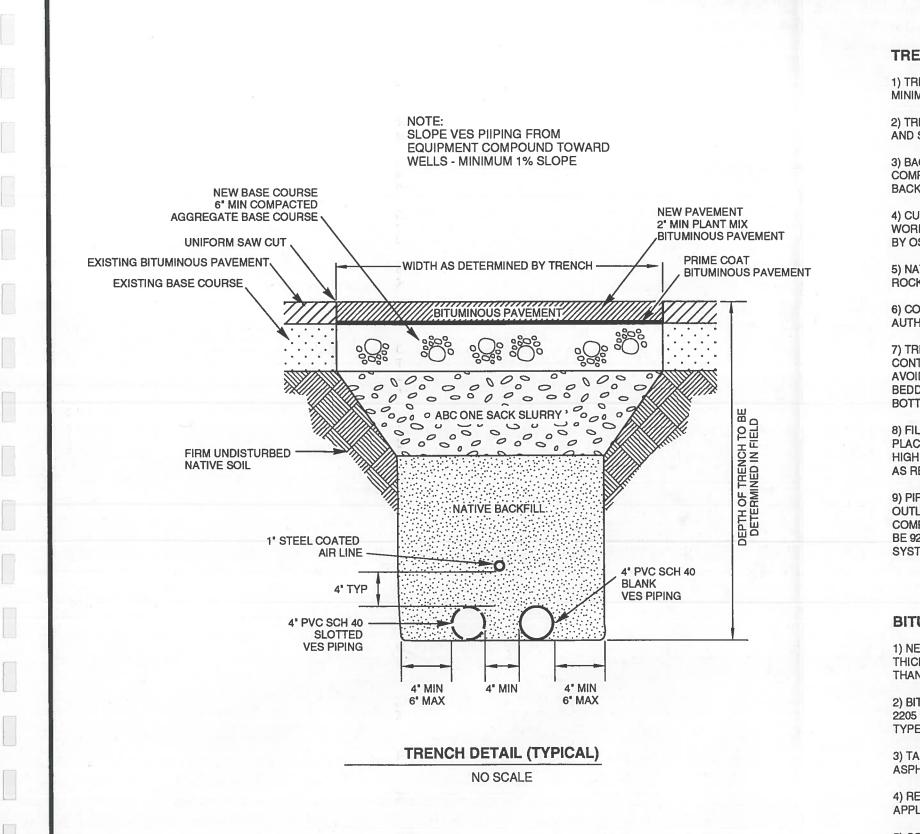
Prepared for:

# NEW MEXICO ENVIRONMENT DEPARTMENT UNDERGROUND STORAGE TANK BUREAU

PROJECT NO. 023352875 MOVEMBER_ 1992


### **SHEET INDEX**

DWG. NO.	TITLE					
Y1	SITE PLAN					
Y2	WELLHEAD AND PIPING MANIFOLD DETAILS					
Y3	TRENCH DETAIL					




# PRELIMINARY

2501 E. YALE BLVD. SE SUITE 204 ALBUQUERQUE, NEW MEXICO 87106



	NO.	DATE	BY	RE	VISION		
AND FLOW METER DVABLE ASSEMBLY)							
GE AIR SUPPLY JCED TO 1/4")		M		ĄF	RY		
:AL)		×					
NATIVE SOIL							
1' STEEL COATED AIR LINE	ATTENTION THIS DRAWING AND ANY ATTACHMENTS ("DRAW- INGS") HAVE BEEN PRODUCED FOR THE SOLE USE OF THE RECIPIENT AND MUST NOT BE USED, REUSED, REPRODUCED, MODIFIED, OR COPIED ("USE") IN ANY MANNER WITHOUT PRIOR WRITTEN APPROVAL OF GROUNDWATER TECHNOLOGY, INC. THIS DRAWING MAY CONTAIN CONFIDENTIAL AND PROPRIETARY INFORMATION OF GROUNDWATER TECHNOLOGY, INC. ANY UNAUTHORIZED USE OF THIS DRAWING IS STRICTLY PROHIBITED.						
		SIGN	IATURE	DATE			
	PROJEC	PDG MGR: PROJECT ENGR:					
	PROJEC						
	NEW MEXICO ENVIRONMENT DEPT. UNDERGROUND STORAGE TANK BUREAU 800 BRIDGE BLVD. S.W. ALBUQUERQUE, NEW MEXICO						
I E R	2501 YALE BLVD. SE, SUITE 204 ALBUQUERQUE, N.M. 87106 (505) 242-3113						
	WELLHEAD AND PIPING MANIFOLD DETAILS						
		ED BY:	DETAIL		CHECKED BY:		
	DATE:	11/28/9		FILE:	18 12.3.92 NMED-Y2		
	PROJECT NO.: CONTRACT: 023352875			ACT:			
	DRAWI			R	EVISION:		
	1						



### **TRENCH CONSTRUCTION NOTES:**

1) TRENCH BACKFILL SHALL BE NATIVE SOIL IF ACCEPTAR MINIMUM OF 95% STANDARD PROCTOR DENSITY.

2) TRENCH BACKFILL BELOW NON-PAVED AREAS MAY CO AND SHALL BE COMPACTED TO A MINIMUM OF 90% STAN

3) BACKFILL MAY BE SUBJECT TO TESTING AND IF THE RE COMPACTION IS NOT OBTAINED, THE OWNER MAY REQUI BACKFILL BE REMOVED AND RECOMPACTED AT THE CON

4) CUT SLOPE SHALL BE AS DETERMINED BY CONTRACTO WORK SHALL BE PERFORMED IN ACCORDANCE WITH ALL BY OSHA'S REVISED STANDARDS FOR EXCAVATIONS, 29

5) NATIVE SOIL BACKFILL SHALL BE FREE FROM ORGANIC ROCKS IN EXCESS OF 4* DIAMETER, ROOTS, OR DELETER

6) CONTAMINATED SOIL SHALL NOT BE USED AS BACKFIL AUTHORIZATION.

7) TRENCH BOTTOM SHALL BE FIRM COMPACTED NON-FF CONTRACTOR SHALL VERIFY TRENCH BOTTOM SUITABIL AVOID EXCESSIVE SETTLEMENT) FOR PROJECT. PLACEM BEDDING MATERIAL SHALL NOT BE PERFORMED UNTIL AN BOTTOM HAS BEEN RECEIVED.

8) FILTER CLOTH TO ENCAPSULATE THE NARROW TRENC PLACED TO ENCLOSE THE SELECT GRANULAR BACKFILL HIGH GROUNDWATER CONDITIONS, OR POOR TRENCH W AS REQUIRED.

9) PIPE BEDDING MATERIALS SHALL BE PLACED BY HAND OUTLINED IN 6" (MAX) LIFTS, BANK TO BANK, TO 12" ABO COMPACTION OF THE PIPE BEDDING MATERIAL FOR SING BE 92% STANDARD PROCTOR DENSITY AND COMPACTION SYSTEMS SHALL BE 95% STANDARD PROCTOR DENSITY.

### **BITUMINOUS REPLACEMENT NOTES:**

1) NEW PAVEMENT AND AGGREGATE BASE SHALL BE OF THICKNESS AS THAT WHICH IS REMOVED, BUT IN NO CAS THAN INDICATED.

2) BITUMINOUS CONCRETE SHALL BE AMERICAN PUBLIC 2205 PLANT MIX. WEARING /SURFACE COURSE TYPE 3, BI TYPE 1.

3) TACK COAT ALL SAW CUT EDGES WITH RC-70, MC-30, ASPHALTS.

4) REMOVE AND DISPOSE OF ALL EXCESS MATERIALS IN APPLICABLE REGULATIONS.

5) COMPACT 6" (MIN) BASE COURSE FOR BITUMINOUS CO STANDARD PROCTOR DENSITY.

6) COMPACT UPPER 36" OF TRENCH BACKFILL TO 95% ST DENSITY IN MAX 12" LIFTS UNLESS OTHERWISE NOTED.

				4-6				
	NO.	DATE	BY	REVIS	ION			
		IN		IAF	RY			
DNSIT OF NATIVE SOIL		1 I V	월 월 문					
EQUIRED STATE OF IRE THAT THE NTRACTOR'S EXPENSE.								
OR. ALL EXCAVATION L CONDITIONS SET FORTH CFR 1926 SUBPART P.		e						
C MATTER, FROZEN SOIL, RIOUS COMPONENTS.		1						
LL WITHOUT WRITTEN								
ROZEN SOIL. LITY (IN ORDER TO MENT OF PIPE AND PIPE PPROVAL OF TRENCH								
CH LIMITS SHALL BE . AROUND THAT PIPE FOR VALL CONDITIONS,		A	TTEN	ΓΙΟΝ				
O AND COMPACTED AS VE THE PIPE SURFACE. GLE PIPE SYSTEMS SHALL IN FOR MULTIPLE PIPE	THIS DRAWING AND ANY ATTACHMENTS ("DRAW- INGS") HAVE BEEN PRODUCED FOR THE SOLE USE OF THE RECIPIENT AND MUST NOT BE USED, REUSED, REPRODUCED, MODIFIED, OR COPIED ("USE") IN ANY MANNER WITHOUT PRIOR WRITTEN APPROVAL OF GROUNDWATER TECHNOLOGY, INC. THIS DRAWING MAY CONTAIN CONFIDENTIAL AND PROPRIETARY INFORMATION OF GROUNDWATER TECHNOLOGY, INC. ANY UNAUTHORIZED USE OF THIS DRAWING IS STRICTLY PROHIBITED.							
			ATURE		DATE			
	PDG M	GH: CT ENGR:		-				
		CT MGR:						
THE SAME TYPE AND SE SHALL BE LESS		MEXIC	GROUN	RONMEN ID STOR				
WORKS ASSOC. APWA INDER/BASE COURSE		ALBUQU	JERQUE,	BLVD. S.W. NEW MEXI				
OR MC-70 LIQUID	2501	YALE BLV	TECH	NOLOG	Y			
CONFORMANCE WITH	ALBU		<b>_</b> , IN.IVI. (	37106 (505	1242-0110			
DNCRETE TO 95%	TRENCH DETAIL							
TANDARD PROCTOR				FILE:	6			
		11/28/9	2	CONTRAC	ED-Y3			
		352875		REVIS				
	DRAW	Y3		REVIS	-			
	-	-						