
Tailings Facility Groundwater

Presentation Outline

- Groundwater sampling and well locations
- Characteristics
- Tailings facility and reference chemistry
- Seepage Interception System
- Nature and extent
- Summary

Questions Being Asked by RI/FS

- Groundwater Data Quality Objectives (DQOs)
 - Concentrations > RBSLs?
 - Concentrations > State Groundwater Standards and MCLs?
 - Adequately determined the nature and extent of concentrations > RBSLs?

Groundwater Sampling

Quarterly events (all wells and springs):

- Completed: Fall 2002; January, April, July, and October 2003; and January 2004
- Planned: April 2004
- Monthly events (select wells and springs):
 - Completed: December 2002; February, March, May, June, August, September, November, and December 2003
 - No monthly sampling planned for 2004

Monitoring Wells Installed at the Tailings Facility During the RI

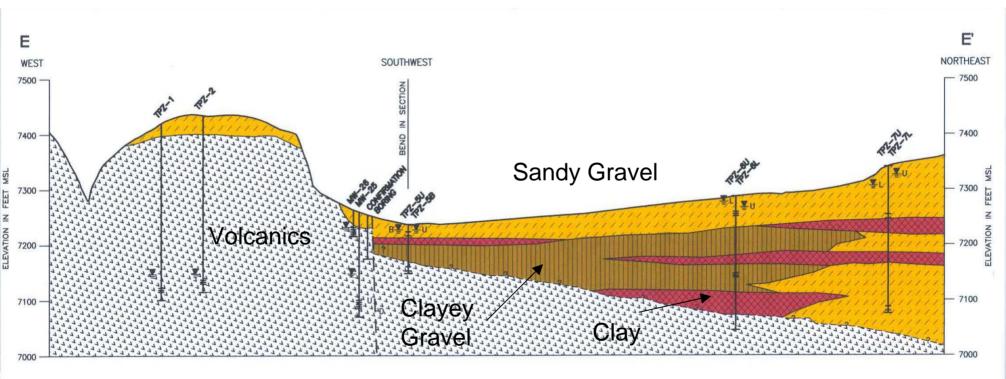
				Borehole	Screened
		Completion or Target	Completion or	Depth (ft,	Interval
Well ID	Location	Zone	Target Lithology	bgs)	(ft,bgs)
MW-16	Western abutment of Dam No. 4	Basal Aquifer	Basalt	437	No Well
MW-17	South of Dry Maintenance area	Upper Aquifer	sandy gravel	162	135 to 155
MW-18	North/upgradient of Tailings	Basal Aquifer	Basalt	309	No Well
MW-19	North/upgradient of Tailings	Upper Aquifer	Upper Aqufier		No Well
MW-20	North of Tailings - Reference	Basal Aquifer	sandy gravel	296	269 to 289
MW-21	North of Tailings - Reference	Upper Aquifer	sandy gravel	142	117 to 137
MW-22	West of Tailings - Reference	Basal Aquifer	Andesite	445	420 to 440
MW-23	West Tailings/North of Dam No. 5	Basal Aquifer	basalt	460	370 to 400
MW-24 (TPZ-8)	East of Dam No. 2A	Basal Aquifer	sandy gravel	265	235 to 255
MW-25	South of Dam No. 1	Basal Aquifer	Basalt	188	160 to 180
MW-26	South of Dam No. 1	Upper Aquifer	Basalt	48	25 to 45
MW-27	South of Dam No. 1	Basal Aquifer	Andesite	198	164 to 184
MW-28	South of Dam No. 1	Upper Aquifer	clayey sand	65	58 to 63
MW-29	South of Dam No. 1	Upper Aquifer	sandy gravel	42	35 to 40
Confirm. Boring	South of Dam No. 1	Upper Aquifer	Basalt	80	No Well

Piezometers Installed at the Tailings Facility During the RI

				Borehole	Screened
		Completion or Target	Completion or	Depth (ft,	Interval
Well ID	Location	Zone	Target Lithology	bgs)	(ft,bgs)
TPZ-1	Southeast of Dam No. 4	Basal Aquifer	basalt/andesite	315	282 to 292
TPZ-2	Southeast of Dam No. 4	Basal Aquifer	basalt	320	295 to 305
TPZ-3	Replaced by MW-25 and MW-26	Basal Aquifer			
TPZ-4U	South of Dam No. 1	Upper Aquifer	sandy gravel	158	33 to 38
TPZ-4L	South of Dam No. 1	Basal Aquifer	sandy gravel	158	50 to 55
TPZ-4B	South of Dam No. 1	Basal Aquifer	andesite	158	153 to 158
TPZ-5U	South of Dam No. 1 near 002	Upper Aquifer	sandy gravel	89	15 to 20
TPZ-5B	South of Dam No. 1 near 002	Basal Aquifer	andesite	89	84 to 89
TPZ-6U	Southeast of Dam No. 1B	Upper Aquifer	sandy gravel	239	25 to 30
TPZ-6L	Southeast of Dam No. 1B	Basal Aquifer	sandy gravel	239	137 to 142
TPZ-7U	Southeast of Dam No. 1B	Upper Aquifer	sandy gravel	265	87 to 92
TPZ-7L	Southeast of Dam No. 1B	Basal Aquifer	sandy gravel	265	255 to 260

URS

Tailings Facility Characteristics



Where Does Groundwater Occur?

- Aquifers:
 - Upper (alluvial sand/gravel/clay)
 - Basal (alluvium and volcanics)
- Greater clay content south of Dam Nos. 1A
- Greater gravel content east of the tailings facility

East-West Geologic Cross Section South of Tailings Facility

Hydraulic Conductivity

- Upper and Basal alluvial aquifers
 - 0.01 to 10 feet/day
 - Variability depends on amount of clay content
- Basal volcanic aquifer
 - 100 to 1000's feet/day

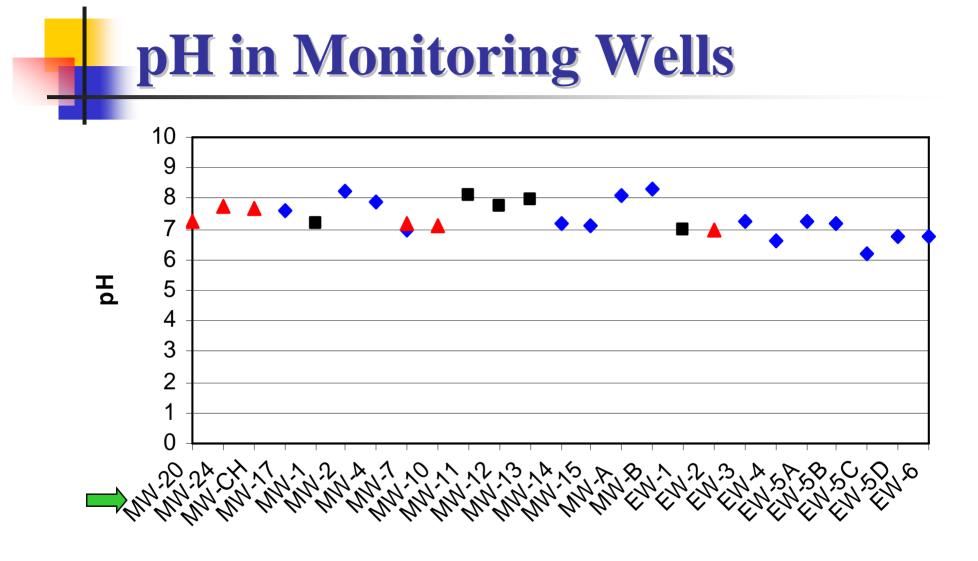
Groundwater Flow Direction

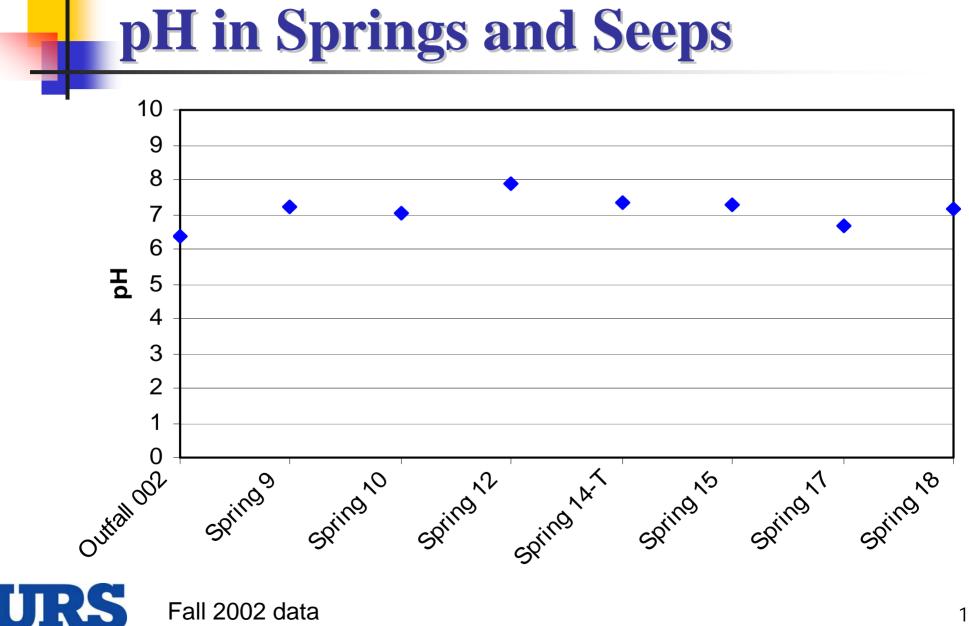
- Horizontal groundwater gradients:
 - Upper aquifer is south/southwest
 - Basal aquifer is south/southwest
 - Both aquifers are influenced locally by extraction system near Dam No.1A

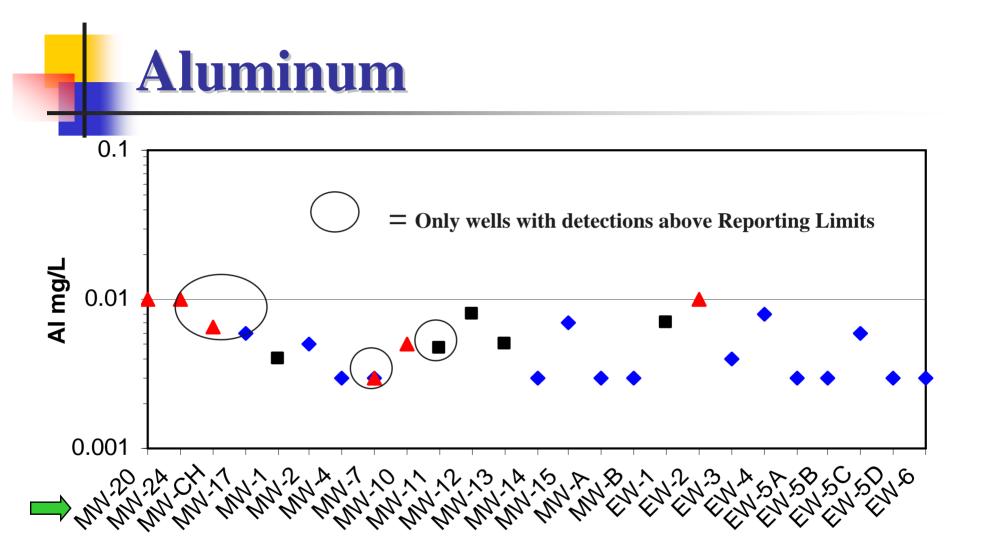


Potentiometric Surface Maps

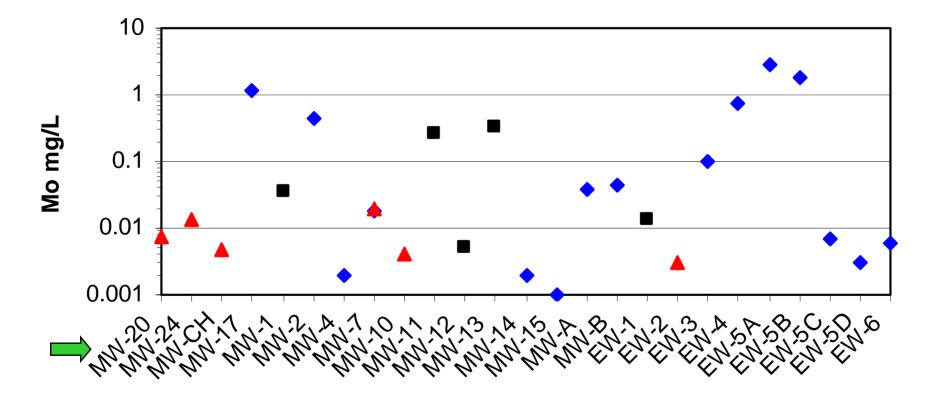
- Two potentiometric surface maps (.PDF):
 - Upper aquifer
 - Basal aquifer
 - Based on October 2003 groundwater elevations


Groundwater Chemistry


Reference Monitoring Wells


- MW-20: Basal alluvial aquifer (289 feet deep)
- MW-21: Upper alluvial aquifer (139 feet deep)
- MW-22: Basal volcanic aquifer (440 feet deep)

◆ Upper Aquifer (Alluvium) ▲ Basal Aquifer (Alluvium) ■ Basal Aquifer (Bedrock)
Fall 2002 data



◆ Upper Aquifer (Alluvium) ▲ Basal Aquifer (Alluvium) ■ Basal Aquifer (Bedrock)

Fall 2002 data

◆ Upper Aquifer (Alluvium) ▲ Basal Aquifer (Alluvium) ■ Basal Aquifer (Bedrock)
Fall 2002 data

Comparison of All July 2003 Groundwater Results to SLC

	EPA Human Health	Maximum		
Metal (total,	Tap Water SLC	Concentration	Location of Maximum	
mg/L)	(HQ=1)	from July 2003	Concentration	
Aluminum	37	5.4	003 West Seep	
Antimony	0.015	<0.001		
Arsenic	0.01	0.0022	MW-11	
Barium	2.6	0.11	MW-23	
Beryllium	0.073	<0.00045		
Boron	3.3	0.2	MW-CH	
Cadmium	0.018	<0.0006		
Chromium	0.11	0.0082	MW-22	
Copper	1.4	0.0049	EW-4	
Cyanide	0.73	0.019	003 East Seep	
Fluoride	2.2	2.1	MW-25	
Iron	11	7.8	MW-B	
Lead	0.015	0.0048	003 West Seep	
Manganese	1.7	2.2	MW-A	
Mercury	0.011	<0.00017		
Molybdenum	0.18	3	EW-5A	
Nickel	0.73	0.035	MW-25	
Nitrate	10	8.5	MW-21	
Nitrite	1	0.052	MW-21	
Selenium	0.18	0.0098	MW-21	
Silver	0.18	<0.0002		
Thallium	0.0026	<0.0002		
Vanadium	0.26	0.0092	Spring 15-T	
Zinc	11	0.74	MW-CH	
Note: Used all groundwater data including springs				

Tailing Water Sample Results

Parameter	Total Concentration (mg/L)
Aluminum	<0.63
Arsenic	<0.0004
Cadmium	< 0.0003
Chromium	<0.0006
Copper	<0.0017
Fluoride	5.1
Iron	<0.67
Lead	0.00027
Manganese	1.4
Mercury	<0.0001
Molybdenum	2.5
Nickel	0.012
Selenium	0.004
Sulfate	1610
Zinc	<0.058
pH (su)	7.7

July 2003 data

002 Outfall Sample Results

	002		
mg/L	Total	Dissolved	
Aluminum	0.02	<0.006	
Arsenic	0.0005	0.0005	
Barium	0.0288	0.0282	
Boron	0.0351	0.0337	
Iron	0.0254	<0.0226	
Manganese	0.675	0.657	
Nickel	0.002	0.0024	
Selenium	0.0008	0.0011	
Molybdenum	1.24	1.21	
Alkalinity	156		
Fluoride	1.1		
Sulfate	989		
pH (su)	7		
TDS	1,4	460	

Fall 2002 data

Organic Compound Sampling

- Wells were tested for organic compounds in the only area of the tailings facility where use of organic compounds may have occurred
- This included testing of MW-17 and MW-CH for volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) (November 2002 through March 2003)
- No VOCs or SVOCs were detected other than low concentrations of lab contaminants

Seepage Interception System

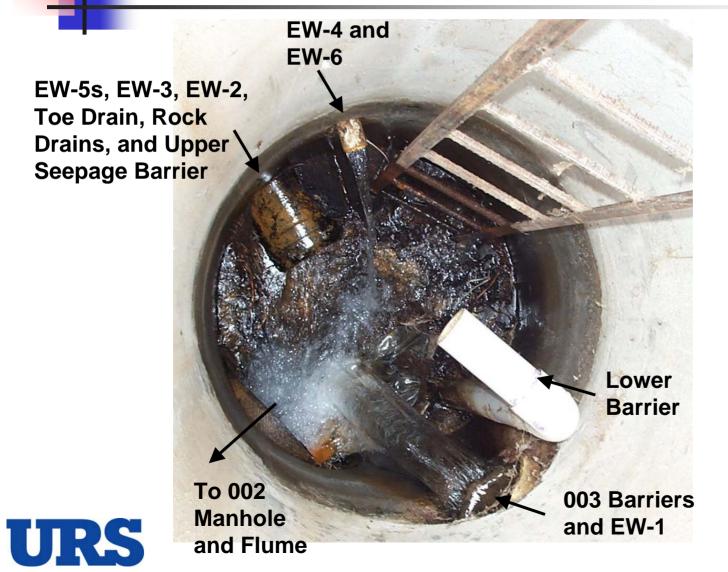
Seepage Interception System

- Consists of seepage barriers, rock-fill drains and extraction wells
- Regulated by NMED under DP-933 February 1997; requirements:
 - Extract groundwater from shallow array of wells and discharge to outfall 002
 - Install additional seepage barrier downgradient of Dam 1A
 - Re-evaluate the system after first year and modify as necessary

Chronology of Seepage Interception System

- <u>Western Rock Drains</u> (1975) keyed into a clay layer; collects seepage from Dam No. 4 tailings; flows by gravity
- 2. <u>Dam 1A Toe Drain</u> (1975) pipe within the dam's engineered gravel blanket toe drain; flows by gravity
- 3. <u>Upper Seepage Barrier</u> (1975) 200' x 14' x 20'; perforated drain with backfill; flows by gravity
- <u>003 Seepage Barriers</u> (late 1970s) 50' x 10' x 20'; perforated drains with backfill; western drain flows, eastern drain does not; flows by gravity; pipeline break in the late 1980s

Chronology of Seepage Interception System (cont.)


- 5. <u>Extraction Wells</u> (1994) EW-1 through EW-4 installed; EW-1 and EW-2 were completed in the Basal Aquifer; EW-3 and EW-4 were completed in the Upper Aquifer
- 6. <u>Lower Seepage Barrier</u> (1996) 80' x 10' x 20'; perforated drain keyed into clay layer; water is pumped to manhole; observed to be dry recently
- 7. <u>Extraction Wells</u> (1997) EW-5A, -5B, 5C, and 5D installed into the Upper Aquifer at toe of Dam No. 1A with input from NMED
- 8. <u>Extraction Well EW-6</u> (2000) MW-3 was converted to extraction well

Chronology of Seepage Interception System (cont.)

- 9. <u>Pumpback system</u> (January 2004):
- Objective: to reduce manganese load from Outfall 002
- Installed a new sump near manhole of upper seepage barrier
- Water from EW-5 series, Dam No. 1A toe drain and western rock-filled drains is diverted to the new sump
- Water is pumped (75 gpm) 6,000 ft to Dam No. 5A pond area
- Manganese load from Outfall 002 should be reduced by approximately 50 percent

Collection Manhole Next to Outfall 002

Ν

Flume at Outfall 002

Ultrasonic Flow Meter for Flume

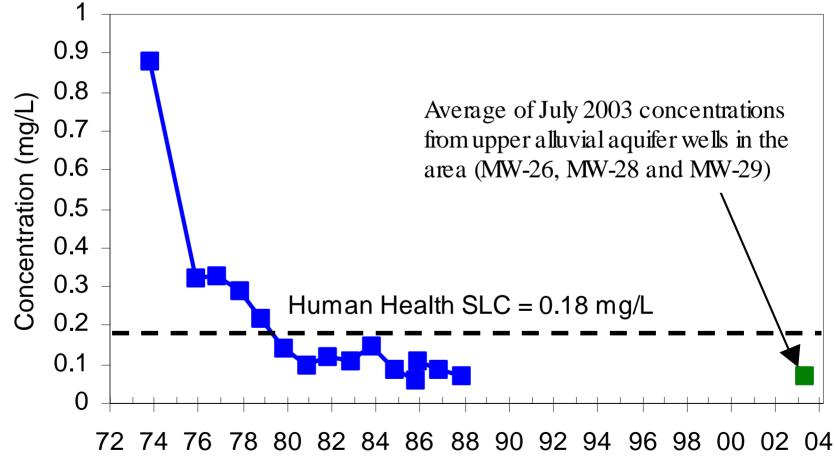
Extraction Well EW-5B

Evaluation of Seepage Interception System Effectiveness

Comparison of Pre- and Post-Pumping Water Levels for Extraction Wells (SMA 1998)

Extraction Wells				
	Sept. 1997 Pre-	First Year Average		First Year Average
	Pumping Elevation	Post-Pumping	Drawdown	Pumping Rate
Well ID	(ft)	Elevation (ft)	(ft)	(gpm)
EW-1	7229.66	7229.32	-0.34	14
EW-3	7262.67	7249.57	-13.10	8
EW-4	7264.29	7242.86	-21.43	3
EW-5A	7301.53	7289.39	-12.14	7
EW-5B	7302.82	7297.40	-5.42	63
EW-5C	7305.65	7298.68	-6.97	2
EW-5D	7343.66	7338.55	-5.11	3

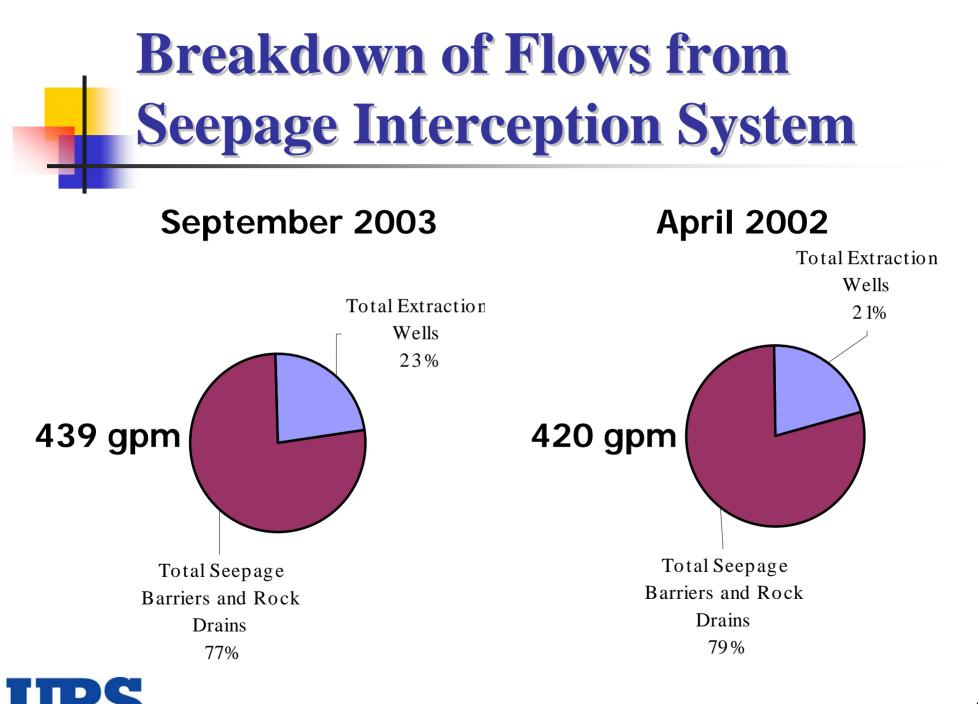
Note: EW-2 was not included in the analysis because it was not impacted by tailings seepage

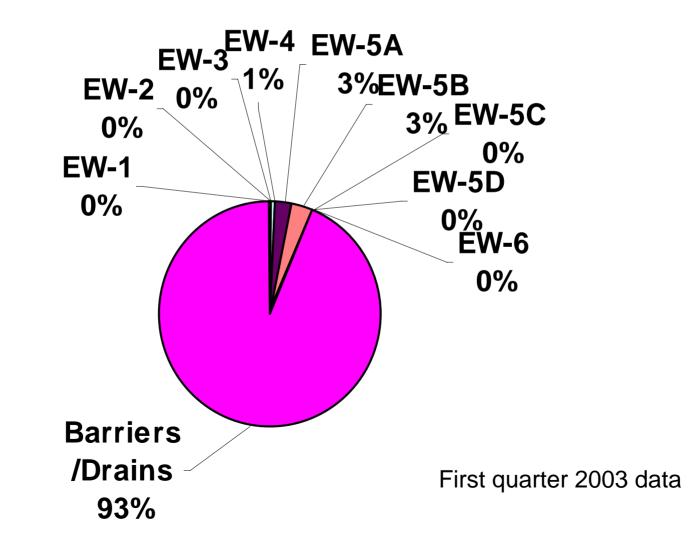

Evaluation of Seepage Interception System Effectiveness

Comparison of Pre- and Post-Pumping Water Levels for Surrounding Monitoring Wells (SMA 1998)

Surrounding Monitoring Wells				
	Nov 1996 through			
	Sept 1997 Average	First Year Average		
	Pre-Pumping	Post-Pumping	Drawdown	
Well ID	Elevation (ft)	Elevation (ft)	(ft)	
MW-1	7233.38	7231.18	-2.20	
MW-2	7243.15	7240.73	-2.42	
MW-3	7278.53	7278.48	-0.05	
MW-7A	7260.55	7253.01	-7.54	
MW-A	7280.26	7278.80	-1.46	
MW-C	7313.81	7314.01	0.20	
MW-B	7299.18	7296.82	-2.36	

Historical Molybdenum Concentrations in PRW-1 (Private well)




Recent Status of Seepage Interception System

	Pumping Rate	Pumping Water Level		
Extraction Well	(gpm)	(ft, bgs)	Status	Comments
EW-1	26	83	Continuous	
EW-2	21	156	Continuous	
EW-3	0	69	Cycles	Insufficient water to pump to surface
EW-4	0.5	27	Cycles	Evacuates casing and is off for 1 to 2 hours
EW-5A	0.3	19	Cycles	Evacuates casing and is off for 1 to 2 hours
EW-5B	39	21	Continuous	
EW-5C	0.2	30	Cycles	Evacuates casing and is off for 1 to 2 hours
EW-5D	5	32	Continuous	
EW-6	9	26	Continuous	
Total Extraction	101			
Wells	101			
Total Seepage				
Barriers and	338			
Rock Drains				
Outfall 002	439			

Recent Molybdenum Load Percentages for Seepage Interception System

Nature and Extent

Isoconcentration Contour Maps (GIS)

- Upper Aquifer October 2003:Molybdenum and sulfate
- Basal Aquifer October 2003:
 - Molybdenum and sulfate

Summary: Tailings Facility Groundwater

- Groundwater flow direction in the Upper and Basal aquifers is toward the south/southwest
- Molybdenum, manganese, and sulfate are the primary constituents with elevated concentrations
- No VOCs or SVOCs were detected other than low concentrations of lab contaminants

Summary (cont): Tailings Facility Groundwater

- The Seepage Interception System effectively collects tailing seepage from Dam No. 1A, and from Dam No. 4 within the 003 drainage
- The seepage barriers collect the majority of the seepage, as compared to extraction wells
- Elevated concentrations of molybdenum, manganese, and sulfate are observed south of Dam No.1A and near the 002 outfall in the Upper alluvial aquifer

Summary (cont): Tailings Facility Groundwater

- Elevated concentrations of molybdenum are observed south of Dam No. 4 in the Basal volcanic aquifer
- Molybdenum concentrations greater than the NMED groundwater standard are limited to the Dam No.1A area
- Molybdenum concentrations greater than the NMED groundwater standard have also occurred downgradient of the dry maintenance area, but the most recent concentrations are below the standard

