GROUNDWATER MONITORING REPORT HALSELL'S GROCERY HATCH, NEW MEXICO

Prepared For:

New Mexico Environment Department Petroleum Storage Tank Bureau 2905 Rodeo Park Drive, Building 1 Santa Fe, New Mexico 87505 Attn: Mr. Chris Holmes

Facility:

Halsell's Grocery State Lead Site 112 School Street Hatch, New Mexico PSTB Facility #6053 Release ID #287

Submitted by:

P.O. Box 1667 12220 North Highway 14, Suite C Cedar Crest, NM 87008 Ph: 505-281-9333

Fax: 505-281-9338 License #92466

Deliverable ID #4076-1

October 23, 2019

STATEMENT OF FAMILIARITY

I, the undersigned, am personally familiar with the information submitted in this report and the attached documents and attest that it is true and complete.

Signature:	Marcel D. Consol
Name:	Micah Nauck
Affiliation:	Haller & Associates, Inc.
Title:	Project Manager / Geologist
Date:	October 23, 2019

I. INTRODUCTION

A. Scope of Work

This report presents the results of a quarterly groundwater monitoring event at the Halsell's Grocery State Lead Site in Hatch, New Mexico (Figure 1). Fieldwork was performed on September 5, 2019, pursuant to a workplan prepared by Haller & Associates, Inc. (HAI), dated October 26, 2018. The workplan was approved by the New Mexico Environment Department-Petroleum Storage Tank Bureau (NMED-PSTB) in a letter to HAI dated August 14, 2019; workplan ID #4076. Work is subject to the provisions of NMED Professional Services Contract #18-667-3200-0012.

Three monitor wells are located at the Halsell's Grocery Site (Figure 2). All 3 monitor wells were gauged and sampled on September 5, 2019. The groundwater samples were analyzed for volatile organic compounds (VOCs) using EPA Method 8260B, ethylene dibromide (EDB) using EPA Method 504.1, dissolved iron and dissolved manganese using EPA Method 6010B, total dissolved solids (TDS) using EPA Method 2540C and chemical oxygen demand (COD) using EPA Method 410.4. Sampling protocols are presented in Appendix A.

B. Executive Summary

The shallow groundwater flow direction is to the south-southeast at a gradient of 0.0006 foot per foot (ft/ft), consistent with historic conditions (Figure 3 and Appendix B). Groundwater elevations have decreased an average of 0.13 feet since the previous groundwater monitoring event in July 2017. Groundwater elevation data are summarized in Table 1.

Dissolved benzene concentrations exceeded the New Mexico Water Quality Control Commission (NMWQCC) standard of 5 micrograms per liter (μ g/L) at monitor wells MW-1 and MW-2. Total naphthalenes exceeded the NMWQCC standard of 30 μ g/L at monitor well MW-1. All other VOCs were below their respective standards. Dissolved petroleum contaminants have not exceeded standards in monitor well MW-3 since it was first sampled in June 1992. Dissolved organics analytical data are summarized in Table 2.

Dissolved iron concentrations exceeded the NMWQCC standard of 1.0 milligram per liter (mg/L) in monitor well MW-2.

Dissolved manganese concentrations exceeded the NMWQCC standard of 0.2 mg/L in all three monitor wells.

Groundwater analytical data are summarized in Tables 2 and 3. The most recent analytical data are presented on Figures 4 and 5. The laboratory report is presented in Appendix D.

II. ACTIVITIES PERFORMED DURING THIS QUARTER

A. Site Background

The Halsell's Grocery site is located at 112 School Road, Hatch, New Mexico. Halsell's Grocery is no longer an active gasoline station. The site contains one building that is currently unoccupied. In March 1991, the New Mexico Department of Transportation encountered underground storage tanks (USTs) during a road improvement project. Petroleum contamination was confirmed at the site in September 1991. In May 1992, three on-site monitoring wells were installed (MW-1, MW-2 and MW-3). Historical groundwater monitoring data indicate that dissolved contaminant concentrations have been decreasing over time, primarily dissolved benzene and total naphthalenes.

B. Monitoring Activities Performed

All 3 monitor wells were gauged and sampled on September 5, 2019. Total depths of the monitor wells were observed to be 1.23 feet to 3.55 feet shallower than indicated by the well completion logs. All 3 monitor wells were redeveloped using a submersible pump and new polyethylene tubing to remove the accumulated sediment, and to reduce turbidity. Redevelopment was performed until all sand and mud was removed from the bottoms of the wells and clear water was observed.

At least 10 well volumes were purged from each well prior to sample collection. Purge water was discharged on asphalt pavement at MW-1 and MW-3 and on gravel landscaping at MW-2. Field parameters of pH, specific conductivity, temperature, dissolved oxygen and oxidation-reduction potential were recorded during purging. Monitor well sampling data forms are presented in Appendix B.

The samples were labeled and placed in a cooler with ice and a laboratory-prepared trip blank. The samples were delivered to Hall Environmental Analysis Laboratory, Inc. with complete chain-of-custody records. The samples and the trip blank were analyzed for volatile organic compounds (VOCs) + total naphthalenes using EPA Method 8260B; ethylene dibromide (EDB) using EPA Method 504.1; dissolved iron and dissolved manganese using EPA Method 6010C and chemical oxygen demand (COD) using EPA Method 410.4. Sampling protocols are presented in Appendix A. The laboratory report is presented in Appendix D.

C. Containment of Release

Dissolved petroleum contaminant concentrations exceeded standards for benzene in monitor wells MW-1 (7.0 μ g/L) and MW-2 (9.4 μ g/L), and for total naphthalenes in monitor well MW-1 (54 μ g/L). Monitor well MW-3 did not contain dissolved petroleum concentrations above standards or laboratory detection limits.

Dissolved iron concentrations exceeded the NMWQCC standard of 1.0 milligrams per liter (mg/L) in monitor well MW-2 (2.1 mg/L). Monitor wells MW-1 and MW-3 contained dissolved iron concentrations below the standard (0.36 mg/L and 0.37 mg/L, respectively).

Dissolved manganese concentrations exceeded the NMWQCC standard of 0.2 mg/L in all three monitor wells: MW-1 (0.45 mg/L), MW-2 (1.2 mg/L) and MW-3 (0.97 mg/L).

Actionable dissolved benzene appears to be largely contained on-site; however, low-level benzene may extend a limited distance south to Hall Street.

Groundwater analytical data are summarized on Figures 4 and 5.

D. Workplan Deviation

The workplan specified low-flow groundwater sampling with a peristaltic pump to obtain samples with low turbidity. However, turbidity was visually observed and gauging data indicated sediment accumulation in all 3 monitor wells. Therefore, HAI redeveloped all 3 monitor wells using a submersible pump and disposable polyethylene tubing. The pump was decontaminated with Alconox solution between wells and the tubing was replaced between wells. Upon completion of redevelopment, all 3 wells produced clear purge water and contained no settled sediment. Low-flow methods will be utilized in the next monitoring event, given the successful redevelopment and improved water clarity that was achieved during this event.

III. SUMMARY AND CONCLUSIONS

A. Discussion of Trends or Changes

Groundwater elevations have decreased an average of 0.13 feet since July 2017. Shallow groundwater flow direction and gradient are to the south-southeast at 0.0006 ft/ft. Groundwater elevations, flow direction and gradient are generally consistent with previously observed conditions.

MW-1: Dissolved benzene declined from 36 μ g/L in July 2017 to 7.0 μ g/L during this event, remaining slightly above the standard of 5 μ g/L. Dissolved total naphthalenes declined from 669 μ g/L in July 2017 to 54 μ g/L during this event, remaining above the standard of 30 μ g/L. Ethylbenzene was detected at 300 μ g/L, remaining remain below the standard of 700 μ g/L since February 1998. Total xylenes were detected at 14 μ g/L, not having exceeded the standard of 620 μ g/L since initial sampling in June 1992.

MW-1 contained a TDS concentration of 1,290 mg/L and a COD concentration of 14.3 mg/L.

MW-2: Dissolved benzene increased from <1.0 μ g/L in January 2017 to 9.4 μ g/L during this event, slightly exceeding the standard of 5 μ g/L. All other dissolved petroleum contaminants remain below standards and/or laboratory detection limits.

MW-2 contained a TDS concentration of 1,290 mg/L. COD was not detected (<10.0 mg/L).

MW-3: All dissolved petroleum contaminants of concern continue to remain below standards and laboratory detection limits.

MW-3 contained a TDS concentration of 1,360 mg/L and a COD concentration of 15.4 mg/L.

B. Conclusions and Recommendations

HAI recommends continued groundwater monitoring in accordance with Workplan ID #4076. The next quarterly groundwater monitoring event will be performed in early December 2019. Low-flow methods will be utilized in accordance with the workplan, given the successful redevelopment of all 3 wells on September 5, 2019.

TABLES

- 1. Groundwater Elevation Data
- 2. Groundwater Volatile Organic Analytical Data
- 3. Groundwater Inorganic Analytical Data
- 4. Groundwater Field Parameter Data

FIGURES

- 1. Site Location Map
- 2. Site Map
- 3. Water Table Map
- 4. Groundwater Organic Analytical Results
- 5. Groundwater Inorganic Analytical Results
- 6. Dissolved Oxygen & ORP

APPENDICES

- A. Groundwater Sampling Protocol
- B. Hydraulic Gradient Calculation
- C. Well Sampling Field Data Forms
- D. Laboratory Report

Table 1. Groundwater Elevation Data Halsells Grocery, Hatch, New Mexico

Well ID	Date	Top of Casing	Depth to	NAPL	Depth to	Groundwater
	Date	Elevation (ft MSL)	NAPL (ft)	Thickness (ft)	Water (ft)	Elevation (ft MSL)
	05/04/00				6.64	4,048.34
	07/26/00				5.11	4,049.87
	03/14/01				7.41	4,047.57
	06/14/01				6.06	4,048.92
	09/12/01				6.03	4,048.95
	05/15/02				7.17	4,047.81
	08/15/02				6.73	4,048.25
	11/26/02				7.44	4,047.54
	02/19/03				8.09	4,046.89
	09/12/06				5.81	4,049.17
MW-1	06/02/09	4,054.98			7.94	4,047.04
	11/22/11		13.19	0.02	13.21	4,041.79
	05/31/12		12.70	1.50	14.20	4,041.91
	06/19/12		12.41	0.88	13.29	4,042.35
	01/08/15		13.51	1.27	14.78	4,041.15
	04/28/15		14.59	1.69	16.28	4,039.97
	07/29/15		13.34	0.08	13.42	4,041.62
	10/14/15			Sheen	13.04	4,041.94
	01/18/17			Sheen	11.47	4,043.51
	07/05/17			Sheen	10.27	4,044.71
	09/05/19				10.40	4,044.58
	05/04/00				6.26	4,048.28
	07/26/00				1.70	4,052.84
	03/14/01				7.04	4,047.50
MW-2	06/14/01				5.62	4,048.92
	09/12/01				5.64	4,048.90
	05/15/02				6.76	4,047.78
	08/15/02				5.70	4,048.84
	02/19/03				7.72	4,046.82
	09/12/06				5.46	4,049.08
NAVA / O	06/02/09	4.054.54			7.58	4,046.96
IVIVV-Z	11/22/11	4,054.54			12.15	4,042.39
	05/31/12				12.72	4,041.82
	06/19/12				12.30	4,042.24
	01/08/15				13.89	4,040.65
	04/28/15				14.73	4,039.81
	07/29/15				13.07	4,041.47
	10/14/15				12.75	4,041.79
	01/18/17				11.13	4,043.41
	07/05/17				9.89	4,044.65
	09/05/19				10.02	4,044.52

⁻⁻⁻ not measured

MSL mean sea level NAPL non-aqueous phase liquid

ft feet

Table 1. Groundwater Elevation Data Halsells Grocery, Hatch, New Mexico

Well ID	Data	Top of Casing	Depth to	NAPL	Depth to	Groundwater
Well ID	Date	Elevation (ft MSL)	NAPL (ft)	Thickness (ft)	Water (ft)	Elevation (ft MSL)
	05/04/00				6.48	4,048.37
	07/26/00				4.92	4,049.93
	03/14/01				7.31	4,047.54
	06/14/01				5.90	4,048.95
	09/12/01				5.91	4,048.94
	05/15/02				7.06	4,047.79
	08/15/02	4,054.85			6.58	4,048.27
	02/19/03				7.94	4,046.91
	09/12/06				5.64	4,049.21
MW-3	06/02/09				7.71	4,047.14
10100-3	11/22/11	4,004.00			12.28	4,042.57
	05/31/12				12.83	4,042.02
	06/19/12				12.39	4,042.46
	01/08/15				14.02	4,040.83
	04/28/15				14.80	4,040.05
	07/29/15				13.19	4,041.66
	10/14/15				12.83	4,042.02
	01/18/17				11.30	4,043.55
	07/05/17				10.06	4,044.79
	9/5/2019				10.19	4,044.66

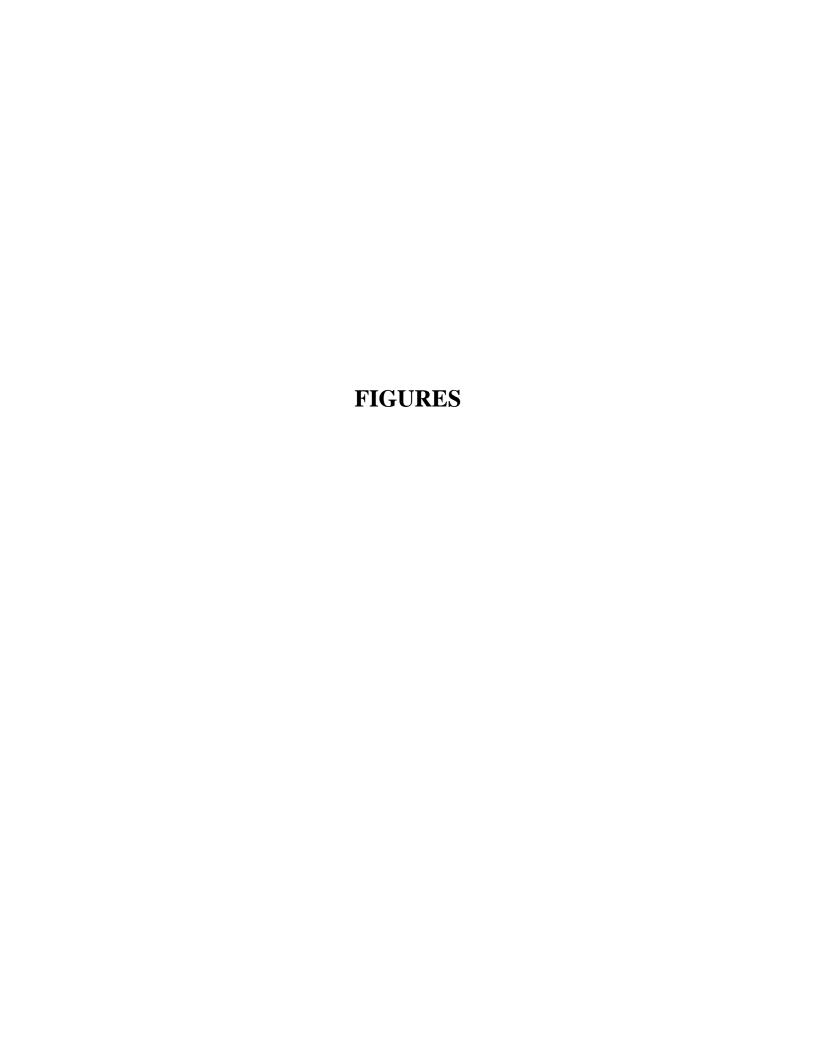
Table 2. Groundwater Volatile Organic Analytical Data Halsells Grocery, Hatch, New Mexico

Well ID	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)	EDB (µg/L)	Total Naphthalenes (µg/L)			
Now Movie	o Water Quality	(F9, =)	(F9, =)	(#9, =)	(#9, =)	(#9,=/	(#9,=)	\r-9'-/			
Control (Commission andard	5	1,000	700	620	100	0.05	30			
	06/03/92	863	4426	1165	<0.2						
	02/02/98	84	15	290	98	<25					
	01/26/00	<5.0	<5.0	170	15	<5.0	<5.0	14			
	05/02/00	7.4	2.1	130	20	<2.5					
	07/27/00	13	2.3	120	19	7.8	<2.0				
	03/14/01	23	<5.0	180	44	<25	<10				
	06/15/01	8.1	1.4	67	13	<2.5	<1.0				
	09/12/01	14	2.5	150	33	<2.5	<1.0				
	05/15/02	22	<1.0	4.1	<4.5	<1.0	<1.0	<3.0			
	08/15/02	20	<5.0	110	16	<25					
MW-1	11/26/02	3.8	2.0	88	16	<2.5					
10100-1	02/19/03	7.1	7.5	110	26	<25					
	09/12/06	81	<10	220	130	<15	<10	78			
ľ	11/22/11				oled due to the Pr						
	06/19/12	Not Sampled due to the Presence of NAPL									
	01/08/15	Not Sampled due to the Presence of NAPL									
	04/28/15				oled due to the Pre						
-	07/29/15				oled due to the Pre						
	10/14/15				oled due to the Pr						
	01/18/17				oled due to the Pre	esence of	NAPL				
	07/05/17	36	<5.0	470	99	<5.0	<0.0092	669			
	09/05/19	7.0	<5.0	300	14	<5.0	<0.0094	54			
	06/03/92	5.5	26	6.1	27						
	02/02/98	<0.5	<0.5	2.1	0.6	<2.5					
	06/03/92	0.1	1.6	0.5	2.0		<0.1				
	01/26/00	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0			
	05/02/00	<0.5	<0.5	<0.5	<0.5	<2.5					
	07/27/00	<0.5	<0.5	<0.5	<0.5	<2.5	<1.0				
	03/14/01	<0.5	<0.5	<0.5	<0.5	<2.5	<1.0				
	06/15/01	<0.5	<0.5	2.2	1.0	<2.5	<1.0				
	09/12/01	0.6	<0.5	<0.5	1.3	<2.5	<1.0				
	05/15/02	1.1	<0.5	8.3	3.6	<2.5					
MW-2	08/15/02	3.4	<2.5	<2.5	<5.0	<13					
	02/19/03	<0.5	<0.5	<0.5	<1.0	<2.5					
	09/12/06	90	<1.0	5.0	<3.0	<1.5	<1.0	3.9			
	11/22/11	1.3	<1.0	1.1	<1.5	<1.0	<1.0	<2.0			
	06/19/12	5.6	<1.0	<1.0	<1.5	<1.0	<1.0	<2.0			
	01/08/15	<1.0	<1.0	<1.0	<1.5	<1.0	<0.010	<2.0			
	04/28/15	<2.0	<2.0	<2.0	<3.0	<2.0	<0.010	<4.0			
	07/29/15	<1.0	<1.0	<1.0	<1.5	<1.0	<0.010	<2.0			
	10/14/15	<1.0	<1.0	<1.0	<1.5	<1.0	<0.010	<2.0			
	01/18/17	<1.0	<1.0	<1.0	<1.5	<1.0	<0.010	<2.0			
	07/05/17	0.4	1 440	1.0	Well Not Samp		-0.0004	40			
	09/05/19	9.4	<1.0	1.0	<1.5	<1.0	<0.0094	13			

not analyzed
 EDB ethylene dibromide
 MTBE methyl tert-butyl-ether
 ug/L micrograms per liter
 Bolded values exceed NMWQCC Standard

Table 2. Groundwater Volatile Organic Analytical Data Halsells Grocery, Hatch, New Mexico

Well ID	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)	EDB (µg/L)	Total Naphthalenes (µg/L)
Control	o Water Quality Commission andard	5	1,000	700	620	100	0.05	30
	06/03/92	0.1	1.6	0.5	2.0		<0.1	
	02/02/98	<0.5	<0.5	<0.5	<0.5	<2.5		
	01/26/00	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0
	05/02/00	<0.5	<0.5	<0.5	<0.5	<2.5		
	07/27/00	<0.5	<0.5	<0.5	<0.5	<2.5	<1.0	
	03/14/01	<0.5	<0.5	<0.5	<0.5	<2.5	<1.0	
	06/15/01	<0.5	<0.5	<0.5	<0.5	<2.5	<1.0	
	09/12/01	<0.5	<0.5	<0.5	<0.5	<2.5	<1.0	
	05/15/02	<0.5	<0.5	<0.5	<1.0	<2.5		
	08/15/02	<0.5	<0.5	<0.5	<1.0	<2.5		
MW-3	02/19/03	<0.5	<0.5	<0.5	<1.0	<2.5		
	09/12/06	<1.0	<1.0	<1.0	<3.0	<1.5	<1.0	<2.0
	11/22/11	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<2.0
	06/19/12	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<2.0
	01/08/15	<1.0	<1.0	<1.0	<1.5	<1.0	<0.010	<2.0
	04/28/15				Well Not Samp	oled		
	07/29/15				Well Not Samp	oled		
	10/14/15 Well Not Sampled							
	01/18/17				Well Not Samp	oled		
	07/05/17				Well Not Samp	oled		
	9/5/2019	<1.0	<1.0	<1.0	<1.5	<1.0	<0.0095	<4.0

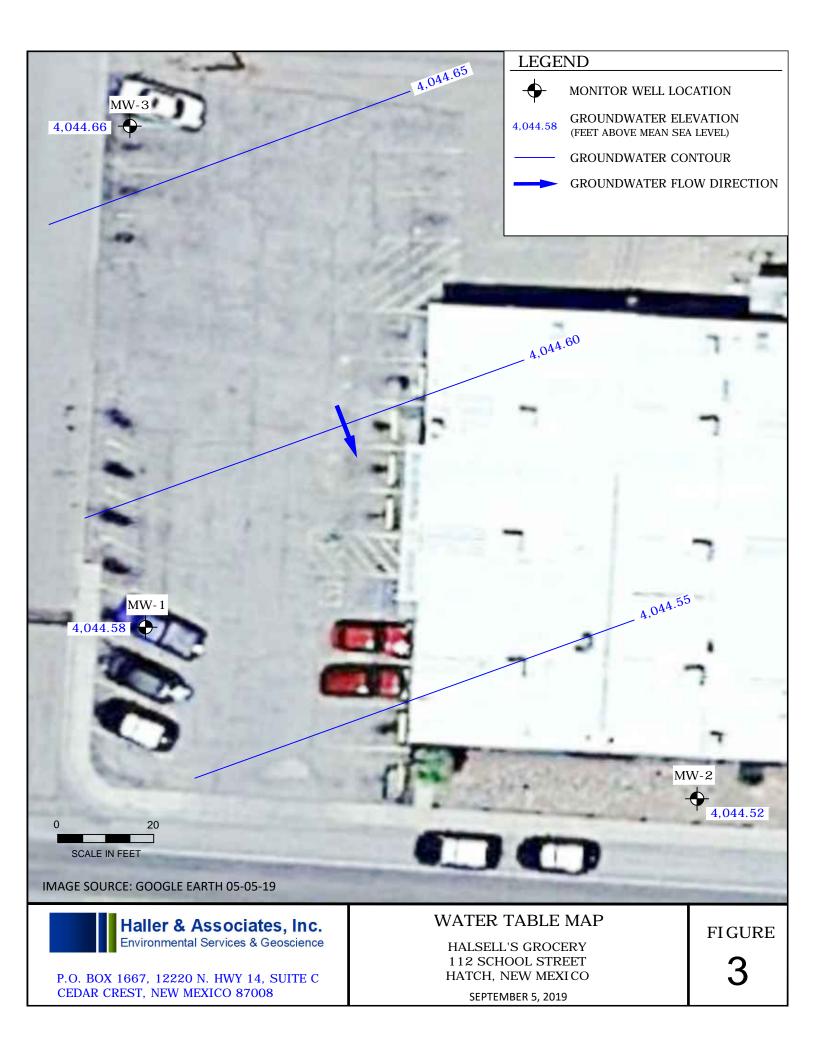

Table 3. Groundwater Inorganic Analytical Data Halsells Grocery, Hatch, New Mexico

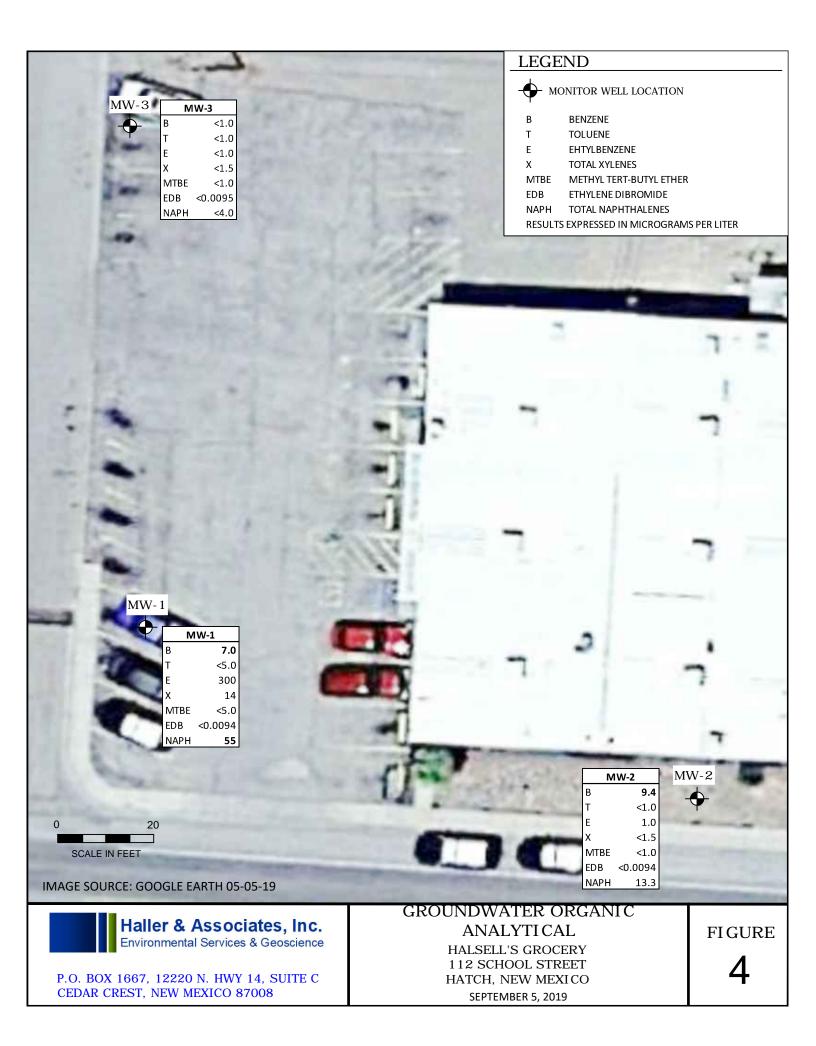
Well ID	Date	Dissolved Dissolved Total Dissolved Iron Manganese Solids		Chemical Oxygen Demand	
New Mexico Water Quality Control Commission Standard		1.0	0.2	NA	NA
MW-1	09/05/19	0.36	0.45	1,290	14.3
MW-2	09/05/19	2.1	1.2	1,290	<10.0
MW-3	09/05/19	0.37	0.97	1,360	15.4

Table 4. Groundwater Field Parameter Data Halsells Grocery, Hatch, New Mexico

Well ID	Date	рН	Specific Conductance (uS/cm)	Temperature (°C)	ORP (mv)	Dissolved Oxygen (mg/L)					
	11/22/11	Not measured due to the presence of NAPL									
	06/19/12		Not measured due to the presence of NAPL								
	01/08/15		Not measured	due to the prese	nce of NAPL						
MW-1	04/28/15		Not measured	due to the prese	nce of NAPL						
IVI VV - I	07/29/15		Not measured	due to the prese	nce of NAPL						
	10/14/15		Not measured	due to the prese	nce of NAPL						
	07/05/17	7.46	1,747	22.6		NM					
	09/05/19	7.31	1,961	23.7	-194.9	2.73					
	11/22/11	7.20	1,435	23.9		1.50					
	06/19/12	7.29	1,560	23.5		NM					
	01/08/15	7.25	1,631	22.0		1.06					
	04/28/15	7.59	1,698 21.6			1.55					
MW-2	07/29/15	7.31	717	22.5		1.17					
	10/14/15	7.37	1,628	24.3		1.85					
	01/18/17	7.17	1,837	21.4		1.52					
	07/05/17	Well Not Sampled									
	09/05/19	7.18	1,945	23.9	-104.4	2.84					
	11/22/11	7.25	1,485	22.8		1.64					
	06/19/12	7.22	1,584	22.4		NM					
	01/08/15	7.11	1,682	21.0		3.87					
	04/28/15		W	ell Not Sampled							
MW-3	07/29/15		W	ell Not Sampled							
	10/14/15		W	ell Not Sampled							
	01/18/17		W	ell Not Sampled							
	07/05/17		W	ell Not Sampled							
	09/05/19	7.11	1,994	23.5	-34.6	3.36					

not collected




Haller & Associates, Inc. Environmental Services & Geoscience

P.O. BOX 1667, 12220 N. HWY 14, SUITE C CEDAR CREST, NEW MEXICO 87008

HALSELL'S GROCERY 112 SCHOOL STREET HATCH, NEW MEXICO

APPENDIX A GROUNDWATER SAMPLING PROTOCOLS

October 26, 2018

Mr. Christopher Holmes New Mexico Environment Department Petroleum Storage Tank Bureau 2905 Rodeo Park Drive, Building #1 Santa Fe, NM 87505

RE: Quarterly Groundwater Monitoring Workplan

Halsell's Grocery, 112 School Street, Hatch, New Mexico

Facility ID #6053 Release ID #287

Dear Mr. Holmes:

Haller & Associates, Inc. (HAI) is pleased to submit the enclosed workplan for one year of quarterly groundwater monitoring at the Halsell's Grocery state lead site in Hatch, New Mexico. Work will be subject to the conditions of Professional Services Contract #18-667-3200-0012.

The scope of work presented in this workplan is based on guidance received via email from the New Mexico Environment Department - Petroleum Storage Tank Bureau (NMED-PSTB) on October 18, 2018. The purpose of this groundwater monitoring workplan is to evaluate and prepare for chemical injection to remediate the site with the goal of moving the site to "No Further Action Status." This scope of work consists of quarterly monitoring of all three on-site monitor wells.

If you have questions or workplan modifications, please call me at (505) 281-9333.

Sincerely,

HALLER & ASSOCIATES, INC.

Micah D. Nauck

Project Manager / Geologist

Enclosure: Halsell's Grocery Quarterly GM Workplan

QUARTERLY GROUNDWATER MONITORING WORKPLAN HALSELL'S GROCERY 112 SCHOOL STREET HATCH, NEW MEXICO

1.0 OVERVIEW

The scope of this workplan consists of four quarters of groundwater monitoring and associated reports. All 3 onsite monitor wells will be gauged and sampled each quarter. Field and laboratory data will be presented in quarterly groundwater monitoring reports. A certified professional geologist will have direct supervisory control over all fieldwork and report preparation.

Groundwater samples will be collected each quarter from the following monitor wells: MW-1, MW-1 and MW-3. The quarterly monitoring regimen is summarized in Table 1.

2.0 GROUNDWATER MONITORING

2.1 Static Water Levels

Prior to sampling, all 3 monitor wells (MW-1, MW-2 and MW-3) will be opened and allowed to barometrically equilibrate for several minutes before gauging. Static water levels will then be gauged in all 3 monitor wells. The wells will be gauged in order of increasing contaminant concentrations, based on historic data. Static water levels and total depths will be measured to the nearest 0.01 foot using an electronic interface probe. The probe will be decontaminated prior to use and between wells using an Alconox detergent solution and clean tap water rinse.

2.2 Monitor Well Sampling

Each monitor well will be sampled using the low-flow method to minimize sample turbidity. Low-flow sampling will be conducted using a peristaltic pump and new tubing for each well. Polyethylene tubing will be used in the well which will be attached to silicone tubing at the pump-head on the surface. Purge water will be observed for the presence of petroleum sheen and/or odor. Field measurements of pH, specific conductivity, temperature, dissolved oxygen (DO) and oxidation-reduction potential (ORP) will be collected through a flow-cell and recorded during purging. Purge water will be ground-discharged in close proximity to each well. Field data will be recorded on monitor well field sampling forms and presented in each quarterly groundwater monitoring report.

STANDARD OPERATING PROCEDURE MONITOR WELL SAMPLING

PURPOSE

To purge stagnant water from the monitoring well and obtain representative samples of the formation groundwater.

PROCEDURE

- Remove well cap and allow water level to barometrically equilibrate for approximately 5 minutes. Note any damage to well or repairs needed on field log.
- Measure and record static depth to water and total depth using an incremented electronic water level indicator. Measurements must be made relative to established reference point on top of casing.
- Calculate height of water column in well by subtracting depth to water from total depth. Calculate volume of water in a 2-inch well by multiplying height of water column by 0.17 gallon per foot. Calculate volume of water in a 4-inch well by multiplying height of water column by 0.66 gallon per foot.
- Using a new disposable bailer, purge a minimum of 3 to 5 well volumes depending on workplan requirements. Purging should not be considered complete until minimal turbidity is observed and field measurements of specific conductivity, temperature, pH, dissolved oxygen and oxidation-reaction potential have stabilized to within ±10 percent over two successive well volumes.
- Discharge purge water on-site or containerize in accordance with workplan requirements. Record purge volume calculations, field parameter measurements, and actual purged volumes on the well sampling field form.
- Decant water samples from the bailer at a slow, nonturbulent rate into clean containers provided by the laboratory with pre-measured preservatives. Samples for volatile organic analyses will be decanted into 40-milliliter vials with no headspace or bubbles.
- Label all sample containers with respect to sample identifications (i.e., time, date, location, well, sampler initials, preservative and requested analyses).
- Immediately place all labeled sample containers in a cooler with ice or blue ice to preserve at 4 degrees Centigrade until delivered to analytical laboratory. Ensure samples are accompanied by completed chain-of-custody documentation.

Note: Refer to New Mexico Environment Department-Petroleum Storage Tank Bureau "Guidelines for Corrective Action" when sampling at LPST sites.

APPENDIX B HYDRAULIC GRADIENT CALCULATION

HYDRAULIC GRADIENT CALCULATION

Halsell's Grocery Hatch, New Mexico

Hydraulic Gradient – September 5, 2019:

 $\frac{4,044.66 - 4,044.55}{175 \text{ ft}} = \frac{0.11 \text{ ft}}{175 \text{ ft}} = 0.0006 \text{ ft/ft to the south-southeast}$

MW-3 groundwater elevation: 4,044.66 feet above Mean Sea Level MW-2 groundwater elevation: 4,044.52 feet above Mean Sea Level

Distance from MW-3 to MW-2: 175 feet

APPENDIX C WELL SAMPLING FIELD DATA FORMS

Well ID	MW-1		Date Gauged	9/5/201	19
Site	Halsell's Grocer	y	Time Gauged	1257	7
Depth to NAPL Depth to water Total Depth	18.61	ft. ft. ft.	Well diameter Height of fluid column Volume in well		A in gal
	(Minimum 3 v	vell volumes =	4. 2 gallons)		
Time/date purged _	1420 Y5/1		R SAMPLING DATA	Sub pun New PE Bailer	1P
Temp. <u>23.83</u>	Cond. <u>R64</u>	pH 7.46	·_	DO <u>3.28</u>	Gal <u> </u>
Temp. <u>23.89</u>	Cond. <u>/885</u>	рН <u> 2.42</u>		DO 3.08	Gal <u>5.0</u>
Temp. <u>23.79</u>	Cond. <u>1930</u>	pH 7.35	ORP <u>-179.7</u>	DO <u>2.86</u>	Gal <u>7, 5</u>
Temp. <u>23.76</u>	Cond. <u>/952</u>	рН <u> 2.33</u>	ORP <u>-/85./</u>	DO 2.92	Gal <u>/ 0. </u>
Temp. <u>23,7</u> 4	Cond. <u>/96/</u>	pH 2.3/	ORP-194.9	DO 2. 73	Gal <u>/2.5</u>
Temp	Cond	pH	ORP	DO	Gal
Temp	Cond	рН	ORP	DO	Gal
Temp	Cond	pH	ORP	DO	Gal
Actual purged volun	ne /5.0	gal	Measurements stabilize	d within ±1C%?	<u>195</u>
Time/date sampled_	1448	9/5/2019	Purged/Sampled by	Mican Na	uck
Sample method _	· · · · · · · · · · · · · · · · · · ·	Gı	from end or rab, decent from bailer	Frew PS	this
Requested analyses	8260B	(VOCs), 504.1 (EDB), 6010 (Dis Mn &	& Fe), 2540 (TDS)	, 410 COD
Comments/observat	tions <u>- Botto</u>	om of	uell soft	+ mide	17
-700	fier purs	ins: 19	.84 (Hard	bottom), re	emoved
1.23° of	sand.			, /	
- Samp	le clear		ons orsa	nicodot	
2" Casing = 0.17 gal/ft	4" Casina	Common Well (= 0.66 gal/ft	Casing Volume Data 6" Casing = 1.50 gal/ft	8" Casino	ı = 2.63 gal/ft

2" Casing = 0.17 gal/ft

•	MONITO	OR WELL SAI	MPLING FIELD FOR	RM		
Well ID	MW-2		Date Gauged	9/5/20	19	_
Site	Halsell's Grocery		Time Gauged	12.5	<u> </u>	-
Depth to NAPL Depth to water Total Depth	10.02	ft. ft. ft.	Well diameter Height of fluid column Volume in well	2 8.2 1.4	in fl ga	- <u>t</u> .
	(Minimum 3 v	vell volumes =	<u>4. Q</u> gallons)			- .
Time/date purged _	GI 1346 9/5	10	SAMPLING DATA rge method	Sub Pur	20	- -
Temp. 23.99 Temp. 23.95 Temp. 23.95 Temp. 23.94 Temp. Temp. Temp. Temp. Temp. Actual purged volume	Cond. 1973 Cond. 1958 Cond. 1947 Cond. 1944 Cond. 1945 Cond. Cond. Cond. Cond.	pH 7.38 pH 7.35 pH 7.24 pH 7.18 pH 7.18 pH pH pH	ORP	DO 4.27 DO 3.96 DO 3.37 DO Q.91 DO Q.84 DO DO DO DO DO	Gal 3.00 Gal 4.50 Gal 7.5 Gal 7.5 Gal Gal Gal Gal Gal Gal Gal	25 10.0
Time/date sampled	14/1	9/ § /2019	Purged/Sampled by	Micah Na	nuck	-
Sample method _ Requested analyses _	8260B (decant from bailer fixe		U	-
Comments/observations Remove 2 Sample	B -Botton B of sano	n of war	ell soft7 well	Dafter	puge:20	<u>20</u> 5 -
		Common Well Ca	asing Volume Data			-

6" Casing = 1.50 gal/ft

4" Casing = 0.66 gal/ft

8" Casing = 2.63 gal/ft

2" Casing = 0.17 gal/ft

	MONIT	OR WELL SA	MPLING FIELD FO	RM	
Well ID	MW-3		Date Gauged	9/5/20	19
Site	Halsell's Grocery	· · · · · · · · · · · · · · · · · · ·	Time Gauged	1250	
Depth to NAPL Depth to water Total Depth	10.19 16.38	ft. ft. ft.	Well diameter Height of fluid column Volume in well	2 6.1 1.0	in ft gal
	(Minimum 3 v	well volumes =	3.0 gallons)		
Time/date purged	1303 9/5	10	R SAMPLING DATA	Sub. Pum New PE Bailer	P
Temp. 23-75 Temp. 23.73 Temp. 23.63	Cond. 1880 Cond. 1735	pH 6.91 pH 6.95	ORP -10.4 ORP -32.0 ORP -32.2	DO <u>4.03</u>	Gal 2.5.0
Temp. 23.56 Temp. 23.53	Cond. <u>1896</u>	рн 7.16 рн 7.09 рн 7.11		00 3.96 00 3.42 00 3.36	Gal 10.0 Gal 512-5
Temp.	Cond	pH	ORP	DO	Gal
Temp	Cond	pH pH		DO	Gal
Actual purged volume		gal	Measurements stabilized	within ±10%?	<u>4e5</u>
Time/date sampled	/330	9/5/2019	Purged/Sampled by	Micah Na	uck
Sample method	www.	Grak	, decant from ba iler <i>G</i> Y	ab, from A	but tibing
Requested analyses	8260B ((VOCs), 504.1 ((EDB), 6010 (Dis. M n &	Fe), 2540 (TDS),	410 (COD)
Comments/observation	ns - Botton	nosa	sell soft	- TD after	PUGE: 19.93
-Sampl	e char,	no od	9V		
		Common Well C	asing Volume Data		

6" Casing = 1.50 gal/ft

8" Casing = 2.63 gal/ft

4" Casing = 0.66 gal/ft

APPENDIX D LABORATORY REPORT

STANDARD OPERATING PROCEDURE MONITOR WELL GAUGING

PURPOSE

To obtain accurate measurements of depth to groundwater and depth to phase-separated hydrocarbon in a monitoring well, water well, recovery well or piezometer.

PROCEDURE

- Remove well cap and allow water level to barometrically equilibrate for approximately 5 minutes. Note any damage to well or repairs needed on field log.
- Identify measuring point on casing either visually or by review of well construction logs, survey data or other documentation. If the measuring point is not marked or indicated on well construction log, use the north side of the top of the well casing as the assumed measuring point.
- If non-aqueous phase liquid (NAPL) is known or suspected to be present, measurements are to be performed using an incremented electronic hydrocarbon interface probe. Measure and record the static depth to NAPL to the nearest 0.01 foot relative to the top of casing reference point.
- Measure and record the static depth to water to the nearest 0.01 foot relative to the top of casing reference point. If NAPL is previously known to be absent at the site, measurements can be performed using an incremented electronic water level indicator.
- If NAPL is not present, calculate the groundwater elevation by subtracting the depth to water measurement from the top of casing reference point elevation.
- If NAPL is present, calculate the apparent thickness by subtracting the depth to NAPL measurement from the depth to water measurement. Calculate the correction factor by multiplying the apparent thickness by the specific gravity of the NAPL.
- Subtract the correction factor from the depth to water measurement to obtain the corrected depth to water. The NAPL-corrected groundwater elevation is then obtained by subtracting the corrected depth to water from the top of casing reference point elevation.
- Decontaminate water level indicator or hydrocarbon interface probe prior to proceeding to the next well.

Note: Gauge monitor wells in order of increasing contaminant concentrations, i.e., gauge clean wells first and contaminated wells last to minimize the potential of cross-contamination.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 25, 2019

Micah Nauck Haller and Associates P. O. Box 1667 Cedar Crest, NM 87008-1667 TEL: FAX

RE: Halsells Grocery OrderNo.: 1909259

Dear Micah Nauck:

Hall Environmental Analysis Laboratory received 4 sample(s) on 9/6/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1909259**

Date Reported: 9/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Haller and Associates

Client Sample ID: MW-1

Project: Halsells Grocery
 Collection Date: 9/5/2019 2:48:00 PM

 Lab ID: 1909259-001
 Matrix: AQUEOUS
 Received Date: 9/6/2019 8:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JMT
Total Dissolved Solids	1290	20.0	*	mg/L	1	9/11/2019 1:50:00 PM	47372
EPA METHOD 6010B: DISSOLVED METALS						Analyst	: ELS
Iron	0.36	0.020		mg/L	1	9/20/2019 9:32:15 AM	A63074
Manganese	0.45	0.0020		mg/L	1	9/20/2019 9:32:15 AM	A63074
EPA METHOD 8011/504.1: EDB				J		Analyst	: CLP
1,2-Dibromoethane	ND	0.0094		μg/L	1	9/13/2019 3:11:54 PM	47434
EPA METHOD 8260B: VOLATILES				F-5'-		Analyst	
Benzene	7.0	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Toluene	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Ethylbenzene	300	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Methyl tert-butyl ether (MTBE)	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
1,2,4-Trimethylbenzene	15	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
1,3,5-Trimethylbenzene	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
1,2-Dichloroethane (EDC)	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
1,2-Dibromoethane (EDB)	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Naphthalene	28	10		μg/L	5	9/17/2019 1:24:00 PM	R62981
1-Methylnaphthalene	27	20		μg/L	5	9/17/2019 1:24:00 PM	R62981
2-Methylnaphthalene	ND	20		μg/L	5	9/17/2019 1:24:00 PM	R62981
Acetone	ND	50		μg/L	5	9/17/2019 1:24:00 PM	R62981
Bromobenzene	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Bromodichloromethane	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Bromoform	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Bromomethane	ND	15		μg/L	5	9/17/2019 1:24:00 PM	R62981
2-Butanone	ND	50		μg/L	5	9/17/2019 1:24:00 PM	R62981
Carbon disulfide	ND	50		μg/L	5	9/17/2019 1:24:00 PM	R62981
Carbon Tetrachloride	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Chlorobenzene	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Chloroethane	ND	10		μg/L	5	9/17/2019 1:24:00 PM	R62981
Chloroform	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Chloromethane	ND	15		μg/L	5	9/17/2019 1:24:00 PM	R62981
2-Chlorotoluene	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
4-Chlorotoluene	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
cis-1,2-DCE	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
cis-1,3-Dichloropropene	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
1,2-Dibromo-3-chloropropane	ND	10		μg/L	5	9/17/2019 1:24:00 PM	R62981
Dibromochloromethane	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
Dibromomethane	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981
1,2-Dichlorobenzene	ND	5.0		μg/L	5	9/17/2019 1:24:00 PM	R62981

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 14

Analytical Report

Lab Order 1909259

Date Reported: 9/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Haller and Associates Client Sample ID: MW-1

Project:Halsells GroceryCollection Date: 9/5/2019 2:48:00 PMLab ID:1909259-001Matrix: AQUEOUSReceived Date: 9/6/2019 8:30:00 AM

Analyses	Result	RL	Qual Uni	ts Dl	F Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: CCM
1,3-Dichlorobenzene	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,4-Dichlorobenzene	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
Dichlorodifluoromethane	ND	5.0	μg/l		9/17/2019 1:24:00 PM	R62981
1,1-Dichloroethane	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,1-Dichloroethene	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,2-Dichloropropane	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,3-Dichloropropane	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
2,2-Dichloropropane	ND	10	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,1-Dichloropropene	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
Hexachlorobutadiene	ND	5.0	μg/l		9/17/2019 1:24:00 PM	R62981
2-Hexanone	ND	50	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
Isopropylbenzene	50	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
4-Isopropyltoluene	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
4-Methyl-2-pentanone	ND	50	μg/I	_ 5	9/17/2019 1:24:00 PM	R62981
Methylene Chloride	ND	15	μg/l		9/17/2019 1:24:00 PM	R62981
n-Butylbenzene	ND	15	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
n-Propylbenzene	95	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
sec-Butylbenzene	10	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
Styrene	ND	5.0	μg/l		9/17/2019 1:24:00 PM	R62981
tert-Butylbenzene	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,1,1,2-Tetrachloroethane	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,1,2,2-Tetrachloroethane	ND	10	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
Tetrachloroethene (PCE)	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
trans-1,2-DCE	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
trans-1,3-Dichloropropene	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,2,3-Trichlorobenzene	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,2,4-Trichlorobenzene	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,1,1-Trichloroethane	ND	5.0	μg/l		9/17/2019 1:24:00 PM	R62981
1,1,2-Trichloroethane	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
Trichloroethene (TCE)	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
Trichlorofluoromethane	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
1,2,3-Trichloropropane	ND	10	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
Vinyl chloride	ND	5.0	μg/l	_ 5	9/17/2019 1:24:00 PM	R62981
Xylenes, Total	14	7.5	μg/l	- 5	9/17/2019 1:24:00 PM	R62981
Surr: 1,2-Dichloroethane-d4	99.7	70-130	%R		9/17/2019 1:24:00 PM	R62981
Surr: 4-Bromofluorobenzene	104	70-130	%R	ec 5	9/17/2019 1:24:00 PM	R62981
Surr: Dibromofluoromethane	97.8	70-130	%R	ec 5	9/17/2019 1:24:00 PM	R62981
Surr: Toluene-d8	97.0	70-130	%R	ec 5	9/17/2019 1:24:00 PM	R62981

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 14

Lab Order **1909259**

Date Reported: 9/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Haller and Associates

Client Sample ID: MW-2

Project:Halsells GroceryCollection Date: 9/5/2019 2:11:00 PMLab ID:1909259-002Matrix: AQUEOUSReceived Date: 9/6/2019 8:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JMT
Total Dissolved Solids	1290	40.0	*D	mg/L	1	9/11/2019 1:50:00 PM	47372
EPA METHOD 6010B: DISSOLVED METALS						Analyst	: ELS
Iron	2.1	0.10		mg/L	5	9/20/2019 9:34:05 AM	A63074
Manganese	1.2	0.010		mg/L	5	9/20/2019 9:34:05 AM	A63074
EPA METHOD 8011/504.1: EDB				3		Analyst	: CLP
1,2-Dibromoethane	ND	0.0094		μg/L	1	9/13/2019 3:57:37 PM	47434
EPA METHOD 8260B: VOLATILES	115	0.0001		M9/ L	•	Analyst	
Benzene	9.4	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Toluene	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Ethylbenzene	1.0	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Naphthalene	3.3	2.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
1-Methylnaphthalene	10	4.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
2-Methylnaphthalene	ND	4.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Acetone	ND	10		μg/L	1	9/17/2019 1:48:00 PM	R62981
Bromobenzene	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Bromodichloromethane	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Bromoform	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Bromomethane	ND	3.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
2-Butanone	ND	10		μg/L	1	9/17/2019 1:48:00 PM	R62981
Carbon disulfide	ND	10		μg/L	1	9/17/2019 1:48:00 PM	R62981
Carbon Tetrachloride	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Chlorobenzene	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Chloroethane	ND	2.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Chloroform	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Chloromethane	ND	3.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
2-Chlorotoluene	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
4-Chlorotoluene	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
cis-1,2-DCE	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Dibromochloromethane	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
Dibromomethane	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981
1,2-Dichlorobenzene	ND	1.0		μg/L	1	9/17/2019 1:48:00 PM	R62981

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 14

Analytical Report

Lab Order **1909259**

Date Reported: 9/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Haller and Associates Client Sample ID: MW-2

Project:Halsells GroceryCollection Date: 9/5/2019 2:11:00 PMLab ID:1909259-002Matrix: AQUEOUSReceived Date: 9/6/2019 8:30:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: CCM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,4-Dichlorobenzene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,1-Dichloroethane	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,1-Dichloroethene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,2-Dichloropropane	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,3-Dichloropropane	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
2,2-Dichloropropane	ND	2.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,1-Dichloropropene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
Hexachlorobutadiene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
2-Hexanone	ND	10	μg/L	1	9/17/2019 1:48:00 PM	R62981
Isopropylbenzene	24	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
4-Isopropyltoluene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
4-Methyl-2-pentanone	ND	10	μg/L	1	9/17/2019 1:48:00 PM	R62981
Methylene Chloride	ND	3.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
n-Butylbenzene	ND	3.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
n-Propylbenzene	10	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
sec-Butylbenzene	5.4	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
Styrene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
tert-Butylbenzene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
trans-1,2-DCE	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
Trichlorofluoromethane	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
Vinyl chloride	ND	1.0	μg/L	1	9/17/2019 1:48:00 PM	R62981
Xylenes, Total	ND	1.5	μg/L	1	9/17/2019 1:48:00 PM	R62981
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	9/17/2019 1:48:00 PM	R62981
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	9/17/2019 1:48:00 PM	R62981
Surr: Dibromofluoromethane	99.4	70-130	%Rec	1	9/17/2019 1:48:00 PM	R62981
Surr: Toluene-d8	99.1	70-130	%Rec	1	9/17/2019 1:48:00 PM	R62981

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 14

Lab Order **1909259**

Date Reported: 9/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Haller and Associates

Client Sample ID: MW-3

Project:Halsells GroceryCollection Date: 9/5/2019 1:30:00 PMLab ID:1909259-003Matrix: AQUEOUSReceived Date: 9/6/2019 8:30:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: JMT
Total Dissolved Solids	1360	40.0	*D	mg/L	1	9/11/2019 1:50:00 PM	47372
EPA METHOD 6010B: DISSOLVED METALS						Analyst	: ELS
Iron	0.37	0.020		mg/L	1	9/20/2019 9:35:57 AM	A63074
Manganese	0.97	0.0020		mg/L	1	9/20/2019 9:35:57 AM	A63074
EPA METHOD 8011/504.1: EDB	0.07	0.0020		9/ =	·	Analyst	
	ND	0.0095		ua/l	1	9/13/2019 4:12:49 PM	47434
1,2-Dibromoethane	ND	0.0093		μg/L	ı		
EPA METHOD 8260B: VOLATILES						Analyst	: CCM
Benzene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Toluene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Ethylbenzene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Naphthalene	ND	2.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
1-Methylnaphthalene	ND	4.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
2-Methylnaphthalene	ND	4.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Acetone	ND	10		μg/L	1	9/17/2019 3:00:00 PM	R62981
Bromobenzene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Bromodichloromethane	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Bromoform	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Bromomethane	ND	3.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
2-Butanone	ND	10		μg/L	1	9/17/2019 3:00:00 PM	R62981
Carbon disulfide	ND	10		μg/L	1	9/17/2019 3:00:00 PM	R62981
Carbon Tetrachloride	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Chlorobenzene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Chloroethane	ND	2.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Chloroform	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Chloromethane	ND	3.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
2-Chlorotoluene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
4-Chlorotoluene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
cis-1,2-DCE	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Dibromochloromethane	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
Dibromomethane	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981
1,2-Dichlorobenzene	ND	1.0		μg/L	1	9/17/2019 3:00:00 PM	R62981

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 14

Analytical Report

Lab Order **1909259**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/25/2019

CLIENT: Haller and Associates Client Sample ID: MW-3

Project:Halsells GroceryCollection Date: 9/5/2019 1:30:00 PMLab ID:1909259-003Matrix: AQUEOUSReceived Date: 9/6/2019 8:30:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: CCM
1,3-Dichlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,4-Dichlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,1-Dichloroethane	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,1-Dichloroethene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,2-Dichloropropane	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,3-Dichloropropane	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
2,2-Dichloropropane	ND	2.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,1-Dichloropropene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
Hexachlorobutadiene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
2-Hexanone	ND	10	μg/L	1	9/17/2019 3:00:00 PM	R62981
Isopropylbenzene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
4-Isopropyltoluene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
4-Methyl-2-pentanone	ND	10	μg/L	1	9/17/2019 3:00:00 PM	R62981
Methylene Chloride	ND	3.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
n-Butylbenzene	ND	3.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
n-Propylbenzene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
sec-Butylbenzene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
Styrene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
tert-Butylbenzene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
trans-1,2-DCE	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
Trichlorofluoromethane	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
Vinyl chloride	ND	1.0	μg/L	1	9/17/2019 3:00:00 PM	R62981
Xylenes, Total	ND	1.5	μg/L	1	9/17/2019 3:00:00 PM	R62981
Surr: 1,2-Dichloroethane-d4	99.4	70-130	%Rec	1	9/17/2019 3:00:00 PM	R62981
Surr: 4-Bromofluorobenzene	98.5	70-130	%Rec	1	9/17/2019 3:00:00 PM	R62981
Surr: Dibromofluoromethane	98.5	70-130	%Rec	1	9/17/2019 3:00:00 PM	R62981
Surr: Toluene-d8	98.6	70-130	%Rec	1	9/17/2019 3:00:00 PM	R62981

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 14

Lab Order **1909259**

Date Reported: 9/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Haller and Associates

Client Sample ID: Trip Blank

Project: Halsells Grocery Collection Date:

Lab ID: 1909259-004 **Matrix:** AQUEOUS **Received Date:** 9/6/2019 8:30:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8011/504.1: EDB					Analyst	: CLP
1,2-Dibromoethane	ND	0.0095	μg/L	1	9/13/2019 4:28:00 PM	47434
EPA METHOD 8260B: VOLATILES					Analyst	: CCM
Benzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Toluene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Ethylbenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Naphthalene	ND	2.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1-Methylnaphthalene	ND	4.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
2-Methylnaphthalene	ND	4.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Acetone	ND	10	μg/L	1	9/17/2019 3:24:00 PM	R62981
Bromobenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Bromodichloromethane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Bromoform	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Bromomethane	ND	3.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
2-Butanone	ND	10	μg/L	1	9/17/2019 3:24:00 PM	R62981
Carbon disulfide	ND	10	μg/L	1	9/17/2019 3:24:00 PM	R62981
Carbon Tetrachloride	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Chlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Chloroethane	ND	2.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Chloroform	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Chloromethane	ND	3.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
2-Chlorotoluene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
4-Chlorotoluene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
cis-1,2-DCE	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Dibromochloromethane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Dibromomethane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,2-Dichlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,3-Dichlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,4-Dichlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,1-Dichloroethane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,1-Dichloroethene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,2-Dichloropropane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 14

Lab Order **1909259**

Date Reported: 9/25/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Haller and Associates Client Sample ID: Trip Blank

Project: Halsells Grocery Collection Date:

Lab ID: 1909259-004 **Matrix:** AQUEOUS **Received Date:** 9/6/2019 8:30:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: CCM
1,3-Dichloropropane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
2,2-Dichloropropane	ND	2.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,1-Dichloropropene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Hexachlorobutadiene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
2-Hexanone	ND	10	μg/L	1	9/17/2019 3:24:00 PM	R62981
Isopropylbenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
4-Isopropyltoluene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
4-Methyl-2-pentanone	ND	10	μg/L	1	9/17/2019 3:24:00 PM	R62981
Methylene Chloride	ND	3.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
n-Butylbenzene	ND	3.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
n-Propylbenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
sec-Butylbenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Styrene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
tert-Butylbenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
trans-1,2-DCE	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Trichlorofluoromethane	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Vinyl chloride	ND	1.0	μg/L	1	9/17/2019 3:24:00 PM	R62981
Xylenes, Total	ND	1.5	μg/L	1	9/17/2019 3:24:00 PM	R62981
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	9/17/2019 3:24:00 PM	R62981
Surr: 4-Bromofluorobenzene	98.7	70-130	%Rec	1	9/17/2019 3:24:00 PM	R62981
Surr: Dibromofluoromethane	97.0	70-130	%Rec	1	9/17/2019 3:24:00 PM	R62981
Surr: Toluene-d8	98.6	70-130	%Rec	1	9/17/2019 3:24:00 PM	R62981

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 14

ANALYTICAL REPORT

September 12, 2019

Hall Environmental Analysis Laboratory

Sample Delivery Group: L1137405 Samples Received: 09/10/2019

Project Number:

Description:

Report To:

4901 Hawkins NE

Albuquerque, NM 87109

Entire Report Reviewed By: Washne R Richards Daphne Richards

L1137405

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
1909259-001E MW-1 L1137405-01	5
1909259-002E MW-2 L1137405-02	6
1909259-003E MW-3 L1137405-03	7
Qc: Quality Control Summary	8
Wet Chemistry by Method 410.4	8
GI: Glossary of Terms	9
Al: Accreditations & Locations	10
Sc: Sample Chain of Custody	11

DATE/TIME:

			Collected by	Collected date/time	Received date/time		
1909259-001E MW-1 L1137405-01 WW				09/05/19 14:48	09/10/19 08:	45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Wet Chemistry by Method 410.4	WG1343438	1	09/11/19 10:00	09/11/19 14:12	BAM	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
1909259-002E MW-2 L1137405-02 WW				08/05/19 14:11	09/10/19 08:	45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Wet Chemistry by Method 410.4	WG1343438	1	09/11/19 10:00	09/11/19 14:12	BAM	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da	te/time	
1909259-003E MW-3 L1137405-03 WW				09/05/19 13:30	09/10/19 08:	45	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Wet Chemistry by Method 410.4	WG1343438	1	09/11/19 10:00	09/11/19 14:13	BAM	Mt. Juliet, TN	

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Daphne Richards Project Manager

Japhne R Richards

1909259-001E MW-1 Collected date/time: 09/05/19 14:48

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

*

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
COD	14.3		10.0	1	09/11/2019 14:12	WG1343438	

1909259-002E MW-2 Collected date/time: 08/05/19 14:11

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

*

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l		date / time		
COD	ND	Т8	10.0	1	09/11/2019 14:12	WG1343438	

1909259-003E MW-3 Collected date/time: 09/05/19 13:30

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

*

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l		date / time		
COD	15.4		10.0	1	09/11/2019 14:13	WG1343438	

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 410.4

L1137405-01,02,03

Method Blank (MB)

(MB) R3449532-1 09/11/19 14:11 MB RDL MB Result MB Qualifier MB MDL Analyte mq/l mg/l mq/l COD 3.00 10.0

L1137299-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1137299-01 09/11/19 14:11 • (DUP) R3449532-3 09/11/19 14:12

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
COD	45.6	45.6	1	0.0219		20

Cn

(OS) L1137648-01 09/11/19 14:13 • (DUP) R3449532-4 09/11/19 14:13

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
COD	91.4	92.0	1	0.592		20

Laboratory Control Sample (LCS)

(LCS) R3449532-2 09/11/19 14:11

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
COD	222	233	105	90.0-110	

L1137648-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 14127649 O2 00/41/10 14:44 (MS) D2/4/0522 E 00/41/10 14:44 (MSC) D2/4/0522 E 00/41/10 14:44

(OS) L1137648-02 C	(OS) E1137648-02												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
COD	400	49.0	461	461	103	103	1	80.0-120			0.00217	20	

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

Т8

Sample(s) received past/too close to holding time expiration.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

HALL ENVIRONMENTAL ANALYSIS LABORATORY

CHAIN OF CUSTODY RECORD P

PAGE:	1	OF:	
	1000	P. 1	

C204

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-4107
Website: www.hallenvironmental.com

SUB CO	NTRATOR: ESC P	ACE COMPANY: E	SC PACE	\$	PHONE;	(800) 767-5859 FAX:	(615) 758-5859
ADDRES	20.	Lebanon Rd			ACCOUNT #:	EMAI	L:
CITY, S	rate, zip: Mt. Ju	liet, TN 37122					and the second second second
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	#CONTAINERS ANALY	TICAL COMMENTS
1	1909259-001E	MW-1	500HDPEH2	Aqueous	9/5/2019 2:48:00 PM	1 COD 62	1137405 -01
2	1909259-002E	MW-2		Aqueous	8/5/2019 2:11:00 PM	1 COD	02
3	1909259-003E	MW-3		Aqueous	9/5/2019 1:30:00 PM	1 COD 1	03

RAD SCREEN: <0.5 mR/hr

Please include the LAB ID	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	SAMPLE ID	on all final reports. Please e-ma	ail results to lab@	hallenvironmenta	l.com. Please return all coolers and blue ice. Thank you.	
	\				#		
Relinquished By:	Date: 9/6/2019	- Chair-	007	- Date: / 10/	M Time: 45	REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost)	
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	FOR LAB USE ONLY	
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	Temp of samples Z-6+, 3: Z9 28 Attempt to Cool?	
TAT:	Standard P	RUSH	Next BD	BD 🗀 3rd	d BD	Comments:	

Pace Analytical National Center for Testing & Inno Cooler Receipt Form	vation	
	1.00	1105
	(137	405
Cooler Received/Opened On: 9 / (¿ /19 Temperature:	24	
Received By: Adam Burns		
Signature: WW		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?	/	
Bottles arrive intact?		
Correct bottles used?	/	
Sufficient volume sent?	/	
If Applicable	-	
VOA Zero headspace?		
Preservation Correct / Checked?	1	
	The second secon	

Hall Environmental Analysis Laboratory, Inc.

WO#: **1909259**

25-Sep-19

Client: Haller and Associates
Project: Halsells Grocery

Sample ID: MB-47434 SampType: MBLK TestCode: EPA Method 8011/504.1: EDB

Client ID: PBW Batch ID: 47434 RunNo: 62947

Prep Date: 9/12/2019 Analysis Date: 9/13/2019 SeqNo: 2145480 Units: μ g/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane ND 0.010

Sample ID: LCS-47434 SampType: LCS TestCode: EPA Method 8011/504.1: EDB

Client ID: LCSW Batch ID: 47434 RunNo: 62947

Prep Date: 9/12/2019 Analysis Date: 9/13/2019 SeqNo: 2145481 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane 0.097 0.010 0.1000 0 97.0 70 130

Sample ID: 1909259-001BMS SampType: MS TestCode: EPA Method 8011/504.1: EDB

Client ID: MW-1 Batch ID: 47434 RunNo: 62947

Prep Date: 9/12/2019 Analysis Date: 9/13/2019 SeqNo: 2145524 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1,2-Dibromoethane 0.088 0.0095 0.09485 0 92.8 65 135

Sample ID: 1909259-001BMSD SampType: MSD TestCode: EPA Method 8011/504.1: EDB

Client ID: MW-1 Batch ID: 47434 RunNo: 62947

Prep Date: 9/12/2019 Analysis Date: 9/13/2019 SeqNo: 2145525 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

1.2-Dibromoethane 0.075 0.0095 0.09459 0 79.8 65 135 15.3 20

Qualifiers:

* Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 9 of 14

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

ND

ND

ND

ND

ND

ND

ND

10

1.0

1.0

2.0

1.0

3.0

1.0

WO#: **1909259**

25-Sep-19

Client: Haller and Associates
Project: Halsells Grocery

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	8260B: VOL	ATILES			
Client ID: LCSW	Batch	n ID: R6	2981	F	RunNo: 6	2981				
Prep Date:	Analysis Date: 9/17/2019			8	SeqNo: 2	148056	Units: µg/L			
Analyte	Result	Result PQL SPK value SPK Ref Val %REC LowLimit H		HighLimit	%RPD	RPDLimit	Qual			
Benzene	21	1.0	20.00	0	103	70	130			_
Toluene	21	1.0	20.00	0	103	70	130			
Chlorobenzene	22	1.0	20.00	0	109	70	130			
1,1-Dichloroethene	20	1.0	20.00	0	98.3	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	98.2	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	10 10.00 101 70		70	130						
Surr: Dibromofluoromethane	10		10.00	10.00 103 70		70	130			
Surr: Toluene-d8	10		10.00	100 70		130				

TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW	Batch ID: R62981 Analysis Date: 9/17/2019			F	RunNo: 6	2981				
Prep Date:				S	SeqNo: 2	148057	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								

Qualifiers:

Carbon disulfide

Chlorobenzene

Chloromethane

2-Chlorotoluene

Chloroethane

Chloroform

Carbon Tetrachloride

Sample ID: rb

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: 1909259

25-Sep-19

Client: Haller and Associates **Project:** Halsells Grocery

Sample ID: rb

Client ID: PBW Batch ID: R62981 RunNo: 62981

TestCode: EPA Method 8260B: VOLATILES

Prep Date: Analysis Date: 9/17/2019 SeqNo: 2148057 Units: µg/L PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 4-Chlorotoluene ND 1.0 cis-1.2-DCE ND 1.0 ND cis-1,3-Dichloropropene 1.0 1,2-Dibromo-3-chloropropane ND 2.0 Dibromochloromethane ND 1.0 Dibromomethane ND 1.0 1,2-Dichlorobenzene ND 1.0 1,3-Dichlorobenzene ND 1.0 1,4-Dichlorobenzene ND 1.0 Dichlorodifluoromethane ND 1.0 1,1-Dichloroethane ND 1.0 1,1-Dichloroethene ND 1.0 ND 1,2-Dichloropropane 1.0 1,3-Dichloropropane ND 1.0 2,2-Dichloropropane ND 2.0 1,1-Dichloropropene ND 1.0 ND Hexachlorobutadiene 1.0 2-Hexanone ND 10 Isopropylbenzene ND 1.0 4-Isopropyltoluene ND 1.0 ND 4-Methyl-2-pentanone 10 Methylene Chloride ND 3.0 n-Butylbenzene ND 3.0 n-Propylbenzene ND 1.0 sec-Butylbenzene ND 1.0 ND 1.0 Styrene tert-Butylbenzene ND 1.0 1,1,1,2-Tetrachloroethane ND 1.0 1,1,2,2-Tetrachloroethane ND 2.0 Tetrachloroethene (PCE) ND 1.0 trans-1,2-DCE ND 1.0 ND 1.0 trans-1,3-Dichloropropene 1,2,3-Trichlorobenzene ND 1.0 ND 1,2,4-Trichlorobenzene 1.0 1,1,1-Trichloroethane ND 1.0 1,1,2-Trichloroethane ND 1.0 Trichloroethene (TCE) ND 1.0 Trichlorofluoromethane ND 1.0 1,2,3-Trichloropropane ND 2.0

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1909259**

25-Sep-19

Client: Haller and Associates
Project: Halsells Grocery

Sample ID: rb	TestCode: EPA Method 8260B: VOLATILES									
Client ID: PBW	Batch	ID: R6	2981	F	RunNo: 6	2981				
Prep Date:	Analysis Date: 9/17/2019			S	SeqNo: 2	148057	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		97.2	70	130			
Surr: Dibromofluoromethane	10		10.00		105	70	130			
Surr: Toluene-d8	9.8		10.00		97.9	70	130			

Sample ID: 1909259-002ams	SampT	ype: MS	3	Tes	PA Method	8260B: VOL	ATILES										
Client ID: MW-2	Batch ID: R62981 RunNo: 62981																
Prep Date:	Analysis Date: 9/17/2019			9	SeqNo: 2	148061	Units: µg/L										
Analyte	Result PQL SPK value SPK Ref Val %REC L		LowLimit	HighLimit	%RPD	RPDLimit	Qual										
Benzene	25 1.0 20.00 9.434 78.9 7		70	130													
Toluene	16	1.0	20.00	0	81.9	70	130										
Chlorobenzene	17	1.0	20.00	0	86.8	70	130										
1,1-Dichloroethene	15	1.0	20.00	0	74.7	70	130										
Trichloroethene (TCE)	16	1.0	20.00	0	77.8	70	130										
Surr: 1,2-Dichloroethane-d4	9.8		10.00		97.6	70	130										
Surr: 4-Bromofluorobenzene	4-Bromofluorobenzene 11		10.00		107	70	130										
Surr: Dibromofluoromethane	9.7		10.00	96.9 70		130											
Surr: Toluene-d8	9.7	9.7 10.00 97.0 70		130													

Sample ID: 1909259-002amsd	SampT	ype: MS	SD	Tes	PA Method	8260B: VOL	ATILES			
Client ID: MW-2	Batch ID: R62981 RunNo: 62981									
Prep Date:	Analysis D	ate: 9/	17/2019 SeqNo: 21480		148062	Units: µg/L				
Analyte	Result PQL SPK value SPK Ref Val %R		%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	24	1.0	20.00	9.434	72.9	70	130	4.83	20	
Toluene	16	1.0	20.00	0	78.9	70	130	3.77	20	
Chlorobenzene	17	1.0	20.00	0	82.6	70	130	4.97	20	
1,1-Dichloroethene	14	1.0	20.00	0	69.2	70	130	7.71	20	S
Trichloroethene (TCE)	15	1.0	20.00	0	73.2	70	130	6.08	20	
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130	0	0	
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130	0	0	
Surr: Dibromofluoromethane	9.9		10.00	98.7 70		130	0	0		
Surr: Toluene-d8	rr: Toluene-d8 9.8 10.00 98.1		70	130	0	0				

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1909259**

25-Sep-19

Client: Haller and Associates
Project: Halsells Grocery

Sample ID: MB-A SampType: MBLK TestCode: EPA Method 6010B: Dissolved Metals

Client ID: PBW Batch ID: A63074 RunNo: 63074

Prep Date: Analysis Date: 9/20/2019 SeqNo: 2151039 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Iron
 ND
 0.020

 Manganese
 ND
 0.0020

Sample ID: LCS-A SampType: LCS TestCode: EPA Method 6010B: Dissolved Metals

Client ID: LCSW Batch ID: A63074 RunNo: 63074

Prep Date: Analysis Date: 9/20/2019 SeqNo: 2151040 Units: mg/L

LowLimit Analyte Result PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual 80 0.49 0.020 0.5000 0 97.5 120 0.48 0.0020 0.5000 0 95.5 80 120 Manganese

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1909259**

25-Sep-19

Client: Haller and Associates
Project: Halsells Grocery

Sample ID: MB-47372 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 47372 RunNo: 62826

Prep Date: 9/10/2019 Analysis Date: 9/11/2019 SeqNo: 2140745 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-47372 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 47372 RunNo: 62826

Prep Date: 9/10/2019 Analysis Date: 9/11/2019 SeqNo: 2140746 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1000 20.0 1000 0 100 80 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 14

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: HAL Work Order Number: 1909259 RcptNo: 1 an Il Received By: Anne Thorne 9/6/2019 8:30:00 AM anne Stran Completed By: 9/6/2019 9:14:26 AM Anne Thorne 1/6/19 Reviewed By: Chain of Custody Yes 🗹 No 🗌 Not Present 1. Is Chain of Custody complete? 2. How was the sample delivered? Client Loa In 3. Was an attempt made to cool the samples? Yes 🗸 No 🗌 NA 🗌 No ... 4. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 NA 🗌 5. Sample(s) in proper container(s)? Yes 🗹 No 🗌 Yes 🔽 6. Sufficient sample volume for indicated test(s)? 7. Are samples (except VOA and ONG) properly preserved? Yes No 🗸 8. Was preservative added to bottles? Yes 🗌 NA 🗆 9. VOA vials have zero headspace? Yes 🗸 No I No VOA Vials Yes 🗀 No 🗹 10. Were any sample containers received broken? # of preserved bottles checked No 🗌 Yes 🗸 for pH: 11. Does paperwork match bottle labels? (<2) or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗌 12. Are matrices correctly identified on Chain of Custody? Yes 🗸 13. Is it clear what analyses were requested? Yes 🗸 No 🗌 No 🗆 Checked by: DAD 9/6/19 14. Were all holding times able to be met? Yes 🔽 (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes . No 🗌 NA 🗸 Person Notified: Date By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: 17. Cooler Information Cooler No Temp ºC Condition Seal Intact Seal No Seal Date 1.2 Good Not Present

	Chain	-of-C	ustody Record	Turn-Around Time:				HALL ENVIRONMENTAL															
Client:	-	Ha	aller & Associates, Inc.	- Standard																			
Mailing	Address		P.O. Box 1667	Project Nam	The state of the s																		
walling	Auuress	•	Cedar Crest, NM 87008	Halsell's Grocery				4901 Hawkins NE - Albuquerque, NM 87109															
Dhono t	hone #: 505-281-9333 or 505-228-0492			Project #:	1020				Tel. 505-345-3975 Fax 505-345-4107														
		Project Mana	1920				Analysis Request																
	email or Fax#: <u>mnauck@vcimail.com</u> QA/QC Package:		Trioject Maria	igei.			1)	ly)	iese					04)	٦					.			
Standard □ Level 4 (Full Validation)			Micah Nauck				(8021)	TPH (Gas only)	(Gas/Diese			Mn)	į	PO4,5	2 PCB's								
Accreditation:			Sampler:	Mic	ah Nauc	:k	1B's) H	B ((1)	1)	න්		10,2	/ 8082						۽ ا	_	
□ NELAP □ Other			On Ice:	À Yes	□ No	pulpus 2 di di	+ TMB'	+	8015B	418.	504.1)	ed Fe	S	O3,N	3 / se		OA)				2	2 5	
⊐ EDD	(Type) _	T .		Sample Tem	perature:/, 3	-01 aF=	/,2	MTBE	BTEX + MTBE	ethod 8	TPH (Method 418.1)	EDB (Method	6010 (Dissolved	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	esticide	(VOA)	emi-V	(TDS)	(cop)		Noc (V	DIES :
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HE 1909	ALNO. 259	BTEX +	BTEX +	TPH Method	TPH (N	EDB (N	6010 (1	RCRA 8	Anions	8081 Pesticides	8260B (VOA)	8270 (Semi-VOA)	2540C (TDS)	410 (C		Air Bubbles (V or N)	T 025
9/5/19	1448	Aq	MW-1	3x 40ml glass 3x 40ml glass	HgCl₂ SOTH		-00					Х	х				Х		х	х	十		<u> </u>
				1x 125ml poly	HNO ₃		rd												\Box	П			_
				2x 500ml poly 3x 40ml glass	None/ <i>H\$SL</i> HgCl ₂	74	,	_						_						$\vdash \vdash$	\dashv		_
9/5/19	1411	Aq	MW-2	2x 40ml glass	sотн		702					Х	Х		•		X		x	x			
				1x 125ml poly 2x 500ml poly	HNO₃ None/⊬a≨	24	702														\Box	\top	
9/5/19	1330	Aq	MW-3	3x 40ml glass 2x 40ml glass	HgCl <u>{</u> SOTH	,	T03					Х	х				Х		Х	х			_
		-		1x 125ml poly	HNO₂	2/	-203													\Box		-	_
			Trip Blank	2x 500ml poly 3x 40ml glass	None / HgCl ₂	<i>)</i>						<u> </u>		_		_	1,7			┍	\dashv	+	_
		· <u> </u>	THE DIATE	5X 40IIII glass	- IBCI2		-004					Х	_				Х		\square	—	\dashv	\dashv	_

																					\perp		
			****	4																			
			1 . 1									ŀ											
0ate: 6-19	Time:	Relinquish	ned by:	Received by:	Received by. Date Time Aloi II 9				Remarks:														
Date:	Time:	Relinquish	ned by	Received by:		Date																	