

Animal Data Summary – Tailings Data

Technical Meeting February 2-4, 2005

Animal Data

- Animal data include:
 - Small Mammals
 - Population Data
 - Tissue Data
 - Earthworm Bioassay
 - Bioassay Results
 - Tissue Data
 - Invertebrate Community Structure

2002 Animal Sampling

Location	Mammals	Earthworms	Soil Fauna
Tailings Riparian Ref – Lower Cab Ck	3/5	5/5	5/5
Tailings Riparian –	10/10	10/10	10/10
Soil Area 16			

2003 Animal Sampling

Location	Mammals	Waterfowl	Earthworms	Soil Fauna
Tailings Ponds (Soil Area 14) ¹	NA	0/5	NA	NA
Tailings Facility (Soil Area 14)	10/10 (+3 PG)	NA	10/10	10/10
Tailings Reference (Cater Ranch)	10/10 (+3 PG)	0/52	10/10	10/10

- 1 Amphibians and ducklings collected as available (None)
- 2 Or other reference locations, as necessary

Animal Data Quality Objectives

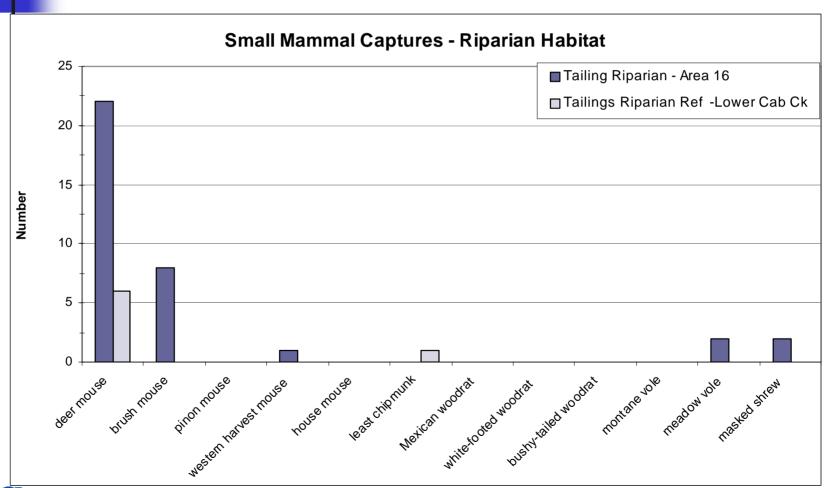
- Small mammals a risk to predators that ingest them (whole body tissue concentrations; animals for bioaccumulation test)?
- Waterfowl a risk to predators that ingest them? (no ducklings found)
- Soil invertebrates a risk to predators that ingest them (whole body tissue concentrations from earthworm bioassay)?
- Soil invertebrate community at risk (earthworm bioassay and native soil fauna data)?

Small Mammals

Populations
Tissue Analysis

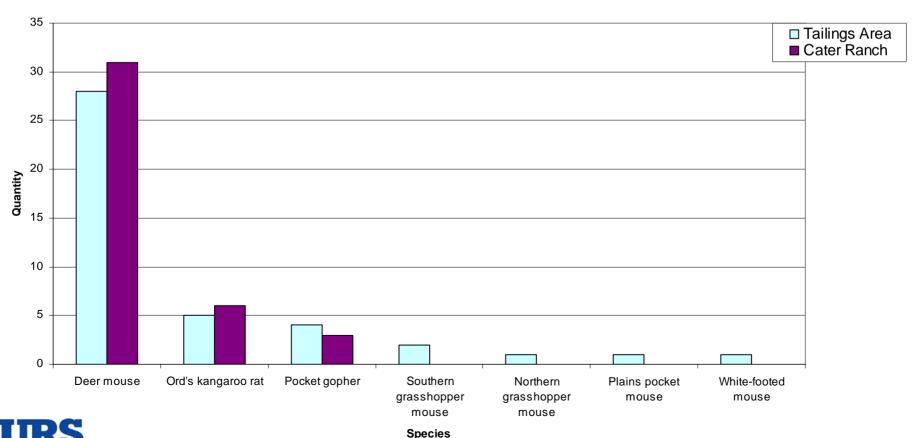
Data Collection

- Small mammals were collected in Fall 2002 and Spring 2003
- Snap trap and live trap
- 10 randomly located sampling locations within each exposure area
 - 10 tailings riparian, 10 tailings
 - 5 tailings riparian ref, 10 tailings ref
- Co-located with bioassay, vegetation, and soil samples



Small Mammal Populations

- Population data are semi-quantitative
- Objective obtain sufficient mass for tissue analysis
 - Achieved
 - Exception Lower Cab. Ck, Tailings Riparian Reference Area (3/5 successfully collected)
- Different level of trapping effort applied at different locations
- Provides:
 - general overview of species
 - suggests level of diversity and density


2002 Small Mammals - Results

2003 Small Mammals - Results

Small Mammal Capture Comparisons from the Tailings and Reference Area

Small Mammal Population Summary

- Semi-quantitative data
- If site-related effects, expect to see a difference between reference and onsite exposure areas
 - Mostly deer mice collected
 - About the same number of deer mice collected onsite and reference
- Study did pick up effects
 - Tailings had more diversity than Cater Ranch
- DQOs were met
 - Exception Tailings Riparian Reference
 - Most samples successfully collected
 - Enough samples for statistical analysis

- Small mammals were collected, processed, shipped
- Whole body metals analysis
- Collected in 2002 and 2003
- Only 3 metals significantly elevated out of 25 total analyzed
 - Tailings-Cater Ranch
 - Pb, Mn, Mo

- 25 metals analyzed in tissue
- Three metals significantly higher in tailings animals vs. reference
 - lead
 - manganese
 - molybdenum
- All BAFs <1</p>
- Met all DQOs

Earthworm Bioassay - Tailings

Bioassay Results
Tissue Metals

Earthworm Bioassay - Tailings

- Bulk soils were collected
- 35 samples
 - 10 upland; 10 riparian
 - 10 upland reference; 5 riparian reference
- Laboratory control
- Eisenia foetida 28-d toxicity test
- Survival, growth, reproduction
- Surviving worms sent to lab for metals analysis

Earthworm Bioassay Summary

- Survival or growth did not differ significantly
- Some statistical effect on reproduction (p<0.01)
- Is effect biologically relevant?
- Soil fauna community structure shows no difference

Earthworm Tissue Metals

- Metals were measured in tissue and soil
- Data to be used in the BERA to quantify uptake in the dietary ingestion pathway
- Examine relationship between tissue and soil metals (i.e., bioaccumulation)
- 25 metals analyzed in earthworm tissue

- One (Mo) significantly higher at Tailings than Cater Ranch reference (p<0.01)
- Four metals significantly higher in Tailings Riparian than Reference (p<0.01)
- BAFs <1 for all metals except Cd
- Use measured data to predict contribution from dietary pathway for animals consuming invertebrates in ERA
 - No one best site-wide way to model metal uptake in invertebrates
 - Less uncertain than modeling from literature
- Met DQOs

Invertebrate Community Structure

Invertebrate Community Structure

- Soil samples collected in the field; brought to field lab
- Placed in Berlese funnel; applied light
- Bugs move downward away from light and dryness;
 fall into petri dish and drown
- Identified to lowest possible taxa and counted
- 2003 data soils were measured
 - Gives better snapshot in time of density and diversity
- Met all DQOs

Tailings Facility Community Structure

■No significant difference between site-related and reference samples at a p<0.01</p>

