

EA Engineering, Science, & Technology, Inc., PBC 320 Gold Avenue SW, Suite 1300 Albuquerque, New Mexico 87102

Phone: (505) 224-9013

October 31, 2022

Mr. Paul Chamberlain NMED GWQB 1190 Saint Francis Drive Post Office Box 5469 Santa Fe, NM 87502

Transmitted Via E-Mail

Re: Stage 1 Abatement Plan

Former ACME Hometown Cleaners, 901 East 10th Street, Alamogordo, NM

Dear Mr. Chamberlain:

EA Engineering, Science, and Technology, Inc. (EA) submits this Stage 1 Abatement Plan (S1AP) on behalf of Former ACME Hometown Cleaners. This proposal has been prepared in response to the *Settlement Agreement and Stipulated Final Order* dated September 13, 2020 (*Settlement Agreement*) between New Mexico Environment Department and Mr. Sandy Ochoa. The scope of work proposed herein is designed to satisfy Stage 1 AP Proposal requirements cited in 20.6.2.4106 New Mexico Administrative Code (NMAC).

Sincerely,

David L Werth Project Manager

MULL

Jay Snyder

Senior Hydrogeologist

Enclosure

Cc: Sandy Ochoa, Former ACME Hometown Cleaners

Peter V. Domenici, Jr., Esquire, Domenici Law Firm

File

STAGE 1 ABATEMENT PLAN

FORMER ACME HOMETOWN CLEANERS ALAMOGORDO, NEW MEXICO

Prepared for:

Mr. Sandy Ochoa 3231 North Scenic Drive Alamogordo, New Mexico 88310

and

New Mexico Environment Department Ground Water Quality Bureau Remediation Oversight Section 5500 San Antonio Dr. NE Albuquerque, NM 87109

Prepared by:

EA Engineering, Science and Technology, Inc., PBC 320 Gold Ave. Ste 1300
Albuquerque, NM 87102
(505) 224-9013

October 2022 Revision: 00

EA Project No.: 1560702 01

TABLE OF CONTENTS

Section	<u>on</u>		<u>Page</u>
LIST	OF FIG	GURES	ii
LIST	OF TA	ABLES	ii
LIST	OF AP	PPENDICES	ii
LIST	OF AC	CRONYMS AND ABBREVIATIONS	iii
1.0	INTE	RODUCTION	1
	1.1	SITE LOCATION	1
	1.2	SITE HISTORY	
	1.3	SITE HYDROGEOLOGY	
	1.4	NATURE OF DISCHARGE	
	1.5	PREVIOUS INVESTIGATIONS AND INTERIM ACTIONS	2
2.0	KNC	WN NATURE AND EXTENT OF CONTAMINATION	4
	2.1	SOIL CONTAMINATION	4
	2.2	SOIL VAPOR CONTAMINATION	4
	2.3	GROUNDWATER CONTAMINATION	4
	2.4	DATA GAPS	4
3.0	SCO	PE OF WORK TO COMPLETE SITE CHARACTERIZATION	5
	3.1	WELL INVENTORY	5
	3.2	MONITORING WELL INSTALLATION	5
	3.3	WELL CAPACITY TESTING	7
	3.4	INITIAL MONITORING WELL SAMPLING	7
4.0	LON	G-TERM GROUNDWATER MONITORING	7
	4.1	SAMPLING REGIMEN AND SCHEDULE	7
	4.2	SAMPLING PROTOCOLS	7
	4.3	SAMPLING SCHEDULE	8
5.0	QUA	LITY ASSURANCE PROJECT PLAN	9
	5.1	GOALS OF S1AP	9
	5.2	TRAINING	9
	5.3	DOCUMENTATION AND RECORDS	9
	5.4	SAMPLE MANAGEMENT	10
	5.5	ANALYTICAL METHODS	
	5.6	MANAGEMENT OF STAGE 1 AP DEVIATIONS	
	5.7	DATA VERIFICATION AND USABILITY	12
6.0	REP	ORTING	13
7.0	REF	ERENCES	14

LIST OF FIGURES

- 1 Site Location Map
- 2 Site Plan

LIST OF TABLES

- 1 Summary of Soil Sample Results
- 2 Summary of Soil Vapor Results
- 3 Summary of Water Level Measurements
- 4 Summary of Groundwater Concentrations
- 5 Summary Scope of Work
- 6 Sample Analytical and Quality Control Requirements
- 7 Groundwater Monitoring Regimen

LIST OF APPENDICES

- A Existing Borehole Logs
- B Health and Safety Plan
- C Field Forms

LIST OF ACRONYMS AND ABBREVIATIONS

μg/m³ micrograms per cubic meter

μg/L micrograms per liter

ASTM American Society for Testing and Materials

bgs feet below ground surface

COC chain of custody

DAF20 dilution attenuation factor 20

DCE dichloroethane

DOT Department of Transportation

DQOs data quality objectives

EA Engineering, Science, and Technology, Inc., PBC

EPA Environmental Protection Agency

GWQB Ground Water Quality Bureau

HASP Health and Safety Plan

ID identification number

LSA Limited Site Assessment

mg/kg micrograms per kilogram

NMAC New Mexico Administrative Code NMED New Mexico Environment Department NMOSE New Mexico Office of State Engineer

NMWQCC New Mexico Water Quality Control Commission

O&M operation and maintenance

OSHA Occupational Safety and Health Administration

PCE perchloroethene

PPE personal protective equipment

QAPP Quality Assurance Project Plan

S1AP Stage 1 Abatement Plan

SCH 40 PVC schedule 40 polyvinyl chloride site Former ACME Hometown Cleaners

SOS Superfund Oversight Section

SSLs soil screening levels

SVE soil vapor extraction

TCE trichloroethene TO task order

VOC volatile organic compounds

VISLs Vapor Intrusion Screening Levels

1.0 INTRODUCTION

EA Engineering, Science, and Technology, Inc., PBC (EA) submits this Stage 1 Abatement Plan (S1AP) on behalf of Former ACME Hometown Cleaners. This proposal has been prepared in response to the *Settlement Agreement and Stipulated Final Order* dated September 13, 2020 (*Settlement Agreement*) between New Mexico Environment Department and Mr. Sandy Ochoa. The scope of work proposed herein is designed to satisfy Stage 1 AP Proposal requirements cited in 20.6.2.4106 New Mexico Administrative Code (NMAC).

The purpose for this investigation is to satisfy the requirements set forth in 20.6.2.4106(c) NMAC, Stage 1 Abatement Plan. This will assist in providing the data necessary to select and design an effective abatement option.

This S1AP is organized as follows: Section 1 consists of this introduction, including site location, history, hydrogeology, nature of discharge, and previous investigations. Section 2 presents the known nature and extent of contamination and data gaps to be addressed under this plan. A scope of work for executing this plan and completing site characterization is included in Section 3. Long-term groundwater monitoring is discussed in Section 4. Section 5 provides a quality assurance project plan (QAPP) to ensure usable data is generated, and Section 6 covers long-term monitoring. Section 8 covers reporting and Section 9 references.

Existing borehole logs are included in Appendix A. A health and safety plan (HASP) to execute this S1AP is included in this report as Appendix B. Field forms are provided in Appendix C.

1.1 SITE LOCATION

The Former ACME Hometown Cleaners is located at 901 10th Street, Alamogordo, Otero County, New Mexico (Figure 1). The site is an approximately 1/3-acre tract that is developed with a 6,300 square-foot building. The site building was formerly occupied by a dry cleaner facility and has been unoccupied since 2016. The site slopes gently at 1 percent to the west southwest into the Tularosa Basin. Surrounding properties are commercial along 10th Street. Residential properties are located 500 feet northeast of the site, and south of 9th Street about 550 feet.

1.2 SITE HISTORY

On January 22, 2016, New Mexico Environment Department (NMED) Superfund Oversight Section (SOS) directed Former ACME Hometown Cleaners (hereafter "facility") to conduct site assessments consisting of (1) soil vapor and indoor air sampling and (2) assess concentrations in groundwater. These requests were based on soil gas samples collected by SOS in the vicinity, and by detection of the dry cleaner solvent tetrachloroethene (aka perchloroethene [PCE] or "perc") in a nearby monitoring well suspected of being downgradient of the facility.

1.3 SITE HYDROGEOLOGY

The site is located on distal alluvial fan deposits that slope gently west southwest into the Tularosa Basin. Two bore holes were advanced on site to the water table: MW-1 and MW-2 (Figure 2). Each of these boreholes encountered groundwater around 90 feet below ground surface (bgs). The surficial soil is sandy clay to around 3 feet. Thereafter, the soil consists of intercalated clay, silt, and sand to the water table. The water table occurs in sandy silty clay and sand. Boring logs are included in Appendix A.

1.4 NATURE OF DISCHARGE

The discharge is related to spent PCE disposal in a former wastewater sump (Figure 2). Near this location, PCE was detected in soil matrix in soil boring B-1 at 4.2 mg/kg and in soil gas at SV-3 at 2,400,000 µg/m³. The NMED Soil Screening Levels (SSLs) for PCE for industrial exposure is 1,650 mg/kg carcinogenic and 629 mg/kg non-carcinogenic, and for soil leaching to groundwater at dilution attenuation factor 20 (DAF 20) is 0.321 mg/kg. The Vapor Intrusion Screening Level for industrial soil gas is 6,550 µg/m³. So, the sample results near the former wastewater sump indicated significant concentrations in soil and soil gas relative to protection of groundwater and vapor intrusion. It is assumed that wastewater containing some spent PCE was directly discharged to the former sump.

1.5 PREVIOUS INVESTIGATIONS AND INTERIM ACTIONS

Terracon Phase II

The first assessment activity regarding shallow soil vapor and indoor air was completed by Terracon and reported in *Limited Site Assessment, Former ACME Hometown Cleaners, 901 East 10th Street, Alamogordo, Otero County, New Mexico, April 6, 2017.* The Limited Site Assessment (LSA) included indoor air sampling, sub-floor-slab sampling with the building, and installation of soil borings and collection of soil samples for analysis adjacent to the building (see attached Figures, Exhibit 1 prepared by Terracon). The vapor sampling indicated significant concentrations of sub-slab vapors, and significant concentration of indoor air vapors. The soil samples did not indicate any solvent concentrations above NMED screening levels provide in *Risk Assessment Guidance for Site Investigations and Remediation, July 2015.*

The sub-slab samples indicate the point of release of dry cleaner solvent was the "wastewater sump" located in the northeast corner of the building (Terracon Exhibit 1). Here, the sub-slab concentration SV-3 of 2,400,000 $\mu g/m^3$ was more than an order of magnitude higher than the results at SV-1 (160,000 $\mu g/m^3$) and SV-2 (260,000 $\mu g/m^3$). Trichloroethene (TCE) and dichloroethene (DCE), degradation products of the PCE, were present albeit at concentrations more the 3 orders of magnitude less, indicating very little transformation of PCE has occurred at the point of release. The magnitude of these vapor sample concentrations of PCE indicates the building needs a vapor abatement system prior to continuous commercial occupation. At present, the building is unoccupied.

EA Corrective Action Investigations

Corrective actions implemented by EA since 2018 are summarized below:

- In March 2018, EA submitted the Corrective Action Report, Former ACME Hometown Cleaners, 901 East 10th Street, Alamogordo, NM, March 9, 2018, which included the installation of a nested well with screens completed throughout the vadose zone and into the water table, and the collection of soil gas samples and groundwater sample.
- In February 2022, EA installed a down-gradient monitoring well, MW-2, and conducted a groundwater monitoring event consisting of gauging and sampling wells MW-1 and MW-2.
- Compared new and existing analytical results to Soil Screening Levels (SSLs) and Vapor Intrusion Screening Levels (VISLs) provided in New Mexico Environment Department Risk Assessment Guidelines for Site Investigation and Remediation November 2021.
- Compared new and existing groundwater analytical results to the applicable New Mexico Water Quality Control Commission (NMWQCC) standards.

EA Vapor Intrusion Mitigation

EA implemented a soil vapor extraction (SVE) system for sub-slab depressurization and mass removal to prevent vapor intrusion into indoor air space and to initiate subsurface cleanup. Following is a summary of activities related thereto:

- In June and July 2021, EA installed two SVE ports through the building's slab (SVE-1 and SVE-2).
- In June and July 2021, EA installed an SVE system at the site with a blower plumbed to the newly installed SVE ports, SVE-1 and SVE-2, and the three well screens of the previously installed nested well, MW-1.
- Performed monthly operation and maintenance (O&M) of the SVE system through February 2022 including the collection of influent soil gas samples analyzed for volatile organic compounds (VOCs) by EPA Method 8260B.
- In November 2021, EA collected an indoor air sample utilizing a Summa[®] canister and analyzed the sample for chlorinated solvents by EPA Method TO-15 SIM.

2.0 KNOWN NATURE AND EXTENT OF CONTAMINATION

The following subsections provide a summary of known impacts to soil, soil gas, and groundwater to date.

2.1 SOIL CONTAMINATION

Soil contamination was assessed during the limited site assessment conducted by Terracon (2017) and during corrective actions conducted by EA. A summary of soil analytical data for samples collected from soil borings is provided in Table 1. Sample results indicate that protection of groundwater SSLs are exceeded: no exceedances for industrial worker exposure pathways related to soil were exceeded.

2.2 SOIL VAPOR CONTAMINATION

Soil vapor concentrations for samples collected to date are provided in Table 2. Subsurface soil gas concentrations significantly exceed VISLs for soil gas. Mitigation or cleanup of soil vapors is therefore necessary to render the building occupiable for workers.

2.3 GROUNDWATER CONTAMINATION

Groundwater occurs at a depth of 88 to 90 feet below ground surface (Table 3). PCE contamination occurs in both MW-1 and MW-2. In February 2022, PCE concentrations 110 and <1.0 μ g/L in MW-1 and MW-2, respectively. In accordance with the Settlement Agreement, the wells were resampled on August 10, 2022 and the results were 57 and 16 μ g/L, respectively. Sample results are provided in Table 4. Based on the August results, both wells exceed the 20.6.2.3103 NMAC PCE standard of 5 μ g/L. Neither trichloroethene nor dichloroethene was detected, indicating little or no degradation of the PCE.

2.4 DATA GAPS

The stipulated data gap based on MW-1 sampling is installation and sampling of proposed downgradient monitoring well MW-3. MW-3 will be constructed as described in Section 3.2. Once MW-3 is installed, all monitoring wells will be surveyed by a New Mexico Professional Licensed Surveyor to common datum to facilitate reduction of well gauging data to water levels and preparation of a groundwater gradient map. MW-3 will be sampled in accordance with protocols in Section Sampling of MW-3 will reveal presence or absence of PCE due south of the former sump.

In accordance with the Settlement Agreement, quarterly groundwater monitoring of MW-1, MW-2, and MW-3 will be initiated in accordance with schedule discussed in Section 4.1. Samples will be collected as described in Section 4.2. Samples will be containerized, managed, and analyzed in accordance with Table 5.

3.0 SCOPE OF WORK TO COMPLETE SITE CHARACTERIZATION

The following sections provide the scope of necessary to complete the S1AP requirements stipulated in the Settlement Agreement.

3.1 WELL INVENTORY

EA will perform a well inventory of public and private water supply wells located within a 1-mile radius of the site. The inventory will be accomplished through use of New Mexico Office of State Engineer (NMOSE) Point of Diversion Locations https://gis.ose.state.nm.us/gisapps/ose pod locations/.

3.2 MONITORING WELL INSTALLATION

MW-3 will be constructed as described below.

Proposed Well Location

MW-3 will be located south of the former dry cleaner building in the location shown on Figure 2. This position is presumed downgradient of the point of discharge (wastewater sump) and will facilitate reconciliation of groundwater gradient by three-point analysis.

Monitoring well Construction

The proposed monitoring well will be constructed according to the following specification and in accordance with NMED guidelines and NMOSE rules (19 NMAC 27.4.29 and 19 NMAC 27.4.30) as follows:

- 1. Well bore will be drilled by hollow-stem auger; the borehole will be approximately 8-inches in diameter.
- 2. Well materials shall consist of 2-inch diameter schedule 40 polyvinyl chloride (SCH 40 PVC) flush-thread jointed (ASTM F480) well screen and casing.
- 3. Screen shall consist of 15 feet of 0.010-inch machine slotted screen. The screen will be submerged approximately 10 feet and extend 5 feet above water table.
- 4. Filter pack shall consist of 10-20 mesh silica sand placed from total depth to 1 to 2 feet above the screen.
- 5. A four-foot-thick hydrated bentonite seal shall be placed above the filter pack.
- 6. The remainder of the annulus between blank casing and surface shall be grouted with a cement bentonite grout containing 90 percent cement and 10 percent bentonite.

7. Surface completion shall consist of 8-inch traffic rated vaults set ½-inch above existing grade. Vaults shall be set in two-foot diameter by 4-inch-thick concrete well pads, sloped 0.5" per foot to drain. Well pads shall contain a mat of #3 rebar on 8-inch centers.

Monitoring well construction information will be documented on the Boring/Monitoring Construction Log, included in Appendix C (Field Forms) of this plan.

Monitoring Well Development

After the monitoring well is constructed, it will be developed. Development will be initiated by the surge-and-bail method to clean the filter pack of any fines. The well will be surged and bailed to the extent practicable until the well yields clear water. A minimum of 10 casing volumes will be removed during development. Development shall be under the direct supervision of the site geologist.

Well Recording with NMOSE

All information regarding the well installation will be filed with NMOSE by the licensed driller, as required by 19 NMAC 27.4.29(N).

Surveying

The new monitoring well will be surveyed by a licensed surveyor. The survey will be done in New Mexico State Plane Coordinates, Central Zone, North American Datum 83 and will include northing and easting to a tenth of a foot accuracy. Elevations of top of casing and ground elevations for wells will be surveyed to the nearest hundredth of a foot.

Investigation-Derived Waste Management

The implementation of the activities outlined in this S1AP will generate drill cuttings from drilling of boreholes, water from well purging for development and prior to sampling, and personal protective equipment (PPE) used by field personnel. The drill cuttings will be contained in DOT-rated 55-gallon drums. Purge water from well development and sampling will be placed on the cuttings thereby drummed.

PPE generated during this investigation includes protective gloves, paper towels, and general solid waste. None of this waste will require special handling and will be disposed in trash bins as any other solid waste.

Soil Sampling and Physical Properties Testing

Soil samples will be collected from the borehole for nature and extent of chlorinated solvents and to support fate and transport analysis. One soil sample from below the water table will be collected for analysis of VOCs by EPA Method 8260 as specified in Tables 5 and 6. Soil physical properties will be determined in accordance with Table 6 to support partitioning and retardation analysis.

3.3 WELL CAPACITY TESTING

Immediately following development, MW-3 will be step-tested by pumping at two or three pumping rates. Quasi-steady drawdown will be measured at each step, and the data used to determine well capacity. From well capacity, transmissivity and hydraulic conductivity will be estimated to facilitate estimation of seepage velocity.

3.4 INITIAL MONITORING WELL SAMPLING

Following construction and development, MW-3 along with MW-1 and MW-2, will be sampled as described in Section 4.

4.0 LONG-TERM GROUNDWATER MONITORING

The following sections discuss the monitoring regimen, sampling protocols, and schedule for long-term monitoring.

4.1 SAMPLING REGIMEN AND SCHEDULE

The S1AP monitoring well installed under this plan will be sampled on a quarterly basis. If for any reason sample analyses indicate that any well sampling should cease, a formal request documenting the reason for the change should be submitted to NMED. The abatement plan wells will be sampled in accordance with procedures outlined in this S1AP. Sampling results and gauging data will be provided to NMED on a quarterly basis.

4.2 SAMPLING PROTOCOLS

Groundwater sampling will be performed as described below. All monitoring well sampling information shall be logged on a monitoring well sampling form (Appendix C). The following monitoring well sampling procedure will be followed:

- 1. Gauge Water Level. Measure the depth to water (0.01-foot precision) in the well from the northern side of the PVC well casing (same point from where the well casing was surveyed). Decontaminate the electronic tape after each well gauging in AlconoxTM solution followed by potable water rinse.
- 2. Calculate the Purge Volume. Determine the volume per foot of well depending on well diameter. Multiply this volume by the length of water column in the well. The water column in the well is calculated by subtracting the depth to water measurement from the well depth. Multiply this casing volume by 3 to determine the volume that will have to be purged prior to sampling. Record purge volume on field sampling form.
- 3. Purge/Development of the Well. The sampler will utilize the instrumentation available to track the purged volume.

4. Water Quality Parameters Measurement. Temperature, pH, electrical conductivity, and oxidation-reduction potential will be field measured during initial well construction and field sampling.

Sample Well. After three casing volumes have been purged/developed, the well will be ready to sample. Sample containers will be filled according to Table 6. The analysis, time of collection, date, and monitoring well number shall be recorded on sample bottle label. The sample containers will be placed in a cooler on ice as soon as they are filled and labeled

4.3 SAMPLING SCHEDULE

The schedule for the implementation of this S1AP, including eight quarters of groundwater monitoring, is presented below.

Date	Activity
October 28, 2022	Draft S1AP Submitted
November 28, 2022	NMED Comments on Draft S1AP
December 23, 2022	S1AP Comments Cured
January 13, 2023	NMED Approval of Stage 1 AP
January 23, 2023	Drill and Install MW-3
January 25, 2023	Sample MW-1, -2, and -3. First Quarterly Monitoring Event
March 15, 2023	Submit S1AP Site Investigation Report
April 30, 2023	Second Quarterly Monitoring Event
July 30, 2023	Third Quarterly Monitoring Event
October 30, 2023	Fourth Quarterly Monitoring Event
January 30, 2024	Fifth Quarterly Monitoring Event
April 30, 2024	Sixth Quarterly Monitoring Event
July 30, 2024	Seventh Quarterly Monitoring Event
October 30, 2024	Eighth Quarterly Monitoring Event

5.0 QUALITY ASSURANCE PROJECT PLAN

This section of the Sampling and Analysis (SAP) includes the QAPP for executing the sampling described in Section 4.0. This QAPP includes elements of the Guidance for Quality Assurance Project Plans (QA/G-5) (EPA 2002) and

Guidance on Systematic Planning using the Data Quality Objectives Process (QA/G-4) (EPA 2006b).

5.1 GOALS OF S1AP

In summary, the overall data quality objectives (DQOs) for this project are shown in Table 5 and include: (1) defining the PCSs, and (2) performing the hydrogeologic characterization of the area according to the requirements of 20 NMAC 6.2.4106.C and gain knowledge about the onsite groundwater quality conditions, including plume delineation. The data decisions defined herein are applicable to the Stage 1 Abatement Plan.

5.2 TRAINING

Personnel who work on-site are required to meet the Occupational Safety and Health Administration (OSHA) training requirements defined in Title 29 of the Code of Federal Regulations Part 1910.120(e). These requirements include: (1) 40 hours of formal off-site instruction; (2) a minimum of 3 days of actual on-site field experience under the supervision of a trained and experienced field supervisor; and (3) 8 hours of annual OSHA refresher training. Field personnel who directly supervise employees engaged in hazardous waste operations must also have at least 8 additional hours of specialized supervisor training. The supervisor training covers health and safety program requirements, training requirements, PPE requirements, spill containment program, and health-hazard monitoring procedures and techniques. Before work begins at a specific hazardous waste project site, personnel will be required to undergo site-specific training that thoroughly covers the following areas:

- Names of personnel and alternates responsible for health and safety at the site;
- Health and safety hazards present on site;
- Selection of the appropriate personal protection levels;
- Correct use of PPE;
- Work practices to minimize risks from hazards;
- Safe use of engineering controls and equipment on site; and
- Contents of the site-specific health and safety plan.

5.3 DOCUMENTATION AND RECORDS

Documentation is critical for evaluating the success of any environmental data collection activity. The following sections discuss the requirements for documenting field activities and for preparing laboratory data packages. This section also describes reports that will be generated as a result of this project.

Field Documentation

Field personnel will use field boring logs and field monitoring well sampling forms to document field activities.

Reports Generated

Reporting for this S1AP is addressed in Section 6.0.

5.4 SAMPLE MANAGEMENT

This section describes the requirements for the following:

The following subsections describe sample handling procedures, including sample identification and labeling, documentation, chain of custody (COC), and shipping.

Sample Identification

Each sample collected during site assessment activities will be identified using a unique sample identification (ID) number. The description of the sample type and the monitoring well name, as well as depth of the sample collection point, will be recorded on the COC forms, as well as in the field forms.

Sample IDs will be listed on the sample labels and the COC forms submitted to the laboratory and will be cross-referenced to the point name in field data forms.

Sample Labels

A sample label will be affixed to each sample container. The label will be completed with the following information written in indelible ink:

- Project name and location
- Sample identification number
- Date and time of sample collection
- Preservative used
- Sample collector's initials
- Analysis required
- Each sample will be refrigerated or placed in a cooler containing ice.

Sample Documentation

Documentation during sampling is essential to promote proper sample identification. Field personnel will adhere to the following general guidelines for maintaining field documentation:

- Documentation will be completed in permanent black or blue ink.
- All entries will be legible.

• Errors will be corrected by crossing out the entry with a single line and then dating and initialing the lineout.

Chain of Custody

Field personnel will use standard sample custody procedures to maintain and document sample integrity during collection, transportation, storage, and analysis. A sample will be considered to be in custody if one of the following statements applies:

- It is in a person's physical possession or view.
- It is in a secure area with restricted access.
- It is placed in a container and secured with an official seal in such a way that the sample cannot be reached without breaking the seal.

COC procedures provide an accurate written record that traces the possession of individual samples from the time of collection in the field to the time of acceptance at the laboratory. The COC form will be used to document all samples collected and the analyses requested. Information that the field personnel will record on the COC form includes:

- Project name and number
- Sampling location
- Name and signature of sampler
- Destination of sample (laboratory name)
- Sample ID
- Date and time of collection
- Number and type of containers filled
- Analyses requested
- Preservatives used (if applicable)
- Filtering (if applicable)
- Signatures of individuals involved in custody transfer, including the date and time of transfer
- Airbill number (if applicable) or courier information
- Project contact and phone number

It is expected that samples will be hand-carried to a local analytical laboratory for analysis. In the eventuality that samples will be shipped by courier or air carrier, the COC form will be placed in a waterproof plastic bag and taped to the inside of the shipping container used to transport the samples. Shipment tracking information will serve as evidence of custody transfer between field personnel and the courier, and between the courier and the laboratory. Copies of the COC form and the airbill will be retained and filed by field personnel before the containers are shipped.

The laboratory sample custodian will receive all incoming samples, sign the accompanying COC forms, and retain copies of the forms as permanent records. The laboratory sample custodian will record all pertinent information concerning the samples, including the persons delivering the samples, the date and time received, sample condition at the time of receipt (sealed, unsealed, or

broken container; temperature; or other relevant remarks), the sample IDs, and any unique laboratory identification numbers for the samples. When the sample transfer process is complete, the custodian is responsible for maintaining internal logbooks, tracking reports, and other records necessary to maintain custody throughout sample preparation and analysis.

The laboratory will provide a secure storage area for all samples. Access to this area will be restricted to authorized personnel. The custodian will ensure that samples requiring special handling, including samples that are heat- or light-sensitive, radioactive, or have other unusual physical characteristics, will be properly stored and maintained prior to analysis.

5.5 ANALYTICAL METHODS

Analytical methods for the project are specified in Table 6. This table also specifies the sample quantities, holding times, and preservatives.

Standards described in *Specifications and Guidance for Obtaining Contaminant-Free Sampling Containers* (EPA, 1992).

5.6 MANAGEMENT OF STAGE 1 AP DEVIATIONS

Minor deviations, including field instrument malfunction (pH meter, etc.) will be addressed by field crew and the project manager and professional judgment will be utilized. Any deviation from the SAP will be detailed on field forms and included in the final report to NMED. Any deviation considered significant will be addressed by the field crew, project manager and NMED Ground Water Quality Bureau (GWQB) Project Managers. A consensus on correcting the deviation will be achieved prior to executing any work plan changes, if possible. It is expected that the NMED-GWQB Project Manager or other agency representative will be available for communication during fieldwork. If a situation arises that requires work plan deviation, every attempt will be made to reach an NMED-GWQB representative. If attempts are unsuccessful and a deviation from the work plan must be made in a timely manner, the project manager will use professional judgment to adjust work plan specifications as needed.

5.7 DATA VERIFICATION AND USABILITY

This section describes the procedures that are planned to review and evaluate field and laboratory data. This section also discusses procedures for verifying that the data are sufficient to meet DQOs for the project.

For this project EA will perform data review on 100 percent of the laboratory results. No validation will be performed. Data will be reviewed for holding times, handling and preservation procedures, chain of custody, acceptance within control limits, and to ensure data meet method control limits for project goals.

Laboratory personnel will verify analytical data at the time of analysis and reporting and through subsequent reviews of the raw data for any non-conformances to the requirements of the analytical method. Laboratory personnel will make a systematic effort to identify any outliers or errors before they report the data. Outliers that result from errors found during data verification

will be identified and corrected; outliers that cannot be attributed to errors in analysis, transcription, or calculation will be clearly identified in the case narrative section of the analytical data package.

All laboratory data will be reviewed to ensure usability. The data evaluation strategy will not be a full data validation process but will determine if the analytical results are within the QC limits set for the project. In this process, the data usability will be assessed. Specifically, sample handling requirements, holding times, duplicate results, and QC control limits will be reviewed. Data Management

Field data will be recorded on field forms and will be appended to the Site Investigation Report. Analytical data will be received in electronic form and will be reviewed, summarized, tabulated, analyzed, and provided in the body of the report. The original laboratory data will also be provided in the appendices. As appropriate, some data may be presented graphically. EA will oversee collection of environmental data using the appropriate assessment and audit activities. Any problems encountered during an assessment of field investigation or laboratory activities will require appropriate corrective action to ensure that the problems are resolved.

6.0 REPORTING

The outcome of this S1AP will be documented in a S1AP Site Investigation Report (§4106.C.6.). This report will include a description of field operations, any deviations from the S1AP, the raw and processed analytical data, as well as graphical representations of all spatial data. Supporting information such as evaluation of analytical data from other facilities operating under discharge permits will be included. The report will include a section on data gaps, if any are identified, and recommendations for subsequent data collection, report submittal schedule.

Upon completion of the tasks described above, a Final Site Investigation report will be prepared. The report will document all field activities, results and will include the following:

- A cross-section down the centerline of the plume
- Contaminant plume maps and potentiometric surface maps
- Passive soil gas results
- Laboratory data tables
- Boring/monitor well logs
- Field data collection forms
- Laboratory reports

7.0 REFERENCES

- New Mexico Administrative Code. Various revisions. Title 20, Environmental Protection, Chapter 6, Water Quality.
- EA Engineering, Science, and Technology, Inc.,PBC, 2022. Addendum to the Corrective Action Report, Former Hometown Cleaners, 901 East 10th Street, Alamogordo, NM. Prepared for Mr. Sandy Ochoa and New Mexico Environment Department Ground Water Quality Bureau (NMED GWQB), April 18.
- EA Engineering, Science, and Technology, Inc., 2018. Corrective Action Report, Former Hometown Cleaners, 901 East 10th Street, Alamogordo, NM. Prepared for Mr. Sandy Ochoa and NMED GWQB, March 19.
- Terracon, 2017. Limited Site Investigation, Former ACME Hometown Cleaners, 901 East 10th Street, Alamogordo, Otero County, New Mexico. April 6.
- U.S. Environmental Protection Agency (EPA). 1992. Specifications and Guidance for Obtaining Contaminant-Free Sampling Containers. OSWER Directive No. 9240.0-05A. April.
- EPA. 2002. Guidance for Quality Assurance Project Plans. Office of Environmental Information. Washington, DC. EPA QA/G-5 EPA/240/R-02/009. December.
- EPA. 2006a. Data Quality Assessment: A Reviewer's Guide. EPA QA/G-9R, EPA/240/B-06/002, February.
- EPA 2006b. Guidance on Systematic Planning Using the Data Quality Objectives Process EPA QA/G-4, EPA/240/B-06/001. February.

EA Engineering, Science, and Technology, Inc., PBC

TABLES

TABLE 1. SUMMARY OF SOIL ANALYTICAL RESULTS FORMER ACME HOMETOWN CLEANERS ALAMOGORDO, NEW MEXICO

		Sample		Soi	l Concentra	ation (mg/K	$(g)^2$
Location	Sample Identification	Depth (ft bgs)	Sample Date	PCE	TCE	cis-1,2- DCE	Chloro- form
B-1	B-1 1-2	1-2	3/16/2017	4.2	< 0.0025	< 0.0025	< 0.0025
B-2	B-2 2.5-3	2.5-3.0	3/16/2017	0.072	< 0.0024	< 0.0024	< 0.0024
B-3	B-3 0'-2'	0-2	3/16/2017	0.021	< 0.0024	< 0.0024	< 0.0024
B-3	B-3 7'-9'	7-9	3/16/2017	< 0.0024	< 0.0024	< 0.0024	< 0.0024
B-4	B-4 15'-17'	15-17	3/16/2017	0.0022J	< 0.0023	< 0.0023	< 0.0023
MW-1/B-5	B-5 (0-1')	0-1	1/16/2018	1.2	< 0.026	< 0.026	< 0.026
	B-5 (8-10')	8-10	1/16/2018	0.34	< 0.025	< 0.025	< 0.025
	B-5 (20-22')	20-22	1/16/2018	0.12	< 0.025	< 0.025	< 0.025
	B-5 (50-52')	50-52	1/16/2018	0.041	< 0.025	< 0.025	< 0.025
	B-5 (75-77')	75-77	1/16/2018	< 0.024	< 0.024	< 0.024	< 0.024
	Resident	ial SSLs,	non-cancer ¹	111	6.77	156	306
Inc	dustrial/Ocupation	nal SSLs,	non-cancer ¹	629	36.5	2,600	2,000

Notes:

J - Estimated concentration above adjusted method detection limit and below adjusted reporting limit.

< = Less than the practical quantitative limit

ft bgs = feet below ground surface

SSLs = Soil Screening Levels

PCE = tetrachloroethene

TCE = trichloroethene

DCE = dichloroethene

mg/Kg = milligrams per kilogram

¹NMED Risk Assessment Guidance for Site Investigations and Remediation, Appendix A Table A-1, June 2022.

²PCE, cis-1,2-DCE, and Chloroform detected in soil vapor samples.

TABLE 2. SUMMARY OF SOIL VAPOR ANALYTICAL RESULTS FORMER ACME HOMETOWN CLEANERS ALAMOGORDO, NEW MEXICO

				Soil	Gas Conce	ntration (µg/r	m ³)	
Sample Identification ¹	Sample Depth (ft bgs)	Sample Date	PCE	TCE	cis-1,2- DCE	Chloroform	Freon 12	Vinyl Chloride
SV-1	Sub slab	3/22/2017	260,000	310	< 0.59	NA	NA	< 0.38
SV-2	Sub slab	3/22/2017	160,000	310	0.55J	NA	NA	< 0.38
SV-3	Sub slab	3/22/2017	2,400,000	1,800	22	NA	NA	< 0.38
Screen 1 (70-100')	70-100	1/19/2018	60,000	760	430	84	140	<29
Screen 2 (40-60')	40-60	1/19/2018	410,000	3,100	710	530	<300	<160
Screen 3 (5-35')	5-35	1/19/2018	480,000	3,000	580	410	<380	<190
NMED Res	idential VISL	for Soil Gas ²	1390	69.5	None	40.7	None	55.9
NMED In	dustrial VISL	for Soil Gas ²	6550	328	None	199	None	1040

NOTES:

Bold value indicates exceedance of Residential and/or Industrial VISL.

J - Analyte detected below quantitation limit.

< = Less than the limit of detection

μg/m³= micrograms per cubic meter

ft bgs = feet below ground surface

NA = not analyzed

NMED = New Mexico Environment Department

VISL = Vapor Intrusion Screening Level

cis-1,2-DCE = cis-1,2-Dichloroethene

PCE = Tetrachloroethene

TCE = Trichloroethene

¹ Samples collected in 1-Liter Summa canisters and analyzed by TO-15.

²NMED Risk Assessment Guidance for Site Investigations and Remediation, Appendix A Table A-4, June 2022.

TABLE 3. SUMMARY OF FLUID GAUGING DATA FORMER ACME HOMETOWN CLEANERS, ALAMOGORDO, NEW MEXICO

Monitor	Date			Casing	Depth to	Groundwater
Well	Measured	Northing ¹	Easting ¹	Elevation ²	Water ³	Elevation ²
MW-1	14-Feb-2022	691388.840	1732190.280	4364.02	90.57	4273.45
	18-Jan-2018				88.68	4275.34
MW-2	16-Feb-2022	691370.630	1732118.720	4363.27	90.00	4273.27

NOTES:

¹ Horizontal control to NM State Plane Coordinates Central NAD83 Grid Coordinates (in feet)

³ Measured in feet below the top of casing at survey point on north side of well

⁴ Measured in feet.

² Vertical Control to NAVD88 Datum in feet above mean sea level

TABLE 4. SUMMARY OF GROUNDWATER SAMPLE RESULTS SELECT VOLATILE ORGANIC COMPOUNDS FORMER ACME HOMETOWN CLEANERS, ALAMOGORDO, NEW MEXICO

Monitor Well	Date Sampled	PCE	TCE	Cis-1,2-DCE	Trans-1,2-DCE	Vinyl Chloride
MW-1	10-Aug-22	57	<1.0	<1.0	<1.0	<1.0
	14-Feb-22	110	<1.0	<1.0	<1.0	<1.0
	18-Jan-18	4.6	<1.0	<1.0	<1.0	<1.0
MW-2	10-Aug-22	16	<1.0	<1.0	<1.0	<1.0
	16-Feb-22	<1.0	<1.0	<1.0	<1.0	<1.0
NMWQC	CC Standards	5	5	70	100	2

NOTES:

All concentrations in micrograms per liter (ug/L).

DCE = Dichloroethene

PCE = Tetrachloroethene

TCE = Trichloroethene

NMWQCC = New Mexico Water Quality Control Commission

TABLE 5. SUMMARY SCOPE OF WORK, FORMER HOMETOWN CLEANERS, ALAMOGORDO, NEW MEXICO

			So	il Matrix		G	roundwater M	atrix
Boring/Well Type	Description	Number Borings	VOC	Field Screening	Drilling Footage (feet)	VOC	Parameters	Well Gauging
MW-3	One 2-inch water table well completed to approximately 110 feet bgs south and downgradient of former washwater sump. ten feet of screen below water table and five feet above.	1	1	Field Headspace	110	1	1	1
Waste Disposal Characterization	Drill cuttings	0	1	NA	0	NA	NA	1
Totals		1	2	NA	110	1	1	1

NOTES:

bgs = below ground surface

NA = Not applicable

VOC = Volatile Organic Compounds by EPA Method 8260.

TABLE 6. SAMPLE ANALYTICAL AND QUALITY CONTROL REQUIREMENTS FORMER ACME HOMETOWN CLEANERS, ALAMOGORDO, NEW MEXICO

Target Analytes	Matrix	Analytical Method	Sample Container	Preservative	Hold Time
VOCs	Soil	EPA 8260B	20-ml Glass Vials	Methanol, Cool to <6°C	14 days
VOCs	Water	EPA 8260B	3 x 40- mL glass vials	Mercuric Chloride; Cool to <6°C	14 days
Soil Physical Properties ¹	Water	MOSA	2 x 6-inch brass sleeves	Store dry and cool	NA

NOTES:

¹ Bulk Density, Initial Moisture Content, Porosity, Fraction Organic Carbon (Walkley-Black)

VOC = Volatile Organic Compounds by EPA Method 8260B

EPA = U.S. Environmental Protection Agency

MOSA = Methods of Soil Analysis, Part 4 Physical Methods

°C = degrees Celcius

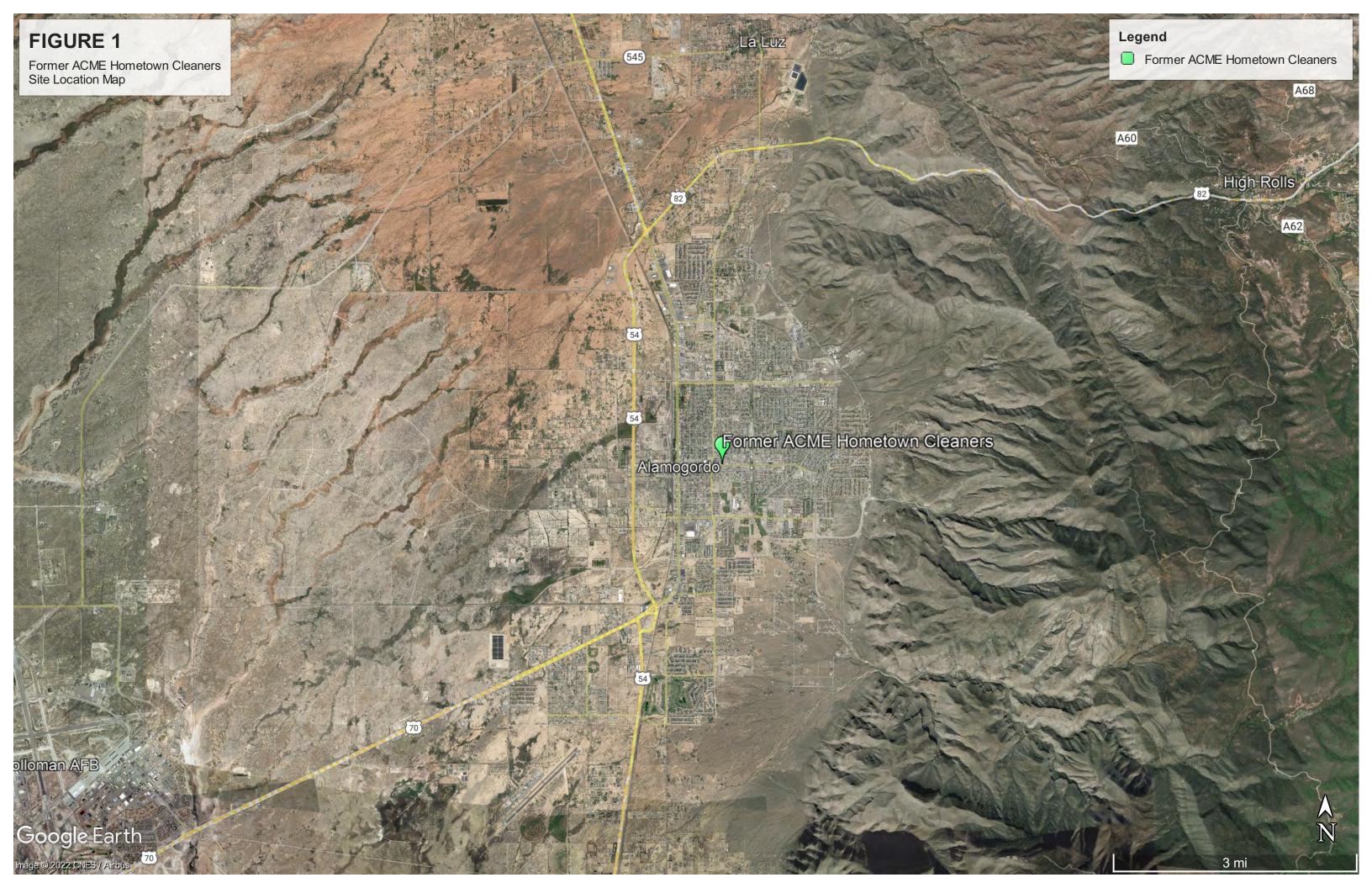
< = less than

mL = milliliter

TABLE 7. GROUNDWATER MONITORING REGIMEN FORMER ACME HOMETOWN CLEANERS, ALAMOGORDO, NEW MEXICO

	Monitorin	g Regimen	Analytical Regimen		
Well Number	Quarterly Monitoring	Gauge	VOCs ¹	Field Parameters ²	
MW-1	X	X	X	X	
MW-2	X	X	X	X	
MW-3	X	X	X	X	

NOTES:


VOC = Volatile orgainc compounds by EPA method 8260B

² Field Parameters = pH, temperature, dissolved oxygen and specific conductance

X = Scheduled to be sampled and gauged

EA Engineering, Science, and Technology, Inc., PBC

FIGURES

Path: P:\gis\Projects\Former ACME Hometown Cleaners\MXDs\Fig1 - Soil Borings and MW Locs.mxd

			•	_			_	
$\mathbf{F} \mathbf{\Lambda}$	Engine	erina	Science.	and	Technol	0037	Inc	PRC
$L\Lambda$	LIEUIC	CHIE.	SCICILCE.	anu	I CCIIIIO	IUE V.	1110	$\mathbf{1DC}$

APPENDIX A EXISTING BORING LOGS

	\(\)				BC	RING/WELL C	CONSTRUCTION	N LOG	
Projec	t:			Forme	r ACN	IE Hometown Cleaners	Project Number:	1560701	
	ng Com			Terrac			Start Time/Date:	1100 / January 16, 2018	
Drillin	ng Rig/	Bit:		CME-	75 / 10		Completion Time/Date:	1000 / January 18, 2018	
Driller				Manny			Final Depth:	101.0 ft	
Boring	g/Well	ID:		B-5 / I	MW-1		Logged By:	Bob Marley Page 1	of 3
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Linear Feet	grain siz	Soil Description density/consistency, pe, angularity/minerale	plasticity, moisture, ogy, other)	Boring and/or Well Details
SS	6		5.3	CL	0		elay, brown (7.5YR 4/3), y	very soft, medium	#1 #2 #3
					2	plasticity, moist.	5YR 4/3), medium dense,	very fine-grained	
SS	4		1.7	SC	3	Clayey saild, blowii (7.	3 1 K 4/3), medium dense,	, very fine-gramed.	
			. .	CT	4	Lean clay, brown (7.5Y	(R 5/3), low plasticity, mo	oist.	
SS	24		5.8	CL	5	~20% very fine-grained			
SS	24		7.9	CL	6	Same as above.			
20	24		1.9	CL	7				
SS	24		9.5	CL	8 9	Same as above, except	brown (7.5YR 5/4), medi	um plasticity.	
SS	18		-	CL	10 11	Clay, brown (7.5YR 5/4	4), soft, medium plasticity	y, moist.	
					12				
					13				
					14	<u> </u>			
SS	8		4.5	SC	15 16	Clayey sand, brown (7. to fine-grained sand.	5YR 4/4), medium dense,	, moist, very fine-	
					17				
					18				
					20	Sand. brown (7.5YR 5/	(4), moist, loose, very fine	e- to fine- grained:	
SS	18		5.2	SP	21		0.5" diameter, subangula		
					22	returns and drilling diff			
					23				
					24	GI.	517D 5 (A) 5	GI	
SS	12		3.2	SC	25	Clayey sand, brown (7.	5YR 5/4), loose, very fine	e- to fine grained.	
					26				
					27				
					29				
SS	8		2.7	SC/SP	30	Clayey sand to sand, lig	ght brown (7.5YR 6/4), lo	ose, moist to	
20	0		2.1	SC/SF	31	dry, very fine-grained s	and, hard zone at 32'.		
					32				
					33				
					34	Cond brown (7 5VD 5)	(4) yany loosa day far- 4	to madium, arainadi	
SS	12		0.6	SP	35 36	~2% fine gravel 0.2 to	(4), very loose, dry, fine- t	o meurum- gramed;	
					37	270 11110 514101 0.2 10	oro diminotor.		
					38				
00 0					39				

	S				BC	ORING/WELL C	CONSTRUCTIO	ON LOG					
Projec	et:			Forme	er ACN	IE Hometown Cleaners	Project Number:	1560701					
Drillir	ng Com	npany:		Terrac	con Inc	·.	Start Time/Date:	1100 / January	16, 2018				
Drillir	ng Rig/	Bit:		CME-	-75 / 10)" OD HAS	Completion Time/Date	e: 1000 / January	18, 2018				
Drille					y Duer		Final Depth:	101.0 ft					
Boring	g/Well	ID:		B-5 /]	MW-1		Logged By:	Bob Marley	Page 2 of	3			
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Linear Feet	grain siz	Soil Description color, density/consistency, plasticity, moisture, rain size, angularity/mineralogy, other)						
SS	_		3.5	_	40	No recovery; limestone	rock stuck in drive sh	oe, 1.2" diameter.		#1 #2			
					41								
					42								
					44								
SS	24		0.6	СН	45	Clay, brown (7.5YR 5/4	4), medium stiff, high	plasticity, moist.					
55	24		0.0	CII	46								
					47								
					48 49								
9.0	10		0.0	an	50	Sand, brown (7.5YR 5/	(4), loose, dry, fine gra	ined.					
SS	18		9.9	SP	51	(1111)							
					52								
					53								
					54 55	Clay, light brown (7.5)	/R 6/A) medium stiffn	ess and plasticity					
SS	24		1.0	CL	56	moist.	r K 0/+/, meatum sum	ess and plasticity,					
					57								
					58								
					59	G 1							
SS	24		4.0	CL	60	Same as above.							
					61 62								
					63								
					64								
SS	24		3.0	SC	65	Clayey sand, brown (7.		nse, dry, very					
					66	fine- to fine-grained san	na.						
			<u> </u>	1	67 68								
					69								
SS	24		1.9	CL	70	Sandy clay, brown (7.5		plasticity, moist,					
55			1.,		71	very fine-grained sand.							
			-	1	72								
					73 74								
00	10		0.0	CII	75	Clay, brown (7.5YR 5/	4), soft, high plasticity	, moist.					
SS	18		8.0	СН	76	`							
					77								
					78								
					79								

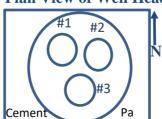
BORING/WELL CONSTRUCTION LOG											
Project: Former ACM						E Hometown Cleaners Project Number: 1560701					
Drillir	ıg Con	npany:		Terrac	con Inc	Star	rt Time/Date:	1100 / January 16, 2018			
Drillin	g Rig/	Bit:		CME-	-75 / 10	" OD HAS Cor	mpletion Time/Date:	1000 / January 1	8, 2018		
Drille	r:			Mann	y Duer	ez Fina	al Depth:	101.0 ft			
Boring/Well ID:				B-5 / 1	MW-1	Log	gged By:	Bob Marley	Page 3 of	3	
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Linear Feet	Soil Description (soil type, color, density/consistency, plasticity, moisture, grain size, angularity/mineralogy, other)					
SS	15		1.2	SC	80	Clayey sand, brown (7.5YF				#1	
55	13		1.2	БС	81	fine-grained sand; ~2% sub	pangular gravel 0.25 to	0.5" diameter.			
					82						
					83						
					84						
SS	12		1.9	SP	85	Sand, brown (7.5YR 5/3), v	very loose, dry, fine- to	medium			
					86	grained.					
					87						
					88						
					89 90	Clay, light brown (7.5YR 6	sticity				
SS	18		1.4	CH	90	very moist.	5, 1,, very sort, mgn pia	sercity,			
					92	. org moise					
					93						
					94						
SS	24		0.5	SP	95	Sand, brown (7.5YR 5/4), v	very loose, wet, fine gr	ained.			
သ	24		0.5	SP	96	Transition at 96' from claye	ey sand to sand.				
					97						
					98						
					99						
					100	Total drilled depth 101'					

Well Construction Summary:

2" dia. Sch 40 PVC Screen, 10 Slot: Screen 1 (70.0'-100.0'); Screen 2 (40.0'-60.0'); Screen 3 (5.0'-35.0')

2" dia. Sch 40 PVC blank casing: Blank 1 (0'-70.0'); Blank 2 (0.0'-40.0'); and Blank 3 (0.0'-5.0')

12-20 Silica Sand: Interval 1 (67.8'-101.0); Interval 2 (39.5'-63.5'); and Interval 3 (4.5'-36.2')


Bentonite Chips: Interval 1 (63.5'-67.8); Interval 2 (36.2'-39.5'); and Interval 3 (2.0'-4.5')

Cement Grout: 0.0'-2.0'

Flush mount traffic rated well vault

10" borehole

Plan View of Well Head

E	3				BOR	NG/WELL CONST	RUCTION I	LOG		
Project: ACME Home						own Cleaners Project	Number:	1560702		
							me/Date:	1220 2-14-2022		
							tion Time/Date:	1600 2-15-2022		
Driller: Shane Eldridge Boring/Well ID: MW-2								100.75 ft bgs	· ·	
Boring	g/Well I	D:	\sim	MW-2	: 1	Logged	By:	A. Andelman Page1_	of3	
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Linear Feet	Soil Description (soil type, color, density/consistency, plasticity, moisture, grain size, angularity/minerology, other)				
				CL	1)-5', clay				
Ī	 	<u> </u>			2					
CUTTINGS		.	 	1	3 4					
כו	<u> </u>		<u> </u>	1	5					
SS	22		0		6 7	5'-7', silty clay, brown (10YR 5	/3), medium dens	e, dry, low plasticity		
					8					
					9					
			1.8		10	10'-12', silty clay, brown (10YF	2 5/3) medium de	ense dry low plasticity		
SS	20				12	10 12, 511, 512, 516 11 (1011	(),), illedidili de	nise, ary, row plasticity		
					13					
ļ			ļ		14					
SS	20		4	ML	15 16 17	15'-17, clayey silt, light yellowidry, low plasticity	sh brown (10YR	6/4), medium dense,		
					18					
					19					
			3.2		20	20'-22', sandy silt, yellowish br	own (10VR 5/4)	medium dense dry		
SS	20		3.2	_	21 22	ow plasticity	5WII (1011C 5/4);	mediam dense, dry,		
					23					
	<u> </u>				24 25					
SS	20		1.1	SM	26	25'-27', silty sand, yellowish br	own (10YR 5/4),	loose, dry, fine		
SS	20	 			27	grained with 1-2" lenses of med	lium grained sand			
		<u> </u>	 	ł	28					
 			ļ	1	29 30					
SS	24		0.5	ML	31 32	30'-32', clayey silt, yellowish but dense, plastic, dry	own (10yr 5/4), r	nedium dense to		
]	33					
	<u> </u>	 	 		34					
			NM	SP	35	35'-37', sand, yellowish brown	(10VR 5/4) loose	dry fine grained		
SS	10	<u></u>	1 N 1 V 1	or	36 37	with trace medium grained sand		, ary, thic grained		
	 	 	ļ	ł	38					
l			ļ	1	39 40					
SS	22		0.1	СН	41	40'-42', clay, light yellowish bro	own (10YR 6/4),	medium dense, high		
22		 			42	plasticity, moist				
	<u> </u>	<u> </u>		ł	43					
	 	 	ļ	1	44 45					

Projec	t:			ACMI	E Home	town Cleaners	Project Number:	1560702			
Drillin	g Com	oany:		Atkins	Engine	eering Associates	Start Time/Date:	1220 2-14-2022			
Drillin	g Rig/F	3it:		Forem	ost Mo	bile HSA 8.5" OD	Completion Time/D	ate: 1600 2-15-2022			
Driller	:			Shane	Eldridg	ge	Final Depth:	100.75 ft bgs			
Boring	/Well I	D:		MW-2	,		Logged By:	A. Andelman Page2_	of	3_	_
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Linear Feet	· · · · · · · · · · · · · · · · · · ·	Soil Descripensity/consistency angularity/miner	y, plasticity, moisture, grain	V	orir d/d Vel etai	or l
SS	12		NM	СН	46 47	45'-47', clay, light yello plasticity, moist	wish brown (10YR)	6/4), medium dense, high			
					48 49						
SS	24		NM	CL	50 51 52	50'-52', silty sandy clay plasticity, dry, fine grai		, medium dense, low			
					53 54 55		(7.512.512				
SS	24		NM		56 57 58	55'-57', silty clay, brow plasticity, dry, strong o		um dense, low			
			NM		59 60 61	60'-62', silty clay, brow	n (7 5VR 5/A) medi	um dense low			
SS	24				62 63 64	plasticity, dry to slight		uni donse, iow			
SS	20		NM	SM	65 66 67	65'-67', silty sand with fine sand, slight odor	clay, brown (7.5YR	5/4), medium dense/stiff,			
					68 69 70						
SS	20		NM	ML	71 72 73	70'-72', sandy silt, light sand	brown (7.5YR 6/4),	medium dense, dry, fine			
					74 75						
SS	24		NM	CL	76 77	75'-77', silty clay, brow trace fine sand	n (7.5 YR 5/4), med	ium stiff to stiff, plastic,			
					78 79 80						
SS	22		NM	ML	81 82	80'-82', clayey sandy si nonplastic, dry	lt, yellowish brown (10YR 5/4), medium dense,			
					83 84 85						
SS	4		NM	GW	86 87	85'-87', gravel with silt subround, up to 1" diar		loose, dry, subangular to ined sand			
					88 89 90						

	3				BOR	ING/WELL CONSTRUCTION LOG	
Project	t:			ACMI	E Home	town Cleaners Project Number: 1560702	
	g Com	pany:		Atkins	Engine	pering Associates Start Time/Date: 1220 2-14-2022	
	g Rig/F					bile HSA 8.5" OD Completion Time/Date: 1600 2-15-2022	
Driller					Eldridg		
Boring	/Well I	D:		MW-2		Logged By: A. Andelman Page3_	of3
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Linear Feet	Soil Description (soil type, color, density/consistency, plasticity, moisture, grain size, angularity/minerology, other)	Boring and/or Well Details
SS	10	 	NM	CL	91	90'-92', silty clay, brown (10YR 5/4), medium stiff, wet, plastic	
			ļ	1	92 93		·
		<u> </u>		1	94		
]	95		
SS	5	 	NM	4	96	95'-97', silty clay, brown (10YR 5/4), medium stiff, wet, plastic, trace	
		 	ļ	1	97 98	fine grained sand	·
		 	ļ	1	98 99		1
SS	4				100	99'-101', silty clay, brown (10YR 5/4), medium stiff, wet, plastic, trace	
20	-		NM		101	fine grained sand	1 1
		.			102		.
					103 104		1
					105		1
					106	2-inch PVC Schedule 40 0.010" slot screen 85'-100'	1
					107	12-20 silica sand 83'100.75'	.
					108	1/4" bentonite pellets 79'-83' Grout <1'-79'	.
					109 110	Orout <1-79	1
					111		
					112		
					113		
					114		.
					115 116		1
			ļ		117		
	40 00 00 00	 			118]
		 	ļ	 	119		
					120 121		1
		 	 	†	122		
					123		
		ļ	ļ	<u> </u>	124		.
					125		
		 	ļ	 	126 127		
		<u> </u>	L	<u> </u>	128]
				Ĭ	129		
					130		
		 	 		131		
			ļ	 	132 133		
		<u> </u>			134]
	[[T	135]

6	2				BOR	ING/WELL CONSTRUCTION LOG		
Projec						town Cleaners Project Number: 1560702		
Drillin	g Comp g Rig/E			EA En	Auger	Start Time/Date: 0900 6-30-21 Completion Time/Date: 1300 6-30-21		
Driller Boring	: g/Well I	D:		A. Kuj SVE-1		Final Depth: 15 ft bgs Logged By: A. Kupper Page _1	of _1	
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Depth, ft bgs	Soil Description (soil type, color, density/consistency, plasticity, moisture, grain size, angularity/minerology, other)	Bo an V	ring d/or Vell etails
			0.6	SC	1	0-8', clayey sand, red (7.5YR 5/6), dense, plastic, moist, fine sand		
			0.7		2			
			0.6		3			
			0.8		4			
			0.7		5			
			0.6		6			
NGS			0.6		7			
CUTTINGS			0.7		8	8'-15', clayey sand, red (7.5YR 5/6), medium dense, slightly plastic, moist,		
J			0.8		9	fine sand		
			1.1		10			
			1.3		11			
			1.1		12			
			0.5		13			
			0.5		14			
			0.9		15			
					16			
			ļ		17	1-inch PVC 0.010" slot screen 5'-15'		
					18	10-20 silica sand 4'-15'		
					19	3/8" bentonite pellets <1'-4'		
					20			
			ļ		21			
					22			
					23			
		l	ļ		24			
					25			

E	A				BOR	ING/WELL (CONSTRUCTION	LOG			
Drillir Drille	ng Comp ng Rig/I	Bit:		EA Er Hand A. Ku SVE-2	ng. Auger pper	town Cleaners	Project Number: Start Time/Date: Completion Time/Date Final Depth: Logged By:	1560702 0930 6-31-21 :: 1430 6-31-21 15 ft bgs A. Kupper	Page _1	of _1	
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Depth, ft bgs		Soil Description, density/consistency, jize, angularity/minerol	plasticity, moist	ture, grain	an V	ring d/or Vell tails
CUTTINGS			0.2 0.6 0.9 0.7 0.6 0.9 0.1 0.4 0.3 0.6 0.4 0.5 0.9	SC		2'-6', clayey sand, r	red (7.5YR 5/6), dense, plas	stic, moist, fine san			
			0.9		15 16 17 18 19 20 21 22 23 24	1-inch PVC 0.010" 10-20 silica sand 4' 3/8" bentonite pelle	-15'				

	BORING LOG NO. B-1							Page 1 of 1					
PR SIT			CLIENT: Mr. S Alam	andy Ochoa ogordo, New Mexico									
	Alamogordo, New Mexico					T 40							
GRAPHIC LOG	LOCATION See Exhibit A-2 DEPTH	MATERIAL DESCRIPTION			DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE SENT				
U(0.5_ASPHALT	MATERIAL DESCRIPTION	N				1	8.9					
	AGGREGATE BASE COURSE 2.0 POORLY GRADED SAND WITH CLAY (SP-SC).	dark brown, no odor,	moist, medium dense		_		1	17.0	X				
	Boring Terminated at 2 Feet												
	The stratification lines represent the approximate transition types; in-situ these transitions may be gradual or may occur	between differing soil typ at different depths than	es and/or rock shown.										
Advan	cement Method:	See Appendices for des procedures.		Notes:									
Aband	onment Method:		ecription of laboratory nal data (if any). lanation of symbols and										
	WATER LEVEL OBSERVATIONS	abbreviations.			T								
	WALLITELE OBOLIVATIONS		acon	Boring Started: 3/16/2017 Drill Rig: Hand Auger	Borir Drille		plete	ed: 3/16	/2017				
		4450 Bataai	n Memorial E ices, NM	Project No.: 68177010	Exhil		B-4						
		Las Cit	oca, INIVI	10,000.140 00111010	-^	ωIL.	7						

	BORING LOG NO. B-2 ROJECT: Acme Hometown Cleaners CLIENT: Mr. Sandy Ochoa Alamogordo, New Mexico							f 1
PR	OJECT: Acme Hometown Cleaners	CLIENT: Mr.	Sandy Ochoa mogordo, New Mexico					
SIT	E: 901 East 1st Street Alamogordo, New Mexico							
F0G	LOCATION See Exhibit A-2	,		£	WATER LEVEL OBSERVATIONS	YPE		Ä
GRAPHIC LOG				DEРТН (ft)	ER LE RVATI	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE SENT
GRA					WATI	SAME	6	SAMP
بر	0.3 ∧ <mark>ASPHALT</mark>	MATERIAL DESCRIPTION				1	6.4	0,
	AGGREGATE BASE COURSE POORLY GRADED SAND WITH CLAY (SP-SC).	dark brown, no odor, moist, medium der	se	_		1	6.2	
	3.0 Boring Terminated at 3 Feet			-		<u>†</u>	11.3	
	Dorming rommatical at 0 7 co.							
	The stratification lines represent the approximate transition	between differing soil types and/or rock						
	types; in-situ these transitions may be gradual or may occur	at different depths than shown.						
	types, in site these transitions may be gradual or may been		Notes:					
dvan	cement Method:	See Appendices for description of field						
dvan		procedures. See Appendices for description of laboratory						
	cement Method:	procedures. See Appendices for description of laboratory procedures and additional data (if any).						
		procedures. See Appendices for description of laboratory						
	cement Method: onment Method:	procedures. See Appendices for description of laboratory procedures and additional data (if any). See Appendices for explanation of symbols a abbreviations.	nd	<u> </u>				
	cement Method:	procedures. See Appendices for description of laboratory procedures and additional data (if any). See Appendices for explanation of symbols a abbreviations.	nd	Borin	g Com	plete	ed: 3/16	5/201 [°]
	cement Method: onment Method:	procedures. See Appendices for description of laboratory procedures and additional data (if any). See Appendices for explanation of symbols a	nd	Borin Drille		plete	ed: 3/16	5/2017

	E	BORING L	OG NO. B-	3			Pag	e 1 c	of 1
	OJECT: Acme Hometown Cleaners		CLIENT: Mr. Sa Alam	andy Ochoa ogordo, New Mexico					
SIT	E: 901 East 1st Street Alamogordo, New Mexico								
GRAPHIC LO	LOCATION See Exhibit A-2 DEPTH	MATERIAL DESCRIPTION			DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE SENT
	0.3.^ASPHALT 1.8 AGGREGATE BASE COURSE	WATERIAL DEGORAL FIGUR		/	-		X	8.7	Х
	POORLY GRADED SAND WITH CLAY (SP-SC), I	ight brown, no odor, r	noist, medium dense		-				
					_		X	7.6	
					5 -			4.7	
					_			7.,	
					- -		X	10.0	x
					10-				
					_		\triangle	3.	
					_			8.5	
					15-				
					-		X	4.3	
					_			3.9	
					- 20-			3.9	
	00.0						X	2.3	
	22.0 LEAN CLAY (CL), dark brown, no odor, moist, stif	f			- -				
						-		4.7	
					25-			5.7	
					_				
					_		X	5.0	
	30.0 Boring Terminated at 30 Feet				30-				
Advance	The stratification lines represent the approximate transition be types; in-situ these transitions may be gradual or may occur a	etween differing soil type at different depths than s	es and/or rock hown.	Hammer Type: Automatic					
Advanc		See Appendices for des procedures.	cription of field	Notes:					
Abando Borir comp		See Appendices for des procedures and addition							
Abando Borin		See Appendices for exp abbreviations.	lanation of symbols and						
COIT	WATER LEVEL OBSERVATIONS	75		Boring Started: 3/17/2017	Borin	ng Con	nplete	d: 3/17	7/2017
			acon	Drill Rig: CME-75		er: TIE	•		
		4450 Bataar Las Cru	Memorial E ces, NM	Project No.: 68177010	Exhil	bit:	B-6		

	E	BORING L	OG NO. B-	4			Pag	e 1 o	of 1
PRO	OJECT: Acme Hometown Cleaners		CLIENT: Mr. Sa Alamo	andy Ochoa ogordo, New Mexico					
SIT	E: 901 East 1st Street Alamogordo, New Mexico								
GRAPHIC LOG	LOCATION See Exhibit A-2				DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	OVA/PID (ppm)	SAMPLE SENT TO LAB
	0.3.∧ <mark>ASPHALT</mark>	MATERIAL DESCRIPTION		/			"	0.7	"
	1.8 AGGREGATE BASE COURSE POORLY GRADED SAND WITH CLAY (SP-SC), I	ight brown, no odor, r	noist, medium dense		_		\triangle	8.7	
	FORKET GROUP STATE WITH GENERAL GROUP,	ight brown, no odor, r	moist, mediam dense		_		X	7.6	
					5 -				
					_	1	X	4.7	
					_		\bigvee	40.0	X
					-		\mathbb{N}	10.0	^
					10 - -		M	3.5	
					-		$\langle \cdot \rangle$		
					_		X	8.5	
					15-		\forall	4.0	
					_			4.3	
					_			3.9	
	20.0 CLAYEY SAND (SC), brown, no odor, moist, medi	ium danaa			20-				
	CLATET SAND (SC), DIOWIT, NO Oddir, Moist, Medi	ium dense			_		X	2.3	
					_				
					-		\mathbb{N}	4.7	
					25-			5.7	
	27.0 LEAN CLAY (CL), dark brown, no odor, moist, stif	f			_		()		
					_		X	5.0	
////	Boring Terminated at 30 Feet				30-				
	The stratification lines represent the approximate transition by types; in-situ these transitions may be gradual or may occur a	etween differing soil type at different depths than s	es and/or rock hown.	Hammer Type: Automatic					
Advanc		See Appendices for des	cription of field	Notes:					
		procedures. See Appendices for des procedures and addition	cription of laboratory						
Borir	onment Method:	See Appendices for exp abbreviations.							
55111	WATER LEVEL OBSERVATIONS	75		Boring Started: 3/17/2017	Borin	ng Con	plete	d: 3/17	7/2017
		llerr	acon	Drill Rig: CME-75	_	er: TIE	-		
		4450 Bataar Las Cru	Memorial E ces, NM	Project No.: 68177010	Exhil	bit:	B-7		

TC A	. D.,			Caiamaa	d	Taalama	1 ~ ~ ~ .	Lanc	DDC
\mathbf{L}^{P}	L	ıgını	ering,	Science,	and	1 ecimo	iogy,	mc.,	PDC

APPENDIX B HEALTH AND SAFETY PLAN

	Sandy Ochoa		reiepnone	e: 505-269-0810	
Client Contact:	Sandy Ochoa		Telephone: 505-269-0810		
Prepared By:	David Werth		Date: October 27, 2022		
Date of Propos	ed Activities: October 202	22 through Octob	er 2024		
	Site Type: Check as man	ıy as applicable.			
ccordance with dical		☐ Industrial V	Vaste	☐ Well field	
ous waste site. P) is to list the	☐ Inactive	Landfill		Underground storage tank	
used to ensure	☐ Secure				
	M Ungagura	(must use long	g form)	☐ Unknown (must use long form)	
	☑ Olisecule	Uncontroll	ed Waste	(must use long lorm)	
		(must use long	g form)	Other (<i>Egg Farm</i>)	
	Prepared By: Date of Propose ecordance with dical ous waste site. Disto list the used to ensure	Site Type: Check as man Coordance with	Prepared By: David Werth Date of Proposed Activities: October 2022 through October 2022 thro	Prepared By: David Werth Date: Oct Date of Proposed Activities: October 2022 through October 2024 Site Type: Check as many as applicable. □ Coordance with dical □ Use waste site. □ Inactive □ Landfill □ Inactive □ Confined space □ Confined space □ (must use long form)	

Note: A site map, definitions, and additional information about this form are provided on the last three pages of this form.

Waste Management Practices:								
IDW will be containerized in drums and disposed of at a permitted facility.								
Waste Types:	∑ Liquid	Solid Solid	☐ Sludge ☐ Gas					
Waste / Chemical Characteristics:	Corrosive	Oxidizer	Flammable					
Toxic	Explosive	∇olatile	Radioactive					
Reactive	Inert	_	Other (specify)					
Chemical / Health Haza	ards of Concern:							
Explosion or fire combustible gas met	e hazard – monitor with ter	☐ Inorganic c	hemicals (nitrate and chloride)					
Oxygen deficier meter	ncy – monitor with oxygen	Organic ch	emicals (PCP)					
Landfill gases – hydrogen sulfide me	monitor with methane and eter	Petroleum 1	Hydrocarbons (as TPH DRO)					
☐ Surface tanks		Undergroun	nd storage tanks					
	tion or skin absorption hazard	Other (spec	<i>ify</i>)PCE					
•	that is immediately dangerous to life and health (IDLH) – must use long form							
Explosion or Fire Poten	Explosion or Fire Potential: High Medium Dunknown							
Radiological Hazards of	f Concern:							

☐ Ionizing radiation (Radioactive materials, X-ray) (must use long form)	Non-ionizing radiation (ultraviolet, lasers)
Safety Hazards of Concern: (Based on anticipated clean-up operations)	
Heavy Equipment	Buried utilities
☐ Pinch points	Overhead utilities
Energized and rotating equipment (drill rig)	Suspended loads
☐ Steam cleaning equipment	Buried drums
Excavations	Work over or near water
☐ Welding or torch cutting (Hot work)	Work from elevated platforms
☐ Sharp Objects	Manual Lifting
Hazardous energy sources (electrical, hydraulic)	Other (specify)
∇ehicle Traffic (use cones or barriers)	Heavy traffic
Physical Hazards of Concern:	☐ Vibration
Heat stress	Noise Noise
Cold stress	Solar (sunburn)
Slips, trips, falls	Unstable or steep terrain
☐ Illumination	Other (specify) Traffic
Biological Hazards of Concern:	Snakes (rattlesnakes)
Poisonous plants (poison ivy, poison oak)	Stinging insects (bees, wasps)
☐ Spiders (black widow or brown recluse spiders)	Animals (feral dogs, mountain lions, etc.)
☐ Medical waste	☐ Blood or other body fluids
Unexploded Ordnance:	
☐ Unexploded Ordnance (UXO) (must use long form)☐ Chemical Warfare Materials (CWM) (must use long form)	Explosive ordnance waste (OEW) (must use long form)

Chemical Products EA Engineering Will Use or Store On Site: (Attach a Material Safety Data Sheet [MSDS] for each item.)
Hydrochloric acid (HCl)
☐ Nitric Acid (HNO ₃)
Sodium hydroxide (NaOH)
☐ Sulfuric Acid (H ₂ SO ₄)
Other (specify)

Chemicals Present at	Site PEL/TLV (specify ppm or mg/m³)	IDLH Level (specify ppm or mg/m ³)	Route	of Exposure and Symptoms		Photoionization Potential (eV)
TCE	100 ppm (PEL)	1,000 ppm		sual disturbance, lassitude (weakness, exhausea, vomiting; dermatitis; cardiac arrhythm		9.45 eV
Chloroform	50 ppm (PEL)	500 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact Irritation eyes, skin; dizziness, mental dullness, nausea, confusion; headache, lassitude; anesthesia; enlarged liver; [potential occupational carcinogen]			11.42 eV
Cis-1,2-DCE	200 ppm	1000 ppm	Inhalation, Ingestion, Skin/Eye Contact Irritation eyes, respiratory system; central nervous system depression			9.65 eV
Tetrachloroethene (PCE)	100 ppm (PEL – TWA)	500 ppm	Inhalation, skin absorption, ingest Irritation eyes, skin, nose, throat, incoordination; headache, drowsin [potential occupational carcinoge		9.32 eV	
Notes: Source: "NIOSH I	Pocket Guide to Chemica	l Hazards" (Septe	ember 2021)			1
A = Air CARC = Carcinogenic eV = Electron volt	GW = Ground water IDLH = Immediately da or health mg/m ³ = Milligram per		mg/L = Milligram per liter NA = Not available NE = Not established	PEL = Permissible exposure limit ppm = Part per million S = Soil	SW = Surfa TLV = Thre U = Unknow	eshold limit value

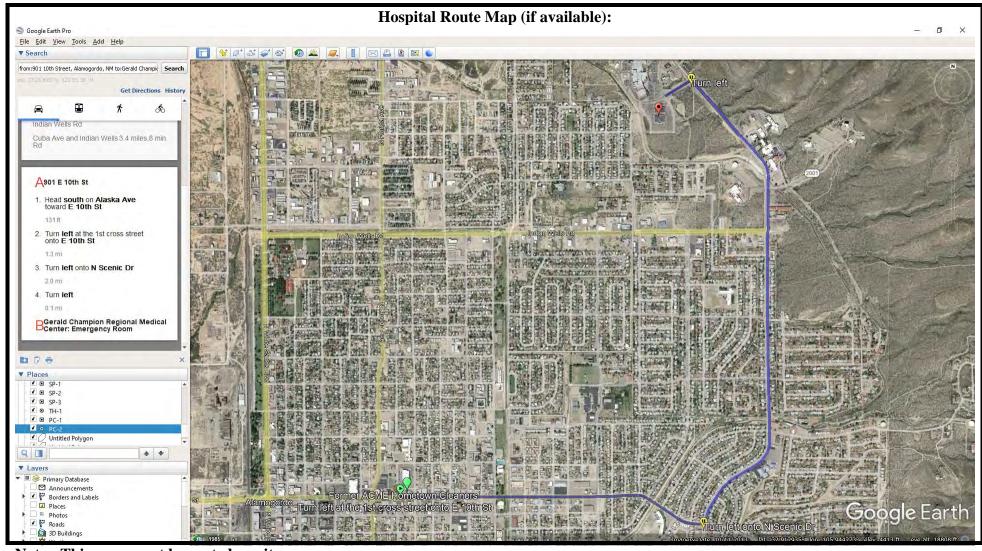
Field Activities Covered Under This Plan:							
				Level of P	rotection		
Task Description		Type	Priı	mary	Contin	ngency	Date of Activities
1 Groundwater monitoring and well installation			□ C	\boxtimes D	□ C	\Box D	2022-2024
		☐ Nonintrusive					
2 Soil vapor extraction			С	⊠ D	□ C	□ D	2022-2024
-		☐ Nonintrusive					
Site Personnel and Responsibilities (include subcontraction)	ctors):		•		•		
Employee Name and Office Code	Task			Respo	onsibilities		
David Werth Elliott Andelman	1	safety coordinat and maintains co Site Safety Coor	or (SSC) a ommunicat rdinator (S	ware of per tions with c SC): Ensur	tinent projection tinent as necestrate as that app	ect develor cessary. cropriate pe	ivities, makes site oments and plans, ersonal protective
Elliott Andelman	1	are or may be exand safety plan, conditions descriperesentative. Field Personnel:	ends invest aposed to a and report ribed in the Complete I SSC and	igative wor in immediat is any obser thealth and the tasks as diffollow all p	k if he or so the health haved deviation safety plans arected by to rocedures a	he believes zard, imploons from a to the hea he progran	s that site personnel ements the health inticipated alth and safety

Protective Equipment: (Indicate t	ype or material as necessary for each ta	sk; attach additional sheets as necessa	ry)
Task: \square 1	2	Task: 1	2
Level: \square C	D	Level: C	D
□ Primary	Contingency	☐ Primary	Contingency
RESPIRATORY	PROTECTIVE CLOTHING	RESPIRATORY	PROTECTIVE CLOTHING
Not needed	Not needed ■ Not needed Not needed Not needed Not needed	Not needed	☐ Not needed
☐ APR:	Tyvek® coveralls:	☐ APR:	Tyvek® coveralls:
Cartridge:	Saranex® coveralls:	Cartridge:	Saranex® coveralls:
Escape mask:	Coveralls:	Escape mask:	Coveralls:
Other:		Other:	Other:
HEAD AND EYE	GLOVES	HEAD AND EYE	GLOVES
Not needed	Not needed	Not needed	Not needed
Safety glasses:		Safety glasses:	Undergloves:
Face shield:		Face shield:	
Goggles:		Goggles:	
Hard hat:		Hard hat: If overhead hazard	
Other:		Other:	
FIRST AID EQUIPMENT	BOOTS	FIRST AID EQUIPMENT	BOOTS
Not needed	☐ Not needed	Not needed	☐ Not needed
Standard First Aid kit	Work boots: Steel Toed	Standard First Aid kit	Work boots:
Portable eyewash	Overboots:	Portable eyewash	Overboots:
OTHER		OTHER	
(specify):		specify):	
		(openi).	•
			·

Note: APR = Air purifying respirator

Monitoring Equipme	ent: (S ₁	pecify instruments needed for	each task; attach additional sheets as necessary)	
Instrument	Task	Instrument Reading	Action Guideline	Comments
Combustible gas indicator model:	□ 1	0 to 10% LEL	No explosion hazard	
	□ 2	10 to 25% LEL	Potential explosion hazard; notify SSC	1
		> 25% LEL	Explosion hazard; interrupt task; evacuate site, notify SSC	1
O2 meter model:	1	> 23.5% O2	Potential fire hazard; evacuate site	Not needed
	□ 2	23.5 to 19.5% O2	Oxygen level normal	
		< 19.5% O2	Oxygen deficiency; interrupt task; evacuate site; notify SSC]
Photoionization detector model:	⊠ 1	>0 to 5 ppm above background	Level D	☐ Not needed
☐ 11.7 eV ☑ 10.6 eV	□ 2	>5 to 50 ppm above background	Level C	
☐ 9.8 eV ☐ eV		>50 ppm above background	Evacuate site; notify SSC	
Flame ionization detector model:	<u> </u>	>0 to 5 ppm above background	Level D	
	□ 2	>5 to 50 ppm above background	Level C	1
		>50 ppm above background	Evacuate site; notify SSC	1
Detector tubes models:	1 2	Specify:	Specify:	Note: This action level for Not needed upgrading the level of protection is one-half of the contaminant's PEL. If the PEL is reached, evacuate the site and notify the SSC.
Respirable dust monitor model:		Specify:	Specify:	Not needed
Other: (specify):	☐ 1 ☐ 2	Specify:	Specify:	⊠ Not needed
Notes: eV = Electron vol	t P	FL = Permissible exposure limit	LEL = Lower explosive limit	$O_2 = Oxvgen$

Disclaimer: This Health and Safety Manual is the property of EA. Any reuse of the Manual without EA Engineering permission is at the sole risk of the user. The user will hold harmless EA for any damages that result from unauthorized reuse of this manual. Authorized users are responsible for obtaining proper training and qualification from their employer before performing operations described in this manual.


	Site Map (if available):
See Attachment	

Additional Comments:	Emergency Contacts:		Telephone
EA Engineering site workers will contain and absorb any chemicals used or transferred on site.	U.S. Coast Guard National Re InfoTrac Fire department Police department EA Engineering Personnel: Corporate Human Resource Corporate Health & Safety M Office Health & Safety Co Program Manager: Elliott Site Safety Coordinator: 1	Manager: Michele Bailey Manager: Rob Marcase oordinator:Teri McMillan t Andelman	800/424-8802 800/535-5053 911 911 410/584-7000 410/527-2412 505/259-6779 210/827-1221
Personnel Decontamination and Disposal Method:	Medical Emergency:		410/236-9628
Personnel will follow the U.S. Environmental Protection Agency's "Standard Operating Safety Guides" for decontamination procedures for Level D personal protection. The following decontamination stations should be set up in each decontamination zone:	-	rald Champion Regional Medical (69 N Scenic Dr, Alamogordo, NM	
All equipment will be decontaminated in a designated area All disposable equipment and gloves will be double-bagged or containerized in		nergency – 911 neral – (575) 439-6100	
an acceptable manner and disposed of in accordance with local regulations.	Ambulance Telephone: 911 Route to Hospital: (see next p		
	See attached directions next pa Approximate drive time on thi	age	

Note: This page must be posted on site.

Note: This page must be posted on site.

Date

APPROVAL AND SIGN-OFF FORM

e read, understood, and agree with the information s dinator as well as procedures and guidelines establi cal requirements for conducting field work and have	shed in the EA Engineering Health and Safety Man	
Name	Signature	Date
PROVALS: (Two Signatures Required)		
Site Safety	y Coordinator	Date

Health and Safety Coordinator

DEFINITIONS

Intrusive - Work involving excavation to any depth, drilling, opening of monitoring wells, most sampling, and Geoprobe® work

Nonintrusive - Generally refers to site walk-throughs or field reconnaissance

Levels of Protection

Level D - Hard hat, safety boots, and glasses, may include protective clothing such as gloves, boot covers, and Tyvek® or Saranex® coveralls

Level C - Hard hat, safety boots, glasses, and air purifying respirators with appropriate cartridges, **PLUS** protective clothing such as gloves, boot covers, and Tyvek® or Saranex® coveralls

Emergency Contacts

InfoTrac - For issues related to incidents involving the transportation of hazardous chemicals; this hotline provides accident assistance 24 hours per day, 7 days per week

U.S. Coast Guard National Response Center - For issues related to spill containment, cleanup, and damage assessment; this hotline will direct spill information to the appropriate state or region

Health and Safety Plan Short Form

- Used for field projects of limited duration and with relatively limited activities; may be filled in with handwritten text
- Limitations:
 - No Level B or A work
 - Limited number of tasks
 - No confined space entry
 - No unexploded ordnance work or radiation hazard

TC A	. D.,			Caiamaa	d	Taalama	1 ~ ~ ~ .	Lanc	DDC
\mathbf{L}^{P}	L	ıgını	ering,	Science,	and	1 ecimo	iogy,	mc.,	PDC

APPENDIX C FIELD FORMS

E	A				BOR	ING/WELL CONSTRUCTION LOG	
Projec	t:					Project Number:	
Drillin	g Comp					Start Time/Date:	
Drillin Driller	ıg Rig/E 	sit:				Completion Time/Date: Final Depth:	
	g/Well I	D:				Logged By: Page	of
			[V]			1-188-11-71	
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Linear Feet	Soil Description (soil type, color, density/consistency, plasticity, moisture, grain size, angularity/minerology, other)	Boring and/or Well Details
					1		
			ļ	 	2		
	ļ			ļ	3 4		
					5		
					6		
		 	ļ	!	7		
					8 9		
					10		
					11		
		 	ļ	 	12		
	ļ				13 14		
				ļ	15		
					16		
				 	17		
				 	18 19		
	 			ļ	20		
		,			21		
·········					22		
	ļ	 	ļ	 	23		
				 	24 25		
				\vdash	26		
					27		
		 		 	28		
		 	 	 	29		
				\vdash	30 31		
					32		
					33		
		 		 	34		
				\vdash	35 36		
				····	37		
					38		
					39		
					40		
			ļ	 	41 42		
				····	43		
					44		

	2				BOR	ING/WELL CONSTRUCTION LOG		
Project						Project Number:		
	g Comp	nanv.				Start Time/Date:	••••••	
	g Rig/E				· ••• •• •• •• •• ••	Completion Time/Date:		
Driller						Final Depth:		
	/Well I	D·				Logged By: Page	of	
Dornig	/ VV CII I	D.	2			Logged By. Tage	01	
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Linear Feet	Soil Description (soil type, color, density/consistency, plasticity, moisture, grain size, angularity/minerology, other)	Boring and/or Well Details	•
<u> </u>	-	U 1	1		46			
					47		1	
					48		1	
	 		 		49		1 1	
					50		1	
			 	 	51 52		1	
				 	52 53		1	
	[ļ	 	54		1	
					55		1 1	
	 				56		1 1	
	 		ļ	 	57		1	
	 		ļ	 	58 50		1	
				 	59 60		1	
					61		1	
				ļ	62		1	
					63		1 1	
	ļ 		 		64		1	
					65		1	
			 		66 67		1	
				 	68		1	
			ļ	 	69		1	
					70		1 1	
			[<u> </u>	71		1 1	
	 		ļ	 	72		1	
			ļ		73 74		1	
			ļ	 	74 75		1	
					76		1	
	[]		<u> </u>		77		1	
					78			
	ļ 		 		79		1	
					80		1	
		 	ļ	 	81 82		1	
				 	82 83		1	
				 	84		1	
					85]	
					86			
		 			87		$(\mid \mid$	
		 	ļ		88			
	 		ļ		89		1 1 1	

	A				BOR	ING/WELL CONSTRUCTION LOG		
Project	t:					Project Number:		
	g Comp	nanv.				Start Time/Date:		
	g Rig/E					Completion Time/Date:		
Driller						Final Depth:	***************************************	
	g/Well I	D·				Logged By: Page	of	
Dornig	/ W CII I	D.	2			Logged By.	01	
Sample Type	Recovery (inches)	Sample Interval	PID Reading (ppmv)	USCS Soil Type	Linear Feet	Soil Description (soil type, color, density/consistency, plasticity, moisture, grain size, angularity/minerology, other)	Boring and/or Well Details	r
9 2	<u> </u>	U 1			91			
				†	92		1	
	[]				93		1	
	[<u> </u>	[]	94		1	
				 	95		1	
					96 07		1	
					97 98		1	
					99		1	
					100		1	
					101		1	
	[[[]	102		1 1	
	 	 	 	 	103		1	
	 	 	ļ	 	104		1 1	
				\vdash	105 106		1	
	<u> </u>		ļ	 	106		1 1	
	l			†	108		1	
	[109		1	
					110		1	
				 	111		1	
	 			 	112		1	
	<u> </u>	 	ļ		113 114		1 1	
	<u> </u>		ļ	 	114		1 1	
					116		1	
	[<u></u>		117		1 1	
	[118		1	
	 			 	119		1	
	 		<u> </u>	\vdash	120		1	
	<u> </u>	 	ļ		121 122		1 1	
	<u> </u>		ļ	 	123		1	
				†	124		1	
					125		1 1	
					126		1	
	 			 	127		1	
	 			 	128		1 1	
					129 130		1	
					131		1	
		ļ		t	132		1 1	
					133		1 1	
					134		1	

EA Engineering, Science, and Technology, Inc., PBC 320 Gold Avenue SW, Suite 1300 Albuquerque, NM 87102 Phone: (505) 224-9013

MONITORING WELL SAMPLING FIELD FORM

		FLUI	D LEVEL DATA								
Well ID		_	Date gauged								
Site		_	Time gauged								
Depth to PSH	Feet	Well diameter	Inches	After Bailing NAPL							
Doparto For				Depth to PSH		Feet					
Depth to water	Feet	Height of fluid column	Feet	Depth to water	Feet						
Total depth	Feet	Volume in well	Gallons	NAPL thickness		Feet					
NAPL thickness	Feet			NAPL Recovered		Gallons					
		(3 well volume	s = gallons)								
GROUNDWATER SAMPLING DATA											
Time/date purged	purged Purge Method										
Time	Purge Volume (gal)	Temp (°C)	SpC (µs/cm)	рН	ORP (mV)	DO (mg/L)					
Actual purge volume _	gal.		Field measurements stabilized	within ± 10%?							
Time/date sampled		_	Purged/sampled by								
Sample method											
Requested analyses											
Comments/observation											
Comments/Observation											

	Personnel:				SVE O&M FIELD DATA COLLECTION FORM									
a:														
Time:	PID:	Flowrate (scfm):	Well Head Pressure (IWC):	Lab Sample Collected (Y/N):	Notes:									
E 1/4	1/2 3/4	F	Knock Out Drained (Y/N):											
			Time: PID: (scfm):	Time: PID: Flowrate (scfm): Pressure (IWC):	Time: PID: Pressure (scfm): Pressure (IWC): Collected (Y/N):									