

June 14, 2024

Ms. Renee Romero New Mexico Environment Department Petroleum Storage Tank Bureau 1914 West Second Street Roswell, New Mexico 88201-1712

Re: Second Quarter O&M and Groundwater Monitoring Report Former Y Station, 721 Commerce Way, Clovis, New Mexico Facility #53742, Release ID #4746, WPID #4339

Dear Ms. Romero:

Daniel B. Stephens & Associates, Inc. (DBS&A) is pleased to submit the enclosed report summarizing dual-phase extraction (DPE) system operation and maintenance (O&M) activities conducted at the subject site from February 1 through April 30, 2024 and groundwater monitoring activities conducted in March and April 2024. All work was completed in accordance with the requirements of Section 20.5.119 of the New Mexico Administrative Code (NMAC), DBS&A standard operating procedures (SOPs), and the approved work plan.

DBS&A plans to invoice the reduced amount of \$70,834.20, including NMGRT for Deliverable ID #4339-3 to reflect a reduction in the number of samples collected and the reduced O&M effort while the soil vapor extraction system was out of service. Please do not hesitate to call us at (505) 822-9400 if you have any questions or require additional information.

Sincerely,

DANIEL B. STEPHENS & ASSOCIATES, INC.

than I Sk

Thomas Golden, P.E. Senior Engineer

GH/tg/rpf Enclosure cc: Katherine McNeil, NMED PSTB

Juan Henom

Grace Herrmann, P.E. Staff Engineer

Second Quarter DPE O&M and Groundwater Monitoring Former Y Station Clovis, New Mexico Facility #53742, Release ID #4746 WPID #4339

Prepared for

New Mexico Environment Department Petroleum Storage Tank Bureau Roswell, New Mexico

Prepared by

6020 Academy NE, Suite 100 Albuquerque, New Mexico 87109 www.dbstephens.com DB18.1157

June 14, 2024

Table of Contents

1.	Introduction			
	1.1	Site History	.1	
	1.2	Remediation System	.3	
	1.3	Scope of Work	.4	
	1.4	Quarter Highlights	.4	
2.	Rem	ediation System Operation and Maintenance	.5	
	2.1	System Operation Data	. 5	
	2.2	Wellhead Operation Data	6	
	2.3	Laboratory Sampling	8	
	2.4	Contaminant Removal Performance	.9	
	2.5	DPE System Maintenance	10	
3.	Groundwater Monitoring		11	
	3.1	Groundwater Monitoring	11	
	3.2	LNAPL Recovery	12	
	3.3	Containment of Release	13	
	3.4	Trends or Changes in Site Conditions	13	
4.	Cond	lusions and Recommendations	16	
State	Statement of Familiarity			
Refe	References			

List of Figures

- 1 Area Map
- 2 Site Map
- 3 Remediation System Layout
- 4 Field Screening PID Readings, Source Area Wells, Shallow Zone
- 5 Field Screening PID Readings, Source Area Wells, Intermediate Zone
- 6 Field Screening PID Readings, Source Area Wells, Deep Zone
- 7 Field Screening PID Readings, Off-Site Wells
- 8 Cumulative Mass Removal
- 9 Potentiometric Surface Elevations, March 29 and 30, 2024
- 10 Distribution of Dissolved-Phase Contaminants, March and April 2024
- 11 Benzene Isoconcentration Map, March and April 2024
- 12 EDB Isoconcentration Map, March and April 2024
- 13 EDC Isoconcentration Map, March and April 2024

List of Tables

- 1 SVE System Manifold and Oxidizer Operation Data
- 2 SVE System Wellhead Operation Data
- 3 Water Flow Meter Readings for Individual Wells and Treated Discharge
- 4 Analytical Organic Chemistry Data for the Remediation System, Air
- 5 Analytical Organic Chemistry Data for the Remediation System, Water
- 6 Analytical Inorganic Chemistry Data for the Remediation System
- 7 Utility Usage Summary
- 8 Fluid Level Measurements
- 9 Groundwater Analytical Organic Chemistry Data
- 10 LNAPL Recovery from Site Wells

List of Appendices

- A Well Boring Logs
- B Survey Report
- C Field Notes
- D Laboratory Reports
- E Mass Removal Calculations
- F Sampling Protocol
- G Graphs
- H Baseline Plume Maps

1. Introduction

Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this quarterly monitoring report for the Former Y Station State Lead site in Clovis, New Mexico (the site). The report documents the second quarter of operation and maintenance (O&M) for the dual-phase extraction (DPE) system from February 1 through April 30, 2024, as well as groundwater monitoring activities conducted at the site March 26 through 29 and April 28, 2024. This report was prepared in accordance with the requirements of Part 119 of the New Mexico Petroleum Storage Tank Regulations (PSTR) and DBS&A standard operating procedures (SOPs). The work plan for remediation system startup and operation was submitted to the NMED PSTB on September 20, 2023 (DBS&A, 2023), and was approved under WPID #4339 on September 28, 2023 (NMED, 2023).

1.1 Site History

The site is located at 721 Commerce Way in Clovis, New Mexico (Figure 1), and is currently occupied by an optical retail center; the site includes the intersection of Prince Street and Commerce Way. It is surrounded by a variety of other commercial land uses, such as big box retail stores, fast food restaurants, and gasoline service stations. Residential neighborhoods are adjacent to the west and east of the Prince Street commercial corridor.

Initial site investigation activities conducted by the previous consultant in 2011 were driven by the discovery of a release during a tank pull at the Allsup's No. 320 (Allsup's) site, located at the corner of Prince and 21st Streets (Figure 2). Subsequent investigations from 2012 to 2016 revealed a large dissolved-phase hydrocarbon plume south of the Allsup's site, centered near the intersection of Prince Street and Commerce Way.

Interviews with local residents and inspection of public records by the previous consultant revealed that a fueling station was formerly present on the southwest corner of Prince Street and Commerce Street, locally referred to as "the Y." The Former Y Station was reportedly active from the late 1950s through approximately 1981. The intersection has been reconfigured since that time, and what was the site is now active traffic lanes and the Optical Source retail outlet.

The previous consultant oversaw installation of 10 groundwater monitor wells (BW-1 through BW-10) in the vicinity of the Former Y Station, including 3 wells on the Allsup's property (Figure 2), and conducted limited soil vapor extraction (SVE) feasibility testing at the Allsup's site.

Benzene was the constituent detected at the highest concentrations in groundwater and with the greatest areal extent. Concentrations of other contaminants of concern (COCs) above applicable regulatory standards were typically localized near the center of the benzene plume.

Under the previous State Lead remediation services contract executed on May 15, 2018, DBS&A initiated two additional site investigation programs, which included installation of 12 monitor wells and/or remediation wells at the site (RW-1 through RW-4, BW-7R, and MW-11 through MW-17) (Figure 2). The primary goals of these investigations were to (1) characterize soil and groundwater conditions directly under the site of the Former Y station and (2) attempt to delineate the downgradient extent of the dissolved-phase contaminant plume. Additional investigation activities also included step and constant-rate aquifer pumping tests at newly installed monitor well MW-11, analysis of the physical properties of aquifer materials, and groundwater modeling to assess the feasibility of the proposed remediation approach.

Based on findings from the additional investigations, DBS&A proceeded with design and implementation of a DPE system. The proposed remediation system prioritizes removal of source area mass near the point of release using multi-zone DPE remediation wells to remove light nonaqueous-phase liquid (LNAPL) and residual hydrocarbons in the vadose zone, and is coupled with a pump-and-treat approach to speed remediation of the dissolved-phase contaminant plume in groundwater (Figure 3). The remedial design was presented in the final remediation plan (FRP) dated July 16, 2021 (DBS&A, 2021). Remediation system construction occurred from December 2021 through April 2022, and was documented in an as-built report dated May 2, 2022. Due to the end date of the previous contract, remediation system startup did not occur.

During the week of May 31, 2022, monitor wells BW-1 through BW-3 were plugged and abandoned by another consultant. Results from at least eight consecutive monitoring events showed contaminant concentrations below groundwater quality standards. A no further action (NFA) letter was issued for the Allsup's No. 320 site on August 8, 2022. There are currently 19 active monitor and remediation wells associated with the Former Y Station State Lead site (Figure 2).

DBS&A responded to a request for proposals (RFP) for a State Lead remediation services contract to operate the remediation system for this site, with proposals submitted to the PSTB on April 11, 2022, April 3, 2023, and May 26, 2023. DBS&A was selected as the most responsive bidder and entered into a contract with NMED that was executed on July 1, 2023. DBS&A coordinated shakedown and startup of the remediation system in October and November 2023,

and submitted a revised as-built report dated January 8, 2024 that incorporated data from the first month of system operation (DBS&A, 2024).

The work described in this report follows the tasks outlined in the approved work plan, approved requests for contingency set-aside funding, and discussions with the PSTB project manager.

1.2 Remediation System

The remediation system designed for the site is a DPE system, including SVE and whole-fluids extraction. A total of 10 wells are connected to the remediation system using buried conveyance piping. Boring logs for the remediation wells are provided in Appendix A. The survey report is provided in Appendix B.

A total of 5 multi-zone nested wells (BW-8 and RW-1 through RW-4) are clustered around the former source area. Five additional single-zone remediation wells (BW-7R, MW-11, MW-12, MW-13, and MW-16) were installed to address downgradient contamination. Monitor well MW-13 was intended to be a contingency well, but has been operating with the remediation system since startup. Remediation wells are connected to one of three primary SVE conveyance (trunk) lines that are routed to a common manifold using Schedule (SCH) 40 polyvinyl chloride (PVC) piping. The primary trunk lines from source area wells (SVE line 1) and downgradient wells (SVE line 2) are 8-inch- and 4-inch-diameter, respectively. A 2-inch-diameter pipe conveys flow from MW-13 (SVE line 3). The manifold is an 8-inch SCH 40 PVC header, with SCH 40 PVC risers and fittings sized to match the three primary trunk lines. The risers include an analog vacuum gauge, sample port, and a plug for an insertion-type air flow meter. A single trunk line was constructed of 1.5-inch-diameter SCH 40 PVC for the conveyance of combined groundwater from the extraction wells, and is co-located with the SVE conveyance lines. Each extraction well feeds directly into this single conveyance line.

Major remediation equipment was manufactured by Intellishare Environmental (Intellishare) of Menomonie, Wisconsin and H2K Technologies (H2K) of Corcoran, Minnesota. Remediation equipment currently installed includes an Intellishare skid-mounted natural gas fired thermal oxidizer with catalyst module, discharge stack, LNAPL tank, an SVE treatment system package (blower, knockout tank, and controls), and a groundwater treatment system package (oil-water separator, diffused tank aerator [DTA], and clarifier). The two equipment packages are assembled in modified shipping containers. Remediation equipment is located within a fenced compound in the parking lot of the Albertson's grocery store (Figure 3).

Source area wells RW-1 through RW-4 have a Grundfos model 5SQ05-320 ³/₄-horsepower (hp) pump, and the downgradient groundwater extraction wells have a Grundfos model SP 5S10-22 1-hp pump. Each wellhead includes a totalizing flow meter, hose bibb (for collection of groundwater samples), analog pressure gauge, and an air release valve (ARV). Each well also includes a pressure transducer for remote monitoring of fluid levels and control of the pumps.

Utility services required to operate the remediation equipment include electric, which is provided by Xcel Energy (Xcel), and natural gas, which is provided by New Mexico Gas Company (NM Gas). The system also includes a cellular-based telemetry system that operates on the Verizon network. Daily system updates on system operation are provided through e-mail, in addition to alarm conditions and the ability to remote-start the equipment.

1.3 Scope of Work

The scope of work included under WPID #4339 includes 12 months of O&M for the remediation system, quarterly groundwater monitoring, and associated reporting. To ensure that the project objectives were achieved, an authorized representative of DBS&A maintained direct supervisory control of all aspects of the project.

1.4 Quarter Highlights

The principal accomplishments of this reporting period include the following:

- February 8 and 19, March 5 and 27, and April 17 and 28, 2024: Recorded DPE system operations data; sampled process water for laboratory analysis. SVE process vapor samples were only collected on February 8 and 19, 2024.
- March 19 through 20, 2024: Performed troubleshooting of issues with thermal oxidizer flame safety controller alarms and variable frequency drive (VFD) faults with MW-11. An air relief valve (ARV) was replaced at MW-13.
- March 26 through 29, 2024: Performed quarterly groundwater monitoring. Gauged fluid levels in 19 site monitor wells and collected groundwater samples from 14 site monitor wells for laboratory analysis.
- March 27 through April 3 and April 28, 2024: Performed extraction well rehabilitation, including jetting and scrubbing of well screens and flushing submersible pumps.
- April 2 and 3, 2024: Performed groundwater treatment system cleaning and maintenance.

- April 28, 2024: Collected a groundwater sample from RW-2.
- May and June 2024: Prepared the quarterly O&M and monitoring report.

The equipment operated with minimal interruption from February 1, 2024 through the morning of February 20, 2024. The thermal oxidizer experienced a fault on February 20, 2024 that caused the SVE process to be out of service for the remainder of the quarter. The groundwater extraction and treatment system operated the entire quarter, although several wells were out of service intermittently. These issues are further explained in Section 2. A sample was not collected from MW-11. Further discussion is provided in Section 3.

2. Remediation System Operation and Maintenance

Remediation system O&M included six regular visits for the reporting period, with system operation data and laboratory sample collection performed during each event, and four additional visits for system optimization and troubleshooting. Evaluation of the remediation system was performed continuously by using daily updates and alarm notifications from the telemetry system. Vapor monitoring, including field screening and sampling for laboratory analysis, was performed during the two regular site visits when the SVE system was operational. Water samples were collected at each regular O&M event. Operation data for both the remediation system and individual wellheads are provided in Tables 1 and 2. Field notes and forms are provided in Appendix C.

2.1 System Operation Data

Field screening data included air flow, vacuum, and vapor concentrations, as well as installed instrumentation. Vacuum in the SVE lines was measured at each of the wellheads and the manifold using a Dwyer Series 574 Mark III digital manometer. Vapor samples were collected in Tedlar bags using a Xitech High Vacuum Air Sampler at the wellheads and manifold. The vapor samples were field screened with a Honeywell MiniRAE 3000 photoionization detector (PID) for contaminant concentrations. Air flow and velocity were measured at each wellhead and at the manifold with a TSI VelociCalc Series 9535. Data were also collected from the control panels of the installed remediation equipment.

As recorded from the SVE system control panel, total system air flow has ranged from 725 to 730 standard cubic feet per minute (scfm), which is less than the total flow measured in the first quarter. This decrease is a result of the SVE component of the remediation system being turned

off at MW-11, MW-13, and MW-16 due to low influent concentrations. Air flow measured using the VelociCalc has been higher, but may be affected by the piping configuration or minor amounts of moisture in the process air. Mass removal calculations use the lower air flow measured by the system, which produces conservative (lower) estimates of mass removal. Vacuum at the SVE blower was approximately 69 inches water column (inches H₂O) (Table 1) while it was running. This vacuum is higher than the first quarter because MW-11, MW-13, and MW-16 were turned off, as discussed in Section 2.2. The SVE blower operated at approximately 45 hertz (Hz), leaving an additional 25 percent capacity if needed. The Intellishare representative tested the blower at higher speeds during startup, but did not observe a noticeable increase in mass removal.

The combined influent PID reading initially exceeded the capacity of the PID (greater than 15,000 parts per million by volume [ppmv]). Since November 2, 2023, PID readings have ranged from approximately 650 to 1,500 ppmv. PID readings do not always correlate with laboratory concentrations, but these values are a positive indicator of high mass removal. PID readings from the oxidizer discharge were also relatively high initially, but values have been trending lower with ongoing operation of the remediation system, and have mostly been below 100 ppmv since November 27, 2023 (Table 1).

2.2 Wellhead Operation Data

Air flow for individual zones of the source area wells (RW-1 through RW-4 and BW-8) has ranged from approximately 30 to 65 scfm. When they are operating, air flow for downgradient wells BW-7R, MW-11, MW-12, and MW-13 has ranged from approximately 60 to 90 scfm, whereas MW-16 air flow has been approximately 110 scfm. Values have been in line with expected air flow based on limited pilot testing performed by the previous consultant. Observed variability was expected based on slight variations in lithology and changes in well operation. Applied well vacuum increased from approximately 40 inches H₂O to nearly 50 inches H₂O.

PID results from field screening are presented on Figures 4 through 7 and in Table 2. The highest PID readings have been in the deep zone of the source area wells (RW-1 through RW-4 and BW-8). Values have generally been between 1,000 and 3,000 ppmv. PID concentrations in all zones of RW-1 have decreased, which is a positive indicator of mass removal in that area of the plume. PID readings have also remained relatively steady for the intermediate and shallow zones of RW-2, while decreasing in similar zones for other nested wells. As expected, PID readings have been lowest in the off-site wells (BW-7R, MW-11, MW-12, MW-13, and MW-16),

with values in 4 out of 5 wells consistently below 100 ppmv and values in all 5 wells generally below 200 ppmv. The highest PID readings in the off-site wells have been in BW-7R and MW-12, which are closer to the source area than the other 3 wells. Based on consistent low PID readings, DBS&A chose to turn off SVE for wells MW-11, MW-13, and MW-16 following collection of O&M data on January 31, 2024. In the first week of the quarter, PID concentrations in the source area wells generally increased, likely due to increased applied vacuum. DBS&A will continue to monitor trends in individual zones and wells to optimize mass removal from the SVE component of the remediation system, and will be pulsing low-performing wells to maximize removal of contaminants.

Water flow meter readings for individual wells and the treated water discharge are presented in Table 3, together with readings from the pressure transducer installed in each well. DBS&A is evaluating operating water levels and extraction volumes in an effort to optimize mass removal from the groundwater system, monitor well performance, and minimize submerging contamination below the current static water level. DBS&A noticed toward the end of the quarter that groundwater extraction was decreasing for many of the site remediation wells (e.g., water production from MW-16 was negligible in January 2024). After the flow meter for MW-16 was pulled, a significant amount of iron bacteria sludge was observed to have clogged the flow meter. DBS&A implemented a rigorous disinfection and well rehabilitation program during second quarter O&M to remediate groundwater treatment system components affected by this sludge. Details of this work are provided in Section 2.5.

As of April 30, 2024, the remediation system had treated nearly 1.5 million gallons of petroleumcontaminated water. This is the totalized flow volume recorded by the treated water discharge flow meter. This reading has been consistently about 63 percent of the sum total flow from all of the individual groundwater extraction wells (i.e., 30 to 40 percent lower). The treated discharge flow meter was calibrated by PureOps on February 20, 2024, and the meter has 99.8 percent accuracy (Appendix C). The flow meter manufacturer suspects that the piping configuration within the vaults may be affecting flow measurement (i.e., there may not be enough straight pipe before the flow meters at the wellheads).

To investigate this discrepancy, separate flow meters were installed in the valve vaults for wells RW-3 and RW-4 to correlate flow with the existing wellhead meter. The existing flow meter in RW-3 is connected at an elbow, whereas the flow meter in RW-4 is connected to a tee. Flow totals in the secondary meter in RW-3 were approximately half of what was reported on the HMI totalizer, while the RW-4 secondary meter and HMI totalizer readings were similar (within

10 percent). Results of this investigation provided conclusive evidence that a lack of straight pipe prior to the meter results in over-reporting of the flow. DBS&A was unable to investigate the flow accuracy in the single-completion wells due to the tight piping configurations in those vaults. Ultimately, the relative changes in flow totals and flow rates are the data used for system optimization. DBS&A has not observed any physical evidence indicating that there is a pipeline leak between the wells and the remediation system compound. Despite the discrepancy and other operational challenges, the major remediation equipment was treating approximately 7 gallons per minute (gpm) from the 7 operational extraction wells at the end of the second quarter. In accordance with existing discharge permits/agreements, DBS&A reports water flow meter readings to both the City of Clovis (the City) and the New Mexico Office of the State Engineer (OSE). Totals from individual wells that may be reporting inaccurately are conservatively high. DBS&A does not suspect that any under-reporting to OSE has occurred.

2.3 Laboratory Sampling

Laboratory samples were submitted to Hall Environmental Analysis Laboratory (HEAL, dba Eurofins) in Albuquerque, New Mexico for volatile organic compound (VOC) and inorganic analyses in accordance with the approved work plan. Groundwater samples were collected at the combined influent point prior to oil-water separation and at the discharge point after clarification. Groundwater samples for individual wells were collected during the quarterly groundwater monitoring event, as discussed in Section 3. Air samples were collected at the SVE combined influent (manifold), at the oxidizer effluent (discharge stack), and from the DTA effluent. Air samples from individual wells are collected at the wellhead for field screening purposes only. Laboratory results, including chain of custody documentation, are provided in Appendix D.

The analytical results for SVE combined influent laboratory samples collected during startup showed total petroleum hydrocarbon gasoline-range organics (TPH GRO) concentrations of 36,000 and 34,000 micrograms per liter (μ g/L) on November 1 and 3, 2023, respectively. TPH GRO concentrations in influent air samples ranged mostly from 6,500 to 7,800 μ g/L in December 2023 and February 2024. After the SVE at MW-11, MW-13, and MW-16 was shut off, the TPH GRO concentration increased to 14,000 μ g/L on February 8, 2024, but has since dropped back to the normal range. Since December 2023, thermal oxidizer destruction efficiency has averaged more than 99 percent.

During this period of operation, combined influent (raw) water samples contained TPH GRO and benzene, toluene, ethylbenzene, and total xylenes (BTEX) at average concentrations of 2.5 and

0.9 milligrams per liter (mg/L), respectively. Concentrations were the highest at the beginning and the end of the quarter. Benzene, 1,2-dibromoethane (EDB), and 1,2-dichloroethane (EDC) concentrations have been consistently above New Mexico Water Quality Control Commission (NMWQCC) standards.

Concentrations of EDB in treated water samples exceeded the NMWQCC standards. However, treated water is routed to the City wastewater treatment plant for additional treatment. The average EDB concentration was 0.35 μ g/L (Table 5). Average benzene, EDB, and EDC treatment efficiencies have been 97.8, 81.6, and 87.2 percent, respectively, which are typical for the various constituents based on the installed treatment equipment. Treatment efficiencies have been slowly trending higher as operation continues.

Raw and treated water samples were also analyzed for a limited number of inorganic constituents. Average chloride, nitrate (as nitrogen), and sulfate concentrations for influent (raw) water samples collected this quarter were 75, 1.7, and 41 mg/L, respectively, which are below the NMWQCC standards. Average total dissolved solids (TDS) concentration was approximately 470 mg/L (Table 6). The TDS concentration in the treated water sample has generally been similar to that of the influent (raw) water sample.

2.4 Contaminant Removal Performance

Calculations based on two methods (laboratory and PID analysis) were performed to estimate hydrocarbon mass removal by the SVE system (Appendix E). The laboratory analysis method indicated that hydrocarbon mass removal rates averaged approximately 33 pounds per hour (lb/hr) while the SVE system was running in February. Results obtained from the PID analysis were lower (11 lb/hr). However, concentration estimates measured in the field using a portable PID are considered to be for screening purposes only, and do not typically correlate with mass concentrations measured with laboratory data. According to calculations using the laboratory results, and considering removal from both air and water processes, a total mass of nearly 85,000 pounds (14,150 gallons) of hydrocarbons was removed from the site using the installed remediation equipment (Figure 8).

Calculations for estimated emission rates from the remediation system are also provided in Appendix E. Since startup, average emission rates for benzene and TPH GRO are 0.083 and 1.49 lb/hr, respectively, which are below applicable air permitting standards. Although emission rates started high, they are trending lower with continued operation of the remediation equipment. Based on discussions with Intellishare, DBS&A suspects that oxygen deficiency in

the subsurface reduced initial thermal oxidizer efficiency, resulting in incomplete combustion of hydrocarbons. Operation of the remediation system is likely increasing oxygen content, as well as lowering influent contaminant concentrations over time.

During this quarter, electricity was consumed at an average rate of 406 kilowatt-hours (kWh) per day, at an average daily cost of \$34.68. Natural gas was consumed at an average rate of 151 therms per day, at an average daily cost of \$104.73 (Table 7). No natural gas was used in March or April 2024 because the oxidizer was out of service.

2.5 DPE System Maintenance

As mentioned previously, the SVE system is currently out of service due to faults occurring on the thermal oxidizer. McNiel Electric and Intellishare personnel performed troubleshooting on May 21 and 22, 2024. They discovered that a low fire switch within the natural gas and combustion air control valve is defective and needs to be replaced. In addition, they found that the starter on the treated water discharge pump needs to be replaced. Alarms or errors with the discharge pump will disallow the SVE system to operate because the moisture separator is drained into the groundwater treatment system. These controls prevent the groundwater treatment equipment from overflowing if the discharge pump cannot remove water from the clarifier. Repairs for the thermal oxidizer and the discharge pump are scheduled for the week of June 16, 2024. An update on system operation will be provided to the PSTB project manager and summarized in the third quarter report. The third quarter O&M period will begin when DBS&A can confirm consistent operation of the remediation system after repairs are completed.

As the aquifer has become oxygenated, bacterial growth has increased in the groundwater conveyance lines, fittings, and flow meters, causing reduced water flow rates at some of the wells. DBS&A performed a disinfection test using sodium hypochlorite during the second quarter. Sodium hypochlorite was added downhole several times over the course of either several days or 2 weeks. While flow rates increased slightly, there was not a large improvement from the downhole chemical treatment. DBS&A determined that physical methods would be needed to remove the biomass from the well screens and submersible pumps. During the groundwater monitoring event, DBS&A performed an extensive well rehabilitation program where the pumps were removed and the screens were jetted with a mixture of water and acetic acid and scrubbed with a brush. Following well screen jetting and scrubbing, extraction rates increased for the majority of the wells that were treated. Additional disinfection will be needed at more frequent intervals. DBS&A recommends jetting and scrubbing well screens quarterly for optimal performance. There has been no visible improvement in removal of biomass in the

conveyance piping, but more frequent disinfection could cause that biomass to deteriorate and flush into the groundwater treatment system, where it can be removed as sludge.

DPE and oxidizer maintenance were completed following the manufacturers' suggested schedules. Groundwater treatment vessels were cleaned during this groundwater monitoring event and fresh water was used to refill the tanks. Monthly maintenance items included clearing condensate from instrumentation tubing, exercising the process air and dilution valves, treating foam accumulation in the clarifier with liquid household bleach, and inspecting the dilution air and process blower air filter to check for clogging. The product tank level was checked biweekly. DBS&A has scheduled monthly SVE blower oil changes when the system is back online. The motor bearings are greased at each O&M event per the manufacturer's instructions.

3. Groundwater Monitoring

The scope of work for the March 2024 groundwater monitoring event included gauging water levels and collecting groundwater samples in 15 site monitor and remediation wells for laboratory analysis. DBS&A was unable to collect a sample from MW-11 due to VFD pump failure that occurred in February 2024. After the well pump was removed and the well was jetted, scrubbed, and bailed, field staff attempted to collect a groundwater sample using a spare HydraSleeve. Due to operational issues in the field and the timing of the jetting and scrubbing of this well, the collected water was ultimately determined not to be representative of the ambient aquifer conditions and a laboratory sample was not collected.

Due to the schedule that was required to perform well rehabilitation in the parking lot of Optical Source, RW-2 was not sampled until April 28, 2024. Wells BW-6, BW-9, and BW-10 were excluded from the sampling plan during the current monitoring event in accordance with the approved work plan, but will be sampled during the fourth quarter event. Groundwater samples collected from the site monitor wells and remediation wells were analyzed for VOCs, including BTEX, methyl tertiary-butyl ether (MTBE), and total naphthalenes, using EPA method 8260B (full list) and for EDB and EDC using EPA method 504.1.

3.1 Groundwater Monitoring

On March 27 through 30, 2024, depth to water was measured with an electronic interface probe in monitor wells that do not contain a submersible pump. Water levels were measured during remediation system operation and again approximately 24 hours after the remediation system

was turned off to obtain static water level measurements. Due to the extended depth to groundwater, DBS&A cannot safely run an electronic interface probe to the water table in wells with pumps, so transducer data are recorded for the 9 remediation wells with pumps. Transducer data are then used to calculate both depth to water and the groundwater elevation. Table 8 summarizes water level measurements and groundwater elevations from this and previous monitoring events. Water level data were used to prepare a potentiometric surface map for the area under static conditions on March 29 and 30, 2023 (Figure 9).

During the second quarter sampling event, groundwater samples for laboratory analysis were collected from 15 monitor wells and remediation wells. Samples from remediation wells equipped with pumps are sampled using the sample tap at the wellhead while the remediation pump is running. During the current monitoring event, these wells were sampled prior to shutting down the system, so results will be indicative of pumping conditions. All other wells are sampled using dedicated, disposable HydraSleeves, and they were sampled with the remediation system off. The sampling protocol is outlined in Appendix F. Dissolved oxygen (DO), oxidation/reduction potential (ORP), pH, specific conductivity, and temperature were measured in the field during purging using a YSI 556 Multiprobe System (MPS) meter, with the values recorded in the field notes (Appendix C).

Groundwater samples were analyzed for the constituents specified in the scope of work. All laboratory analyses were performed by HEAL. Groundwater analytical organic chemistry data from this and previous monitoring events are summarized in Table 9. The laboratory reports, including chain of custody documentation, are provided in Appendix D. Figure 10 shows the distribution of dissolved-phase hydrocarbon concentrations in groundwater for the current monitoring event.

3.2 LNAPL Recovery

LNAPL was not detected in any monitor wells during this sampling event. Due to operation of the submersible pumps (emulsifying LNAPL near the water table), LNAPL was not expected to be present in any of the remediation wells. The absence of LNAPL from monitor well BW-5 is a positive indicator of remediation system operation. Historical LNAPL recovery data are provided in Table 10.

3.3 Containment of Release

COCs were detected at concentrations above NMWQCC standards in the following monitor wells during the December 2023 sampling event:

- Benzene: BW-5, BW-7R, BW-8, MW-12, MW-13, MW-15, MW-16, RW-2, and RW-4.
- Toluene: BW-8.
- EDB: BW-5, BW-7, BW-7R, BW-8, MW-12, MW-13, MW-15, MW-16, and RW-2 through RW-4.
- *EDC*: BW-5, BW-7, BW-7R, MW-11, MW-12, MW-13, MW-16, and RW-1 through RW-4; the laboratory reporting limit for BW-8 was greater than the NMWQCC standard.
- *Total naphthalenes:* BW-5, BW-8, and RW-2; the laboratory reporting limit for MW-12 and RW-4 was greater than the NMWQCC standard.
- Xylenes: BW-5, BW-8, and RW-2.

Benzene, EDB, and EDC are the COCs that are detected at the site across the widest areal extent. Plume maps for individual contaminants based on data from the current monitoring event are provided as Figures 11 through 13. Data reported during this monitoring event showed effects of active remediation activities on subsurface contaminant concentrations. Several wells on the perimeter of the contaminant plumes had lower concentrations (e.g., RW-1, RW-2, RW-3, BW-5, and BW-7), likely impacted by mobilization of cleaner water outside the plume extent, while the highest contaminant concentrations were detected in wells located closer to the interior of the plume (e.g., RW-4, BW-7R, MW-11, and MW-16).

3.4 Trends or Changes in Site Conditions

Graphs showing historical trends in monitor well contaminant concentrations are provided in Appendix G. Groundwater is encountered beneath the site at depths ranging from approximately 319 to 332 feet below ground surface (bgs), and generally flows to the southsoutheast with an approximate gradient of 0.003 foot per foot. The overall flow direction and gradient are similar to those noted during previous monitoring events. Since 2014, groundwater elevations have declined by approximately 6.4 feet, resulting in an average annual decline of approximately 0.65 foot per year. As operation of the remediation system continues, DBS&A will evaluate the impacts of drawdown on the water table in future quarterly reports.

Historical groundwater analytical organic chemistry data for site wells are summarized in Table 9. Baseline plume maps are provided in Appendix H. Contaminant concentrations are decreasing for the majority of site wells with operation of the DPE system. However, the lack of SVE system operation in March and April 2024 may have negatively impacted groundwater concentrations during the current monitoring event. Trends will be monitored closely as the system is restarted for the third quarter. Notable trends or changes regarding specific wells are as follows:

- *BW-5*: LNAPL was measured at only 0.02 foot, and was not present last quarter. Concentrations of all COCs increased slightly since the last quarter, but were still significantly lower than the analytical results from 2016. Benzene, total xylenes, EDB, EDC, and total naphthalenes concentrations were all above the NMWQCC standards. This well is located between two active remediation wells, RW-3 and RW-4. Pumping rates at these wells decreased during this quarter due to biomass accumulation. The lower extraction rates likely impacted the amount of cleaner water that was moving toward BW-5 from outside the plume extent.
- *BW-7*: Between September 2015 and March 2021, concentrations of BTEX constituents decreased from 17,750 to 1,016.3 µg/L, including individual decreases in benzene (9,400 to 1,000 µg/L), toluene (5,000 to <2.0 µg/L), ethylbenzene (750 to <13 µg/L), and total xylenes (2,600 to 3.3 µg/L). Since active remediation started, BTEX concentrations have been below laboratory reporting limits, and only concentrations of EDB (0.36 µg/L) and EDC (240 µg/L) continue to exceed the NMWQCC standards. Concentrations of all other COCs were below laboratory reporting limits. This is a positive indicator of ongoing remediation system operation.
- *BW-7R*: Concentrations of BTEX constituents have decreased from 2,684 µg/L to only 15.2 µg/L. Benzene was detected at the lowest concentration since the well was installed in 2019. During the current monitoring event, benzene (5.8 µg/L), EDB (3.3 µg/L), and EDC (190 µg/L) were detected at concentrations at or above the NMWQCC standards. As this well has continued to operate, it is likely that cleaner water from outside the plume area is moving toward this well.
- *BW-8*: While the concentrations of BTEX constituents increased by an order of magnitude, concentrations in this well are approximately half of pre-remediation concentrations. BW-8 operates solely with the SVE system, but the SVE system was off for approximately 5 weeks before groundwater monitoring occurred. This increase in concentrations is likely due to

rebound while the SVE system was off. The recent changes in COC concentrations are a positive indicator that consistent SVE operation will remediate the source area.

- *MW-11*: A sample was not collected this quarter due to an inoperable pump.
- *MW-12*: Concentrations of most COCs were the lowest in the historical record since the well was installed in 2019. Decreases since active remediation began include benzene (540 to 44 μg/L) and EDC (120 to 89 μg/L). These concentrations exceeded the NMWQCC standards. The concentration of EDB remained similar to the start of remediation (1.2 to 1.4 μg/L). As remediation system operation continues, it is possible that clean water from the perimeter of the plume is infiltrating the area around MW-12.
- MW-15: The benzene concentration in this well was 33 µg/L (above the NMWQCC standard), which is an increase from last quarter's value of 11 µg/L. Benzene concentrations in the well have historically been below laboratory reporting limits. DBS&A will continue to monitor concentration trends in this downgradient well during remediation system operation.
- MW-16: Concentrations in this well continue to fluctuate. The benzene concentration decreased by nearly half this quarter (1,500 to 640 µg/L). The EDC concentration increased from 77 to 97 µg/L. EDB concentration continues to exceed the NMWQCC standard. This remediation well is pulling contaminated water from upgradient to be treated by the remediation system. As upgradient concentrations decrease, concentrations in the well will continue to decline.
- *RW-1:* Concentrations of all COCs except EDC were below laboratory reporting limits. EDC concentration decreased from 48 to 15 μg/L. This well is likely benefitting from cleaner water migrating south as remediation system operation continues.
- *RW-2:* This well was sampled nearly 4 weeks after all of the other wells in order to perform well and pump rehabilitation. At the end of the quarter, this well was jetted and scrubbed and the well pump was flushed. A sample was collected after the pump was reinstalled and while the rest of the remediation system was off. Despite these conditions, LNAPL was not observed during well rehabilitation, and the concentrations of a majority of the COCs were lower than they were in December 2020, prior to the start of remediation. BTEX concentrations increased since active remediation was initiated. Benzene concentration increased from 41 to 100 µg/L and total xylenes concentration increased from 120 to 1,600 µg/L. The total naphthalenes concentration is at an all-time high of 250 µg/L. These increases are likely due to rebound from the SVE system being out of service.

- *RW-3*: Since the installation of the well in 2019, concentrations of BTEX constituents have decreased significantly from 11,810 µg/L, and were non-detect during this quarter. Only the concentration of EDB (0.36 µg/L) exceeded the NMWQCC standard. Overall, these concentrations are a positive indicator of remediation system operation and mass removal in the source area.
- *RW-4*: COC concentrations in this well were generally increasing since the well's installation in 2019, but BTEX concentration has decreased by more than half since the start of remediation (6,360 to 2,537 µg/L). Increases include EDB (5.2 to 47 µg/L) and EDC (28 to 230 µg/L). As remediation continues, this source area well has been pulling contaminated groundwater from under the roadway, and may be mingling with some of the cleaner water migrating from the north. DBS&A will continue to monitor concentration trends in this well when the remediation system returns to normal operation.

COC concentrations in wells MW-14 and MW-17 continued to be below laboratory reporting limits or NMWQCC standards.

4. Conclusions and Recommendations

The DPE remediation system operates as designed, and is already showing a positive impact in the source area, although equipment issues limited operation of the SVE system during the current reporting period. Measurable LNAPL was only present in BW-5 (0.02 foot) during this monitoring event, and contaminant concentrations are changing as anticipated. COC concentrations in wells within the heart of the plume are generally decreasing. Influent (raw) water concentrations in remediation system samples fluctuated throughout the quarter as wells were taken offline for rehabilitation. It is likely that fresh water is being pulled from upgradient into the source area due to pumping by the remediation wells, resulting in containment of the plume in the capture zone of the remediation well network. Trends will be monitored closely to maximize mass removal from the subsurface.

A total mass of nearly 85,000 pounds (14,150 gallons) of hydrocarbons has been removed from the site using the installed remediation equipment. Thermal oxidizer efficiency is improving with continued operation and has consistently averaged more than 99 percent since December 2023. The groundwater treatment system is also operating within design parameters. Both lighter hydrocarbons (e.g., benzene and TPH GRO) and heavier hydrocarbons (e.g., EDB and EDC) are

being removed at an average of 95 to 99 percent. Trends in contaminant concentrations will be monitored closely so that equipment can be operated within manufacturer specifications.

Installed remediation wells are also performing in accordance with the design, although several individual groundwater extraction flow rates have decreased with ongoing system operation. Further investigation and corrective action to restore groundwater production is ongoing, but the well screen and pump rehabilitation efforts improved the flow rates at most of the wells. DBS&A intends to disinfect the wells and conveyance piping to treat bacterial growth in the remediation system. DBS&A also intends to perform well jetting and scrubbing at least one more time under this work plan to optimize groundwater extraction and mass removal in the groundwater phase.

DBS&A recommends performing the remaining quarterly groundwater monitoring events similar to the current event, with collection of two sets of water level data (during pumping and static) and collection of remediation well groundwater samples with the system operating. This procedure provides the clearest way to evaluate individual well concentrations during ongoing system operation.

System operation was paused following the end of the second quarter. Once system repairs have been completed, DBS&A recommends that the installed remediation system continue to operate in accordance with the approved work plan. O&M and evaluation of the remediation system will continue to be performed on a biweekly, quarterly, and annual basis (DBS&A, 2023). This evaluation will include a combination of field screening data and laboratory samples. The system will be operated and maintained for optimal efficiency and to maximize mass removal.

Statement of Familiarity

I, the undersigned, am personally familiar with the information submitted in this report and the attached documents and attest that it is true and complete.

Signature: And f	-
Authorized Representative: <u>Thomas Golden, P.E.</u>	_
Affiliation: <u>Daniel B. Stephens & Associates, Inc.</u>	

Title: <u>Senior Engineer</u>

Date:	June 14, 2024	

References

- Daniel B. Stephens & Associates, Inc. (DBS&A). 2021. Final remediation plan, Former Y Station State Lead Site, 721 Commerce Way, Clovis, New Mexico, Facility ID #53742, Release ID #4746, WPID #4134. Prepared for New Mexico Environment Department Petroleum Storage Tank Bureau, Roswell, New Mexico. July 16, 2021. Revised August 12, 2021.
- DBS&A. 2023. Work plan for quarterly remediation system shakedown and startup, operation and maintenance, and groundwater monitoring, State Lead Remediation Services Contract (24-667-3200-27686), Former Y Station State Lead Site, Clovis, New Mexico, Facility #53742, Release ID #4746. Transmitted by letter from Thomas Golden and James A. Kelsey to Renee Romero, New Mexico Environment Department Petroleum Storage Tank Bureau, regarding Revised work plan for quarterly remediation system shakedown and startup, operation and maintenance, and groundwater monitoring, Former Y Station State Lead Site, 721 Commerce Way, Clovis, New Mexico, Facility #53742, Release ID #4746. September 20, 2023.
- DBS&A. 2024. Revised remediation system installation as-built report, Former Y Station State Lead Site, Clovis, New Mexico, Facility #53742, Release ID #4746. Prepared for New Mexico Environment Department Petroleum Storage Tank Bureau, Roswell, New Mexico. May 2, 2022. Revised January 8, 2024.

New Mexico Environment Department (NMED). 2023. Letter from Lorena Goerger to Thomas Golden, DBS&A, regarding Phase 5 fixed-price workplan approval for the Former Y Station Site, 721 Commerce Way, Clovis, New Mexico, Facility #: 53742, Release ID #: 4746, WPID #: 4339. September 28, 2023.

Figures

S:\PROJECTS\DB18.1157_FORMER_Y_STATION\GISWXDS\F01_AREA_MAP.MXD

Figure 1

S:\PROJECTS\DB18.1157_FORMER_Y_STATION\GIS\MXDS\F02_SITE_MAP.MXD

Explanation

- Single completion monitor well
- Nested monitor well
- \otimes Well plugged and abandoned

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **Site Map**

Figure 2

- Manhole
- Raw water / soil vapor
- Treated water
 - Sewer main

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **Remediation System Layout**

P:_DB18-1157\2024-2Q Rpt.6-24\Figures\Word\Fig04_PID-Shallow.docx

P:_DB18-1157\2024-2Q Rpt.6-24\Figures\Word\Fig06_PID-Deep.docx

Figure 8

S:\PROJECTS\DB18.1157_FORMER_Y_STATION\GIS\MXDS\FLUID LEVELS\GWE_2024-03.MXD

3943.39 Potentiometric surface elevation (ft msl) [3948.27^{*}] Well not used for contouring

Potentiometric surface elevation contour (ft msl)

** Depth to water measured while remediation system operating

Aerial image: Maxar, Vivid 8/20/2023

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **Potentiometric Surface Elevations** March 29 and 30, 2024

S:\PROJECTS\DB18.1157_FORMER_Y_STATION\GIS\MXDS\CHEMISTRY\DPC_2024-03.MXD

Aerial image: Maxar, Vivid 8/20/2023

Notes: 1. All concentrations reported in micrograms per liter (µg/L).

- 2. RED indicates concentration that exceeds NMWQCC standard.
- 3. ^a Laboratory reporting limit is equal to or greater than the applicable standard.
- 4. Samples on this figure were collected using HydraSleeve sampling devices.

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **Distribution of Dissolved-Phase Contaminants** March and April 2024

Figure 10

S:\PROJECTS\DB18.1157_FORMER_Y_STATION\GIS\MXDS\CHEMISTRY\BENZENE\BZ_2024-03.MXD

- Benzene concentration, µg/L
- Single completion monitor well
- \odot Nested monitor well
 - Benzene isocontour (µg/L), dashed where inferred

Notes: 1. All concentrations reported in micrograms per liter (μ g/L).

- 2. **RED** indicates concentration that exceeds NMWQCC standard.
- 3. Samples on this figure were collected using HydraSleeve sampling devices.

Aerial image: Maxar, Vivid 8/20/2023

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **Benzene Isoconcentration Map** March and April 2024

S:\PROJECTS\DB18.1157_FORMER_Y_STATION\GIS\MXDS\CHEMISTRY\EDB\EDB_2024-03.MXD

- Single completion monitor well
- $oldsymbol{eta}$ Nested monitor well
- Notes: 1. All concentrations reported in micrograms per liter (μ g/L).
 - 2. RED indicates concentration that exceeds NMWQCC standard.
 - 3. Samples on this figure were collected using HydraSleeve sampling devices.

Aerial image: Maxar, Vivid 8/20/2023

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **EDB** Isoconcentration Map March and April 2024

Figure 12

S:\PROJECTS\DB18.1157 FORMER Y STATION\GIS\MXDS\CHEMISTRY\EDC\EDC

- $oldsymbol{eta}$ Nested monitor well
- Notes: 1. All concentrations reported in micrograms per liter (μ g/L).
 - 2. **RED** indicates concentration that exceeds NMWQCC standard.
 - 3. Samples on this figure were collected using HydraSleeve sampling devices.

JN DB18.1157

Aerial image: Maxar, Vivid 8/20/2023

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **EDC** Isoconcentration Map March and April 2024

Tables

				SVE Line	1		SVE Line	2		SVE Line	3	Con	nbined Inf	fluent	Oxidizer Effluent	DPE
Date	Oxidizer Hours	Time	PID (ppmv)	Flow ^a (cfm)	Vac ^b (in. H ₂ O)	PID (ppmv)	Flow ^a (cfm)	Vac ^b (in. H ₂ O)	PID (ppmv)	Flow ^a (cfm)	Vac ^b (in. H ₂ O)	PID (ppmv)	Flow ^a (cfm)	Vac ^b (in. H ₂ O)	PID (ppmv)	Flow ^c (cfm)
11/1/2023	NA	13:56	7,332	581	42	398	222	41	NA	NA	NA	15,000	902	42	3,193	NA
11/2/2023	31	8:45	2,231	932	47	312	267	47	NA	NA	NA	1,718	761	48	1,374	NA
11/3/2023	58	15:08	1,505	675	44	261	288	44	NA	NA	NA	1,446	1,005	44	481	762
11/8/2023	175	7:10	1,804	NA	45	312	NA	44	70	NA	45	1,564	NA	45	399	750
11/16/2023	368	14:10	1,703	815	44	230	292	44	169	66	43	1,368	1,008	45	219	766
11/21/2023	485	13:47	1,885	843	46	195	304	46	9	64	45	1,523	1,031	47	171	762
11/27/2023	633	13:16	1,480	674	50	142	295	49	77	66	48	1,105	946	50	92	765
12/12/2023	963	8:00	1,525	1,460	53	78	311	50	56	72	51	825	950	51	46	775
1/3/2024	1,463	7:30	1,293	1,079	53	76	353	52	15	82	51	788	1,090	54	189	775
1/16/2024	1,756	14:00	538	1,351	57	31	485	48	25	127	48	702	1,400	55	54	781
1/31/2024	2,115	8:30	1,243	1,419	54	132	378	52	NR	NR	21	896	1,285	54	82	764
2/8/2024	2,301	8:40	1,329	1,290	3,695	119	287	59		Off		1,026	1,017	61	59	725
2/19/2024	2,568	13:00	776	1,633	66	64	301	65		Off		643	974	65	38	729
3/5/2024	SVE system off due to thermal oxidizer fault															
3/26/2024																
4/17/2024																
4/28/2024																

Table 1. SVE System Manifold and Oxidizer Operation Data

^a Vapor flow reading measured with a VelociCalc flow meter.

^b Vacuum reading taken from the combined influent sample port using a digital manometer.

^c Vapor flow reading taken from soil vapor extraction (SVE) system control panel, which converts flow from data collected by an averaging pitot tube.

^d Vacuum reading taken from SVE system control panel.

PID = Photoionization detector

ppmv = Parts per million by volume

cfm = Cubic feet per minute

in. H_2O = Inches water column

NA = Not available

NR = No reading

E	Blower
	Vac ^d
	(in. H ₂ O)
	NA
	42
	47
	50
	48
	53
	53
	56
	56
	57
	59
	68
	69

Table 2.SVE System Wellhead Operation DataPage 1 of 3

			RW-1s			RW-1i			RW-1d			RW-2s			RW-2i			RW-2d			RW-3s			RW-3i	
		PID	Flow ^a	Vac	PID	Flow ^a	Vac	PID	Flow ^a	Vac	PID	Flow ^a	Vac	PID	Flow ^a	Vac									
Date	Time	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(scfm)	(in. H ₂ O)	(ppmv)	(scfm)	(in. H ₂ O)	(ppmv)	(scfm)	(in. H ₂ O)
11/2/2023	NA	NA	NA	NA	NA	NA	NA	2,106	59	29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
11/3/2023	NA	1,773	NA	30	3,065	NA	30	1,829	55	30	1,719	NA	30	1,658	NA	29	1,075	31	29	373	NA	30	NA	NA	NA
11/6/2023	15:49	NA	NA	NA	NA	NA	NA	1,970	NA	31	NA	NA	NA	NA	NA	NA	1,269	NA	32	NA	NA	NA	NA	NA	NA
11/8/2023	7:26	1,445	NA	32	3,063	NA	32	3,321	NA	33	2,016	NA	37	4,609	NA	41	1,751	NA	45	236	NA	34	2,128	NA	34
11/16/2023	7:39	779	45	31	1,729	31	32	1,968	56	32	1,733	50	33	2,129	41	33	1,033	30	33	397	37	35	782	31	36
11/21/2023	15:45	522	53	29	1,177	33	29	2,542	53	29	1,755	49	34	2,517	42	33	1,155	29	33	74	37	35	632	32	35
11/27/2023	13:46	535	45	33	808	31	34	1,755	49	34	1,453	47	36	1,894	40	35	972	28	35	171	37	35	433	31	35
12/12/2023	8:00	553	45	34	666	29	34	2,180	41	34	1,703	42	35	3,108	34	34	1,164	27	34	80	36	36	325	28	36
1/3/2024	10:30	261	34	31	388	29	32	921	37	32	1,228	33	33	1,771	34	32	1,135	24	32	15	33	34	110	28	34
1/16/2024	8:00	308	55	29	359	31	30	1,152	51	30	1,593	46	33	2,383	5	31	1,757	32	31	12	34	32	96	12	32
1/31/2024	8:30	223	49	30	245	32	30	863	43	30	1,468	47	35	2,212	48	34	2,033	35	33	41	42	35	223	34	35
2/8/2024	8:40	226	58	37	390	35	38	921	60	37	1,951	52	39	3,166	46	37	2,344	33	37	159	41	43	72	34	42
2/19/2024	13:00	264	53	39	209	34	40	701	57	39	1,342	53	43	1,657	51	43	1,612	33	43	29	48	45	146	39	45
3/5/2024											SVE :	system of	f due to the	ermal oxidiz	er fault										
3/26/2024	1																								
4/17/2024	1																								
4/28/2024	1																								

Table 2.SVE System Wellhead Operation DataPage 2 of 3

			RW-3d			RW-4s	;		RW-4i			RW-4d			BW-8s			BW-8i			BW-8d			BW-7R	
		PID	Flow ^a	Vac																					
Date	Time	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(cfm)	(in. H ₂ O)	(ppmv)	(scfm)	(in. H ₂ O)	(ppmv)	(scfm)	(in. H ₂ O)	(ppmv)	(scfm)	(in. H ₂ O)
11/2/2023	NA	1,892	39	29	NA	NA	NA	NA	NA	NA	3,479	48	30	NA	NA	NA	NA	NA	NA	1,638	47	30	1,786	66	31
11/3/2023	NA	1,730	46	23	160	NA	35	1,483	NA	34	1,552	11	9	229	NA	27	479	NA	28	1,694	55	34	638	63	34
11/6/2023	15:49	1,398	NA	33	205	NA	37	1,365	NA	36	1,376	NA	34	NA	NA	NA	NA	NA	NA	1,631	NA	31	NA	NA	NA
11/8/2023	7:26	1,680	NA	34	232	NA	41	2,297	NA	39	1,819	NA	38	316	NA	33	1,051	NA	32	1,854	NA	33	463	NA	33
11/16/2023	7:39	1,792	40	36	171	43	36	513	48	37	1,727	46	36	438	60	32	736	41	33	1,829	39	33	411	60	33
11/21/2023	15:45	2,384	40	35	75	41	38	512	50	37	2,303	49	36	103	65	32	312	42	32	1,995	39	32	250	60	34
11/27/2023	13:46	1,891	40	37	31	39	40	325	46	39	1,517	45	38	45	62	33	401	39	34	1,545	37	34	164	60	34
12/12/2023	8:00	1,911	34	36	3	45	40	81	41	40	1,861	43	40	402	57	33	466	38	33	1,660	36	33	66	50	36
1/3/2024	10:30	1,722	37	34	23	45	39	71	41	38	1,274	43	38	35	53	30	111	37	31	994	36	31	45	43	31
1/16/2024	8:00	1,994	42	32	2	53	37	21	48	36	1,448	49	36	162	59	29	228	41	29	1,129	41	29	25	58	29
1/31/2024	8:30	1,662	44	35	24	59	39	26	51	38	1,089	54	38	67	64	31	129	42	31	862	41	31	60	60	32
2/8/2024	8:40	1,682	46	42	66	62	47	113	54	44	1,136	53	44	47	65	37	59	43	37	847	44	37	65	83	48
2/19/2024	13:00	1,539	50	44	21	55	48	24	55	47	966	63	48	201	45	40	351	45	41	1,024	46	41	37	88	48
3/5/2024	4 SVE system off due to thermal oxidizer fault																								
3/26/2024																									
4/17/2024																									
4/28/2024																									

Table 2.SVE System Wellhead Operation DataPage 3 of 3

			MW-11			MW-12			MW-13			MW-16	
Data	T:	PID	Flow ^a	Vac									
Date	Time	(ppmv)	(ctm)	(In. H ₂ O)	(ppmv)	(ctm)	(In. H ₂ O)	(ppmv)	(ctm)	(In. H ₂ O)	(ppmv)	(ctm)	(In. H ₂ O)
11/2/2023	NA	8	67	32	NA	NA	NA	77	3	1	113	108	35
11/3/2023	NA	175	64	38	303	64	34	NA	NA	NA	127	98	34
11/6/2023	15:49	NA	NA	35	NA	NA	NA	NA	NA	33	NA	NA	33
11/8/2023	7:26	86	NA	39	148	NA	7	58	NA	36	249	NA	35
11/16/2023	7:39	49	64	35	316	64	32	77	65	33	38	102	31
11/21/2023	15:45	59	60	37	246	64	33	30	63	35	61	96	33
11/27/2023	13:46	7	59	39	193	64	35	53	64	36	95	96	36
12/12/2023	8:00	5	66	41	99	58	38	3	55	36	6	93	36
1/3/2024	10:30	30	53	41	497	60	35	29	53	36	13	86	36
1/16/2024	8:00	3	69	40	57	70	33	1	65	34	2	115	34
1/31/2024	8:30	46	69	41	118	76	37	51	0	2	40	109	36
2/8/2024	8:40		Off		58	92	49		Off			Off	
2/19/2024	13:00		Off		NR	NR	NR		Off			Off	
3/5/2024	SVE system off due to thermal oxidizer fault												
3/26/2024													
4/17/2024													
4/28/2024													

^a Vapor flow reading measured with a VelociCalc flow meter.

SVE = Soil vapor extraction PID = Photoionization detector

- cfm = Cubic feet per minute
- in. H_2O = Inches water column
- ppmv = Parts per million by volume
- NA = Not available

Table 3. Water Flow Meter Readings for Individual Wells and Treated Discharge

Page 1 of 3

		R	W-1	RV	V-2	RV	V-3	R۱	N-4	BW	/-7R	MV	W-11	MV	V-12
		Totalized		Totalized		Totalized		Totalized		Totalized		Totalized		Totalized	
Data	Timo	Flow ^a	Transducer	Flow ^a	Transducer	Flow ^a	Transducer	Flow ^a	Transducer	Flow ^a	Transducer	Flow ^a	Transducer	Flow ^a	Transducer
Motor S	orial Number	20.004	270 NII	20.006	202 NII	20.006	202 NI	20.006	30 PUD4	20.006	276 NI	20.004		20.006	
11/1/2022		20 000	570 NL	20 000	303 NL	20 000	505 NL	Demodiation		20000	570 NL	20 000	1379 INL	20 000	ISOS INL
11/1/2023	11.10	1 026	22.0	ΝΙΑ	22.4	12 760	20.0			E 122	9,6	E 402	22.0	102	26.5
11/3/2023	17.50	4,000	22.0		23.4	14.144	29.9	12 271	22.2	5,152	0.0	5,405 6 124	25.0	192	20.5
11/5/2023	17.50	4,097	10.5		23.0	14,144	20.1	10,271	22.5	5,240	27.5	15 401	25.2	192	20.0
11/0/2023	07:10	14,200	20.0	2 000	24.4	33,072	20.1	10,279	20.0	5,240	27.0	20,600	22.7	200	20.5
11/8/2023	07:10	14,300	20.9	3,900	24.0	44,800	30.1	43,100	17.7	5,100	27.5	20,600	22.7	200	20.4
11/16/2023	12:47	25,470	21.9	9,000	20.0	91,200	30.3	98,200	20.8	5,100	22.1	43,320	22.9	107	20.7
11/21/2023	13.47	40,200	20.0	10,700	20.5	120,724	<u> </u>	90,200	20.1	14,000	21.9	02,009	22.0	192	20.5
11/27/2023	15.10	40,290	20.5	12,395	25.0	105,275	50.5	99,152	19.0	14,000	19.4	01,415	22.1	7 1 2 2 0 2 1 2 2	20.4
12/12/2023	10.09	01 100		17,904		240,400	NA 21.2		24.1	10,100		127 600		1,125	
12/12/2023	12.30	122 617	14.5	10 517	20.0	240,409	21.5	102 020	24.1	23,020	24.0	175 025	22.5	106,074	23.5
1/2/2023	10.02	142.450	14.5	10,517	25.1	245 077	32.0	102,920	20.4 20.5	24.042	20.5	101 571	24.5	114 510	24.5
1/16/2024	12.20	167,000	14.0	27 500	25.1	270,000	22.0	242,440	20.5	54,042	20.5	205 100	25.0	114,510	24.0
1/10/2024	09.27	107,900	10.4	42.665	25.9	204 1 4 2	22.0	242,400	20.2	71 407	24.2	205,100	25.0	107,500	22.0
1/31/2024	15:40	194,844	14.4	43,005	25.9	384,143	33.4	305,807	27.4	71,407	20.8	220,760	20.7	197,052	24.0
2/9/2024	15.40	195,415	12.1	44,012	25.0	204,145	22.4	227.404	21.5	01.024	20.0	221,050	20.7	190,202	24.0
2/8/2024	12:00	211,117	10.2	52,968	20.9	384,197	33.4	337,494	28.3	01.024	22.0	227,235	25.9	210,897	25.0
2/19/2024	13:00	235,080	10.3	69,679	42.8	393,974	33.9	303,939	29.3	91,015	21.8	238,078	25.4	233,831	24.3
2/21/2024	17:20	257,400	15.5 ND	75 120	22.1 ND	394,009 402,006	54.0	201,000	29.1 ND	92,050	21.2 ND	240,227	25.4 ND	235,500	24.7 ND
2/29/2024	17.50	252,795		00.074		402,000		402 610		102,905		240,405		240,790	
3/3/2024	10.00	200,505	9.0	00,074		400,505	55.9 ND	402,019	29.0	112 702	22.9 ND	240,400	29.0	254,050	24.0 ND
3/24/2024	10.00	291,502		01,150		422,501		430,200		112,705		240,492		272,007	
2/26/2024	08.00	292,910	07	01,150	20 6	422,501		440,044	21.6	112,705		240,492	20.1	273,521	24.5
3/20/2024	10:45	294,511	0.7	01,150	20.0	422,579	54.5	445,450	51.0 ND	112,705	23.0 ND	240,492	50.1	274,550	24.5
3/31/2024	10.45	295,900		01,142		423,420		444,001		112,705		240,339		275,040	
4/0/2024	10.00	204 512		01,145		423,340		474,054		112,034		249,057		295,700	
4/9/2024	11:20	304,513		01 1 4 2		423,540		480,553		112,034		249,057		299,502	
4/1//2024	07:20	314,353	/./	01,143	28.9	423,540	31.8 21.7	527,098	22.1	112,034	22.0	249,057		322,605	23.4
4/20/2024	07:30	314,500	25.3	01,143	20./	423,540	51./		25./	112,034		249,058		343,810	23.δ
4/30/2024	09:45	314,506		01.272		423,540		505,803		112,034		249,057		340,401	
5/31/2024	09:50	314,937	NK	81,373	NR	423,540	NR	565,803	NK	113,834	NR	249,057	NK	347,490	NR

Notes are provided at the end of the table.

Table 3. Water Flow Meter Readings for Individual Wells and Treated Discharge Page 2 of 3

		MM	/-13	MM	/-16	Treated Discharge
Date	Time	Totalized Flow ^a (gallons)	Transducer (feet) ^b	Totalized Flow ^a (gallons)	Transducer (feet) ^b	Totalized Flow ^a (gallons)
OSE P	OD Number	CC-0253	36 POD8	CC-0254	48 POD3	NA
Meter Se	rial Number	20 004	229 NL	20 006.	384 NL	20 004230 NL
11/1/2023	—		Re	mediation syst	em started	
11/3/2023	11:10	5,365	19.5	5,700	28.9	38,400
11/3/2023	17:50	5,890	19.5	6,354	29.1	42,000
11/6/2023	16:00	14,722	20.3	15,097	29.1	95,400
11/8/2023	07:10	18,700	21.5	18,800	29.7	119,800
11/16/2023	08:34	23,970	19.8	36,130	22.0	221,900
11/21/2023	13:47	40,991	19.1	48,639	20.9	300,900
11/27/2023	13:16	58,457	20.7	63,787	21.5	385,800
11/30/2023	16:09	61,070	NA	69,651	NA	425,300
12/12/2023	12:38	73,858	21.4	91,384	21.0	566,000
12/31/2023	10:02	96,308	21.3	110,067	20.9	755,800
1/3/2024	10:30	99,730	22.0	110,825	21.5	780,000
1/16/2024	12:30	109,000	22.0	111,000	20.7	891,200
1/31/2024	08:27	117,379	22.3	111,415	21.3	1,024,824
1/31/2024	15:40	117,504	22.3	111,418	20.7	1,027,800
2/8/2024	08:40	121,031	22.3	111,464	21.5	1,084,400
2/19/2024	13:00	122,485	22.2	112,054	20.2	1,131,900
2/21/2024	07:00	122,496	22.7	112,054	20.5	NR
2/29/2024	17:30	122,496	NR	112,417	NR	1,203,600
3/5/2024	15:00	122,496	22.6	122,417	20.8	1,226,300
3/24/2024	10:00	126,744	NR	112,417	NR	1,306,800
3/25/2024	10:00	127,551	NR	112,417	NR	1,310,700
3/26/2024	08:00	128,349	21.6	112,417	21.1	1,314,700
3/31/2024	10:45	128,502	NR	112,417	NR	1,318,500
4/8/2024	10:00	139,578	NR	112,417	NR	1,368,900
4/9/2024	10:00	141,542	NR	112,417	NR	1,378,600
4/17/2024	11:20	152,884	21.3	112,417	21.1	1,439,700
4/28/2024	07:30	166,807	21.3	112,417	20.6	1,490,100
4/30/2024	09:45	167,173	NR	112,417	NR	1,491,600
5/31/2024	09:50	167,173	NR	112,417	NR	1,493,600

Notes are provided on the next page.

Table 3. Water Flow Meter Readings for Individual Wells and Treated Discharge Page 3 of 3

^a Flow meters are all Pulsafeeder Multijet Model PME.

^b Height of water column above the installed pressure transducer.

OSE = Office of the State Engineer

POD = Point of diversion

NA = Not available

Table 4.Analytical Organic Chemistry Data for the Remediation System, AirPage 1 of 3

				Co	oncentration ^e	' (μg/L)		
Sampling Point	Date Sampled	Benzene	Toluene	Ethyl- benzene	Total Xvlenes	BTEX	МТВЕ	TPH GRO
DTA Effluent	11/3/2023	0.27	1.3	0.27	1.9	3.7	< 0.25	18
	11/9/2023 ^b	374	547	33	144	1,098	<1.00	16,600
	11/16/2023	19	19	2.3	17	57.3	<0.25	180
	11/28/2023	16	15	1.6	17	49.6	<0.25	160
	2/19/2024	1.5	1	0.20	1.7	4.4	<0.25	17
	3/26/2024	0.13	<0.10	<0.10	<0.20	0.13	NR	<5.0
SVE Combined Influent	11/1/2023	450	880	66	320	1,716	<25	36,000
	11/3/2023	490	1,000	80	410	1,980	<25	34,000
	11/9/2023	314	372	10.2	34.4	731	<1.00	13,800
	11/16/2023	330	740	57	330	1,457	<25	16,000
	11/21/2023	240	540	44	250	1,074	<25	12,000
	11/28/2023	170	450	37	220	877	<25	9,800
	12/12/2023	130	320	23	120	593	<25	7,800
	1/3/2024	99	340	29	150	618	<25	7,700
	1/16/2024	86	330	30	150	596	<25	7,700
	1/31/2024	64	260	23	110	457	<25	6,500
	2/8/2024	150	630	56	280	1,116	<25	14,000
	2/19/2024	68	320	33	160	581	<12	6,700
	3/5/2024			SVE system c	off due to the	rmal oxidizer	fault	
	3/26/2024							

Table 4.Analytical Organic Chemistry Data for the Remediation System, AirPage 2 of 3

				Co	oncentration ^e	゚(μg/L)		
	Date			Ethyl-	Total			
Sampling Point	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	TPH GRO
SVE Combined Influent	4/17/2024		:	SVE system o	ff due to the	rmal oxidizer f	fault	
(cont.)	4/28/2024							
Oxidizer Effluent	11/1/2023	150	160	15	47	372	<12	6,500
	11/3/2023	190	230	23	80	523	<12	4,400
	11/9/2023	99	340	29	126	594	<1.00	2,700
	11/16/2023	44	40	3.9	18	106	<1.2	420
	11/21/2023	24	15	1.2	4.1	44	<1.2	160
	11/28/2023	17	20	2.8	17	57	<1.2	220
	12/12/2023	8.3	5.0	0.36	1.2	14.86	<0.25	55
	1/3/2024	6.0	3.6	0.24	0.80	10.6	<0.25	36
	1/16/2024	6.8	6.3	0.48	2.0	15.58	<0.20	74
	1/31/2024	4.0	7.0	1	6.00	18.00	<0.20	76
	2/8/2024	3.7	9.4	2.0	12	27.1	<0.25	110
	2/19/2024	2.9	2.6	0.32	1.9	7.72	<0.25	27
	3/5/2024		:	SVE system o	ff due to the	rmal oxidizer f	fault	
	3/26/2024							
	4/17/2024							
	4/28/2024							

Notes are provided on the next page.

Table 4.Analytical Organic Chemistry Data for the Remediation System, Air
Page 3 of 3

^a Analyzed using U.S. Environmental Protection Agency (EPA) methods 8021B for volatile organic compounds (VOCs) and 8015B for total petroleum hydrocarbons (TPH).

 μ g/L = Micrograms per liter

- BTEX = Benzene, toluene, ethylbenzene, and total xylenes
- MTBE = Methyl tertiary-butyl ether
- GRO = Gasoline-range organics

^b Data not believed to be representative of actual field conditions based on other sample results.

Table 5.Analytical Organic Chemistry Data for the Remediation System, WaterPage 1 of 2

					Co	oncentratio	nª (µg/L)				
	Date			Ethyl-	Total						TPH
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB ^b	EDC	PAHs	GRO
NMW	QCC Standard	5	1,000	700	620	None	100	0.05	5	30	NA
GW Combined Influent	11/1/2023	640	260	30	170	1,100	<1.0	2.3	55	8.2	3,800
	11/3/2023	1,100	750	71	440	2,361	<1.0	14	97	33.2	6,900
	11/9/2023	1,300	1,020	48	523	2,891	<13.9	<10 ^c	115	<13.5 ^d	6,090
	11/16/2023	1,400	1,000	70	590	3,060	<20	21	180	<200 ^c	7,800
	11/22/2023	1,200	840	58	560	2,658	<2.0	15	120	32.8	7,000
	11/28/2023	2,000	950	58	620	3,628	<20	22	230	<200 ^c	8,200
	12/14/2023	1,700	1,700	110	1,100	4,610	<20	42	210	46	11,000
	1/3/2024	990	470	31	320	1,811	<20	12	140	<200 ^c	5,300
	1/16/2024	850	590	35	370	1,845	<20	12	140	<200 ^c	5,600
	1/31/2024	36	21	0.80	12	69.80	<1.0	12	6.1	<10	4,000
	2/8/2024	820	400	19.00	260	1,499	1.3	9.1	130	27.3	4.2
	2/19/2024	1,100	310	18.00	280	1,708	<5.0	7.6	160	14	4.5
	3/5/2024	31	<1.0	<1.0	6.9	37.9	<1.0	1.2	85	<10	0.35
	3/26/2024	130	24	<1.0	35	189	<1.0	5.9	91	2.6	0.71
	4/17/2024	290	270	<5.0	130	690	< 5.0	9.3	95	<50	2.0
	4/28/2024	490	410	7.5	200	1,108	<5.0	9.5	130	13	3.2
OWS Effluent	11/3/2023	1,100	770	65	450	2,385	<1.0	14	97	37.2	6,700
GW Treated Effluent	11/1/2023	19	9.1	1.0	7.2	36.3	<1.0	0.58	9.3	3.8	160
	11/3/2023	42	28	2.1	18	90.1	<1.0	3.8	18	9.3	380
	11/9/2023	31	23.6	1.1	14.3	69.9	<1.39	4.5	15.5	7.69 ^d	<1080

Table 5.Analytical Organic Chemistry Data for the Remediation System, WaterPage 2 of 2

					Co	oncentratio	nª (µg/L)				
	Date			Ethyl-	Total						TPH
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB ^b	EDC	PAHs	GRO
NMW	QCC Standard	5	1,000	700	620	None	100	0.05	5	30	NA
GW Treated Effluent	11/16/2023	59	38	2.4	25	124.4	<1.0	6.3	30	12	450
(cont.)	11/22/2023	39	26	1.5	19	85.5	<1.0	3.4	19	7.9	360
	11/28/2023	58	29	1.3	20	108.3	<1.0	5.4	25	8.0	460
	12/14/2023	21	15	<1.0	11	47	<1.0	4.4	19	4.9	240
	1/3/2024	5.4	2.6	<1.0	2.5	10.5	<1.0	1.4	5.5	2.6	120
	1/16/2024	8.2	5.9	<1.0	4.8	18.9	<1.0	1.8	10	2.6	170
	1/31/2024	3.0	1.9	<1.0	1.6	6.5	<1.0	1.2	5.0	<10	90
	2/8/2024	2.1	1.0	<1.0	<1.5	3.1	<1.0	0.73	4.1	<10	0.097
	2/19/2024	1.1	<1.0	<1.0	<1.5	1.1	<1.0	0.40	1.7	2.9	0.098
	3/5/2024	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	0.031	<1.0	<10	<0.050
	3/26/2024	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	0.18	1.1	<10	<0.050
	4/17/2024	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	0.55	2.2	<10	0.073
	4/28/2024	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	0.22	1.5	<10	< 0.050

Bold indicates that value exceeds the New Mexico Water Quality Control Commission (NMWQCC) standard.

^a Analyzed using U.S. Environmental Protection Agency (EPA) method 8260B, unless otherwise noted.

^b Analyzed using EPA method 8011/504.1

^c Reporting limit is equal to or greater than the standard.

^d Reported as naphthalene only.

 μ g/L = Micrograms per liter

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary-butyl ether

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

PAHs = Polycyclic aromatic hydrocarbons (total naphthalenes = naphthalene + 1-methylnaphthalene + 2-methylnaphthalene)

TPH = Total petroleum hydrocarbons

GRO = Gasoline-range organics

Table 6.Analytical Inorganic Chemistry Data for the Remediation SystemPage 1 of 2

			Concentrati	on ^a (mg/L)	
Well Name	Date Sampled	Chloride	Nitrate (as N)	Sulfate	TDS ^b
NMW	QCC Standard	250	10	600	1,000
GW Combined Influent	11/1/2023	87	2.3	51	550
	11/3/2023	84	2.1	46	490
	11/9/2023	82	2.3	47	NA
	11/16/2023	86	2.2	45	502
	11/22/2023	84	2.2	45	536
	11/28/2023	85	1.6	45	544
	12/14/2023	92	0.59	48	630
	1/3/2024	82	2.1	44	526
	1/16/2024	79	2.1	43	544
	1/31/2024	81	2.0	44	494
	2/8/2024	84	1.8	44	492
	2/19/2024	86	<1.0	37	438
	3/5/2024	66	1.3	33	420
	3/27/2024	77	2.0	41	510
	4/17/2024	72	2	47	490
	4/28/2024	64	<1.0	43	470
GW Treated Effluent	11/1/2023	88	2.4	51	536
	11/3/2023	84	2.1	46	315
	11/9/2023	82	2.3	47	NA

Table 6.Analytical Inorganic Chemistry Data for the Remediation SystemPage 2 of 2

			Concentrati	on ^a (mg/L)	
	Date		Nitrate		
Well Name	Sampled	Chloride	(as N)	Sulfate	TDS ^b
NMW	QCC Standard	250	10	600	1,000
GW Treated Effluent	11/16/2023	85	2.1	45	496
(cont.)	11/22/2023	84	2.2	45	552
	11/28/2023	85	1.5	47	556
	12/14/2023	80	0.71	43	528
	1/3/2024	80	2.0	43	526
	1/16/2024	80	2.0	43	529
	1/31/2024	78	1.9	42	505
	2/8/2024	85	1.7	44	508
	2/19/2024	79	<1.0	35	424
	3/5/2024	78	1.3	38	460
	3/27/2024	78	1.9	41	510
	4/17/2024	77	1.6	43	520
	4/28/2024	65	<1.0	43	460

^a Analyzed using U.S. Environmental Protection Agency (EPA) method 300.0, unless otherwise noted.

^b Analyzed using SM 2540C Mod.

mg/L = Milligrams per liter

TDS = Total dissolved solids

NMWQCC = New Mexico Water Quality Control Commission

GW = Groundwater

NA = Not analyzed

Table 7.Utility Usage Summary

Electric (Xcel)			Natural Gas (NM Gas Co)				
Service Address: 1901 N. Prince Street Unit Container			Service Address: 1901 N Prince St				
Account #: 54	-0013827214-6			Account #: 00	0237605-141263	1-4	
Meter #: 1601	37895			Meter #: 169	1600		
Read Date	Days Billed	kWh Used	Total Charges	Read Date	Days Billed	Therms	Total Charges
9/29/2023	START						
10/10/2023	11	19	\$8.95	10/6/2023	START		\$82.57
11/9/2023	29	4,490	\$469.04	11/6/2023	\$847.87		
12/12/2023	34	21,806	\$1,463.34	12/7/2023	10,730	\$8,324.94	
1/11/2024	30	20,034	\$1,358.28	1/6/2024	30	12,154	\$8,759.54
2/12/2024	31	25,099	\$1,734.42	2/6/2024	31	12,697	\$8,897.61
3/13/2024	31	12,780	\$1,107.80	3/7/2024	30	5,712	\$3,816.73
4/11/2024	29	6,328	\$767.09	4/8/2024	32	0	\$31.35
5/10/2024	29	4,468	\$551.73	5/7/2024	29	0	\$31.35
	Daily average	446	\$34.98			198	\$143.50
Da	aily average, 1Q	705	\$47.96			387	\$282.41
Da	aily average, 2Q	406	\$34.68			151	\$104.73

Table 8.Fluid Level MeasurementsPage 1 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
BW-1	295-345	4,279.88 ^c	4/13/2012	322.49	_	0.00	3,957.39
			7/27/2012	322.69	_	0.00	3,957.19
			9/24/2012	322.75	_	0.00	3,957.13
		4,279.55	4/29/2014	325.75	_	0.00	3,953.80
			5/8/2015	326.60	_	0.00	3,952.95
			9/10/2015	326.96	—	0.00	3,952.59
			3/29/2016	327.12	—	0.00	3,952.43
			7/26/2016	327.34	—	0.00	3,952.21
			7/10/2018 ^d	327.93	—	0.00	3,951.62
			2/14/2019 ^d	328.18	—	0.00	3,951.37
			3/6/2019	328.11	—	0.00	3,951.44
			5/2/2019 ^d	328.41	—	0.00	3,951.14
			5/20/2019	328.20	—	0.00	3,951.35
			8/13/2019	328.61	—	0.00	3,950.94
			9/16/2019	328.85	—	0.00	3,950.70
			6/8/2020	328.91	—	0.00	3,950.64
			9/9/2020	329.24	_	0.00	3,950.31
			12/27/2020	329.27		0.00	3,950.28
			3/19/2021	329.44		0.00	3,950.11
			5/31/2022		Well plugged a	ind abandoned	

Table 8.Fluid Level Measurements
Page 2 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
BW-2	287-347	4,280.53 ^c	10/26/2009	323.12		0.00	3,957.41
			9/24/2012	323.21		0.00	3,957.32
		4,280.23	4/29/2014	326.14	_	0.00	3,954.09
			5/8/2015	327.00	_	0.00	3,953.23
			9/10/2015	327.33	—	0.00	3,952.90
			3/29/2016	327.52	—	0.00	3,952.71
			7/26/2016	327.78	—	0.00	3,952.45
			7/10/2018 ^d	328.38	—	0.00	3,951.85
			2/14/2019 ^d	328.60	—	0.00	3,951.63
			3/6/2019	328.53	—	0.00	3,951.70
			5/2/2019 ^d	328.97	—	0.00	3,951.26
			5/20/2019	328.61	—	0.00	3,951.62
			8/13/2019	329.03	—	0.00	3,951.20
			9/17/2019	328.98	—	0.00	3,951.25
			6/8/2020	329.34	—	0.00	3,950.89
			9/9/2020	329.62	—	0.00	3,950.61
			12/27/2020	329.75	_	0.00	3,950.48
			3/19/2021	329.90	_	0.00	3,950.33
			5/31/2022		Well plugged a	ind abandoned	

Table 8.Fluid Level MeasurementsPage 3 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
BW-3	287-347	4,280.17 ^c	10/26/2009	322.36		0.00	3,957.81
			9/24/2012	322.44		0.00	3,957.73
		4,279.91	4/29/2014	325.38		0.00	3,954.53
			5/8/2015	326.20	—	0.00	3,953.71
			9/10/2015	326.56	—	0.00	3,953.35
			3/29/2016	326.71	—	0.00	3,953.20
			7/26/2016	326.94	—	0.00	3,952.97
			7/10/2018 ^d	327.52	—	0.00	3,952.39
			2/14/2019 ^d	327.76	—	0.00	3,952.15
			3/6/2019	327.75	—	0.00	3,952.16
			5/2/2019 ^d	328.00	—	0.00	3,951.91
			5/20/2019	327.79	—	0.00	3,952.12
			8/13/2019	328.19	—	0.00	3,951.72
			9/16/2019	328.11	—	0.00	3,951.80
			6/8/2020	328.49	—	0.00	3,951.42
			9/9/2020	328.79	—	0.00	3,951.12
			12/27/2020	328.87		0.00	3,951.04
			3/19/2021	329.00		0.00	3,950.91
			5/31/2022		Well plugged a	nd abandoned	

Table 8.Fluid Level MeasurementsPage 4 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
BW-4	275-345	4,280.02	4/29/2014	326.04		0.00	3,953.98
			5/8/2015	326.80		0.00	3,953.22
			9/10/2015	327.23		0.00	3,952.79
			3/29/2016	327.27		0.00	3,952.75
			7/26/2016	327.52		0.00	3,952.50
			7/10/2018 ^d	327.95		0.00	3,952.07
			2/14/2019 ^d	328.29	—	0.00	3,951.73
			3/6/2019	328.20	—	0.00	3,951.82
			5/2/2019 ^d	328.59		0.00	3,951.43
			5/20/2019	328.36	—	0.00	3,951.66
			8/13/2019	328.74	—	0.00	3,951.28
			9/17/2019	328.59		0.00	3,951.43
			6/8/2020	329.04		0.00	3,950.98
			9/9/2020	329.33		0.00	3,950.69
			12/27/2020	329.42	—	0.00	3,950.60
			3/19/2021	329.50	—	0.00	3,950.52
			12/13/2023	332.30		0.00	3,947.72
			12/14/2023	332.04		0.00	3,947.98
			3/29/2024	332.26		0.00	3,947.76
BW-5	273.5-348.5	4,278.99	4/29/2014	325.53		0.00	3,953.46
			5/8/2015	326.27		0.00	3,952.72

Table 8.Fluid Level MeasurementsPage 5 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
BW-5 (cont.)	273.5-348.5	4,278.99	9/10/2015	326.73	_	0.00	3,952.26
			3/29/2016	326.87	_	0.00	3,952.12
			7/26/2016	326.98		0.00	3,952.01
			7/10/2018 ^d	327.53		0.00	3,951.46
			2/14/2019 ^d	329.46	NA	NA	NA
			3/6/2019	329.28	327.36	1.92	3,951.15
			5/2/2019 ^d	329.70	NA	NA	NA
			5/20/2019	329.35	327.58	1.77	3,950.97
			8/13/2019	328.89	328.20	0.69	3,950.62
			9/20/2019	328.94	328.18	0.76	3,950.62
			6/8/2020	329.65	329.07	0.58	3,949.78
			9/9/2020	329.34	328.92	0.42	3,949.97
			12/27/2020	329.20	329.06	0.14	3,949.90
			3/20/2021	329.34	329.19	0.15	3,949.76
			12/13/2023	332.29	329.19	0.00	3,946.70
			12/14/2023	331.53	329.19	0.00	3,947.46
			3/29/2024	332.03	332.01	0.02	3,946.98
BW-6	275–345	4,280.24	4/29/2014	326.46	—	0.00	3,953.78
			5/8/2015	327.27		0.00	3,952.97
			9/10/2015	327.60		0.00	3,952.64
			3/29/2016	327.70	—	0.00	3,952.54

Table 8.Fluid Level MeasurementsPage 6 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
BW-6 (cont.)	275-345	4,280.24	7/26/2016	328.08		0.00	3,952.16
			7/10/2018 ^d	328.72		0.00	3,951.52
			2/14/2019 ^d	328.91		0.00	3,951.33
			3/6/2019	328.82		0.00	3,951.42
			5/2/2019 ^d	329.23	—	0.00	3,951.01
			5/20/2019	328.91	—	0.00	3,951.33
			8/13/2019	329.35	—	0.00	3,950.89
			9/16/2019	329.18	—	0.00	3,951.06
			6/8/2020	329.70	—	0.00	3,950.54
			9/9/2020	330.00	—	0.00	3,950.24
			12/27/2020	330.07	—	0.00	3,950.17
			3/19/2021	330.24		0.00	3,950.00
			12/13/2023	332.80	—	0.00	3,947.44
			3/29/2024	332.01	—	0.00	3,948.23
BW-7	284–349	4,277.47	4/29/2014	324.63	—	0.00	3,952.84
			5/8/2015	325.42	—	0.00	3,952.05
			9/10/2015	325.84	—	0.00	3,951.63
			3/29/2016	326.01		0.00	3,951.46
			7/26/2016	326.14		0.00	3,951.33
			3/6/2019	326.88		0.00	3,950.59
			5/20/2019	327.11		0.00	3,950.36

Table 8.Fluid Level Measurements
Page 7 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
BW-7 (cont.)	284-349	4,277.47	8/13/2019	327.47	_	0.00	3,950.00
			9/18/2019	327.39	_	0.00	3,950.08
			6/8/2020	327.83		0.00	3,949.64
			9/9/2020	328.13	—	0.00	3,949.34
			12/27/2020	328.22	—	0.00	3,949.25
			3/19/2021	328.38	—	0.00	3,949.09
			12/13/2023	331.06	—	0.00	3,946.41
			12/14/2023	330.73	—	0.00	3,946.74
			3/29/2024	331.22	—	0.00	3,946.25
BW-7R	286.8-357.1	4,277.44	8/13/2019	327.33	—	0.00	3,950.11
			9/21/2019	327.80	—	0.00	3,949.64
			6/8/2020	327.83	—	0.00	3,949.61
			9/9/2020	328.08	_	0.00	3,949.36
			12/27/2020	328.19	_	0.00	3,949.25
			3/19/2021	328.39	—	0.00	3,949.05
		4,277.58 ^e	12/13/2023 ^f	334.2	—	0.00	3,943.38
			12/14/2023 ^f	330.7	—	0.00	3,946.88
			3/29/2024 ^f	331.0	_	0.00	3,946.58
BW-8	287-347	4,278.74	3/29/2016	326.61	_	0.00	3,952.13
			7/26/2016	326.75		0.00	3,951.99
			7/10/2018 ^d	327.33	—	0.00	3,951.41

Table 8.Fluid Level MeasurementsPage 8 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
BW-8 (cont.)	287-347	4,278.74	2/14/2019 ^d	327.73		0.00	3,951.01
			3/6/2019	327.55		0.00	3,951.19
			5/20/2019	327.72		0.00	3,951.02
			8/13/2019	328.10	—	0.00	3,950.64
			9/18/2019	327.99	—	0.00	3,950.75
			6/8/2020	328.34	—	0.00	3,950.40
			9/9/2020	328.73	—	0.00	3,950.01
			12/27/2020	328.89	—	0.00	3,949.85
			3/20/2021	328.93	—	0.00	3,949.81
		4,277.89 ^e	12/13/2023	330.68	—	0.00	3,947.21
			12/14/2023	330.47	—	0.00	3,947.42
			3/29/2024	331.02	—	0.00	3,946.87
BW-9	287–347	4,278.31	3/29/2016	326.30	—	0.00	3,952.01
			7/26/2016	326.60	—	0.00	3,951.71
			3/6/2019	327.33	—	0.00	3,950.98
			5/2/2019 ^d	327.67	—	0.00	3,950.64
			5/20/2019	327.44	—	0.00	3,950.87
			8/13/2019	327.81	—	0.00	3,950.50
			9/17/2019	327.74		0.00	3,950.57
			6/8/2020	328.11		0.00	3,950.20

Table 8.Fluid Level MeasurementsPage 9 of 14

Well Name	Screened Interval (feet bas)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
BW-9 (cont.)	287–347	4,278.31	9/9/2020	328.45		0.00	3,949.86
			12/27/2020	328.52		0.00	3,949.79
			3/19/2021	328.62	_	0.00	3,949.69
			12/13/2023	331.43		0.00	3,946.88
			3/29/2024	331.36		0.00	3,946.95
BW-10	306–346	4,275.11	3/29/2016	323.92	—	0.00	3,951.19
			7/26/2016	324.21	—	0.00	3,950.90
			3/6/2019	324.96	—	0.00	3,950.15
			5/20/2019	324.99	—	0.00	3,950.12
			8/13/2019	325.44	—	0.00	3,949.67
			9/17/2019	325.30	—	0.00	3,949.81
			6/8/2020	325.77	—	0.00	3,949.34
			9/9/2020	326.15	—	0.00	3,948.96
			12/27/2020	326.23	—	0.00	3,948.88
			3/19/2021	326.35	—	0.00	3,948.76
			12/13/2023	329.14	—	0.00	3,945.97
			3/29/2024	329.07	—	0.00	3,946.04
MW-11	285.5-355.5	4,274.64	8/13/2019	325.81		0.00	3,948.83
			9/18/2019	325.85		0.00	3,948.79
			6/8/2020	326.24		0.00	3,948.40

Table 8.Fluid Level MeasurementsPage 10 of 14

Well Name	Screened Interval	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
MW-11 (cont.)	285.5-355.5	4.273.83 ^e	9/9/2020	326.68		0.00	3.947.96
		.,	12/27/2020	326.70		0.00	3,947.94
			3/19/2021	326.88		0.00	3,947.76
			12/13/2023 ^f	336.1		0.00	3,937.73
			12/14/2023 ^f	328.5		0.00	3,945.33
			3/29/2024 ^{f,g}	328.5		0.00	3,945.33
MW-12	286.5-356.7	4,277.60	8/13/2019	328.16		0.00	3,949.44
			9/20/2019	328.14		0.00	3,949.46
			6/8/2020	328.60	_	0.00	3,949.00
			9/9/2020	328.93		0.00	3,948.67
			12/27/2020	329.05		0.00	3,948.55
			3/20/2021	329.22		0.00	3,948.38
		4,277.32 ^e	12/13/2023 ^f	334.8		0.00	3,942.52
			12/14/2023 ^f	331.2		0.00	3,946.12
			3/29/2024 ^f	331.4		0.00	3,945.92
MW-13	287–357	4,275.82	8/13/2019	326.33		0.00	3,949.49
			9/21/2019	326.44		0.00	3,949.38
			6/8/2020	326.77		0.00	3,949.05
			9/9/2020	327.08		0.00	3,948.74
			12/27/2020	327.21		0.00	3,948.61

Table 8.Fluid Level MeasurementsPage 11 of 14

Well Name	Screened Interval	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
MW-13 (cont.)	287-357	4,275.82	3/19/2021	327.38		0.00	3,948.44
		4,275.35 ^e	12/13/2023 ^f	330.3		0.00	3,945.05
			12/14/2023 ^f	329.2		0.00	3,946.15
			3/30/2024 ^f	329.7	_	0.00	3,945.65
MW-14	280.5-350.7	4,265.25	9/19/2019	318.03		0.00	3,947.22
			6/8/2020	318.52		0.00	3,946.73
			9/9/2020	319.02	—	0.00	3,946.23
			12/27/2020	319.21	—	0.00	3,946.04
			3/19/2021	319.34	—	0.00	3,945.91
			12/13/2023	321.56	—	0.00	3,943.69
			12/14/2023	321.70	—	0.00	3,943.55
			3/29/2024	321.86	—	0.00	3,943.39
MW-15	282.0-352.3	4,268.58	6/8/2020	322.86	—	0.00	3,945.72
			9/9/2020	323.38	—	0.00	3,945.20
			12/27/2020	323.63	—	0.00	3,944.95
			3/19/2021	323.76	—	0.00	3,944.82
			12/13/2023	325.97	—	0.00	3,942.61
			12/14/2023	326.02		0.00	3,942.56
			3/29/2024	326.13	_	0.00	3,942.45

Table 8.Fluid Level MeasurementsPage 12 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
MW-16	289.0-359.3	4,276.23	6/8/2020	328.75		0.00	3,947.48
			9/9/2020	329.14		0.00	3,947.09
			12/27/2020	329.27		0.00	3,946.96
			3/19/2021	329.44		0.00	3,946.79
		4,276.04 ^e	12/13/2023 ^f	335.1		0.00	3,940.94
			12/14/2023 ^f	331.6	_	0.00	3,944.44
			3/29/2024 ^f	331.2		0.00	3,944.84
MW-17	288.4–358.7	4,277.42	6/8/2020	329.19	—	0.00	3,948.23
			9/9/2020	329.58	—	0.00	3,947.84
			12/27/2020	329.78		0.00	3,947.64
			3/19/2021	329.89		0.00	3,947.53
			12/13/2023	332.38	—	0.00	3,945.04
			12/14/2023	332.35	—	0.00	3,945.07
			3/29/2024	332.49	—	0.00	3,944.93
RW-1	264.9-355.3	4,280.00	8/13/2019	328.89	—	0.00	3,951.11
			9/19/2019	328.84	—	0.00	3,951.16
			6/8/2020	329.22	—	0.00	3,950.78
			9/9/2020	329.47		0.00	3,950.53
			12/27/2020	329.63		0.00	3,950.37
			3/20/2021	329.74		0.00	3,950.26

Table 8.Fluid Level MeasurementsPage 13 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
RW-1 (cont.)	264.9-355.3	4,279.56 ^e	12/13/2023 ^f	343.4		0.00	3,936.16
			12/14/2023 ^f	331.7		0.00	3,947.86
			3/29/2024 ^f	331.9		0.00	3,947.66
RW-2	289.8-360.1	4,279.70	8/13/2019	329.00		0.00	3,950.70
			9/18/2019	328.97		0.00	3,950.73
			6/8/2020	329.28	—	0.00	3,950.42
			9/9/2020	329.58	—	0.00	3,950.12
			12/27/2020	329.77	—	0.00	3,949.93
			3/19/2021	330.07	329.72	0.35	3,949.89
		4,278.97 ^e	12/13/2023 ^f	332.9	—	0.00	3,946.07
			12/14/2023 ^f	2023 ^f 331.8 —		0.00	3,947.17
			3/29/2024 ^f	330.7	—	0.00	3,948.27
RW-3	289.3–359.5	4,278.78	9/20/2019	327.95	—	0.00	3,950.83
			6/8/2020	328.25	—	0.00	3,950.53
			9/9/2020	328.56	—	0.00	3,950.22
			12/27/2020	328.68	—	0.00	3,950.10
			3/20/2021	328.83	—	0.00	3,949.95
		4,278.53 ^e	12/13/2023 ^f	334.3	—	0.00	3,944.23
			12/14/2023 ^f	330.9		0.00	3,947.63
			3/29/2024 ^f	330.9		0.00	3,947.63

Table 8.Fluid Level MeasurementsPage 14 of 14

Well Name	Screened Interval (feet bgs)	Top of Casing Elevation ^a (feet msl)	Date Measured	Depth to Water (feet btoc)	Depth to LNAPL (feet btoc)	LNAPL Thickness (feet)	Groundwater Elevation ^b (feet msl)
RW-4	291.2-361.5	4,278.84	9/19/2019	328.48		0.00	3,950.36
			6/8/2020	328.85		0.00	3,949.99
			9/9/2020	329.18		0.00	3,949.66
			12/27/2020	329.27		0.00	3,949.57
			3/19/2021	329.38	—	0.00	3,949.46
		4,278.10 ^e	12/13/2023 ^f	341.6		0.00	3,936.50
			12/14/2023 ^f	331.2		0.00	3,946.90
			3/29/2024 ^f	331.5		0.00	3,946.60

Note: Pre-2017 data reported by Brown Environmental, Inc. (BEI, 2016).

^a Surveyed by Lydick Engineers & Surveyors, October 2019 or June 2020. For consistency, historical groundwater elevations reference current survey data.

^b Groundwater elevation (GWE) corrected for LNAPL thickness using the following equation: GWE = Top of Casing Elevation – (DTW – [LNAPL thickness x 0.75]).

^c Well survey data reported by BEI following well installation.

^d Data reported by Brown Environmental, Inc. (BEI, 2019).

^e Surveyed by Lydick Engineers & Surveyors, April 2022, following remediation system installation.

^f Transducer data used to calculate depth to water and groundwater elevation.

^g Depth to water recorded while remediation system was operating.

bgs = Below ground surface

btoc = Below top of casing

msl = Above mean sea level

LNAPL = Light nonaqueous-phase liquid

Table 9.Groundwater Analytical Organic Chemistry DataPage 1 of 13

			Concentration ^a (µg/L)								
	Date			Ethyl-	Total					Total	
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes	
NMV	VQCC Standard	5	1,000	700	620	None	100	0.05	5	30	
BW-1	4/13/2012	240	61	4.5	20	325.5	1.6	<1.0 ^b	3.5	<10	
	9/25/2012	290	29	4.9	34	357.9	<1.0	<1.0 ^b	5.2	<10	
	9/25/2012 ^c	200	46	7.8	45	298.8	<1.0	< 1.0 ^b	6.2	<10	
	4/30/2014	50	6.0	<1.0	1.6	57.6	<1.0	< 1.0 ^b	1.4	<10	
	5/7/2015	130	5.5	<1.0	5.6	141.1	1.1	< 1.0 ^b	2.6	<10	
	9/11/2015	13	55	<1.0	<1.5	68	<1.0	< 1.0 ^b	<1.0	<10	
	3/30/2016	40	130	<1.0	<1.5	170	<1.0	< 1.0 ^b	1.3	<10	
	7/27/2016	18	15	<1.0	<1.5	33	1.2	< 1.0 ^b	1.9	<10	
	7/10/2018	<1.0	2.9	<1.0	<1.5	2.9	<1.0	< 1.0 ^b	<1.0	<10	
	7/10/2018 ^c	<1.0	2.9	<1.0	<1.5	2.9	<1.0	< 1.0 ^b	<1.0	<10	
	2/15/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10	
	2/15/2019 ^c	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10	
	5/3/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 1.0 ^b	<1.0	<10	
	5/3/2019 ^c	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 1.0 ^b	<1.0	<10	
	5/22/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10	
	9/16/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0093 ^d	<1.0	<10	
	6/9/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0093 ^d	<1.0	<10	
	5/31/2022				Well pl	ugged and	abandonec	ł			

Table 9.Groundwater Analytical Organic Chemistry DataPage 2 of 13

			Concentration ^a (µg/L)							
	Date			Ethyl-	Total					Total
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes
NMV	VQCC Standard	5	1,000	700	620	None	100	0.05	5	30
BW-2	9/25/2012	21	15	<1.0	6.2	42.2	<1.0	<1.0 ^b	1.0	<10
	4/29/2014	<1.0	5.6	<1.0	<1.5	5.6	<1.0	< 1.0 ^b	<1.0	<10
	5/7/2015	<1.0	18	<1.0	<1.5	18	<1.0	< 1.0 ^b	<1.0	<10
	9/10/2015	7.2	21	<1.0	<1.5	28.2	<1.0	< 1.0 ^b	<1.0	<10
	3/29/2016	<1.0	97	<1.0	<1.5	97	<1.0	< 1.0 ^b	<1.0	<10
	7/26/2016	<1.0	2.5	<1.0	<1.5	2.5	<1.0	< 1.0 ^b	<1.0	<10
	7/10/2018	<1.0	1.7	<1.0	<1.5	1.7	<1.0	< 1.0 ^b	<1.0	<10
	2/14/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0095 ^d	<1.0	<10
	5/2/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0 ^b	<1.0	<10
	5/21/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0095 ^d	<1.0	<10
	9/17/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0092 ^d	<1.0	<10
	6/9/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10
	5/31/2022				Well pl	ugged and	abandonec	ł		
BW-3	9/25/2012	1.4	56	<1.0	6.1	63.5	<1.0	< 1.0 ^b	<1.0	<10
	4/29/2014	<1.0	14	<1.0	<1.5	14	<1.0	< 1.0 ^b	<1.0	<10
	5/7/2015	2.6	5.0	<1.0	3.5	11.1	<1.0	< 1.0 ^b	<1.0	<10
	9/10/2015	<1.0	46	<1.0	<1.5	46	<1.0	<1.0 ^b	<1.0	<10
	3/29/2016	<1.0	180	<1.0	2.2	182.2	<1.0	<1.0 ^b	<1.0	<10
	7/26/2016	<1.0	4.0	<1.0	<1.5	4.0	<1.0	<1.0 ^b	<1.0	<10

Table 9.Groundwater Analytical Organic Chemistry DataPage 3 of 13

			Concentration ^a (µg/L)							
	Date			Ethyl-	Total					Total
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes
NMV	VQCC Standard	5	1,000	700	620	None	100	0.05	5	30
BW-3 (cont.)	7/10/2018	<1.0	4.3	<1.0	<1.5	4.3	<1.0	<1.0 ^b	<1.0	<10
	2/15/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10
	5/3/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 1.0 ^b	<1.0	<10
	5/21/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10
	9/16/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0093 ^d	<1.0	<10
	6/9/2020	<1.0	1.2	<1.0	<1.5	1.2	<1.0	< 0.0094 ^d	<1.0	<10
	5/31/2022				Well pl	ugged and	abandonec	ł		
BW-4	4/30/2014	<1.0	11	<1.0	<1.5	11	<1.0	< 1.0 ^b	1.8	<10
	5/7/2015	1,100	1,100	61	600	2,861	<1.0	< 1.0 ^b	32	<10
	9/10/2015	1.9	43	<1.0	<1.5	44.9	<1.0	< 1.0 ^b	<1.0	<10
	3/30/2016	200	200	5.1	33	438.1	<1.0	< 1.0 ^b	6.9	<10
	7/27/2016	140	85	1.2	15	241.2	<1.0	< 1.0 ^b	6.9	<10
	5/22/2019	1.8	<1.0	<1.0	<1.5	1.8	<1.0	<0.0094 ^d	2.1	<10
	9/17/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0092 ^d	<1.0	<10
	6/10/2020	2.2	<1.0	<1.0	<1.5	2.2	<1.0	<0.0093 ^d	5.0	<10
	9/11/2020	1.6	<1.0	<1.0	<1.5	1.6	<1.0	< 0.0094 ^d	3.3	<10
	12/28/2020 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0095 ^d	1.1	<10
	3/20/2021 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0095 ^d	1.6	<10

Table 9.Groundwater Analytical Organic Chemistry DataPage 4 of 13

			Concentration ^a (µg/L)								
Well Name	Date Sampled	Benzene	Toluene	Ethyl- benzene	Total Xvlenes	BTEX	MTBE	EDB	EDC	Total Naphthalenes	
NMV	VOCC Standard	5	1.000	700	620	None	100	0.05	5	30	
BW-4 (cont.)	12/14/2023 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0094 ^d	<1.0	<10	
	3/29/2024 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0095 ^d	<1.0	<10	
BW-5	4/29/2014	2,100	1,800	200	990	5,090	<1.0	29	100	59.9	
	5/8/2015	3,700	2,800	300	1,700	8,500	<5.0	51	180	83	
	9/11/2015	2,000	1,400	220	900	4,520	<5.0	18	100	80	
	9/11/2015 ^c	1,900	1,300	230	960	4,390	<5.0	20	100	64	
	3/30/2016	5,000	4,200	500	2,000	11,700	<5.0	54	230	<500 ^b	
	7/28/2016	2,000	2,400	270	1,300	5,970	<10	29	110	141	
	5/20/2019– 3/20/2021	Well not sampled due to presence of LNAPL									
	12/14/2023 ^e	<2.0	2.5	<2.0	76	78.5	<2.0	0.29 ^d	4.4	<20	
	3/29/2024 ^e	90	660	88	1,800	2,638	<20	13 ^d	21	1,260	
BW-6	4/29/2014	<1.0	10	<1.0	<1.5	10	<1.0	<1.0 ^b	<1.0	<10	
	5/7/2015	<1.0	8.4	<1.0	<1.5	8.4	<1.0	< 1.0 ^b	<1.0	<10	
	9/10/2015	<1.0	36	<1.0	<1.5	36	<1.0	<1.0 ^b	<1.0	<10	
	3/29/2016	<1.0	130	<1.0	<1.5	130	<1.0	< 1.0 ^b	<1.0	<10	
	7/26/2016	<1.0	3.8	<1.0	<1.5	3.8	<1.0	<1.0 ^b	<1.0	<10	
	7/11/2018	<1.0	10	<1.0	<1.5	10	<1.0	<1.0 ^b	<1.0	<10	
	2/15/2019	< 1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0095 ^d	<1.0	<10	

Table 9.Groundwater Analytical Organic Chemistry DataPage 5 of 13

		Concentration ^a (µg/L)											
	Date			Ethyl-	Total					Total			
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes			
NMV	/QCC Standard	5 1,000 700 620 None 100		100	0.05	5	30						
BW-6 (cont.)	5/2/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0 ^b	<1.0	<10			
	5/21/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10			
	9/16/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10			
	6/9/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0095 ^d	<1.0	<10			
BW-7	4/30/2014	990	3.4	67	260	1,320	<1.0	2.6	75	21.1			
	4/30/2014 ^c	1,100	4.4	74	300	1,478	<1.0	2.9	75	20.1			
	5/8/2015	3,200	1,200	210	920	5,530	<1.0	9.6	230	45.5			
	9/11/2015	9,400	5,000	750	2,600	17,750	<1.0	36	590	204			
	3/31/2016	8,800	2,900	650	2,100	14,450	<1.0	<50 ^b	580	120			
	7/28/2016	8,000	1,100	630	1,200	10,930	<50	<50 ^b	500	120			
	5/22/2019	1,400	140	100	230	1,870	<5.0	0.24	180	22			
	9/18/2019	590	5.3	56	88	739.3	<2.0	0.31 ^d	120	15			
	6/12/2020	240	<2.0	<2.0	<3.0	240	<2.0	0.86 ^d	65	<20			
	9/14/2020	48	<1.0	1.4	<1.5	1.5 49.4 <1.0		0.86 ^d	78	<10			
	12/28/2020 ^e	790	<2.0	<2.0	3.1	793.1	<2.0	0.015 ^d	370	<20			
	3/20/2021 ^e	1,000	<2.0	13	3.3	1,016.3	<2.0	0.0094 ^d	110	<20			
	12/14/2023 ^e	< 5.0 ^b	<5.0	<5.0	<7.5	<22.5	< 5.0	0.12 ^d	43	< 50 ^b			
	3/29/2024 ^e	<2.0	<2.0	<2.0	<2.0 <3.0 <9.0 <2.0 0.36 ^d 24					<20			

Table 9.Groundwater Analytical Organic Chemistry DataPage 6 of 13

			Concentration ^a (µg/L)										
Well Name	Date Sampled	Benzene	Toluene	Ethyl- benzene	Total Xylenes	BTEX	MTBE	EDB	EDC	Total Naphthalenes			
NMV	VQCC Standard	5	1,000 700		620	None	100	0.05	5	30			
BW-7R	9/21/2019	51	9.4	1.5	9.2	71.1	<1.0	0.096 ^d	22	<10			
	6/11/2020	160	2.5	7.1	13	182.6	<1.0	0.36 ^d	50	4.1			
	9/12/2020	130	<2.0	4.3	5.6	139.9	<2.0	0.17 ^d	60	<20			
	12/28/2020	130	1.5	3.2	2.1	136.8	<1.0	0.29 ^d	71	2.9			
	12/28/2020 ^e	610	3.6	11	2.5	627.1	<1.0	0.044 ^d	88	6.7			
	3/20/2021 ^e	920	2.2	43	20	985.2	<2.0	0.012 ^d	120	11			
	12/13/2023 ^f	1,700	460	54	470	2,684	<2.0	7.3 ^d	210	30			
	3/28/2024 ^f	5.8	<2.0	<2.0	9.4	15.2	<2.0	3.3 ^d	190	<20			
BW-8	3/31/2016	3,900	5,400	440	2,400	12,140	<1.0	95	210	<500 ^b			
	3/31/2016 ^c	4,300	5,900	500	2,700	13,400	<1.0	110	230	100			
	7/28/2016	3,600	4,800	380	2,500	11,280	<50	100	180	120			
	7/28/2016 ^c	3,400	4,700	380	2,500	10,980	<50	100	180	120			
	5/30/2019	4,600	4,200	390	1,200	10,390	<5.0	9.1 ^d	290	67			
	9/18/2019	5,000	4,300	420	1,400	11,120	<10	14 ^d	270	94			
	6/13/2020	7,000	7,900	700	2,500	18,100	<20	0.72 ^d	190	180			
	9/15/2020	4,800	7,500	590	2,600	15,490	<50	0.092 ^d	95	130			
	12/29/2020	4,100	5,600	450	1,800	11,950	<5.0	0.11 ^d	90	146			
	12/29/2020 ^e	15,000	24,000	1,400	7,400	47,800	<20	0.20 ^d	77	413			
	3/21/2021 ^e	14,000	23,000	1,600	6,600	45,200	<50	0.86 ^d	94	300			

Table 9.Groundwater Analytical Organic Chemistry DataPage 7 of 13

		Concentration ^a (µg/L)									
	Date			Ethyl-	Total					Total	
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes	
NMV	NMWQCC Standard 5 1,000 700		620	None	100	0.05	5	30			
BW-8 (cont.)	12/14/2023 ^e	1,500	1,300	170	910	3,880	< 50	36 ^d	98	< 500 ^b	
	3/29/2024 ^e	8,000	12,000	810	4,600	25,410	<50	0.53 ^d	<20 ^b	220	
BW-8 (Deep HS)	6/13/2020	7,000	8,400	570	2,400	18,370	<10	0.26 ^d	<10 ^b	120	
	9/15/2020	14,000	28,000	1,600	10,000	53,600	<50	0.70 ^d	<50 ^b	370	
BW-8 (Shallow HS)	6/13/2020	6,300	8,500	670	2,600	18,070	<20	0.25 ^d	<20 ^b	130	
	9/15/2020	12,000	24,000	1,500	9,600	47,100	<50	0.88 ^d	63	370	
	12/29/2020	17,000	31,000	2,000	11,000	61,000	<20	0.19 ^d	76	570	
BW-9	3/30/2016	<1.0	190	<1.0	<1.5	190	<1.0	< 1.0 ^b	<1.0	<10	
	7/27/2016	<1.0	6.1	<1.0	<1.5	6.1	<1.0	< 1.0 ^b	<1.0	<10	
	5/21/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0093 ^d	<1.0	<10	
	9/17/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0093 ^d	<1.0	<10	
	6/9/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0093 ^d	<1.0	<10	
	9/11/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10	
	12/27/2020 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10	
	3/20/2021 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10	
BW-10	3/29/2016	<1.0	280	<1.0	<1.5	280	<1.0	< 1.0 ^b	<1.0	<10	
	7/27/2016	<1.0	33	<1.0	<1.5	33	<1.0	< 1.0 ^b	<1.0	<10	
	5/21/2019	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0093 ^d	<1.0	<10	
	9/17/2019	<1.0	<1.0	<1.0	<1.0 <1.5 <4.5 <1.0			< 0.0094 ^d	<1.0	<10	

Table 9.Groundwater Analytical Organic Chemistry DataPage 8 of 13

		Concentration ^a (µg/L)										
	Date			Ethyl-	Total					Total		
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes		
NMV	VQCC Standard	5	1,000 700		620	None	100	0.05	5	30		
BW-10 (cont.)	6/10/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0093 ^d	<1.0	<10		
	9/11/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10		
	12/27/2020 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0094 ^d	<1.0	<10		
	3/20/2021 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10		
MW-11	9/18/2019	3,300	5.0	280	1,100	4,685	<5.0	5.0 ^d	130	40		
	6/13/2020	3,400	8.9	300	620	4,328.9	<10	2.9 ^d	150	39		
	9/15/2020	3,300	14	300	520	4,134	<20	1.2 ^d	130	40		
	12/29/2020	3,400	5.1	280	450	4,135.1	<1.0	0.93 ^d	120	84		
	12/29/2020 ^e	4,400	2.8	310	46	4,758.8	<1.0	0.30 ^d	180	87		
	3/20/2021 ^e	3,800	<20	250	38	4,088	<20	0.14 ^d	200	42		
	12/12/2023 ^f	3,200	140	150	910	4,400	<20	1.2 ^d	220	51		
	3/28/2024		Well	not sample	d due to fau	Ity pump; u	nable to co	llect with Hyd	draSleeve			
MW-11 (Deep HS)	6/13/2020	4,200	<10	370	150	4,720	<10	2.1 ^d	190	50		
	9/15/2020	3,100	<20	170	83	3,353	<20	0.71 ^d	150	36		
MW-11	6/13/2020	3,900	<10	250	86	4,236	<10	1.4 ^d	190	28		
(Shallow HS)	9/15/2020	3,300	<20	230	100	3,630	<20	0.74 ^d	140 1	34		
	12/29/2020	3,300	2.9	150	24	3,476.9	<1.0	0.11 ^d	160	45.1		
MW-12	9/20/2019	1,400	27	9.4	200	1,636.4	<1.0	0.78 ^d	72	6.0		
	6/12/2020	1,400	<10	10	130	1,540	<10	0.50 ^d	85	<100 ^b		

Table 9.Groundwater Analytical Organic Chemistry DataPage 9 of 13

		Concentration ^a (µg/L)											
Well Name	Date Sampled	Benzene	Toluene	Ethyl- benzene	Total Xylenes	BTEX	MTBE	EDB	EDC	Total Naphthalenes			
NMV	NMWQCC Standard 5 1,00		1,000	700	620	None	100	0.05	5	30			
MW-12 (cont.)	9/15/2020	930	<5.0	<5.0	78	1,008	<5.0	0.38 ^d	68	< 50 ^b			
	12/28/2020 ^e	460	<2.0	<2.0	11	471	<2.0	0.21 ^d	68	<20			
	3/21/2021 ^e	98	<5.0	<5.0	<7.5	98	<5.0	0.11 ^d	44	< 50 ^b			
	12/13/2023 ^f	540	<10	<10	42	582	<10	1.2 ^d	120	< 100 ^b			
	3/26/2024 ^f	44	<10	<10	20	64	<10	1.4 ^d	89	< 100 ^b			
MW-13	9/21/2019	97	6.4	9.2	29	141.6	<1.0	0.037 ^d	5.1	<10			
	6/12/2020	79	<2.0	4.4	13	96.4	<2.0	0.035 ^d	6.6	<20			
	9/12/2020	94	<1.0	7.5	23	124.5	<1.0	0.039 ^d	11	<10			
	12/28/2020 ^e	22	<1.0	2.6	2.5	27.1	<1.0	0.079 ^d	26	<10			
	3/20/2021 ^e	64	<1.0	2.8	1.8	68.6	<1.0	0.090 ^d	26	2.0			
	12/12/2023 ^f	110	<1.0	1.6	39	150.6	<1.0	0.10 ^d	76	6.0			
	3/26/2024 ^f	190	<2.0	<2.0	33	223	<2.0	0.064 ^d	110	<20			
MW-14	9/19/2019	4.0	15	2.8	15	36.8	<1.0	0.050 ^d	<1.0	<10			
	6/10/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10			
	9/9/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0096 ^d	<1.0	<10			
	12/27/2020 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10			
	3/20/2021 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0093 ^d	<1.0	<10			
	12/14/2023 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0094 ^d	<1.0	<10			
	3/29/2024 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0095 ^d	<1.0	<10			

Table 9.Groundwater Analytical Organic Chemistry DataPage 10 of 13

		Concentration ^a (µg/L)											
Woll Namo	Date Sampled	Bonzono	Toluono	Ethyl-	Total Xylopos	RTEV	MTRE	EDB	EDC	Total Naphthalopos			
		Delizene	Toluene		Ayleries	DILA	IVITUL		-				
NMV	QCC Standard	5	1,000	700	620	None	100	0.05	5	30			
MW-14 (Deep HS)	6/10/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10			
	9/9/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10			
MW-14	6/10/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0093 ^d	<1.0	<10			
(Shallow HS)	9/9/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10			
MW-15	6/11/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10			
	9/10/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0095 ^d	<1.0	<10			
	12/27/2020 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0096 ^d	<1.0	<10			
	3/20/2021 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0093 ^d	<1.0	<10			
	12/14/2023 ^e	11	<1.0	<1.0	<1.5	11	<1.0	0.028 ^d	<1.0	<10			
	3/29/2024 ^e	33	<1.0	<1.0	3.8	36.8	<1.0	0.087 ^d	<1.0	<10			
MW-16	6/11/2020	520	8.7	42	140	710.7	<1.0	0.82 ^d	35	3.2			
	9/11/2020	920	11	34	300	1,265	<2.0	0.66 ^d	55	7.5			
	12/28/2020	1,500	7.3	49	380	1,936.3	<1.0	0.52 ^d	70	18.1			
	12/28/2020 ^e	55	<1.0	2.7	29	86.7	<1.0	0.25 ^d	30	<10			
	3/20/2021 ^e	10	<1.0	<1.0	2.6	12.6	<1.0	0.30 ^d	27	<10			
	12/12/2023 ^e	1,500	<1.0	<1.0	39	1,539	<1.0	0.74 ^d	77	7.7			
	3/26/2024 ^e	640	<2.0	<2.0	8.8	648.8	<2.0	0.49 ^d	97	<20			
MW-17	6/11/2020	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0094 ^d	<1.0	<10			
	9/10/2020 <1.0 <1.0 <1.0		<1.5	<4.5	<1.0	< 0.0095 ^d	<1.0	<10					

Table 9.Groundwater Analytical Organic Chemistry DataPage 11 of 13

		Concentration ^a (µg/L)										
	Date			Ethyl-	Total					Total		
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes		
NMV	NMWQCC Standard 5 1,000 700		700	620	None	100	0.05	5	30			
MW-17 (cont.)	12/27/2020 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0094 ^d	<1.0	<10		
	3/20/2021 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10		
	12/14/2023 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0094 ^d	<1.0	<10		
	3/29/2024 ^e	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.0096 ^d	<1.0	<10		
RW-1	9/19/2019	720	800	47	430	1,997	<1.0	6.4 ^d	36	10		
	6/13/2020	340	39	18	51	448	<5.0	0.22 ^d	< 5.0 ^b	10		
	9/15/2020	650	230	49 17		1,049	<2.0	1.7 ^d	22	14		
	12/28/2020 ^e	5,500	3,300	260	2,000	11,060	<1.0	5.1 ^d	31	161		
	3/21/2021 ^e	3,000	750	230	590	4,570	<2.0	7.5 ^d	57	123		
	12/13/2023 ^f	<2.0	<2.0	<2.0	6.0	6.0	<2.0	1.1 ^d	48	<20		
	3/27/2024 ^f	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	< 0.0095 ^d	15	<10		
RW-2	9/18/2019	3,500	3,300	210	1,600	8,610	<10	74 ^d	220	58		
	6/14/2020	1,800	1,100	130	470	3,500	<20	4.8 ^d	<20 ^b	<200 ^b		
	9/15/2020	2,500	2,600	180	800	6,080	<10	2.6 ^d	25	41		
	12/27/2020 ^e	7,400	6,200	380	1,800	15,780	<1.0	31 ^d	64	133		
	3/19/2021 ^e			Well not sam		led due to	presence of LNAPL					
	12/13/2023 ^f	41	73	<20	120	234	<20	12 ^d	20	<200 ^b		
	4/28/2024 ^f	100	690	130	1,600 2,520 <5.0 10			16 ^d	26	250		

Table 9.Groundwater Analytical Organic Chemistry DataPage 12 of 13

			Concentration ^a (µg/L)											
	Date		Ethyl- Toluene benzene X		Total					Total				
Well Name	Sampled	Benzene	Toluene	benzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphthalenes				
NMV	/QCC Standard	5	1,000	700	620	None	100	0.05	5	30				
RW-3	9/20/2019	4,100	5,100	310	2,300	11,810	<10	25 ^d	130	58				
	6/13/2020	3,800	2,300	290	2,100	8,490	<20	49 ^d	180	76				
	9/16/2020	4,000	2,900	280	1,900	9,080	<20	33 ^d	190	68				
	12/28/2020	3,000	2,500	200	1,200	6,900	<1.0	14 ^d	94	90				
	12/28/2020 ^e	2,000	530	89	690	3,309	<2.0	20 ^d	84	24				
	3/21/2021 ^e	2,900	980	160	930	4,970	<20	22 ^d	110	44				
	12/13/2023 ^f	320	330	<20	250	900	<20	8.0 ^d	83	<200 ^b				
	3/26/2024 ^f	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	0.36 ^d	2.7	<10				
RW-4	9/19/2019	690	730	47	340	1,807	<1.0	5.2 ^d	28	5.4				
	6/12/2020	1,500	410	110	360	2,380	<5.0	13 ^d	100	20				
	9/12/2020	1,400	600	92	300	2,392	<10	9.7 ^d	91	< 100 ^b				
	12/28/2020	1,900	1,400	160	650	4,110	<10	8.8 ^d	33	27				
	12/28/2020 ^e	3,400	1,100	220	760	5,480	<10	10 ^d	56	35				
	3/20/2021 ^e	3,000	1,100	200	640	4,940	<5.0	7.4 ^d	41	35				
	12/13/2023 ^f	2,000	2,800	160	1,400	6,360	<20	47 ^d	230	58				
	3/26/2024 ^f	26/2024 ^f 990 960 27 560		560	2,537	<20	33 ^d	130	<200 ^b					

Notes are provided on the next page.

Table 9.Groundwater Analytical Organic Chemistry DataPage 13 of 13

Bold indicates that value equals or exceeds the New Mexico Water Quality Control Commission (NMWQCC) standard. Pre-May 2, 2019 data reported by Brown Environmental, Inc. (BEI, 2016).

^a Analyzed using U.S. Environmental Protection Agency (EPA) method 8260B, unless otherwise noted.

^b Reporting limit is equal to or greater than the standard.

^c Duplicate sample.

^d Samples analyzed using EPA method 504.1.

^e Sample collected using HydraSleeve sampling device.

^f Sample collected from wellhead sample port using the installed remediation pump.

 $\mu g/L = Micrograms per liter$

EDC = 1,2-Dichloroethane LNAPL = Light nonaqueous-phase liquid

= HydraSleeve

HS

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary-butyl ether

EDB = 1,2-Dibromoethane

Table 10. LNAPL Recovery from Site Wells

Date	Depth to Water ^a	Depth to LNAPL	Initial LNAPL Thickness (feet)	Depth to Water ^b	Total Volume of Fluids Removed	Volume of LNAPL Removed (gallons)	Cumulative Volume of LNAPL Removed	Final Thickness of LNAPL (feet)
Cumulative volu	ime of LNAPL red	covered by DBS&	A is approxima	tely 3.8 gallon	s, as tabulated belo	W.	(gunons)	(1001)
BW-5								
5/23/2019	329.35	327.58	1.77	328.02	7.16	1.95	1.95	0.26
9/20/2019	328.94	328.18	0.76	328.37	5.35	0.95	2.90	0.01
6/8/2020	329.65	329.07	0.58	329.22	4.27	0.46	3.36	0.00
9/16/2020	329.34	328.92	0.42	329.03	4.05	0.26	3.62	0.00
12/29/2020	329.20	329.06	0.14	329.10	4.11	0.07	3.69	0.01
3/20/2021	329.34	329.19	0.15	329.23	1.20	0.05	3.74	0.00
RW-2								
3/21/2021	330.07	329.72	0.35	329.81	1.11	0.07	0.07	0.01

^a Depth to water (DTW) before correction for light nonaqueous-phase liquid (LNAPL) thickness.

^b DTW corrected for LNAPL thickness using the following equation: DTW = DTW - (LNAPL thickness x 0.75).

btoc = Below top of casing

Appendix A

Well Boring Logs

:\Projects\DE	318.1157_For	rmer_Y_	_Station\VR_Drawi	ngs\LogPle Graphic Log	ot	PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
0			 Flush Mount, Traffic Grade, Well Vault J-plug 		0	0.5	100	0-15	NA CL	0-0.5 0.5-14	Asphalt. Sandy clay - yellowish red (5YR 5/6), fine grained, well sorted, subrounded, moderate to high plasticity, medium dense, slightly moist, odorless.
5—					5—				CL		Sandy clay - as above.
10—			- Cement/Bentonite Grout (0.6'-20')		10						
15 —					15 —	0.0	100	15-25	CL SC SC	14-17	Sancy clay - as above with calcium carbonate. Clayey sand - dry, otherwise as above. Clayey sand - as above with less calcium carbonate.
20					20				CL	17-23	Sandy clay - yellowish red (5YR 5/6), fine grained, well sorted, subrounded, moderate plasticity, medium dense, dry, odorless, trace calcium carbonate.
20					20				SC	23-35	Clavey sand - increased calcium carbonate concentrations, otherwise as above
25—					25 —	0.0	100	25-35	SC	2000	Clayey sand - reddish yellow (5YR 6/6), loose to partially cemented, otherwise as above.
30 —					30 —						
35 —					35 —	0.3	100	35-45	SP	35-137	Sand - reddish yellow (5YR 6/6), fine grained, well sorted, subrounded, non-plastic, loose, dry, odorless, trace silt, calcium carbonate concretions.
40 —					40 —						
45 —					45—	0.0	100	45-55	SP		Sand - as above.
50 —					50 —						
				· · · · · · · · · · · · · · · · · · ·					SP		Sand - as above with high amounts of calcium carbonate.
55 —					55 —	1.3	100	55-65	SP		Sand - as above.
60 —					60—						
65 —					65 —				SP		Çaliche.
						0.6	100	65-75	SP		Sand - as above.
70 —					70						
75 —					75 —	0.0	100	75-85	SP SP		Sand - as above with lower amounts of calcium carbonate. Clavev sand - reddish brown (7.5YR 6/6), fine grained, well sorted, subrounded to subangular, low plasticity.
											loose, dry, odorless, trace calcium carbonate.
80 —					80 —				SP		Sand - reddish yellow (7.5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, odorless.
85 —					85 —	4.8	100	85-95	SP		Sand - as above.
90 —					90 —				SP SP		Sand - light gray (10YR 7/2), fine grained, well sorted, subrounded, non-plastic, loose, dry, pulverized, odorless, trace silt. Sand - reddish yellow (7.5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, odorless.
95 —					95 —	0.3	100	95-105	SP		Sand - as above.
									SP SP		Sand - light gray (10YR 7/2), fine grained, well sorted, subrounded, non-plastic, loose, dry, pulverized, odorless, trace silt. Sand - reddish yellow (7.5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, odorless.
100					100						
Geologist Driller: Ye Date com	: H. Barnes ellow Jacket D	Drilling 9	Drillin Boreh Samp	g method: iole diamete	Sonic er: 9.5" d: Sonic	core] 1	DTW= D New Me	epth to v xico Stat	vater me e Plane 9	East NAD83 Elevation: 4277 44
	,	-	Janp				I	Easting	: 12402 : 88429	1.12	CLOVIS, NEW MEXICO BW-7R
-	Dani 9/5/201	el B. 1 19	Stephens & A	I <i>ssociat</i> JN D	es, In 0818.11	2 C. — 57.00					

S:\Projects\DB1	8.1157_Former_`	Y_Station\VR_Drawi	ings\LogPl	ot						
			Graphic Log		PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
			· · · · · · · · · · · · · · · · · · ·					SP		Sand - reddish yellow (7.5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, odorless.
105 —				105 —	0.0	100	105-115	SP SP		Sand - as above with increased calcium carbonate concentrations. Sand - as above without calcium carbonate.
110 —				110 -				SP		Sand - as above with calcium carbonate, loose to partially cemented.
115 —				115 —	0.0	100	115-125	SP SP SP		Sand - as above, pinkish gray (7.5YR 7/2), calcium carbonate. Sand - reddish yellow (7.5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, odorless. Sand - as above, no calcium carbonate, light reddish brown (5YR 6/4), 2" layer light grey sand layer at 117' bgs.
120 —				120 —						
125 —				125 —	0.0	100	125-135	SP		Sand - as above.
130 —				130 —						
135 —				135 —	0.2	100	135-145	SP SM	137-145	Sand - as above. Silty sand - pinkish white (5YR 8/2), fine grained, well sorted, rounded, loose, dry, calcium carbonate rich, pulvurized.
140 —		- 5" Schedule 80 PVC,		140 —						
145 —		Blank Casing (0.5'- 286.79')		145 —	0.0	100	145-155	SP	145-354	Sand - reddish yellow (5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, odorless, little to no calcium carbonate.
150 —		Grout (20'-277')		150 —						
155 —				155 —	0.0	100	155-165	SP		Sand - as above.
160 —				160 —						
165 —				165 —	0.0	100	165-175	SP		Sand - as above with little to no calcium carbonate content.
170 —				170 —				SP SP		Sand - as above mottled with light gray (10YR 7/2). Sand - as above with little to no calcium carbonate content.
175 —				175 —	0.0	100	175-185	SP SP		Sand - as above. Sand - light gray (10YR 7/2), fine grained, well sorted, subrounded, non-plastic, loose, dry, pulverized, odorless,
180 —				180 —				SP SP SP		Sand - reddish yellow (5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, odorless, little to no calcium carbonate. Sand - light gray (10YR 7/2), fine grained, well sorted, subrounded, non-plastic, loose, dry, pulverized, odorless, trace silt. Sand - reddish yellow (5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, odorless, little to no calcium carbonate.
1		1								

			Graphic Log		PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
		 , i	• • • • •	I				. <u> </u>	I	
20	5 —			205 —	4.4	100	205-215	SP		Sand - as above.
21(0 —			210 —				SP SP SP		Sand - as above, pinkish gray, calcium carbonate rich. Sand - as above, reddish yellow (5YR 6/6), no calcium carbonate. Sand - as above, pinkish gray, calcium carbonate rich.
21	5 —			215 —	2.1	100	215-225	SP		Sand - as above, reddish yellow (5YR 6/6), no calcium carbonate. Sand - as above.
220	0 —			220 —						
22	5 —			225 —	1.0	100	225-235	SP		Sand - as above.
23(0 —			230 —				SP		Sand - as above.
23	5 —			235 —	0.7	100	235-245	SP		Sand - as above with calcium carbonate.
24(0 —			240 —						
24	5 —			245 —	1.1	100	245-255	SP		Sand - as above with little to no calcium carbonate.
250	0 —			250 —						
25	5 —			255 —	0.7	100	255-265	SP		Sand - as above.
260	0			260 -						
26	5 —			265 —	6.3	100	265-275	SP		Sand - as above.
270	0			270 —						
27	5 —			275 —	4.7	100	275-285	SP		Sand - as above with increased calcium carbonate.
280	0	— 3/8" Bentonite Chip Seal (277'-282')		280 -						

Geologist: H. Barnes Driller: Yellow Jacket Drilling Drilling start date: 7/20/19 Well completion date: 8/4/19 Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet) New Mexico State Plane East NAD83 Northing: 1245210.02 Elevation: 4277.44 Easting: 884291.06

FORMER Y STATION CLOVIS, NEW MEXICO **BW-7**R

Daniel B. Stephens & Associates, Inc. – 9/5/2019 JN DB18.1157.00

70.0'-74.0' Cuttings (SM) silty very fine sand, light brown (7.5YR), unconsolidated, slightly moist.

BROWN ENVIRONMENTAL, INC

P.O. BOX 886 PLACITAS, NM 87043

- 1

67

S:\Projects\D	B18.1157_Former_Y	_Station\VR_Drawi	Graphic	ot	PID	Sample	Sample	USCS	l ithology	
			Log		reading (ppm)	Recovery (%)	Interval (ft bgs)	Symbol	Interval	Comments and Lithology
0				0						
		 Flush Mount, Traffic Grade, Well Vault J-plug 			0.0	100	0-15	NA SC	0-0.5 0.5-33.5	Asphalt Clayey sand - dark brown (7.5YR 3/3), fine grained, well sorted, subrounded to subangular, moderate to high plasticity, soft, slightly moist, odorless.
5—				5—				SC		Clayey sand - as above.
								SC		Clayey sand - strong brown (7.5YR 5/6), fine grained, well sorted, subrounded to subangular, moderate plasticity, stiff, dry, mottled with Caliche - pink (7.5YR 8/3), fine to medium grained, moderately well sorted, rounded to subrounded, hard, moderately
10—				10-	0.0			SC		Clayey sand - same as above.
15 —		- Cement/Bentonite Grout (0.6'-27')		15—		100	15-25	sc		Clayey sand - same as above.
20 —				20—	0.3			sc		Clayey sand - increased caliche, otherwise as above.
25 —				25—		100	25-35	SC		Caliche - pink (5YR 7/4), fine grained, well sorted, subangular, low plasticity, loose to somewhat consolidated, dry, odorless.
30 —				30 —	0.0			SC		Caliche - as above.
35 —				35 —		100	35-45	SP SP	33.5-62	Sand - yellowish red (5YR 5/8), fine grained, well sorted, rounded to subrounded, non-plastic, loose, dry, odorless. Sand - caliche stringers - otherwise as above.
40 —				40—	0.0			SP		Sand - as above.
45 —				45 —		100	45-55	SP SP		Sand - yellowish red (5YR 5/6), fine grained, well sorted, subrounded, non-plastic, loose, dry, calcium carbonate , odorless. Sand - as above.
50 —				50 —	0.0			SP		Sand - pink (7.5YR 7/4), fine grained, well sorted, subangular, non-plastic, loose, dry, increased calcium carbonate, odorless. Sand - reddish yellow (5YR 6/6), fine grained, well sorted, subrounded, non-plastic, loose, dry, calcium
55 —				55 —		100	55-65	SP		carbonate.
60 —				60—	0.0			SP		Sand - as above.
65 —				65 —		100	65 75	SC	62-74	Caliche - Sandstone - pinkish gray (7.5YR 7/2), fine grained, well sorted, subangular, calcium carbonate cemented, dry, odorless. (Very hard drilling).
						100	65-75	30		
70 —				70—	0.0			SC		Caliche - as above (less difficult drilling).
75 —				75—		10	75-85	SP	74-84	Sand - pink (7.5YR 7/4), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, odorless. No recovery.
80 —				80—	0.0					No recovery.

S:\Projects\DB18.11	57_Former_	Y_Station\VR_Drawi	ngs\LogPl	ot						
			Graphic Log		PID reading	Sample Recovery	Sample Interval (ft bas)	USCS Symbol	Lithology Interval	Comments and Lithology
					(ppm)	(70)	(it bgs)			
			· · · · · · · ·							
105 —			· · · · · · · · · · · · · · · · · · ·	105	-	100	105-115	SP		Sand with clay - pink (7.5YR 7/4), fine grained, well sorted, subangular to angular, low plasticity, loose, dry, odorless, (water added for drillino).
110				110						
					6.0			SP		Sand - as above.
115 —				115	-	100	115-125	SP		Sand - light brown (7.5YR 6/3), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry.
120 —				120	- 0.8			SP		Sand - as above.
			· · · · · · · · · · · · · · · · · · ·							
125 —				125	_	100	125-135	SP		Sand - as above.
130 —				130	- 0.4			SP		Sand - as above.
135 —				135 -	_	100	105 145	00		
						100	135-145	58		Sand - as above.
140 —			· · · · · · · · · · · · · · · · · · ·	140	- 1.0			SP		Sand - calcium carbonate, otherwise as above. (Driller reports hard drilling)
		5' Schodulo 80 BVC								
145		Blank Casing (0.5'- 285.5')	· · · · ·	145						
145				143		100	145-155	SP		Sand - light brown (7.5YR 6/3), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry.
150 —				150	- 0.4			SP		Sand - as above.
		Grout (27'-275')								
155 —				155 -	-	100	155-165	SP		Sand - as above.
160 —				160	- 3.3			SP		Sand - as above.
165 —			· · · · · · · · · · · · · · · · · · ·	165 -	-	100	165-175	SP		Sand with clay - brown (7.5YR 5/4), fine grained, well sorted, subangular to angular, low to moderate plasticity, loose, dry, odorless.
170 —				170	- 01			SD		Sand - as above
								Ur		
								SM	173-188.5	Silty sand - pink (7.5YR 7/4), fine grained, well sorted, subrounded, non-plastic, loose, slightly moist, odorless.
175 —				175	-	100	175-185	SM		Silty sand - subrounded to angular, otherwise as above.
180				180	_			_		
					0.5			SM		Silly sand - as above.
					1	1	i i	i i	1	

S:\Projects	S\DB18.1157_For	mer_Y_Station\VR_	Drawings\LogPlo	t	1					
			Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
					(ppm)	(%)	(ft bgs)			
			· · · ·	I	I			I	1	
205	-			205 -		100	205-215	SP		Sand - as above.
			·:·:·:							
210	-			210 -	0.5			SP		Sand - as above.
			·····							
215 -	_			215 -		100	215-225	SP		Sand - as above.
								-		
220	_		2	220 -	0.7			SP		Sand - as above
			·:·:·:		0.7			SP		Sand with clay - light brown (7.5YR 6/4), fine grained, well sorted, subrounded to subangular, low plasticity, lose light woist odorless
								SP		Sand - light brown (7.5YR 6/4), fine grained, well sorted, subrounded to subangular, non-plastic, loose, slightly
225 -	_		· · · · · · · · 2	225 -		100	225-225	SD		moist, odorless.
						100	220-200	01		
230 -	_		· · · · 2	230 -	1.2			6 D		Send with CoCO2 concretions, otherwise as show
					1.2			55		
235 -	_			235 -		100	225 245	00		
						100	233-243	55		
240 -	_			240 -	1.2			e D		Send with CoCO2 concretions as above
					1.3			58		Sand - with CaCO3 concretions as above.
								SP		Sand - with CaCO3 concretions - pinkish gray (5YR 7/2), fine grained, well sorted, rounded, dry, odorless.
245 -	_			245 —						
						100	245-255	SP		Sand with CaCO3 concretions - light brown (7.5YR 6/4), fine grained, well sorted, subrounded to subangular, non-plastic, slightly moist, odorless.
								SP		Sand with clay - pinkish white (5YR 8/2), fine grained, well sorted, rounded, low plasticity, CaCO3 (caliche), dry, odorless.
250 -	_			250 -	0.1			SP		Sand with CaCO3 concretions - light brown (7.5YR 6/4), fine grained, well sorted, subroundd to subangular, non- plastic, slightly moist, odorless.
					0.1			SP		Sand with CaCO3 concretions - as above.
255 -	_		· · · · · · · · · · · · · · · · · · ·	255		400	055 005	0.5		
						100	200-200	58		Sand with CaCOS concretions - as above.
260	_			260				0.5		
					0.0			58		moist, odorless.
265 -	_			265		400	005 075	SP		Sand with CaCO3 concretions - otherwise as above.
						100	265-275	58		Sand with CaCU3 concretions - as above.
270				270						
_					0.3			SP		Sand with CaCU3 concretions - as above.
275				275			075 5 5			
						100	275-285	SP		Sand with CaCU3 concretions - as above.
		3/8" Bentonite C	Chip							
280		Seai (275'-281')		280						
					1.7			52		Sanu with CaCU3 concretions - as above.

S:\Projects\DB18	.1157_Former_Y	<pre>_Station\VR_Drawin</pre>	ngs\LogPl	ot						
			Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
					(ppm)	(%)	(ft bgs)	-		
305 —			· · · · · · · · ·	305 —		100	305-315	SP		Sand with CaCO3 concretions - as above.
			• [• [•]•]•]							
310 -			$ \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \end{bmatrix} $	310						
010					0.3			SP		Sand with CaCO3 concretions - as above.
315 —				315 —		100	315-325	SP		Sand with CaCO3 concretions - as above, damp to moist, no HC odor.
320 -				320						
		 5' Schedule 80 PVC, 0.020" Slot Screen 	• [• [•]•]•]		3.5			SP		Sand with CaCO3 concretions - as above, moist, no HC odor.
		(285.5'-355.5') 12/20 Silica Sand.								
		Filter Pack (281'-365')								
325			$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	325 —		100	325-335	SP		Sand with CaCO3 concretions - as above, moist, no HC odor.
225 72										
(6/24/19)										
330 -			• [• [•]•]•]	330 -						
					257.6			SP		Sand with CaCO3 concretions - as above, wet, no HC odor.
335 —				335 —		100	335-345	SP		Sand with CaCO3 concretions - as above, wet, no HC odor.
340			$ \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix} $	340						
					5.6			SP		Sand with CaCO3 concretions - as above, wet, no HC odor.
			• • • • •							
345 —				345 —		100	345-355	SP		Sand with CaCO3 concretions - as above, wet, no HC odor.
350				350 -	2.2			6 D		Sand with CoCO2 apparations, as shown wat no HC adar
					3.3			58		Sand with CaCOS concretions - as above, well no HC odor.
355 —				355 —		100	355-365	SP		Sand with CaCO3 concretions - as above, wet, no HC odor.
		 5' Schedule 80 PVC, Blank Casing (355.5'- 	· · · · ·							
360 —		360.5')		360 -				SW/ SC	260 265	Cravelly and with alay and aphblas light brown (7 EVD 6/4) find to madium grained, madarately well parted
		 5' Schedule 80 PVC, End Cap (360.5'-361') 						30-30	300-303	loose, granitic gravels and cobbles up to 2.5", wet, no HC odor.
			\bigcirc							
365 —	<u></u>]		365 —						
	TD=365' bgs									
370				370						
375				375	L	1	l	1		1

Geologist: P. Feltman and J. Fisher Driller: Yellow Jacket Drilling Drilling start date: 5/29/19 Well completion date: 6/8/19

Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet) New Mexico State Plane East NAD83 Northing: 1244812.45 Elevation: 4274.64 Easting: 884412.98

FORMER Y STATION CLOVIS, NEW MEXICO MW-11

Daniel B. Stephens & Associates, Inc. – 8/25/2019 JN DB18.1157.00

S:\Projects\DB	18.1157_Form	er_Y_Statior	VR_Dra	wings\LogPl	ot						
				Graphic Log		PID readin (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
							1	1	1	1	
105 —					105 -	-	100	105-115	SP		Sand - as above.
110					110	_					
110						2.0			SP		Sand - as above interbedded with caliche - pinkish white (7.5YR 8/2), fine grained, well sorted, subrounded to subangular, calcium carbonate cement, dry, odorless.
115 —					115 -	-	100	115-125	SP		Sand - as above.
120 —					120 -	- 2.8			SP		Sand - as above.
125 —					125 -	-	100	125-135	SP		Sand - as above.
130 —					130 -	_					
100						1.6			SP		Sand - as above.
135 —					135 -	-	100	135-145	SP		Sand - as above.
140 —					140 -	2.8			SP		Sand - as above.
		5' Scheo	ule 80 PVC.								
145 —		Blank Ca 286.53')	sing (0.5'-		145 -	-	100	145-155	SP		Sand - as above.
150 —					150 -	- 0.4			SP		Sand - as above.
155 —					155 -	_	100	155 105			
		High Sol Grout (3	ids Bentonite 5'-276')	e			100	155-165	58		Sand - as above.
160 —					160 -	6.6			SP		Sand - as above.
165 —					165 -	-	100	165-175	SP		Sand - as above.
									SP-SC	167-175	Sand with clay - light brown (7.5YR 6/4), fine grained, well sorted, subrounded to subangular, low plasticity, loose, dry, odorless.
170					170	- 1.8			SP-SC		Sand with clay - as above.
175 —				· · · · · · · · · · · · · · · · · · ·	175	-	100	175-185	SP	175-355	Sand - yellowish red (7.5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, calcium
											carbonate concentrations, dry, odorless.
180 —					180 -	- 16			SP		Sand - as above.
				· · · · ·							

S:\Projects\DB18.	.1157_Former_\	<pre> f_Station\VR_ </pre>	Drawings\LogPl	ot						
			Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
					(ppm)	(%)	(ft bgs)			
		1		I	I	I	I	I	I	
205 —				205		100	205-215	SP		Sand - as above.
210 —				210	1.3			SP		Sand - as above.
215 —				215		100	215-225	SP		Sand - no calcium carbonate concretions, otherwise as above.
220 —				220	1.1			SP		Sand - as above.
225 —				225		100	225-235	SP		Sand - as above.
000										
230 —				230	0.4			SP		Sand - as above.
235				235						
200				200		100	235-245	SP		Sand - as above.
240 —				240				0.5		Our de la contraction de la co
					0.3			SP		Sand - as above.
245 —				245		100	245-255	SP		Sand - as above
						100	210 200	0.		
250 —				250 -	2.1			SP		Sand - as above.
255 —				255 -		100	255-265	SP		Sand - as above.
260 —				260 -	6.6			SP		Sand - as above.
265 —				265 -		100	265-275	SP		Sand - as above.
270 —				270	1.0			SP		Sand - as above.
075				075						
2/5				2/5		100	275-285	SP		Sand - as above.
280		- 3/8" Rontonita C		280						
		Seal (276'-284')			0.4			SP		Sand - as above.
• I I					1	i i	1	1	1	

Geologist: P. Feltman and H. Barnes Driller: Yellow Jacket Drilling Drilling start date: 7/9/19 Well completion date: 7/20/19

Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet) New Mexico State Plane East NAD83 Northing: 1245128.28 Elevation: 4277.60 Easting: 884520.19

FORMER Y STATION CLOVIS, NEW MEXICO **MW-12**

Daniel B. Stephens & Associates, Inc. – 9/5/2019 JN DB18.1157.00

S:\Projects\D	B18.1157_For	mer_Y_Stati	on\VR_Drawi	ngs\LogPlo	ot						
				Graphic Log		PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
0					0	L					
5—		Flu Flu Gr Gr A	ush Mount, Traffic ade, Well Vault g		5—	11.2	100	0-15	NA SC	0-0.5 0.5-15.5	Asphalt. Clayey sand - yellowish red (5YR 5/6), fine grained, well sorted, subrounded, low plasticity, loose to medium dense, slightly moist, no odor, calcium carbonate rich.
10 —		^^^^ ^^^ ^^ ^ ^ ^ Ceme Grout	ent Bentonite t (0.6'-20')		10—						
15 —					15—	13.1	100	15-25	SC SC SP SP SP	15.5-35	Clayey sand - light brown (7.5YR 6/4), less clay content, dry, otherwise as above. Clayey sand - as above. Sand - yellowish red (5YR 5/8), fine grained, well sorted, subrounded, non-plastic, loose to partially cemented with cacium carbonate, dry, no odor. Sand - pink (5YR 7/3), increased calcium carbonate, otherwise as above. Sand - yellowish red (5YR 5/8), trace silt, otherwise as above.
20 —					20 —						
25 —					25 —	19.2	100	25-30	SP		Sand - less calcium carbonate, loose, otherwise as above.
30 —					30—		100	30-35	SP SP		Sand - pink (5YR 7/3), calcium carbonate rich, partially cemented, otherwise as above. Sand - as above.
35 —					35—	18.1	100	35-45	SC	35-37	Clayey sand - yellowish red (5YR 5/6), fine grained, well sorted, subrounded, low plasticity, loose, dry, no odor.
				· · · · · · · ·					SP	37-40	Sand - yellowish red (5YR 5/6), very fine to fine grained, well sorted, subrounded, non-plastic, loose to partially cemented, calcium carbonate rich, dry, no odor.
40 —					40 —				SM	40-45.5	Silty sand - little calcium carbonate and silty, loose, otherwise as above.
45 —					45 —	11.1	100	45-55	SM SP	45.5-51	Silty sand - as above. Sand - yellowish red (5YR 5/6), fine, well sorted, subrounded, non-plastic, loose, dry, no odor.
50 —					50—				SM	51-55	Silty sand - light brown (7.5YR 6/4), very fine, well sorted, subrounded, non-plastic, loose, dry, no odor, claicum carbonate rich.
55 —					55 —	20.7	100	55-60	SM	55-57.5	Sitty sand - little calcium carbonate, otnerwise as above. Sand - light brown (75.YR 6/4), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, no
				:·:·:·: =: =: =					NA	57.5-60	odor, calcium carbonate nodules Caliche.
60 —					60—		100	60-65	SP	60-345	Sand - pinkish gray (5YR 7/2), fine grained, well sorted, subrounded to subangular, non-plastic, loose to partially cemented, calcium carbonate rich, dry, no odor.
65 —					65—	30.5	100	65-75	SP		Sand - as above.
70-					70-				5P		Sano - ngnt brown (7.5 Y k b/4), tine grained, well sorted, subrounded to subangular, non-plastic, loose to partially cemented, calcium carbaonate rich, dry, no odor.
75 —					75—	20.1	100	75-85	SP SP		Sand - reddish yellow (7.5 YR 6/6), trace silt, little calcium carbonate, otherwise as above. Sand - as above.
80 —					80-						

S:\Projects\DB18.11	57_Former_	Y_Station\VR	_Drawings\LogPl	ot						
			Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
					(ppm)	(%)	(ft bgs)			
				I	I	1	1	1	1	
105				105						
105 —				105	19.6	100	105-115	SP		Sand - claiche stringers from 106'-108', otherwise as above.
110				110						
115				115						
113				113	6.1	100	115-125	SP		Sand - as above.
120 —				120	_					
120				120						
125 —				125		400	105 105			
					14.1	100	125-135	58		Sand - as above.
130 —				130	-					
135 —				135	- 87	100	135-145	SP		Sand - as above
						100		0.		
140 —				140	-					
		— 5" Schedule 80	0 PVC,							
145 —		Blank Casing (287.00')	(0.5'-	145	- 12.1	100	145-155	SP		Sand - as above.
		 High Solids Be Grout (20)-277 	entonite							
150 —			, 	150 -	-					
155 —				155 -	- 4.7	100	155-165	SP		Sand - as above.
160 —				160 -	-					
165 —				165 –	4.1	100	165-175	SP		Sand - as above.
1/0			· · · · ·	1/0	-					
175				175	_					
					6.7	100	175-185	SP		Sand - as above.
180 -				180	-					
					1	1	1	1	1	

S:\Proje	cts\DB18	B.1157_F	Former_Y_St	ation\VR_Drav	wings\LogPl	ot							
					Graphic Log			PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
	I					,							
205	5 —					205 -	-	4.2	100	205-215	SP		Sand - as above.
210	o —					210	-						
215	5 —					215 -	_	3.4	100	215-225	SP		Sand - as above.
					· · · · · · · · · · · · · · · · · · ·								
220	0					220 -	_						
225	5 —					225 -	-	1.9	100	225-235	SP		Sand - cemented cobbles at 230'-235', otherwise as above.
230	0					230	-						
235	5 -					235	-	1.6	100	235-245	SP		Sand - as above.
240	0 -					240	_						
245	5 —					245 -	_		400	0.45.055	0.5		
								3.3	100	245-255	54		Sand - with cemented cooples and gravers at 245 and 250, otherwise as above.
250						250 -	_						
255	5 —					255 -	-	1.1	100	255-265	SP		Sand - as above.
260	0 -					260	-						
265	5 -					265 -	_	5	100	265-275	SP		Sand - cemented gravels and cobbles up to 3", otherwise as above.
270	0 -					270	_						
27	5					275							
273						213		5.9	100	275-285	SP		Sand with cemented gravels and cobbles as above.
				Ol Denter to Ol									
280	0		3/ Se	о вептопите Сhip eal (277'-282.5')		280	-						

Geologist: P. Feltman and J. Fisher Driller: Yellow Jacket Drilling Drilling start date: 8/4/19 Well completion date: 8/13/19

Drilling method: Sonic Borehole diameter: 9.5" Sampling method: Sonic core DTW= Depth to water measured below top of casing (feet) New Mexico State Plane East NAD83 Elevation: 4275.82 Northing: 1244960.74 Easting: 884269.96

FORMER Y STATION CLOVIS, NEW MEXICO **MW-13**

Daniel B. Stephens & Associates, Inc. – 9/5/2019 JN DB18.1157.00

S:\Projects\DE	B18.1157_Fo	ormer_Y_	_Station\VR_Drawi	ngs\LogPl	ot	212					
				Graphic Log		PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
0					0						
	<u>^^^</u>		➡Flush Mount, Traffic Grade, Well Vault	<mark>/.:/.:/.:</mark>		0.0	100	0-10	NA SC	0-0.5 0.5-30	Asphalt. Clayey sand - reddish yellow (5YR7/6), fine grained, poorly sorted, subrounded to subangular, moderate
			J-plug								plasticity, soft, moist, no odor
5—					5—						
10 —					10—		100	10.00	50		
						0.0	100	10-20	50		Ciayey saild - as above
			- Cement/Bentonite Grout (0.6'-25')								
15 —					15—						
20 —					20	0.0	100	20-30	SC		Clayey sand - as above
25 —					25 —						
30					30	0.0	100	30-40	SP	30-60	Sand - reddish yellow (5YR5/6), fine grained, well sorted, subrounded to subangular, well cemented, trace silt and clay, dry, no odor
35 —				•••••	35 —						
40 —					40	0.0	100	40-50	SP		Sand - as above
				•••••		0.0	100	40-30	01		
45					45						
45					45						
				•••••							
50 —					50 —	0.0	100	50-60	SP		Sand - as above
55 —					55 —						
				••••••							
<u></u>					<u></u>						
60 —					60	1.9	100	60-70	SW	60-70	Sand - light reddish brown (5YR6/4), fine to coarse grained, poorly sorted, subrounded to subangular, partially cemented, trace silt, dry, no odor
65 —					65 —						
70				·····	70	13	100	70.80	SD	70 350	Sand nink (SVR7/3) fine to medium grained well control subrounded to subangular, partially computed
				•••••		1.0	100	70-00	01	10-000	increased CaCO3, dry, no odor
75					75						
/5—					/5—						
				••••••							
80 —					80 —	0.8	100	80-90	SP		Sand - as above, light reddish brown (5YR6/4)
85 —				••••••	85—						
				••••••							
90					90	1.6	100	90-100	SP		Sand - pink (7.5YR7/4), fine grained, well sorted, subrounded to subangular, loose, little to no CaCO3, dry, no odor
				•••••							
95					95						
100					100	1.4	100	100 110	e D		Sand as above
						1.4	100	100-110	55		
105					105						

S:\Projects\DB	18.1157_Forme	er_Y_Station\VR_Draw	ings\LogP	lot						
			Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
]	(ppm)	(%)	(ft bgs)			
135 —				135 —						
140 —				140 —	1.4	100	140-150	SP		Sand - as above, increased silt
145 —		 High Solids Bentonite Grout (25'-264') 		145 —						
		5' Schedule 80 PVC, Blank Casing (0.5'-								
150 —		289.0')		150 —	1.8	100	150-160	SP		Sand - as above decreased silt
						100		0.		
155 —				155 —						
(00)										
160 -				160 -	1.4	100	160-170	SP		Sand - as above
165 —				165 —						
170 —				170	2.7	100	170-180	SP		Sand - as above, increased silt
175 —				175 —						
180 —				180 —	2.4	100	180-190	SP		Sand - as above
			••••••							
185 —				185 —						
			••••••							
190 —				190 -						
100				100	2.0	100	190-200	SP		Sand - as above
105				105						
195 —				195 —						
200 —				200 -	2.9	100	200-210	SP		Sand - as above
205 —				205 —						
210 —				210 —	1.7	100	210-220	SP		Sand - as above
215 —				215 —						
220 —				220 —		400	000 000	0.5		Our de la contraction de la co
					2.3	100	220-230	58		Sand - as above
225				225						
223				~~~~						
230				230	1.1	100	230-240	SP		Sand - as above
235				235 -						
				I	1	1	1	1		

S:\Project	s\DB18.	1157_Forme	er_Y_Station\VR_Drawi	ings\LogP	lot						
				Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
						(ppm)	(%)	(ft bgs)			
						I	1	I			
		ЩЦ									
265 -					265 —						
		= =									
270	_ [3/8" Bentonite Chip Seal (264'-274') 		270 -		100				
	-			••••••		2.2	100	270-280	SP		Sand - as above, no CaCO3
				••••••							
275	- :			••••••	275 —						
	:										
280	_ :				280						
200	-				200	5.1	100	280-290	SP		Sand - as above
	:										
285 -	- !				285 —						
	:										
	:										
290 -	- :			••••••	290 -	1.6	100	290-300	SP		Sand - as above, reddish yellow (7.5YR6/6), trace CaCO3
	:										
295 -	- :				295 —						
	:										
300 -	- :				300 -	0.6	100	300-310	SP		Sand - as above
	:										
305	_ :				305 —						
	:										
	:			•••••							
310 -	- !			••••••	310 —	1.1	100	310-320	SP		Sand - as above
	:										
315	_ :				315 —						
0.0					0.0						
	:										
320	- !		Filter Pack (274'-366')		320 —	0.4	100	320-330	SP		Sand - as above, moist
	:										
225	:		5' Schedule 80 PVC,		225						
325	- !		(289.0'-359.3')		325						
	∇										
330 -	328.75' : (6/8/20)			••••••	330 —	1.8	100	330-340	SP		Sand - as above, very moist, no CaCO3
	:										
	:										
335 -	- !				335 —						
	:										
340	- !				340 —	NA	100	340-350	SP		Sand - as above wet trace gravel
	:										
345 -	- :			••••••	345 —						
	:										
350	- :				350 —	NA	100	350-360	SM	350-360	Silty sand with gravel - reddish vellow (7 5YR6/6) fine to medium grained, poorly sorted subrounded gravels of
	÷										CaCO3 cemented sand, trace clay,saturated, no odor
	:										
355	- :				355 —						
	:										
360	_				360 -	NA	100	360 266	GW	360 266	Sandy gravel - light brown (7.5VR6/A) gravels up to 2.5" subrounded fine and all poorly acted activisted an
	:		5' Schedule 80 PVC,				100	500-500	Gvv	300-300	odor
	i		ыапк Casing (359.3'- 364.3')								
365	- [:		5' Schedule 80 PVC, End Cap (364.3'-	<mark> (), (</mark>	365 —						
		TD=366' bgs	364.6')								

S:\Projects\DB18.	1157_Former_`	Y_Station\VR_Drawi	ngs\LogPl	ot	PID	Samplo	Samplo	11808	Lithology	
			Log		reading (ppm)	Recovery (%)	Interval (ft bgs)	Symbol	Interval	Comments and Lithology
0	/	Flush Mount, Traffic Grade Well Vault		0	L		L	1		
					9.6			NA SP	0-1 1-5	Landscaping rocks and soil/plants Sand - light brown (5YR 7/4), well graded, loose, dry to moist, subrounded, very fine, trace silt, no odor, some caliche nodules.
5—				5—		100	5-15	SC	5-15	Clayey sand - (7.5YR 6/3), fine sand, subrounded, low plasticity, claiche nodules, and stringers (10%), dry, loose- medium dense, no odor.
10		Cement/Bentonite Grout (0.6'-20')		10—	2.8					
				45				SC		Clayey sand - as above but loose, (7.5YR 8/4).
				15—		100	15-25	CL CL	15-19.5	Sandy clay - yellowish red (5YR 5/8), trace silt, low to medium plasticity, moist, fine sand, caliche nodules. Sandy clay - as above.
20 —				20—	0.3			SC SC	19.5-20 20-25	Sand - calcium carbonate cemented, light gray (5YR 7/4). Clayey sand - (5YR 5/8), well sorted, low to medium plasticity, slightly moist, fine, subrounded, loose, caliche nodules (<10%), no odor.
25 —				25—		100	25-35	SP	25-45	Sand - yellowish red (5YR 5/8), very fine, subrounded, loose, dry, no odor, low caliche content, well sorted.
30—				30—	3.0			SP		Sand - as above but calcium carbonate cemented, medium dense.
								SP		Sand - as above with <15% caliche, loose (see 25'-30').
35 —				35—		100	35-45	SP		Sand - (7.5YR 9/2), well sorted, very fine, subrounded, partially cemented, dry, no odor.
40 —				40—	0.0			SP		Sand - (5YR 5/8), well sorted, very fine to fine, subrounded, loose to partially cemented, slightly moist, no odor,
45 —				45 —		100	45-55	SC SP	45-45.75 45.75-114	Clayey sand - (5YR 5/6), fine, subrounded, low plasticity, moist, no odor. Sand - (5YR 5/6), well sorted, fine, subrounded, loose, dry, no odor, CaCO3.
50 —				50 —	7.6					
55 —				55 —		100	55-63	SP		Sand - pink (7.5YR 7/4), fine, well sorted, subangular, loose to partially cemented (CaCO3), dry, odorless.
								SP		Sand - reddish yellow (5YR 6/6), fine, well sorted, subrounded, loose, odorless, dry, calcium carbonate (10%).
60 —				60—	0.0			SP		Sand - see 55'. Hard drilling.
65 —				65 —		100	63-73	SP		Sand (5YR 8/4), fine, well sorted, subrounded, loose to partially cemented (fragments up to 2"), dry, no odor, trace silt. Very hard caliche layer at 68' bgs.
	-	2" Schedule 80 PVC, Blank Casing (0.5'-								
70 —		135)		70	6.6					
75 —		— High Solids Bentonite Grout (20'-127')		75—		100	73-85	SP		Sand - (7.5YR 8/4), fine to medium, well sorted, loose, litle to no caliche, subrounded to subangular, dry, slight HC odor, some mottling of green and gray staining.
80 —				80-	0.5					

S:\Projects\DB18.	1157_Foi	rmer_Y	_Station\VR_Drawi	ngs\LogP	lot		1	1			
				Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
						(ppm)	(%)	(ft bgs)			
					I I	I	1	1	I	I	
			2" Schedule 80 PVC,								
			Blank Casing (0.5'- 205')								
105 —					105 —		100	105-115	SP		Sand - as above.
110 —					110 —	1.3			SP		Sand - as above.
115 —				工:工:	115 —				NA	114-115	Caliche - pinkish white (7.5YR 8/2), fine grained, well sorted, subrounded, calcium carbonate cemented, dry, odorless.
							100	115-125	SP	115-281	Sand - light brown (7.5YR 6/4), fine grained, well sorted, subrounded to subangular, slightly moist, HC odor, minor staining
120 —					120 -						
						73.2			SP		Sand - as above.
125 —					125 —		100	125-135	SP		Sand - as above.
		╞									
	-		- - 3/8" Bentonite Chip								
130 — _			Seal (127'-131')		130 —	4.1			SP		Sand - as above.
			4" Schedule 80 PVC, Blank Casing (0.5'-								
135 —	<mark>:</mark>		. 204.3)		135 —		100	135-145	SP		Sand - as above.
			<mark>:</mark>								
140 —					140 —	22.7			6 D		Sand as shows
			÷			22.1			Gr		
145					145						
					145		100	145-155	SP		Sand - light brown (7.5YR 6/4), fine grained, well sorted, subrounded to subangular, non-plastic, minor clay, loose, slightly moist, HC odor.
			: :								
150 —	<mark>.</mark>				150 —	3.6			SP		Sand - as above.
			: -								
155 —					155 —		100	155-165	SP		Sand - as above.
160 —			<mark>:</mark>		160 —	2.8			SP		Sand - with calcium carbonate concretions, otherwise as above
						2.0			Gr		
			: -								
105			all Schedule 20 DVC		105						
			0.020" Slot Screen (135'-195')				100	165-175	SP		Sand - as above.
			-12/20 Silica Sand, Filter Pack (131-200')								
170 —			: :		170	17.3			SP		Sand - as above.
									SP		Sand - light brown (7.5YR 6/4), fine grained, well sorted, subrounded to subangular, non-plastic, loose, slightly moist, HC odor.
175 —					175 —		100	175-185	SP		Sand - as above.
180 —			:		180 -	1/ 5			SP		Sand - as above
				1.1.1.1.1.1.1.1.1.1			1				

S:\Projects\DB18	3.1157_Former_\	<pre> {_Station\VR_Drawin } </pre>	ngs\LogP	lot	010					
			Log		reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	Symbol	Lithology Interval	Comments and Lithology
]		. ,				
205 —		3/8" Bentonite Chip Seal (200'-212')		205 -	-	100	205-215	SP		Sand - as above.
210 —				210 -	- 16.9			SP		Sand - as above.
215 —				215 –	-	100	215-225	SP		Sand - as above.
220 —				220 –	- 53.4			SP		Sand - with calcium carbonate concretions, otherwise as above.
225 —				225 –	-	100	225-235	SP		Sand - as above.
230 —		 2" Schedule 80 PVC, 0.020" Slot Screen (215'-255') 		230 -	- 17.4			SP		Sand - as above.
235 —				235 –	-	100	235-245	SP		Sand - as above.
240 —				240 –	- 30.6			SP		Sand with minor clay - light brown (7.5YR 6/4), fine grained, well sorted, subrounded to subangular, low plasticity, loose, slightly moist, HC odor.
245 —				245 –	-	100	245-255	SP SP		Sand with minor clay - as above. Sand with minor clay - as above.
250 —				250 –	- 26.8			SP		Sand with minor clay - as above.
255 —		 – 2" Schedule 80 PVC, End Cap (255-255.33') 		255 –	-	100	255-265	SP		Sand with minor clay - as above.
260 —		— 3/8" Bentonite Chip Seal (257'-262')		260 -	- 6.3			SP		Sand with calcium carbonate concretions - light brown (7.5YR 6/4), fine grained well sorted, subrounded to subangular, non-plastic. loose, slightly moist, HC odor.
265 —				265 –	-	50	265-273	SP		Sand with calcium carbonate concretions - as above.
270 —				270 -	-			NA		No recovery.
275 —				275 -	- 32.2	100	273-280	SP		Sand with calcium carbonate concretions - as above.
280 —				280 -	- 21.1	100	280-285	SP SP SP	281-282 282-348	Sand with calcium carbonate concretions - as above. Sandstone - pinkish gray (7.5YR 7/2), fine grained, well sorted, subrounded to subangular, calcium carbonate cement, dry, odorless. Sand with calcium carbonate concretions and stringers - light brown (7.5YR 6/4), fine grained, well sorted, surounded to subangular, non-plastic, loose, slightly moist, slight HC odor.

S:\Projects\DB18.	157_Former_Y	_Station\VR_Drawi	ngs\LogPle	ot		C '	C '	11000	1 144 - 1	
			Graphic Log		PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	Symbol	Lithology Interval	Comments and Lithology
0		Flush Mount, Traffic		0						
		A J-plug			0.0	100	0-5	NA CL	0-0.5 0.5-4	Asphalt. Sandy clay - dark brown (7.5YR 3/3), medium stiff, slight to moderate plasticity, slightly moist, odorless.
5				5—	0.0	100	5-15	СН SC	4-5 5-25	Clay with silt - pink (7.5YR 7/4), soft, moderate to high plasticity. Clayey sand - strong brown (7.5YR 5/6), fine grained, well sorted, subrounded, stiff, brittle to slightly plastic, odorless. Carbonate cementation (caliche) present in stringers and ribbons becoming more pervasive with depth.
		A → Cement/Bentonite A Grout (0.6'-20') A		10—						
				15—	0	30	15-25	sc		Clayey sand - as above.
20 — 🔥		<u>^</u>		20—				SC		Clayey sand - yellowish red (5YR 5/6), fine grained, well sorted, variably cemented with caliche. Sands are loose to moderately cohesive, slightly moist, odorless.
25 —			 	25—	0	100	25-35	SM	25-27	Silty sand - strong brown (7.5YR 5/6), very fine grained sand and silt, loose to slightly cohesive, dry to slightly moist, ordorless.
								SC	27-33	Clayey sand - strong brown (7.5YR 5/6), fine grained sand with appreciable clay content, variably cemented with caliche, increasing with depth, moderately stiff to well cemented, odorless.
30 —				30 —				SM	22.42	Silty and light brown (7 EVP S/4) firs to medium grained medarately parted variably computed with solicito
35 —				35—	0	100	35-45	SM	55-45	loose where not cemented, dry, odorless. Silty sand - similar to above, grading downward to fine sand (SP). Caliche stringers and nodules abundant, loose
40 —				40 —						where not cemented, dry, odorless.
45 —				45 —	0	100	45-55	SP SP	43-50	Sand - reddish yellow (7.5YR 6/6), fine to very fine grained, well sorted, rounded, loose to weakly cemented. Sand - as above.
50 —				50 —	0.0			SP/SM	50-55	Sand - strong brown (7.5YR 5/6), very fine to fine grained, generally loose to weakly cemented, with variable degrees of calcium carbonate cement in stringers and nodules, dry, ordorless.
55 —				55—	0.0	100	55-65	NA	55-60	Caliche - white to pinkish gray (7.5YR 7/2), masssive, very hard, weakly cemented sand and silt stringers present.
60 —				60 —				SM	60-65	Silty sand - pink (7.5YR 7/3), fine grained, significant caliche development, otherwise loose, dry, odorless.
65 —				65 —	0.0	100	65-75	SP	65-243	Sand with silt - reddish yellow (7.5YR 6/6), very fine to fine grained, well sorted, rounded, approximately 15% silt, generally loose with sparse caliche nodules.
70 —		Blank Casing (0.5'- 135')		70—						
75 —		High Solids Bentonite Grout (20'-126')		75—	83.2	100	75-85	SP		Sand with silt - as above.
80 —				80—				SP		Sand - reddish yellow (7.5YR 6/6), fine to medium grained, moderately well sorted, little to no caliche development, loose, slightly moist, slight hydrocarbon odor.

S:\Projects\DB1	8.1157_	Former	r_Y_	Station\VR_Drawii	ngs\LogPl	ot		1			1	
					Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
							(ppm)	(%)	(ft bgs)			
		I							1	1	1	
105 —						105	10.1	100	105 110	60		Sand, similar to shave but mattled with light grou (7 EVP 7/1) variable but generally grapter development of
							19.1	100	105-110	JF		carbonate cementation (10-20%) in nodules and lenses.
				2" Schedule 80 PVC, Blank Casing (0.5'-								
110 -				215')		110	- 1.8	100	110-115	SP		Sand - as above.
					· · · · ·							
115 —						115	- 58	100	115-125	SP		Sand - as above.
120 —						120	-					
125						105						
125						125	6.9	100	125-135	SP		Sand - as above.
130 —				3/8" Bentonite Chip Seal (126'-132')		130	_					
	-	Ę			· · · · ·							
		:								SP		Sand - light brown (7.5YR 6/4), fine grained, well sorted, loose with sparse carbonate cemmented nodules,
135 —		:			· · · · ·	135	- 389.4	100	135-145	SP		Sand - reddish yellow (7.5YR 6/6), fine grained, well sorted, loose with little to no carbonate development, slightly
		:										moist, slight HC odor.
										SP		Sand - similar to above but with large (up to 2") carbonate cemented nodules, strong HC odor.
140 —		:				140	-					
		:										
145		:				145						
145		:		4" Schedule 80 PVC, Blank Casing (0.5'- 289.8')		145	295.6	100	145-155	SP		Sand - as above, HC odor.
150 —		:				150	-					
		:										
		:										
155 —		:				155	603.3	100	155-165	SP		Sand - as above, HC odor.
		:										
		:										
160 —		:				160	-			SP		Sand - general increase in carbonate cementation, abundant hard carbonate cemented nodules and lenses, mododerate HC odor.
165		:		12/20 Silica Sand, Filter Pack (132'-196')		165						
105			-	2" Schedule 80 PVC, 0.020" Slot Screen		105	>15,000	100	165-175	SP		Sand - reddish yellow (7.5YR 6/6), fine grained, very well sorted, loose with little to no carbonate development, slightly moist, HC odor.
		:		(135'-195')								
170 —						170	-					
		:										
		:										
175 -		:			· · · · ·	175	2338	100	175-185	SP		Sand - as above, HC odor.
		:			· · · · ·							
		:										
180 -		:				180	-					
		:						1	1			

S:\Projects\DB1	8.1157_Forr	ner_Y	_Station\VR_Drawin	ngs\LogPl	lot						
				Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
						(ppm)	(%)	(ft bgs)			
1											
				• . • . • . • . • .							
205 —					205 -	_					
			 3/8" Bentonite Chip Seal (196'-212') 								
			0001 (100 212)								
				• . • . • . • . • .							
210 —					210 -	2994	100	210-217	SP		Sand - as above.
215 —				• . • . • . • . • .	215 -	-					
		E				. 15 000	100	217 227	<u>ер</u>		Sond, similar to above but with longer of deriver cond, alive vellow (10VP E/E) find grained, well period, longer to
				· · · · · · · · · ·		>15,000	100	211-221	55		very weakly cemented.
220 —		E		· · · · ·	220 -	-					
				• • • • •							
		E									
225		:E:			225						
225 —					225	-					
						>15,000	100	227-235	SP		Sand - reddish yellow (7.5YR 6/6), very fine grained, well sorted, loose with sparse carbonate nodules 1-5 cm
				• . • . • . • . • .							
230 —		E			230 -	-					
		E									
235 —		: E			235 -	861.1	100	235-245	SP		Sand - as above.
		E									
240 —					240 -	_					
		E									
				· · · · · · · ·					SM	243-245	Silty sand - reddish vellow (7.5YR 6/6), very fine grained, greater comentation than above
245			 12/20 Silica Sand, Filter Pack (212'-276') 	· · · · · · · · · · · · · · · · · · ·	245				Civi	240 240	
245			 2" Schedule 80 PVC, 0.020" Slot Screen 	· · · · · · · · · · ·	243	3129	100	245-255	SP	245-354	Sand - reddish yellow (7.5YR 6/6), very fine to fine grained, well sorted, loose with sparse carbonate nodules, occurance increasing with depth, slightly moist, HC odor.
			(215'-275')								
250 —		:E:		• . • . • . • . • .	250 -	-					
		E									
255 —					255 -	- 1661	100	255-265	SP		Sand - as above with some olive yellow color mottling (10YR 6/6), HC odor.
		E									
				· · · · ·							
260 —					260 -	-					
		E									
265 —					265 -	_					
200		E		• • • • • • • •	200	>15,000	100	265-275	SP		Sand - similar to above, variable but generally greater cementation through this interval.
		E									
270				· · · · · · · ·	2/0	-					
275 —			 – 2" Schedule 80 PVC, End Cap (275-275 33') 		275	- 1661	100	275-277	SP		Sand - as above.
						>15,000	100	277-284	SP		Sand - continue as above, but sparsely interbedded with thin sandstone beds (<2"). Sandstone is light brown
											(7.5Y/R 6/4), fine grained, structureless, moderately indurated.
280 -					280	-					
			 3/8" Bentonite Chip Seal (276'-287') 								
		==	00ai (270-207)								

S:\Projects\D	B18.1157_Former	_Y_Station\VR_Drawin	ngs\LogPl	ot						
			Graphic Log		PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
0				0						
		Flush Mount, Traffic Grade, Well Vault			9.6		0-5	NA SC	0-0.5 0.5-5	Asphalt Clayey sand - dark brown (7.5YR 3/4), fine grained, well sorted, subangular, high plasticity, loose, slightly moist, odorless.
5—				5—		100	5-15	СН	5-21	Sandy clay with caliche - yellowish red (5YR 5/6), fine grained, well sorted, subangular, high plasticity, stiff, dry, odorless.
10 —		Cement/Bentonite Grout (0.6'-20')		10—	2.8			СН		Sandy clay - as above.
15 —				15 —		100	15-25	СН		Sandy clay - as above.
20—				20—	0.3			CH SC	21-29	Sandy clay - as above. Clayey sand - yellowish red (5YR 5/8), and pinkish white (7.5YR 8/2), fine grained, well sorted, subrounded, to angular, low plasticity, loose to semi-consolidated, dry, odorless.
25 —				25—		100	25-35	SC		Clayey sand - decreased caliche, otherwise as above.
30 —				30—	3.0			SP SP SC	29-31 31-45	Sand - yellowish red (5YR 5/8), fine grained, well sorted, subrounded to subangular, non-plastic, minor clay, bose, dry, odorfless. Sand - as above. Clayey sand - reddish yellow (5YR 5/6), minor silt, fine grained, well sorted, subrounded to subangular, with caliche - pinkish white (7.5YR 8/2), semi consolidated, dry, odorless.
35—				35 —		100	35-45	SC		Clayey sand - as above.
40 —				40—	0.0			SC		Clayey sand - reduced claiche, otherwise as above.
45 —				45—		100	45-55	SP	45-335	Sand with silt and clay - yellowish red (5YR 5/6), fine grained, well sorted, subrounded to angular, low plasticity, loose, dry, odorless.
50—				50 —	7.6			SP		Sand with slift and clay - as above.
55 —				55 —		100	55-63	SP		Sand with silt - pink (7.5YR 7/3), fine grained, well sorted, subrounded minor clay, low plasticity, loose, dry, odorless, calcium carbonate reaction with HCI; some consolidated areas.
60 —				60—	0.0	100	63-73	SP		Sand with silt - as above.
65 —		2" Schedule 80 PVC,		65 —				SP		Sand with silt - as above.
70		Biank Casing (0.5'- 135.36')		70	6.6	100	72.95	SP		Sand with silt - as above.
75		Grout (20'-127')		75—				SP		Sand with silt - as above.
80—				80-	0.5			SP		Sand with silt and calcium carbonate concretions - otherwise as above.

S:\Projec	ts\DB18.1	157_Forme	er_Y_	Station\VR_Drawin	ngs\LogPl	ot						
					Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
							(ppm)	(%)	(ft bgs)			
105						105						
								100	105-115	SP		Sand with silt and calcium carbonate concretions - as above.
110	_			- 2" Schedule 80 PVC, Blank Casing (0.5'- 214.98')		110 —	1.3			SP		Sand with silt and calcium carbonate concretions - as above.
115	_					115 —		100	115-125	SP		Sand with silt and calcium carbonate concretions - as above.
400						100						
120						120	73.2			SP		Sand with silt - no calcium carbonate concretions, black staining, otherwise as above.
										SP		Sand with silt - no staining, otherwise as above.
125	-					125 —		100	125-135	SP		Sand with silt - as above.
130	_			 3/8" Bentonite Chip Seal (127'-131') 		130 —	4.1			SP		Sand with silt - as above.
135	L .					135 —		100	135-145	SP		Sand with silt - as above.
140						140	22.7			SP		Sand with silt - as above.
145				- 4" Schedule 80 PVC, Blank Casing (0.5'-		145 -		100	145-155	SP		Sand with silt - as above.
				289.27')								
150						150						
150						150	3.6			SP		Sand with silt - as above.
155						155 -		100	155-165	SP		Sand with silt - as above.
160						160 -				0.5		
							2.8			SP		Sand with silt - as above.
165				- 2" Schedule 80 PVC, 0.020" Slot Screen		165 —		100	165-175	SP		Sand with silt - as above.
				(135.36'-195.44') - 12/20 Silica Sand, Filter Pack (124' 200')								
170				Filter Pack (131'-200')		170	17.3			SD.		Sand with silt, with minor arow staining, adapted, otherwise as above
							17.3			ог СD		Sand with silt and alcium carbonate concretions - no staining, otherwise as above.
										UF		and mut on anadaloran derboridie controlliono - no stalling, Unerwise as abuve.
175						175		100	175-185	SP		Sand with silt and calcium carbonate concretions - no staining, otherwise as above.
180						180 -	14.5			SP		Sand with silt - odorless, otherwise as above.

S:\Projects\DB1	8.1157_Former_Y	_Station\VR_Drawi	ngs\LogPl	ot						
			Graphic Log		PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
							(***5*)			
205 —				205 —		100	205-215	SP		Sand with silt and calcium carbonate concretions - slight HC odor, otherwise as above.
		— 3/8" Bentonite Chip Seal (200'-212')								
210				210 —	16.9			SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
215 —				215 —		100	245 225	e D		Sand with all and calcium appropriate concrations alight UC oder, on above
						100	215-225	Gr		
220 —				220 —	53.4			SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
225 —				225 —		400	005 005			
						100	225-235	58		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
			- H H H H H H H H H							
230 —				230 —	17.4			SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
235				235						
200				200		100	235-245	SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
240 —				240 —	30.6			SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
245		- 2" Schodulo 80 PVC		245						
245		0.020" Slot Screen (214.98'-274.93')		245		100	245-255	SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
		 — 12/20 Silica Sand, Filter Pack (212'- 280.5') 								
250 —				250 —	26.8			SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
255				255						
255				255		100	255-265	SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
260 —				260 —	6.3			SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
005				0.05						
265 —				265		100	265-272	SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
270 —				270 —				SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
						100	272-284	SP		Sand with silt and calcium carbonate concretions - slight HC odor, as above.
					32.2					
275		 2" Schedule 80 PVC, End Cap (274.93- 275.28') 		275 —						
		,								
280 -				280 —	21.1			SP		Sand with silt - no calcium carbonate concretions, slight HC odor, otherwise as above.
		- 3/8" Reptonito Chin								
		Seal (280.5'-284.5')								

S:\Projects\D	B18.1157_Former_Y_	_Station\VR_Drawi	ngs\LogPl	ot						
			Graphic Log		PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
0		- Flush Mount Traffic		0		100	0-5	NA	0-0.5	Asnhalt
		Grade, Well Vault			7.2			CL	0.5-22	Sand clay - brown (7.5YR 4/4), fine grained, well sorted, subrounded, moderate plasticity, loose to medium dense, slightly moist, no odor, calcium carbonate.
5				F						
5—		ς ς	· · · · · · · · · · · · · · · · · · ·	5	0.2	100	6-16	CL		Sandy clay - yellowish red (5YR 5/6), otherwise as above.
		ς ς ς								
10		Cement/Bentonite Grout (0.6'-20')	· · · · · · · · · · · · · · · · · · ·	10						
		s s s								
15—			<u></u>	15—	0.7	100	46.00	C		Candu alau i an abaua
					2.7	100	16-26	UL		Sandy clay - as above.
20—		2		20						
			· · · · · · · · ·					SC	22-26	Clayey sand - yellowish red (5YR 5/6), fine grained, well sorted, subrounded, low plasticity, partially cemented
25 —				25—				SC		Clayey sand - reddish yellow (5YR 6/6), with less calcium carbonate, loose, otherwise as above.
					0.0	100	26-36	SP	26-347	Sand - pink (5YR 7/4), fine grained, well sorted, subrounded, non-plastic, loose to partially cemented, no odor, trace silt, calcium carbonate rich.
30				30						
						100	34-46	SP		Sand - raddish vallow (5VR 6/6) fing grained well sorted subrounded low plasticity (trace clay) loose dry no
35 —				35 —	0.0	100	04 40	SP		odor. Sand - no clay (non-plastic), trace calcium carbonate nodules, otherwise as above.
40				40						
45 —				45 —						
					0.0	100	46-56	SP		Sand - as above.
50				50						
								SP		Sand - pink (5YR 7/4), very high calcium carbonate concentrations, partially cemented, otherwise as above.
55 —				55 —	4.6	100	56-66	SP		Sand - light reddish brown (5YR 6/4), fine grained, well sorted, subrounded, non-plastic, partially cemented, dry,
60 —				60						
65 —				65 —						
		2" Schedule 80 PVC, Black Casing (0 5			5.0	100	66-76	SP		Sand - loose, lower calcium carbonate concentration, otherwise as above.
70		134.88')		70						
75		 High Solids Bentonite Grout (20'-126') 		75						
					0.8	100	76-86	SP		Sand - as above.
80				80				SP		Sand - reddish yellow (7.5YR 6/6), fine grained, well sorted, subrounded to subangular, non-plastic, loose, dry, little to no calcium carbonate.

3. IFTOJECISID	B18.1157	_Former	_Y_Station\VR_Drawi	ngs\LogPl	lot		-	-	-		
				Graphic Log		PID reading	Sample Recovery	Sample Interval	USCS Symbol	Lithology Interval	Comments and Lithology
]	(ppm)	(%)	(ft bgs)			
		II				I	1	I	I		
105					105	0.6	100	104-108	SP		Sand - as above.
105 —					105 -	-					
			2" Schedule 80 PVC,				400	100 110	0.0		
110			Blank Casing (0.5'- 214.90')		110	0.0	100	108-116	58		Sand - Increased Calcium Carbonate concentrations (~15%) at 110, otherwise as above.
110					110	-					
115				· · · · · · · · ·	115						
115					115	2.9	100	116-126	SP		Sand - <10% calcium carbonate, otherwise as above.
120					120	_					
120				· · · · ·	120						
125 —					125 -	_					
		H	Щ			3.0	100	126-136	SP		Sand - as above.
			 3/8" Bentonite Chin								
130			- Seal (126'-131')		130 -	_					
		:									
135 —		:			135 -	-					
						0.4	100	136-146	SP		Sand - as above.
140 —				· · · · · ·	140 -	-					
				· · · · ·							
145 —				· · · · · · · · · · · · · · · · · · ·	145 -	-					
			4" Schedule 80 PVC, Blank Casing (0.5'-			23.7	100	146-156	SP		Sand - as above.
150 —					150 -	-					
155 —				· · · · · · · · · · · · · · · · · · ·	155 -	-					
		:				16.4	100	156-166	SP		Sand - as above.
		:									
160 —					160 -	-					
		:									
		:	12/20 Silica Sand,								
165 —		<mark>:</mark>	Filter Pack (131'-197') 2" Schedule 80 PVC,		165 -	-					
		:	0.020" Slot Screen (134.88'-194.87')			13.7	100	166-176	SP		Sand - less calcium carbonate, otherwise as above.
		÷									
170		:			170 -	-					
		÷									
		÷									
175		÷			175 -	-	400	170 100	00		
		÷				19.5	100	1/0-182	58		Sanu - as duuve.
		÷									
180		:			180 -	-					
						92.4	100	182-192	SP		Sand - higher concentrations of calcium carbonate at 186'-187', otherwise as above.

S:\Projects\DB18	3.1157_Former_\	(_Station\VR_Drawin	ngs\LogPl	ot						
			Graphic Log		PID reading (ppm)	Sample Recovery (%)	Sample Interval (ft bgs)	USCS Symbol	Lithology Interval	Comments and Lithology
						1			<u> </u>	
205 —		— 3/8" Bentonite Chip Seal (197'-212')		205 —						
210 —				210 —	26.7	10	208-216	SP		Sand - as above.
215 —				215 —	27.8	100	216-226	SP		Sand - as above.
220 —				220 —						
225 —				225 —	2.8	100	226-236	SP		Sand - increased calcium carbonate at 228'-229', otherwise as above.
230 —				230 —						
235 —				235 —	2.0	100	236-246	SP		Sand - as above.
240 —				240 —						
245 —		Filter Pack (212'-277') 2" Schedule 80 PVC, 0.020" Slot Screen (214.90'-274.91')		245 —	234.6	100	246-256	SP		Sand - as above.
250 —				250 —						
255 —				255 —	31.3	100	256-266	SP		Sand - increased calcium carbonate at 262'-264', otherwise as above.
260 —				260 —						
265 —				265 —	119.6	100	266-276	SP		Sand - as above.
270 —				270 -						
275 —		 2" Schedule 80 PVC, End Cap (274.91- 275.26') 		275	270.9	100	276-286	SP		Sand - increased calcium carbonate concentration, otherwise as above.
280 —		— 3/8" Bentonite Chip Seal (277'-287')		280 -						

Appendix B

Survey Report

The following coordinates for monitor well <u>RW-1, RW-2, RW-3, RW-4, BW-7R, BW-8, MW-11, MW-12,</u> <u>MW-13, and MW-16.</u> The remaining coordinates are for three sumps and three electrical junction boxes (EJB) which all coordinates included in the table below are located in the <u>CITY OF CLOVIS, CURRY</u> <u>COUNTY, NEW MEXICO</u> are located on New Mexico State Plane East Zone Grid:

NAD 83:

	Monitor W	ells, Sumps	, & Electri	cal Junctio	on Boxes	
Description	Northing	Easting	Top of Split Well Cap	Top of Casing Elevation	Top of Vault Elevation	Casing Size
RW-1	1245546.620	884125.544	4279.558	4279.538	N/A	4-inch
RW-2	1245416.895	884141.210	4278.970	4278.950	N/A	4-inch
RW-3	1245486.497	884251.597	4278.534	4278.514	N/A	4-inch
RW-4	1245345.739	884280.005	4278.098	4278.078	N/A	4-inch
BW-7R	1245210.173	884291.255	4277.575	4277.555	N/A	5-inch
BW-8	1245377.136	884091.745	N/A	4277.888	N/A	4-inch
MW-11	1244812.368	884413.001	4273.831	4273.811	N/A	5-inch
MW-12	1245128.130	884520.260	4277.320	4277.300	N/A	5-inch
MW-13	1244960.698	884269.944	4275.346	4275.326	N/A	5-inch
MW-16	1244755.633	884811.107	4276.039	4276.019	N/A	5-inch
SUMP 1	1245387.298	884276.500	N/A	N/A	4279.494	N/A
SUMP 2	1245388.757	884147.195	N/A	N/A	4279.411	N/A
SUMP 3	1245145.963	884372.923	N/A	N/A	4277.959	N/A
EJB 1	1245349.202	884278.436	N/A	N/A	4279.152	N/A
EJB 2	1245392.673	884146.711	N/A	N/A	4279.503	N/A
EJB 3	1245144.362	884436.894	N/A	N/A	4278.034	N/A

abut yde

Robert C. Lydick P.E & L.S. No. 5955

205 E. Second St. • Clovis, New Mexico 88101 • P.O. Box 728 • Clovis, New Mexico 88102-0728 ph: 575-762-3771 • fax: 575-762-9093

Appendix C

Field Notes

Meter Test	Verification Da	ate	Meter Site Location					City	
City of C	Clovis	02/20/24	822 York Dr.					Clovis, NM	
Meter Number	Meter Brand	Meter T	Гуре	e Meter Size Totalizer Rea				leading	
20004230-NL	Pulsafeeder	Mechanical 3/4"			4"	11350			AL
Pipe Material	Pipe Size	Pipe Class	Pipe O	D	Thic	kness	Setup	Distance	Water Temp.
PVC	2"	Sch 80	2.375			218	Reflect	0.75	65.0 F
	Verification Meter Info								

Verification Meter Used	Serial Number	Calibration Date	Technician
Flexim F601	06016014	03/08/22	Mario Gonzales

Tested Meter Start	Tested Meter End	Tested Meter Total		Verification Meter Total	Meter Accuracy (%)
57.0	81.0	24.0		24.1	99.8
		Comments			
	Т	he meter tested well at S	99.8%	6	
		Attachments			
	* PULSAFEEDER DIS GALLONS 10 10 10 10 10 10 10 10 10 10			FLEXIM CHANNEL A	FLUXUS

Copyright © 2018 PureOps

Meter Test

Fill out all f	ields. Enter no	reading (NF	R) or not	active (N	A) if applicab	le for each field.			
Site: Former Y Stati	on		Pro	Project Number: DB18.1157					
Staff Name:	r Nuñez-Thom	pson	Dat	Date/Time on Site: 15124 @ 8:40 am					
		Comp	ound Re	adings	a Ashir Cardenne (1976) an ar Seora				
Service Gas Meter (take photo)	(cf): 30,501,0	600	Service E (take pho	Electric Met oto)	ter (kWh): 69,1	30			
		Oxidize	·[Oxidizer Screen]						
Oxidizer Hours ¹	Dilution V	alve (%)	Ox Inlet	Temp (°F)	Ox Outlet Temp	(°F) NG Valve (%)			
2301	0.0		1399		1399	67.7			
Vacuum (in HaO) ²	Temp	DPE Blower I	nformation Flow (n [HMI Scre SCFM) ²	en] Hours ³	Speed (Hz) ³			
68.3	108.1	(, ,	725		2300.5	45			
		Motor	r Control (Hours)					
DTA Blo	ower ³	Moisture	Sep Trans	fer Pump ³	D	ischarge Pump ³			
2202.0	1	35.	1		8S7.5	· .			
		Groundwa	ter Treatr	nent Tota	S				
Flow Total from	n HMI (gal)	Flow Total from	n Physical	Meter (gal)	Flow Rate fr	om Physical Meter (gpm)			
108410 1084400 1083365 25									
Time Desended	Vall		Well Info	ormation [HMI]	Elow Total ⁴			
	RW-1	2178,0	iours	12.1		21117			
	RW-2	2178.0		26.9		52.968			
	RW-3	2196.6		33.4		3 344,142			
	RW-4	2194.8		28.3	<u> </u>	37,494			
9:15	BW-7R	1712.1		7.2.6	<u> </u>	81,024			
	MW-11	2193.1		25,9	<u> </u>	227235			
	MW-12	1577.6		25.0		210,897			
	MW-13	2192.3		22.3		121,031			
	MW-16	2996.6		21.5		111,464			
(Rec	Sump Lines	tied)		(Meas	Product Stora	ige Tank interface probe)			
SVE Line 1	SVE Line 2	SVE Line	3	DTP	DTW	TD			
NA	NA	NA		NR	NR	NR			
		Laborator	y Samples	Collected					
FY Treated Fff (H ₂ O)	FY Raw	(H ₂ O)	FY Ox E	ff (vapor)	FY Comb Inf (va	por) DTA Eff (vapor)			
9:50	9:35	<u> </u>	10:0	9	10:07	NS			

1

(

.

³Motor Control screen (1, 2, or 3) ⁴Flow Totals ⁵Well Level Information

Former Y O		· · · · · · · · · · · · · · · · · · ·		and statements of the state of the		Date:	and the second state of the second second second	1 1
Timo	Samr	No Point	Vacuum (in	Compound Va	Air Flow (sofm)	Velocity ((fpe)	ncentration (nnm)
9:27	S	VE 1	58.7		1289,97	369 5	173	29
9:27	S	VE 2	59.2	2	86.91	3288	rika Ila	'.S
9.77	S	VE 3	Value Closed					>
9:27	Combin	ed Influent	60.5		16.62	2912	107	76
9:45	Οxidizer Effluent						58.	7
	e de la cardende			Field M	leasurements		<u>i i su prime</u> rio de la companya de la compa	
			GW Measureme	nts Flow Rate	Vacuum	Vapor Mea	asurements	Concentration
Time	Sample Point	Pressure (ps	si) (gal)	(gpm)	(in H ₂ O)	Air Flow (scfm)	Velocity (fps)	(ppm)
	RW-1-S	35 35	211213	1.4	36.9	57.90	2654	225.5
1025	RW-1-I				37.5	143.78 35.01	1648 1605	390.
	RW-1-D				37.2	59.64	2734	920.6
	RW-2-S	lopsi	53059	Ø	38.5	46,26 (I)	Z 2 (I)	195/
8:46	RW-2-I				37,	32,94 (D)	1510 D)	3166
	RW-2-D				37.3	<u> </u>	2362 (5)	2344
	RW-3-S	Spsi	384/97-	D	42.5	40,50	1856	158.9
1:z	RW-3-I				42.3	34.20	1568	72.3
	RW-3-D				42.4	34.20 46.12	1568 2114	1682
	RW-4-S	10751	00-06-66	2.45	46.5	62.05	2844	6S.9
11:40	RW-4-I		99068		44.2	53.78	2465	112.8
	RW-4-D		,		44.0	53,46	2450	1136
1203	BW-7R	64251	81076	0.77	47.5	83.38	3822	64.6
1108	BW-8-S				37.4	69.57	2960	46.5
1108	BW-8-I	-			.36.5	42.52	1949	59,2
<u>" 0%</u>	BW-8-D				36.7	44.30	2031	847
1230	MW-11	2 psi	227373	0.68	off			
1213	MW-12	16psi	211094	0.58	49.3	91.67	4200 4202	57.8
1233	MW-13	O psi	121117	0.45	off			
1224	MW-16	1112690	111264	Ø	011			
			Su	mp Lines (Re	cord Gallons Emptie	əd)		
North	North Sump (In RW-1) West Sump (Glasses Parking Lot)			t) East Sum	p (Near RW-4)	South Sump (Near Domino's)		
	NANA			4		NA	NA	

³Motor Control screen (1, 2, or 3) ⁵Well Level Information ⁴Flow Totals

1

Fill out all	fields. Enter no	o reading (NF	R) or	not active (NA)) if applicabl	e fo	r each field.	
Site: Former Y Sta	ition			Project Num	ber:	DB18,1157	,		
Staff Name:	Nuñez-Thomp	son	-	Date/Time or	n Sit	e: 2/19/24	O [301	
		Comp	ound	Readings					
Service Gas Mete (take photo)	r (cf)	34,237,000	Serv (take	vice Electric M e photo)	eter	(kWh): 778	'H	· .	
		Oxidize	r [Oxi	dizer Screen]					
Oxidizer Hours ¹	Dilution V	/alve (%)	Ox	Inlet Temp (°F)		Dx Outlet Temp	<u>(°F)</u>	NG Valve (%)	
4368	0.0		139	16)	344		71.6	
1 () () () () () () () () () (DPE Blower I	nform	ation [HMI Sc	reen	1			
Vacuum (In H ₂ O) ²	l emp	(°F)²	⊢ ~		_			Speed (Hz)	
69.0	108.0		1	29		2568.6		45	
		Motor	Cont	rol (Hours)	「日本市」				
		Moisture	Sep T	ransfer Pump ³			scha	rge Pump ³	
2970	2,9	52	2.8			890	•9		
		Groundwa	ter T	reatment Tot	als				
Flow Total fro	m HMI (gal)	Flow Total from	n Phys	sical Meter (gal)		Flow Rate fro	om Ph	nysical Meter (gpm)	
434000 3 900 130,794 26									
	347-18	Groundwater	Well	Information	[HN			F1 F 4 14	
Time Recorded	RW-1	ר <u>רועו ר</u>	iours	well	Leve	el (IT abv trs) ³	. 1 7		
		294.).		1015	>		25.	2686	
	RW-2	2443.1		42.8	3		696	579	
	RW-3	2461.8		33.0	7		39	3974	
1250	RW-4	2459.8		29.3	7	36		3939	
	BW-7R	1764.5		27,8	27,8		911	515	
	MW-11	2458.3		25,	4		23.	8678	
	MW-12	1842.5		24,	3	·	233	3831	
	MW-13	2457,5		22.0	2		122	2485	
	MW-16	2461.9		20.2	7		112	2054	
(Rec	Sump Lines ord Gallons Emp	ptied)		(Mea	P	roduct Stora e in ft using i	ge T nter	ank face probe)	
SVE Line 1	SVE Line 2	SVE Line	3	DTP		DTW		ТD	
NA	NA	NA		NR		NR		NR-	
		Laborator	y San	nples Collecte	d		4.		
FY Treated Fff (Ha	Match names a	nd times from I	nere o	Ox Eff (vapor)	chai	n of custody fo	orm		
1435	1421		144	13		1948		1445	
		•		· /		• • •			

11

³Motor Control screen (1, 2, or 3) ⁴Flow Totals ⁵Well Level Information ⁶Record old Pulsafeeder and new meter

		Fo	rmer Y O&M			Date: 2/19/24			
Time	Comp	le Deiné	C Vacuum (in b	Compound	Vapor Measurements	Volocity	(fno)	Concentration (nnm)	
],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Samp		<u>65</u> 7.		AIFFIOW (SCIM)		(ips)		
<u> </u>					1696+5 T	101 T 245Li		<u></u> [//	
	31				$\frac{301,93}{0,00}$	SIJ7		<u>97:0</u>	
	S	/E 3	- 201 (Valve	e Closed)	(valve closed)	U (valve close	a)	NK	
<u>_</u>	Combine	ed Influent	65.0	(49.11	2791		01201	
V	Oxidize	Oxidizer Effluent 37.9							
		6	W Measuremen	Field	ivieasurements	Vanor Me	asurements		
Time	Sample Point	Pressure (psi)	Total Flow (gal)	Flow Ra	te Vacuum (in H₂O)	Air Flow (scfm)	Velocity (fps) Concentration	
· · · ·	RW-1-S		(3)	(3)/	- 39,2	53,35	2445	264.1	
1650	RW-1-I	Ø	113820	2.68	39,6	33.79	1549	208:6	
	RW-1-D	~ZK	236985	226905 1.6		57.28	2626	700.9	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RW-2-S				43.0	52.74	2417	1342	
1709	RW-2-I	0	360211	\bigcirc	42.6	50.62	7320	1657	
· · - v	RW-2-D	U	00011		42.2	33.42	1532	1612	
	RW-3-S		Old ⁶	Old ⁶	45 4	41.2 42	2197	79.7	
1/77.	RW-3-I	0	294009	0.46	44.6	38.14	TTh	11/2	
16C P	RW-3-D	-	New ⁶ JJ Z Z	New ⁶ Au	43,9	50.17	7797	15-29	
	RW-4-S		Old ⁶	Old ⁶	48.4	54 56	2501	205	
A. = -	RW-4-I	0	99923	2.24	47.0	54.54	2500	74.4	
1558	RW-4-D		New ⁶ 21554/Z	New ⁶ //2	47.6	62.75	187h	946.0	
1545	BW-7R	\bigcirc	91477	O (aff)	482	87.82	4025	36.6	
1010	BW-8-S		11/10/	0 (011)	40.1	63.27	2900	201.3	
1802	BW-8-I				40,8	45.42	2094	351.1	
1602	BW-8-D				410	45.76	2098	1024	
	MW-#12	and Provide Transmitter and the second second					2019		
1538	13 MW-M2 Man	\sim	122486	0	N/A(OFE)			\rightarrow	
1537	1) MW-AB MAN	อี	738.714	m. Kh	DER NIL.				
1521	MW-16	$\overline{\bigcirc}$	113820	0.68	0.05/000	NIA -			
		<u> </u>	Sun	np Lines (R	Record Gallons Emptied	1)			
North	North Sump (In RW-1) West Sump (Glasses Parking Lot)				ot) East Sump	(Near RW-4)	South S	Sump (Near Domino's)	
	NA	、	NA	¥	NA		N.	Pi	
) nly for ما ک rocess ، , _nsm	the oxidizer main s litter Information s	creen, not the H2 screen	2K HMI ³ Mot ⁴ Flow	or Control so v Totals	cre ¹ 1, 2, or 3) ⁵ Well ⁶ Reco	Level Information ord old Pulsafeeder			

Site: Former Y Stati	on		Proje	Project Number: DB18.1157					
Staff Name: Glex	Numez-Thompson	h	Date/	Date/Time on Site: 2/20/24 - Z/21/24					
· · · · · · · · · · ·		Compo	ound Rea	dings	1		a haquada i		
Service Gas Meter (take photo)	(cf): NR		Service Ele (take phote	ectric Me o)	ter (kWh):	VR			
		Oxidizer	[Oxidizer S	creen]					
Oxidizer Hours ¹	Dilution V	alve (%)	Ox Inlet Te	emp (°F)	Ox Outlet Temp	<u>(</u> °F) I	NG Valve (%)		
		DPE Blower In	formation	HMI Scre	en]		- 4 ¹ 1		
Vacuum (in H ₂ O) ²	Temp	(°F) ²	Flow (So	CFM) ²	Hours ³		Speed (Hz) ³		
							× .		
		Motor	Control (He	ours)					
DTA Blo	ower ³	Moisture	Sep Transfe	r Pump ³		ischarge P	ump ³		
	۰ ۲		-		•				
		Groundwat	er Treatm	ent Total	IS				
Flow Total from	n HMI (gal)	Flow Total from	Physical Me	eter (gal)	Flow Rate fr	om Physica	al Meter (gpm)		
	•								
		Groundwater	Well Inform	mation [l	НМІ]	. Internet			
Time Recorded	Well	Pump Ho	ours ³	Well Le	evel (ft abv trs) ⁵	Fl	ow Total ⁴		
	RVV-1	2476.	F	15	.3	2374	160		
	RW-2	2459,2	7 - -	22	,7	69905	<u>.</u>		
	RW-3	2495.	۷.	34	.8	3948	89		
201	RW-4	2491.8	8	29.	. [36842	8428		
	·BW-7R	-1778.7		21.	2	92632	8		
	MW-11	2490,2		25,	4	2402.	27		
	• MW-12	1874.3	x_	24,	7	2355	80		
· •	MW-13	2477.8("stopped)	22.	<i>t</i>	1724	96		
	MVV-16	2496,6	-	20.5		1120	254		
(Reco	Sump Lines ord Gallons Emp	otied)		(Meas	Product Stora ure in ft using	interface	probe)		
SVE Line 1	SVE Line 2	SVE Line 3	3	DTP	DTW		TD		
Oqal	Ogal	Ogal		•					
Ų.	U.	Laboratory	Samples (Collected					
EV Treated Eff (H_O)	Match names an	nd times from h	ere on labe	(vapor)	EX Comb Inf (va	orm			
	rikaw			(vapur)					
					l				

ASEE 2/19/2024

-Only found on the oxidizer main screen, not the H2K HMI ²Process Transmitter Information screen

42/12/2

³Motor Control screen (1, 2, or 3) ⁴Flow Totals ⁵Well Level Information ⁶Record old Pulsafeeder and new meter Former Y O&M

Time	Samp	le Point VE 1	Vacuum (in H	1 ₂ O)	Air Flow (scfm)	Velocity (f	ps) Con	centration (ppm)
	S	VE 2						
	S	VE 3						
	Combin	ed Influent				· · · ·		· · · · ·
	Oxidize	er Effluent						
				Field Mea	surements			
	_T	G	W Measuremen	ts Flow Rate	Vacuum	Vapor Meas	surements	Concentratio
Time	Sample Point	Pressure (psi)	(gal)	(gpm)	(in H ₂ O)	Air Flow (scfm)	Velocity (fps)	(ppm)
	RW-1-S	likon	20200	1/17				
707	RW-1-I	4030	237,460	1.42				
• •	RW-1-D							
-10	RW-2-S		Zealid					
F19	RŴ-2-I	U	56049	0.3				
	RW-2-D		Ē					
197	RW-3-S		Old ⁶					
765	RW-3-I	0	514,866	0,56				
1 2	RW-3-D		New ⁶ 5405	New 0, 4			-	
-170	RW-4-S		Old ⁶	Old ⁶				
728	RW-4-I	10	79999	2,06				
	RW-4-D		New ⁶ 318709	New ⁶ 1, 7				
734	BW-7R	102	92580	0.98				
	BW-8-S							
	BW-8-I							
20 - F	BW-8-D							
	MW-1/4 13	Off		>				
	MW-12	2	235575	1.28				
936	MW- / /2 1[2	230362	0.84				
938	MW-16	0	115910	1.44				
			Sun	np Lines (Reco	d Gallons Emptied)		
North	Sump (In RW-1)	West	Sump (Glasses	Parking Lot)	East Sump	(Near RW-4)	South Symp (N	lear Domino's
>	Ogal				Could not ope	n-needs "	8ga	
¹ Only for on ² Process , ans	the oxidizer main s mitter Information	screen, not the H2 screen	2K HMI ³ Mot ⁴ Flow	or Control scre / Totals	1, 2, or 3) ⁵Well ⁶ Reco	Level Information rd old Pulsafeeder	Ú í	

Fill out all fi	elds. Enter no	reading (NF	R) or not a	ctive (NA) if applicabl	e for	[,] each field.				
Site: Former Y Static	on		Proje	Project Number: DB18.1157							
Staff Name: 🧃	Tomes		Date	Date/Time on Site: $3/5/24 - 3/6/24$							
		Comp	ound Rea	dings		8					
Service Gas Meter ((take photo)	^{cf):} 34517		Service El (take phot	ectric Mete o)	^{r (kWh):} 82	95%	2				
		Oxidize	r [Oxidizer	Screen]							
Oxidizer Hours ¹	Dilution Va	alve (%)	Ox Inlet T	emp (°F)	Ox Outlet Temp	(°F)	NG Valve (%)				
		System	r Shu	t Dow	m		und tes ungaber top kulture di F de productioner en reur				
DPE Blower Information [HMI Screen]											
Vacuum (in H ₂ O) ²	Temp (°F)²	Flow (S		Hours ³	2	Speed (Hz) ³				
0	52	. (2 · _	2589.	5	45				
		Motor	Control (H	ours)							
DTA Blo	wer	Moisture	Sep Transfe	er Pump ³		schar	ge Pump ³				
28487	7	\$3.4	t			16	0.0				
		Groundwa	ter Treatm	ent Totals		144					
Flow Total from	HMI (gal)	Flow Total from	n Physical M	eter (gal)	Flow Rate fro	om Phy	ysical Meter (gpm)				
1,226,3	00	1,2	225,700	,700							
Groundwater Well Information [HMI]											
Time Recorded	BW/_1	Pump H	lours ³	Well Lev	el (ft abv trs) ⁵		Flow Total ⁴				
1508		2623.			1	2	60565				
	RW-2	2780.	0	50.1		8	50874				
	RW-3	2815	.9	33.9		۷	108305				
· · ·	RW-4	2812		29	.0	402619					
	BW-7R	209	9.0	22-9			08118				
	MW-11	26-	72.9	20	7.8	6	248485				
· · · ·	MW-12	2194	4	24	. 8		254,856				
•	MW-13	247	7.8	2	2.10		122,496				
	MW-16	274	7.5	24	D.B		122417				
(Reco	Sump Lines rd Gallons Emp	tied)		(Measu	Product Stora re in ft using i	ge Ta nterfa	ank ace probe)				
SVE Line 1	SVE Line 2	3	DTP	DTW		TD					
54	stem Bhu	t off		NR	NR	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NR				
Laboratory Samples Collected											
FY Treated Eff (H ₂ O)	FY Raw	(H ₂ O)	FY Ox Eff	(vapor)	FY Comb Inf (var	oor)	DTA Eff (vapor)				
1558	1532	215124		SU	stem g	hut	off				

³Motor Control screen (1, 2, or 3) ⁴Flow Totals ⁵Well Level Information ⁶Record old Pulsafeeder and new meter

		Fo	rmer Y O&M			Date:		
T	0	L. D. i.A		Compound Vapo	or Measurements			·····
	<u>s</u> amp		vacuum (In h	12 <u>V)</u>	Air Flow (scfm)	Velocity (f	ps) Con	centration (ppm)
			· · ·	11010.	. Start	Day, ma		
				-SYDTEN	n Shur	Lown		
	5	VE 3	x		· · · · ·			
	Combin	ed Influent						
	Oxidize	er Effluent		Elelel March				
		G	W Measuremen	rieid iviea	surements	 Vapor Mea	surements	
Sam	ple Point	Pressure (psi)	Total Flow (gal)	Flow Rate (gpm)	Vacuum (in H₂O)	Air Flow (scfm)	Velocity (fps)	Concentratio (ppm)
R	W-1-S		0100700		\mathbf{i}			
R	W-1-I		addit					
R	W-1-D]						
R	W-2-S		Pump &	int at				
R	W-2-I	1 _	no Flow, o	pnly				
R	W-2-D	2	aek Flow					
R	W-3-S		Old ⁶	Old ⁶		NR	-	
R	W-3-1							
R	W-3-D		N2409300	New ⁶				
R	W-4-S		Old ⁶	Old ⁶				
R	W-4-I	5			<1154	PM	$\overline{)}$	
R	W-4-D		Nev 9000	New ⁶	300	CHUT		
B	W-7R	(02	108500	5		DE	E	
B	W-8-S					Ç		
в	W-8-I							
B	W-8-D							
M	IW-11		2018500					
M	IW-12	0	255980	7				
M	IW-13	Ŏ	122500	Sunt.	h			
M	IW-16	$\overline{\mathbf{O}}$	138900	12				
			Sun	np Lines (Reco	rd Gallons Emptied			A
ump ((In RW-1)	West	Sump (Glasses	s Parking Lot)	East Sump	(Near RW-4)	South Sump (I	lear Domino's)
	IW-16 (In RW-1) dizer main s	West	2K HMI ³ Mot	np Lines (Records Parking Lot)	rd Gallons Emptied East Sump	(Near RW-4)		South Sump (N

Site: Former Y Stati	on		Pre	Project Number: DB18.1157					
Staff Name: Revi	:llanueve		Date/Time on Site: 3/26/2024						
/		Comp	ound Re	ound Readings					
Service Gas Meter	(cf):		Service	Electric Met	er (kWh):				
(take photo)	45173		(take ph	oto)	\$88.43	7			
		Oxidize	r [Oxidize	r Screen]		-	· · · · -		
Oxidizer Hours ¹	Dilution	Valve (%)	Ox Inlet	: Temp (°F)	Ox Outlet Temp	(°F)	NG Valve (%)		
	1	NR		NR	NR		NR		
		DPE Blower I	nformatio	n [HMI Scre	en]				
Vacuum (in H ₂ O) ²	Tem	p (°F)²	Flow	(SCFM) ²	Hours ³		Speed (Hz) ³		
NR NR	1	NR		NR			NR		
<u> </u>	· · · · · · · · · · · · · · · · · · ·	Moto	r Control /	(Hours)					
DTA Blo	wer ³	Moisture	Sen Trans	fer Pump ³		iechai			
3330	3	moisture	oep mana			ISCIIA	gerunp		
2584,61	2.		53,4		1	020	, y		
Groundwater Treatment Totals									
Flow Total from	HMI (gal)	Flow Total from	n Physical	Meter (gal)	Flow Rate fro	om Ph	ysical Meter (gpm)		
1 21/1	700	1	212 50			NI			
1,314,1	00		,515,50	313,500 INR					
		Groundwater	Well Info	ormation [H	IMI]				
Time Recorded	. Well	Pump H	lours ³	Well Le	vel (ft abv trs) ⁵		Flow Total ⁴		
	RW-1 3/				7		2911-11		
	RW-2						917011		
		2782	h. l g	2	8,6		81136		
	RW-3	3310	3315+5 3.		4.3		412529		
	RW-4		2-1328						
		331,	1312.1		31,6		443438		
	BW-7R	2.59	27	77	2.2		117783		
	MW-11		<u></u>		5 //		310-		
		26,	73.4	30,	1	2	48492		
	MW-12			_					
	NAL 40	269	14.0	<u> </u>	5	ح ا	14530		
	10100-13	26	44.6	21	. 6		283 49		
	MW-16				• •	,			
		Sd L	17, L	21	10		112417		
(Peer	Sump Lines	ntied)		(Maac)	Product Stora	ige T	ank ace probo)		
	na Ganons Ell			เพษสรเ		men			
SVE Line 1	SVE Line 2	3	DTP	DTW		TD			
	NR				~		3.90		
└─└		Laborato	ry Sample	s Collected	nL				
	Match names	and times from	here on la	bels and ch	ain of custody f	<u>orm</u>			
FY Treated Eff (H ₂ O)	FY Ra	w (H ₂ O)	FY Ox I	Eff (vapor)	FY Comb Inf (vapor)		DTA Eff (vapor)		
3/27/24 10:38	3/27/2	4 09:38	No Sample No Sample 3/27/			3/27/24 10:30			
Bottle Kits Remaining	·		Tedlar E	Bags Remain	ing:				

Fill out all fields. Enter no reading (NR) or not active (NA) if applicable for each field.

.

³Motor Control screen (1, 2, or 3) ⁴Flow Totals

⁵Well Level Information ⁶Record old Pulsafeeder and new meter

		Fo	rmer Y O&M			Date:				
			(Compound Vapo	r Measurements					
Time	Sam	ple Point	Vacuum (in H ₂ O)		Air Flow (scfm)	Velocity (f	ps) Cor	icentration (ppm)		
	S	VE 1	NR					NR		
	S	VE 2	NR		NR	NR		NR		
	S	VE 3	NR		NR	NR		NR		
	Combin	ed Influent	NR		NR	NR		NR		
	Oxidize	er Effluent		·	-	••••••••••••••••••••••••••••••••••••••		NR		
				Field Meas	surements			·		
		G	W Measuremer	Its	Vapor Measurements					
Time	Sample Point	Pressure (psi)	(gal)	(gpm)	(in H ₂ O)	Air Flow (scfm)	Velocity (fps)	(ppm)		
	RW-1-5 -	•			NR	NR	NR	NR		
	RW-1-I				NR	NR	NR	NR		
0820	RW-1-D	62 PSJ	2.95.8	1.25	NR	NR	NR	NR		
	RW-2-S _	4		Gate VINE.	NR	NR	NR	NR		
-14	RW-2-1	\$		pen fur Sumpt	NR	NR	NR	NR		
17. 1	RW-2-D		42.9	1.0-	NR	NR	NR	NR		
	RW-3-S	2 PSI	Old ⁶	Old ⁶	NR	NR	NR	NR		
617	RW-3-		421.8	.5	NR	NR	NR	NR		
132	RW-3-D	6	New ⁶ 27,86	New ⁶	NR	NR	NR	NR		
	RW-4-S -	•	Old ⁶	Olde	NR	NR	NR	NR		
, 710	RW-4-I		49.8 102,80 er	1,25	NR	NR	NR	NR		
127	RW-4-D	-	New ⁶	New ⁶	NR	NR	NR	NR		
1300	BW-7R	42,75I	1/3.6	1.5	NR	NR	NR	NR		
	BW-8-S				NR	NR	NR	NR		
	BW-8-I				NR	NR	NR	NR		
	BW-8-D	_			NR	NR	NR	NR		
1230	MW-11 -	Ø	248.5		NR	NR	NR	NR		
17.52	MW-12 ~	ø	274.7	1.25	NR	NR	NR	NR		
	MW-13 -	•	, , ,		NR	NR	NR	NR		
1242	MW-16 -	- Ø	161.4	,5	NR	NR	NR	NR		
			Sun	np Lines (Recor	d Gallons Emptied					
North	Sump (In RW-1)	West	Sump (Glasses	s Parking Lot)	East Sump	(Near RW-4)	South Sump (Near Domino's)		

nn the oxidizer main screen, not the H2K HMI 'ter Information screen

1

³Motor Control screen (1, 2, or 3) ⁴Flow Totals ⁵Well Level Information ⁶Record old Pulsafeeder and new meter

Rev. 7 (3/21/2024)

Site: Former V Stati			Project Num	ber: DB18 1157					
Staff Name: $A \cdot N$	UNLZ-Thom	pson	Date/ I Ime o	Date/Time on Site: 4/17/24 11: 20 AM					
Panying Can Matan	(of);	Compo	ound Readings	lotor (k)M(b):					
take photo)	(CT): NR		(take photo)	ieter (Kvvii).	NR				
		Oxidizer	[Oxidizer Screen]						
Oxidizer Hours ¹	Dilution Va	alve (%)	Ox Inlet Temp (°F)	Ox Outlet Temp	(°F) NG Valve (%)				
NR		NR	NR	NR	NR				
		DPE Blower In	nformation [HMI So	reen]					
Vacuum (in H ₂ O) ²	Temp	(°F) ²	Flow (SCFM) ²	Hours ³	Speed (Hz) ³				
NR		NR	NR	NR	NR				
		Motor	Control (Hours)						
DTA Blo	ower ³	Moisture	Sep Transfer Pump ³	D	ischarge Pump ³				
3692.	5	5	3.4	110	2.1				
		Groundwat	ter Treatment Tot	tals					
Flow Total from	HMI (gal)	Flow Total from	n Physical Meter (gal) Flow Rate fro	om Physical Meter (gpm				
1439700	>	NR			NR				
		Groundwater	Well Information	[HMI]					
Time Recorded	Well RW-1	Pump H	ours ³ Well	Level (ft abv trs) ⁵	Flow Total ⁴				
		3380).Z	ໆ.ໆ	314 353				
	RW-2	278	4.5	28.9	81143				
	RW-3	334	2.3	31.8	423540				
14:10 000	RW-4	368	8.1	22.7	527098				
I TATO PIN	BW-7R	2958.6	a	77 10	113834				
	MW-11	2, 50		10	0.10 = 57				
		2013.	Ч	NK	249057				
		3051.	9	23.4	322605				
	MW-13	. 2987	. 2	21.3	152884				
	MW-16	3607	μ.	21.1	112417				
	Sump Lines	<i>e</i> . n	(11)	Product Stora	ge Tank				
(Reco	ora Gallons Emp	niea)	(Mea	isure in ft using i	nterrace prope)				
SVE Line 1	SVE Line 2	SVE Line	3 DTP	DTW	TD				
NR	NR	NR	NR	NR	NR				
	Match names ar	Laborator	y Samples Collecto	ed chain of custody f	orm				
FY Treated Eff (H ₂ O)	FY Raw	(H ₂ O)	FY Ox Eff (vapor)	FY Comb Inf (va	por) DTA Eff (vapor				
2:40 pm	3:011	PM	NS	NS	54				
ttle Kits Remaining	·		Tedlar Bags Rema		[

¹Only found on the oxidizer panel screen ²Process Transmitter Information screen Rev. 7 (3/21/2024)

> ³Motor Control screen (1, 2, or 3) ⁴Flow Totals

⁵Well Level Information ⁶Record old Pulsafeeder and new meter

. .

		Fo	rmer Y O&M		- \	Date:			
				Compound Va	Measurements				
Time	Samp	ole Point	Vacuum (in	H ₂ O)	Air Flow (scfm)	Velocity (1	ps) Co	oncentration (ppm)	
	S	VE 2			<u> </u>				
	S	VE 3		5	ystem off				
	Combin	ed Influent							
	Oxidize	er Effluent							
. care			W Moasuromo	Field Me	asurements	Vapor Moa	euromonte		
Jimo	Sample Point	Pressure (nei)	Total Flow	Flow Rate	Vacuum	Air Flow (scfm)	Velocity (fns)	Concentration	
+une			(gal)	(gpm)	(in H ₂ O)			(ppm)	
	RW-1-5								
	RW-1-1								
	RW-1-D	<u> </u>							
	RW-2-S				•				
	RW-2-I								
	RW-2-D								
	RW-3-S	~	Oldo	OHC					
	RW-3-1		Nevé		NO				
	RW-3-D		New ^o		111				
	RW-4-S								
	RW-4-I								
	RW-4-D		New ^o	New ^o					
	BW-7R								
	BW-8-S								
	BW-8-I								
	BW-8-D						\mathbf{X}		
	MW-11								
	MW-12						X		
	MW-13							X	
	MW-16								
			Su	mp Lines (Rec	ord Gallons Emptied	d)			
North	Sump (In RW-1)	West	Sump (Glasse	s Parking Lot)	East Sump	(Near RW-4)	South Sump	(Near Domino's)	
	NA		NA		NA		NA		

³Motor Control screen (1, 2, or 3) ⁴Flow Totals ⁵Well Level Information ⁶Record old Pulsafeeder and new meter

Rev. 7 (3/21/2024)

Fill out all t	ields. Enter no	reading (NI	R) or	<u>not active (N</u>	<u>IA) ii</u>	<u>applicable</u>	<u>e fo</u> i	<u>r each field.</u>	
Site: Former Y Statio	Site: Former Y Station				Project Number: DB18.1157				
Staff Name: Re-	Willanueva			Date/Time on	Site:	04/28/2	، ده	1 C 030	
/		Comp	ound	Readings				····· ································	
Service Gas Meter	(cf):	- -	Serv	vice Electric Me	ter (k	Wh):			
(take photo)	45173		(take	e photo)	•	95	814	-/	
	• 1	Oxidize	r [Oxi	dizer Screen]			¥	·	
Oxidizer Hours ¹	Dilution V	alve (%)	Ox	Inlet Temp (°F)	Ox	Outlet Temp (°F)	NG Valve (%)	
	NF	2		NR		NR	-/	NR	
		DPE Blower I	nform	ation [HM] Scre	eenl		L.		
Vacuum (in H ₂ O) ²	Temp	(°F) ²	F	low (SCFM) ²		Hours ³		Speed (Hz) ³	
NR	NF	2		NR	1			NR	
							1		
	I	Moto	r Cont	rol (Hours)			I		
DTA RIO	ower ³	Moisture	Sen T	ransfer Pumn ³		Dia	char	ao Pump ³	
		moisture	, och I	ranoler runip			Sciidf	ye rump	
3950	1,2		52	. 6/		1	171		
- 24.2	· · · · · · · · · · · · · · · · · · ·	Groundwa	J J	/ 1		/	130		
Flow Total from	HMI (apl)	Flow Total free		eaument Iota	15	Flow D-t- f			
FIOW TOTAL ITOIN	rivii (gai)	Flow Total from	n Phys	sical Weter (gal)		Flow Rate from	low Rate from Physical Meter (gpm)		
1,490,1	00	111000	مير د ذ	,					
		14888	45	gal		Zle	31'	h	
Time Decorded	VA/ell	Foundwater well information [Hi			HMI				
Time Recorded		Pump Hours Vveil Lev		evel (f	t abv trs) ^s		Flow Total ⁴		
	1.00-1	7/27	Ø	ר	~ 7			314500	
	a RW-2	3037	A			· · · · · · · · · · · · · · · · · · ·		544564 K	
N N	K	2784,	5	2.9		8.7		81142	
N	R RW-3	33,42.3		31,		1.7			
•								423540	
	RW-4								
		5946	.	2	25.4			564950	
N	R BVV-/R	2958	ρ		ר ד ד		117 571		
	M\\\/_11	2130	. 8	<u> </u>	<u> </u>			3834	
N	R	7672	Ъ.		. 4	<u> </u>		19057	
•	MW-12	27/3.	1				247		
		3309.	8	2	3,8	3,8		tobe 2	
	MW-13		230113						
		3245	.0	2	<u>.1,3</u>		166807		
	MW-16	701-	``						
		5865	14		,0,4	>		12417	
		Product Storage Tank				nk			
(Record Gallons Emptied) (Measure in ft using interface probe)						ice probe)			
SVE Line 1 SVE Line 2		SVE Line	SVE Line 3			DTW		TD	
				~				3,93	
Laboratory Samples Collected									
Match names and times from here on labels and chain of custody form									
FY Treated Eff (H₂O)	FY Raw	(H ₂ O)	FY	Ox Eff (vapor)	FYC	Comb Inf (vapo	or)	DTA Eff (vapor)	
6:50	16:	45		No Sample		No Sample		No Sample	
ottle Kits Remaining:			Tedl	ar Bags Remaini	ina:			· · · · · · · · · · · · · · · · · · ·	

¹Only found on the oxidizer panel screen ²Process Transmitter Information screen Rev. 7 (3/21/2024)

....

-- -- - -

³Motor Control screen (1, 2, or 3) ⁴Flow Totals

⁵Well Level Information ⁶Record old Pulsafeeder and new meter ٠

····		Fo	rmer Y O&M			Date:		
Timo	Comm	la Daint		compound Vap	or Measurements			· · · · · · · · · · · · · · · · · · ·
r ime					AIFFIOW (SCTM)		ps) C	oncentration (ppm)
	3							
	S	VE 2	NR		NR	NR		NR
	S	VE 3	NR		NR	NR		NR
	Combin	ed Influent	NR		NR	NR		NR
	Oxidize	er Effluent	a de la contra de l La contra de la contr	aliter of the second				NR
				Field Mea	surements			
		G	W Measuremen	its		Vapor Mea	surements	
Time	Sample Point	Pressure (psi)	(gal)	Flow Rate (gpm)	(in H₂O)	Air Flow (scfm)	Velocity (fps)	Concentration (ppm)
	RW-1-S				NR	NR	NR	NR
-0	RW-1-I	1			NR	NR	NR	NR
1450	RW-1-D	φ	03145	0.35 pt	NR	NR	NR	NR
,2%	RW-2-S	φ			.NR	NR	NR	NR
A C	RW-2-1		- 6		NR	NR	NR	NR
193)	RW-2- D		00429	0.35 gm	NR	NR	NR	NR
	RW-3-S		Old ⁶	Old ⁶	NR	NR	NR	NR
NR	RW-3-I]			NR	NR	NR	NR
	RW-3-D		New ⁶	New ⁶	ŃR	NR	NR	NR
	RW-4-S	φ	Olde	Old ⁶	NR	NR	NR	NR
0830	RW-4-I		998	2.0	NR	NR	NR	NR
0000	RW-4-D		New ⁶ 533544	New ⁶ 3.5	NR	NR	NR	NR
NR	BW-7R				NR	NR	NR	NR
	BW-8-S		Kali kana sa katala panja panja sa		NR	NR	NR	NR
	BW-8-I				NR	NR	NR	NR
	BW-8-D				NR	NR	NR	NR
NR	MW-11	te dan series and dang dan	nen en en la devidente de seu en en en del se d'annen de la devidence de la devidence de la seu en en en en en	and the second	NR	NR	NR	NR
NR	MW-12	Inog esable (Car Parked ou	er) all Day	NR	NR	NR	NR
1447	MW-13	ø	01671	.68	NR	NR	NR	NR
0815	MW-16	Ø	657 29	.5	NR	NR	NR	NR
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Sum	np Lines (Reco	d Gallons Emptied	······································		
North S	ump (In RW-1)	West	Sump (Glasses	Parking Lot)	East Sump	(Near RW-4)	South Sump	(Near Domino's)
								······································

³Motor Control screen (1, 2, or 3) ⁴Flow Totals

.

⁵Well Level Information ⁶Record old Pulsafeeder and new meter

Rev. 7 (3/21/2024)

Pumping Conditions (pg.1) GROUNDWATER ELEVATION DATA SHEET

Project Nam	e: <u>Former `</u>	Y Station	Field Te	ech: Rey V; Manuerra				
Project #:	DB18.1157	<u></u>	Date: <u>2 3/26-28/2024</u>					
Project Mana	ager: <u>G. Herrr</u>	mann	Sheet #/_ of/_					
Well ID	Depth to NAPL	Depth to Water	Total Depth	Comments				
RW-1			365'	Pumping well				
RW-2			365	Pumping well ; Pump value Shut off ppen for sample.				
RW-3			345 '	Pumping well				
RW-4			366	Pumping well				
BW-4	~	332,47						
BW-5	332.03	332.01						
BW-6		332.97						
BW-7		331.26						
BW-7R			365'	Pumping well				
BW-8	-	331.02						
BW-9		331.47		Pumping				
BW-10	-	329.18		Pumping				
MW-11			365	Pumping well				
MW-12			365	Pumping well				
MW-13			365'	Pumping well				
MW-14		321.78	356'	Pumping				
MW-15		326.04	358'	Pumping				
MW-16			366	Pumping well				
MW-17		332.43	375'	Pumptag				

Pumping Conditions GROUNDWATER ELEVATION DATA SHEET

Project Name:	Former Y Station	Sampler:	<u> </u>			
Project #: _DB18.1	157	Date:				
Project Manager:	<u>G. Herrmann</u>	Sheet # _	1	_of _	2	

Well ID	Depth to NAPL	Depth to Water	Total Depth	Comments
BW-4		332.47		
BW-5	332-01	332.03		
BW-6		332.47		
BW-7	-	331.24		
BW-8				Reading not taken
BW-9		33 . 47		9
BW-10		329.18		
MW-14		321.78		
MW-15		326.04		
MW-17	-	332.43		

Comments:

í.

1

ł

Static Conditions GROUNDWATER ELEVATION DATA SHEET

Project Name: Former Y Station Sampler:								
Project #: _	DB18.1157		Date:		-			
Project Man	ager: <u>G</u> .	Herrmann	_ Sheet #	‡_ <u>2</u> _	_ of	2		
Well ID	<u>Transducer</u> <u>Set Pt</u>	Transducer Level (WL above transducer)	Depth to water (set pt – Lvl)		<u>(</u>	Comments		
BW-7R			T					
RW-1			i.e.					
RW-2								
RW-3								
RW-4								
MW-11								
MW-12								
MW-13								
MW-16								

Comments:

Static Conditions GROUNDWATER ELEVATION DATA SHEET

Project Name: Former Y Station
Project #: DB18.1157

Sampler:		To	mes	
Date:	3	28	124	_
		, r	A	

Project Manager: <u>G. Herrmann</u> Sheet # <u>1</u> of <u>2</u>

Well ID	Depth to NAPL	Depth to Water	Total Depth	Comments
BW-4	<u> </u>	337.36		
BW-5		332.03		Buc
BW-6		33 322.71		
BW-7	·	331.22		
BW-8		331.02		
BW-9		331.36		
BW-10		329.07		
MW-14	C	321.86		
MW-15		326.13		
MW-17	·	332.49		

Comments:

ŧ

Static Conditions GROUNDWATER ELEVATION DATA SHEET

Project Name: Former Y Station Sampler:									
Project #: _	DB18.1157		Date:						
Project Man	ager: <u>G.</u>	Herrmann	_ Sheet #	2	_of_	2			
Well ID	<u>Transducer</u> <u>Set Pt</u>	Transducer Level (WL above transducer)	Depth to water (set pt - Lvl)			<u>Comments</u>			
BW-7R									
RW-1									
RW-2									
RW-3									
RW-4									
MW-11									
MW-12									
MW-13						· · · ·			
MW-16									

Comments:

ŝ

	GRC		NONIT	ORING	G DATA SH	EET	-
Project Name: Former Y Station				Sa	mpler:	lomo	5
Project #: _	DB18.1157			HS	Deploy Dat	te/Time: <u>3</u>	1 <u>22 24</u>
Project Mar	nager: <u>G. F</u>	lerrmann		Sa	mple Data/T	⁻ ime: <u>3/</u>	29/24
Well #:	BW-C	4				1038	
Well Diame	ter: <u>4</u>	(inc	hes)	Heig	ht of Water	Column:	(feet)
Depth to Wa	ater: <u>332</u>	<u>. </u>	otoc)	Sam	ple Method:	Hydra	aSleeve
Total Depth	of Well:	(feet)	HS S	Set Point:	339'	_feet btoc
Groundwat	er Paramete	ers:		- 			
ρН	Temp (°F)	Conductivity (µS/cm)	OF (m	RP IV)	D.O. (mg/L)	Turbidity (NTU)	
7,25	19.1	792	17	7.9	7,43	-	
Sample Des	scription:	(5) VOH!	<u>.</u>			· · · · · · · · · · · · · · · · · · ·	
Physical Ob	servations: _	Clear lord	er les	\$			
Analytical M	ethod(s):	8HIOB I	504	· / ·		·····	
Other notes	(well condition	on, difficulties, c	correcti	ve act	ions):		
	<u>.</u>						<u> </u>

	GRC		ONITOR	ING DATA S	HEET	- 6
Project Name:Former Y Station				Sampler:		
Project #: _	DB18.1157		I	HS Deploy D	ate/Time: <u>3</u>	[2ce [24]
Project Mar	nager: <u>G. H</u>	lerrmann		Sample Data	/Time: <u>3/</u> 2	29/24
Well #:	N-5					1025
Well Diame	ter:	(inc	hes) He	eight of Wate	r Column:	(feet)
Depth to Wa	ater: <u>33</u> 2.	03(feet b	otoc) Sa	mple Metho	d: Grab / Hydr	aSleeve
Total Depth	of Well:	(feet) H	Set Point: _	345'	_feet btoc
Groundwat	er Paramete	ers:				-
рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)	
7.38	19,4	761	161.7	2,44		
Sample Des	scription:	(57 VOA'S Clear W/YE	lluw ten	+ * HC s	mell	
Analytical M	ethod(s):	BHWB 5	04_ [actions):		
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·

Project Name: Former Y Station	Sampler:
Project #:DB18.1157	HS Deploy Date/Time: $3/28/24$
Project Manager: <u>G. Herrmann</u>	Sample Data/Time: <u>3/24/2-4</u>
Well #: <u>BW-7</u>	1000
Well Diameter:(inches)	Height of Water Column:(feet)
Depth to Water: <u>331.22</u> (feet btoc)	Sample Method: Grab / HydraSleeve

Total Depth of Well: _____(feet) HS Set Point: _____feet btoc

Groundwater Parameters:

рН	Temp	Conductivity	ORP	D.O.	Turbidity
	(°F)	(µS/cm)	(mv)	(mg/L)	(NTU)

Sample Description: (31/2) VOA'S

Physical Observations: <u>Clear / order/ess</u>

Analytical Method(s):

Other notes (well condition, difficulties, corrective actions):

Hydro Sleeve was set at bottem, HS was - half.

S.\Projects\DB18.1157_Former_Y_Station\Docs\Field Documents_GWM Field Forms and Notes\Blank Forms\Former Y GWM DATA SHEET_Rev0.docx

Project Name:Former Y Station				mpler:	oves		
Project #:				HS Deploy Date/Time:			
Project Manager: <u>G. Herrmann</u>				mple Data/T	ime: <u>3</u> 3	4/24	
Well #: Well Diame Depth to W Total Depth	W-7R ter: <u>5</u> ater: <u>1720050</u> of Well: <u>5</u>	(inc <u>lucen</u> (feet b 362.44 (i ers:	hes) Heig btoc) Sam feet) HS S	ht of Water ple Method: Set Point:	Column: Graby Hydr	(feet) (feet) aSleeve feet btoc	
1	-		0.00				
рН	(°F)	Conductivity (µS/cm)	(mv)	D.O. (mg/L)	I urbidity (NTU)		
7.41	24.9	872	94.9	NR			
Sample Des Physical Ob Analytical M	scription:	5 Vo AS Clear 87-Ged B	504-1				
Other notes	(well condition	on, difficulties, c	corrective act	ions):			
	·····	 					

Proiect Nar	ne: Forr	ner Y Station	Sa	mpler:	lom	es	
Project #: DB18.1157				HS Deploy Date/Time: 3/28/24			
Project Mar	nager: <u>G. I</u>	Herrmann	Sa	mple Data/T	ime: <u>3</u> /	29/20	
Well #: Well Diame Depth to W Total Depth	3 <i>W</i> – 8 ter: <u></u> ater: <u>33</u> 1.0	(inc 02(feet b	hes) Heig otoc) Sam ⁻ eet) HS S	ht of Water (ple Method: Set Point:	LO 59 Column: Grab / Hydr	(feet) aSleeve feet btoc	
Groundwat	ter Paramete	ers:					
рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)		
6.92	19.2	1242	96.0	1,94	-		
Sample Des	scription:	(5)	10 A' 5				
Physical Ob	servations: _	Turbid, 1	3lac K Org	anic four	Ling mate		
Analytical M	lethod(s):	8Uou B, C	504-1	· · · · · · · · · · · · · · · · · · ·	······		
Other notes	(well condition	on, difficulties, c	orrective act	ions):	· ·	<u>_</u>	
				· · · · · · · · · · · · · · · · · · ·			

10

	_		_	· /-	Tarres			
Project Name: <u>Former Y Station</u>				mpler: /	LØVI ==			
Project #:				Deploy Dat	te/Time:			
Project Mai	Project Manager: <u>G. Herrmann</u>				-ime: <u>3/</u> 2	reffe		
Well #: <u>M</u> Well Diame	1W-12 eter: <u>5</u>	u (inc	hes) Heig	ht of Water	Column:	(feet)		
Total Depth of Well: 362-08 (feet) HS Set Point:								
		(٢			
Groundwa	ter Paramete	ers:						
рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)			
7.38	23.3	687	86.9	5.92				
Sample Des	scription:	5 VOAS Clear						
Analytical M Other notes	lethod(s):	BLU B	corrective act	ions):				
						· · · · · · · · · · · · · · · · · · ·		

Project Name:Former Y Station				Sampler: [Torres			
Project #:				HS Deploy Date/Time:			
Project Mar	nager: <u>G. H</u>	Herrmann	Sa	mple Data/T	ime: 317	4/24	
Well #	NW-13	· · · · ·			15	52	
	tor:	54 (inc	has) Haia	ht of Motor	Column: -	- (foot)	
		ducate (front	nes) neig		Column. <u>-</u>		
	aler. <u>77015</u>	$\frac{1}{2}$	otoc) Sam		Grad Hydr	aSleeve	
I otal Depth	of vveil: <u>20</u>		teet) HS S	Set Point:		_teet btoc	
Groundwat	ter Paramete	ers:				=	
рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)		
7.41	22.5	779	64.7	7.55			
Sample Description: <u>5</u> UDAS Physical Observations: <u>Cleare</u> Analytical Method(s): <u>8700B</u> , 504. [
Other notes	(well conditio	on, difficulties, c	orrective act	ions):			
		<u> </u>					

 $S\Projects\DB18.1157_Former_Y_Station\Docs\Field\Documents_GWM\Field\Forms\and\Notes\Blank\Forms\Former_Y\GWM\DATA\SHEET_Rev0\docx$

	Unt			C DATA OF			
Project Name: Former Y Station				_ Sampler: [lames			
Project #:			HS	HS Deploy Date/Time: 3724/24 308/2-			
Project Manager: <u>G. Herrmann</u>			Sa	mple Data/	Гіте: <u>//</u>	5	
Well #: Well Diame Depth to W Total Depth	MW - 14 eter:4 ater:32-1 n of Well:3	(inc . &(feet l 3 <i>5 (o</i> (thes) Heig otoc) Sam feet) HS \$	ht of Water ple Method: Set Point:	$\frac{2}{29}$	♀ <u>f.)♀</u> _(feet) raSleeve feet btoc	
Groundwa	ter Paramete	ers:					
рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)		
6.90	17.7	648	192.3	6.78			
Sample Des	scription:	(5) VOA'S Clear Lord	ler 1 = 5 \$				
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Analytical M	lethod(s):	8260 B	504,1				
Other notes	(well condition	on, difficulties, c	corrective ac	tions):	· · · · · · · · · · · · · · · · · · ·		

Project Name:	Former Y Station
Project #: <u>DB18.</u>	1157
Project Manager: _	G. Herrmann
Well #: <u>MW - / 5</u>	5

Well Diameter:	4	(inches)
Depth to Water:	326.13	_(feet btoc)
Total Depth of We	ell: <u>358</u> .	(feet)

Sampler: / lon	res
HS Deploy Date/Tim	ne: 3/28/24
Sample Data/Time:	3/29/24
	1934

Height of Water	Column:	<u>3/-87 (feet)</u>
Sample Method	: Grab / Hy	draSleeve
HS Set Point:	341.3	feet btoc

Groundwater Parameters:

рН	Temp	Conductivity	ORP	D.O.	Turbidity
	(°F)	(µS/cm)	(mv)	(mg/L)	(NTU)
7.76	18.3	709	183.4	32.5	-

Sample Description: <u>Clear</u> (5) VoA's

Physical Observations: <u>clear / order less</u>

Analytical Method(s): ____

4260 B

Other notes (well condition, difficulties, corrective actions):

GROUNDWATER MONITORING DATA SHEET
Project Name: Former Y Station Sampler: 3 1 Tomes
Project #: DB18.1157 HS Deploy Date/Time:
Project Manager: <u>G. Herrmann</u> Sample Data/Time: <u>3/24/24</u>
1517
Well #:
Well Diameter: <u>5</u> (inches) Height of Water Column:(feet)
Depth to Water: framsducen (feet btoc) Sample Method: Grab / HydraSleeve
Total Depth of Well: 364.32 (feet) HS Set Point: feet btoc
Groundwater Parameters:
pH (°F) Conductivity ORP D.O. 'Turbidity (µS/cm) (mv) (mg/L) (NTU)
7.68 25.5 605 112.6 6.40 -
Sample Description: <u>5</u> UDAS, Physical Observations: <u>Cleum</u> Analytical Method(s): <u>80006, 504</u> ./ Other notes (well condition, difficulties, corrective actions):

Project Name:	Former Y Station
Project #: <u>DB18.</u>	<u>1157</u>
Project Manager:	G. Herrmann

Well #:	VM	
Well Diameter:	4	(inches)
Depth to Water:	332-49	(feet btoc)
Total Depth of W	ell: <u>304</u> ,	00 (feet)

Sampler: _____ HS Deploy Date/Time: 3/28/24 Sample Data/Time: <u>3/29//24</u> 2945

Height of Water Column: <u>31-51</u> (feet)
Sample Method: Grab / HydraSleeve
HS Set Point: <u>346.25</u> feet btoc

Groundwater Parameters:

рН	Temp	⁻ emp Conductivity		ORP D.O.	
	(°F)	(°F) (μS/cm)		(mv) (mg/L)	
7.43	18:Le	468	157,6	4,32	~

Sample Description: (5) Von's

Physical Observations: <u>Clear los derles s</u>

Analytical Method(s): 8740B, 574.

Other notes (well condition, difficulties, corrective actions):

S:\Projects\DB18.1157_Former_Y_Station\Docs\Field Documents_GWM Field Forms and Notes\Blank Forms\Former Y GWM DATA SHEET_Rev0.docx

.

	GRC		NONITORIN	G DATA SH	EET	
Project Nam	ie: <u>Forr</u>	ner Y Station	Sa	mpler:	tomes	
Project #:			HS	HS Deploy Date/Time:		
Project Man	ager: <u>G. H</u>	lerrmann	Sa	mple Data/T	ime: <u>3/8</u>	74/24
Well #: Well Diamet Depth to Wa Total Depth	2W -3 er:4 nter: <u>_//anc</u> of Well:	(inc (feet k 365(hes) Heig otoc) Sam feet) HS S	ht of Water ple Method Set Point:	Column: Grab) Hydra	feet btoc
Groundwate	er Paramete	ers:				
рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)	
7.52	27.5	Le90	127.0	2.66		
Sample Des	cription:	5 Voras Clean				
Analytical Me	ethod(s): (well condition	SHUCK on, difficulties, c	504	ions):	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·				

	GRC	DUNDWATER I	MONITORIN	G DATA SH	IEET				
Project Nan	ne: <u>Forr</u>	ner Y Station	Sa	Sampler: Tomes					
Project #: _	DB18.1157		HS	HS Deploy Date/Time:					
Project Mar	nager: <u>G. H</u>	Herrmann	Sa	mple Data/I	rime: <u>3/2</u>	a/24			
Well #:	Rw-4				133	5			
Well Diame	ter:	1 (inc	hes) Heig	ht of Water	Column:	(feet)			
Depth to Wa	ater:	(feet	otoc) Sam	ple Method:	Grab Hydra	aSleeve			
Total Depth	of Well:	Hde (feet) HS S	Set Point:		_feet btoc			
Groundwat	er Paramete	ers:				-1			
рН	Temp (°F)	Conductivity (µS/cm)	ORP (mv)	D.O. (mg/L)	Turbidity (NTU)	-			
7.24	23.5	744	129.8	2-11		- - -			
Sample Des Physical Ob Analytical M Other notes	scription: servations: ethod(s): (well condition	Cleak Cleak 8HOB	504. /	ions):					
					······				
	·								

	DBS&A a Geo-Logic Company
--	------------------------------

Project Name: <u>For Mon</u> Y Project #: <u>DBIB, 157</u> Project Manager: <u>G</u> Herman

Sampler	Tomes	
Date:	3/26/24	

<u>pH</u>	<u>Temp (°C)</u>	Comments
(4) 4.00	12.8	
(7) 7.05	7.13.0	
(10) LO.LO	13.2	
<u>SpCon (μs/cm)</u>	Temp (°C)	<u>Comments</u>
(1413) 1413	13.3	
<u>ORP (mv)</u>	<u>Temp (°C)</u>	Comments
244.7	15.2	
Dissolved O ₂	<u>Temp (°C)</u>	Comments
(%)	13.9	
(mg/L) 8.80	13.9	
Pressure	<u>Temp (°C)</u>	Comments
(mmHg) 654	[3.9	

Comments:

GROUNDWATER METER CALIBRATION SHEET

Project Name: <u>Former Y</u> Project #: <u>DB18.1157</u> Project Manager: <u>G7 Henman</u>

Sampler: [Tomes 127/24 Date: _

<u>pH</u>	Temp (°C)	Comments
(4) 4.01	4.4	
(7) 7.0	3,9	
(10) D.He	5.1	
<u>SpCon (μs/cm)</u>	Temp (°C)	Comments
(1413) LAB	4.7	
ORP (mv)	Temp (°C)	Comments
257.9	5.1	
Dissolved O ₂	Temp (°C)	Comments
(%)	3.5	
(mg/L) 1.35	3.5	
Pressure	Temp (°C)	Comments
(mmHg) 650	3.5	

Comments:

GROUNDWATER METER CALIBRATION SHEET

Project Name: Formen Y Sampler: 1 Torres Project #: DB1B. 1157 Date: 03/28/24 Project Manager: Grau Herman

<u>pH</u>	Temp (°C)	Comments
(4) 4.00	11.4	
(7) 7.07	to, 11-0	
(10) 10. W	11-1	
<u>SpCon (µs/cm)</u>	Temp (°C)	Comments
(1413)	11.9	
ORP (mv)	<u>Temp (°C)</u>	Comments
248.3	12.5	
Dissolved O ₂	<u>Temp (°C)</u>	Comments
(%) 85.9	12-0	
(mg/L) 9.28	12.0	
Pressure	Temp (°C)	Comments
(mmHg) 647.5	11.1	

Comments:

į

11	1 1/10 2						
2/8/24	Of M AM /Jf	2/8/24	4 Duco	n Uppi	405		
8:40 (lex Ninez and Geremy Fisher on cite.	RW		12	135	9	
	40°F Sinny and windy	Rul	1	17	2.12.5	4	t
8:46	PID calibrated with 100 tabtilgue	Aut	3	11	17 E	H.	+
	20 cur of greet mill too tool gicht	D.	77	10	1211		+
1017	Einiched dala called in a name 1	DW -	1714	17	13		╞
10.11	NUMBRICA CULTA COLLECTION IN COMPOUND	PIW	14	12			+
	Including HEAL samples	Mu	1-11	13	,12.5		
1236	Finished well & OFM. Shut down	Mw-	13	3	·121		
	all wells, troubeshooting water	RW	-354	11.	10'		
	meter in MW-16	VILLE	CHA	lackad	anda		
1446	Cleaned MW-16 meter and tested it.		2110	LOUPE DE	una zi	ore.	1
	It is funning.		OF	offsit	P.		
144Z							t
47	RW-3 new analog meter stant					_	t
	Padina 7201					_	┢
	taning 7,386ga					1	┝
1501	New additional sale vichelled of					4	┝
	Pint 2				11/1		┝
	E Maria (a 100000 0000)			- DA.	A / A		
1620	FLOW 1. 18TON (SN: 78360 708)			UN	H		-
	NOTMIGO IN RW-4 VALVE	8	-				
	BOX. Moton Konong = 290,382				C/n	1	
1644	He Checked 3, 4, 16 and 12, all on			91	0/29	·	
	with values open. Sustemon.						
			1.				
							T
							t
					1		_
1							

ANT/JF ANTand

- 1				
2/19	ey Otm	(UN)	2120/24	Disiv
1301	aut on site. 67 Par	Hy Clady.	809 AN	IT ons
	No alarms, Pung TR	off, remaining	853 Mr.	12 star
-	GW pumps On Begin	data collection.	ba	steria -
1317	Begin PID Calibration	•	Cor	voctly th
	Honeywell Mini RAE	3000	For	now.
	Zero; Span 100ppm:	Isobutylene	904 Sys-	ten shi
	Reading: 100, ppm	0	117 Met	er pulled
145	s Finish data collection	@ compand and	. wa	seje
	Collection of nater a	nd air lab Sampis.	bit	-nof fe
	Closing Site for well	Veoclings	~!	2 inch
1509	Samples for lab On 12	20	ota	ch orme
	begin collections @ n	ells MW16 ARU	. wi	ll test
1010	legking		Pure	2055 OI
1519	Disassembled ARV @ 1	MW16. Bacterial	e77	flient n
	Slime present. Cleaned	with UI+Soap	1159 Pure	o Ops (
	and wiped with pape	er towel. Reassembled	veri	i ficano
	ARV and turned on we	ell. No leak, meter		uracy.
170	Spinning	De la	test	readin
1/5) Water Meter removi	ed from RWZ	243 01	. Chunge
183	3 Water meter be Flush	ed and reinstalled	nerv	' AEON
_	@ZRWKWZ. WIII	not test until	1/50 7	ise add
163	temonow		1678 40	'(qp: 6C
182	or site locked and s	eevre.	///	V 16, le
	AVVI OFFSITE	I .	70	V appro
	2/19/05	ha aller	internet	ter spi
	ANT	CUW/WXT		

ntection/0+M GNT i to. 47° sunny and breeze. whed working large shig of through hose bib Meter spin hen stopped. Shutting bun RW2 idown completely d From MW 13, Hushed, slug Hod Clikely bacteric), Reinstelled sted well cap has opened to fit fund in added 3307 , Letting sit for thr, then for residual. nsite to diagnose and calibrat neter. offsite. Ultraschic meter n and test showed 99.8% Meter rending 24.0gal, 10 24.1. See final report e in SVE blower: 2gts 'synthetic added ed to 3 ports. Doz of Chlorine ocded to 4 MWIBand MWIBSH x 3 hours. Test MWB inning, slowly

2120/24	Due Palina / ALM MIT
LICC	DISINFECTION OF T
1658	Ke (ap conf.)est MW 16, spinning,
	Open MW-FK leaking ALV, Replace
	with ARV from MW13, MW13077.
	Upon replacing removing AKU, MW13
	released slup and brown water. Let
	NN clear, gett MW13. Installed
	ARV at FK, no leak. Throthed FK
	to Waintain drawdown. Test RW-2.
	Utter forward and reverse flushing,
	began spinning at 0.50m (1)
	Well pumps turned on except num 13.
	Hame ignition error on Oxidizer.
-	Tried reseting x 3, Gas pressure
	reading Opsi the low presure alarm,
	Only Ham- ian Hon. Informed (14
	who will call while s. Oxidi Fer
	left off. Wals on Site lockal
-	and save AN off gift i
-	MALT
	2120124
	VUP VIII
_/	

221/24 Exwellhed Readings ANT 659 ANT onsite. Clear 39°F. Bagin collecting data @ HMI 752 NMGasonsite - Pat Gentir 756 Confirmed 63 jounds of pressure being delivered from meter 815 Between 3-5 pounds of gas pressure Showing upstream of oxiditedy 841 NMGas Offsite 418 Talked to John Streg. Honegnell Plane Satety Module may be taility Removing and documenting serial number/condition and transporting to DBS+A officer 927 Removed Honorwell Flame Stery Module. Disconnect left in off position 943 Wellhead measurements done. Oxdieer left off. Site locked and secure. ANT 2/21/24

4

3/5/24 OEM IT 1330 onste Weather is 65°F mosty Sunny Some breeze VFDat Mev =1 7122 Face lt VPO at MW - Ke 23 to Fault 1335 Reset Fuelk. well il and well le 1358 Sturted. SUE Sy Stem System oun for at least the nunates then Thut off with sume alame. Spoke w/ Joh Aray from intelistieure, bewill be sending à Brand New 1409 nue control velay down w/ 7122 Faillt. 1458 Removed Relay to Ship back to intellisherne. SUF System will be down Until then. taking inflient Simple GIW SOL 558 Jaking Effluent Snuple Gru 803

VT 0 d/m 315/24 1803 RW-2 Plowmeter Running Backwards shut off gate value and tarned Purp off. no water concerny out of Fancet when gade vale was closed. 1833 Apprested Flow at Ras-1 will check water level in A-Al. All gates are cochect It off site T

3/6/24 DEM 1T 0740 It on site well Start at Med-12. Weather 15 35°F Sunny mostly Cleak. 0759 mws-13 not number 0830 Completed Grw pleasuments 0835 O Compound reset new-11 It ran with Hz at ED.8 After a few minutes the Hez droped to 7.48 then would Fluetneste around 7.9 - 7.3, then it Sumped to 12.5 Hz. Lo All Grace aderce I Shaf off Mev-U. 0955 All contriners locked Front gate locked. OFFSILE sumples are on Ice VI 3/4/24

ANT 3/19/24 Repairs Alex NT on site. 54° and sonny. 1158 14 mph winds to NE. Osiclizer off. Begin replacements f flame safety module. 1230 Talked to G.H. who confirmed the modules are not on site. Going to well ARLy replacement. Oxidizer lettoff. 1258 New ARV installed at Mu-13. Restarted pump, found and reverse flushed meter with value adjustments. MW-13 pulling O. Sapm 1333 Checked MWII. VFD still showing overload error. Jeftoff after talking to G. Herrnann. also confirmed with Git that RW-2 is spiphniging backwards. Also left 1340 Site lacked and secure. ANT offsite. ANT 3/19/24

TO A. Spirado-APX IT on Side . St and stand 28 Not sharp again Not So realized 191 1 2 1 1 1 1 L.e. Some site and 56. းလယ် ကြို့ပြင်သည်။ the monthle and to an and the reliabered Noter et of 1.53 Here the store of the second and ame France we referre - down there wind raise and showing I have a Evine 3 Beer marced with the still bearing anim enous letter of or en -a cina to of tom was . Sa secured with it had set Established beinger and to at serie it was 3.5 ું Drow Auer 2010 14

	GM	ЛН	For	mer	·Υ	041	Ч				2	3/2	o/z	-4
8:	10	DB	SA	Or	Si	e	+	0	exc	ha	inc	je		
		FLAI	ne	50	aér	eti	10	on	m	ne	r	J		
8:	35	Nev	v co	ntr	olle	ri	ns+H	alle	d.	Re	itor	The		
		PON	er.						÷.			2		
8:	-10	CONT	J.St	ey	57	1/1	get	tin0	en	N	•			
		Netd	ed 1	D SI	NQ	p or)† (pure	pi	aro	J			
8:1	15	POW	er f	lsto	rec	i	Re	191	τ'n	9:	Siys	ter	n.	
Ø:	50	FLAN	ne c	hd	nd!	- 10	nit	e. 1	ma	rm	42	YST	enn	
		shu	tdo	<i>Ν</i> η.										
8:	55	Pho	ne ci	in i	NI	AN	۰T.	Th	tive	res	et	on		_
_		Cont	m t	r. (lest	lart	ne	sy	<u>stë</u>	m. 5	hu	Hdi	aur	į.
9:(00	phon	e C	au	W)'	ſπ	ey.	PI	an	to			_
		che	CK	011	CO	nN	chi	ons	ar	e fi	gn	+ °	1	
		sch	d vi	aeo	OF	ſf	art	r VI	ρς	190	en	er [.]	1-0	-
		7 A	rey	1 1	lon	еĄV	vei		-			-		-
9:	45	ven	field	a11	C	onn	ecti	ions	OlY	e 1	hgj	nt		-
		TOOK	- 10	nos	Q	nd	pr	ipto	S .		_	-	-	-
		Upio	adi	ngt	Ð	ser	01 0	ło j	.ST	rey	-			-
D	: 00	Phr	ne	on1	V	VIJ	-81	rev	\ <u></u>	125	; Fl	ha	ing	
	-	niol	ros	011	na	IN	nag	ls	N	H0.	nee	JiN	011	-
_	-	cor	tai	1	Hoy	ino	10	N	par	Da	U			-
		wh	118	ľn	10	ons	ite	11	nl	101	NJ.	0	-	+
][): 15	CIU	anin	g v	Pv	1	pa	'll	agj	ing	010	1	-	+
		pri	gra	m	nie	ers		0CK	ini	90	p.	-		-
lĈ	199	DB	SH (H	170	ſ	++(- 0	HU	10	4.			

3/26/24 DEM-GWM OT/RN IT/RV DEM & GWM 3/26/24 1300 IT onsite Roy was already on stretaking Readings at RW-3 Centrobatory 481 BW-5 DTW - 332.03 DTP-332.01 Total product - . 02 1409 Deployed Hydrasleeve 2.9 × 12 750m-Actual tempe 4.00 12.8 PH 4.00 13.0 1410 RW-3 7.05 7.05 13.2 10.15 PH- 7,52 Temp- 27.52 Scon- 690 7.52 10.10 SRC 1413 13.2 1413 ORP ORP- 127.2 244.7 244.6 15.2 DO - 2.66 Sample time (335)1410 DO 654 mmily 8.86 mg/ 13.9 P.W-4 1436 BW-7R 1333 $\begin{array}{r} p_{+}p_{+} = 7.41 \\ \hline teiup = 24.9 \ c \\ spc = 8.72 \\ Orp = 94.9 \\ DO = 90.0 \ est{black} \end{array}$ PH - 7.24 SPC - 744Temp - 23.5°C OFP - 129.8 DO - 2.111440 Sample time 1440 Sample time 1335

3/26/24 System Pumpin IT/RV/ $m\omega - 12$ 14855 PH-7.38 Temp - 23.3 SPC - 687 ORP- 86.9 DO - 5.92 1500 Sample time 1500 MW-16 1512 - PH - 7.68 temp- 28.5 opt - LOS ORP-1126 00 - 6.46 Sample time 1517 1517 1545 MW-13 PH - 7.41 Temp-22.5 SPC - 779 DPP - 64.7DO - 7.551552 Sample time

IT/RV Pumping 3/20/24 MW-14 1600 DTw- 321.78 DTP-1610 mw - 15DTW- 326.04 DTPmw-17 1631 DTW - 332.43 DTP ---Porto MW-10 BW-10 Kalle OTW - 329.18 DTP-MW-9-BW-9 1659 DTW- 331.47 DTP = -RW-2 1712 pump not running no sample at this -Hme

IT/RU System Prinning 3/27/20 0800 IT/RV 01817e 3/20/24 System Pumping MRV 17/RV ONSITE 32°F Slight Breeze Clear Skies Calibrated 1720 * at 09.38 InFlient Sauple fuken 451 (0) +000 took 5fluent treated Temp & Actual PH 4.4 4.01 4.01 Sample 7.00 7.00 10.26 10.26 5.1 IT/Ray offsite SPC 1413 all sampes are on ice Compained containers 4.7 1413 OPP 257.9 5.1 258.6 Welked compound Gates are 40 35 630mm Hy 630mmHg lockeded N.35 mg/2 822 BW-4 PTW - 332.47 DTP -849 BW-6 H DTW - 332.97 DTP - ----

System Renning MRN 3/27/24 Buto BW-7 SAG 904 DTW- 331.26 DTP - -* RW-1 0930 Sample time \$30 Cley Insite at 843 1015 Called Grace and Spoke over wheat wells needed to be pulled out. Grace Stated that pump 11, 2 3, 4, 13, 16 would be the ones to be pulled out. 2, 3, 4 were the most Important. 1030 TOOK DIA EFF Sample

3/27/24 System Running IT/RV/CB 1035 Clarg is Setting up at wen mw - 11 124 RW-11 out of hole transducer is 3' from pump intake. Transducer 15 357 BJS Startz water level is 328.88 top of casing 1348 Prepping to Jet MW-11 Attempted to test mw-11 1430 pump. Submerged (+ 111 35 gallons of water. Turned pump on Pump would Run and shut off then Run and Sheet off. A thick Black Fluid came out of Pump. 1730 Clay and Ray offsite headed to hardware store to Purchase needed fitting. to be able to use fire flychant

3/27/24 (T I stupped periord to de tangle wer pump E transducer Caldes. Cley and Rey back on 3ntd, pump was hung in Well, Site Cleaned Up, All gates and Containous lockod CREW OFF SITE

3/28/24 IT/RV/CB/BC 0745 CT/RV/CB on sife weather is 33°F Clear Skies. Clarg. Clay Fills his water Confuner w/ Hydrant Water Hydrain & used was on the corner of PRINCO E York St. 822 Satting up at MW-11 824 Brandon on site Turned of all well 830 pumps STATIC READINGS MW-14 0842 DTW - 321.86 DEPloyed Hydrasleave 29" × 12" 750ml 0903 MW-15 DTW - 326.13 Deployed Hydraspere 2.9" × 12" 7501

System Shut off 17/BC/RU 17/BC/RU & System off 3/28/24 3/28/24 0921 1200 BC/IT took mar-11 $M\omega - 17$ DTW-332.49 pump apart and cleaned pump Heid the Huick Deptoyed Hydrasbeve 2.9 × 12 VSOme Black Bidmass plugging Screens and Inside punip. Ant BW-7 0951 Called Grace to get the ok if Pump works to DTW-331.22 Re use it. Grace gave the Deployed Hydrasteere 29412 Toom ok Pump fest failed, will not be reusing pump 1339 1004 Bw-4 DTW-332.36 * 100 gallons of water < 2 gallons mixed of 30% Vivogar. were used & Deployed Hydrasleeve 2.9×12 750m 1026 This will be for all wells Bw-8 Matare Setted. DTW-331.02 TOC 332.34 BGS 1430 BW-10 Deployed flydrasleeve DTW-329.07 2.90×120.750 ml Paw-9 DTw - 331.36 1044 BC/CB Are Bailing 1447 out Ma -11. Barler was lost in the Begin 1458 BW-6 Fishing For Barber DTW-322.71 Builing Started at 1030

3/20/24 System off 17/BC/CB/EN 17/BC/RV System off 3/29/24 CB 0800 Crew onsite Betup 100 RV/BC/CB/Er Bailed out at MW-13. Begin Letting with wo gations of 10 gullons @ Mw-11 Setting up at Mw-13 Begin well pump 1730 water mixed with Unegar. Before work performed 1930 completed, will jet took water level tomontae MW-13 DTW- 329.48 TOC CREW offsite 330. 42 BGS site cleaned all gates and Began Hydrasleeve 0900 containors locked extraction & sampling all data is on ground water sampling sheets 1 Completed Sampling All samples are on 16 1131 2/28/24 filled out paper work E COC'S IT offsite to deliver 200 Samples. Crew stayed and completed mulis & Crew staged fill 1600 * 2329/24

4/1/24 and Setting were RV ZT/BC/RV 1330 Crew onst fe peopening Bott \$+1/20 Both Waste water Storage to Remove Bu-4. Tubred tanks are full. Need to as pose of water Called on Pumps 13 TR. 16, 21 Woll RW-4 out of the 1430 Grace and bet her know, She said to please call Setting up fetting tools WWTP in Anland Stutte Water bleet at Se of they would 君 RW-2/ accept out waste water. DTW-331,30 TOC 1900 IT/BC/RU Affaite 1500 Tools For fething did not fit' Well. Setty fools ave a larger draneter Called Office to bet tenow the situation. Clay sard he had a 2' dratueter fetting tool at home. Clay will be heading home to prek up tool left Clay off site Ba Begin to prepare for Clarifier Cleaning 1900 Clarifier deaning complete Oil water Separator Frid trained out

PUMP REMOVEN (T(BC/CB 17/BC/RU 34-4/2/24 Jethy well CB 1400 ONSTRE weather 730 13 cloudy, windy 39°F Called Clowis WWTP and spoke to a Mark. I explained what the Water we wanted disposed of Mark sud 1630 they would not be able to accept our waste water Called Grace and let her Know. She said to transfer the cleaner Water into Clauffer then kern pump to send to Sever System Water that has goke through clapter) The other fank that had MIX of water lous used 1700 toanfered outs or water Seperator and system was fund on. 145 Completed Clanifier Clean 1230 Began Cleaning oil water Seperator 1350 completed cleaning

Well Setting Deployed Hydrasleeve af mw-11 took water level Before depayment (F Netto -=-11 DTW-Deployed Hydrasleve at 340' B675 Durip at Mu Rus 26 Installed Setting complete Firmed on purip to check For leaks Small baks found at a Repair that Brandon Had done. Repair not working Brandon flad to Ro - Roparn Thor yet Fixed needs more parts Brandon and Rey Stycel On site untill 1930 Prove to Rus-2 and performed digness with Grace on the phone. opened gas clive water flowing into well Flow neter nins backwark

RIV RIV CB Well Jetting 4/3/24 \$ 4/2/24 Crew on sofe Set up Closed gate value opened 730 on Pump wated about at RIN-3 iventhers Clear Skies 39°F 130 Pump removal and 5 minutes no Flow detected. Grace indicated Tettin complete. Ciew & HA Thipping punip that water level would and well pipe Buck drop a fost. After ten into flake. minutes still no Flow 110 Gallons of under AIR Could be heard Mised with 2 gallons escaping from well cover of 20%. Unegan were after 01" PUC Plug was used to set well. Removed. 1230 RW-3 Romstallad tumod Conclusion, well is full on Rul-3, whiting For of Bir mass that pump 1045 Dump to begin Flevenz Cant over come. Also ADOED Fresh water too Check value stuck open 1320 allowing Back Flores, Oil water seperator Will Schedule to Romove turned on system fund on wells BTR on a Sunday when MW13, MW12, MW16, RW3 1830 Tologed. eye glass bestross 13 Bystem Set alam ture EBrandon wil stay period For transfer Pump, Cloared cleaned site and complete repais. 1505 O Ma-11 TEMP PH DO SPC ORP

4/3/24 Dump Removed M/ Perco mw-11 not Sampled Found water Coming into Well From pitless adapter 1525 Checked operation of RW-3 Found ARU pourty out water closed gate vale Before & came to RW-3 1 closed gate value at prw-11 1545 Checked Lolle RW-4 Brenden to had left Flow meter disconnected due to Repairs. Found water flowing out of Flowmeter closed gate value. 1600 Called Grace and 6t her know what was pappeary. She said to close glife values as well. 1/215 Dragnosed why system was shutting Down site glass at Clarfer over filled, Manualy drained derrifier a few times Found when 5ystem was reset pun transfer pump worked property The OST

#1/BL E Clain #13/2¢ time then would not after the second tune. Transfer pump would tum on then pin for a few seconds only connervy down water 2" +5 3"-Shut off for 1 to 2 mintes pump Br a few seconds then shat off. Clauffrer, water would then pars the 1st Pleats Then continue to the highest highest float and Stult off System. Found air in pressure Sensor line, Biear Sys Fend Ran property All gates & containers locked 1800 offsite BC

Appendix D

Laboratory Reports

Environment Testing

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 29, 2024

Grace Herrmann Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX: (505) 822-8877

RE: Former Y

OrderNo.: 2402535

Dear Grace Herrmann:

Eurofins Environment Testing South Central, LLC received 5 sample(s) on 2/9/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/29/2024

CLIENT: Daniel B. Stephens & Assoc. Project: Former Y

Lab ID: 2402535-001 Client Sample ID: FY Treated EFF Collection Date: 2/8/2024 9:50:00 AM

Matrix: GROUNDWA

Received Date: 2/9/2024 4:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	SNS
Chloride	85	10		mg/L	20	2/9/2024 8:20:41 PM	R103013
Nitrogen, Nitrate (As N)	1.7	0.10		mg/L	1	2/9/2024 8:07:50 PM	R103013
Sulfate	44	10		mg/L	20	2/9/2024 8:20:41 PM	R103013
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	ксв
Total Dissolved Solids	508	100	*D	mg/L	1	2/15/2024 10:54:00 AM	80421
EPA METHOD 8011/504.1: EDB						Analyst	SB
1,2-Dibromoethane	0.73	0.047		µg/L	5	2/13/2024 2:45:49 PM	80382
EPA METHOD 8015M/D: DIESEL RANGE						Analyst	: JKU
Diesel Range Organics (DRO)	1.4	1.0	н	mg/L	1	2/24/2024 12:06:52 AM	80585
Motor Oil Range Organics (MRO)	ND	5.0	н	mg/L	1	2/24/2024 12:06:52 AM	80585
Surr: DNOP	127	45.5-159	н	%Rec	1	2/24/2024 12:06:52 AM	80585
EPA METHOD 8015D: GASOLINE RANGE						Analyst	RAA
Gasoline Range Organics (GRO)	0.097	0.050		mg/L	1	2/14/2024 8:12:00 PM	R103113
Surr: BFB	115	15-270		%Rec	1	2/14/2024 8:12:00 PM	R103113
EPA METHOD 8260B: VOLATILES						Analyst	ССМ
Benzene	2.1	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Toluene	1.0	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Ethylbenzene	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
1,2,4-Trimethylbenzene	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
1,3,5-Trimethylbenzene	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
1,2-Dichloroethane (EDC)	4.1	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Naphthalene	ND	2.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
1-Methylnaphthalene	ND	4.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
2-Methylnaphthalene	ND	4.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Acetone	23	10		µg/L	1	2/15/2024 6:08:00 PM	R103131
Bromobenzene	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Bromodichloromethane	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Bromoform	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Bromomethane	ND	3.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
2-Butanone	11	10		µg/L	1	2/15/2024 6:08:00 PM	R103131
Carbon disulfide	ND	10		µg/L	1	2/15/2024 6:08:00 PM	R103131
Carbon Tetrachloride	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Chlorobenzene	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Chloroethane	ND	2.0		µg/L	1	2/15/2024 6:08:00 PM	R103131
Chloroform	ND	1.0		µg/L	1	2/15/2024 6:08:00 PM	R103131

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

J

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

в Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Date Reported: 2/29/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc.

Project: Former Y Lab ID: 2402535-001

Client Sample ID: FY Treated EFF Collection Date: 2/8/2024 9:50:00 AM

Matrix: GROUNDWA Received Date: 2/9/2024 4:05:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	ссм
Chloromethane	ND	3.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
2-Chlorotoluene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
4-Chlorotoluene	ND	1.0	μg/L	1	2/15/2024 6:08:00 PM	R103131
cis-1,2-DCE	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
Dibromochloromethane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
Dibromomethane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,2-Dichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,3-Dichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,4-Dichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
Dichlorodifluoromethane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,1-Dichloroethane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,2-Dichloropropane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,3-Dichloropropane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,1-Dichloropropene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
Hexachlorobutadiene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
2-Hexanone	17	10	µg/L	1	2/15/2024 6:08:00 PM	R103131
Isopropylbenzene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
4-Isopropyltoluene	ND	1.0	μg/L	1	2/15/2024 6:08:00 PM	R103131
4-Methyl-2-pentanone	ND	10	µg/L	1	2/15/2024 6:08:00 PM	R103131
Methylene Chloride	ND	3.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
n-Butylbenzene	ND	3.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
n-Propylbenzene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
sec-Butylbenzene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
Styrene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
tert-Butylbenzene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
trans-1,2-DCE	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,1,1-Trichloroethane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,1,2-Trichloroethane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
Trichloroethene (TCE)	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

в Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Date Reported: 2/29/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Former Y

2402535-001

Lab ID:

Client Sample ID: FY Treated EFF Collection Date: 2/8/2024 9:50:00 AM Matrix: GROUNDWA Received Date: 2/9/2024 4:05:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: CCM
Trichlorofluoromethane	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
Vinyl chloride	ND	1.0	µg/L	1	2/15/2024 6:08:00 PM	R103131
Xylenes, Total	ND	1.5	µg/L	1	2/15/2024 6:08:00 PM	R103131
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	1	2/15/2024 6:08:00 PM	R103131
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	2/15/2024 6:08:00 PM	R103131
Surr: Dibromofluoromethane	106	70-130	%Rec	1	2/15/2024 6:08:00 PM	R103131
Surr: Toluene-d8	96.1	70-130	%Rec	1	2/15/2024 6:08:00 PM	R103131

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- JAnalyte detected below quantitation limitsPSample pH Not In Range
- RL Reporting Limit

KL

Lab Order 2402535

Date Reported: 2/29/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Former Y

2402535-002

Lab ID:

Client Sample ID: FY Raw Collection Date: 2/8/2024 9:35:00 AM

Matrix: GROUNDWA Received Date: 2/9/2024 4:05:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	SNS
Chloride	84	10		mg/L	20	2/9/2024 8:46:25 PM	R103013
Nitrogen, Nitrate (As N)	1.8	0.10		mg/L	1	2/9/2024 8:33:34 PM	R103013
Sulfate	44	10		mg/L	20	2/9/2024 8:46:25 PM	R103013
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	KCB
Total Dissolved Solids	492	100	D	mg/L	1	2/15/2024 10:54:00 AM	80421
EPA METHOD 8011/504.1: EDB						Analyst	: SB
1,2-Dibromoethane	9.1	0.48		µg/L	50	2/13/2024 3:02:50 PM	80382
EPA METHOD 8015M/D: DIESEL RANGE						Analyst	: JKU
Diesel Range Organics (DRO)	1.6	1.0	н	mg/L	1	2/24/2024 12:30:20 AM	80585
Motor Oil Range Organics (MRO)	ND	5.0	н	mg/L	1	2/24/2024 12:30:20 AM	80585
Surr: DNOP	132	45.5-159	н	%Rec	1	2/24/2024 12:30:20 AM	80585
EPA METHOD 8015D: GASOLINE RANGE						Analyst	RAA
Gasoline Range Organics (GRO)	4.2	1.0		mg/L	20	2/14/2024 8:34:00 PM	R103113
Surr: BFB	115	15-270		%Rec	20	2/14/2024 8:34:00 PM	R103113
EPA METHOD 8260B: VOLATILES						Analyst	CCM
Benzene	820	10		µg/L	10	2/16/2024 12:36:00 PM	R103136
Toluene	400	10		µg/L	10	2/16/2024 12:36:00 PM	R103136
Ethylbenzene	19	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
Methyl tert-butyl ether (MTBE)	1.3	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
1,2,4-Trimethylbenzene	26	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
1,3,5-Trimethylbenzene	20	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
1,2-Dichloroethane (EDC)	130	10		µg/L	10	2/16/2024 12:36:00 PM	R103136
1,2-Dibromoethane (EDB)	14	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
Naphthalene	17	2.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
1-Methylnaphthalene	4.6	4.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
2-Methylnaphthalene	5.7	4.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
Acetone	47	10		µg/L	1	2/15/2024 6:33:00 PM	R103131
Bromobenzene	ND	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
Bromodichloromethane	ND	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
Bromoform	ND	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
Bromomethane	ND	3.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
2-Butanone	30	10		µg/L	1	2/15/2024 6:33:00 PM	R103131
Carbon disulfide	ND	10		µg/L	1	2/15/2024 6:33:00 PM	R103131
Carbon Tetrachloride	ND	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
Chlorobenzene	ND	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
Chloroethane	ND	2.0		µg/L	1	2/15/2024 6:33:00 PM	R103131
Chloroform	ND	1.0		µg/L	1	2/15/2024 6:33:00 PM	R103131

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

J

в

PQL Practical Quanitative Limit S

% Recovery outside of standard limits. If undiluted results may be estimated.

Е Above Quantitation Range/Estimated Value Analyte detected below quantitation limits

Analyte detected in the associated Method Blank

- Р Sample pH Not In Range
- RL Reporting Limit

Lab Order 2402535

Date Reported: 2/29/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc.

Project: Former Y Lab ID: 2402535-002 Client Sample ID: FY Raw

Collection Date: 2/8/2024 9:35:00 AM

Matrix: GROUNDWA Received Date: 2/9/2024 4:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analysi	CCM
Chloromethane	ND	3.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
2-Chlorotoluene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
4-Chlorotoluene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
cis-1,2-DCE	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
Dibromochloromethane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
Dibromomethane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,2-Dichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,3-Dichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,4-Dichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
Dichlorodifluoromethane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,1-Dichloroethane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,1-Dichloroethene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,2-Dichloropropane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,3-Dichloropropane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
2,2-Dichloropropane	ND	2.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,1-Dichloropropene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
Hexachlorobutadiene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
2-Hexanone	34	10	µg/L	1	2/15/2024 6:33:00 PM	R103131
Isopropylbenzene	1.8	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
4-Isopropyltoluene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
4-Methyl-2-pentanone	16	10	µg/L	1	2/15/2024 6:33:00 PM	R103131
Methylene Chloride	ND	3.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
n-Butylbenzene	ND	3.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
n-Propylbenzene	1.6	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
sec-Butylbenzene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
Styrene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
tert-Butylbenzene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
trans-1,2-DCE	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,1,1-Trichloroethane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,1,2-Trichloroethane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
Trichloroethene (TCE)	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

в Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits Р Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 2/29/2024

CLIENT:	Daniel B. Stephens & Assoc.		Client Sample ID: FY Raw
Project:	Former Y		Collection Date: 2/8/2024
Lab ID:	2402535-002	Matrix: GROUNDWA	Received Date: 2/9/2024

ollection Date: 2/8/2024 9:35:00 AM

Received Date: 2/9/2024 4:05:00 PM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	CCM
Trichlorofluoromethane	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
Vinyl chloride	ND	1.0	µg/L	1	2/15/2024 6:33:00 PM	R103131
Xylenes, Total	260	1.5	µg/L	1	2/15/2024 6:33:00 PM	R103131
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	2/15/2024 6:33:00 PM	R103131
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	2/15/2024 6:33:00 PM	R103131
Surr: Dibromofluoromethane	99.5	70-130	%Rec	1	2/15/2024 6:33:00 PM	R103131
Surr: Toluene-d8	96.0	70-130	%Rec	1	2/15/2024 6:33:00 PM	R103131

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

- D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit

Lab Order 2402535

Date Reported: 2/29/2024

Hall	Environmental	Analysis	Laboratory,	Inc.

CLIENT: Daniel B. Stephens & Assoc. Project: Former Y

2402535-003

Lab ID:

Client Sample ID: Trip Blank **Collection Date:**

Matrix: TRIP BLANK

Received Date: 2/9/2024 4:05:00 PM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8011/504.1: EDB					Analyst	SB
1,2-Dibromoethane	ND	0.0096	µg/L	1	2/12/2024 7:56:13 PM	80382
EPA METHOD 8260B: VOLATILES					Analyst	CCM
Benzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Toluene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Ethylbenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Naphthalene	ND	2.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1-Methylnaphthalene	ND	4.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
2-Methylnaphthalene	ND	4.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Acetone	ND	10	µg/L	1	2/15/2024 6:58:00 PM	R103131
Bromobenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Bromodichloromethane	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Bromoform	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Bromomethane	ND	3.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
2-Butanone	ND	10	µg/L	1	2/15/2024 6:58:00 PM	R103131
Carbon disulfide	ND	10	µg/L	1	2/15/2024 6:58:00 PM	R103131
Carbon Tetrachloride	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Chlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Chloroethane	ND	2.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Chloroform	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Chloromethane	ND	3.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
2-Chlorotoluene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
4-Chlorotoluene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
cis-1,2-DCE	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Dibromochloromethane	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Dibromomethane	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,2-Dichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,3-Dichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,4-Dichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Dichlorodifluoromethane	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,1-Dichloroethane	ND	1.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
1,1-Dichloroethene	ND	1.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
1,2-Dichloropropane	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Н

ND

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded

В Analyte detected in the associated Method Blank Е Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

PQL Practical Quanitative Limit S % Recovery outside of standard limits. If undiluted results may be estimated.

Lab Order 2402535

Date Reported: 2/29/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc.

2402535-003

Project: Former Y

Lab ID:

Client Sample ID: Trip Blank **Collection Date:**

Matrix: TRIP BLANK

Received Date: 2/9/2024 4:05:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	CCM
1,3-Dichloropropane	ND	1.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
2,2-Dichloropropane	ND	2.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
1,1-Dichloropropene	ND	1.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
Hexachlorobutadiene	ND	1.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
2-Hexanone	ND	10	μg/L	1	2/15/2024 6:58:00 PM	R103131
Isopropylbenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
4-Isopropyltoluene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
4-Methyl-2-pentanone	ND	10	µg/L	1	2/15/2024 6:58:00 PM	R103131
Methylene Chloride	ND	3.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
n-Butylbenzene	ND	3.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
n-Propylbenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
sec-Butylbenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Styrene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
tert-Butylbenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
trans-1,2-DCE	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,1,1-Trichloroethane	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
1,1,2-Trichloroethane	ND	1.0	µg/L	1	2/15/2024 6:58:00 PM	R103131
Trichloroethene (TCE)	ND	1.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
Trichlorofluoromethane	ND	1.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
1,2,3-Trichloropropane	ND	2.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
Vinyl chloride	ND	1.0	μg/L	1	2/15/2024 6:58:00 PM	R103131
Xylenes, Total	ND	1.5	μg/L	1	2/15/2024 6:58:00 PM	R103131
Surr: 1,2-Dichloroethane-d4	107	70-130	%Rec	1	2/15/2024 6:58:00 PM	R103131
Surr: 4-Bromofluorobenzene	96.7	70-130	%Rec	1	2/15/2024 6:58:00 PM	R103131
Surr: Dibromofluoromethane	101	70-130	%Rec	1	2/15/2024 6:58:00 PM	R103131
Surr: Toluene-d8	96.8	70-130	%Rec	1	2/15/2024 6:58:00 PM	R103131

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit

Qualifiers:

% Recovery outside of standard limits. If undiluted results may be estimated. S

- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р

Hall Environmental Analysis Laboratory, Inc.

Lab Order **2402535** Date Reported: **2/29/2024**

CLIENT: Daniel B. Stephens & Assoc. Project: Former Y Lab ID: 2402535-004	Client Sample ID: FY Comb INFCollection Date: 2/8/2024 10:07:00 AMMatrix: AIRReceived Date: 2/9/2024 4:05:00 PM					
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	: JJP
Gasoline Range Organics (GRO)	14000	500	µg/L	50	2/15/2024 3:22:44 PM	GW1031
Surr: BFB	118	15-412	%Rec	50	2/15/2024 3:22:44 PM	GW1031
EPA METHOD 8021B: VOLATILES					Analyst	: JJP
Methyl tert-butyl ether (MTBE)	ND	25	µg/L	50	2/15/2024 3:22:44 PM	BW1031:
Benzene	150	10	µg/L	50	2/15/2024 3:22:44 PM	BW1031:
Toluene	630	10	µg/L	50	2/15/2024 3:22:44 PM	BW1031:
Ethylbenzene	56	10	µg/L	50	2/15/2024 3:22:44 PM	BW1031:
Xylenes, Total	280	20	µg/L	50	2/15/2024 3:22:44 PM	BW1031:
Surr: 4-Bromofluorobenzene	98.0	70-130	%Rec	50	2/15/2024 3:22:44 PM	BW1031:

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

NDNot Detected at the Reporting LimitPQLPractical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- JAnalyte detected below quantitation limitsPSample pH Not In Range
- P Sample pH Not In RL Reporting Limit

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

S % Recovery outside of standard limits. If undiluted results may be estimated.

Lab Order **2402535** Date Reported: **2/29/2024**

CLIENT: Daniel B. Stephens & Assoc.	Client Sample ID: FY OX EFF									
Project: Former Y		Coll	Sample ID: FY OX EFF ection Date: 2/8/2024 10:09:00 AM eeived Date: 2/9/2024 4:05:00 PM al Units DF Date Analyzed Batch Analyst: JJP µg/L 1 2/15/2024 3:47:12 PM GW1031 %Rec 1 2/15/2024 3:47:12 PM GW1031 Analyst: JJP µg/L 1 2/15/2024 3:47:12 PM BW1031: µg/L 1 2/15/2024 3:47:12 PM BW1031: µg/L 2 2/16/2024 1:22:04 PM BA10313							
Lab ID: 2402535-005	Matrix: AIR	Re	ceived Dat	e: 2/9	9/2024 4:05:00 PM	Batch :: JJP GW1031 GW1031 : JJP BW1031;				
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch				
EPA METHOD 8015D: GASOLINE RAN	IGE				Analys	t: JJP				
Gasoline Range Organics (GRO)	110	5.0	µg/L	1	2/15/2024 3:47:12 PM	GW1031				
Surr: BFB	153	15-412	%Rec	1	2/15/2024 3:47:12 PM	GW1031				
EPA METHOD 8021B: VOLATILES					Analys	t: JJP				
Methyl tert-butyl ether (MTBE)	ND	0.25	µg/L	1	2/15/2024 3:47:12 PM	BW 1031:				
Benzene	3.7	0.10	µg/L	1	2/15/2024 3:47:12 PM	BW1031:				
Toluene	9.4	0.20	µg/L	2	2/16/2024 1:22:04 PM	BA10313				
Ethylbenzene	2.0	0.10	µg/L	1	2/15/2024 3:47:12 PM	BW1031:				
Xylenes, Total	12	0.20	µg/L	1	2/15/2024 3:47:12 PM	BW1031:				
Surr: 4-Bromofluorobenzene	113	70-130	%Rec	1	2/15/2024 3:47:12 PM	BW1031;				

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

NDNot Detected at the Reporting LimitPQLPractical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated ValueJ Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

S % Recovery outside of standard limits. If undiluted results may be estimated.

Page	12	of 21

		U	•
Client:	Daniel B. Stepher	1s & Assoc.	

Project:	Former Y									
Sample ID: MB	SampT	уре: МЕ	BLK	Tes	tCode: EF	A Method	300.0: Anions			
Client ID: PBW	Batch	n ID: R1	03013	F	RunNo: 10	3013				
Prep Date:	Analysis D	Analysis Date: 2/9/2024			SeqNo: 38	807837	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								
Cunato	NB	0.00								
Sample ID: LCS	SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anions			
Sample ID: LCS Client ID: LCSW	SampT	ype: LC	S 03013	Tes	tCode: EF	PA Method 03013	300.0: Anions			
Sample ID: LCS Client ID: LCSW Prep Date:	SampT Batch Analysis D	iype: LC 1 ID: R1 pate: 2/9	S 03013 9/2024	Tes F	atCode: EF RunNo: 10 SeqNo: 38	PA Method 03013 807838	300.0: Anions Units: mg/L			
Sample ID: LCS Client ID: LCSW Prep Date: Analyte	SampT Batch Analysis D Result	ype: LC 1 ID: R1 Pate: 2/9 PQL	S 03013 9/2024 SPK value	Tes F SPK Ref Val	ttCode: EF RunNo: 10 SeqNo: 38 %REC	PA Method 03013 807838 LowLimit	300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID: LCS Client ID: LCSW Prep Date: Analyte Chloride	SampT Batch Analysis D Result 4.7	ype: LC n ID: R10 Pate: 2/9 PQL 0.50	S 03013 9/2024 SPK value 5.000	Tes F S SPK Ref Val 0	ttCode: EF RunNo: 10 SeqNo: 38 %REC 94.4	PA Method 03013 007838 LowLimit 90	300.0: Anions Units: mg/L HighLimit 110	%RPD	RPDLimit	Qual
Sample ID: LCS Client ID: LCSW Prep Date: Analyte Chloride Nitrogen, Nitrate (As N)	SampT Batch Analysis D Result 4.7 2.5	ype: LC DID: R10 Pate: 2/9 PQL 0.50 0.10	S 03013 9/2024 SPK value 5.000 2.500	Tes F SPK Ref Val 0 0	tCode: EF RunNo: 10 SeqNo: 38 %REC 94.4 98.7	PA Method 03013 007838 LowLimit 90 90	300.0: Anions Units: mg/L HighLimit 110 110	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2402535 29-Feb-24

Daniel B. Stephens & Assoc.

Project:	Former Y										
Sample ID:	MB-80382	SampT	уре: МЕ	BLK	Tes	TestCode: EPA Method 8011/504.1: EDB					
Client ID:	PBW	Batch	ID: 803	382	F	RunNo: 103029					
Prep Date:	2/12/2024	Analysis D	ate: 2/ ′	12/2024	5	SeqNo: 38	309604	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoet	hane	ND	0.010								
Sample ID:	LCS-80382	SampT	ype: LC	s	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	LCSW	Batch	ID: 803	382	F	RunNo: 10)3029				
Prep Date:	2/12/2024	Analysis D	ate: 2/ '	12/2024	S	SeqNo: 38	809605	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoetl	hane	0.089	0.010	0.1000	0	89.0	70	130			
Sample ID:	LCSD-80382	SampT	ype: LC	SD	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	LCSS02	Batch ID: 80382			F	RunNo: 1()3029				
Prep Date:	2/12/2024	Analysis D	ate: 2/ ′	12/2024	S	SeqNo: 38	309606	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoet	hane	0.091	0.010	0.1000	0	90.5	70	130	1.67	20	
Sample ID:	MB-80382	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	PBW	Batch	ID: 803	382	F	RunNo: 1()3029				
Prep Date:	2/12/2024	Analysis D	ate: 2/ '	12/2024	S	SeqNo: 38	309616	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoet	hane	ND	0.010								
Sample ID:	LCS-80382	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	LCSW	Batch	ID: 803	382	F	RunNo: 1()3029				
Prep Date:	2/12/2024	Analysis D	ate: 2/	12/2024	S	SeqNo: 38	809617	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoet	hane	0.093	0.010	0.1000	0	92.5	70	130			
Sample ID:	LCSD-80382	SampT	ype: LC	SD	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	LCSS02	Batch	ID: 803	382	F	RunNo: 1()3029				
Prep Date:	2/12/2024	Analysis D	ate: 2/ ′	12/2024	S	SeqNo: 38	809618	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoet	hane	0.092	0.010	0.1000	0	92.4	70	130	0.130	20	

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#: 2402535 29-Feb-24

Daniel B. Stephens & Assoc.

Project: F	Former Y										
Sample ID: MB-8058	5	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8015M/D: Dies	sel Range		
Client ID: PBW		Batch	n ID: 80	585	F	RunNo: 1(03274				
Prep Date: 2/22/202	24	Analysis D	Date: 2/ 2	23/2024	S	SeqNo: 38	321201	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DF	RO)	ND	1.0								
Motor Oil Range Organics	(MRO)	ND	5.0								
		0.00		0 5000		400		150			
Surr: DNOP		0.62		0.5000		123	45.5	159			
Sample ID: LCS-805	85	0.62 SampT	ype: LC	0.5000 S	Tes	tCode: EF	45.5 PA Method	8015M/D: Dies	el Range		
Sample ID: LCS-8056 Client ID: LCSW	85	0.62 SampT Batch	ype: LC	0.5000 S 585	Tes	123 tCode: EF RunNo: 1(45.5 PA Method 03274	8015M/D: Dies	sel Range		
Sample ID: LCS-8054 Client ID: LCSW Prep Date: 2/22/202	85 24	0.62 SampT Batch Analysis D	Type: LC n ID: 80 Date: 2 /2	0.5000 S 585 23/2024	Tes F	tCode: EF RunNo: 10 SeqNo: 38	45.5 PA Method 03274 321202	8015M/D: Dies Units: mg/L	sel Range		
Sample ID: LCS-8054 Client ID: LCSW Prep Date: 2/22/202 Analyte	85 24	0.62 SampT Batch Analysis D Result	ype: LC n ID: 80 Date: 2 /2 PQL	0.5000 S 585 23/2024 SPK value	Tes F SPK Ref Val	tCode: EF RunNo: 10 SeqNo: 38 %REC	45.5 PA Method 03274 321202 LowLimit	8015M/D: Dies Units: mg/L HighLimit	sel Range %RPD	RPDLimit	Qual
Surr: DNOP Sample ID: LCS-805 Client ID: LCSW Prep Date: 2/22/20 Analyte Diesel Range Organics (DF	85 24	0.62 SampT Batch Analysis D Result 3.2	Type: LC n ID: 809 Date: 2/2 PQL 1.0	0.5000 S 585 23/2024 SPK value 2.500	Tes F S SPK Ref Val 0	123 tCode: EF RunNo: 1(SeqNo: 38 %REC 126	45.5 PA Method 03274 321202 LowLimit 57	8015M/D: Dies Units: mg/L HighLimit 147	sel Range %RPD	RPDLimit	Qual

Qualifiers:

Client:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 14 of 21

WO#: 2402535 29-Feb-24

Daniel B. Stephens & Assoc.

Project:	Former Y										
Sample ID:	2.5ug gro lcs	SampT	ype: LC	S	TestCode: EPA Method 8015D: Gasoline Range						
Client ID:	LCSW	Batch	ו ID: R1	03113	F	RunNo: 103113					
Prep Date:		Analysis D)ate: 2/	14/2024	\$	SeqNo: 38	312387	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	0.41	0.050	0.5000	0	82.2	70	130			
Surr: BFB		46		20.00		231	15	270			
Sample ID:	2.5ug gro lcsd	SampT	ype: LC	SD	Tes	stCode: EF	PA Method	8015D: Gasoli	ne Range		
Client ID:	LCSS02	Batch	ו ID: R1	03113	F	RunNo: 1(03113				
Prep Date:		Analysis D)ate: 2/	14/2024	Ş	SeqNo: 38	312388	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	je Organics (GRO)	0.41	0.050	0.5000	0	82.7	70	130	0.534	20	
Surr: BFB		46		20.00		229	15	270	0	0	
Sample ID:	mb	SampT	ype: ME	BLK	Tes	stCode: EF	PA Method	8015D: Gasoli	ne Range		
Client ID:	PBW	Batch	ו ID: R1	03113	F	RunNo: 1()3113				
Prep Date:		Analysis D)ate: 2/	14/2024	Ş	SeqNo: 38	312389	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	ND	0.050								
Surr: BFB		23		20.00		117	15	270			
Sample ID:	2.5ug gro lcs	SampT	ype: LC	S	Tes	stCode: EF	PA Method	8015D: Gasoli	ne Range	•	
Client ID:	LCSW	Batch	ו ID: GV	V103126	F	RunNo: 1(03126				
Prep Date:		Analysis D)ate: 2/	15/2024	\$	SeqNo: 38	312769	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	0.49	0.050	0.5000	0	98.6	70	130			
Surr: BFB		41		20.00		204	15	270			
Sample ID:	mb	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8015D: Gasoli	ne Range		
Client ID:	PBW	Batch	ו ID: GV	V103126	F	RunNo: 1(03126				
Prep Date:		Analysis D)ate: 2/	15/2024	\$	SeqNo: 38	312770	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	ND	0.050								
Surr: BFB		19		20.00		96.9	15	270			

Qualifiers:

Client:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

29-Feb-24

WO#:	2402535
	29-Feb-24

Client: Daniel B. Stephens & Assoc. **Project:**

Sample ID: 100ng Ics	SampT	Гуре: LC	S	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	h ID: R1	03131	RunNo: 103131						
Prep Date:	Analysis E	Date: 2/ *	15/2024	\$	SeqNo: 38	313403	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	95.0	70	130			
Toluene	20	1.0	20.00	0	98.7	70	130			
Chlorobenzene	20	1.0	20.00	0	101	70	130			
1,1-Dichloroethene	18	1.0	20.00	0	90.1	70	130			
Trichloroethene (TCE)	18	1.0	20.00	0	91.3	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130			
Surr: Dibromofluoromethane	9.9		10.00		98.5	70	130			
Surr: Toluene-d8	9.5		10.00		95.3	70	130			
Sample ID: mb	SampT	Гуре: МЕ	LK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	h ID: R1	03131	F	RunNo: 1(03131				
Prep Date:	Analysis D	Date: 2/	15/2024	S	SeqNo: 38	313404	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Daniel B. Stephens & Assoc.

WO#:	2402535
	29-Feb-24

Qual

%RPD

RPDLimit

Sample ID: mb	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8260B: VOL	ATILES	
Client ID: PBW	Batch	ID: R1	03131	F	RunNo: 10	03131			
Prep Date:	Analysis Date: 2/15/2024			S	SeqNo: 38	313404	Units: µg/L		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RP	
4-Chlorotoluene	ND	1.0							
cis-1,2-DCE	ND	1.0							
cis-1,3-Dichloropropene	ND	1.0							
1,2-Dibromo-3-chloropropane	ND	2.0							
Dibromochloromethane	ND	1.0							
Dibromomethane	ND	1.0							
1,2-Dichlorobenzene	ND	1.0							
1,3-Dichlorobenzene	ND	1.0							
1,4-Dichlorobenzene	ND	1.0							
Dichlorodifluoromethane	ND	1.0							
1,1-Dichloroethane	ND	1.0							
1,1-Dichloroethene	ND	1.0							
1,2-Dichloropropane	ND	1.0							
1,3-Dichloropropane	ND	1.0							
2,2-Dichloropropane	ND	2.0							
1,1-Dichloropropene	ND	1.0							
Hexachlorobutadiene	ND	1.0							
2-Hexanone	ND	10							
Isopropylbenzene	ND	1.0							
4-Isopropyltoluene	ND	1.0							
4-Methyl-2-pentanone	ND	10							
Methylene Chloride	ND	3.0							
n-Butylbenzene	ND	3.0							
n-Propylbenzene	ND	1.0							
sec-Butylbenzene	ND	1.0							
Styrene	ND	1.0							
tert-Butylbenzene	ND	1.0							
1,1,1,2-Tetrachloroethane	ND	1.0							
1,1,2,2-Tetrachloroethane	ND	2.0							
Tetrachloroethene (PCE)	ND	1.0							
trans-1.2-DCE	ND	1.0							
trans-1,3-Dichloropropene	ND	1.0							
1,2,3-Trichlorobenzene	ND	1.0							
1.2.4-Trichlorobenzene	ND	1.0							
1,1,1-Trichloroethane	ND	1.0							
· · · · · · · · · · · · · · · · · · ·									
1.1.2-Trichloroethane	ND	1.0							

Qualifiers:

Trichlorofluoromethane

1,2,3-Trichloropropane

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S

ND

ND

1.0

2.0

- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

WO#:	2402535
	29-Feb-24

Client: I Project: H	Daniel B. Stephen Former Y	s & Asso	DC.							
Sample ID: mb	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Bate	ch ID: R1	03131	F	RunNo: 1(03131				
Prep Date:	Analysis	Date: 2/	15/2024	S	SeqNo: 38	313404	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane	-d4 11		10.00		108	70	130			
Surr: 4-Bromofluorobenz	ene 9.8		10.00		97.9	70	130			
Surr: Dibromofluorometh	ane 10		10.00		104	70	130			
Surr: Toluene-d8	9.4		10.00		93.5	70	130			
Sample ID: 100ng Ic	s Samp	Type: LC	S	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: LCSW	Bate	ch ID: R1	03136	F	RunNo: 1(03136				
Prep Date:	Analysis	Date: 2/	16/2024	S	SeqNo: 38	315233	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	98.8	70	130			
Toluene	20	1.0	20.00	0	97.5	70	130			
Surr: 1,2-Dichloroethane	-d4 10		10.00		102	70	130			
Surr: 4-Bromofluorobenz	ene 10		10.00		100	70	130			
Surr: Dibromofluorometh	ane 10		10.00		103	70	130			
Surr: Toluene-d8	9.6		10.00		95.9	70	130			
Sample ID: mb	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Bate	ch ID: R1	03136	F	RunNo: 1(03136				
Prep Date:	Analysis	Date: 2/	16/2024	S	SeqNo: 38	315234	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
Surr: 1,2-Dichloroethane	-d4 11		10.00		106	70	130			
Surr: 4-Bromofluorobenz	ene 10		10.00		101	70	130			
Surr: Dibromofluorometh	ane 11		10.00		105	70	130			
Surr: Toluene-d8	9.4		10.00		93.5	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client: Project:	Danie Form	el B. Stephens & er Y	& Asso	юс.							
Sample ID:	MB-80421	SampTy	pe: ME	BLK	Tes	tCode: SN	M2540C MC	D: Total Diss	olved Soli	ds	
Prep Date:	2/13/2024	Analysis Da	ate: 2/	15/2024	ç	SeqNo: 38	312042	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolve	d Solids	ND	50.0								
Sample ID:	LCS-80421	SampTy	pe: LC	S	Tes	tCode: SN	M2540C MC	D: Total Diss	olved Soli	ds	
Client ID:	LCSW	Batch	ID: 804	121	F	RunNo: 1(03103				
Prep Date:	2/13/2024	Analysis Da	ate: 2/	15/2024	S	SeqNo: 38	312043	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolve	d Solids	996	50.0	1000	0	99.6	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 21

💸 eurofins

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	Daniel B. Stephens &	Work Order Numbe	r: 2402535		RcptNo:	1
Received By:	Nick Low man	2/9/2024 4:05:00 PM	Mit	tim		
Completed By:	Cheyenne Cason	2/9/2024 4:15:14 PM		Chene		
Reviewed By:	MZ-9-24					
6	1					
Chain of Cu	<u>stody</u>					
1. Is Chain of C	Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the	e sample delivered?		<u>Client</u>			
<u>Log In</u>						
3. Was an atter	mpt made to cool the sample	s?	Yes 🗹	No	NA	
4. Were all sam	nples received at a temperatu	re of >0° C to 6.0°C	Yes 🗹	No 🗌		
5. Sample(s) in	a proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sar	mple volume for indicated tes	t(s)?	Yes 🔽	No 🗌		
7. Are samples	(except VOA and ONG) prop	erly preserved?	Yes 🗹	No 🗌		
8. Was preserv	ative added to bottles?		Yes 🗌	No 🗹	NA 🗌	
9. Received at l	least 1 vial with headspace <	1/4" for AQ VOA?	Yes 🗹	No 🗌		
10. Were any sa	ample containers received bro	oken?	Yes	No 🔽	# of processed	
				_	bottles checked	>
11. Does paperw	vork match bottle labels?		Yes 🗹	No 🗔	for pH:	>12 unless noted)
Are matrices	correctly identified on Chain	of Custody?	Yes 🗸	No 🗌	Adjusted?	Y0
13 Is it clear wh	at analyses were requested?	of outloay?	Yes 🗹	No 🗌		- 1 1
14. Were all hold (If no, notify)	ling times able to be met? customer for authorization.)		Yes 🗹	No 🗌	Checked by:	7429
Special Hand	lling (if applicable)					
15. Was client r	notified of all discrepancies wi	th this order?	Yes	No 🗌	NA 🗹	
Perso	n Notified:	Date:				
By Wh	nom:	Via:	eMail	Phone 🗌 Fax	In Person	
Regar	ding:					
Client	Instructions:				-	
16. Additional r	emarks:					
17. Cooler Info	ormation					
Cooler N	lo Temp °C Condition	Seal Intact Seal No	Seal Date	Signed By		
1	0.3 Good I	Not Present Yogi				

С	hain	of-Cu	istody Record	Turn-Around	Time:					н		LL	Eľ	v	IR		NN	1E	NT	AL	
Client:	DBSA	+A		🕅 Standard	🗆 Rush					A	N	AL	YS	IS	L	AE	30	RA	TC	DR	Y
	01100		anna an Arthur an Anna an Arthur an Arthu	Project Name):					,	www	/.hall	envi	ronn	nenta	al.co	m				
Mailing	Address	://20	Acaremy ALE SUTT-100	Far	m y			490)1 Ha	awki	ns N	IE -	Alb	uque	erque	ə, Nî	VI 87	109			
		Annin	MAN \$7103	Project #:				Te	I. 50	5-34	5-39	975	F	ax !	505-	345-	4107	7	1944		
Phone a	4: 50	15-232	-9400	DBIR, 1	157.00 01	4024 2402						A	naly	sis I	Requ	uest					
email o	r Fax#:	heren	ann Quez-louic-com	Project Mana	ger:		÷	Ô					04		-	it)	0				
QA/QC I	Package	7	, , , , , , , , , , , , , , , , , , , 				802	ΒR	Bs		MS		5,5			Abse	8		00	2	
🕅 Stan	dard		□ Level 4 (Full Validation)	GMRE- H	commu		3's (ő	2 PO		70SI		۳. ۲			∋nt/A	43		30	331	
Accredi	tation:	🗆 Az Co	ompliance	Sampler: J	Fronten		IM	Ō	8082	4.1)	82		Ŷ		2	rese	61	201	EP	64	
D NEL	AC	Other	·	On Ice:	V Yes	□ No	Е/	R R	les/	150	ō	als	ဂိ		Q́	n (P	SUD	35	0	Vá.	ea -
	(Type)		I	# of Coolers:	(Including OE): ()	4 -01=07 (°C)	1 E	No.	iticic	tho	831	Met	ž	(A	-in	iforr	1100	SM	es A	LAS	
								301	Pes	Me	þ	A 8	ы	ž	(Se	Col	12/	1	112-1	, vi	
				Container	Preservative	HEAL No.	μÊ	H H H H	8	8	AHŝ	SCR	ц Т	260	270	otal	ULFA	A	110	3	
Date	Time	Matrix	Sample Name	Type and #	Туре	2402535	m	Ę	<u></u>	믯	<u> </u>	2	0		ά	H	\sim	5	V		
218/24	0950	GW	FY THINTOP EFF	13-VARIOUS	VATRIDUS	001		X	_	Å	-			\ominus			\ominus	\ominus			
	0935	V	FY RAW	V	V	002	<u> </u>	X		X		<u> </u>		Å,			X	X	A	_	_
Aspy	•		TRIP BLACK	3.101	2- HAC12 1-50TH	003				Д		-	- ne	Х							
2/8/24	1007	AIR	Tox FY COMBINE	TEOLAR BIG		004		X		- 23										X-	
	1009	V	FY ON EFF	V	1 de	005		X			113 I.I.					1.00				Д	
-											_						ļ				
	tî.			∇																	
				0	5							Ē									
	<u> </u>			\square	Sal								1.554		1	1					
	1				and have seen	12/2/24															
								-	\square												
						and the second															
Date:	Time:	Relipiquis	hed by:	Received by:	Via:	Date Time	Re	mark	s:							/					
219/24	1605	h h	stal	Mila	- CDO	2/9/24 1605													/		
Date:	Time:	Relinquis	hed by:	Received by:	Via:	Date Time															
		ľ																			

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Environment Testing

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 06, 2024 Grace Herrmann Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX: (505) 822-8877

RE: Former Y Station State Lead Site

OrderNo.: 2402A38

Dear Grace Herrmann:

Eurofins Environment Testing South Central, LLC received 5 sample(s) on 2/21/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Date Reported: 3/6/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Former Y Station State Lead Site

2402A38-001

Lab ID:

Client Sample ID: FY Treated EFF Collection Date: 2/19/2024 2:35:00 PM Received Date: 2/21/2024 1:43:00 PM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	RBC
Chloride	79	2.5		mg/L	5	2/23/2024 10:42:48 PM	R103302
Sulfate	35	2.5		mg/L	5	2/26/2024 3:47:53 PM	R103340
Nitrate+Nitrite as N	ND	1.0		mg/L	5	2/24/2024 1:19:23 AM	R103302
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	КСВ
Total Dissolved Solids	424	100	D	mg/L	1	2/27/2024 3:49:00 PM	80623
EPA METHOD 8011/504.1: EDB						Analyst:	DGH
1,2-Dibromoethane	0.40	0.048		µg/L	5	2/29/2024 4:22:12 PM	80720
EPA METHOD 8015M/D: DIESEL RANGE						Analyst:	JKU
Diesel Range Organics (DRO)	1.8	1.0		ma/L	1	2/24/2024 3:13:51 AM	80585
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	2/24/2024 3:13:51 AM	80585
Surr: DNOP	136	45.5-159		%Rec	1	2/24/2024 3:13:51 AM	80585
EPA METHOD 8015D: GASOLINE RANGE						Analyst:	JJP
Gasoline Range Organics (GRO)	0.098	0.050		mg/L	1	2/23/2024 8:40:03 PM	GA10328
Surr: BFB	100	15-270		%Rec	1	2/23/2024 8:40:03 PM	GA10328
EPA METHOD 8260B: VOLATILES						Analyst:	ССМ
Benzene	1.1	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Toluene	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Ethylbenzene	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
1,2,4-Trimethylbenzene	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
1,3,5-Trimethylbenzene	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
1,2-Dichloroethane (EDC)	1.7	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Naphthalene	2.9	2.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
1-Methylnaphthalene	ND	4.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
2-Methylnaphthalene	ND	4.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Acetone	98	10		µg/L	1	2/29/2024 8:20:00 PM	R103402
Bromobenzene	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Bromodichloromethane	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Bromoform	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Bromomethane	ND	3.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
2-Butanone	38	10		µg/L	1	2/29/2024 8:20:00 PM	R103402
Carbon disulfide	ND	10		µg/L	1	2/29/2024 8:20:00 PM	R103402
Carbon Tetrachloride	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Chlorobenzene	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Chloroethane	ND	2.0		µg/L	1	2/29/2024 8:20:00 PM	R103402
Chloroform	ND	1.0		µg/L	1	2/29/2024 8:20:00 PM	R103402

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

в Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits Р

Sample pH Not In Range

RL Reporting Limit

Date Reported: 3/6/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Former Y Station State Lead Site

Lab ID:2402A38-001Matrix: AQUEOUS

Client Sample ID: FY Treated EFF Collection Date: 2/19/2024 2:35:00 PM Received Date: 2/21/2024 1:43:00 PM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	t: CCM
Chloromethane	ND	3.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
2-Chlorotoluene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
4-Chlorotoluene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
cis-1,2-DCE	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
Dibromochloromethane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
Dibromomethane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,2-Dichlorobenzene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,3-Dichlorobenzene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,4-Dichlorobenzene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
Dichlorodifluoromethane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,1-Dichloroethane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,1-Dichloroethene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,2-Dichloropropane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,3-Dichloropropane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
2,2-Dichloropropane	ND	2.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,1-Dichloropropene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
Hexachlorobutadiene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
2-Hexanone	17	10	µg/L	1	2/29/2024 8:20:00 PM	R103402
Isopropylbenzene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
4-Isopropyltoluene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
4-Methyl-2-pentanone	ND	10	µg/L	1	2/29/2024 8:20:00 PM	R103402
Methylene Chloride	ND	3.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
n-Butylbenzene	ND	3.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
n-Propylbenzene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
sec-Butylbenzene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
Styrene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
tert-Butylbenzene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
trans-1,2-DCE	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,1,1-Trichloroethane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,1,2-Trichloroethane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
Trichloroethene (TCE)	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank
E Above Quantitation Range/Estimated Value

E Above Quantitation Range/Estimated ValueJ Analyte detected below quantitation limits

Analyte detected below quantitation lim
P Sample pH Not In Range

P Sample pH Not In Ra RL Reporting Limit

CLIENT: Daniel B. Stephens & Assoc.

Project: Former Y Station State Lead Site

Date Reported: 3/6/2024 Client Sample ID: FY Treated EFF Collection Date: 2/19/2024 2:35:00 PM

Lab ID: 2402A38-001	Matrix: AQUEOUS		Received Date	: 2/2	21/2024 1:43:00 PM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	CCM
Trichlorofluoromethane	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
1,2,3-Trichloropropane	ND	2.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
Vinyl chloride	ND	1.0	µg/L	1	2/29/2024 8:20:00 PM	R103402
Xylenes, Total	ND	1.5	µg/L	1	2/29/2024 8:20:00 PM	R103402
Surr: 1,2-Dichloroethane-d4	103 7	/0-130	%Rec	1	2/29/2024 8:20:00 PM	R103402
Surr: 4-Bromofluorobenzene	100 7	<i>'</i> 0-130	%Rec	1	2/29/2024 8:20:00 PM	R103402
Surr: Dibromofluoromethane	103 7	′0-130	%Rec	1	2/29/2024 8:20:00 PM	R103402
Surr: Toluene-d8	90.9 7	<i>'</i> 0-130	%Rec	1	2/29/2024 8:20:00 PM	R103402

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

- D Sample Diluted Due to Matrix Н
- Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

Client Sample ID: FY Raw

Date Reported: 3/6/2024

Project: Former Y Station State Lead Site		(Collect	ion Dat	e: 2/1	9/2024 2:21:00 PM	
Lab ID: 2402A38-002	Matrix: AQUE	OUS	Receiv	ved Dat	te: 2/2	1/2024 1:43:00 PM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	RBC
Chloride	86	2.5		mg/L	5	2/23/2024 11:34:50 PM	R103302
Sulfate	37	2.5		mg/L	5	2/23/2024 11:34:50 PM	R103302
Nitrate+Nitrite as N	ND	1.0		mg/L	5	2/24/2024 2:10:52 AM	R103302
SM2540C MOD: TOTAL DISSOLVED SOL	IDS					Analyst:	КСВ
Total Dissolved Solids	438	100	D	mg/L	1	2/27/2024 3:49:00 PM	80623
EPA METHOD 8011/504.1: EDB						Analyst:	DGH
1,2-Dibromoethane	7.6	0.47		µg/L	50	2/29/2024 4:39:10 PM	80720
EPA METHOD 8015M/D: DIESEL RANGE						Analyst:	JKU
Diesel Range Organics (DRO)	1.4	1.0		ma/L	1	2/24/2024 3:37:12 AM	80585
Motor Oil Range Organics (MRO)	ND	5.0		ma/L	1	2/24/2024 3:37:12 AM	80585
Surr: DNOP	129	45.5-159		%Rec	1	2/24/2024 3:37:12 AM	80585
EPA METHOD 8015D: GASOLINE RANGE						Analyst:	JJP
Gasoline Range Organics (GRO)	4.5	0.25		ma/L	5	2/23/2024 9:03:41 PM	GA10328
Surr: BFB	101	15-270		%Rec	5	2/23/2024 9:03:41 PM	GA10328
EPA METHOD 8260B: VOLATILES						Analyst:	ССМ
Benzene	1100	50		µg/L	50	2/29/2024 8:45:00 PM	R103402
Toluene	310	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
Ethylbenzene	18	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402
Methyl tert-butyl ether (MTBE)	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402
1,2,4-Trimethylbenzene	36	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
1,3,5-Trimethylbenzene	22	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
1,2-Dichloroethane (EDC)	160	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
1,2-Dibromoethane (EDB)	9.6	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
Naphthalene	14	10		µg/L	5	2/29/2024 9:09:00 PM	R103402
1-Methylnaphthalene	ND	20		µg/L	5	2/29/2024 9:09:00 PM	R103402
2-Methylnaphthalene	ND	20		µg/L	5	2/29/2024 9:09:00 PM	R103402
Acetone	57	50		µg/L	5	2/29/2024 9:09:00 PM	R103402
Bromobenzene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
Bromodichloromethane	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
Bromoform	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
Bromomethane	ND	15		µg/L	5	2/29/2024 9:09:00 PM	R103402
2-Butanone	ND	50		µg/L	5	2/29/2024 9:09:00 PM	R103402
Carbon disulfide	ND	50		µg/L	5	2/29/2024 9:09:00 PM	R103402
Carbon Tetrachloride	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
Chlorobenzene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402
Chloroethane	ND	10		µg/L	5	2/29/2024 9:09:00 PM	R103402
Chloroform	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated ValueJ Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Date Reported: 3/6/2024

Project:	Former Y Station State Lead Site		Collection Date: 2/19/2024 2:21:00 PM Received Date: 2/21/2024 1:43:00 PM										
Lab ID:	2402A38-002	Matrix: AQUEOUS		Receiv	ved Dat	:e: 2/2	21/2024 1:43:00 PM						
Analyses	5	Result	RL	Qual	Units	DF	Date Analyzed	Batch					
EPA ME	THOD 8260B: VOLATILES						Analyst	: CCM					
Chlorom	nethane	ND	15		µg/L	5	2/29/2024 9:09:00 PM	R103402					
2-Chloro	otoluene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
4-Chloro	otoluene	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
cis-1,2-[DCE	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
cis-1,3-[Dichloropropene	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
1,2-Dibr	omo-3-chloropropane	ND	10		μg/L	5	2/29/2024 9:09:00 PM	R103402					
Dibromo	ochloromethane	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
Dibromo	omethane	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
1,2-Dich	lorobenzene	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
1,3-Dich	llorobenzene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
1,4-Dich	lorobenzene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
Dichloro	difluoromethane	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
1,1-Dich	loroethane	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
1,1-Dich	loroethene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
1,2-Dich	lloropropane	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
1,3-Dich	nloropropane	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
2,2-Dich	loropropane	ND	10		µg/L	5	2/29/2024 9:09:00 PM	R103402					
1,1-Dich	loropropene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
Hexachl	orobutadiene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
2-Hexan	ione	ND	50		µg/L	5	2/29/2024 9:09:00 PM	R103402					
Isopropy	lbenzene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
4-Isopro	pyltoluene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
4-Methy	I-2-pentanone	ND	50		µg/L	5	2/29/2024 9:09:00 PM	R103402					
Methyler	ne Chloride	ND	15		µg/L	5	2/29/2024 9:09:00 PM	R103402					
n-Butylb	enzene	ND	15		µg/L	5	2/29/2024 9:09:00 PM	R103402					
n-Propyl	lbenzene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
sec-Buty	ylbenzene	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					
Styrene		ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
tert-Buty	/lbenzene	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
1,1,1,2-	Tetrachloroethane	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
1,1,2,2-	Tetrachloroethane	ND	10		μg/L	5	2/29/2024 9:09:00 PM	R103402					
Tetrachl	oroethene (PCE)	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
trans-1,2	2-DCE	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
trans-1,3	3-Dichloropropene	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
1,2,3-Tr	ichlorobenzene	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
1,2,4-Tr	ichlorobenzene	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
1,1,1-Tr	ichloroethane	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
1,1,2-Tr	ichloroethane	ND	5.0		μg/L	5	2/29/2024 9:09:00 PM	R103402					
Trichloro	pethene (TCE)	ND	5.0		µg/L	5	2/29/2024 9:09:00 PM	R103402					

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc.

Client Sample ID: FY Raw Collection Date: 2/10/2024 2:21:00 DM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated. В Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value J Analyte detected below quantitation limits

Р

Sample pH Not In Range

RL Reporting Limit

Date Reported: 3/6/2024

CLIENT: Daniel B. Stephens & Assoc.		Cl	ient Sample	e ID: F	Y Raw								
Project: Former Y Station State Lead Sit	te	Collection Date: 2/19/2024 2:21:00 PM											
Lab ID: 2402A38-002	Matrix: AQUEOUS		Received I	Date: 2/	/21/2024 1:43:00 PM								
Analyses	Result	RL	Qual Uni	ts DI	F Date Analyzed	Batch							
EPA METHOD 8260B: VOLATILES					Analyst	CCM							
Trichlorofluoromethane	ND	5.0	µg/L	. 5	2/29/2024 9:09:00 PM	R103402							
1,2,3-Trichloropropane	ND	10	µg/L	. 5	2/29/2024 9:09:00 PM	R103402							
Vinyl chloride	ND	5.0	µg/L	. 5	2/29/2024 9:09:00 PM	R103402							
Xylenes, Total	280	7.5	µg/L	. 5	2/29/2024 9:09:00 PM	R103402							
Surr: 1,2-Dichloroethane-d4	98.0 7	70-130	%Re	ec 5	2/29/2024 9:09:00 PM	R103402							
Surr: 4-Bromofluorobenzene	101 7	70-130	%Re	ec 5	2/29/2024 9:09:00 PM	R103402							
Surr: Dibromofluoromethane	98.1 7	70-130	%Re	ec 5	2/29/2024 9:09:00 PM	R103402							
Surr: Toluene-d8	89.4 7	0-130	%Re	ec 5	2/29/2024 9:09:00 PM	R103402							

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- H Holding times for preparation or analysis exceeded
- NDNot Detected at the Reporting LimitPQLPractical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated ValueJ Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

D Sample Diluted Due to Matrix

Date Reported: 3/6/2024

CLIENT:Daniel B. Stephens & Assoc.Project:Former Y Station State Lead SLab ID:2402A38-003	Site Matrix: AIR	Client Sample ID: FY Ox EFFCollection Date: 2/19/2024 2:43:00 PMMatrix: AIRReceived Date: 2/21/2024 1:43:00 PM									
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch					
EPA METHOD 8015D: GASOLINE RAM	IGE				Analyst	JJP					
Gasoline Range Organics (GRO)	27	5.0	µg/L	1	2/23/2024 11:10:48 AM	GA10328					
Surr: BFB	97.5	15-412	%Rec	1	2/23/2024 11:10:48 AM	GA10328					
EPA METHOD 8021B: VOLATILES					Analyst	JJP					
Methyl tert-butyl ether (MTBE)	ND	0.25	µg/L	1	2/23/2024 11:10:48 AM	BA10328					
Benzene	2.9	0.10	µg/L	1	2/23/2024 11:10:48 AM	BA10328					
Toluene	2.6	0.10	µg/L	1	2/23/2024 11:10:48 AM	BA10328					
Ethylbenzene	0.32	0.10	µg/L	1	2/23/2024 11:10:48 AM	BA10328					
Xylenes, Total	1.9	0.20	µg/L	1	2/23/2024 11:10:48 AM	BA10328					
Surr: 4-Bromofluorobenzene	96.6	70-130	%Rec	1	2/23/2024 11:10:48 AM	BA10328					

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- H Holding times for preparation or analysis exceededND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- B Analyte detected in the associated Method Blank
- EAbove Quantitation Range/Estimated ValueJAnalyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

D Sample Diluted Due to Matrix

Date Reported: 3/6/2024

CLIENT: Daniel B. Stephens & Assoc. Project: Former Y Station State Lead S	Client Sample ID: FY Comb INFSiteCollection Date: 2/19/2024 2:48:00 PM											
Lab ID: 2402A38-004	Matrix: AIR	Matrix: AIR Received Date: 2/21/2024 1:43:00 PM										
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch						
EPA METHOD 8015D: GASOLINE RAM	IGE				Analyst	JJP						
Gasoline Range Organics (GRO)	6700	250	µg/L	50	2/23/2024 11:58:27 AM	GA10328						
Surr: BFB	119	15-412	%Rec	50	2/23/2024 11:58:27 AM	GA10328						
EPA METHOD 8021B: VOLATILES					Analyst	JJP						
Methyl tert-butyl ether (MTBE)	ND	12	µg/L	50	2/23/2024 11:58:27 AM	BA10328						
Benzene	68	5.0	µg/L	50	2/23/2024 11:58:27 AM	BA10328						
Toluene	320	5.0	µg/L	50	2/23/2024 11:58:27 AM	BA10328						
Ethylbenzene	33	5.0	µg/L	50	2/23/2024 11:58:27 AM	BA10328						
Xylenes, Total	160	10	µg/L	50	2/23/2024 11:58:27 AM	BA10328						
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	50	2/23/2024 11:58:27 AM	BA10328						

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Sample pH Not In Range
- Р RL Reporting Limit

D Sample Diluted Due to Matrix H Holding times for preparation or analysis exceeded

Date Reported: 3/6/2024

CLIENT: Daniel B. Stephens & Assoc.		Client Sample ID: FY DTA EFF									
Project: Former Y Station State Lead	Site Collection Date: 2/19/2024 2:45:00 PM										
Lab ID: 2402A38-005	Matrix: AIR	Re	eceived Dat	e: 2/2	21/2024 1:43:00 PM						
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch					
EPA METHOD 8015D: GASOLINE RAI	NGE				Analyst	: JJP					
Gasoline Range Organics (GRO)	17	5.0	µg/L	1	2/23/2024 12:22:28 PM	GA10328					
Surr: BFB	104	15-412	%Rec	1	2/23/2024 12:22:28 PM	GA10328					
EPA METHOD 8021B: VOLATILES					Analyst	: JJP					
Methyl tert-butyl ether (MTBE)	ND	0.25	µg/L	1	2/23/2024 12:22:28 PM	BA10328					
Benzene	1.5	0.10	µg/L	1	2/23/2024 12:22:28 PM	BA10328					
Toluene	1.0	0.10	µg/L	1	2/23/2024 12:22:28 PM	BA10328					
Ethylbenzene	0.20	0.10	µg/L	1	2/23/2024 12:22:28 PM	BA10328					
Xylenes, Total	1.7	0.20	µg/L	1	2/23/2024 12:22:28 PM	BA10328					
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	2/23/2024 12:22:28 PM	BA10328					

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

- Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- В Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value Analyte detected below quantitation limits
- J Р Sample pH Not In Range
- RL Reporting Limit

D Sample Diluted Due to Matrix

Client:		Daniel B. S	Stephens	& Asso)C.							
Project:		Former Y	Station S	tate Lea	ad Site							
Sample ID:	MB		SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	PBW		Batch	n ID: R1	03302	F	RunNo: 1(03302				
Prep Date:			Analysis D)ate: 2/	23/2024	S	SeqNo: 38	820127	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride			ND	0.50								
Sulfate			ND	0.50								
Nitrate+Nitrite	as N		ND	0.20								
Sample ID:	LCS		SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	LCSW		Batcl	n ID: R1	03302	F	RunNo: 1(03302				
Prep Date:			Analysis D)ate: 2/	23/2024	5	SeqNo: 38	820128	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride			4.7	0.50	5.000	0	94.8	90	110			
Sulfate			9.6	0.50	10.00	0	96.2	90	110			
Nitrate+Nitrite	as N		3.5	0.20	3.500	0	99.1	90	110			
Sample ID:	МВ		SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	PBW		Batcl	n ID: R1	03340	F	RunNo: 1(03340				
Prep Date:			Analysis E	Date: 2/	26/2024	S	SeqNo: 38	822759	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate			ND	0.50								
Sample ID:	LCS		SampT	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anions			
Client ID:	LCSW		Batch	n ID: R1	03340	F	RunNo: 1(03340				
Prep Date:			Analysis E	Date: 2/	26/2024	S	SeqNo: 38	822761	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate			10	0.50	10.00	0	103	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2402A38 06-Mar-24

WO#:

WO#:	2402A38
	06-Mar-24

Client: Project:	Daniel Former	B. Stephens of Y Station St	& Asso ate Lea	c. Id Site							
Sample ID:	MB-80720	SampTy	ype: MB	LK	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	PBW	Batch	ID: 807	20	F	RunNo: 1(03431				
Prep Date:	2/29/2024	Analysis Da	ate: 2/2	29/2024	Ş	SeqNo: 38	827077	Units: µg/L			
Analyte		Result	PQI	SPK value	SPK Ref Val	%RFC	I owl imit	Highl imit	%RPD	RPDI imit	Qual
1,2-Dibromoeth	nane	ND	0.010	0		,	201121111		, o. a. 2		
Sample ID:	LCS-80720	SampTy	ype: LC:	S	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	LCSW	Batch	ID: 807	20	F	RunNo: 1(03431				
Prep Date:	2/29/2024	Analysis Da	ate: 2/2	29/2024	Ş	SeqNo: 38	827078	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoeth	nane	0.094	0.010	0.1000	0	93.6	70	130			
Sample ID:	Example Code: EPA Method 8011/504.1: EDB										
Client ID:	LCSS02	Batch	ID: 807	20	RunNo: 103431						
Prep Date:	2/29/2024	Analysis Da	ate: 2/2	29/2024	Ś	SeqNo: 38	827079	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoeth	nane	0.11	0.010	0.1000	0	108	70	130	14.1	20	
Sample ID:	MB-80720	SampTy	уре: МВ	LK	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	PBW	Batch	ID: 807	20	F	RunNo: 1(03431				
Prep Date:	2/29/2024	Analysis Da	ate: 2/2	29/2024	S	SeqNo: 38	827115	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoeth	nane	ND	0.010								
Sample ID:	LCS-80720	SampTy	ype: LC:	S	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	LCSW	Batch	ID: 807	20	F	RunNo: 1(03431				
Prep Date:	2/29/2024	Analysis Da	ate: 2/2	29/2024	Ş	SeqNo: 38	827116	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoeth	nane	0.096	0.010	0.1000	0	95.7	70	130			
Sample ID:	LCSD-80720	SampTy	ype: LC	SD	Tes	tCode: EF	PA Method	8011/504.1: E	DB		
Client ID:	LCSS02	Batch	ID: 807	20	F	RunNo: 1(03431				
Prep Date:	2/29/2024	Analysis Da	ate: 2/2	29/2024	S	SeqNo: 38	827118	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromoeth	nane	0.11	0.010	0.1000	0	107	70	130	10.7	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	2402A38
	06-Mar-24

Client:	Daniel B.	Stephens	& Asso	DC.							
Project:	Former Y	Station St	tate Lea	ad Site							
Sample ID: M	MB-80585 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range										
Client ID: PE	BW	Batch	ID: 805	585	F	RunNo: 1(03274				
Prep Date: 2	2/22/2024	Analysis D	ate: 2/2	23/2024	S	SeqNo: 38	321201	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orga	anics (DRO)	ND	1.0								
Motor Oil Range O	Organics (MRO)	ND	5.0								
Surr: DNOP		0.62		0.5000		123	45.5	159			
Sample ID: LC	CS-80585	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015M/D: Dies	sel Range		
Client ID: LC	csw	Batch	ID: 805	585	F	RunNo: 1(03274				
Prep Date: 2	2/22/2024	Analysis D	ate: 2/2	23/2024	Ś	SeqNo: 38	321202	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orga	anics (DRO)	3.2	1.0	2.500	0	126	57	147			
Surr: DNOP		0.31		0.2500		123	45.5	159			
Sample ID: 24	402A38-002CMS	SampT	уре: МS	5	Tes	tCode: EF	PA Method	8015M/D: Dies	sel Range		
Client ID: FY	Y Raw	Batch	ID: 805	585	F	RunNo: 1(03274				
Prep Date: 2	2/22/2024	Analysis D	ate: 2/2	24/2024	5	SeqNo: 38	321212	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orga	anics (DRO)	4.5	1.0	2.500	1.435	121	32.8	161			
Surr: DNOP		0.30		0.2500		120	45.5	159			
Sample ID: 24	402A38-002CMSD	SampT	уре: МS	D	Tes	tCode: EF	PA Method	8015M/D: Dies	el Range		
Client ID: FY	Y Raw	Batch	ID: 805	585	F	RunNo: 1(03274				
Prep Date: 2	2/22/2024	Analysis D	ate: 2/2	24/2024	5	SeqNo: 38	321213	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Orga	anics (DRO)	4.6	1.0	2.500	1.435	125	32.8	161	2.25	20	
Surr: DNOP		0.30		0.2500		122	45.5	159	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:	Daniel B. Stephens & Assoc.
Project:	Former Y Station State Lead Site

Sample ID: 2402a38-003adup	SampT	ype: DU	Р	Tes	1					
Client ID: FY Ox EFF	Batch	n ID: GA	103284	RunNo: 103284						
Prep Date:	Analysis D	Date: 2/2	23/2024	5	SeqNo: 3	819618	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	30	5.0						8.17	20	
Surr: BFB	2000		2000		101	15	412	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 22
Client: Project:	Daniel Forme	B. Stephens & Assoc. r Y Station State Lead Site
Sample ID:	2.5ug gro lcs	SampType: LCS
Client ID:	LCSW	Batch ID: GA103284

LCS	TestCode: EPA Method	d 8015D: Gasoline Range
GA103284	RunNo: 103284	
2/23/2024	SeaNo: 3819615	Units: ma/L

Prep Date:	Analysis [Date: 2/2	23/2024	S	SeqNo: 38	819615	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	0.49	0.050	0.5000	0	98.3	70	130			
Surr: BFB	40		20.00		199	15	270			
Sample ID: mb	Samp	Гуре: МВ	LK	-K TestCode: EPA Method 8				ine Range	•	
Client ID: PBW	Batc	h ID: GA	103284	F	RunNo: 1(03284				
Prep Date:	Analysis [Date: 2/2	23/2024	S	SeqNo: 38	819616	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	0.050								
Surr: BFB	19		20.00		94.8	15	270			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Client: Daniel B. Stephens & Assoc.

Project: Former Y Station State Lead Site

Sample ID: 2402a38-003adup	SampType: DUP			TestCode: EPA Method 8021B: Volatiles						
Client ID: FY Ox EFF	Batch ID: BA103284			RunNo: 103284						
Prep Date:	Analysis D	ate: 2/2	23/2024	S	SeqNo: 3	819623	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	0.25						0	20	
Benzene	3.1	0.10						7.39	20	
Toluene	2.7	0.10						6.50	20	
Ethylbenzene	0.34	0.10						7.44	20	
Xylenes, Total	2.0	0.20						7.82	20	
Surr: 4-Bromofluorobenzene	2.0		2.000		98.6	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 22

Client:	Daniel B. Stephens & Assoc.
Project:	Former Y Station State Lead Site

Sample ID: 100ng Ics	SampType: LCS TestCode: EPA Met					PA Method	8260B: VOLA	TILES		
Client ID: LCSW	Batc	h ID: R1	03402	F	RunNo: 10	03402				
Prep Date:	Analysis [Date: 2/ 2	29/2024	SeqNo: 3827111 Units: µg						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	104	70	130			
Toluene	19	1.0	20.00	0	96.6	70	130			
Chlorobenzene	20	1.0	20.00	0	98.7	70	130			
1,1-Dichloroethene	19	1.0	20.00	0	97.4	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	99.1	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		99.5	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.1		10.00		91.0	70	130			
Sample ID: mb	Samp	Туре: МЕ	LK	Tes	tCode: El	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batc	h ID: R1	03402	F	RunNo: 10	03402				
Prep Date:	Analysis Date: 2/29/2024			S	SeqNo: 3	827117				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:DanielProject:Forme	l B. Stephens er Y Station S	& Ass tate Le	oc. ad Site									
Sample ID: mb	SampT	ype: M	BLK	Tes	TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Batch	n ID: R1	03402	RunNo: 103402								
Prep Date:	Analysis D	ate: 2	/29/2024	SeqNo: 3827117 Units: µg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
4-Chlorotoluene	ND	1.0					-					
cis-1,2-DCE	ND	1.0										
cis-1,3-Dichloropropene	ND	1.0										
1,2-Dibromo-3-chloropropane	ND	2.0										
Dibromochloromethane	ND	1.0										
Dibromomethane	ND	1.0										
1,2-Dichlorobenzene	ND	1.0										
1,3-Dichlorobenzene	ND	1.0										
1,4-Dichlorobenzene	ND	1.0										
Dichlorodifluoromethane	ND	1.0										
1,1-Dichloroethane	ND	1.0										
1,1-Dichloroethene	ND	1.0										
1,2-Dichloropropane	ND	1.0										
1,3-Dichloropropane	ND	1.0										
2,2-Dichloropropane	ND	2.0										
1,1-Dichloropropene	ND	1.0										
Hexachlorobutadiene	ND	1.0										
2-Hexanone	ND	10										
Isopropylbenzene	ND	1.0										
4-Isopropyltoluene	ND	1.0										
4-Methyl-2-pentanone	ND	10										
Methylene Chloride	ND	3.0										
n-Butvlbenzene	ND	3.0										
n-Propylbenzene	ND	1.0										
sec-Butylbenzene	ND	1.0										
Styrene	ND	1.0										
tert-Butylhenzene	ND	1.0										
1 1 1 2-Tetrachloroethane	ND	1.0										
1 1 2 2-Tetrachloroethane		2.0										
		2.0										
trans_1 2-DCF		1.0										
trans-1,2-DOL trans-1,3-Dichloropropene		1.0										
1 2 3-Trichlorobenzene		1.0										
1.2.0-Trichlorobenzene	םא שוו	1.0										
1 1 1-Trichloroethane	םא שוו	1.0										
	ח וא חוא	1.0										
		1.0										
		1.0										
		1.0										
i,∠,∋-iricnioropropane	ND	2.0										

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Client:	Daniel B. Stephens & Assoc.
Project:	Former Y Station State Lead Site

Sample ID: mb Client ID: PBW	SampType: MBLK Batch ID: R103402			Tes F	TestCode: EPA Method 8260B: VOLATILES RunNo: 103402					
Prep Date:	Analysis E	Date: 2/2	29/2024	SeqNo: 3827117			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		105	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		99.5	70	130			
Surr: Dibromofluoromethane	11		10.00		105	70	130			
Surr: Toluene-d8	9.1		10.00		91.2	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:	Danie	l B. Stephens	ю.									
Project:	Forme	er Y Station Station	tate Lea	nd Site								
Sample ID:	MB-80623	SampT	уре: МЕ	BLK	Tes	TestCode: SM2540C MOD: Total Dissolved Solids						
Client ID:	PBW	Batch ID: 80623			RunNo: 103362							
Prep Date:	2/26/2024	Analysis D	ate: 2/ 2	27/2024	SeqNo: 3823476			Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Total Dissolved	I Solids	ND	50.0									
Sample ID:	LCS-80623	SampT	ype: LC	s	TestCode: SM2540C MOD: Total Dissolved Solids							
Client ID:	LCSW	Batch	ID: 806	623	F	RunNo: 1(03362					
Prep Date:	2/26/2024	Analysis D	ate: 2/ 2	27/2024	S	SeqNo: 38	323477	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Total Dissolved	I Solids	1020	50.0	1000	0	102	80	120				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 20 of 22

🔅 eurofins

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Daniel B. Stephens & Work Order Numl	ber: 2402A38		RcptNo: 1	
Received By: Nick Lowman 2/21/2024 1:43:00	PM Mit	n		
Completed By: Desiree Dominguez 2/21/2024 2:08:56	PM	TA		
Reviewed By: 2/21/24		****		
Chain of Custody				
1. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?	<u>Client</u>			
Log In	Yes I			
3. Was an attempt made to cool the samples?	Yes 💌	NO LU		
4. Were all samples received at a temperature of $>0^{\circ}$ C to 6.0°C	Yes	No 🗹		
5. Sample(s) in proper container(s)?	Yes V	No 🗌		
6. Sufficient sample volume for indicated test(s)?	Yes 🔽	No 🗌		
7. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottles?	Yes 🗌	No 🔽	NA	
9. Received at least 1 vial with headspace <1/4" for AQ VOA?	Yes 🔽	No 🗌		
10. Were any sample containers received broken?	Yes	No 🗹	# of preserved	
11.Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No 🗌	for pH: 2	unless noted)
12 Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗆	Adjusted? NO	
13. Is it clear what analyses were requested?	Yes 🗹	No 🗌	~.	all.
14. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 🗌	Checked by:	~[24]24
Special Handling (if applicable)				
15. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	
Person Notified: Date				
By Whom: Via:	🗌 eMail 📋 F	Phone 🗌 Fax	In Person	
Regarding:			and the second se	
Client Instructions:				
10				

17.	Cooler Inform	nation						
	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By	
	1	-0.9	Good	Not Present	Yogi			
	2	NA	Good	Not Present	NA			

	С	hain-	of-Cu	stody Record	Turn-Around	Time:		P			Ŀ			EI	NV	TR	O	MM	EN	T		
	Client:				☐ Standard	🗆 Rush			1000		Ā	N	AL	YS	SIS		AB	OF	RAT	ГО	RY	r
	Deniell	2 Stank		conintee	Project Name	e:					677503	www	v.hal	lenv	ironn	nenta	al.coi	m				
	Mailing /	Address	6020 Ac	ademy Rd NE, STE 100	- Former V Str	ation State L	and Site		49	01 H	awki	ins N	JF -	Alb	nane	erque	e. NM	1 871	09			
				-	Project #:			-	Te	e	05-34	15-39	975	F	Fax f	505-3	345-4	4107				
	Albuqu	erque, N	IM 87109)	DD10 1157			S. Str.	Analysis Request													
	Phone #	F: 505-82	2-9400	n@gao.logic.com	Project Mana	der:						0			SB							T
			nerman	n@geo-logic.com	Grace Herrm	nann		m		015B	00.7	300		В	801							
	Stan	dard		Level 4 (Full Validation)				3260		10d 8(poq	poq		3021	por						÷	
	Accredit	tation:			Sampler: alt	x Nunez-TI	hampsoin	۳ g	1 50	A met	met	met		po	neth							
		AC	□ Other	· · · · · · · · · · · · · · · · · · ·	On Ice:	X Yes	🗆 No	neth	tho	- EP/	EPA	EPA	g	neth	PAI							
	🗆 EDD	(Type)			# of Coolers:	2	Togi	- A	/ me	DRO	ride -	ź	254	Ar	ш							
					Cooler Temp	(Including CF): N/A	and 0.9 = 0 = - 0.4	- Ē	EP) and	Chlo	(as	SM	Ē	SRO SRO							
					Container	Preservative	HEAL NO.	CS S	8-	H GR(lfate/	rate	- SC	SC	H							
	Date	Time	Matrix	Sample Name	Type and #	Туре	2402A38	×		<u> </u>	ns .	Nii	E,	<u> </u> ≚	E						_	
2/19	PHOS	1435	HzO	FY Treated Eff	1-amber	H2SO21	-001	λ	X	X	X	X	X								_	
2/19	2198	14/21	H70	FY Raw	7-40ml, 1-Plasty	HCLITHIO	-002	X	X	X	$\left X \right $	$\boldsymbol{\chi}$	\mathcal{X}									
2/19	2198	1443	Air	FYOLEE	1-Tedlar	Nono	-003							X	${}^{\times}$							
in :	DHER	1448	Air	FY Comb 430 F	1-Tedlar	None	-004							X	X							
192	BITAN	1445	Air	FY DTA PFF	1-Tedlar	None	-005							X	$\boldsymbol{\chi}$	7						Τ
2	4-12			To Right 2:242	u u		-00(0-3.21.2	2 Eu	1													
	V			TTIP ISTORE CE	1				-		<u> </u>											
									1	<u> </u>												+
					-			+		-	-										+	+
														-	-						-	
							1							+								+-
			ļ												+					-+-		+
			Delineviel		Received by:	Via [.]	Date Time	Be	marl	<u> </u>			<u> </u>		l							
	Date:	1343	Nev	1/ maz - thomagh	Mit 1	0D0	2/21/21 132	12	Sar	nple	s r	104	fre	ner	UP	201	rec	cipt	. ~	2/	21/24	ſ
	Date	Time'	Relinquis	hed by:	Received by:		Date Time	- Somple ID Pahels weithen " 1/19" and should														
	Date: Time: Relinquished by:							SAU "2/19" AU 1 2121														
	Date: Time: Relinquished by:							CIT (UM //k/p-2/21														

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

5 6

Attn: Grace Herrmann Daniel B. Stephens & Associates Inc. 6020 Academy Road NE Suite 100 Albuquerque, New Mexico 87109 Generated 4/15/2024 9:17:52 AM

JOB DESCRIPTION

Former Y Station State Lead Site

JOB NUMBER

885-630-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

See page two for job notes and contact information.

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by Tiffany Shaw, Project Manager I <u>tiffany.shaw@et.eurofinsus.com</u> (505)345-3975 Generated 4/15/2024 9:17:52 AM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	20
Lab Chronicle	22
Certification Summary	23
Chain of Custody	27
Receipt Checklists	28

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Dilution Factor

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive **Quality Control**

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Job ID: 885-630-1

Qualifiers

Dil Fac

DL, RA, RE, IN

DL

DLC

EDL

LOD

LOQ

MCL

MDA MDC

MDL

ML

MPN

MQL

NC

ND NEG

POS

PQL PRES

QC RER

RL RPD

TEF

TEQ

TNTC

Qualifiers		3
GC Semi VC	AC	
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
HPLC/IC		5
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	6
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	Q
CFL	Contains Free Liquid	3
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Job ID: 885-630-1

Eurofins Albuquerque

Job Narrative 885-630-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/6/2024 2:18 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.4°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_OF_28D_NO3: The following samples were analyzed outside of analytical holding time due to analyst error: FY Raw (885-630-1) and FY Treated EFF (885-630-2).

Method 300_OF_28D_NO3: The following samples were diluted due to the nature of the sample matrix: FY Raw (885-630-1) and FY Treated EFF (885-630-2). Elevated reporting limits (RLs) are provided.

Method 300_OF_28D_NO3: Reanalysis of the following samples were performed outside of the analytical holding time due to analyst error: FY Raw (885-630-1) and FY Treated EFF (885-630-2).

Method 300_OF_28D_PREC: The following samples were analyzed outside of analytical holding time due to analyst error: FY Raw (885-630-1) and FY Treated EFF (885-630-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site Job ID: 885-630-1

Lab Sample ID: 885-630-1

Matrix: Water

5

Client Sample ID: FY Raw Date Collected: 03/05/24 15:32 Date Received: 03/06/24 14:18

	e Organic C	ompounds	(GC/MS)					
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		-	03/12/24 19:59	1
1,1,1-Trichloroethane	ND		1.0	ug/L			03/12/24 19:59	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			03/12/24 19:59	1
1,1,2-Trichloroethane	ND		1.0	ug/L			03/12/24 19:59	1
1,1-Dichloroethane	ND		1.0	ug/L			03/12/24 19:59	1
1,1-Dichloroethene	ND		1.0	ug/L			03/12/24 19:59	1
1,1-Dichloropropene	ND		1.0	ug/L			03/12/24 19:59	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			03/12/24 19:59	1
1,2,3-Trichloropropane	ND		2.0	ug/L			03/12/24 19:59	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			03/12/24 19:59	
1.2.4-Trimethylbenzene	ND		1.0	ua/L			03/12/24 19:59	1
1.2-Dibromo-3-Chloropropane	ND		2.0	ua/L			03/12/24 19:59	1
1.2-Dibromoethane (EDB)	1.8		1.0	ua/L			03/12/24 19:59	
1.2-Dichlorobenzene	ND		1.0	ua/L			03/12/24 19:59	1
1 2-Dichloroethane (EDC)	85		10	ua/L			03/15/24 13:32	10
1 2-Dichloropropane	ND		10	ua/l			03/12/24 19:59	
1 3 5-Trimethylbenzene	3.1		1.0	ug/L			03/12/24 19:59	1
1 3-Dichlorobenzene	ND		1.0	ug/L			03/12/24 19:59	1
1 3-Dichloropropane	ND		1.0	ug/L			03/12/24 19:59	· · · · · · · · · · · · · · · · · · ·
1 4-Dichlorobenzene			1.0	ug/L			03/12/24 10:50	1
1,4 Domorobenzene			4.0	ug/L			03/12/24 10:50	1
2 2-Dichloropropage			2.0	ug/L			03/12/24 19:59	
2-Butanone			10	ug/L			03/12/24 10:50	1
			10	ug/L			03/12/24 19:59	1
2-Hevanone	ND		10	ug/L			03/12/24 19:59	
2-Methylnanhthalene			4.0	ug/L			03/12/24 10:50	1
4-Chlorotoluene			4.0	ug/L			03/12/24 19:59	1
4-Isopropyltoluene			1.0	ug/L			03/12/24 10:50	
4-Methyl-2-pentanone			10	ug/L			03/12/24 19:59	1
			10	ug/L			03/12/24 19:59	1
Ponzono	24		10	ug/L			03/12/24 19:59	
Bromobenzene			1.0	ug/L			03/12/24 19:59	1
Bromodichloromethane			1.0	ug/L			03/12/24 19:59	1
Dibromochloromethane			1.0	ug/L			03/12/24 19:59	
Bromoform			1.0	ug/L			03/12/24 19:59	1
Bromomothana			1.0	ug/L			03/12/24 19:59	1
Carbon disulfido			10	ug/L			03/12/24 19:59	
Carbon totrachlorida			10	ug/L			03/12/24 19:59	1
Chlorobonzono			1.0	ug/L			03/12/24 19:59	1
Chloroothana			1.0	ug/L			03/12/24 19:59	
Chloroform			2.0	ug/L			03/12/24 19.59	1
Chloromothana			1.0	ug/L			03/12/24 19:59	1
			3.0	ug/L			03/12/24 19.09	ا ۲
			1.0	ug/L			03/12/24 19:59	1
			1.0	ug/L			03/12/24 19:39	1
			1.0	ug/L			02/12/24 19:59	۲ ۲
			1.0	ug/L			03/12/24 19:59	1
			1.0	ug/L			03/12/24 19:59	T A
	ND		1.0	ug/L			03/12/24 19:59	۲ ۲
isopiopyidenzene	ND		1.0	ug/L			03/12/24 19:59	1

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site Job ID: 885-630-1

5

Lab Sample ID: 885-630-1 Matrix: Water

Date Collected: 03/05/24 15:32 Date Received: 03/06/24 14:18

Client Sample ID: FY Raw

Method: SW846 8260B - Volat	ile Organic	Compoun	ds (GC/MS) (Co	ntinued)	_			
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			03/12/24 19:59	1
Methylene Chloride	ND		3.0	ug/L			03/12/24 19:59	1
n-Butylbenzene	ND		3.0	ug/L			03/12/24 19:59	1
N-Propylbenzene	ND		1.0	ug/L			03/12/24 19:59	1
Naphthalene	ND		2.0	ug/L			03/12/24 19:59	1
sec-Butylbenzene	ND		1.0	ug/L			03/12/24 19:59	1
Styrene	ND		1.0	ug/L			03/12/24 19:59	1
tert-Butylbenzene	ND		1.0	ug/L			03/12/24 19:59	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			03/12/24 19:59	1
Toluene	ND		1.0	ug/L			03/12/24 19:59	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			03/12/24 19:59	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			03/12/24 19:59	1
Trichloroethene (TCE)	ND		1.0	ug/L			03/12/24 19:59	1
Trichlorofluoromethane	ND		1.0	ug/L			03/12/24 19:59	1
Vinyl chloride	ND		1.0	ug/L			03/12/24 19:59	1
Xylenes, Total	6.9		1.5	ug/L			03/12/24 19:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		70 - 130				03/12/24 19:59	1
Toluene-d8 (Surr)	99		70 - 130				03/12/24 19:59	1
4-Bromofluorobenzene (Surr)	98		70 - 130				03/12/24 19:59	1
Dibromofluoromethane (Surr)	113		70 - 130				03/12/24 19:59	1
_ Method: SW846 8015D - Gaso	line Range	Organics	(GRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	0.35		0.25	mg/L			03/11/24 15:01	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		15 - 270				03/11/24 15:01	5
_ Method: EPA-DW2 504 1 - EDI	B DBCP an	d 1 2 3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	1.2		0.094	ug/L		03/08/24 11:53	03/09/24 11:26	10
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		1.0	ma/L		03/11/24 08:44	03/11/24 11:34	1
Motor Oil Range Organics [C28-C40]	ND		5.0	mg/L		03/11/24 08:44	03/11/24 11:34	1
Surrogate	%Recoverv	Qualifier	l imits			Prepared	Analyzed	Dil Fac
Di-n-octvl phthalate (Surr)	108		55 - 177			03/11/24 08:44	03/11/24 11:34	1
Method: EPA 300.0 - Anions, I	on Chroma	tography	ы	11	_	Drenered	Analyzad	
Analyte	Result	Qualifier	KL		<u> </u>	Prepared		
	66		2.5	mg/L			04/10/24 10:16	5
Sulfate	33	н	2.5	mg/L			04/10/24 10:16	5
NITRATE NITRITE AS N	1.3	н	1.0	mg/L			04/10/24 10:16	5
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	420		50	mg/L			03/12/24 10:31	1

Eurofins Albuquerque

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Client Sample ID: FY Treated EFF Date Collected: 03/05/24 15:58 Date Received: 03/06/24 14:18

Job ID: 885-630-1

Lab Sample ID: 885-630-2

Matrix: Water

Analyte Result	Qualifier	RL	Unit	п	Prepared	Analyzed	Dil Fac	5
1 1 1 2-Tetrachloroethane		1.0		<u> </u>	Tieparea	-1000000000000000000000000000000000000	1	
1 1 1-Trichloroethane		1.0	ug/L			03/12/24 20:27	1	
1.1.2.2-Tetrachloroethane ND)	2.0	ug/L			03/12/24 20:27	1	
1 1 2-Trichloroethane		1.0	ug/L			03/12/24 20:27		
1 1-Dichloroethane)	1.0	ug/L			03/12/24 20:27	1	
1 1-Dichloroethene		1.0	ug/L			03/12/24 20:27	1	0
1 1-Dichloropropene		1.0	ug/L			03/12/24 20:27		ð
1 2 3-Trichlorobenzene NC		1.0	ug/L			03/12/24 20:27	1	
1 2 3-Trichloropropage		2.0	ug/L			03/12/24 20:27	1	9
1 2 4-Trichlorobenzene NC		10	ug/l			03/12/24 20:27	1	
124-Trimethylbenzene		1.0	ug/L			03/12/24 20:27	1	
1 2-Dibromo-3-Chloropropane)	2.0	ug/L			03/12/24 20:27	1	
1 2-Dibromoethane (EDB)		1.0	ug/L			03/12/24 20:27		
1 2-Dichlorobenzene NC		1.0	ug/L			03/12/24 20:27	1	
1 2-Dichloroethane (EDC)		1.0	ug/L			03/12/24 20:27	1	
1 2-Dichloropropane		1.0	ug/L			03/12/24 20:27	· · · · · · · · · · · · · · · · · · ·	
1.3.5-Trimethylbenzene		1.0	ug/L			03/12/24 20:27	1	
1.3-Dichlorobenzene NC		1.0	ug/L			03/12/24 20:27	1	
1.3-Dichloropropane		1.0	ug/L			03/12/24 20:27	· · · · · · · · · · · · · · · · · · ·	
1 4-Dichlorobenzene		1.0	ug/L			03/12/24 20:27	1	
1-Methylnaphthalene		4.0	ug/L			03/12/24 20:27	1	
2 2-Dichloropropane		2.0	ug/L			03/12/24 20:27		
2-Butanone		10	ug/L			03/12/24 20:27	1	
2-Chlorotoluene		10	ug/L			03/12/24 20:27	1	
2-Hexanone)	10	ug/L			03/12/24 20:27	1	
2-Methylnaphthalene		4.0	ug/L			03/12/24 20:27	1	
4-Chlorotoluene NC		1.0	ug/L			03/12/24 20:27	1	
4-Isopropyltoluene		10	ug/l			03/12/24 20:27		
4-Methyl-2-pentanone ND)	10	ug/L			03/12/24 20:27	1	
Acetone)	10	ug/L			03/12/24 20:27	1	
Benzene ND)	1.0	ug/L			03/12/24 20:27	1	
Bromobenzene)	1.0	ug/L			03/12/24 20:27	1	
Bromodichloromethane NC)	10	ug/l			03/12/24 20:27	1	
Dibromochloromethane ND)	1.0	ug/L			03/12/24 20:27	· · · · · · · · 1	
Bromoform)	1.0	ug/L			03/12/24 20:27	1	
Bromomethane)	3.0	ug/L			03/12/24 20:27	1	
Carbon disulfide ND)	10	ug/L			03/12/24 20:27	· · · · · · · · 1	
Carbon tetrachloride NC)	10	ug/l			03/12/24 20:27	1	
Chlorobenzene)	1.0	ug/L			03/12/24 20:27	1	
Chloroethane ND)	2.0	ug/L			03/12/24 20:27		
Chloroform ND)	1.0	ya/L			03/12/24 20:27	1	
Chloromethane ND)	3.0	ua/L			03/12/24 20:27	1	
cis-1.2-Dichloroethene ND)	1.0	ua/L			03/12/24 20:27		
cis-1.3-Dichloropropene)	1.0	ua/l			03/12/24 20:27	1	
Dibromomethane)	1.0	ua/L			03/12/24 20:27	1	
Dichlorodifluoromethane NC)	1.0	ua/l			03/12/24 20.27	· · · · · · · 1	
Ethylbenzene ND)	1.0	ua/L			03/12/24 20:27	1	
Hexachlorobutadiene ND)	1.0	ua/L			03/12/24 20:27	1	
Isopropylbenzene NC)	1.0	ug/L			03/12/24 20:27		

RL

1.0

3.0

Unit

ug/L

ug/L

D

Prepared

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) (Continued)

ND

ND

Result Qualifier

Client Sample ID: FY Treated EFF Date Collected: 03/05/24 15:58 Date Received: 03/06/24 14:18

Analyte

Methyl-tert-butyl Ether (MTBE)

Methylene Chloride

Lab Sample ID: 885-630-2 Matrix: Water

Analyzed

03/12/24 20:27

03/12/24 20:27

Dil Fac

1

1

5
8
9

n-Butylbenzene	ND		3.0	ug/L			03/12/24 20:27	1
N-Propylbenzene	ND		1.0	ug/L			03/12/24 20:27	1
Naphthalene	ND		2.0	ug/L			03/12/24 20:27	1
sec-Butylbenzene	ND		1.0	ug/L			03/12/24 20:27	1
Styrene	ND		1.0	ug/L			03/12/24 20:27	1
tert-Butylbenzene	ND		1.0	ug/L			03/12/24 20:27	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			03/12/24 20:27	1
Toluene	ND		1.0	ug/L			03/12/24 20:27	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			03/12/24 20:27	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			03/12/24 20:27	1
Trichloroethene (TCE)	ND		1.0	ug/L			03/12/24 20:27	1
Trichlorofluoromethane	ND		1.0	ug/L			03/12/24 20:27	1
Vinyl chloride	ND		1.0	ug/L			03/12/24 20:27	1
Xylenes, Total	ND		1.5	ug/L			03/12/24 20:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	120		70 - 130				03/12/24 20:27	1
Toluene-d8 (Surr)	102		70 - 130				03/12/24 20:27	1
4-Bromofluorobenzene (Surr)	97		70 - 130				03/12/24 20:27	1
Dibromofluoromethane (Surr)	124		70 - 130				03/12/24 20:27	1
Method: SW846 8015D - Gasc	line Range	Organics						
Analyte	Result	Qualifier	RI	Unit	р	Prepared	Analyzed	Dil Fac
Gasoline Bange Organics [C6 - C10]			0.050				03/11/24 15:24	1
	112		0.000				00/11/21 10:21	·
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		15 - 270				03/11/24 15:24	1
Mothod: EDA DW2 504.4 ED								
Method: EPA-DW2 504.1 - EDI	B, DBCP and	0 1,2,3-10		Unit	п	Branarad	Apolyzod	
Allalyte		Quaimer	KL			02/09/24 11:52	Analyzeu	
	0.031		0.0094	ug/L		03/06/24 11:53	03/06/24 20:20	I
Method: SW846 8015D - Diese	el Range Or	ganics (DF	RO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		1.0	mg/L		03/11/24 08:44	03/11/24 11:46	1
Motor Oil Range Organics [C28-C40]	ND		5.0	mg/L		03/11/24 08:44	03/11/24 11:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	115		55 - 177			03/11/24 08:44	03/11/24 11:46	1
Method: EPA 300 0 - Anions	on Chroma	tography						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analvzed	Dil Fac
Chloride	78	H	2.5	ma/L			04/10/24 11:06	5
Sulfate	38	н	2.5	ma/L			04/10/24 11:06	5
Nitrate Nitrite as N		-	-	5				-
	1.3	н	1.0	mg/L			04/10/24 11:06	5

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	460		50	mg/L			03/12/24 10:31	1

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site Job ID: 885-630-1

5

Lab Sample ID: 885-630-3 Matrix: Trip Blank

Date Collected: 03/05/24 00:00 Date Received: 03/06/24 14:18

Client Sample ID: TB

Method: SW846 8260B - Vo	latile Organic	Compounds	s (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			03/12/24 20:55	1
1,1,1-Trichloroethane	ND		1.0	ug/L			03/12/24 20:55	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			03/12/24 20:55	1
1,1,2-Trichloroethane	ND		1.0	ug/L			03/12/24 20:55	1
1,1-Dichloroethane	ND		1.0	ug/L			03/12/24 20:55	1
1,1-Dichloroethene	ND		1.0	ug/L			03/12/24 20:55	1
1,1-Dichloropropene	ND		1.0	ug/L			03/12/24 20:55	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			03/12/24 20:55	1
1,2,3-Trichloropropane	ND		2.0	ug/L			03/12/24 20:55	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			03/12/24 20:55	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			03/12/24 20:55	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			03/12/24 20:55	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			03/12/24 20:55	1
1,2-Dichlorobenzene	ND		1.0	ug/L			03/12/24 20:55	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			03/12/24 20:55	1
1,2-Dichloropropane	ND		1.0	ug/L			03/12/24 20:55	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			03/12/24 20:55	1
1,3-Dichlorobenzene	ND		1.0	ug/L			03/12/24 20:55	1
1,3-Dichloropropane	ND		1.0	ug/L			03/12/24 20:55	1
1,4-Dichlorobenzene	ND		1.0	ug/L			03/12/24 20:55	1
1-Methylnaphthalene	ND		4.0	ug/L			03/12/24 20:55	1
2,2-Dichloropropane	ND		2.0	ug/L			03/12/24 20:55	1
2-Butanone	ND		10	ua/L			03/12/24 20:55	1
2-Chlorotoluene	ND		1.0	ua/L			03/12/24 20:55	1
2-Hexanone	ND		10	ua/L			03/12/24 20:55	
2-Methylnaphthalene	ND		4.0	ua/L			03/12/24 20:55	1
4-Chlorotoluene	ND		1.0	ug/L			03/12/24 20:55	1
4-Isopropyltoluene	ND		1.0	ua/L			03/12/24 20:55	
4-Methyl-2-pentanone	ND		10	ug/L			03/12/24 20:55	1
Acetone	ND		10	ua/L			03/12/24 20:55	1
Benzene	ND		1.0	ua/L			03/12/24 20:55	
Bromobenzene	ND		1.0	ug/L			03/12/24 20:55	1
Bromodichloromethane	ND		1.0	ua/L			03/12/24 20:55	1
Dibromochloromethane	ND		1.0	ug/L			03/12/24 20:55	
Bromoform	ND		1.0	ua/L			03/12/24 20:55	1
Bromomethane	ND		3.0	ua/L			03/12/24 20:55	1
Carbon disulfide	ND		10	ua/L			03/12/24 20:55	
Carbon tetrachloride	ND		1.0	ua/L			03/12/24 20:55	1
Chlorobenzene	ND		1.0	ua/L			03/12/24 20:55	1
Chloroethane	ND		2.0	ua/L			03/12/24 20:55	
Chloroform	ND		1.0	ua/L			03/12/24 20:55	1
Chloromethane	ND		3.0	ua/L			03/12/24 20:55	1
cis-1.2-Dichloroethene	ND		1.0	ua/L			03/12/24 20:55	
cis-1,3-Dichloropropene	ND		1.0	ua/L			03/12/24 20:55	1
Dibromomethane	ND		1.0	ua/L			03/12/24 20:55	1
Dichlorodifluoromethane	ND		1.0	ua/l			03/12/24 20:55	1
Ethvlbenzene	ND		1.0	ua/L			03/12/24 20:55	1
Hexachlorobutadiene			1.0	ua/l			03/12/24 20:55	1
Isopropylbenzene	ND		1.0	ua/l			03/12/24 20:55	· · · · · · · · 1
· · · · · · · · · · · · · · · · · · ·				9'				

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Lab Sample ID: 885-630-3 k

Date Collected: 03/05/24 00:00 Date Received: 03/06/24 14:18

Client Sample ID: TB

C		-		-	0	-				
Μ	а	tr	ix	2	T	ri	р	В	la	n

5

Method: SW846 8260B - Vo	latile Organic	Compound	ds (GC/MS) (Co	ontinued)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			03/12/24 20:55	1
Methylene Chloride	ND		3.0	ug/L			03/12/24 20:55	1
n-Butylbenzene	ND		3.0	ug/L			03/12/24 20:55	1
N-Propylbenzene	ND		1.0	ug/L			03/12/24 20:55	1
Naphthalene	ND		2.0	ug/L			03/12/24 20:55	1
sec-Butylbenzene	ND		1.0	ug/L			03/12/24 20:55	1
Styrene	ND		1.0	ug/L			03/12/24 20:55	1
tert-Butylbenzene	ND		1.0	ug/L			03/12/24 20:55	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			03/12/24 20:55	1
Toluene	ND		1.0	ug/L			03/12/24 20:55	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			03/12/24 20:55	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			03/12/24 20:55	1
Trichloroethene (TCE)	ND		1.0	ug/L			03/12/24 20:55	1
Trichlorofluoromethane	ND		1.0	ug/L			03/12/24 20:55	1
Vinyl chloride	ND		1.0	ug/L			03/12/24 20:55	1
Xylenes, Total	ND		1.5	ug/L			03/12/24 20:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	122		70 - 130				03/12/24 20:55	1
Toluene-d8 (Surr)	95		70 - 130				03/12/24 20:55	1
4-Bromofluorobenzene (Surr)	96		70 - 130				03/12/24 20:55	1
Dibromofluoromethane (Surr)	128		70 - 130				03/12/24 20:55	1
Method: EPA-DW2 504.1 - E	DB, DBCP an	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0095	ug/L		03/08/24 11:53	03/08/24 20:43	1

Lab Sample ID: MB 885-1627/25 Matrix: Water Analysis Batch: 1627

	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			03/12/24 10:19	1
1,1,1-Trichloroethane	ND		1.0	ug/L			03/12/24 10:19	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			03/12/24 10:19	1
1,1,2-Trichloroethane	ND		1.0	ug/L			03/12/24 10:19	1
1,1-Dichloroethane	ND		1.0	ug/L			03/12/24 10:19	1
1,1-Dichloroethene	ND		1.0	ug/L			03/12/24 10:19	1
1,1-Dichloropropene	ND		1.0	ug/L			03/12/24 10:19	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			03/12/24 10:19	1
1,2,3-Trichloropropane	ND		2.0	ug/L			03/12/24 10:19	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			03/12/24 10:19	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			03/12/24 10:19	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			03/12/24 10:19	1
1.2-Dibromoethane (EDB)	ND		1.0	ua/L			03/12/24 10:19	1
1.2-Dichlorobenzene	ND		1.0	ua/L			03/12/24 10:19	1
1.2-Dichloroethane (EDC)	ND		1.0	ua/L			03/12/24 10:19	1
1 2-Dichloropropane	ND		10	ug/l			03/12/24 10.19	
1.3.5-Trimethylbenzene	ND		1.0	ua/L			03/12/24 10:19	1
1 3-Dichlorobenzene	ND		1.0	ug/L			03/12/24 10:19	1
1 3-Dichloropropane	ND		10	ug/l			03/12/24 10.19	
1 4-Dichlorobenzene	ND		1.0	ug/L			03/12/24 10:19	1
1-Methylnaphthalene	ND		4.0	ug/L			03/12/24 10:19	1
2 2-Dichloropropane	ND		2.0	ug/L			03/12/24 10:19	
2-Butanone			10	ug/L			03/12/24 10:19	1
2-Chlorotoluene			10	ug/L			03/12/24 10:19	1
2-Hexanone			1.0	ug/L			03/12/24 10:19	
2-Methylnanbthalene			4.0	ug/L			03/12/24 10:10	1
			4.0	ug/L			03/12/24 10:19	1
			1.0	ug/L			03/12/24 10:10	
4-Methyl-2-pentanone			1.0	ug/L			03/12/24 10:19	1
Acetone			10	ug/L			03/12/24 10:19	1
Bonzono			10	ug/L			03/12/24 10:19	· · · · · · · · · · · · · · · · · · ·
Bromohonzono			1.0	ug/L			03/12/24 10.19	1
Bromodiableremethene			1.0	ug/L			03/12/24 10.19	1
Dibromochloromethane			1.0	ug/L			03/12/24 10:19	
Bromoform			1.0	ug/L			03/12/24 10.19	1
Bromemethene			1.0	ug/L			03/12/24 10.19	1
	ND		3.0	ug/L			03/12/24 10:19	۱ ۸
	ND		10	ug/L			03/12/24 10:19	1
	ND		1.0	ug/L			03/12/24 10:19	1
Chloropenzene	ND		1.0	ug/L			03/12/24 10:19	۲ م
Chloroethane	ND		2.0	ug/L			03/12/24 10:19	1
Chiorotorm	ND		1.0	ug/L			03/12/24 10:19	1
Chioromethane	ND		3.0	ug/L			03/12/24 10:19	
cis-1,2-Dichloroethene	ND		1.0	ug/L			03/12/24 10:19	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			03/12/24 10:19	1
Dibromomethane	ND		1.0	ug/L			03/12/24 10:19	
Dichlorodifluoromethane	ND		1.0	ug/L			03/12/24 10:19	1
Ethylbenzene	ND		1.0	ug/L			03/12/24 10:19	1
Hexachlorobutadiene	ND		1.0	ug/L			03/12/24 10:19	1

Job ID: 885-630-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Job ID: 885-630-1

4 5 6 7 8

Client Sample ID: Method Blank Prep Type: Total/NA

Lab Sample ID: MB 885-1627/25 Matrix: Water Analysis Batch: 1627

	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.0	ug/L			03/12/24 10:19	1
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			03/12/24 10:19	1
Methylene Chloride	ND		3.0	ug/L			03/12/24 10:19	1
n-Butylbenzene	ND		3.0	ug/L			03/12/24 10:19	1
N-Propylbenzene	ND		1.0	ug/L			03/12/24 10:19	1
Naphthalene	ND		2.0	ug/L			03/12/24 10:19	1
sec-Butylbenzene	ND		1.0	ug/L			03/12/24 10:19	1
Styrene	ND		1.0	ug/L			03/12/24 10:19	1
tert-Butylbenzene	ND		1.0	ug/L			03/12/24 10:19	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			03/12/24 10:19	1
Toluene	ND		1.0	ug/L			03/12/24 10:19	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			03/12/24 10:19	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			03/12/24 10:19	1
Trichloroethene (TCE)	ND		1.0	ug/L			03/12/24 10:19	1
Trichlorofluoromethane	ND		1.0	ug/L			03/12/24 10:19	1
Vinyl chloride	ND		1.0	ug/L			03/12/24 10:19	1
Xylenes, Total	ND		1.5	ug/L			03/12/24 10:19	1
	MB	MB						

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		70 - 130		03/12/24 10:19	1
Toluene-d8 (Surr)	101		70 - 130		03/12/24 10:19	1
4-Bromofluorobenzene (Surr)	100		70 - 130		03/12/24 10:19	1
Dibromofluoromethane (Surr)	110		70 - 130		03/12/24 10:19	1

Lab Sample ID: LCS 885-1627/2 Matrix: Water Analysis Batch: 1627

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	21.7		ug/L		108	70 - 130	
Benzene	20.1	22.4		ug/L		111	70 - 130	
Chlorobenzene	20.1	20.0		ug/L		100	70 - 130	
Toluene	20.2	20.2		ug/L		100	70 - 130	
Trichloroethene (TCE)	20.2	20.9		ug/L		104	70 - 130	

	LCS LCS							
Surrogate	%Recovery	Qualifier	Limits					
1,2-Dichloroethane-d4 (Surr)	104		70 - 130					
Toluene-d8 (Surr)	102		70 - 130					
4-Bromofluorobenzene (Surr)	93		70 - 130					
Dibromofluoromethane (Surr)	110		70 - 130					

Lab Sample ID: MB 885-1824/21 Matrix: Water Analysis Batch: 1824

	MB MB						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			03/15/24 13:04	1
1,1,1-Trichloroethane	ND	1.0	ug/L			03/15/24 13:04	1

Eurofins Albuquerque

Prep Type: Total/NA

Client Sample ID: Method Blank

5

6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-1824/21 Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 1824

	MB	MB					
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L		03/15/24 13:04	1
1,1,2-Trichloroethane	ND		1.0	ug/L		03/15/24 13:04	1
1,1-Dichloroethane	ND		1.0	ug/L		03/15/24 13:04	1
1,1-Dichloroethene	ND		1.0	ug/L		03/15/24 13:04	1
1,1-Dichloropropene	ND		1.0	ug/L		03/15/24 13:04	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		03/15/24 13:04	1
1,2,3-Trichloropropane	ND		2.0	ug/L		03/15/24 13:04	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		03/15/24 13:04	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L		03/15/24 13:04	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		03/15/24 13:04	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		03/15/24 13:04	1
1,2-Dichlorobenzene	ND		1.0	ug/L		03/15/24 13:04	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L		03/15/24 13:04	1
1,2-Dichloropropane	ND		1.0	ug/L		03/15/24 13:04	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L		03/15/24 13:04	1
1,3-Dichlorobenzene	ND		1.0	ug/L		03/15/24 13:04	1
1,3-Dichloropropane	ND		1.0	ug/L		03/15/24 13:04	1
1,4-Dichlorobenzene	ND		1.0	ug/L		03/15/24 13:04	1
1-Methylnaphthalene	ND		4.0	ug/L		03/15/24 13:04	1
2,2-Dichloropropane	ND		2.0	ug/L		03/15/24 13:04	1
2-Butanone	ND		10	ua/L		03/15/24 13:04	1
2-Chlorotoluene	ND		1.0	ua/L		03/15/24 13:04	1
2-Hexanone	ND		10	ua/L		03/15/24 13:04	1
2-Methylnaphthalene	ND		4.0	ua/L		03/15/24 13:04	1
4-Chlorotoluene	ND		1.0	ua/L		03/15/24 13:04	1
4-Isopropyltoluene	ND		1.0	ua/L		03/15/24 13:04	1
4-Methyl-2-pentanone	ND		10	ua/L		03/15/24 13:04	1
Acetone	ND		10	ua/L		03/15/24 13:04	1
Benzene	ND		1.0	ug/L		03/15/24 13:04	1
Bromobenzene	ND		1.0	ua/L		03/15/24 13:04	1
Bromodichloromethane	ND		1.0	ug/L		03/15/24 13:04	1
Dibromochloromethane	ND		1.0	ua/L		03/15/24 13:04	1
Bromoform	ND		1.0	ug/L		03/15/24 13:04	1
Bromomethane	ND		3.0	ug/L		03/15/24 13:04	1
Carbon disulfide	ND		10	ug/L		03/15/24 13:04	1
Carbon tetrachloride	ND		1.0	ug/L		03/15/24 13:04	1
Chlorobenzene	ND		1.0	ug/L		03/15/24 13:04	1
Chloroethane	ND		2.0	ug/L		03/15/24 13:04	1
Chloroform	ND		1.0	ug/L		03/15/24 13:04	1
Chloromethane	ND		3.0	ug/L		03/15/24 13:04	1
cis-1,2-Dichloroethene	ND		1.0	ug/L		03/15/24 13:04	1
cis-1,3-Dichloropropene	ND		1.0	ug/L		03/15/24 13:04	1
Dibromomethane	ND		1.0	ug/L		03/15/24 13:04	1
Dichlorodifluoromethane	ND		1.0	ua/L		03/15/24 13:04	1
Ethylbenzene	ND		1.0	ug/L		03/15/24 13:04	1
Hexachlorobutadiene	ND		1.0	ug/L		03/15/24 13:04	1
Isopropylbenzene	ND		1.0	ua/L		03/15/24 13:04	1
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ua/L		03/15/24 13:04	1

2 3 4 5 6

Lab Sample ID: MB 885-1824/21 Matrix: Water

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analysis Batch: 1824

Client Sample ID: Method Blank
Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	ND		3.0	ug/L			03/15/24 13:04	1
N-Propylbenzene	ND		1.0	ug/L			03/15/24 13:04	1
Naphthalene	ND		2.0	ug/L			03/15/24 13:04	1
sec-Butylbenzene	ND		1.0	ug/L			03/15/24 13:04	1
Styrene	ND		1.0	ug/L			03/15/24 13:04	1
tert-Butylbenzene	ND		1.0	ug/L			03/15/24 13:04	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			03/15/24 13:04	1
Toluene	ND		1.0	ug/L			03/15/24 13:04	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			03/15/24 13:04	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			03/15/24 13:04	1
Trichloroethene (TCE)	ND		1.0	ug/L			03/15/24 13:04	1
Trichlorofluoromethane	ND		1.0	ug/L			03/15/24 13:04	1
Vinyl chloride	ND		1.0	ug/L			03/15/24 13:04	1
Xylenes, Total	ND		1.5	ug/L			03/15/24 13:04	1
	MB	МВ						

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		70 - 130	0	3/15/24 13:04	1
Toluene-d8 (Surr)	101		70 - 130	0	3/15/24 13:04	1
4-Bromofluorobenzene (Surr)	95		70 - 130	0	3/15/24 13:04	1
Dibromofluoromethane (Surr)	114		70 - 130	0	3/15/24 13:04	1

Lab Sample ID: LCS 885-1824/20 Matrix: Water Analysis Batch: 1824

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene		20.7		ug/L		103	70 - 130	
Benzene	20.1	24.3		ug/L		121	70 - 130	
Chlorobenzene	20.1	19.8		ug/L		99	70 - 130	
Toluene	20.2	19.7		ug/L		98	70 - 130	
Trichloroethene (TCE)	20.2	20.5		ug/L		101	70 - 130	

	LCS LCS						
Surrogate	%Recovery	Qualifier	Limits				
1,2-Dichloroethane-d4 (Surr)	114		70 - 130				
Toluene-d8 (Surr)	103		70 - 130				
4-Bromofluorobenzene (Surr)	96		70 - 130				
Dibromofluoromethane (Surr)	114		70 - 130				

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-1638/11 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA **Analysis Batch: 1638** MB MB Analyte **Result Qualifier** RL Unit Prepared Analyzed Dil Fac D Gasoline Range Organics [C6 - C10] ND 0.050 mg/L 03/11/24 10:28 1

QC Sample Results

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Method: 8015D - Gasoline Range Organics (GRO) (GC) (Continued)

Wethou. 0015D - Gason	ine Kange O	iyanicə	UNC			onunue	;u)						
Lab Sample ID: MB 885-16 Matrix: Water	38/11							C	Clie	ent Samp	ole ID: N Prep Ty	lethod pe: To	Blank tal/NA
Analysis Batch: 1638													
	MB	MB											
Surrogate	%Recovery	Qualifier	Lin	nite					P	renared	Analy	zed	Dil Fac
4-Bromofluorobenzene (Surr)	<u>96</u>	Quanner		.270				-		repareu	03/11/24	10.28	1
Lab Sample ID: LCS 885-1 Matrix: Water	638/3						Cli	ent \$	Sar	mple ID:	Lab Cor Prep Ty	ntrol S pe: To	ample tal/NA
Analysis Batch: 1638													
			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics [C6 -			0.500		0.473		mg/L			95	70 - 130		
C10]													
	LCS LCS	;											
Surrogate	%Recovery Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	194		15 - 270	_									
Method: 504.1 - EDB, D	BCP and 1,2	,3-TCP	(GC)										
Lab Sample ID: MB 885-14	72/3-A							C	Clie	ent Sam	ole ID: N	ethod	Blank
Matrix: Water									-		Prep Ty	pe: To	tal/NA
Analysis Batch: 1559											Prep	Batch	: 1472
-	MB	МВ											
Analyte	Result	Qualifier		RL		Unit		D	Pi	repared	Analy	zed	Dil Fac
1,2-Dibromoethane	ND			0.010		ug/L		_ (03/0	8/24 11:53	03/08/24	16:30	1
1,2-Dibromoethane	ND			0.010		ug/L		C	03/0	8/24 11:53	03/08/24	16:30	1
Γ													
Lab Sample ID: LCS 885-1	472/4-A						Cli	ent s	Sar	nple ID:	Lab Co	ntrol S	ample
Matrix: Water											Prep Ty	pe: To	tal/NA
Analysis Batch: 1559											Prep	Batch	: 1472
			Spike		LCS	LCS					%Rec		
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits		
1,2-Dibromoethane			0.100		0.0976		ug/L			98	70 - 130		
1,2-Dibromoethane			0.100		0.0978		ug/L			98	70 - 130		
	4470/5 4						lient C	• • • • •		ID: Loh	Control	Comm	Dun
Matrix: Water	-14/2/3-A						ment a	bailit	ле	ID. Lau	Drop Ty	Samp	
Analysia Potoby 1550											Prep 1y	Peteb	141/NA
Analysis Batch. 1555			Spiko								% Poc	Datch	. 1472 DDD
Analyto					Posult	Qualifier	Unit		п	%Pac	/intec	PDD	Limit
1.2-Dibromoethane			0 100		0.0032	Quaimer			_		70 130	5	20
1 2-Dibromoethane			0.100		0.0002		ug/L			96	70 130	2	20
1,2-Dibiomoethane			0.100		0.0333		ug/L			30	70-150	2	20
Lab Sample ID: MRL 885-1	472/1-A						Cli	ent s	Sar	nole ID:	Lab Co	ntrol S	ample
Matrix: Water											Prep Ty	pe: To	tal/NA
Analysis Batch: 1559											Pren	Batch	: 1472
,			Spike		MRL	MRL					%Rec		
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits		
1,2-Dibromoethane			0.0100		0.00902	J	ug/L		—	90	60 - 140		
1,2-Dibromoethane			0.0100		ND		ug/L			67	60 - 140		

Job ID: 885-630-1

Job ID: 885-630-1

5 6 7

Method: 8015D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 885-15 Matrix: Water	501/1-A							Clie	ent Samp	ole ID: Method Prep Type: To	Blank
Analysis Batch: 1576										Pren Batch	1501
Analysis Baten. 1070		MB MB								TTOP Dates	
Analyte	Re	sult Quali	fier	RL		Unit	D	Р	repared	Analyzed	Dil Fac
Diesel Bange Organics [C10-C28]				1.0		<u></u>		0.3/1	1/24 08·44	03/11/24 11:10	1
Motor Oil Range Organics [C28-C4	101	ND		5.0		ma/l		0.3/1	1/24 08:44	03/11/24 11:10	1
motor on riange organice [oze o	.0]			0.0		iiig/E		00/1		00,11,211110	•
		MB MB									
Surrogate	%Recov	ery Quali	fier L	mits				P	repared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)		106	55	5-177				03/1	1/24 08:44	03/11/24 11:10	1
Lab Sample ID: LCS 885-1 Matrix: Water	501/2-A						Clien	it Sai	mple ID:	Lab Control S Prep Type: To	ample otal/NA
Analysis Batch: 1576										Prep Batch	n: 1501
			Spike)	LCS	LCS				%Rec	
Analyte			Addeo	l	Result	Qualifier	Unit	D	%Rec	Limits	
Diesel Range Organics			2.50)	2.39		mg/L		96	68 - 146	
[C10-C28]											
	LCS	LCS									
Surrogate	%Recoverv	Qualifier	Limits								
Di-n-octyl phthalate (Surr)	110		55 - 17	7							
Method: 300.0 - Anions	s, Ion Chro	matog	raphy								
Lab Sample ID: MB 885-30 Matrix: Water Analysis Batch: 3072)72/4							Clie	ent Samp	ole ID: Method Prep Type: To	Blank otal/NA
Analyta	Ba	MB MB	fior	ы		Unit		Б	roporod	Analyzad	
Analyte	Re	MB MB sult Quali	fier	RL			D	P	repared	Analyzed	Dil Fac
Analyte Chloride	Re:	MB MB sult Quali	fier	RL 0.50		Unit mg/L	D	P	repared	Analyzed 04/10/24 09:52	Dil Fac
Analyte Chloride Sulfate	Re:	MB MB sult Quali ND ND	fier	RL 0.50 0.50		Unit mg/L mg/L	D	P	repared	Analyzed 04/10/24 09:52 04/10/24 09:52	Dil Fac 1 1
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072	Re:	MB MB sult Quali ND ND	fier	RL 0.50 0.50		Unit mg/L mg/L	Clien	P It Sai	repared mple ID:	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To	Dil Fac 1 1 Sample otal/NA
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072	Re: 072/5	MB MB sult Quali ND ND	fier	RL 0.50 0.50		Unit mg/L mg/L	Clien	P	repared mple ID:	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To	Dil Fac 1 3 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072	Re:	MB MB sult Quali ND ND	fier Spika	RL 0.50 0.50	LCS	LCS	Clien	 It Sai	mple ID:	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits	Dil Fac 1 3 Sample otal/NA
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride	Re: 072/5	MB MB sult Quali ND ND	fier Spike 500	RL 0.50 0.50	LCS Result	LCS Qualifier	Clien	P It Sai	mple ID:	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits	Dil Fac 1 3 Sample otal/NA
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate	Re: 072/5	MB MB sult Quali ND ND	fier Spike Addee 5.00	RL 0.50 0.50	LCS Result 4.70 9.58	LCS Qualifier	Clien Unit mg/L mg/l	t Sai	mple ID: %Rec 94 96	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110	Dil Fac 1 Sample otal/NA
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate	Re:	MB MB sult Quali ND ND	fier Spike Addeo 5.00 10.0	RL 0.50 0.50	LCS Result 4.70 9.58	LCS Qualifier	Clien Unit mg/L mg/L	t Sar	repared mple ID: <u>%Rec</u> 94 96	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110	Dil Fac 1 Sample otal/NA
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3072	Re: 072/5 	MB MB sult Quali ND ND	fier Addec 5.00 10.0	RL 0.50 0.50	LCS Result 4.70 9.58	LCS Qualifier	Unit mg/L mg/L Clien	P	mple ID: %Rec 94 96 mple ID:	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110 Lab Control S Prep Type: To	Dil Fac 1 5 5 5 5 5 5 5 5 5 5 5 5 5
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3072	Re: 0072/5 	MB MB sult Quali ND ND	fier Spike Addee 5.00 10.0	RL 0.50 0.50	LCS <u>Result</u> 4.70 9.58	LCS Qualifier	Unit mg/L mg/L Clien	P t Sar D t Sar	repared mple ID: <u>%Rec</u> 94 96 mple ID:	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110 Lab Control S Prep Type: To %Rec	Dil Fac 1 3 ample otal/NA
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3072 Analyte	Re:	MB MB sult Quali ND ND	fier Spike Addec 5.00 10.0 Spike	RL 0.50 0.50	LCS Result 4.70 9.58 MRL Result	LCS Qualifier MRL Qualifier	Unit Clien mg/L Clien	P t Sar D t Sar	repared mple ID: %Rec 94 96 mple ID: %Rec	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110 Lab Control S Prep Type: To %Rec Limits	Dil Fac 1 3 ample otal/NA
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride	Re: 072/5 	MB MB sult Quali ND ND	fier Spike Addec 5.00 10.0 Spike Addec 0.500	RL 0.50 0.50	LCS Result 4.70 9.58 MRL Result 0.530	Unit mg/L mg/L LCS Qualifier	Unit mg/L Clien Mg/L Clien	P t Sar t Sar	<u>mple ID:</u> <u>%Rec</u> <u>94</u> <u>96</u> mple ID: <u>%Rec</u> <u>106</u>	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110 Lab Control S Prep Type: To %Rec Limits 50 - 150	Dil Fac 1 Sample otal/NA
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate	Re: 072/5 	MB MB sult Quali ND ND	fier Spike Addec 5.00 10.0 Spike Addec 0.500 0.500	RL 0.50 0.50 0 0 0 0	LCS Result 4.70 9.58 MRL Result 0.530 0.501	Unit mg/L mg/L UCS Qualifier	Unit mg/L mg/L Clien Unit mg/L mg/L	<u>P</u> .t Sai 	repared mple ID: %Rec 94 96 mple ID: %Rec 106 100	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110 So - 110 Kec Limits 50 - 150 50 - 150 50 - 150	Dil Fac 1 Sample otal/NA
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: 885-630-1 Matrix: Water Analysis Batch: 3072	Re: 072/5 3072/3 	MB MB sult Quali ND ND	fier	RL 0.50 0.50 0.50	LCS Result 4.70 9.58 MRL Result 0.530 0.501	Unit mg/L mg/L LCS Qualifier	Unit mg/L Clien Mg/L Clien	The second secon	repared mple ID: %Rec 94 96 mple ID: %Rec 106 100 Client	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110 Lab Control S Prep Type: To %Rec Limits 50 - 150 50 - 150 50 - 150 t Sample ID: F Prep Type: To	Dil Fac 1 3 3 3 3 3 3 3 3 3 3 3 3 3
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: 885-630-1 Matrix: Water Analysis Batch: 3072	Re: 072/5 3072/3 MS	MB MB sult Quali ND ND Sample	fier Spike Addee 5.00 10.0 10.0 Spike 0.500 0.500 0.500	RL 0.50 0.50 0.50	LCS Result 4.70 9.58 MRL Result 0.530 0.501	MRL Qualifier MS	Unit mg/L mg/L Clien Unit mg/L mg/L	P It Sai	repared mple ID: %Rec 94 96 mple ID: %Rec 106 100 Clien	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110 Lab Control S Prep Type: To %Rec Limits 50 - 150 50 - 150 50 - 150 t Sample ID: F Prep Type: To	Dil Fac 1 3 3 3 3 3 3 3 3 3 3 4 3 4 5 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: 885-630-1 Matrix: Water Analysis Batch: 3072 Analysis Batch: 3072 Analysis Batch: 3072	Re: 072/5 8072/3 MS Sample Result	MB MB sult Quali ND ND Sample Qualifier	fier Addec 5.00 10.0 Spike Addec 0.500 0.500 Spike Addec	RL 0.50 0.50 0.50	LCS Result 4.70 9.58 MRL Result 0.530 0.501 MS Result	MRL Qualifier MS Qualifier	Unit Unit mg/L Clien Unit mg/L mg/L	T T T T T T T T T T T T T T T T T T T	repared mple ID: %Rec 94 96 mple ID: %Rec 106 100 Clien %Rec	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 Lab Control S Prep Type: To %Rec Limits 50 - 150 50 - 150 50 - 150 t Sample ID: F Prep Type: To %Rec Limits	Dil Fac 1 3 3 3 3 3 3 3 3 3 3 3 3 3
Analyte Chloride Sulfate Lab Sample ID: LCS 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3072 Analyte Chloride Sulfate Lab Sample ID: 885-630-1 Matrix: Water Analysis Batch: 3072 Analysis Batch: 3072	Re: 0072/5 3072/3 MS MS Sample <u>Result</u> 66	MB MB sult Quali ND ND Sample Qualifier H	fier Spike Addee 5.00 10.0 0.500 0.500 0.500 0.500 0.500 0.500 0.500	RL 0.50 0.50 0.50	LCS Result 4.70 9.58 MRL Result 0.530 0.501 MS Result 93.0	MRL Qualifier MS Qualifier	Unit mg/L mg/L Clien Unit mg/L mg/L	<u>P</u> t Sar t Sar <u>D</u>	repared mple ID: %Rec 94 96 mple ID: %Rec 106 100 Clien %Rec 107	Analyzed 04/10/24 09:52 04/10/24 09:52 Lab Control S Prep Type: To %Rec Limits 90 - 110 90 - 110 Lab Control S Prep Type: To %Rec Limits 50 - 150 50 - 150 t Sample ID: F Prep Type: To %Rec Limits 80 - 120	Dil Fac 1 Sample otal/NA Sample otal/NA

QC Sample Results

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site Job ID: 885-630-1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 885-630-1	MS							Clie	nt Sample) ID: F	(Raw
Matrix: Water									Prep Ty	pe: Tot	tal/NA
Analysis Batch: 3072											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Sulfate	33	Н	50.0	82.8		mg/L		100	80 - 120		
Lab Sample ID: 885-630-1 Matrix: Water	MSD							Clie	nt Sample Prep Ty) ID: F\ pe: Tot	(Raw tal/NA
Analysis Batch: 3072	• •						~ -		
	Sample	Sample	Spike	MSD	MSD		_	a/ -	%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	66	н	25.0	92.6		mg/L		105	80 - 120	0	20
Sulfate	33	Н	50.0	82.1		mg/L		99	80 - 120	1	20
Lab Sample ID: MB 885-30 Matrix: Water Analysis Batch: 3073)73/4						Clie	ent Sam	ple ID: M Prep Ty	ethod pe: Tot	Blank tal/NA
	_	MB MB									
Analyte	Re	esult Qualifie	r				D P	repared	Analyz	<u>2ed</u>	Dil Fac
Nitrate Nitrite as N		ND		0.20	mg/L				04/10/24	09:52	1
Lab Sample ID: LCS 885-3 Matrix: Water	073/5					Clie	nt Sai	mple ID	: Lab Cor Prep Ty	itrol Sa pe: Tol	ample tal/NA
Analysis Batch: 3073											
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N			2.50	2.46		mg/L		98	90 - 110		
Nitrite as N			1.00	0.977		mg/L		98	90 - 110		
Lab Sample ID: MRL 885-3 Matrix: Water Analysis Batch: 3073	3073/3					Clie	nt Sai	mple ID	: Lab Cor Prep Ty	ntrol Sa pe: Tot	ample tal/NA
-			Spike	MRL	MRL				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N			0.100	0.0974	J	mg/L		97	50 - 150		
Nitrite as N			0.0999	0.103		mg/L		103	50 - 150		
Lab Sample ID: 885-630-1 Matrix: Water Analysis Batch: 3073	MS							Clie	nt Sample Prep Ty	ID: F) pe: Tot	(Raw tal/NA
•	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Nitrate as N	1.3	H	12.5	13.8		mg/L		100	80 - 120		
Nitrite as N	ND	Н	5.00	4.90		mg/L		98	80 - 120		
Lab Sample ID: 885-630-1 Matrix: Water	MSD							Clie	nt Sample Prep Ty) ID: FY pe: Tot	/ Raw tal/NA
Analysis Datell. 30/3	Sample	Sample	Snike	Men	MSD				%Rec		RÞD
Analyte	Result	Qualifier	hahhA	Result	Qualifier	Unit	П	%Rec	Limits	RPD	Limit
Nitrate as N	13		12.5	13.6		ma/l		99	80_120	1	20
Nitrite as N	1.5 ND	H	5 00	4 82		ma/l		96	80_120	2	20
			0.00	1.02					00-120	-	20

Job ID: 885-630-1

5 6

Method: 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 885-1631/1 Matrix: Water Analysis Batch: 1631							Clie	ent Sam	ple ID: Method Prep Type: T	d Blank otal/NA
	МВ	МВ								
Analyte	Result	Qualifier		RL	Unit	D	Р	repared	Analyzed	Dil Fac
Total Dissolved Solids	ND			50	mg/L				03/12/24 10:31	1
Lab Sample ID: LCS 885-1631/2 Matrix: Water						Clien	t Sa	mple ID:	Lab Control S Prep Type: T	Sample otal/NA
Analysis Batch: 1631										
			Spike	LCS	LCS				%Rec	
Analyte			Added	Resul	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids			1000	1010		mg/L		101	80 - 120	

QC Association Summary

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

GC/MS VOA

Analysis Batch: 1627

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-630-1	FY Raw	Total/NA	Water	8260B	
885-630-2	FY Treated EFF	Total/NA	Water	8260B	
885-630-3	ТВ	Total/NA	Trip Blank	8260B	
MB 885-1627/25	Method Blank	Total/NA	Water	8260B	
LCS 885-1627/2	Lab Control Sample	Total/NA	Water	8260B	
Analysis Batch: 182	24				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-630-1	FY Raw	Total/NA	Water	8260B	
MB 885-1824/21	Method Blank	Total/NA	Water	8260B	
LCS 885-1824/20	Lab Control Sample	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 1638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
885-630-1	FY Raw	Total/NA	Water	8015D	
885-630-2	FY Treated EFF	Total/NA	Water	8015D	
MB 885-1638/11	Method Blank	Total/NA	Water	8015D	
LCS 885-1638/3	Lab Control Sample	Total/NA	Water	8015D	

GC Semi VOA

Prep Batch: 1472

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-630-1	FY Raw	Total/NA	Water	504.1	
885-630-2	FY Treated EFF	Total/NA	Water	504.1	
885-630-3	ТВ	Total/NA	Trip Blank	504.1	
MB 885-1472/3-A	Method Blank	Total/NA	Water	504.1	
LCS 885-1472/4-A	Lab Control Sample	Total/NA	Water	504.1	
LCSD 885-1472/5-A	Lab Control Sample Dup	Total/NA	Water	504.1	
MRL 885-1472/1-A	Lab Control Sample	Total/NA	Water	504.1	

Prep Batch: 1501

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-630-1	FY Raw	Total/NA	Water	3511	
885-630-2	FY Treated EFF	Total/NA	Water	3511	
MB 885-1501/1-A	Method Blank	Total/NA	Water	3511	
LCS 885-1501/2-A	Lab Control Sample	Total/NA	Water	3511	

Analysis Batch: 1559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-630-2	FY Treated EFF	Total/NA	Water	504.1	1472
885-630-3	ТВ	Total/NA	Trip Blank	504.1	1472
MB 885-1472/3-A	Method Blank	Total/NA	Water	504.1	1472
LCS 885-1472/4-A	Lab Control Sample	Total/NA	Water	504.1	1472
LCSD 885-1472/5-A	Lab Control Sample Dup	Total/NA	Water	504.1	1472
MRL 885-1472/1-A	Lab Control Sample	Total/NA	Water	504.1	1472
Analysis Batch: 156	8				
Γ					

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
885-630-1	FY Raw	Total/NA	Water	504.1	1472

Eurofins Albuquerque

Job ID: 885-630-1

QC Association Summary

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Analysis Batch: 1576

Lab Sample ID 885-630-1	Client Sample ID FY Raw	Prep Type Total/NA	Matrix Water	Method 8015D	Prep Batch
885-630-2	FY Treated EFF	Total/NA	Water	8015D	1501
MB 885-1501/1-A	Method Blank	Total/NA	Water	8015D	1501
LCS 885-1501/2-A	Lab Control Sample	Total/NA	Water	8015D	1501

HPLC/IC

Analysis Batch: 3072

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-630-1	FY Raw	Total/NA	Water	300.0	
885-630-2	FY Treated EFF	Total/NA	Water	300.0	
MB 885-3072/4	Method Blank	Total/NA	Water	300.0	
LCS 885-3072/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-3072/3	Lab Control Sample	Total/NA	Water	300.0	
885-630-1 MS	FY Raw	Total/NA	Water	300.0	
885-630-1 MSD	FY Raw	Total/NA	Water	300.0	

Analysis Batch: 3073

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-630-1	FY Raw	Total/NA	Water	300.0	
885-630-2	FY Treated EFF	Total/NA	Water	300.0	
MB 885-3073/4	Method Blank	Total/NA	Water	300.0	
LCS 885-3073/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-3073/3	Lab Control Sample	Total/NA	Water	300.0	
885-630-1 MS	FY Raw	Total/NA	Water	300.0	
885-630-1 MSD	FY Raw	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 1631

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-630-1	FY Raw	Total/NA	Water	2540C	
885-630-2	FY Treated EFF	Total/NA	Water	2540C	
MB 885-1631/1	Method Blank	Total/NA	Water	2540C	
LCS 885-1631/2	Lab Control Sample	Total/NA	Water	2540C	

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Lab Sample ID: 885-630-1 Matrix: Water

Client Sample ID: FY Raw Date Collected: 03/05/24 15:32 Date Received: 03/06/24 14:18

Γ	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	1627	JR	EET ALB	03/12/24 19:59
Total/NA	Analysis	8260B		10	1824	JR	EET ALB	03/15/24 13:32
Total/NA	Analysis	8015D		5	1638	JP	EET ALB	03/11/24 15:01
Total/NA	Prep	504.1			1472	SB	EET ALB	03/08/24 11:53
Total/NA	Analysis	504.1		10	1568	SB	EET ALB	03/09/24 11:26
Total/NA	Prep	3511			1501	JU	EET ALB	03/11/24 08:44
Total/NA	Analysis	8015D		1	1576	JU	EET ALB	03/11/24 11:34
Total/NA	Analysis	300.0		5	3072	RC	EET ALB	04/10/24 10:16
Total/NA	Analysis	300.0		5	3073	RC	EET ALB	04/10/24 10:16
Total/NA	Analysis	2540C		1	1631	KS	EET ALB	03/12/24 10:31

Client Sample ID: FY Treated EFF Date Collected: 03/05/24 15:58 Date Received: 03/06/24 14:18

-	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	1627	JR	EET ALB	03/12/24 20:27
Total/NA	Analysis	8015D		1	1638	JP	EET ALB	03/11/24 15:24
Total/NA	Prep	504.1			1472	SB	EET ALB	03/08/24 11:53
Total/NA	Analysis	504.1		1	1559	SB	EET ALB	03/08/24 20:26
Total/NA	Prep	3511			1501	JU	EET ALB	03/11/24 08:44
Total/NA	Analysis	8015D		1	1576	JU	EET ALB	03/11/24 11:46
Total/NA	Analysis	300.0		5	3072	RC	EET ALB	04/10/24 11:06
Total/NA	Analysis	300.0		5	3073	RC	EET ALB	04/10/24 11:06
Total/NA	Analysis	2540C		1	1631	KS	EET ALB	03/12/24 10:31

Client Sample ID: TB Date Collected: 03/05/24 00:00 Date Received: 03/06/24 14:18

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	1627	JR	EET ALB	03/12/24 20:55
Total/NA	Prep	504.1			1472	SB	EET ALB	03/08/24 11:53
Total/NA	Analysis	504.1		1	1559	SB	EET ALB	03/08/24 20:43

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Lab Sample ID: 885-630-2

Matrix: Water

Lab Sample ID: 885-630-3 Matrix: Trip Blank

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site Job ID: 885-630-1

thority	Progr	am	Identification Number Expiration Date
/ Mexico	State		NM9425, NM0901 02-26-25
The following analytes for which the agency	s are included in this repo does not offer certificatior	rt, but the laboratory is no n.	t certified by the governing authority. This list may include analytes
Analysis Method	Prep Method	Matrix	Analyte
2540C		Water	Total Dissolved Solids
300.0		Water	Chloride
300.0		Water	Nitrate Nitrite as N
300.0		Water	Sulfate
504.1	504.1	Trip Blank	1,2-Dibromoethane
504.1	504.1	Water	1,2-Dibromoethane
8015D		Water	Gasoline Range Organics [C6 - C10]
8015D	3511	Water	Diesel Range Organics [C10-C28]
8015D	3511	Water	Motor Oil Range Organics [C28-C40]
8260B		Trip Blank	1,1,1,2-Tetrachloroethane
8260B		Trip Blank	1,1,1-Trichloroethane
8260B		Trip Blank	1,1,2,2-Tetrachloroethane
8260B		Trip Blank	1,1,2-Trichloroethane
8260B		Trip Blank	1.1-Dichloroethane
8260B		, Trip Blank	1.1-Dichloroethene
8260B		, Trip Blank	1.1-Dichloropropene
8260B		Trip Blank	1 2 3-Trichlorobenzene
8260B		Trip Blank	1 2 3-Trichloropropane
8260B		Trip Blank	1 2 4-Trichlorobenzene
8260B		Trip Blank	1 2 4-Trimethylbenzene
8260B		Trip Blank	1 2-Dibromo-3-Chloropropane
8260B		Trin Blank	1 2-Dibromoethane (EDB)
8260B		Trin Blank	1 2-Dichlorohenzene
8260B		Trip Blank	1.2-Dichloroethane (EDC)
8260B		Trip Blank	1 2-Dichloropropane
8260B		Trip Blank	1 3 5 Trimethylbenzene
8260B		Trip Blank	
8260B		Trip Blank	
8260B		Trip Blank	1,3-Dichloropropane
0200D		Trip Dialik	
0200D		Trip Blank	
8260B		Trip Blank	2,2-Dichiolopiopane
0200D		Trip Dialik	2 Chlorotoluono
0200D		Trip Blank	
0200B		Trip Blank	
0200D		Trip Diarik	
8260B		Trip Blank	
020UD		Trip Blank	4-isopropyiloidene
020UB		Trip Blank	
8260B		Trip Blank	Acetone
8260B		Trip Blank	Benzene
8260B		Trip Blank	Bromobenzene
8260B		Irip Blank	Bromodichloromethane
8260B		Irip Blank	Bromotorm
8260B		Trip Blank	Bromomethane
8260B		Trip Blank	Carbon disulfide

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

300

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Progra	am	Identification Number Expiration Date
The following analyte for which the agency	s are included in this repor does not offer certification.	rt, but the laboratory is no	t certified by the governing authority. This list may include analytes
Analysis Method	Prep Method	Matrix	Analyte
8260B		Trip Blank	Carbon tetrachloride
8260B		Trip Blank	Chlorobenzene
8260B		Trip Blank	Chloroethane
8260B		Trip Blank	Chloroform
8260B		Trip Blank	Chloromethane
8260B		Trip Blank	cis-1,2-Dichloroethene
8260B		Trip Blank	cis-1,3-Dichloropropene
8260B		Trip Blank	Dibromochloromethane
8260B		Trip Blank	Dibromomethane
8260B		Trip Blank	Dichlorodifluoromethane
8260B		Trip Blank	Ethvlbenzene
8260B		, Trip Blank	Hexachlorobutadiene
8260B		Trip Blank	Isopropylbenzene
8260B		Trip Blank	Methylene Chloride
8260B		Trip Blank	Methyl-tert-butyl Ether (MTBE)
8260B		Trip Blank	Naphthalene
8260B		Trip Blank	n-Butylbenzene
8260B		Trip Blank	N-Propylbenzene
8260B		Trip Blank	sec-Butylbenzene
8260B		Trip Blank	Styrene
8260B		Trip Blank	tert-Butylbenzene
8260B		Trip Blank	
8260B		Trip Blank	
8260B		Trip Blank	trans 1.2 Dichlaraothana
8260B		Trip Blank	trans 1.2 Dichloropropopo
0200D		Trip Blank	
8260B		Trip Blank	
8260B		Trip Blank	Vinul chlorido
0200D		Trip Blank	
0200B			Ayleries, Iolai
0200B		vvaler Water	
0200B		vvaler Water	
8260B		vvater	1,1,2,2-Tetrachioroethane
8260B		vvater	1,1,2-I richloroethane
8260B		vvater	
8260B		vvater	
8260B		vvater	
8260B		Vvater	1,2,3-Irichlorobenzene
8260B		Vvater	1,2,3-Irichloropropane
8260B		Vvater	1,2,4-Irichlorobenzene
8260B		Water	1,2,4- I rimethylbenzene
8260B		Water	1,2-Dibromo-3-Chloropropane
8260B		Water	1,2-Dibromoethane (EDB)
8260B		Water	1,2-Dichlorobenzene
8260B		Water	1,2-Dichloroethane (EDC)
8260B		Water	1,2-Dichloropropane
8260B		Water	1,3,5-Trimethylbenzene
8260B		Water	1,3-Dichlorobenzene

9

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Job ID: 885-630-1

otherwise noted, all ana	S Albuquerque	(Continued) were covered under each	accreditation/certification below.
ority	Progr	am	Identification Number Expiration Date
The following analytes for which the agency do	are included in this repo oes not offer certificatior	ort, but the laboratory is n n.	ot certified by the governing authority. This list may include analytes
Analysis Method	Prep Method	Matrix	Analyte
8260B		Water	1,3-Dichloropropane
8260B		Water	1,4-Dichlorobenzene
8260B		Water	1-Methylnaphthalene
8260B		Water	2,2-Dichloropropane
8260B		Water	2-Butanone
8260B		Water	2-Chlorotoluene
8260B		Water	2-Hexanone
8260B		Water	2-Methylnaphthalene
8260B		Water	4-Chlorotoluene
8260B		Water	4-Isopropyltoluene
8260B		Water	4-Methyl-2-pentanone
8260B		Water	Acetone
8260B		Water	Benzene
8260B		Water	Bromobenzene
8260B		Water	Bromodichloromethane
8260B		Water	Bromoform
8260B		Water	Bromomethane
8260B		Water	Carbon disulfide
8260B		Water	Carbon tetrachloride
8260B		Water	Chlorobenzene
8260B		Water	Chloroethane
8260B		Water	Chloroform
8260B		Water	Chloromethane
8260B		Water	cis-1,2-Dichloroethene
8260B		Water	cis-1,3-Dichloropropene
8260B		Water	Dibromochloromethane
8260B		Water	Dibromomethane
8260B		Water	Dichlorodifluoromethane
8260B		Water	Ethylbenzene
8260B		Water	Hexachlorobutadiene
8260B		Water	Isopropylbenzene
8260B		Water	Methylene Chloride
8260B		Water	Methyl-tert-butyl Ether (MTBE)
8260B		Water	Naphthalene
8260B		Water	n-Butylbenzene
8260B		Water	- N-Propylbenzene
8260B		Water	sec-Butylbenzene
8260B		Water	Styrene
8260B		Water	tert-Butylbenzene
8260B		Water	- Tetrachloroethene (PCE)
8260B		Water	Toluene
8260B		Water	trans-1,2-Dichloroethene
8260B		Water	trans-1.3-Dichloropropene
8260B		Water	Trichloroethene (TCE)
8260B		Water	Trichlorofluoromethane
8260B		Water	Vinyl chloride

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site Job ID: 885-630-1

5 6 7

9

Laboratory: Eurofins Albuquerque (Continued) Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Program **Identification Number Expiration Date** Oregon NELAP NM100001 02-26-25 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 504.1 504.1 Trip Blank 1,2-Dibromoethane 504.1 1,2-Dibromoethane 504.1 Water

	Chain-of-Custody Record		f-Custody Record Turn-Around Time Image: Standard Rush Project Name Project Name						HALL ENVIRONMENTA ANALYSIS LABORATO									'AI DR	L :Y				
	Daniel Mailing	B Steph Address	nens & As 5 6020 A	ssociates cademy Rd NE, STE 100					www.hallenvironmental.com														
	Albuquerque NM 87109		Project #.	ation State L	ead Site		4901 Hawkins NE - Albuquerque, NM 8/109 Tel 505-345-3975 Eax 505-345-4107																
	Phone # 505-822-9400		DB18.1157				Analysis Request																
	email o	rFax# 🤵	gherrma	in@geo-logic.com	Project Mana	ager	····																
	QA/QC	Package			Grace Herrn	nann			В		8015E	200	300		Ð	801							
	🗆 Star	dard		Level 4 (Full Validation)				826	4 1	thod 8	thod	thod		802	pou								
	Accred	itation AC	□ Az Co □ Othe	ompliance	Sampler On Ice:	Sampler		ethod	lod 50	EPA me	PA me	PA me	0	ethod	A met								
		(Type)			# of Coolers:	1		у	u ∎ 4	meth	RO -	е - Е) - E	540(u ₩	ΕP							
					Cooler Temp	O(Including CF): ()	4-0=0.4	0C	ΕP	PAI	and D	hlorid	N SE	M2(EP/	° S							
	Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No	[0G] 5.	VOCs -	EDB - E	IPH GRO	Sulfate/CI	Nitrate (a	TDS - S	VOCs -	TPH GF							
Pag	504	1532	1/20	Ff Raw	7-vo Asplast	Varions			4	$\overline{\lambda}$	$\frac{\chi}{\chi}$	X	Ā	X	-	-							
e 27		155%		FYTreated EFF	ſ	1			x	×	к	K	x	\checkmark						 			_
of 2	· ·			TRIP Blank	\leq				X	\checkmark	X	X	X	¥									-
00											ţ.			,									-
																							_
																	_						
																		_					
z	Date W24	Time	Relinquist	ied by	Beceived by	Via CDO _	3/6/24 (t	ne 118	Ren	nark	S							Ē	į,				
4/15/20	Date	lime	Relinquist	ea by		Via	' Date Tin	ne										885-6	30 CC				

4/15/2024

If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

10 5

Login Sample Receipt Checklist

Client: Daniel B. Stephens & Associates Inc.

Login Number: 630 List Number: 1 Creator: Robb, Kathleen

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Job Number: 885-630-1

List Source: Eurofins Albuquerque

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Grace Herrmann Daniel B. Stephens & Associates Inc. 6020 Academy Road NE Suite 100 Albuquerque, New Mexico 87109 Generated 4/22/2024 1:32:06 PM

JOB DESCRIPTION

Former Y

JOB NUMBER

885-2074-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by Tiffany Shaw, Project Manager I tiffany.shaw@et.eurofinsus.com

(505)345-3975

Generated 4/22/2024 1:32:06 PM

1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	42
QC Association Summary	54
Lab Chronicle	58
Certification Summary	62
Chain of Custody	64
Receipt Checklists	66

Qualifiers

Quaimers	
GC/MS VOA	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
S1+	Surrogate recovery exceeds control limits, high biased.
GC Semi VO	Α
Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 885-2074-1

Eurofins Albuquerque

Job Narrative 885-2074-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/29/2024 4:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.7°C.

Receipt Exceptions

The method requirement for no headspace was not met. The following sample was analyzed with headspace in the sample container(s): BW-7-20240329 (885-2074-5).

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015D_DRO: The continuing calibration verification (CCV) associated with batch 885-2722 recovered above the upper control limit for Di-n-octyl phthalate (Surr). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 504.1_PREC: The following sample(s) was analyzed outside of analytical holding time due to necessary re-runs for overrange results. Samples are not drinking water/compliance; data us unaffected and reportable outside of 24 hour window. RW-3-20240326 (885-2074-2), RW-4-20240326 (885-2074-3), BW-5-20240329 (885-2074-4), BW-7-20240329 (885-2074-5), BW-7R-20240328 (885-2074-6), BW-8-20240329 (885-2074-7), MW-12-20240326 (885-2074-8), MW-16-20240326 (885-2074-14) and FY RAW (885-2074-17).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_OF_28D_NO3: The following samples were diluted due to the nature of the sample matrix: FY Treated EFF (885-2074-16) and FY RAW (885-2074-17). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample ID: RW-1-20240327 Date Collected: 03/27/24 08:30 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-1

Matrix: Water

	latile Organic	Compounds	GC/MS)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			04/03/24 13:33	1	
1,1,1-Trichloroethane	ND		1.0	ug/L			04/03/24 13:33	1	
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			04/03/24 13:33	1	
1,1,2-Trichloroethane	ND		1.0	ug/L			04/03/24 13:33	1	
1,1-Dichloroethane	ND		1.0	ug/L			04/03/24 13:33	1	
1,1-Dichloroethene	ND		1.0	ug/L			04/03/24 13:33	1	9
1,1-Dichloropropene	ND		1.0	ug/L			04/03/24 13:33	1	0
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/03/24 13:33	1	0
1,2,3-Trichloropropane	ND		2.0	ug/L			04/03/24 13:33	1	9
1,2,4-Trichlorobenzene	ND		1.0	ug/L			04/03/24 13:33	1	
1,2,4-Trimethylbenzene	ND		1.0	ug/L			04/03/24 13:33	1	
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			04/03/24 13:33	1	
1,2-Dibromoethane (EDB)	ND		1.0	ua/L			04/03/24 13:33	1	
1.2-Dichlorobenzene	ND		1.0	ua/L			04/03/24 13:33	1	
1.2-Dichloroethane (EDC)	15		1.0	ua/L			04/03/24 13:33	1	
1.2-Dichloropropane	ND		1.0	ua/L			04/03/24 13:33	1	
1 3 5-Trimethylbenzene	ND		1.0	ug/L			04/03/24 13:33	1	
1.3-Dichlorobenzene	ND		1.0	ug/L			04/03/24 13:33	1	
1 3-Dichloropropane	ND		10	ug/l			04/03/24 13:33		
1 4-Dichlorobenzene	ND		1.0	ug/L			04/03/24 13:33	1	
1-Methylnaphthalene	ND		4.0	ug/L			04/03/24 13:33	1	
2 2-Dichloropropane	ND		2.0	ug/L			04/03/24 13:33		
2-Butanone			10	ug/L			04/03/24 13:33	1	
2-Chlorotoluene			10	ug/L			04/03/24 13:33	1	
2-Hexanone	ND		1.0	ug/L			04/03/24 13:33		
2-Methylnaphthalene	ND		4.0	ug/L			04/03/24 13:33	1	
4-Chlorotoluene	ND		1.0	ug/L			04/03/24 13:33	1	
4-Isopropyltoluene	ND		1.0	ug/L			04/03/24 13:33		
4-Methyl-2-pentanone	ND		10	ug/L			04/03/24 13:33	1	
Acetone	ND		10	ug/L			04/03/24 13:33	1	
Benzene	ND		10	ug/l			04/03/24 13:33		
Bromobenzene	ND		1.0	ug/L			04/03/24 13:33	1	
Bromodichloromethane	ND		1.0	ug/L			04/03/24 13:33	1	
Dibromochloromethane	ND		1.0	ug/L			04/03/24 13:33		
Bromoform	ND		1.0	ug/L			04/03/24 13:33	1	
Bromomethane	ND		3.0	ug/L			04/03/24 13:33	1	
Carbon disulfide	ND		10	ug/l			04/03/24 13:33	· · · · · · · · · · · · 1	
Carbon tetrachloride	ND		1.0	ug/l			04/03/24 13:33	1	
Chlorobenzene	ND		1.0	ug/L			04/03/24 13:33	1	
Chloroethane	ND		20	ug/l			04/03/24 13:33	· · · · · · · · · · 1	
Chloroform	ND		1.0	<u>-</u>			04/03/24 13:33	1	
Chloromethane	ND		3.0	ug/L			04/03/24 13:33	1	
cis-1 2-Dichloroethene			1.0	ua/l			04/03/24 13:33		
cis-1 3-Dichloropropene			1.0	ua/l			04/03/24 13:33	1	
Dibromomethane	חוא		1.0	ua/l			04/03/24 13:33	1	
Dichlorodifluoromethane			1.0	ua/l			04/03/24 13:33		
Ethylbenzene			1.0	ua/l			04/03/24 13:33	1	
Hexachlorobutadiene	חוא		1.0	ug/L			04/03/24 13:33	, 1	
Isopropylbenzene			1.0	ua/l			04/03/24 13:33		
	NB						3	•	

Client Sample ID: RW-1-20240327 Date Collected: 03/27/24 08:30 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/03/24 13:33	1
Methylene Chloride	ND		3.0	ug/L			04/03/24 13:33	1
n-Butylbenzene	ND		3.0	ug/L			04/03/24 13:33	1
N-Propylbenzene	ND		1.0	ug/L			04/03/24 13:33	1
Naphthalene	ND		2.0	ug/L			04/03/24 13:33	1
sec-Butylbenzene	ND		1.0	ug/L			04/03/24 13:33	1
Styrene	ND		1.0	ug/L			04/03/24 13:33	1
tert-Butylbenzene	ND		1.0	ug/L			04/03/24 13:33	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/03/24 13:33	1
Toluene	ND		1.0	ug/L			04/03/24 13:33	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 13:33	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 13:33	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/03/24 13:33	1
Trichlorofluoromethane	ND		1.0	ug/L			04/03/24 13:33	1
Vinyl chloride	ND		1.0	ug/L			04/03/24 13:33	1
Xylenes, Total	ND		1.5	ug/L			04/03/24 13:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130				04/03/24 13:33	1
Toluene-d8 (Surr)	92		70 - 130				04/03/24 13:33	1
4-Bromofluorobenzene (Surr)	86		70 - 130				04/03/24 13:33	1
Dibromofluoromethane (Surr)	123		70 - 130				04/03/24 13:33	1
Method: EPA-DW2 504.1 - E	DB, DBCP and	I 1,2,3-TCI	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.14		0.0095	ug/L		04/02/24 09:39	04/02/24 20:15	1

Client Sample ID: RW-3-20240326 Date Collected: 03/26/24 14:10 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-2

Matrix: Water

Method: SW846 8260B - Vola	atile Organic	Compounds	(GC/MS)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			04/04/24 17:08	1	
1,1,1-Trichloroethane	ND		1.0	ug/L			04/04/24 17:08	1	
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			04/04/24 17:08	1	
1,1,2-Trichloroethane	ND		1.0	ug/L			04/04/24 17:08	1	
1,1-Dichloroethane	ND		1.0	ug/L			04/04/24 17:08	1	
1,1-Dichloroethene	ND		1.0	ug/L			04/04/24 17:08	1	8
1,1-Dichloropropene	ND		1.0	ug/L			04/04/24 17:08	1	
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/04/24 17:08	1	9
1,2,3-Trichloropropane	ND		2.0	ug/L			04/04/24 17:08	1	
1,2,4-Trichlorobenzene	ND		1.0	ug/L			04/04/24 17:08	1	
1,2,4-Trimethylbenzene	ND		1.0	ug/L			04/04/24 17:08	1	
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			04/04/24 17:08	1	
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			04/04/24 17:08	1	
1,2-Dichlorobenzene	ND		1.0	ug/L			04/04/24 17:08	1	
1,2-Dichloroethane (EDC)	2.7		1.0	ug/L			04/04/24 17:08	1	
1,2-Dichloropropane	ND		1.0	ug/L			04/04/24 17:08	1	
1,3,5-Trimethylbenzene	ND		1.0	ug/L			04/04/24 17:08	1	
1,3-Dichlorobenzene	ND		1.0	ug/L			04/04/24 17:08	1	
1,3-Dichloropropane	ND		1.0	ug/L			04/04/24 17:08	1	
1,4-Dichlorobenzene	ND		1.0	ug/L			04/04/24 17:08	1	
1-Methylnaphthalene	ND		4.0	ug/L			04/04/24 17:08	1	
2,2-Dichloropropane	ND		2.0	ug/L			04/04/24 17:08	1	
2-Butanone	ND		10	ug/L			04/04/24 17:08	1	
2-Chlorotoluene	ND		1.0	ug/L			04/04/24 17:08	1	
2-Hexanone	ND		10	ug/L			04/04/24 17:08	1	
2-Methylnaphthalene	ND		4.0	ug/L			04/04/24 17:08	1	
4-Chlorotoluene	ND		1.0	ug/L			04/04/24 17:08	1	
4-Isopropyltoluene	ND		1.0	ug/L			04/04/24 17:08	1	
4-Methyl-2-pentanone	ND		10	ug/L			04/04/24 17:08	1	
Acetone	ND		10	ug/L			04/04/24 17:08	1	
Benzene	ND		1.0	ug/L			04/04/24 17:08	1	
Bromobenzene	ND		1.0	ug/L			04/04/24 17:08	1	
Bromodichloromethane	ND		1.0	ug/L			04/04/24 17:08	1	
Dibromochloromethane	ND		1.0	ug/L			04/04/24 17:08	1	
Bromoform	ND		1.0	ug/L			04/04/24 17:08	1	
Bromomethane	ND		3.0	ug/L			04/04/24 17:08	1	
Carbon disulfide	ND		10	ug/L			04/04/24 17:08	1	
Carbon tetrachloride	ND		1.0	ug/L			04/04/24 17:08	1	
Chlorobenzene	ND		1.0	ug/L			04/04/24 17:08	1	
Chloroethane	ND		2.0	ug/L			04/04/24 17:08	1	
Chloroform	ND		1.0	ug/L			04/04/24 17:08	1	
Chloromethane	ND		3.0	ug/L			04/04/24 17:08	1	
cis-1,2-Dichloroethene	ND		1.0	ug/L			04/04/24 17:08	1	
cis-1,3-Dichloropropene	ND		1.0	ug/L			04/04/24 17:08	1	
Dibromomethane	ND		1.0	ug/L			04/04/24 17:08	1	
Dichlorodifluoromethane	ND		1.0	ug/L			04/04/24 17:08	1	
Ethylbenzene	ND		1.0	ug/L			04/04/24 17:08	1	
Hexachlorobutadiene	ND		1.0	ug/L			04/04/24 17:08	1	
Isopropylbenzene	ND		1.0	ug/L			04/04/24 17:08	1	

Client Sample ID: RW-3-20240326 Date Collected: 03/26/24 14:10 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-2

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/04/24 17:08	1
Methylene Chloride	ND		3.0	ug/L			04/04/24 17:08	1
n-Butylbenzene	ND		3.0	ug/L			04/04/24 17:08	1
N-Propylbenzene	ND		1.0	ug/L			04/04/24 17:08	1
Naphthalene	ND		2.0	ug/L			04/04/24 17:08	1
sec-Butylbenzene	ND		1.0	ug/L			04/04/24 17:08	1
Styrene	ND		1.0	ug/L			04/04/24 17:08	1
tert-Butylbenzene	ND		1.0	ug/L			04/04/24 17:08	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/04/24 17:08	1
Toluene	ND		1.0	ug/L			04/04/24 17:08	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/04/24 17:08	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/04/24 17:08	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/04/24 17:08	1
Trichlorofluoromethane	ND		1.0	ug/L			04/04/24 17:08	1
Vinyl chloride	ND		1.0	ug/L			04/04/24 17:08	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 17:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130				04/04/24 17:08	1
Toluene-d8 (Surr)	91		70 - 130				04/04/24 17:08	1
4-Bromofluorobenzene (Surr)	87		70 - 130				04/04/24 17:08	1
Dibromofluoromethane (Surr)	126		70 - 130				04/04/24 17:08	1
Method: EPA-DW2 504.1 - E	DB, DBCP and	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.36	Н	0.047	ug/L		04/02/24 09:39	04/03/24 15:01	5

RL

Unit

D

Prepared

Client Sample ID: RW-4-20240326 Date Collected: 03/26/24 13:35 Date Received: 03/29/24 16:35

Analyte

Isopropylbenzene

Method: SW846 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

Lab Sample ID: 885-2074-3

Analyzed

Matrix: Water

Dil Fac

	5
I	8
	9
1	

8
9

1,1,1,2-Tetrachloroethane	ND	20	ug/L	04/03/24 14:28	20
1,1,1-Trichloroethane	ND	20	ug/L	04/03/24 14:28	20
1,1,2,2-Tetrachloroethane	ND	40	ug/L	04/03/24 14:28	20
1,1,2-Trichloroethane	ND	20	ug/L	04/03/24 14:28	20
1,1-Dichloroethane	ND	20	ug/L	04/03/24 14:28	20
1,1-Dichloroethene	ND	20	ug/L	04/03/24 14:28	20
1,1-Dichloropropene	ND	20	ug/L	04/03/24 14:28	20
1,2,3-Trichlorobenzene	ND	20	ug/L	04/03/24 14:28	20
1,2,3-Trichloropropane	ND	40	ug/L	04/03/24 14:28	20
1,2,4-Trichlorobenzene	ND	20	ug/L	04/03/24 14:28	20
1,2,4-Trimethylbenzene	52	20	ug/L	04/03/24 14:28	20
1,2-Dibromo-3-Chloropropane	ND	40	ug/L	04/03/24 14:28	20
1,2-Dibromoethane (EDB)	33	20	ug/L	04/03/24 14:28	20
1,2-Dichlorobenzene	ND	20	ug/L	04/03/24 14:28	20
1,2-Dichloroethane (EDC)	130	20	ug/L	04/03/24 14:28	20
1,2-Dichloropropane	ND	20	ug/L	04/03/24 14:28	20
1,3,5-Trimethylbenzene	27	20	ug/L	04/03/24 14:28	20
1,3-Dichlorobenzene	ND	20	ug/L	04/03/24 14:28	20
1,3-Dichloropropane	ND	20	ug/L	04/03/24 14:28	20
1,4-Dichlorobenzene	ND	20	ug/L	04/03/24 14:28	20
1-Methylnaphthalene	ND	80	ug/L	04/03/24 14:28	20
2,2-Dichloropropane	ND	40	ug/L	04/03/24 14:28	20
2-Butanone	ND	200	ug/L	04/03/24 14:28	20
2-Chlorotoluene	ND	20	ug/L	04/03/24 14:28	20
2-Hexanone	ND	200	ug/L	04/03/24 14:28	20
2-Methylnaphthalene	ND	80	ug/L	04/03/24 14:28	20
4-Chlorotoluene	ND	20	ug/L	04/03/24 14:28	20
4-Isopropyltoluene	ND	20	ug/L	04/03/24 14:28	20
4-Methyl-2-pentanone	ND	200	ug/L	04/03/24 14:28	20
Acetone	ND	200	ug/L	04/03/24 14:28	20
Benzene	990	20	ug/L	04/03/24 14:28	20
Bromobenzene	ND	20	ug/L	04/03/24 14:28	20
Bromodichloromethane	ND	20	ug/L	04/03/24 14:28	20
Dibromochloromethane	ND	20	ug/L	04/03/24 14:28	20
Bromoform	ND	20	ug/L	04/03/24 14:28	20
Bromomethane	ND	60	ug/L	04/03/24 14:28	20
Carbon disulfide	ND	200	ug/L	04/03/24 14:28	20
Carbon tetrachloride	ND	20	ug/L	04/03/24 14:28	20
Chlorobenzene	ND	20	ug/L	04/03/24 14:28	20
Chloroethane	ND	40	ug/L	04/03/24 14:28	20
Chloroform	ND	20	ug/L	04/03/24 14:28	20
Chloromethane	ND	60	ug/L	04/03/24 14:28	20
cis-1,2-Dichloroethene	ND	20	ug/L	04/03/24 14:28	20
cis-1,3-Dichloropropene	ND	20	ug/L	04/03/24 14:28	20
Dibromomethane	ND	20	ug/L	04/03/24 14:28	20
Dichlorodifluoromethane	ND	20	ug/L	04/03/24 14:28	20
Ethylbenzene	27	20	ug/L	04/03/24 14:28	20
Hexachlorobutadiene	ND	20	ua/L	04/03/24 14:28	20

Eurofins Albuquerque

04/03/24 14:28

20

ug/L

ND

Client Sample ID: RW-4-20240326 Date Collected: 03/26/24 13:35 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-3

Matrix: Water

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		20	ug/L			04/03/24 14:28	20
Methylene Chloride	ND		60	ug/L			04/03/24 14:28	20
n-Butylbenzene	ND		60	ug/L			04/03/24 14:28	20
N-Propylbenzene	ND		20	ug/L			04/03/24 14:28	20
Naphthalene	ND		40	ug/L			04/03/24 14:28	20
sec-Butylbenzene	ND		20	ug/L			04/03/24 14:28	20
Styrene	ND		20	ug/L			04/03/24 14:28	20
tert-Butylbenzene	ND		20	ug/L			04/03/24 14:28	20
Tetrachloroethene (PCE)	ND		20	ug/L			04/03/24 14:28	20
Toluene	960		20	ug/L			04/03/24 14:28	20
trans-1,2-Dichloroethene	ND		20	ug/L			04/03/24 14:28	20
trans-1,3-Dichloropropene	ND		20	ug/L			04/03/24 14:28	20
Trichloroethene (TCE)	ND		20	ug/L			04/03/24 14:28	20
Trichlorofluoromethane	ND		20	ug/L			04/03/24 14:28	20
Vinyl chloride	ND		20	ug/L			04/03/24 14:28	20
Xylenes, Total	560		30	ug/L			04/03/24 14:28	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130				04/03/24 14:28	20
Toluene-d8 (Surr)	92		70 - 130				04/03/24 14:28	20
4-Bromofluorobenzene (Surr)	82		70 - 130				04/03/24 14:28	20
Dibromofluoromethane (Surr)	122		70 - 130				04/03/24 14:28	20
	DB, DBCP and	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	33	Н	1.9	ug/L		04/02/24 09:39	04/03/24 15:18	200

4/22/2024

Client Sample ID: BW-5-20240329 Date Collected: 03/29/24 10:25 Date Received: 03/29/24 16:35

Isopropylbenzene

. . .

Lab Sample ID: 885-2074-4

Matrix: Water

Method: SW846 8260B - Vola		Compounds Qualifier	(GC/MS)	Unit	D Propared	Analyzod	Dil Eac
1 1 2 Tetrachloroethane			20				201 Fac
1 1 1-Trichloroethane			20	ug/L		04/03/24 14:55	20
1,1,2,-Tetrachloroethane			40	ug/L		04/03/24 14:55	20
1 1 2 Trichloroethane			-10	ug/L		04/03/24 14:55	20
1 1-Dichloroethane			20	ug/L		04/03/24 14:55	20
1 1-Dichloroethene			20	ug/L		04/03/24 14:55	20
1 1-Dichloropropene			20	ug/L		04/03/24 14:55	20
1,1-Dichloropenzene			20	ug/L		04/03/24 14:55	20
1,2,3 Trichloropropaga			20	ug/L		04/03/24 14:55	20
1.2.4 Trichlorobonzono			20	ug/L		04/03/24 14:55	20
	1200		20	ug/L		04/03/24 14:55	20
1.2 Dibromo 3 Chloropropopo			20	ug/L		04/03/24 14:55	20
1.2 Dibromoethano (EDR)			40	ug/L		04/03/24 14:55	20
1.2 Dishlarabanzana			20	ug/L		04/03/24 14.55	20
1,2-Dichloroethere (FDC)			20	ug/L		04/03/24 14.55	20
1,2-Dichloroetnane (EDC)	21		20	ug/L		04/03/24 14:55	20
1,2-Dichloroproparie			20	ug/L		04/03/24 14:55	20
1,3,5-Irimetnyibenzene	340 ND		20	ug/L		04/03/24 14.55	20
1,3-Dichloropropage			20	ug/L		04/03/24 14:55	20
1,3-Dichloropopane			20	ug/L		04/03/24 14.55	20
			20	ug/L		04/03/24 14.55	20
	250		0U 40	ug/L		04/03/24 14:55	20
2,2-Dichloroproparie	ND		40	ug/L		04/03/24 14:55	20
	ND		200	ug/L		04/03/24 14:55	20
			20	ug/L		04/03/24 14:55	20
	ND		200	ug/L		04/03/24 14:55	20
	550		80	ug/L		04/03/24 14:55	20
	ND		20	ug/L		04/03/24 14:55	20
4-isopropyitoluene	ND		20	ug/L		04/03/24 14:55	20
4-Methyl-2-pentanone	ND		200	ug/L		04/03/24 14:55	20
Acetone	ND		200	ug/L		04/03/24 14:55	20
Benzene	90		20	ug/L		04/03/24 14:55	20
Bromobenzene	ND		20	ug/L		04/03/24 14:55	20
Bromodicnioromethane	ND		20	ug/L		04/03/24 14:55	20
	ND		20	ug/L		04/03/24 14:55	20
Bromotorm	ND		20	ug/L		04/03/24 14:55	20
Bromometnane	ND		60	ug/L		04/03/24 14:55	20
	ND		200	ug/L		04/03/24 14:55	20
Carbon tetrachioride	ND		20	ug/L		04/03/24 14:55	20
Chiorobenzene	ND		20	ug/L		04/03/24 14:55	20
Chioroethane	ND		40	ug/L		04/03/24 14:55	20
Chloroform	ND		20	ug/L		04/03/24 14:55	20
	ND		60	ug/L		04/03/24 14:55	20
cis-1,2-Dichloroethene	ND		20	ug/L		04/03/24 14:55	20
cis-1,3-Dichloropropene	ND		20	ug/L		04/03/24 14:55	20
Dipromomethane	ND		20	ug/L		04/03/24 14:55	20
	ND		20	ug/L		04/03/24 14:55	20
Ethylbenzene	88		20	ug/L		04/03/24 14:55	20
Hexachlorobutadiene	ND		20	ug/L		04/03/24 14:55	20

Eurofins Albuquerque

04/03/24 14:55

20

ug/L

ND

Client Sample ID: BW-5-20240329 Date Collected: 03/29/24 10:25 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-4

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		20	ug/L			04/03/24 14:55	20
Methylene Chloride	ND		60	ug/L			04/03/24 14:55	20
n-Butylbenzene	ND		60	ug/L			04/03/24 14:55	20
N-Propylbenzene	ND		20	ug/L			04/03/24 14:55	20
Naphthalene	460		40	ug/L			04/03/24 14:55	20
sec-Butylbenzene	ND		20	ug/L			04/03/24 14:55	20
Styrene	ND		20	ug/L			04/03/24 14:55	20
tert-Butylbenzene	ND		20	ug/L			04/03/24 14:55	20
Tetrachloroethene (PCE)	ND		20	ug/L			04/03/24 14:55	20
Toluene	660		20	ug/L			04/03/24 14:55	20
trans-1,2-Dichloroethene	ND		20	ug/L			04/03/24 14:55	20
trans-1,3-Dichloropropene	ND		20	ug/L			04/03/24 14:55	20
Trichloroethene (TCE)	ND		20	ug/L			04/03/24 14:55	20
Trichlorofluoromethane	ND		20	ug/L			04/03/24 14:55	20
Vinyl chloride	ND		20	ug/L			04/03/24 14:55	20
Xylenes, Total	1800		30	ug/L			04/03/24 14:55	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		70 - 130				04/03/24 14:55	20
Toluene-d8 (Surr)	90		70 - 130				04/03/24 14:55	20
4-Bromofluorobenzene (Surr)	93		70 - 130				04/03/24 14:55	20
Dibromofluoromethane (Surr)	119		70 - 130				04/03/24 14:55	20
Method: EPA-DW2 504.1 - E	DB, DBCP and	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	13	Н	0.94	ug/L		04/02/24 09:52	04/03/24 15:35	100

Client Sample ID: BW-7-20240329 Date Collected: 03/29/24 10:00 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-5

Matrix: Water

5

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 1,1,1,2-Tetrachloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1,1-Trichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1,2-Tetrachloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1,2-Trichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1,2-Trichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1,2-Trichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloropthene ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloropthene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trichlorobenzene ND 2.0
1,1,1,2-Tetrachloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1,1-Trichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1,2-Tetrachloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1,2-Tetrachloroethane ND 4.0 ug/L 04/03/24 15:22 2 1,1,2-Trichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethene ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroptopene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trichlorobenzene ND 4.0 ug/L 04/03/24 15:22 2 1,2,4-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 <
1,1,1-TrichloroethaneND2.0ug/L04/03/24 15:2221,1,2,2-TetrachloroethaneND4.0ug/L04/03/24 15:2221,1,2-TrichloroethaneND2.0ug/L04/03/24 15:2221,1-DichloroethaneND2.0ug/L04/03/24 15:2221,1-DichloroethaneND2.0ug/L04/03/24 15:2221,1-DichloroethaneND2.0ug/L04/03/24 15:2221,1-DichloroetheneND2.0ug/L04/03/24 15:2221,2,3-TrichlorobenzeneND2.0ug/L04/03/24 15:2221,2,3-TrichloropropaneND4.0ug/L04/03/24 15:2221,2,4-TrimethylbenzeneND2.0ug/L04/03/24 15:2221,2,4-TrimethylbenzeneND2.0ug/L04/03/24 15:2221,2,4-TrimethylbenzeneND2.0ug/L04/03/24 15:2221,2,4-TrimethylbenzeneND2.0ug/L04/03/24 15:2221,2,4-TrimethylbenzeneND2.0ug/L04/03/24 15:2221,2,4-TrimethylbenzeneND2.0ug/L04/03/24 15:2221,2,4-TrimethylbenzeneND2.0ug/L04/03/24 15:2221,2,4-TrimethylbenzeneND2.0ug/L04/03/24 15:2221,2,4-TrimethylbenzeneND2.0ug/L04/03/24 15:222
1,1,2,2-Tetrachloroethane ND 4.0 ug/L 04/03/24 15:22 2 1,1,2-Trichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethene ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 4.0 ug/L 04/03/24 15:22 2 1,2,4-Trinchlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
1,1,2-Trichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethene ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroptopene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichloroptopane ND 4.0 ug/L 04/03/24 15:22 2 1,2,4-Trinethylbenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
1,1-Dichloroethane ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroethene ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloroptopene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichloroptopane ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trichlorobenzene ND 4.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
1,1-Dichloroethene ND 2.0 ug/L 04/03/24 15:22 2 1,1-Dichloropropene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichloropropane ND 4.0 ug/L 04/03/24 15:22 2 1,2,4-Trinchlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
1,1-Dichloropropene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichloropropane ND 4.0 ug/L 04/03/24 15:22 2 1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trinchlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
1,2,3-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,3-Trichloropropane ND 4.0 ug/L 04/03/24 15:22 2 1,2,4-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
1,2,3-Trichloropropane ND 4.0 ug/L 04/03/24 15:22 2 1,2,4-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
1,2,4-Trichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
1,2,4-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2 1,2,4-Trimethylbenzene ND 1.0 </td
1,2-Dibromo-3-Chioropropane ND 4.0 ug/L 04/03/24 15:22 2
1,2-Dibromoethane (EDB) ND 2.0 ug/L 04/03/24 15:22 2
1,2-Dichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2
1.2-Dichloroethane (EDC) 240 5.0 ug/L 04/04/24 17:36 5
1,2-Dichloropropane ND 2.0 ug/L 04/03/24 15:22 2
1,3,5-Trimethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
1,3-Dichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2
1,3-Dichloropropane ND 2.0 ug/L 04/03/24 15:22 2
1,4-Dichlorobenzene ND 2.0 ug/L 04/03/24 15:22 2
1-Methvlnaphthalene ND 8.0 ug/L 04/03/24 15:22 2
2.2-Dichloropropane ND 4.0 ug/L 04/03/24 15:22 2
2-Butanone ND 20 ug/L 04/03/24 15:22 2
2-Chlorotoluene ND 2.0 ug/L 04/03/24 15:22 2
2-Hexanone ND 20 ug/L 04/03/24 15:22 2
2-Methylnaphthalene ND 8.0 ug/L 04/03/24 15:22 2
4-Chlorotoluene ND 2.0 ug/L 04/03/24 15:22 2
4-Isopropyltoluene ND 2.0 ug/L 04/03/24 15:22 2
4-Methyl-2-pentanone ND 20 ug/L 04/03/24 15:22 2
Acetone ND 20 ug/L 04/03/24 15:22 2
Benzene ND 2.0 ug/L 04/03/24 15:22 2
Bromobenzene ND 2.0 ug/L 04/03/24 15:22 2
Bromodichloromethane ND 2.0 ug/L 04/03/24 15:22 2
Dibromochloromethane ND 2.0 ug/L 04/03/24 15:22 2
Bromoform ND 2.0 ug/L 04/03/24 15:22 2
Bromomethane ND 6.0 ug/L 04/03/24 15:22 2
Carbon disulfide ND 20 ug/L 04/03/24 15:22 2
Carbon tetrachloride ND 2.0 ug/L 04/03/24 15:22 2
Chlorobenzene ND 2.0 ug/L 04/03/24 15:22 2
Chloroethane ND 4.0 ug/L 04/03/24 15:22 2
Chloroform ND 2.0 ug/L 04/03/24 15:22 2
Chloromethane ND 6.0 ug/L 04/03/24 15:22 2
cis-1,2-Dichloroethene ND 2.0 ug/L 04/03/24 15:22 2
cis-1,3-Dichloropropene ND 2.0 ug/L 04/03/24 15:22 2
Dibromomethane ND 2.0 ug/L 04/03/24 15:22 2
Dichlorodifluoromethane ND 2.0 ug/L 04/03/24 15:22 2
Ethylbenzene ND 2.0 ug/L 04/03/24 15:22 2
Hexachlorobutadiene ND 2.0 ug/L 04/03/24 15:22 2
Isopropylbenzene ND 2.0 ug/L 04/03/24 15:22 2

Client Sample ID: BW-7-20240329 Date Collected: 03/29/24 10:00 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-5

Matrix: Water

5

Method: SW846 8260B - Vo	latile Organic	Compoun	ds (GC/MS) (C	ontinued)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		2.0	ug/L			04/03/24 15:22	2
Methylene Chloride	ND		6.0	ug/L			04/03/24 15:22	2
n-Butylbenzene	ND		6.0	ug/L			04/03/24 15:22	2
N-Propylbenzene	ND		2.0	ug/L			04/03/24 15:22	2
Naphthalene	ND		4.0	ug/L			04/03/24 15:22	2
sec-Butylbenzene	ND		2.0	ug/L			04/03/24 15:22	2
Styrene	ND		2.0	ug/L			04/03/24 15:22	2
tert-Butylbenzene	ND		2.0	ug/L			04/03/24 15:22	2
Tetrachloroethene (PCE)	ND		2.0	ug/L			04/03/24 15:22	2
Toluene	ND		2.0	ug/L			04/03/24 15:22	2
trans-1,2-Dichloroethene	ND		2.0	ug/L			04/03/24 15:22	2
trans-1,3-Dichloropropene	ND		2.0	ug/L			04/03/24 15:22	2
Trichloroethene (TCE)	ND		2.0	ug/L			04/03/24 15:22	2
Trichlorofluoromethane	ND		2.0	ug/L			04/03/24 15:22	2
Vinyl chloride	ND		2.0	ug/L			04/03/24 15:22	2
Xylenes, Total	ND		3.0	ug/L			04/03/24 15:22	2
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4.0 Distributions all (0 mm)			70 100				04/00/04 45:00	

Surrogate	%Recovery	Qualifier	LIMITS	Prepared A	Analyzea	DII Fac
1,2-Dichloroethane-d4 (Surr)	114		70 - 130	04/	03/24 15:22	2
1,2-Dichloroethane-d4 (Surr)	117		70 - 130	04/	04/24 17:36	5
Toluene-d8 (Surr)	93		70 - 130	04/	03/24 15:22	2
4-Bromofluorobenzene (Surr)	88		70 - 130	04/	03/24 15:22	2
Dibromofluoromethane (Surr)	124		70 - 130	04/	03/24 15:22	2
Dibromofluoromethane (Surr)	133	S1+	70 - 130	04/	04/24 17:36	5
Mothod: EDA DW2 504.4		1 4 2 2 TO				
IVIELIUU EEA-UVV7 304 -						

Method. LI A-DW2 304.1 - LDL	, DDOI and	u 1,2,0-101						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.36	н	0.048	ug/L		04/02/24 09:52	04/03/24 15:52	5

Client Sample ID: BW-7R-20240328 Date Collected: 03/28/24 14:40 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-6

Matrix: Water

5

Method: SW846 8260B - V	olatile Organic	Compound	s (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		2.0	ug/L			04/04/24 18:03	2
1,1,1-Trichloroethane	ND		2.0	ug/L			04/04/24 18:03	2
1,1,2,2-Tetrachloroethane	ND		4.0	ug/L			04/04/24 18:03	2
1,1,2-Trichloroethane	ND		2.0	ug/L			04/04/24 18:03	2
1,1-Dichloroethane	ND		2.0	ug/L			04/04/24 18:03	2
1,1-Dichloroethene	ND		2.0	ug/L			04/04/24 18:03	2
1,1-Dichloropropene	ND		2.0	ug/L			04/04/24 18:03	2
1,2,3-Trichlorobenzene	ND		2.0	ug/L			04/04/24 18:03	2
1,2,3-Trichloropropane	ND		4.0	ug/L			04/04/24 18:03	2
1,2,4-Trichlorobenzene	ND		2.0	ug/L			04/04/24 18:03	2
1,2,4-Trimethylbenzene	ND		2.0	ug/L			04/04/24 18:03	2
1,2-Dibromo-3-Chloropropane	ND		4.0	ug/L			04/04/24 18:03	2
1,2-Dibromoethane (EDB)	3.9		2.0	ug/L			04/04/24 18:03	2
1,2-Dichlorobenzene	ND		2.0	ug/L			04/04/24 18:03	2
1,2-Dichloroethane (EDC)	190		2.0	ug/L			04/04/24 18:03	2
1,2-Dichloropropane	ND		2.0	ug/L			04/04/24 18:03	2
1,3,5-Trimethylbenzene	8.2		2.0	ug/L			04/04/24 18:03	2
1,3-Dichlorobenzene	ND		2.0	ug/L			04/04/24 18:03	2
1,3-Dichloropropane	ND		2.0	ug/L			04/04/24 18:03	2
1,4-Dichlorobenzene	ND		2.0	ug/L			04/04/24 18:03	2
1-Methylnaphthalene	ND		8.0	ug/L			04/04/24 18:03	2
2,2-Dichloropropane	ND		4.0	ug/L			04/04/24 18:03	2
2-Butanone	ND		20	ug/L			04/04/24 18:03	2
2-Chlorotoluene	ND		2.0	ug/L			04/04/24 18:03	2
2-Hexanone	ND		20	ug/L			04/04/24 18:03	2
2-Methylnaphthalene	ND		8.0	ug/L			04/04/24 18:03	2
4-Chlorotoluene	ND		2.0	ug/L			04/04/24 18:03	2
4-Isopropyltoluene	ND		2.0	ug/L			04/04/24 18:03	2
4-Methyl-2-pentanone	ND		20	ug/L			04/04/24 18:03	2
Acetone	ND		20	ug/L			04/04/24 18:03	2
Benzene	5.8		2.0	ug/L			04/04/24 18:03	2
Bromobenzene	ND		2.0	ug/L			04/04/24 18:03	2
Bromodichloromethane	ND		2.0	ug/L			04/04/24 18:03	2
Dibromochloromethane	ND		2.0	ug/L			04/04/24 18:03	2
Bromoform	ND		2.0	ug/L			04/04/24 18:03	2
Bromomethane	ND		6.0	ug/L			04/04/24 18:03	2
Carbon disulfide	ND		20	ug/L			04/04/24 18:03	2
Carbon tetrachloride	ND		2.0	ug/L			04/04/24 18:03	2
Chlorobenzene	ND		2.0	ug/L			04/04/24 18:03	2
Chloroethane	ND		4.0	ug/L			04/04/24 18:03	2
Chloroform	ND		2.0	ug/L			04/04/24 18:03	2
Chloromethane	ND		6.0	ug/L			04/04/24 18:03	2
cis-1,2-Dichloroethene	ND		2.0	ug/L			04/04/24 18:03	2
cis-1,3-Dichloropropene	ND		2.0	ug/L			04/04/24 18:03	2
Dibromomethane	ND		2.0	ug/L			04/04/24 18:03	2
Dichlorodifluoromethane	ND		2.0	ug/L			04/04/24 18:03	2
Ethylbenzene	ND		2.0	ug/L			04/04/24 18:03	2
Hexachlorobutadiene	ND		2.0	ug/L			04/04/24 18:03	2
Isopropylbenzene	ND		2.0	ug/L			04/04/24 18:03	2

Client Sample ID: BW-7R-20240328 Date Collected: 03/28/24 14:40 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-6

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		2.0	ug/L		·	04/04/24 18:03	2
Methylene Chloride	ND		6.0	ug/L			04/04/24 18:03	2
n-Butylbenzene	ND		6.0	ug/L			04/04/24 18:03	2
N-Propylbenzene	ND		2.0	ug/L			04/04/24 18:03	2
Naphthalene	ND		4.0	ug/L			04/04/24 18:03	2
sec-Butylbenzene	ND		2.0	ug/L			04/04/24 18:03	2
Styrene	ND		2.0	ug/L			04/04/24 18:03	2
tert-Butylbenzene	ND		2.0	ug/L			04/04/24 18:03	2
Tetrachloroethene (PCE)	ND		2.0	ug/L			04/04/24 18:03	2
Toluene	ND		2.0	ug/L			04/04/24 18:03	2
trans-1,2-Dichloroethene	ND		2.0	ug/L			04/04/24 18:03	2
trans-1,3-Dichloropropene	ND		2.0	ug/L			04/04/24 18:03	2
Trichloroethene (TCE)	ND		2.0	ug/L			04/04/24 18:03	2
Trichlorofluoromethane	ND		2.0	ug/L			04/04/24 18:03	2
Vinyl chloride	ND		2.0	ug/L			04/04/24 18:03	2
Xylenes, Total	9.4		3.0	ug/L			04/04/24 18:03	2
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130				04/04/24 18:03	2
Toluene-d8 (Surr)	93		70 - 130				04/04/24 18:03	2
4-Bromofluorobenzene (Surr)	88		70 - 130				04/04/24 18:03	2
Dibromofluoromethane (Surr)	124		70 - 130				04/04/24 18:03	2
_ Method: EPA-DW2 504.1 - E	DB, DBCP and	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	3.3	Н	0.19	ug/L		04/02/24 09:52	04/03/24 16:10	20

Client Sample ID: BW-8-20240329 Date Collected: 03/29/24 10:55 Date Received: 03/29/24 16:35

Isopropylbenzene

Lab Sample ID: 885-2074-7

Matrix: Water

Method: SW846 8260B - Vol	atile Organic	Compounds	i (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		50	ug/L			04/03/24 16:18	50
1,1,1-Trichloroethane	ND		50	ug/L			04/03/24 16:18	50
1,1,2,2-Tetrachloroethane	ND		100	ug/L			04/03/24 16:18	50
1,1,2-Trichloroethane	ND		50	ug/L			04/03/24 16:18	50
1,1-Dichloroethane	ND		50	ug/L			04/03/24 16:18	50
1,1-Dichloroethene	ND		50	ug/L			04/03/24 16:18	50
1,1-Dichloropropene	ND		50	ug/L			04/03/24 16:18	50
1,2,3-Trichlorobenzene	ND		50	ug/L			04/03/24 16:18	50
1,2,3-Trichloropropane	ND		100	ug/L			04/03/24 16:18	50
1,2,4-Trichlorobenzene	ND		50	ug/L			04/03/24 16:18	50
1,2,4-Trimethylbenzene	560		50	ug/L			04/03/24 16:18	50
1,2-Dibromo-3-Chloropropane	ND		100	ug/L			04/03/24 16:18	50
1,2-Dibromoethane (EDB)	ND		50	ug/L			04/03/24 16:18	50
1,2-Dichlorobenzene	ND		50	ug/L			04/03/24 16:18	50
1,2-Dichloroethane (EDC)	ND		20	ug/L			04/03/24 16:18	50
1.2-Dichloropropane	ND		50	ua/L			04/03/24 16:18	50
1.3.5-Trimethylbenzene	130		50	ug/L			04/03/24 16:18	50
1.3-Dichlorobenzene	ND		50	ug/L			04/03/24 16:18	50
1 3-Dichloropropane	ND		50	ug/l			04/03/24 16:18	50
1 4-Dichlorobenzene	ND		50	ug/L			04/03/24 16:18	50
1-Methylpaphthalene	ND		200	ug/L			04/03/24 16:18	50
2 2-Dichloropropane			100	ug/L			04/03/24 16:18	50
2-Butanone			500	ug/L			04/03/24 10:10	50
2-Chlorotoluene			50	ug/L			04/03/24 10:10	50
2-Hevanone			500	ug/L			04/03/24 10:10	50
2 Mothylpaphthalopo			200	ug/L			04/03/24 10:10	50
			200	ug/L			04/03/24 10.10	50
			50	ug/L			04/03/24 10.10	50
4-isopropyiloidene	ND		50	ug/L			04/03/24 10:16	50
4-Methyl-2-pentanone	ND		500	ug/L			04/03/24 16:18	50
Acetone	ND		500	ug/L			04/03/24 16:18	50
Benzene	0008		500	ug/L			04/04/24 18:30	500
Bromobenzene	ND		50	ug/L			04/03/24 16:18	50
Bromodicnioromethane	ND		50	ug/L			04/03/24 16:18	50
Dibromochloromethane	ND		50	ug/L			04/03/24 16:18	50
Bromoform	ND		50	ug/L			04/03/24 16:18	50
Bromomethane	ND		150	ug/L			04/03/24 16:18	50
Carbon disulfide	ND		500	ug/L			04/03/24 16:18	50
Carbon tetrachloride	ND		50	ug/L			04/03/24 16:18	50
Chlorobenzene	ND		50	ug/L			04/03/24 16:18	50
Chloroethane	ND		100	ug/L			04/03/24 16:18	50
Chloroform	ND		50	ug/L			04/03/24 16:18	50
Chloromethane	ND		150	ug/L			04/03/24 16:18	50
cis-1,2-Dichloroethene	ND		50	ug/L			04/03/24 16:18	50
cis-1,3-Dichloropropene	ND		50	ug/L			04/03/24 16:18	50
Dibromomethane	ND		50	ug/L			04/03/24 16:18	50
Dichlorodifluoromethane	ND		50	ug/L			04/03/24 16:18	50
Ethylbenzene	810		50	ug/L			04/03/24 16:18	50
Hexachlorobutadiene	ND		50	ug/L			04/03/24 16:18	50

Eurofins Albuquerque

04/03/24 16:18

50

ug/L

ND

Client Sample ID: BW-8-20240329 Date Collected: 03/29/24 10:55 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-7

Matrix: Water

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) (Continued)											
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Methyl-tert-butyl Ether (MTBE)	ND		50	ug/L			04/03/24 16:18	50			
Methylene Chloride	ND		150	ug/L			04/03/24 16:18	50			
n-Butylbenzene	ND		150	ug/L			04/03/24 16:18	50			
N-Propylbenzene	65		50	ug/L			04/03/24 16:18	50			
Naphthalene	220		100	ug/L			04/03/24 16:18	50			
sec-Butylbenzene	ND		50	ug/L			04/03/24 16:18	50			
Styrene	ND		50	ug/L			04/03/24 16:18	50			
tert-Butylbenzene	ND		50	ug/L			04/03/24 16:18	50			
Tetrachloroethene (PCE)	ND		50	ug/L			04/03/24 16:18	50			
Toluene	12000		500	ug/L			04/04/24 18:30	500			
trans-1,2-Dichloroethene	ND		50	ug/L			04/03/24 16:18	50			
trans-1,3-Dichloropropene	ND		50	ug/L			04/03/24 16:18	50			
Trichloroethene (TCE)	ND		50	ug/L			04/03/24 16:18	50			
Trichlorofluoromethane	ND		50	ug/L			04/03/24 16:18	50			
Vinyl chloride	ND		50	ug/L			04/03/24 16:18	50			
Xylenes, Total	4600		75	ug/L			04/03/24 16:18	50			

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130		04/03/24 16:18	50
1,2-Dichloroethane-d4 (Surr)	110		70 - 130		04/04/24 18:30	500
Toluene-d8 (Surr)	93		70 - 130		04/03/24 16:18	50
Toluene-d8 (Surr)	96		70 - 130		04/04/24 18:30	500
4-Bromofluorobenzene (Surr)	89		70 - 130		04/03/24 16:18	50
4-Bromofluorobenzene (Surr)	83		70 - 130		04/04/24 18:30	500
Dibromofluoromethane (Surr)	119		70 - 130		04/03/24 16:18	50
Dibromofluoromethane (Surr)	126		70 - 130		04/04/24 18:30	500

Wethou: EPA-DW2 504.1 - 1	EDD, DDCP and	11,2,3-101						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.53	H	0.047	ug/L		04/02/24 09:52	04/03/24 16:27	5

Client Sample ID: MW-12-20240326 Date Collected: 03/26/24 15:00 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-8 Matrix: Water

5

Analyce Result Qualifier RL Unit D Prepared Analyzed DI012211646 10 1,1,1-Trichtorosthane ND 10 ugL 04032211646 10 1,1,1-Trichtorosthane ND 20 ugL 04032211646 10 1,1,2-Trichtorosthane ND 10 ugL 04032211646 10 1,1-Dichtorosthane ND 10 ugL 0403221645 10 1,1-Dichtorosthane ND 10 ugL 0403221645 10 1,2-Strichtorosthane ND 10 ugL 04032	Method: SW846 8260B - Vola	atile Organic	Compounds	s (GC/MS)					
ND 10 ug/L 00/03/21 (64/5 10 1,1,2-Trichtoreshane ND 10 ug/L 04/03/21 (64/5 10 1,1,2-Trichtoreshane ND 10 ug/L 04/03/21 (64/5 10 1,1,2-Trichtoreshane ND 10 ug/L 04/03/21 (64/5 10 1,1-Dothoreshane ND 10 ug/L 04/03/21 (64/5 10 1,1-Dothoresprese ND 10 ug/L 04/03/21 (64/5 10 1,2.3-Trichtoropropane ND 20 ug/L 04/03/21 (64/5 10 1,2.4-Trinethyberzene ND 10 ug/L 04/03/21 (64/5 10 1,2-Dothoroberzene ND 10 ug/L 04/03/21 (64/5 10 1,2-Dothoroberzene <th>Analyte</th> <th>Result</th> <th>Qualifier</th> <th>RL</th> <th>Unit</th> <th>D</th> <th>Prepared</th> <th>Analyzed</th> <th>Dil Fac</th>	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Trichloroshane ND 10 ugL 040324 1845 10 1,1.2-Trichloroshane ND 20 ugL 040324 1845 10 1,1.2-Trichloroshane ND 10 ugL 040324 1845 10 1,1-Dichloroshane ND 10 ugL 040324 1845 10 1,1-Dichloroshane ND 10 ugL 040324 1845 10 1,1-Dichloroshane ND 10 ugL 040324 1845 10 1,2.3-Trichloroshane ND 10 ugL 040324 1845 10 1,2.4-Trichloroshane ND 10 ugL 040324 1845 10 1,2.4-Trichloroshane ND 10 ugL 040324 1845 10 1.2.Dichloroshane ND 10 ugL 040324 1845 10 1.2.Dichloroshane (EDC) 89 10 ugL 040324 1845 10 1.2.Dichloroshane ND 10 ugL 040324 1845 10 1.2.Dichloroshane <t< td=""><td>1,1,1,2-Tetrachloroethane</td><td>ND</td><td></td><td>10</td><td>ug/L</td><td></td><td></td><td>04/03/24 16:45</td><td>10</td></t<>	1,1,1,2-Tetrachloroethane	ND		10	ug/L			04/03/24 16:45	10
ND 20 ug/L 0440324 16.45 10 1,1-2:Trichhoroethane ND 10 ug/L 040324 16.45 10 1,1-Dichloroethane ND 10 ug/L 040324 16.45 10 1,1-Dichloroethene ND 10 ug/L 040324 16.45 10 1,2,3-Trichloropopane ND 20 ug/L 040324 16.45 10 1,2,3-Trichloropopane ND 20 ug/L 040324 16.45 10 1,2,4-Trinethylberzene ND 10 ug/L 040324 16.45 10 1,2-Dichorobanzene ND <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>10</td> <td>ug/L</td> <td></td> <td></td> <td>04/03/24 16:45</td> <td>10</td>	1,1,1-Trichloroethane	ND		10	ug/L			04/03/24 16:45	10
ND 10 ugl. 0440324 16.45 10 1.1-Dichloroethane ND 10 ugl. 040324 16.45 10 1.1-Dichloroptopene ND 10 ugl. 040324 16.45 10 1.1-Dichloroptopene ND 10 ugl. 040324 16.45 10 1.2.3-Trichloroptopane ND 10 ugl. 040324 16.45 10 1.2.3-Trichloroptopane ND 10 ugl. 040324 16.45 10 1.2.4-Trichloroptopane ND 10 ugl. 040324 16.45 10 1.2.4-Trichloroptopane ND 10 ugl. 040324 16.45 10 1.2-Dichloroptonane ND 10 ugl. 040324 16.45 10 1.2-Dichloroptonene	1,1,2,2-Tetrachloroethane	ND		20	ug/L			04/03/24 16:45	10
1.1-Dichloroethane ND 10 ugL 0400224 16.45 10 1.1-Dichloroberne ND 10 ugL 0400224 16.45 10 1.2.3-Trichlorobenzene ND 10 ugL 0400224 16.45 10 1.2.3-Trichlorobenzene ND 20 ugL 0400224 16.45 10 1.2.4-Trindthylbenzene ND 10 ugL 0400224 16.45 10 1.2.4-Trindthylbenzene ND 10 ugL 0400224 16.45 10 1.2.Dichorobenzene ND 10 ugL 0400224 16.45 10 1.2.Dichorobenzene ND 10 ugL 0400224 16.45 10 1.2.Dichorobenzene ND 10 ugL 0400224 16.45 10 1.3.Dichorobenzene ND 10 ugL 0400224 16.45 10 1.3.Dichorobenzene ND 10 ugL 0400224 16.45 10 1.3.Dichorobenzene ND 10 ugL 0400224 16.45 10 1.3.	1,1,2-Trichloroethane	ND		10	ug/L			04/03/24 16:45	10
1.1-Dichloropene ND 10 ug/L 04/03/24 16:45 10 1.1-Dichloropene ND 10 ug/L 04/03/24 16:45 10 1.2.3-Trichloropene ND 20 ug/L 04/03/24 16:45 10 1.2.3-Trichloropenae ND 10 ug/L 04/03/24 16:45 10 1.2.4-Trichloropenae ND 10 ug/L 04/03/24 16:45 10 1.2.4-Trichloropenae ND 10 ug/L 04/03/24 16:45 10 1.2.0-Dichloropenae ND 10 ug/L 04/03/24 16:45 10 1.2.0-Dichloropenae ND 10 ug/L 04/03/24 16:45 10 1.2.0-Dichloropenae ND 10 ug/L 04/03/24 16:45 10 1.3.Dichloropenae ND 10 ug/L 04/03/24 16:45 10 1.3.Dichloropenae ND 10 ug/L 04/03/24 16:45 10 1.4.Dichlorobenzene ND 10 ug/L 04/03/24 16:45 10	1,1-Dichloroethane	ND		10	ug/L			04/03/24 16:45	10
1,1-Dichloropropene ND 10 ug/L 04/03/24 16:45 10 1,2-3-Trichloropropane ND 20 ug/L 04/03/24 16:45 10 1,2,4-Trinchlyberzne ND 10 ug/L 04/03/24 16:45 10 1,2-Litrinchlyberzne ND 10 ug/L 04/03/24 16:45 10 1,2-Ditromochanne (EDB) ND 10 ug/L 04/03/24 16:45 10 1,2-Ditromochanne (EDC) 89 10 ug/L 04/03/24 16:45 10 1,2-Dichlorophane ND 10 ug/L 04/03/24 16:45 10 1,3-Erimethybhenzene ND 10 ug/L 04/03/24 16:45 10	1,1-Dichloroethene	ND		10	ug/L			04/03/24 16:45	10
1,2.3-Trichlorobenzene ND 10 ugl. 04/03/24 16:45 10 1,2.3-Trichlorobenzene ND 10 ugl. 04/03/24 16:45 10 1,2.4-Trichlorobenzene ND 10 ugl. 04/03/24 16:45 10 1,2.4-Trichlorobenzene ND 20 ugl. 04/03/24 16:45 10 1,2.0-Dichlorochane (EDB) ND 10 ugl. 04/03/24 16:45 10 1,2-Dichlorochane (EDC) 89 10 ugl. 04/03/24 16:45 10 1,2-Dichlorochane (EDC) 80 0 ugl. 04/03/24 16:45 10 1,2-Dichlorochane (EDC) ND 10 ugl. 04/03/24	1,1-Dichloropropene	ND		10	ug/L			04/03/24 16:45	10
1,2,3-Trichloropropane ND 20 ug/L 04/03/24 16.45 10 1,2,4-Trinchloroberzene ND 10 ug/L 04/03/24 16.45 10 1,2-Ditrome-5-Chloropropane ND 20 ug/L 04/03/24 16.45 10 1,2-Ditrome-5-Chloropropane ND 10 ug/L 04/03/24 16.45 10 1,2-Ditchorobrane (EDD) ND 10 ug/L 04/03/24 16.45 10 1,2-Ditchoropropane ND 10 ug/L 04/03/24 16.45 10 1,2-Ditchoropropane ND 10 ug/L 04/03/24 16.45 10 1,3-Ditchoroberzene ND 10 ug/L 04/03/24 16.45 10 2,2-Dichoroberzene ND 10 ug/L 04/03/24 16.45	1,2,3-Trichlorobenzene	ND		10	ug/L			04/03/24 16:45	10
12.4-Trienklorobenzene ND 10 ugL 04/03/24 16:45 10 12.4-Trienklybenzene ND 10 ugL 04/03/24 16:45 10 1.2-Ditrome-3-Chioropropane ND 10 ugL 04/03/24 16:45 10 1.2-Ditromestnare (EDB) ND 10 ugL 04/03/24 16:45 10 1.2-Dichorobenzene ND 10 ugL 04/03/24 16:45 10 1.2-Dichorobenzene ND 10 ugL 04/03/24 16:45 10 1.3-Dichioropropane ND 10 ugL 04/03/24 16:45 10 1.3-Dichioropropane ND 10 ugL 04/03/24 16:45 10 1.3-Dichioropropane ND 10 ugL 04/03/24 16:45 10 2.Dichioropropane ND 20 ugL 04/03/24 16:45 10 2.Dichioropropane ND 10 ugL 04/03/24 16:45 10 2.Dichioropropane ND 10 ugL 04/03/24 16:45 10	1,2,3-Trichloropropane	ND		20	ug/L			04/03/24 16:45	10
1,2,4-Timethylbenzene ND 10 ug/L 04/03/24 16:45 10 1,2-Dibromethane (EDB) ND 20 ug/L 04/03/24 16:45 10 1,2-Dibromethane (EDC) 89 10 ug/L 04/03/24 16:45 10 1,2-Dichlorophane ND 10 ug/L 04/03/24 16:45 10 1,2-Dichlorophane ND 10 ug/L 04/03/24 16:45 10 1,3-E-Timethylbenzene ND 10 ug/L 04/03/24 16:45 10 1,3-Dichlorobenzene ND 10 ug/L 04/03/24 16:45 10 1,3-Dichlorobenzene ND 10 ug/L 04/03/24 16:45 10 1,4-Dichlorobenzene ND 10 ug/L 04/03/24 16:45 10 2,2-Dichloropopane ND 100 ug/L 04/03/24 16:45 10 2,2-Dichloropopane ND 10 ug/L 04/03/24 16:45 10 2,2-Dichloropopane ND 10 ug/L 04/03/24 16:45 10	1,2,4-Trichlorobenzene	ND		10	ug/L			04/03/24 16:45	10
ND 20 ugL 04/03/24 16:45 10 1.2-Dibromeshane (EDB) ND 10 ug/L 04/03/24 16:45 10 1.2-Dichoroberzene ND 10 ug/L 04/03/24 16:45 10 1.2-Dichoroberzene ND 10 ug/L 04/03/24 16:45 10 1.2-Dichoroperane ND 10 ug/L 04/03/24 16:45 10 1.3-Dichoroperane ND 10 ug/L 04/03/24 16:45 10 1.3-Dichoroperane ND 10 ug/L 04/03/24 16:45 10 1.3-Dichoroperane ND 10 ug/L 04/03/24 16:45 10 1.4-Dichoroperane ND 20 ug/L 04/03/24 16:45 10 2-Dichoroperane ND 100 ug/L 04/03/24 16:45 10 2-Dichoroperane ND 100 ug/L 04/03/24 16:45 10 2-Dichoroperane ND 100 ug/L 04/03/24 16:45 10 2-Dichoroperane ND <td>1,2,4-Trimethylbenzene</td> <td>ND</td> <td></td> <td>10</td> <td>ug/L</td> <td></td> <td></td> <td>04/03/24 16:45</td> <td>10</td>	1,2,4-Trimethylbenzene	ND		10	ug/L			04/03/24 16:45	10
1.2-Dichloroochane (EDB) ND 10 ug/L 04/03/24 16:45 10 1.2-Dichlorooberzene ND 10 ug/L 04/03/24 16:45 10 1.2-Dichlorophane (EDC) 89 10 ug/L 04/03/24 16:45 10 1.2-Dichlorophane ND 10 ug/L 04/03/24 16:45 10 1.3-Dichloroberzene ND 10 ug/L 04/03/24 16:45 10 1.3-Dichloroberzene ND 10 ug/L 04/03/24 16:45 10 1.3-Dichloroberzene ND 10 ug/L 04/03/24 16:45 10 1.4-Dichloroberzene ND 20 ug/L 04/03/24 16:45 10 2.2-Dichloropopane ND 10 ug/L 04/03/24 16:45 10 2.2-Dichloropopane ND 10 ug/L 04/03/24 16:45 10 2.4-Dichloroberzene ND 10 ug/L 04/03/24 16:45 10 2.4-Dichloroberzene ND 10 ug/L 04/03/24 16:45 10 <td>1,2-Dibromo-3-Chloropropane</td> <td>ND</td> <td></td> <td>20</td> <td>ug/L</td> <td></td> <td></td> <td>04/03/24 16:45</td> <td>10</td>	1,2-Dibromo-3-Chloropropane	ND		20	ug/L			04/03/24 16:45	10
1.2-Dichlorobenzene ND 10 ug/L 04/03/24 16:45 10 1.2-Dichloropentane (EDC) 89 10 ug/L 04/03/24 16:45 10 1.2-Dichloropentane ND 10 ug/L 04/03/24 16:45 10 1.3-Dichloropenzene ND 10 ug/L 04/03/24 16:45 10 1.3-Dichloropenzene ND 10 ug/L 04/03/24 16:45 10 1.3-Dichloropenzene ND 10 ug/L 04/03/24 16:45 10 1.4-Dichloropenzene ND 40 ug/L 04/03/24 16:45 10 1.4-Dichloropenzene ND 10 ug/L 04/03/24 16:45 10 2-Dichloropenzene ND 10 ug/L 04/03/24 16:45 10 2-Dichloropenzene ND 10 ug/L 04/03/24 16:45 10 2-Dichloropenzene ND 10 ug/L 04/03/24 16:45 10 2-Hexanone ND 10 ug/L 04/03/24 16:45 10	1,2-Dibromoethane (EDB)	ND		10	ug/L			04/03/24 16:45	10
1,2-Dichloropethane (EDC) 89 10 ug/L 04/03/24 16.45 10 1,2-Dichloropropane ND 10 ug/L 04/03/24 16.45 10 1,3-Drinterthylbenzene ND 10 ug/L 04/03/24 16.45 10 1,3-Dichloropropane ND 10 ug/L 04/03/24 16.45 10 1,4-Dichlorobenzene ND 10 ug/L 04/03/24 16.45 10 1.4-Dichlorobenzene ND 40 ug/L 04/03/24 16.45 10 1.4-Dichlorobenzene ND 20 ug/L 04/03/24 16.45 10 2.2-Dichloropropane ND 100 ug/L 04/03/24 16.45 10 2.4-Dichorobuene ND 100 ug/L 04/03/24 16.45 10 2-Hexanone ND 100 ug/L 04/03/24 16.45 10 4-Chorobuene ND 100 ug/L 04/03/24 16.45 10 4-Soropyticulene ND 10 ug/L 04/03/24 16.45 10	1,2-Dichlorobenzene	ND		10	ug/L			04/03/24 16:45	10
1.2-Dichloropropane ND 10 ug/L 04/03/24 16.45 10 1.3.5-Trimethylbenzene ND 10 ug/L 04/03/24 16.45 10 1.3-Dichlorobenzene ND 10 ug/L 04/03/24 16.45 10 1.3-Dichlorobenzene ND 10 ug/L 04/03/24 16.45 10 1.4-Dichlorobenzene ND 0 ug/L 04/03/24 16.45 10 1.4-Dichlorobenzene ND 0 ug/L 04/03/24 16.45 10 2.2-Dichloropropane ND 20 ug/L 04/03/24 16.45 10 2.2-Dichloropropane ND 100 ug/L 04/03/24 16.45 10 2Elkoratone ND 100 ug/L 04/03/24 16.45 10 2Elkoratone ND 100 ug/L 04/03/24 16.45 10 2Hextonee ND 100 ug/L 04/03/24 16.45 10 2Hextonee ND 10 ug/L 04/03/24 16.45 10 2Hex	1,2-Dichloroethane (EDC)	89		10	ug/L			04/03/24 16:45	10
1,3,5-Trimethylbenzene ND 10 ug/L 04/03/24 16:45 10 1,3-Dichloropropane ND 10 ug/L 04/03/24 16:45 10 1.3-Dichloropropane ND 10 ug/L 04/03/24 16:45 10 1.4-Dichlorobenzene ND 40 ug/L 04/03/24 16:45 10 2.2-Dichloropropane ND 20 ug/L 04/03/24 16:45 10 2.2-Dichloropropane ND 100 ug/L 04/03/24 16:45 10 2-Chrohoropropane ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 4-Choropoluene ND 10 ug/L 04/03/24 16:45 10 4-Storopyltoluene ND 10 ug/L 04/03/24 16:45 10 A-Choropoluene ND 100 ug/L 04/03/24 16:45 10 Berzene	1,2-Dichloropropane	ND		10	ug/L			04/03/24 16:45	10
ND 10 ug/L 04/03/24 16:45 10 1,3-Dichloropropane ND 10 ug/L 04/03/24 16:45 10 1,4-Dichlorobenzene ND 10 ug/L 04/03/24 16:45 10 1,4-Dichlorobenzene ND 00 ug/L 04/03/24 16:45 10 2.2-Dichloropropane ND 100 ug/L 04/03/24 16:45 10 2-Huanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 10 ug/L 04/03/24 16:45 10 4-Stoprop/Ibulene ND 10 ug/L 04/03/24 16:45 10 4-Stoprop/Ibulene ND 100 ug/L 04/03/24 16:45 10 Benzene ND 100 ug/L 04/03/24 16:45 10 Bromobenzene ND 100	1,3,5-Trimethylbenzene	ND		10	ug/L			04/03/24 16:45	10
1.3-Dichloropropane ND 10 ug/L 04/03/24 16:45 10 1.4-Dichlorobenzene ND 10 ug/L 04/03/24 16:45 10 2-Dichloropropane ND 20 ug/L 04/03/24 16:45 10 2-Dichloropropane ND 20 ug/L 04/03/24 16:45 10 2-Dichloropropane ND 100 ug/L 04/03/24 16:45 10 2-Dichloropropane ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 10 ug/L 04/03/24 16:45 10 4-Storopti/louene ND <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>10</td> <td>ug/L</td> <td></td> <td></td> <td>04/03/24 16:45</td> <td>10</td>	1,3-Dichlorobenzene	ND		10	ug/L			04/03/24 16:45	10
1.4-Dichlorobenzene ND 10 ug/L 04/03/24 16:45 10 1.4-Bichloropropane ND 40 ug/L 04/03/24 16:45 10 2.2-Dichloropropane ND 20 ug/L 04/03/24 16:45 10 2.2-Dichloropropane ND 100 ug/L 04/03/24 16:45 10 2-Elutanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 10 ug/L 04/03/24 16:45 10 2-Hexanone ND 10 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 4-Store ND 100 ug/L 04/03/24 16:45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND<	1.3-Dichloropropane	ND		10	ua/L			04/03/24 16:45	10
ND 40 ug/L 04/03/24 16:45 10 2.2-Dichloropropane ND 20 ug/L 04/03/24 16:45 10 2.4-Dichloropropane ND 100 ug/L 04/03/24 16:45 10 2-Butanone ND 100 ug/L 04/03/24 16:45 10 2-Chlorobluene ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 10 ug/L 04/03/24 16:45 10 4-Chiorobluene ND 100 ug/L 04/03/24 16:45 10 4-Sopropyltoluene ND 100 ug/L 04/03/24 16:45 10 Benzone MD 100 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 u	1.4-Dichlorobenzene	ND		10	ua/L			04/03/24 16:45	10
2.2-Dichloropropane ND 20 ug/L 04/03/24 16.45 10 2-Butanone ND 100 ug/L 04/03/24 16.45 10 2-Hexanone ND 10 ug/L 04/03/24 16.45 10 2-Hexanone ND 100 ug/L 04/03/24 16.45 10 2-Hexanone ND 40 ug/L 04/03/24 16.45 10 2-Hexanone ND 10 ug/L 04/03/24 16.45 10 4-Chorotoluene ND 10 ug/L 04/03/24 16.45 10 4-Methyl-2-pentanone ND 100 ug/L 04/03/24 16.45 10 Acetone ND 100 ug/L 04/03/24 16.45 10 Benzene ND 10 ug/L 04/03/24 16.45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16.45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16.45 10 Dibromochloromethane ND	1-Methylnaphthalene	ND		40	ua/L			04/03/24 16:45	10
2 ND 100 ug/L 04/03/24 16:45 10 2-Chorotoluene ND 100 ug/L 04/03/24 16:45 10 2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Methylnaphthalene ND 40 ug/L 04/03/24 16:45 10 2-Methylnaphthalene ND 10 ug/L 04/03/24 16:45 10 4-Chlorotoluene ND 10 ug/L 04/03/24 16:45 10 4-Stopropyltoluene ND 100 ug/L 04/03/24 16:45 10 A-Methyl-2-pentanone ND 100 ug/L 04/03/24 16:45 10 Benzene 44 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16:45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16:45 10 Carbon disulfide <	2.2-Dichloropropane	ND		20	ua/L			04/03/24 16:45	10
2-Chlorotoluene ND 10 ug/L 04/03/24 16.45 10 2-Hexanone ND 100 ug/L 04/03/24 16.45 10 2-Metrylnaptithalene ND 40 ug/L 04/03/24 16.45 10 4-Chlorotoluene ND 10 ug/L 04/03/24 16.45 10 4-Stopropytoluene ND 10 ug/L 04/03/24 16.45 10 4-stopropytoluene ND 100 ug/L 04/03/24 16.45 10 4-stopropytoluene ND 100 ug/L 04/03/24 16.45 10 6-stone ND 100 ug/L 04/03/24 16.45 10 Bromobenzene ND 10 ug/L 04/03/24 16.45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16.45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16.45 10 Bromodichloromethane ND 30 ug/L 04/03/24 16.45 10 Carbon disulfide<	2-Butanone	ND		100	ua/L			04/03/24 16:45	10
2-Hexanone ND 100 ug/L 04/03/24 16:45 10 2-Methylnaphthalene ND 40 ug/L 04/03/24 16:45 10 4-Chiorotoluene ND 10 ug/L 04/03/24 16:45 10 4-Isopropyltoluene ND 10 ug/L 04/03/24 16:45 10 4-Methyl-2-pentanone ND 100 ug/L 04/03/24 16:45 10 Acetone ND 100 ug/L 04/03/24 16:45 10 Benzene 44 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromoform ND 10 ug/L 04/03/24 16:45 10 Carbon tetrachloride ND 10 ug/L 04/03/24 16:45 10 Carbon tetrachloride	2-Chlorotoluene	ND		10	ug/L			04/03/24 16:45	10
2-Methylnaphthalene ND Ad ug/L 04/03/24 16:45 10 4-Chlorotoluene ND 10 ug/L 04/03/24 16:45 10 4-Sopropyltoluene ND 10 ug/L 04/03/24 16:45 10 4-Methyl-2-pentanone ND 100 ug/L 04/03/24 16:45 10 Acetone ND 100 ug/L 04/03/24 16:45 10 Benzene ND 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromodichloromethane ND 30 ug/L 04/03/24 16:45 10 Carbon isulfide ND 10 ug/L 04/03/24 16:45 10 Carbon isulfide ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene	2-Hexanone	ND		100	ug/L			04/03/24 16:45	10
International Ind Ind <thind< th=""> <t< td=""><td>2-Methylnaphthalene</td><td>ND</td><td></td><td>40</td><td>ug/l</td><td></td><td></td><td>04/03/24 16:45</td><td>10</td></t<></thind<>	2-Methylnaphthalene	ND		40	ug/l			04/03/24 16:45	10
Alsopropytoluene ND 10 ug/L 04/03/24 16:45 10 4-Methyl-2-pentanone ND 100 ug/L 04/03/24 16:45 10 Acetone ND 100 ug/L 04/03/24 16:45 10 Benzene 44 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Bromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromoform ND 10 ug/L 04/03/24 16:45 10 Bromoform ND 100 ug/L 04/03/24 16:45 10 Carbon disulfide ND 100 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND <td< td=""><td>4-Chlorotoluene</td><td>ND</td><td></td><td>10</td><td>ug/L</td><td></td><td></td><td>04/03/24 16:45</td><td>10</td></td<>	4-Chlorotoluene	ND		10	ug/L			04/03/24 16:45	10
Amethyl-2-pentanone ND 100 ug/L 04/03/24 16:45 10 Acetone ND 100 ug/L 04/03/24 16:45 10 Benzene 44 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromoform ND 10 ug/L 04/03/24 16:45 10 Bromoform ND 30 ug/L 04/03/24 16:45 10 Carbon disulfide ND 100 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND	4-Isopropyltoluene	ND		10	ug/l			04/03/24 16:45	10
Name ND 100 ug/L 04/03/24 16:45 10 Benzene 44 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromoform ND 10 ug/L 04/03/24 16:45 10 Bromoform ND 10 ug/L 04/03/24 16:45 10 Bromothane ND 30 ug/L 04/03/24 16:45 10 Carbon disulfide ND 100 ug/L 04/03/24 16:45 10 Carbon tetrachloride ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chloroform ND 20 ug/L 04/03/24 16:45 10 Chloroform ND 30	4-Methyl-2-pentanone	ND		100	ug/L			04/03/24 16:45	10
Benzene 44 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Bromobichloromethane ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromotentane ND 10 ug/L 04/03/24 16:45 10 Carbon disulfide ND 100 ug/L 04/03/24 16:45 10 Carbon tetrachloride ND 100 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chloroform ND 10 ug/L 04/03/24 16:45 10 Chlorofetha	Acetone	ND		100	ug/L			04/03/24 16:45	10
Bromobenzene ND 10 ug/L 04/03/24 16:45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16:45 10 Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromodichloromethane ND 10 ug/L 04/03/24 16:45 10 Bromotorom ND 10 ug/L 04/03/24 16:45 10 Bromotorom ND 10 ug/L 04/03/24 16:45 10 Carbon disulfide ND 100 ug/L 04/03/24 16:45 10 Carbon tetrachloride ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chloroform ND 20 ug/L 04/03/24 16:45 10 Chloroform ND 10 ug/L 04/03/24 16:45 10 Chloroform ND 10 ug/L 04/03/24 16:45 10 Chloroforhane ND	Benzene	44		10	ug/l			04/03/24 16:45	10
International and the second	Bromobenzene	ND		10	ug/L			04/03/24 16:45	10
Dibromochloromethane ND 10 ug/L 04/03/24 16:45 10 Bromoform ND 10 ug/L 04/03/24 16:45 10 Bromoform ND 10 ug/L 04/03/24 16:45 10 Bromomethane ND 30 ug/L 04/03/24 16:45 10 Carbon disulfide ND 100 ug/L 04/03/24 16:45 10 Carbon tetrachloride ND 100 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chloroethane ND 20 ug/L 04/03/24 16:45 10 Chloroethane ND 20 ug/L 04/03/24 16:45 10 Chloromethane ND 30 ug/L 04/03/24 16:45 10 Cis-1,2-Dichloroethene ND 10 ug/L 04/03/24 16:45 10 cis-1,3-Dichloropropene ND 10 ug/L 04/03/24 16:45 10 Dibromomethane	Bromodichloromethane	ND		10	ug/L			04/03/24 16:45	10
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	Dibromochloromethane	ND		10	ug/L			04/03/24 16:45	10
Indication Indication <thindication< th=""> Indication Indicati</thindication<>	Bromoform	ND		10	ug/L			04/03/24 16:45	10
Carbon disulfide ND 100 ug/L 04/03/24 16:45 10 Carbon tetrachloride ND 10 ug/L 04/03/24 16:45 10 Carbon tetrachloride ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 20 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chloroform ND 10 ug/L 04/03/24 16:45 10 Chloromethane ND 30 ug/L 04/03/24 16:45 10 Cis-1,2-Dichloroethene ND 10 ug/L 04/03/24 16:45 10 cis-1,3-Dichloropropene ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenze	Bromomethane	ND		30	ug/L			04/03/24 16:45	10
Carbon tetrachloride ND 10 ug/L 04/03/24 16:45 10 Carbon tetrachloride ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 20 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chloroform ND 30 ug/L 04/03/24 16:45 10 Chloromethane ND 10 ug/L 04/03/24 16:45 10 cis-1,2-Dichloroptopene ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene	Carbon disulfide	ND		100	ug/L			04/03/24 16:45	10
Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 10 ug/L 04/03/24 16:45 10 Chlorobenzene ND 20 ug/L 04/03/24 16:45 10 Chloroform ND 10 ug/L 04/03/24 16:45 10 Chloropethane ND 30 ug/L 04/03/24 16:45 10 Chloropethane ND 30 ug/L 04/03/24 16:45 10 cis-1,2-Dichloroptopene ND 10 ug/L 04/03/24 16:45 10 cis-1,3-Dichloropropene ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene ND 10 ug/L 04/03/24 16:45 10	Carbon tetrachloride	ND		10	ug/L			04/03/24 16:45	10
Chloroethane ND 20 ug/L 04/03/24 16:45 10 Chloroethane ND 10 ug/L 04/03/24 16:45 10 Chloroethane ND 10 ug/L 04/03/24 16:45 10 Chloroethane ND 30 ug/L 04/03/24 16:45 10 Chloroethane ND 30 ug/L 04/03/24 16:45 10 cis-1,2-Dichloroethene ND 10 ug/L 04/03/24 16:45 10 cis-1,3-Dichloropropene ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene ND 10 ug/L 04/03/24 16:45 10	Chlorobenzene	ND		10	ug/L			04/03/24 16:45	10
Chloroform ND 10 ug/L 04/03/24 16:45 10 Chloroform ND 10 ug/L 04/03/24 16:45 10 Chloromethane ND 30 ug/L 04/03/24 16:45 10 cis-1,2-Dichloroethene ND 10 ug/L 04/03/24 16:45 10 cis-1,3-Dichloropropene ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene ND 10 ug/L 04/03/24 16:45 10	Chloroethane	ND		20	ug/L			04/03/24 16:45	10
Chloromethane ND 30 ug/L 04/03/24 16:45 10 cis-1,2-Dichloroethene ND 10 ug/L 04/03/24 16:45 10 cis-1,3-Dichloropropene ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene ND 10 ug/L 04/03/24 16:45 10	Chloroform	ND		10	ug/L			04/03/24 16:45	10
ND 10 ug/L 04/03/24 16:45 10 cis-1,2-Dichloroethene ND 10 ug/L 04/03/24 16:45 10 cis-1,3-Dichloropropene ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene ND 10 ug/L 04/03/24 16:45 10	Chloromethane			30	ug/L			04/03/24 16:45	10
ND 10 ug/L 04/03/24 16:45 10 cis-1,3-Dichloropropene ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene ND 10 ug/L 04/03/24 16:45 10	cis-1 2-Dichloroethene			10	ug/L			04/03/24 16:45	10
ND 10 ug/L 04/03/24 16:45 10 Dibromomethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene ND 10 ug/L 04/03/24 16:45 10	cis-1 3-Dichloropropene			10	ug/L			04/03/24 10:45	10
Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Dichlorodifluoromethane ND 10 ug/L 04/03/24 16:45 10 Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene ND 10 ug/L 04/03/24 16:45 10	Dibromomethane			10	ug/L			04/03/24 10:45	10
Ethylbenzene ND 10 ug/L 04/03/24 16:45 10 Hexachlorobutadiene ND 10 ug/L 04/03/24 16:45 10	Dichlorodifluoromethane			10	ug/L			04/03/24 10:45	10
Hexachlorobutadiene ND 10 ug/L 04/03/24 10.45 10 Hexachlorobutadiene ND 10 ug/l 04/03/24 16.45 10	Fthylbenzene			10	ug/L			04/03/24 10.45	10
	Hexachlorobutadiene	םא חוא		10	ug/L			04/03/24 10.45	10
Isonrony/henzene NID 10 ug/l 0//02/04/45/45 10	Isonronylbenzene			10	ug/L			04/03/24 10.45	10

Client Sample ID: MW-12-20240326 Date Collected: 03/26/24 15:00 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-8

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		10	ug/L			04/03/24 16:45	10
Methylene Chloride	ND		30	ug/L			04/03/24 16:45	10
n-Butylbenzene	ND		30	ug/L			04/03/24 16:45	10
N-Propylbenzene	ND		10	ug/L			04/03/24 16:45	10
Naphthalene	ND		20	ug/L			04/03/24 16:45	10
sec-Butylbenzene	ND		10	ug/L			04/03/24 16:45	10
Styrene	ND		10	ug/L			04/03/24 16:45	10
tert-Butylbenzene	ND		10	ug/L			04/03/24 16:45	10
Tetrachloroethene (PCE)	ND		10	ug/L			04/03/24 16:45	10
Toluene	ND		10	ug/L			04/03/24 16:45	10
trans-1,2-Dichloroethene	ND		10	ug/L			04/03/24 16:45	10
trans-1,3-Dichloropropene	ND		10	ug/L			04/03/24 16:45	10
Trichloroethene (TCE)	ND		10	ug/L			04/03/24 16:45	10
Trichlorofluoromethane	ND		10	ug/L			04/03/24 16:45	10
Vinyl chloride	ND		10	ug/L			04/03/24 16:45	10
Xylenes, Total	20		15	ug/L			04/03/24 16:45	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		70 - 130				04/03/24 16:45	10
Toluene-d8 (Surr)	95		70 - 130				04/03/24 16:45	10
4-Bromofluorobenzene (Surr)	83		70 - 130				04/03/24 16:45	10
Dibromofluoromethane (Surr)	124		70 - 130				04/03/24 16:45	10
Method: EPA-DW2 504.1 - E	DB, DBCP and	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	1.4	Н	0.094	ug/L		04/02/24 09:54	04/03/24 16:44	10

Client Sample ID: MW-15-20240329 Date Collected: 03/29/24 09:34 Date Received: 03/29/24 16:35

Isopropylbenzene

Lab Sample ID: 885-2074-9 Matrix: Water

Analyte Result Qualifier RL Unit D Prepared Analyzed 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 04/03/24 17:* 1,1,1-Trichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 04/03/24 17:* 1,1,2,2-Tetrachloroethane ND 2.0 ug/L 04/03/24 17:* 1,1,2-Trichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1,2-Trichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1,2-Trichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloropropane ND 2.0 ug/L 04/03/24 17:* 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:*	Dil Fac
1,1,1,2-Tetrachloroethane ND 1.0 ug/L 04/03/24 17: 1,1,1-Trichloroethane ND 1.0 ug/L 04/03/24 17: 1,1,2,2-Tetrachloroethane ND 2.0 ug/L 04/03/24 17: 1,1,2-Trichloroethane ND 1.0 ug/L 04/03/24 17: 1,1,2-Trichloroethane ND 1.0 ug/L 04/03/24 17: 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17: 1,1-Dichloroptopene ND 1.0 ug/L 04/03/24 17: 1,2,3-Trichloroptopene ND 1.0 ug/L 04/03/24 17: 1,2,3-Trichloroptopane ND 2.0 ug/L 04/03/24 17: 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:	ר ר
1,1,1-Trichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1,2,2-Tetrachloroethane ND 2.0 ug/L 04/03/24 17:* 1,1,2-Trichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1,2-Trichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroptopene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloroptopene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloropenae ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloropenae ND 2.0 ug/L 04/03/24 17:* 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:*	י נ
1,1,2,2-Tetrachloroethane ND 2.0 ug/L 04/03/24 17:* 1,1,2-Trichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloropthene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloropropane ND 2.0 ug/L 04/03/24 17:* 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:*	3 1
1,1,2-Trichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroptopene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloropropane ND 2.0 ug/L 04/03/24 17:* 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:*	31
1,1-Dichloroethane ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloroethene ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloropropene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloropropane ND 2.0 ug/L 04/03/24 17:* 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:*	3 1
1,1-Dichloroethene ND 1.0 ug/L 04/03/24 17:* 1,1-Dichloropropene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloropropane ND 2.0 ug/L 04/03/24 17:* 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:*	3 1
1,1-Dichloropropene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloropropane ND 2.0 ug/L 04/03/24 17:* 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:*	3 1
1,2,3-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:* 1,2,3-Trichloropropane ND 2.0 ug/L 04/03/24 17:* 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:*	3 1
1,2,3-Trichloropropane ND 2.0 ug/L 04/03/24 17:1 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:1	3 1
1,2,4-Trichlorobenzene ND 1.0 ug/L 04/03/24 17:1	3 1
	3 1
1,2,4-Trimethylbenzene 2.1 1.0 ug/L 04/03/24 17:1	3 1
1,2-Dibromo-3-Chloropropane ND 2.0 ug/L 04/03/24 17:4	3 1
1,2-Dibromoethane (EDB) ND 1.0 ug/L 04/03/24 17:*	3 1
1,2-Dichlorobenzene ND 1.0 ug/L 04/03/24 17:*	3 1
1,2-Dichloroethane (EDC) ND 1.0 ug/L 04/03/24 17:*	3 1
1,2-Dichloropropane ND 1.0 ug/L 04/03/24 17:*	3 1
1,3,5-Trimethylbenzene ND 1.0 ug/L 04/03/24 17: ⁻	3 1
1,3-Dichlorobenzene ND 1.0 ug/L 04/03/24 17: ⁻	3 1
1,3-Dichloropropane ND 1.0 ug/L 04/03/24 17:1	3 1
1,4-Dichlorobenzene ND 1.0 ug/L 04/03/24 17:1	3 1
1-Methylnaphthalene ND 4.0 ug/L 04/03/24 17:1	3 1
2,2-Dichloropropane ND 2.0 ug/L 04/03/24 17:1	3 1
2-Butanone ND 10 ug/L 04/03/24 17:1	3 1
2-Chlorotoluene ND 1.0 ug/L 04/03/24 17:1	3 1
2-Hexanone ND 10 ug/L 04/03/24 17:1	3 1
2-Methylnaphthalene ND 4.0 ug/L 04/03/24 17:1	3 1
4-Chlorotoluene ND 1.0 ug/L 04/03/24 17:1	3 1
4-Isopropyltoluene ND 1.0 ug/L 04/03/24 17:1	3 1
4-Methyl-2-pentanone ND 10 ug/L 04/03/24 17:1	3 1
Acetone ND 10 ug/L 04/03/24 17:1	3 1
Benzene 33 1.0 ug/L 04/03/24 17:	3 1
Bromobenzene ND 1.0 ug/L 04/03/24 17:1	3 1
Bromodichloromethane ND 1.0 ug/L 04/03/24 17:*	3 1
Dibromochloromethane ND 1.0 ug/L 04/03/24 17:	3 1
Bromoform ND 1.0 ug/L 04/03/24 17:*	3 1
Bromomethane ND 3.0 ug/L 04/03/24 17:*	3 1
Carbon disulfide ND 10 ug/L 04/03/24 17:	3 1
Carbon tetrachloride ND 1.0 ug/L 04/03/24 17:1	3 1
Chlorobenzene ND 1.0 ug/L 04/03/24 17:	3 1
Chloroethane ND 2.0 ug/L 04/03/24 17:	3 1
Chloroform ND 1.0 ug/L 04/03/24 17*	3 1
Chloromethane ND 3.0 ug/L 04/03/24 17·	3 1
cis-1.2-Dichloroethene ND 1.0 $u\alpha/l$ 04/03/24 17·	3 1
cis-1.3-Dichloropropene ND 1.0 ug/l 04/03/24 17.7	3 1
Dibromomethane ND 1.0 ug/l 04/03/24 17-7	3 1
Dichlorodifluoromethane ND 1.0 $u\sigma/l$ 04/03/24 17.	3 1
Ethylbenzene ND 1.0 ug/l 04/03/24 17.1	3 1
Hexachlorobutadiene ND 1.0 ug/l 04/03/24 171	3 1

Eurofins Albuquerque

04/03/24 17:13

1.0

ug/L

ND

Client Sample ID: MW-15-20240329 Date Collected: 03/29/24 09:34 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-9

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
lethyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/03/24 17:13	1
Methylene Chloride	ND		3.0	ug/L			04/03/24 17:13	1
n-Butylbenzene	ND		3.0	ug/L			04/03/24 17:13	1
N-Propylbenzene	ND		1.0	ug/L			04/03/24 17:13	1
laphthalene	ND		2.0	ug/L			04/03/24 17:13	1
ec-Butylbenzene	ND		1.0	ug/L			04/03/24 17:13	1
Styrene	ND		1.0	ug/L			04/03/24 17:13	1
ert-Butylbenzene	ND		1.0	ug/L			04/03/24 17:13	1
etrachloroethene (PCE)	ND		1.0	ug/L			04/03/24 17:13	1
oluene	ND		1.0	ug/L			04/03/24 17:13	1
rans-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 17:13	1
rans-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 17:13	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/03/24 17:13	1
richlorofluoromethane	ND		1.0	ug/L			04/03/24 17:13	1
/inyl chloride	ND		1.0	ug/L			04/03/24 17:13	1
(ylenes, Total	3.8		1.5	ug/L			04/03/24 17:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	115		70 - 130				04/03/24 17:13	1
oluene-d8 (Surr)	93		70 - 130				04/03/24 17:13	1
4-Bromofluorobenzene (Surr)	82		70 - 130				04/03/24 17:13	1
Dibromofluoromethane (Surr)	125		70 - 130				04/03/24 17:13	1
Method: EPA-DW2 504.1 - E	DB, DBCP an	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1.2-Dibromoethane	0.087		0.0095	ua/L		04/02/24 09:54	04/02/24 22:48	1

Client Sample ID: MW-14-20240329 Date Collected: 03/29/24 09:15 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-10

Matrix: Water

	Volatile Organic	Compound	s (GC/MS)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			04/03/24 17:40	1	
1,1,1-Trichloroethane	ND		1.0	ug/L			04/03/24 17:40	1	
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			04/03/24 17:40	1	
1,1,2-Trichloroethane	ND		1.0	ug/L			04/03/24 17:40	1	
1,1-Dichloroethane	ND		1.0	ug/L			04/03/24 17:40	1	
1,1-Dichloroethene	ND		1.0	ug/L			04/03/24 17:40	1	2
1,1-Dichloropropene	ND		1.0	ug/L			04/03/24 17:40	1	
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/03/24 17:40	1	0
1,2,3-Trichloropropane	ND		2.0	ug/L			04/03/24 17:40	1	3
1,2,4-Trichlorobenzene	ND		1.0	ug/L			04/03/24 17:40	1	
1,2,4-Trimethylbenzene	ND		1.0	ug/L			04/03/24 17:40	1	
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			04/03/24 17:40	1	
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			04/03/24 17:40	1	
1,2-Dichlorobenzene	ND		1.0	ug/L			04/03/24 17:40	1	
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			04/03/24 17:40	1	
1,2-Dichloropropane	ND		1.0	ug/L			04/03/24 17:40	1	
1,3,5-Trimethylbenzene	ND		1.0	ug/L			04/03/24 17:40	1	
1,3-Dichlorobenzene	ND		1.0	ug/L			04/03/24 17:40	1	
1,3-Dichloropropane	ND		1.0	ug/L			04/03/24 17:40	1	
1,4-Dichlorobenzene	ND		1.0	ug/L			04/03/24 17:40	1	
1-Methylnaphthalene	ND		4.0	ug/L			04/03/24 17:40	1	
2,2-Dichloropropane	ND		2.0	ug/L			04/03/24 17:40	1	
2-Butanone	ND		10	ug/L			04/03/24 17:40	1	
2-Chlorotoluene	ND		1.0	ug/L			04/03/24 17:40	1	
2-Hexanone	ND		10	ug/L			04/03/24 17:40	1	
2-Methylnaphthalene	ND		4.0	ug/L			04/03/24 17:40	1	
4-Chlorotoluene	ND		1.0	ug/L			04/03/24 17:40	1	
4-Isopropyltoluene	ND		1.0	ug/L			04/03/24 17:40	1	
4-Methyl-2-pentanone	ND		10	ug/L			04/03/24 17:40	1	
Acetone	ND		10	ug/L			04/03/24 17:40	1	
Benzene	ND		1.0	ug/L			04/03/24 17:40	1	
Bromobenzene	ND		1.0	ug/L			04/03/24 17:40	1	
Bromodichloromethane	ND		1.0	ug/L			04/03/24 17:40	1	
Dibromochloromethane	ND		1.0	ug/L			04/03/24 17:40	1	
Bromoform	ND		1.0	ug/L			04/03/24 17:40	1	
Bromomethane	ND		3.0	ug/L			04/03/24 17:40	1	
Carbon disulfide	ND		10	ug/L			04/03/24 17:40	1	
Carbon tetrachloride	ND		1.0	ug/L			04/03/24 17:40	1	
Chlorobenzene	ND		1.0	ug/L			04/03/24 17:40	1	
Chloroethane	ND		2.0	ug/L			04/03/24 17:40	1	
Chloroform	ND		1.0	ug/L			04/03/24 17:40	1	
Chloromethane	ND		3.0	ug/L			04/03/24 17:40	1	
cis-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 17:40	1	
cis-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 17:40	1	
Dibromomethane	ND		1.0	ug/L			04/03/24 17:40	1	
Dichlorodifluoromethane	ND		1.0	ug/L			04/03/24 17:40	1	
Ethylbenzene	ND		1.0	ug/L			04/03/24 17:40	1	
Hexachlorobutadiene	ND		1.0	ug/L			04/03/24 17:40	1	
Isopropylbenzene	ND		1.0	ug/L			04/03/24 17:40	1	

Client Sample ID: MW-14-20240329 Date Collected: 03/29/24 09:15 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-10

Matrix: Water

5

Method: SW846 8260B - Vol	atile Organic	Compound	ds (GC/MS) (0	Continued)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/03/24 17:40	1
Methylene Chloride	ND		3.0	ug/L			04/03/24 17:40	1
n-Butylbenzene	ND		3.0	ug/L			04/03/24 17:40	1
N-Propylbenzene	ND		1.0	ug/L			04/03/24 17:40	1
Naphthalene	ND		2.0	ug/L			04/03/24 17:40	1
sec-Butylbenzene	ND		1.0	ug/L			04/03/24 17:40	1
Styrene	ND		1.0	ug/L			04/03/24 17:40	1
tert-Butylbenzene	ND		1.0	ug/L			04/03/24 17:40	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/03/24 17:40	1
Toluene	ND		1.0	ug/L			04/03/24 17:40	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 17:40	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 17:40	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/03/24 17:40	1
Trichlorofluoromethane	ND		1.0	ug/L			04/03/24 17:40	1
Vinyl chloride	ND		1.0	ug/L			04/03/24 17:40	1
Xylenes, Total	ND		1.5	ug/L			04/03/24 17:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		70 - 130				04/03/24 17:40	1
Toluene-d8 (Surr)	92		70 - 130				04/03/24 17:40	1
4-Bromofluorobenzene (Surr)	86		70 - 130				04/03/24 17:40	1
Dibromofluoromethane (Surr)	122		70 - 130				04/03/24 17:40	1
Method: EPA-DW2 504.1 - E	DB, DBCP and	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0095	ug/L		04/02/24 10:14	04/03/24 03:02	1

4/22/2024

Client Sample ID: MW-17-20240329 Date Collected: 03/29/24 09:45 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-11

Matrix: Water

Method: SW846 8260B	- Volatile Organic	Compounds (GC/	MS)		_	Due a const	A		5
Analyte	Result	Qualifier			D	Prepared	Analyzed	Dil Fac	່ວ
1,1,1,2- letrachloroethane	ND		1.0	ug/L			04/03/24 18:07	1	
1,1,1-Irichloroethane	ND		1.0	ug/L			04/03/24 18:07	1	
	ND		2.0	ug/L			04/03/24 18:07	1	
1,1,2-Trichloroethane	ND		1.0	ug/L			04/03/24 18:07	1	
	ND		1.0	ug/L			04/03/24 18:07	1	
	ND		1.0	ug/L			04/03/24 18:07	1	8
1,1-Dichloropropene	ND		1.0	ug/L			04/03/24 18:07	1	
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/03/24 18:07	1	9
1,2,3-Trichlandhan	ND		2.0	ug/L			04/03/24 18:07	·····	
	ND		1.0	ug/L			04/03/24 18:07	1	
1,2,4-Trimetnyibenzene	ND		1.0	ug/L			04/03/24 18:07	1	
1,2-Dibromo-3-Chioropropane	ND		2.0	ug/L			04/03/24 18:07	·····	
1,2-Dibromoetnane (EDB)	ND		1.0	ug/L			04/03/24 18:07	1	
1,2-Dichlorobenzene	ND		1.0	ug/L			04/03/24 18:07	1	
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			04/03/24 18:07		
1,2-Dichloropropane	ND		1.0	ug/L			04/03/24 18:07	1	
1,3,5-Irimethylbenzene	ND		1.0	ug/L			04/03/24 18:07	1	
1,3-Dichlorobenzene	ND		1.0	ug/L			04/03/24 18:07	1	
1,3-Dichloropropane	ND		1.0	ug/L			04/03/24 18:07	1	
1,4-Dichlorobenzene	ND		1.0	ug/L			04/03/24 18:07	1	
1-Methylnaphthalene	ND		4.0	ug/L			04/03/24 18:07	1	
2,2-Dichloropropane	ND		2.0	ug/L			04/03/24 18:07	1	
2-Butanone	ND		10	ug/L			04/03/24 18:07	1	
2-Chlorotoluene	ND		1.0	ug/L			04/03/24 18:07	1	
2-Hexanone	ND		10	ug/L			04/03/24 18:07	1	
2-Methylnaphthalene	ND		4.0	ug/L			04/03/24 18:07	1	
4-Chlorotoluene	ND		1.0	ug/L			04/03/24 18:07	1	
4-Isopropyltoluene	ND		1.0	ug/L			04/03/24 18:07	1	
4-Methyl-2-pentanone	ND		10	ug/L			04/03/24 18:07	1	
Acetone	ND		10	ug/L			04/03/24 18:07	1	
Benzene	ND		1.0	ug/L			04/03/24 18:07	1	
Bromobenzene	ND		1.0	ug/L			04/03/24 18:07	1	
Bromodichloromethane	ND		1.0	ug/L			04/03/24 18:07	1	
Dibromochloromethane	ND		1.0	ug/L			04/03/24 18:07	1	
Bromotorm	ND		1.0	ug/L			04/03/24 18:07	1	
Bromomethane	ND		3.0	ug/L			04/03/24 18:07	1	
Carbon disulfide	ND		10	ug/L			04/03/24 18:07	1	
Carbon tetrachioride	ND		1.0	ug/L			04/03/24 18:07	1	
Chlorobenzene	ND		1.0	ug/L			04/03/24 18:07	1	
Chloroethane	ND		2.0	ug/L			04/03/24 18:07	1	
Chloroform	ND		1.0	ug/L			04/03/24 18:07	1	
	ND		3.0	ug/L			04/03/24 18:07	1	
cis-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 18:07	1	
	ND		1.0	ug/L			04/03/24 18:07	1	
	ND 		1.0	ug/L			04/03/24 18:07	1	
	ND		1.0	ug/L			04/03/24 18:07	1	
	ND		1.0	ug/L			04/03/24 18:07	1	
	ND		1.0	ug/L			04/03/24 18:07	1	
Isopropylbenzene	ND		1.0	ug/L			04/03/24 18:07	1	

Client Sample ID: MW-17-20240329 Date Collected: 03/29/24 09:45 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-11 Matrix: Water

Matrix: Water

5

Method: SW846 8260B - Vola	atile Organic	Compound	ds (GC/MS) (Co	ontinued)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/03/24 18:07	1
Methylene Chloride	ND		3.0	ug/L			04/03/24 18:07	1
n-Butylbenzene	ND		3.0	ug/L			04/03/24 18:07	1
N-Propylbenzene	ND		1.0	ug/L			04/03/24 18:07	1
Naphthalene	ND		2.0	ug/L			04/03/24 18:07	1
sec-Butylbenzene	ND		1.0	ug/L			04/03/24 18:07	1
Styrene	ND		1.0	ug/L			04/03/24 18:07	1
tert-Butylbenzene	ND		1.0	ug/L			04/03/24 18:07	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/03/24 18:07	1
Toluene	ND		1.0	ug/L			04/03/24 18:07	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 18:07	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 18:07	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/03/24 18:07	1
Trichlorofluoromethane	ND		1.0	ug/L			04/03/24 18:07	1
Vinyl chloride	ND		1.0	ug/L			04/03/24 18:07	1
Xylenes, Total	ND		1.5	ug/L			04/03/24 18:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		70 - 130				04/03/24 18:07	1
Toluene-d8 (Surr)	91		70 - 130				04/03/24 18:07	1
4-Bromofluorobenzene (Surr)	82		70 - 130				04/03/24 18:07	1
Dibromofluoromethane (Surr)	125		70 - 130				04/03/24 18:07	1
Method: EPA-DW2 504.1 - El	DB, DBCP an	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0096	ug/L		04/02/24 10:14	04/03/24 03:36	1

4/22/2024

Client Sample ID: MW-13-20240326 Date Collected: 03/26/24 15:52 Date Received: 03/29/24 16:35

Ethylbenzene

Hexachlorobutadiene

Isopropylbenzene

Lab Sample ID: 885-2074-12 **Matrix: Water**

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1,2-Tetrachloroethane	ND	2.0	ug/L		-	04/03/24 18:35	2	
1,1,1-Trichloroethane	ND	2.0	ug/L			04/03/24 18:35	2	
1,1,2,2-Tetrachloroethane	ND	4.0	ug/L			04/03/24 18:35	2	
1,1,2-Trichloroethane	ND	2.0	ug/L			04/03/24 18:35	2	
1,1-Dichloroethane	ND	2.0	ug/L			04/03/24 18:35	2	
1,1-Dichloroethene	ND	2.0	ug/L			04/03/24 18:35	2	9
1,1-Dichloropropene	ND	2.0	ug/L			04/03/24 18:35	2	0
1,2,3-Trichlorobenzene	ND	2.0	ug/L			04/03/24 18:35	2	0
1,2,3-Trichloropropane	ND	4.0	ug/L			04/03/24 18:35	2	3
1,2,4-Trichlorobenzene	ND	2.0	ug/L			04/03/24 18:35	2	
1,2,4-Trimethylbenzene	8.0	2.0	ug/L			04/03/24 18:35	2	
1,2-Dibromo-3-Chloropropane	ND	4.0	ug/L			04/03/24 18:35	2	
1,2-Dibromoethane (EDB)	ND	2.0	ug/L			04/03/24 18:35	2	
1,2-Dichlorobenzene	ND	2.0	ug/L			04/03/24 18:35	2	
1,2-Dichloroethane (EDC)	110	2.0	ug/L			04/03/24 18:35	2	
1,2-Dichloropropane	ND	2.0	ug/L			04/03/24 18:35	2	
1,3,5-Trimethylbenzene	9.7	2.0	ug/L			04/03/24 18:35	2	
1,3-Dichlorobenzene	ND	2.0	ug/L			04/03/24 18:35	2	
1,3-Dichloropropane	ND	2.0	ug/L			04/03/24 18:35	2	
1,4-Dichlorobenzene	ND	2.0	ug/L			04/03/24 18:35	2	
1-Methylnaphthalene	ND	8.0	ug/L			04/03/24 18:35	2	
2,2-Dichloropropane	ND	4.0	ug/L			04/03/24 18:35	2	
2-Butanone	ND	20	ug/L			04/03/24 18:35	2	
2-Chlorotoluene	ND	2.0	ug/L			04/03/24 18:35	2	
2-Hexanone	ND	20	ug/L			04/03/24 18:35	2	
2-Methylnaphthalene	ND	8.0	ug/L			04/03/24 18:35	2	
4-Chlorotoluene	ND	2.0	ug/L			04/03/24 18:35	2	
4-Isopropyltoluene	ND	2.0	ug/L			04/03/24 18:35	2	
4-Methyl-2-pentanone	ND	20	ug/L			04/03/24 18:35	2	
Acetone	ND	20	ug/L			04/03/24 18:35	2	
Benzene	190	2.0	ug/L			04/03/24 18:35	2	
Bromobenzene	ND	2.0	ug/L			04/03/24 18:35	2	
Bromodichloromethane	ND	2.0	ug/L			04/03/24 18:35	2	
Dibromochloromethane	ND	2.0	ug/L			04/03/24 18:35	2	
Bromoform	ND	2.0	ug/L			04/03/24 18:35	2	
Bromomethane	ND	6.0	ug/L			04/03/24 18:35	2	
Carbon disulfide	ND	20	ug/L			04/03/24 18:35	2	
Carbon tetrachloride	ND	2.0	ug/L			04/03/24 18:35	2	
Chlorobenzene	ND	2.0	ug/L			04/03/24 18:35	2	
Chloroethane	ND	4.0	ug/L			04/03/24 18:35	2	
Chloroform	ND	2.0	ug/L			04/03/24 18:35	2	
Chloromethane	ND	6.0	ug/L			04/03/24 18:35	2	
cis-1,2-Dichloroethene	ND	2.0	ug/L			04/03/24 18:35	2	
cis-1,3-Dichloropropene	ND	2.0	ug/L			04/03/24 18:35	2	
Dibromomethane	ND	2.0	ug/L			04/03/24 18:35	2	
Dichlorodifluoromethane	ND	2.0	ug/L			04/03/24 18:35	2	

Eurofins Albuquerque

04/03/24 18:35

04/03/24 18:35

04/03/24 18:35

2.0

2.0

2.0

ug/L

ug/L

ug/L

ND

ND

ND

2

2

Client Sample ID: MW-13-20240326 Date Collected: 03/26/24 15:52 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-12 Matrix: Water

Matrix: Water

Method: SW846 8260B - Vol	atile Organic	Compound	ds (GC/MS) (Continued)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		2.0	ug/L			04/03/24 18:35	2
Methylene Chloride	ND		6.0	ug/L			04/03/24 18:35	2
n-Butylbenzene	ND		6.0	ug/L			04/03/24 18:35	2
N-Propylbenzene	ND		2.0	ug/L			04/03/24 18:35	2
Naphthalene	ND		4.0	ug/L			04/03/24 18:35	2
sec-Butylbenzene	ND		2.0	ug/L			04/03/24 18:35	2
Styrene	ND		2.0	ug/L			04/03/24 18:35	2
tert-Butylbenzene	ND		2.0	ug/L			04/03/24 18:35	2
Tetrachloroethene (PCE)	ND		2.0	ug/L			04/03/24 18:35	2
Toluene	ND		2.0	ug/L			04/03/24 18:35	2
trans-1,2-Dichloroethene	ND		2.0	ug/L			04/03/24 18:35	2
trans-1,3-Dichloropropene	ND		2.0	ug/L			04/03/24 18:35	2
Trichloroethene (TCE)	ND		2.0	ug/L			04/03/24 18:35	2
Trichlorofluoromethane	ND		2.0	ug/L			04/03/24 18:35	2
Vinyl chloride	ND		2.0	ug/L			04/03/24 18:35	2
Xylenes, Total	33		3.0	ug/L			04/03/24 18:35	2
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		70 - 130				04/03/24 18:35	2
Toluene-d8 (Surr)	96		70 - 130				04/03/24 18:35	2
4-Bromofluorobenzene (Surr)	85		70 - 130				04/03/24 18:35	2
Dibromofluoromethane (Surr)	120		70 - 130				04/03/24 18:35	2
Method: EPA-DW2 504.1 - E	DB, DBCP and	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.064		0.0095	ug/L		04/02/24 10:14	04/03/24 04:10	1

Client Sample Results

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Job ID: 885-2074-1

5

Client Sample ID: DTA-EFF Lab Sample ID: 885-2074-13 Date Collected: 03/27/24 10:30 Matrix: Air Date Received: 03/29/24 16:35 Sample Container: Tedlar Bag 1L Method: SW846 8015D - Gasoline Range Organics (GRO) (GC) Analyte Result Qualifier Unit Analyzed Dil Fac RL D Prepared 5.0 Gasoline Range Organics [C6 - C10] ND ug/L 04/03/24 10:43 1 Analyzed Surrogate %Recovery Qualifier Limits Prepared Dil Fac 4-Bromofluorobenzene (Surr) 15_412 04/03/24 10:43 94 1 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 0.13 0.10 ug/L 04/03/24 10:43 Benzene 1 Ethylbenzene ND 0.10 ug/L 04/03/24 10:43 1 ND Toluene 0.10 ug/L 04/03/24 10:43 1 ND Xylenes, Total 0.20 ug/L 04/03/24 10:43 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 82 70 - 130 04/03/24 10:43 1

Client Sample ID: MW-16-20240326 Date Collected: 03/26/24 15:17 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-14

Matrix: Water

5

_ Method: SW846 8260B - Vo	latile Organic	Compound	s (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		2.0	ug/L			04/03/24 19:30	2
1,1,1-Trichloroethane	ND		2.0	ug/L			04/03/24 19:30	2
1,1,2,2-Tetrachloroethane	ND		4.0	ug/L			04/03/24 19:30	2
1,1,2-Trichloroethane	ND		2.0	ug/L			04/03/24 19:30	2
1,1-Dichloroethane	ND		2.0	ug/L			04/03/24 19:30	2
1,1-Dichloroethene	ND		2.0	ug/L			04/03/24 19:30	2
1,1-Dichloropropene	ND		2.0	ug/L			04/03/24 19:30	2
1,2,3-Trichlorobenzene	ND		2.0	ug/L			04/03/24 19:30	2
1,2,3-Trichloropropane	ND		4.0	ug/L			04/03/24 19:30	2
1,2,4-Trichlorobenzene	ND		2.0	ug/L			04/03/24 19:30	2
1,2,4-Trimethylbenzene	ND		2.0	ug/L			04/03/24 19:30	2
1,2-Dibromo-3-Chloropropane	ND		4.0	ug/L			04/03/24 19:30	2
1,2-Dibromoethane (EDB)	ND		2.0	ug/L			04/03/24 19:30	2
1,2-Dichlorobenzene	ND		2.0	ug/L			04/03/24 19:30	2
1,2-Dichloroethane (EDC)	97		2.0	ug/L			04/03/24 19:30	2
1,2-Dichloropropane	ND		2.0	ug/L			04/03/24 19:30	2
1,3,5-Trimethylbenzene	ND		2.0	ug/L			04/03/24 19:30	2
1,3-Dichlorobenzene	ND		2.0	ug/L			04/03/24 19:30	2
1,3-Dichloropropane	ND		2.0	ug/L			04/03/24 19:30	2
1,4-Dichlorobenzene	ND		2.0	ug/L			04/03/24 19:30	2
1-Methylnaphthalene	ND		8.0	ug/L			04/03/24 19:30	2
2,2-Dichloropropane	ND		4.0	ug/L			04/03/24 19:30	2
2-Butanone	ND		20	ug/L			04/03/24 19:30	2
2-Chlorotoluene	ND		2.0	ug/L			04/03/24 19:30	2
2-Hexanone	ND		20	ug/L			04/03/24 19:30	2
2-Methylnaphthalene	ND		8.0	ug/L			04/03/24 19:30	2
4-Chlorotoluene	ND		2.0	ug/L			04/03/24 19:30	2
4-Isopropyltoluene	ND		2.0	ug/L			04/03/24 19:30	2
4-Methyl-2-pentanone	ND		20	ug/L			04/03/24 19:30	2
Acetone	ND		20	ug/L			04/03/24 19:30	2
Benzene	640		20	ug/L			04/03/24 19:02	20
Bromobenzene	ND		2.0	ug/L			04/03/24 19:30	2
Bromodichloromethane	ND		2.0	ug/L			04/03/24 19:30	2
Dibromochloromethane	ND		2.0	ug/L			04/03/24 19:30	2
Bromoform	ND		2.0	ug/L			04/03/24 19:30	2
Bromomethane	ND		6.0	ug/L			04/03/24 19:30	2
Carbon disulfide	ND		20	ug/L			04/03/24 19:30	2
Carbon tetrachloride	ND		2.0	ug/L			04/03/24 19:30	2
Chlorobenzene	ND		2.0	ug/L			04/03/24 19:30	2
Chloroethane	ND		4.0	ug/L			04/03/24 19:30	2
Chloroform	ND		2.0	ug/L			04/03/24 19:30	2
Chloromethane	ND		6.0	ug/L			04/03/24 19:30	2
cis-1,2-Dichloroethene	ND		2.0	ug/L			04/03/24 19:30	2
cis-1,3-Dichloropropene	ND		2.0	ug/L			04/03/24 19:30	2
Dibromomethane	ND		2.0	ug/L			04/03/24 19:30	2
Dichlorodifluoromethane	ND		2.0	ug/L			04/03/24 19:30	2
Ethylbenzene	ND		2.0	ug/L			04/03/24 19:30	2
Hexachlorobutadiene	ND		2.0	ug/L			04/03/24 19:30	2
Isopropylbenzene	2.0		2.0	ug/L			04/03/24 19:30	2

Client Sample ID: MW-16-20240326 Date Collected: 03/26/24 15:17 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-14

Matrix: Water

Analyte	Result Qualifier	S (GC/MS) (CO RL	ntinuea) Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND	2.0	ug/L		•	04/03/24 19:30	2
Methylene Chloride	ND	6.0	ug/L			04/03/24 19:30	2
n-Butylbenzene	ND	6.0	ug/L			04/03/24 19:30	2
N-Propylbenzene	ND	2.0	ug/L			04/03/24 19:30	2
Naphthalene	ND	4.0	ug/L			04/03/24 19:30	2
sec-Butylbenzene	ND	2.0	ug/L			04/03/24 19:30	2
Styrene	ND	2.0	ug/L			04/03/24 19:30	2
tert-Butylbenzene	ND	2.0	ug/L			04/03/24 19:30	2
Tetrachloroethene (PCE)	ND	2.0	ug/L			04/03/24 19:30	2
Toluene	ND	2.0	ug/L			04/03/24 19:30	2
trans-1,2-Dichloroethene	ND	2.0	ug/L			04/03/24 19:30	2
trans-1,3-Dichloropropene	ND	2.0	ug/L			04/03/24 19:30	2
Trichloroethene (TCE)	ND	2.0	ug/L			04/03/24 19:30	2
Trichlorofluoromethane	ND	2.0	ug/L			04/03/24 19:30	2
Vinyl chloride	ND	2.0	ug/L			04/03/24 19:30	2
Xylenes, Total	8.8	3.0	ug/L			04/03/24 19:30	2

Surrogate	%Recovery	Qualifier	Limits	P	repared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 130			04/03/24 19:02	20
1,2-Dichloroethane-d4 (Surr)	107		70 - 130			04/03/24 19:30	2
Toluene-d8 (Surr)	89		70 - 130			04/03/24 19:30	2
4-Bromofluorobenzene (Surr)	88		70 - 130			04/03/24 19:30	2
Dibromofluoromethane (Surr)	123		70 - 130			04/03/24 19:02	20
Dibromofluoromethane (Surr)	120		70 - 130			04/03/24 19:30	2
_							

Method: EPA-DW2 504.1 - EDE	B, DBCP and	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.49	н	0.048	ug/L		04/02/24 10:14	04/03/24 17:01	5

Client Sample ID: BW-4-20240329 Date Collected: 03/29/24 10:38 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-15

Matrix: Water

	latile Organic	Compounds (GC/MS	5)					
Analyte	Result	Qualifier RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			04/03/24 19:57	1	
1,1,1-Trichloroethane	ND	1.0	ug/L			04/03/24 19:57	1	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L			04/03/24 19:57	1	
1,1,2-Trichloroethane	ND	1.0	ug/L			04/03/24 19:57	1	
1,1-Dichloroethane	ND	1.0	ug/L			04/03/24 19:57	1	
1,1-Dichloroethene	ND	1.0	ug/L			04/03/24 19:57	1	8
1,1-Dichloropropene	ND	1.0	ug/L			04/03/24 19:57	1	0
1,2,3-Trichlorobenzene	ND	1.0	ug/L			04/03/24 19:57	1	0
1,2,3-Trichloropropane	ND	2.0	ug/L			04/03/24 19:57	1	3
1,2,4-Trichlorobenzene	ND	1.0	ug/L			04/03/24 19:57	1	
1,2,4-Trimethylbenzene	ND	1.0	ug/L			04/03/24 19:57	1	
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			04/03/24 19:57	1	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			04/03/24 19:57	1	
1,2-Dichlorobenzene	ND	1.0	ug/L			04/03/24 19:57	1	
1,2-Dichloroethane (EDC)	ND	1.0	ug/L			04/03/24 19:57	1	
1,2-Dichloropropane	ND	1.0	ug/L			04/03/24 19:57	1	
1,3,5-Trimethylbenzene	ND	1.0	ug/L			04/03/24 19:57	1	
1,3-Dichlorobenzene	ND	1.0	ug/L			04/03/24 19:57	1	
1,3-Dichloropropane	ND	1.0	ug/L			04/03/24 19:57	1	
1,4-Dichlorobenzene	ND	1.0	ug/L			04/03/24 19:57	1	
1-Methylnaphthalene	ND	4.0	ug/L			04/03/24 19:57	1	
2,2-Dichloropropane	ND	2.0	ug/L			04/03/24 19:57	1	
2-Butanone	ND	10	ug/L			04/03/24 19:57	1	
2-Chlorotoluene	ND	1.0	ug/L			04/03/24 19:57	1	
2-Hexanone	ND	10	ug/L			04/03/24 19:57	1	
2-Methylnaphthalene	ND	4.0	ug/L			04/03/24 19:57	1	
4-Chlorotoluene	ND	1.0	ug/L			04/03/24 19:57	1	
4-Isopropyltoluene	ND	1.0	ug/L			04/03/24 19:57	1	
4-Methyl-2-pentanone	ND	10	ug/L			04/03/24 19:57	1	
Acetone	ND	10	ug/L			04/03/24 19:57	1	
Benzene	ND	1.0	ug/L			04/03/24 19:57	1	
Bromobenzene	ND	1.0	ug/L			04/03/24 19:57	1	
Bromodichloromethane	ND	1.0	ug/L			04/03/24 19:57	1	
Dibromochloromethane	ND	1.0	ug/L			04/03/24 19:57	1	
Bromoform	ND	1.0	ug/L			04/03/24 19:57	1	
Bromomethane	ND	3.0	ug/L			04/03/24 19:57	1	
Carbon disulfide	ND	10	ug/L			04/03/24 19:57	1	
Carbon tetrachloride	ND	1.0	ug/L			04/03/24 19:57	1	
Chlorobenzene	ND	1.0	ug/L			04/03/24 19:57	1	
Chloroethane	ND	2.0	ug/L			04/03/24 19:57	1	
Chloroform	ND	1.0	ug/L			04/03/24 19:57	1	
Chloromethane	ND	3.0	ug/L			04/03/24 19:57	1	
cis-1,2-Dichloroethene	ND	1.0	ug/L			04/03/24 19:57	1	
cis-1,3-Dichloropropene	ND	1.0	ug/L			04/03/24 19:57	1	
Dibromomethane	ND	1.0	ug/L			04/03/24 19:57	1	
Dichlorodifluoromethane	ND	1.0	ug/L			04/03/24 19:57	1	
Ethylbenzene	ND	1.0	ug/L			04/03/24 19:57	1	
Hexachlorobutadiene	ND	1.0	ug/L			04/03/24 19:57	1	
Isopropylbenzene	ND	1.0	ug/L			04/03/24 19:57	1	

Client Sample ID: BW-4-20240329 Date Collected: 03/29/24 10:38 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-15

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/03/24 19:57	1	
Methylene Chloride	ND		3.0	ug/L			04/03/24 19:57	1	
n-Butylbenzene	ND		3.0	ug/L			04/03/24 19:57	1	
N-Propylbenzene	ND		1.0	ug/L			04/03/24 19:57	1	
Naphthalene	ND		2.0	ug/L			04/03/24 19:57	1	
sec-Butylbenzene	ND		1.0	ug/L			04/03/24 19:57	1	2
Styrene	ND		1.0	ug/L			04/03/24 19:57	1	0
tert-Butylbenzene	ND		1.0	ug/L			04/03/24 19:57	1	0
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/03/24 19:57	1	3
Toluene	ND		1.0	ug/L			04/03/24 19:57	1	
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 19:57	1	
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 19:57	1	
Trichloroethene (TCE)	ND		1.0	ug/L			04/03/24 19:57	1	
Trichlorofluoromethane	ND		1.0	ug/L			04/03/24 19:57	1	
Vinyl chloride	ND		1.0	ug/L			04/03/24 19:57	1	
Xylenes, Total	ND		1.5	ug/L			04/03/24 19:57	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	108		70 - 130			<u>.</u>	04/03/24 19:57	1	
Toluene-d8 (Surr)	90		70 - 130				04/03/24 19:57	1	
4-Bromofluorobenzene (Surr)	82		70 - 130				04/03/24 19:57	1	
Dibromofluoromethane (Surr)	123		70 - 130				04/03/24 19:57	1	
	DB, DBCP and	d 1,2,3-TC	P (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	

Client Sample ID: FY Treated EFF Date Collected: 03/27/24 10:00 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-16

Matrix: Water

	atile Organic	Compounds	(GC/MS)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			04/03/24 20:25	1	
1,1,1-Trichloroethane	ND		1.0	ug/L			04/03/24 20:25	1	
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			04/03/24 20:25	1	
1,1,2-Trichloroethane	ND		1.0	ug/L			04/03/24 20:25	1	
1,1-Dichloroethane	ND		1.0	ug/L			04/03/24 20:25	1	
1,1-Dichloroethene	ND		1.0	ug/L			04/03/24 20:25	1	8
1,1-Dichloropropene	ND		1.0	ug/L			04/03/24 20:25	1	
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/03/24 20:25	1	Q
1,2,3-Trichloropropane	ND		2.0	ug/L			04/03/24 20:25	1	3
1,2,4-Trichlorobenzene	ND		1.0	ug/L			04/03/24 20:25	1	
1,2,4-Trimethylbenzene	ND		1.0	ug/L			04/03/24 20:25	1	
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			04/03/24 20:25	1	
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			04/03/24 20:25	1	
1,2-Dichlorobenzene	ND		1.0	ug/L			04/03/24 20:25	1	
1,2-Dichloroethane (EDC)	1.1		1.0	ug/L			04/03/24 20:25	1	
1,2-Dichloropropane	ND		1.0	ug/L			04/03/24 20:25	1	
1,3,5-Trimethylbenzene	ND		1.0	ug/L			04/03/24 20:25	1	
1,3-Dichlorobenzene	ND		1.0	ug/L			04/03/24 20:25	1	
1,3-Dichloropropane	ND		1.0	ug/L			04/03/24 20:25	1	
1,4-Dichlorobenzene	ND		1.0	ug/L			04/03/24 20:25	1	
1-Methylnaphthalene	ND		4.0	ug/L			04/03/24 20:25	1	
2,2-Dichloropropane	ND		2.0	ug/L			04/03/24 20:25	1	
2-Butanone	ND		10	ug/L			04/03/24 20:25	1	
2-Chlorotoluene	ND		1.0	ug/L			04/03/24 20:25	1	
2-Hexanone	ND		10	ug/L			04/03/24 20:25	1	
2-Methylnaphthalene	ND		4.0	ug/L			04/03/24 20:25	1	
4-Chlorotoluene	ND		1.0	ug/L			04/03/24 20:25	1	
4-Isopropyltoluene	ND		1.0	ug/L			04/03/24 20:25	1	
4-Methyl-2-pentanone	ND		10	ug/L			04/03/24 20:25	1	
Acetone	ND		10	ug/L			04/03/24 20:25	1	
Benzene	ND		1.0	ug/L			04/03/24 20:25	1	
Bromobenzene	ND		1.0	ug/L			04/03/24 20:25	1	
Bromodichloromethane	ND		1.0	ug/L			04/03/24 20:25	1	
Dibromochloromethane	ND		1.0	ug/L			04/03/24 20:25	1	
Bromoform	ND		1.0	ug/L			04/03/24 20:25	1	
Bromomethane	ND		3.0	ug/L			04/03/24 20:25	1	
Carbon disulfide	ND		10	ug/L			04/03/24 20:25	1	
Carbon tetrachloride	ND		1.0	ug/L			04/03/24 20:25	1	
Chlorobenzene	ND		1.0	ug/L			04/03/24 20:25	1	
Chloroethane	ND		2.0	ug/L			04/03/24 20:25	1	
Chloroform	ND		1.0	ug/L			04/03/24 20:25	1	
Chloromethane	ND		3.0	ug/L			04/03/24 20:25	1	
cis-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 20:25	1	
cis-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 20:25	1	
Dibromomethane	ND		1.0	ug/L			04/03/24 20:25	1	
Dichlorodifluoromethane	ND		1.0	ug/L			04/03/24 20:25	1	
Ethylbenzene	ND		1.0	ug/L			04/03/24 20:25	1	
Hexachlorobutadiene	ND		1.0	ug/L			04/03/24 20:25	1	
Isopropylbenzene	ND		1.0	ug/L			04/03/24 20:25	1	

Client Sample ID: FY Treated EFF Date Collected: 03/27/24 10:00 Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-16

Matrix: Water

5

Method: SW846 8260B - Volat	ile Organic	Compoun	ds (GC/MS) (Co	ntinued)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/03/24 20:25	1
Methylene Chloride	ND		3.0	ug/L			04/03/24 20:25	1
n-Butylbenzene	ND		3.0	ug/L			04/03/24 20:25	1
N-Propylbenzene	ND		1.0	ug/L			04/03/24 20:25	1
Naphthalene	ND		2.0	ug/L			04/03/24 20:25	1
sec-Butylbenzene	ND		1.0	ug/L			04/03/24 20:25	1
Styrene	ND		1.0	ug/L			04/03/24 20:25	1
tert-Butylbenzene	ND		1.0	ug/L			04/03/24 20:25	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/03/24 20:25	1
Toluene	ND		1.0	ug/L			04/03/24 20:25	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 20:25	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 20:25	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/03/24 20:25	1
Trichlorofluoromethane	ND		1.0	ug/L			04/03/24 20:25	1
Vinyl chloride	ND		1.0	ug/L			04/03/24 20:25	1
Xylenes, Total	ND		1.5	ug/L			04/03/24 20:25	1
Sumerate	0/ Decovery	Qualifiar	Lingita			Dronorod	Anolymod	
Surrogate	%Recovery	Qualifier				Prepared	Analyzed	DIIFac
T,2-Dichloroelhane-d4 (Surr)	113		70 - 730				04/03/24 20.25	1
1 Bremefluerebenzene (Surr)	90		70 - 130				04/03/24 20.25	1
4-Bromonuorobenzene (Sun)	00		70 - 130				04/03/24 20.25	
	123		70 - 730				04/03/24 20.25	1
Method: SW846 8015D - Gaso	line Range	Organics	(GRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.050	mg/L			04/01/24 12:56	1
Surrogate	%Recoverv	Qualifier	Limits			Prepared	Analvzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		15 - 270				04/01/24 12:56	1
Method: EPA-DW2 504.1 - EDI	B, DBCP an	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.18		0.0096	ug/L		04/02/24 10:14	04/03/24 05:00	1
- Method: SW846 8015D - Diese	A Range Or	ganics (DF						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		1.0	mg/L		04/03/24 09:31	04/03/24 13:43	1
Motor Oil Range Organics [C28-C40]	ND		5.0	mg/L		04/03/24 09:31	04/03/24 13:43	1
				-				
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
 	109		46 - 159			04/03/24 09:31	04/03/24 13:43	1
- Method: EPA 300.0 - Anions. I	on Chroma	tography						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	78		5.0	mg/L			04/01/24 16:24	10
Sulfate	41		5.0	mg/L			04/01/24 16:24	10
Nitrate Nitrite as N	1.9		1.0	mg/L			04/01/24 23:28	5
Analyte	Recult	Qualifier	RI	Unit	п	Prenared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	510		50	<u></u>			04/02/24 11.20	1
	0.0							
Lab Sample ID: 885-2074-17

Matrix: Water

Client Sample ID: FY RAW Date Collected: 03/27/24 09:38 Date Received: 03/29/24 16:35

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac	5
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		04/04/24 18:58	1	
1.1.1-Trichloroethane	ND	1.0	ug/L		04/04/24 18:58	1	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		04/04/24 18:58	1	
1.1.2-Trichloroethane	ND	1.0	ua/L		04/04/24 18:58		
1,1-Dichloroethane	ND	1.0	ug/L		04/04/24 18:58	1	
1,1-Dichloroethene	ND	1.0	ug/L		04/04/24 18:58	1	G
1.1-Dichloropropene	ND	1.0	ua/L		04/04/24 18:58	1	C
1.2.3-Trichlorobenzene	ND	1.0	ug/L		04/04/24 18:58	1	
1.2.3-Trichloropropane	ND	2.0	ua/L		04/04/24 18:58	1	12
1.2.4-Trichlorobenzene	ND	1.0	ua/L		04/04/24 18:58	1	
1.2.4-Trimethylbenzene	ND	1.0	ua/L		04/04/24 18:58	1	
1.2-Dibromo-3-Chloropropane	ND	2.0	ua/L		04/04/24 18:58	1	
1.2-Dibromoethane (EDB)	6.8	10	<u>9</u> , ug/l		04/04/24 18:58	1	
1 2-Dichlorobenzene	ND	1.0	ug/l		04/04/24 18:58	1	
1 2-Dichloroethane (EDC)	91	1.0	ug/l		04/04/24 18:58	1	
1.2-Dichloropropane	ND	1.0	ua/l		04/04/24 18:58		
1 3 5-Trimethylbenzene	5.2	1.0	ug/L		04/04/24 18:58	1	
1.3-Dichlorobenzene	ND	1.0	ug/L		04/04/24 18:58	1	
1 3-Dichloropropane	ND	1.0	ug/L		04/04/24 18:58		
1 4-Dichlorobenzene	ND	1.0	ug/L		04/04/24 18:58	1	
1-Methylnanhthalene	ND	4.0	ug/L		04/04/24 18:58	1	
2 2-Dichloropropage	ND	2.0	ug/L		04/04/24 18:58	1	
2-Butanone	ND	10	ug/L		04/04/24 18:58	1	
2-Chlorotoluene	ND	10	ug/L		04/04/24 18:58	1	
2-Hevanone	ND	10	ug/L		04/04/24 18:58	1	
2-Methylnanhthalene	ND	4.0	ug/L		04/04/24 18:58	1	
4-Chlorotoluene	ND	4.0	ug/L		04/04/24 18:58	1	
4-Isopropyltoluene	ND	1.0	ug/L		04/04/24 10:50		
4 Mothyl 2 pontanono	ND	1.0	ug/L		04/04/24 10:50	1	
	ND	10	ug/L		04/04/24 18:58	1	
Bonzono	120	10	ug/L		04/04/24 10:30	10	
Bromohonzono		10	ug/L		04/03/24 12:53	10	
Bromodichloromothano	ND	1.0	ug/L		04/04/24 10:50	1	
Dibromochloromothana	ND	1.0	ug/L		04/04/24 10.30	1	
Bromoform	ND	1.0	ug/L		04/04/24 10:50	1	
Bromomothana	ND	1.0	ug/L		04/04/24 10:50	1	
Carbon disulfido	ND	10	ug/L		04/04/24 18:58	1	
		10	ug/L		04/04/24 10.00	1	
Chlorobonzono		1.0	ug/L		04/04/24 10:58	1	
Chloroethane		1.0	ug/L		04/04/24 10.00	4	
Chloroform		2.U 1.0	ug/L		04/04/24 10.00	1	
Chloromothana		1.0	ug/L		04/04/24 10:58	1	
		J.U	ug/L		04/04/24 10:58	ا م	
		1.0	ug/L		04/04/24 18:58	1	
		1.0	ug/L		04/04/24 18:58	1	
		1.0	ug/L		04/04/24 18:58	1	
		1.0	ug/L		04/04/24 18:58	1	
		1.0	ug/L		04/04/24 18:58	1	
	ND	1.0	ug/L		04/04/24 18:58	1	
Isopropylbenzene	ND	1.0	ug/L		04/04/24 18:58	1	

Client Sample ID: FY RAW

Date Collected: 03/27/24 09:38

Lab Sample ID: 885-2074-17

Matrix: Water

5

Date Received: 03/29/24 16:3	35							
Method: SW846 8260B - Vo	latile Organic	Compoun	ds (GC/MS) (Co	ntinued)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/04/24 18:58	1
Methylene Chloride	ND		3.0	ug/L			04/04/24 18:58	1
n-Butylbenzene	ND		3.0	ug/L			04/04/24 18:58	1
N-Propylbenzene	ND		1.0	ug/L			04/04/24 18:58	1
Naphthalene	2.6		2.0	ug/L			04/04/24 18:58	1
sec-Butylbenzene	ND		1.0	ug/L			04/04/24 18:58	1
Styrene	ND		1.0	ug/L			04/04/24 18:58	1
tert-Butylbenzene	ND		1.0	ug/L			04/04/24 18:58	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/04/24 18:58	1
Toluene	24		1.0	ug/L			04/04/24 18:58	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/04/24 18:58	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/04/24 18:58	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/04/24 18:58	1
Trichlorofluoromethane	ND		1.0	ug/L			04/04/24 18:58	1
Vinyl chloride	ND		1.0	ug/L			04/04/24 18:58	1
Xylenes, Total	35		1.5	ug/L			04/04/24 18:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130				04/04/24 18:58	1
1,2-Dichloroethane-d4 (Surr)	117		70 - 130				04/05/24 12:35	10

1,2-Dichloroethane-d4 (Surr)	117	70 - 130	04/05/24 12:35	10
Toluene-d8 (Surr)	92	70 - 130	04/04/24 18:58	1
4-Bromofluorobenzene (Surr)	83	70 - 130	04/04/24 18:58	1
Dibromofluoromethane (Surr)	117	70 - 130	04/04/24 18:58	1
Dibromofluoromethane (Surr)	128	70 - 130	04/05/24 12:35	10

Method: SW846 8015D - Gasoline Range Organics (GRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	0.71		0.050	mg/L			04/01/24 13:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		15 - 270				04/01/24 13:20	1
Method: EPA-DW2 504.1 - ED	B, DBCP an	d 1,2,3-TC	P (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

1,2-Dibromoethane	5.9 H	0.47	ug/L	04/02/24 10:14	04/03/24 17:18	50
_ Method: SW846 8015D - Diese	el Range Organics (DR	O) (GC)				

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		1.0	mg/L		04/03/24 09:31	04/03/24 13:56	1
Motor Oil Range Organics [C28-C40]	ND		5.0	mg/L		04/03/24 09:31	04/03/24 13:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	110		46 - 159			04/03/24 09:31	04/03/24 13:56	1

Method: EPA 300.0 - Anions, Ion Chromatography										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	77		5.0	mg/L			04/01/24 16:49	10		
Sulfate	41		5.0	mg/L			04/01/24 16:49	10		
Nitrate Nitrite as N	2.0		1.0	mg/L			04/01/24 23:41	5		

Client Sample Results

		Client S	Sample Re	sults					
Client: Daniel B. Stephens & Assoc Project/Site: Former Y	iates Inc.						Job ID: 885	-2074-1	2
Client Sample ID: FY RAW Date Collected: 03/27/24 09:38 Date Received: 03/29/24 16:35					La	ab Sampl	e ID: 885-20 Matrix)74-17 : Water	
General Chemistry Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	4 5
Total Dissolved Solids (SM 2540C)	510		100	mg/L			04/02/24 11:29	1	6
									8
									9

Lab Sample ID: 885-2074-18 Matrix: Water

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 03/26/24 00:00 Date Received: 03/29/24 16:35

Method: SW846 8260B - Volat	tile Organic Compounds	(GC/MS)	Unit	D Propared	Applyzod	Dil Eac	5
1 1 1 2 Tetrachloroethane		1.0			$-\frac{A11a1y2eu}{04/04/24,20.20}$		
	ND	1.0	ug/L		04/04/24 20:20	1	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		04/04/24 20:20	1	
1,1,2,2-Tetrachioroethana		2.0	ug/L		04/04/24 20:20		
1,1,2-memoroethane	ND	1.0	ug/L		04/04/24 20:20	1	
1,1-Dichloroothono		1.0	ug/L		04/04/24 20:20	1	
		1.0	ug/L		04/04/24 20.20		ð
		1.0	ug/L		04/04/24 20.20	1	
		1.0	ug/L		04/04/24 20.20	1	9
1,2,3-Trichloropropane		2.0	ug/L		04/04/24 20:20		
1,2,4-Trichlorobenzene		1.0	ug/L		04/04/24 20:20	1	
1,2,4-1 rimethyldenzene	ND	1.0	ug/L		04/04/24 20:20	1	
1,2-Dibromo-3-Chioropropane	ND	2.0	ug/L		04/04/24 20:20		
1,2-Dibromoetnane (EDB)	ND	1.0	ug/L		04/04/24 20:20	1	
1,2-Dichlorobenzene	ND	1.0	ug/L		04/04/24 20:20	1	
1,2-Dichloroethane (EDC)	ND	1.0	ug/L		04/04/24 20:20		
1,2-Dichloropropane	ND	1.0	ug/L		04/04/24 20:20	1	
1,3,5-Trimethylbenzene	ND	1.0	ug/L		04/04/24 20:20	1	
1,3-Dichlorobenzene	ND	1.0	ug/L		04/04/24 20:20	1	
1,3-Dichloropropane	ND	1.0	ug/L		04/04/24 20:20	1	
1,4-Dichlorobenzene	ND	1.0	ug/L		04/04/24 20:20	1	
1-Methylnaphthalene	ND	4.0	ug/L		04/04/24 20:20	1	
2,2-Dichloropropane	ND	2.0	ug/L		04/04/24 20:20	1	
2-Butanone	ND	10	ug/L		04/04/24 20:20	1	
2-Chlorotoluene	ND	1.0	ug/L		04/04/24 20:20	1	
2-Hexanone	ND	10	ug/L		04/04/24 20:20	1	
2-Methylnaphthalene	ND	4.0	ug/L		04/04/24 20:20	1	
4-Chlorotoluene	ND	1.0	ug/L		04/04/24 20:20	1	
4-Isopropyltoluene	ND	1.0	ug/L		04/04/24 20:20	1	
4-Methyl-2-pentanone	ND	10	ug/L		04/04/24 20:20	1	
Acetone	ND	10	ug/L		04/04/24 20:20	1	
Benzene	ND	1.0	ug/L		04/04/24 20:20	1	
Bromobenzene	ND	1.0	ug/L		04/04/24 20:20	1	
Bromodichloromethane	ND	1.0	ug/L		04/04/24 20:20	1	
Dibromochloromethane	ND	1.0	ug/L		04/04/24 20:20	1	
Bromoform	ND	1.0	ug/L		04/04/24 20:20	1	
Bromomethane	ND	3.0	ug/L		04/04/24 20:20	1	
Carbon disulfide	ND	10	ug/L		04/04/24 20:20	1	
Carbon tetrachloride	ND	1.0	ug/L		04/04/24 20:20	1	
Chlorobenzene	ND	1.0	ug/L		04/04/24 20:20	1	
Chloroethane	ND	2.0	ug/L		04/04/24 20:20	1	
Chloroform	ND	1.0	ug/L		04/04/24 20:20	1	
Chloromethane	ND	3.0	ug/L		04/04/24 20:20	1	
cis-1,2-Dichloroethene	ND	1.0	ua/L		04/04/24 20:20	1	
cis-1,3-Dichloropropene	ND	1.0	ua/L		04/04/24 20:20	1	
Dibromomethane	ND	1.0	ua/L		04/04/24 20:20	1	
Dichlorodifluoromethane			'g' =		04/04/04 00 00		
	ND	1.0	Ud/I		04/04/24 20:20		
Ethylbenzene	ND ND	1.0 1.0	ug/L ua/l		04/04/24 20:20	1	
Ethylbenzene Hexachlorobutadiene	ND ND	1.0 1.0 1.0	ug/L ug/L ug/l		04/04/24 20:20 04/04/24 20:20 04/04/24 20:20	1	

Client Sample ID: Trip Blank

Date Collected: 03/26/24 00:00

Date Received: 03/29/24 16:35

Lab Sample ID: 885-2074-18 Matrix: Water

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/04/24 20:20	1
Methylene Chloride	ND		3.0	ug/L			04/04/24 20:20	1
n-Butylbenzene	ND		3.0	ug/L			04/04/24 20:20	1
N-Propylbenzene	ND		1.0	ug/L			04/04/24 20:20	1
Naphthalene	ND		2.0	ug/L			04/04/24 20:20	1
sec-Butylbenzene	ND		1.0	ug/L			04/04/24 20:20	1
Styrene	ND		1.0	ug/L			04/04/24 20:20	1
tert-Butylbenzene	ND		1.0	ug/L			04/04/24 20:20	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/04/24 20:20	1
Toluene	ND		1.0	ug/L			04/04/24 20:20	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/04/24 20:20	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/04/24 20:20	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/04/24 20:20	1
Trichlorofluoromethane	ND		1.0	ug/L			04/04/24 20:20	1
Vinyl chloride	ND		1.0	ug/L			04/04/24 20:20	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 20:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			70 - 130		-		04/04/24 20:20	1
Toluene-d8 (Surr)	93		70 - 130				04/04/24 20:20	1
4-Bromofluorobenzene (Surr)	87		70 - 130				04/04/24 20:20	1
Dibromofluoromethane (Surr)	127		70 - 130				04/04/24 20:20	1

Lab Sample ID: MB 885-2761/26 Matrix: Water Analysis Batch: 2761

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			04/03/24 09:53	1
1,1,1-Trichloroethane	ND		1.0	ug/L			04/03/24 09:53	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			04/03/24 09:53	1
1,1,2-Trichloroethane	ND		1.0	ug/L			04/03/24 09:53	1
1,1-Dichloroethane	ND		1.0	ug/L			04/03/24 09:53	1
1,1-Dichloroethene	ND		1.0	ug/L			04/03/24 09:53	1
1,1-Dichloropropene	ND		1.0	ug/L			04/03/24 09:53	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/03/24 09:53	1
1,2,3-Trichloropropane	ND		2.0	ug/L			04/03/24 09:53	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			04/03/24 09:53	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			04/03/24 09:53	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			04/03/24 09:53	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			04/03/24 09:53	1
1,2-Dichlorobenzene	ND		1.0	ug/L			04/03/24 09:53	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			04/03/24 09:53	1
1,2-Dichloropropane	ND		1.0	ug/L			04/03/24 09:53	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			04/03/24 09:53	1
1,3-Dichlorobenzene	ND		1.0	ug/L			04/03/24 09:53	1
1,3-Dichloropropane	ND		1.0	ug/L			04/03/24 09:53	1
1,4-Dichlorobenzene	ND		1.0	ug/L			04/03/24 09:53	1
1-Methylnaphthalene	ND		4.0	ug/L			04/03/24 09:53	1
2,2-Dichloropropane	ND		2.0	ug/L			04/03/24 09:53	1
2-Butanone	ND		10	ug/L			04/03/24 09:53	1
2-Chlorotoluene	ND		1.0	ug/L			04/03/24 09:53	1
2-Hexanone	ND		10	ug/L			04/03/24 09:53	1
2-Methylnaphthalene	ND		4.0	ug/L			04/03/24 09:53	1
4-Chlorotoluene	ND		1.0	ug/L			04/03/24 09:53	1
4-Isopropyltoluene	ND		1.0	ug/L			04/03/24 09:53	1
4-Methyl-2-pentanone	ND		10	ug/L			04/03/24 09:53	1
Acetone	ND		10	ug/L			04/03/24 09:53	1
Benzene	ND		1.0	ug/L			04/03/24 09:53	1
Bromobenzene	ND		1.0	ug/L			04/03/24 09:53	1
Bromodichloromethane	ND		1.0	ug/L			04/03/24 09:53	1
Dibromochloromethane	ND		1.0	ug/L			04/03/24 09:53	1
Bromoform	ND		1.0	ug/L			04/03/24 09:53	1
Bromomethane	ND		3.0	ug/L			04/03/24 09:53	1
Carbon disulfide	ND		10	ug/L			04/03/24 09:53	1
Carbon tetrachloride	ND		1.0	ug/L			04/03/24 09:53	1
Chlorobenzene	ND		1.0	ug/L			04/03/24 09:53	1
Chloroethane	ND		2.0	ug/L			04/03/24 09:53	1
Chloroform	ND		1.0	ug/L			04/03/24 09:53	1
Chloromethane	ND		3.0	ug/L			04/03/24 09:53	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 09:53	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 09:53	1
Dibromomethane	ND		1.0	ug/L			04/03/24 09:53	1
Dichlorodifluoromethane	ND		1.0	ug/L			04/03/24 09:53	1
Ethylbenzene	ND		1.0	ug/L			04/03/24 09:53	1
- Hexachlorobutadiene	ND		1.0	ug/L			04/03/24 09:53	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-2761/26 Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water Analysis Batch: 2761

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.0	ug/L			04/03/24 09:53	1
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/03/24 09:53	1
Methylene Chloride	ND		3.0	ug/L			04/03/24 09:53	1
n-Butylbenzene	ND		3.0	ug/L			04/03/24 09:53	1
N-Propylbenzene	ND		1.0	ug/L			04/03/24 09:53	1
Naphthalene	ND		2.0	ug/L			04/03/24 09:53	1
sec-Butylbenzene	ND		1.0	ug/L			04/03/24 09:53	1
Styrene	ND		1.0	ug/L			04/03/24 09:53	1
tert-Butylbenzene	ND		1.0	ug/L			04/03/24 09:53	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/03/24 09:53	1
Toluene	ND		1.0	ug/L			04/03/24 09:53	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/03/24 09:53	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/03/24 09:53	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/03/24 09:53	1
Trichlorofluoromethane	ND		1.0	ug/L			04/03/24 09:53	1
Vinyl chloride	ND		1.0	ug/L			04/03/24 09:53	1
Xylenes, Total	ND		1.5	ug/L			04/03/24 09:53	1
	MB	МВ						

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		70 - 130		04/03/24 09:53	1
Toluene-d8 (Surr)	96		70 - 130		04/03/24 09:53	1
4-Bromofluorobenzene (Surr)	86		70 - 130		04/03/24 09:53	1
Dibromofluoromethane (Surr)	117		70 - 130		04/03/24 09:53	1

Lab Sample ID: LCS 885-2761/25 Matrix: Water Analysis Batch: 2761

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	19.5		ug/L		97	70 - 130	
Benzene	20.1	21.6		ug/L		108	70 - 130	
Chlorobenzene	20.1	17.8		ug/L		89	70 - 130	
Toluene	20.2	18.7		ug/L		93	70 - 130	
Trichloroethene (TCE)	20.2	20.0		ug/L		99	70 - 130	

	LCS LCS							
Surrogate	%Recovery	Qualifier	Limits					
1,2-Dichloroethane-d4 (Surr)	106		70 - 130					
Toluene-d8 (Surr)	95		70 - 130					
4-Bromofluorobenzene (Surr)	86		70 - 130					
Dibromofluoromethane (Surr)	113		70 - 130					

Lab Sample ID: MB 885-2809/16 Matrix: Water Analysis Batch: 2809

	MB N	MB						
Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			04/04/24 16:41	1
1,1,1-Trichloroethane	ND		1.0	ug/L			04/04/24 16:41	1

Eurofins Albuquerque

Prep Type: Total/NA

Client Sample ID: Method Blank

5 6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Qualifier

Result

ND

Lab Sample ID: MB 885-2809/16 Matrix: Water

Analysis Batch: 2809

1,1,2,2-Tetrachloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethene

1,1-Dichloropropene

1,2,3-Trichlorobenzene

1,2,3-Trichloropropane

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1,2-Dibromo-3-Chloropropane

1,2-Dibromoethane (EDB)

1,2-Dichloroethane (EDC)

1,2-Dichlorobenzene

1,2-Dichloropropane

1,3-Dichlorobenzene

1,3-Dichloropropane

1,4-Dichlorobenzene

1-Methylnaphthalene

2,2-Dichloropropane

2-Methylnaphthalene

2-Butanone

2-Hexanone

Acetone

Benzene

Bromoform

2-Chlorotoluene

4-Chlorotoluene

Bromobenzene

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

Dibromomethane

Ethylbenzene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Methyl-tert-butyl Ether (MTBE)

Hexachlorobutadiene

Isopropylbenzene

Methylene Chloride

Chloroethane

Chloroform

Carbon tetrachloride

4-Isopropyltoluene

4-Methyl-2-pentanone

Bromodichloromethane

Dibromochloromethane

1,3,5-Trimethylbenzene

Analyte

Client Sample ID: Method Blank Prep Type: Total/NA

RL Unit D Prepared Analyzed Dil Fac 20 ug/L 04/04/24 16:41 1.0 ug/L 04/04/24 16:41 1 ug/L 04/04/24 16:41 1.0 1 1.0 ug/L 04/04/24 16:41 1 1.0 ug/L 04/04/24 16:41 1 1.0 ug/L 04/04/24 16:41 1 2.0 ug/L 04/04/24 16:41 1 1.0 ug/L 04/04/24 16:41 1 04/04/24 16:41 1.0 ug/L 1 2.0 ug/L 04/04/24 16:41 1 1.0 ug/L 04/04/24 16:41 1 ug/L 04/04/24 16:41 1 1.0 04/04/24 16:41 1.0 ug/L 1 10 ug/L 04/04/24 16:41 1 1.0 ug/L 04/04/24 16:41 1.0 ug/L 04/04/24 16:41 1 1.0 ug/L 04/04/24 16:41 1.0 04/04/24 16:41 ug/L 1 4.0 ug/L 04/04/24 16:41 2.0 ug/L 04/04/24 16:41 ug/L 10 04/04/24 16:41 1 1.0 ug/L 04/04/24 16:41 1 10 ug/L 04/04/24 16:41 1 40 ug/L 04/04/24 16:41 1.0 ug/L 04/04/24 16:41 1 1.0 04/04/24 16:41 ug/L 10 ug/L 04/04/24 16:41 1 10 ug/L 04/04/24 16:41 1.0 ug/L 04/04/24 16:41 1 ug/L 3.0 04/04/24 16:41 1 10 ug/L 04/04/24 16:41 1 ug/L 04/04/24 16:41 1.0 1 1.0 ug/L 04/04/24 16:41 2.0 ug/L 04/04/24 16:41 1

)		
(5)	
	2		

4/22/2024

1

1

1

1

1

1

1

1

04/04/24 16:41

04/04/24 16:41

04/04/24 16:41

04/04/24 16:41

04/04/24 16:41

04/04/24 16:41

04/04/24 16:41

04/04/24 16:41

04/04/24 16:41

04/04/24 16:41

04/04/24 16:41

Eurofins Albuquerque

1.0

3.0

1.0

1.0

1.0

10

1.0

1.0

1.0

1.0

3.0

ug/L

ND ND ND

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-2809/16 Matrix: Water

Analysis Batch: 2809

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	ND		3.0	ug/L			04/04/24 16:41	1
N-Propylbenzene	ND		1.0	ug/L			04/04/24 16:41	1
Naphthalene	ND		2.0	ug/L			04/04/24 16:41	1
sec-Butylbenzene	ND		1.0	ug/L			04/04/24 16:41	1
Styrene	ND		1.0	ug/L			04/04/24 16:41	1
tert-Butylbenzene	ND		1.0	ug/L			04/04/24 16:41	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/04/24 16:41	1
Toluene	ND		1.0	ug/L			04/04/24 16:41	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/04/24 16:41	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/04/24 16:41	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/04/24 16:41	1
Trichlorofluoromethane	ND		1.0	ug/L			04/04/24 16:41	1
Vinyl chloride	ND		1.0	ug/L			04/04/24 16:41	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 16:41	1
	МВ	МВ						

Surrogate	%Recovery Qualifi	ier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104	70 - 130		04/04/24 16:41	1
Toluene-d8 (Surr)	95	70 - 130		04/04/24 16:41	1
4-Bromofluorobenzene (Surr)	84	70 - 130		04/04/24 16:41	1
Dibromofluoromethane (Surr)	123	70 - 130		04/04/24 16:41	1

Lab Sample ID: LCS 885-2809/15 **Matrix: Water Analysis Batch: 2809**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	19.9		ug/L		99	70 - 130	
Benzene	20.1	23.7		ug/L		118	70 - 130	
Chlorobenzene	20.1	18.1		ug/L		90	70 - 130	
Toluene	20.2	18.9		ug/L		94	70 - 130	
Trichloroethene (TCE)	20.2	22.0		ug/L		109	70 - 130	

	LCS LCS							
Surrogate	%Recovery	Qualifier	Limits					
1,2-Dichloroethane-d4 (Surr)	110		70 - 130					
Toluene-d8 (Surr)	88		70 - 130					
4-Bromofluorobenzene (Surr)	85		70 - 130					
Dibromofluoromethane (Surr)	120		70 - 130					

Lab Sample ID: 885-2074-17 MS Matrix: Water **Analysis Batch: 2809**

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND		20.1	19.3		ug/L		96	70 - 130	
Benzene	120	E	20.1	156	4	ug/L		154	70 - 130	
Chlorobenzene	ND		20.1	18.1		ug/L		90	70 - 130	
Toluene	24		20.2	41.2		ug/L		88	70 - 130	
Trichloroethene (TCE)	ND		20.2	20.9		ug/L		104	70 - 130	

Eurofins Albuquerque

Client Sample ID: Lab Control Sample Prep Type: Total/NA

4/22/2024

Client Sample ID: FY RAW

Prep Type: Total/NA

Job ID: 885-2074-1

5 6

Lab Sample ID: 885-2074-17 MS Matrix: Water

Analysis Batch: 2809

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	109		70 - 130
Toluene-d8 (Surr)	92		70 - 130
4-Bromofluorobenzene (Surr)	93		70 - 130
Dibromofluoromethane (Surr)	118		70 - 130

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 885-2074-17 MSD **Matrix: Water** Analysis Batch: 2809

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		20.1	16.8		ug/L		84	70 - 130	14	20
Benzene	120	E	20.1	136	4	ug/L		56	70 - 130	13	20
Chlorobenzene	ND		20.1	17.2		ug/L		86	70 - 130	5	20
Toluene	24		20.2	40.5		ug/L		84	70 - 130	2	20
Trichloroethene (TCE)	ND		20.2	18.9		ug/L		94	70 - 130	10	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107		70 - 130
Toluene-d8 (Surr)	96		70 - 130
4-Bromofluorobenzene (Surr)	83		70 - 130
Dibromofluoromethane (Surr)	111		70 - 130

Lab Sample ID: MB 885-2875/22 Matrix: Water

Analysis Batch: 2875

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			04/05/24 12:07	1
1,1,1-Trichloroethane	ND		1.0	ug/L			04/05/24 12:07	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			04/05/24 12:07	1
1,1,2-Trichloroethane	ND		1.0	ug/L			04/05/24 12:07	1
1,1-Dichloroethane	ND		1.0	ug/L			04/05/24 12:07	1
1,1-Dichloroethene	ND		1.0	ug/L			04/05/24 12:07	1
1,1-Dichloropropene	ND		1.0	ug/L			04/05/24 12:07	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/05/24 12:07	1
1,2,3-Trichloropropane	ND		2.0	ug/L			04/05/24 12:07	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			04/05/24 12:07	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			04/05/24 12:07	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			04/05/24 12:07	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			04/05/24 12:07	1
1,2-Dichlorobenzene	ND		1.0	ug/L			04/05/24 12:07	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			04/05/24 12:07	1
1,2-Dichloropropane	ND		1.0	ug/L			04/05/24 12:07	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			04/05/24 12:07	1
1,3-Dichlorobenzene	ND		1.0	ug/L			04/05/24 12:07	1
1,3-Dichloropropane	ND		1.0	ug/L			04/05/24 12:07	1
1,4-Dichlorobenzene	ND		1.0	ug/L			04/05/24 12:07	1
1-Methylnaphthalene	ND		4.0	ug/L			04/05/24 12:07	1

Eurofins Albuquerque

Client Sample ID: FY RAW

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: FY RAW

Prep Type: Total/NA

Prep Type: Total/NA

5

6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-2875/22 Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 2875

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
2,2-Dichloropropane	ND		2.0	ug/L			04/05/24 12:07	1
2-Butanone	ND		10	ug/L			04/05/24 12:07	1
2-Chlorotoluene	ND		1.0	ug/L			04/05/24 12:07	1
2-Hexanone	ND		10	ug/L			04/05/24 12:07	1
2-Methylnaphthalene	ND		4.0	ug/L			04/05/24 12:07	1
4-Chlorotoluene	ND		1.0	ug/L			04/05/24 12:07	1
4-Isopropyltoluene	ND		1.0	ug/L			04/05/24 12:07	1
4-Methyl-2-pentanone	ND		10	ug/L			04/05/24 12:07	1
Acetone	ND		10	ug/L			04/05/24 12:07	1
Benzene	ND		1.0	ug/L			04/05/24 12:07	1
Bromobenzene	ND		1.0	ug/L			04/05/24 12:07	1
Bromodichloromethane	ND		1.0	ug/L			04/05/24 12:07	1
Dibromochloromethane	ND		1.0	ug/L			04/05/24 12:07	1
Bromoform	ND		1.0	ua/L			04/05/24 12:07	1
Bromomethane	ND		3.0	ua/L			04/05/24 12:07	1
Carbon disulfide	ND		10	ua/L			04/05/24 12:07	
Carbon tetrachloride	ND		1.0	ua/L			04/05/24 12:07	1
Chlorobenzene	ND		10	ug/l			04/05/24 12:07	1
Chloroethane	ND		20	ug/l			04/05/24 12:07	
Chloroform	ND		1.0	ug/L			04/05/24 12:07	1
Chloromethane	ND		3.0	ug/L			04/05/24 12:07	1
cis_1 2-Dichloroethene	ND		1.0	ug/L			04/05/24 12:07	
cis-1 3-Dichloropropene	ND		1.0	ug/L			04/05/24 12:07	1
Dibromomethane	ND		1.0	ug/L			04/05/24 12:07	1
Dichlorodifluoromethane	ND		1.0	ug/L			04/05/24 12:07	
Ethylbenzene	ND		1.0	ug/L			04/05/24 12:07	1
Hexachlorobutadiene			1.0	ug/L			04/05/24 12:07	1
Isonronylbenzene			1.0	ug/L			04/05/24 12:07	
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/05/24 12:07	1
Methylene Chloride			3.0	ug/L			04/05/24 12:07	1
n-Butylbenzene			3.0	ug/L			04/05/24 12:07	
N-Bronylbenzene			5.0 1.0	ug/L			04/05/24 12:07	1
Nanhthalene			2.0	ug/L			04/05/24 12:07	1
sec-Butylbenzene			2.0	ug/L			04/05/24 12:07	
Styrene			1.0	ug/L			04/05/24 12:07	1
tert-Butylbenzene			1.0	ug/L			04/05/24 12:07	1
Tetrachloroethene (PCE)			1.0	ug/L			04/05/24 12:07	
			1.0	ug/L			04/05/24 12:07	1
trans-1 2-Dichloroethene			1.0	ug/L			04/05/24 12:07	1
trans-1,2-Dichloropropene			1.0	ug/L			04/05/24 12:07	
Trichloroethene (TCE)			1.0	ug/L			04/05/24 12:07	1
			1.0	ug/L			04/05/24 12:07	1
Vinyl chloride			1.0 1 A	ug/L			04/05/24 12.07	· · · · · · · · · · · · · · · · · · ·
			1.0	ug/L			04/05/24 12:07	1
Ayicites, Iulai	ND 		1.5	ug/L			04/03/24 12:07	I
Surrogate	MB %Recoverv	MB Qualifier	Limits			Prepared	Analvzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		70 - 130		-	· [- ··· • -	04/05/24 12:07	1
Toluene-d8 (Surr)	.9.3		70 - 130				04/05/24 12:07	1
								•

Limits

70 - 130

70 - 130

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB %Recovery Qualifier

131 S1+

81

Prep Type: Total/NA

Prep Type: Total/NA

2 3 4 5 6 7

Prepared Analyzed Dil Fac 04/05/24 12:07 1 04/05/24 12:07 1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 885-2875/21 Matrix: Water Analysis Batch: 2875

Lab Sample ID: MB 885-2875/22

Matrix: Water

Surrogate

Analysis Batch: 2875

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene		19.4		ug/L		97	70 - 130	
Benzene	20.0	23.7		ug/L		118	70 - 130	
Chlorobenzene	20.0	18.2		ug/L		91	70 - 130	
Ethylbenzene	20.0	19.0		ug/L		95	70 - 130	
Toluene	20.0	19.1		ug/L		95	70 - 130	
Trichloroethene (TCE)	20.0	21.6		ug/L		108	70 - 130	
	LCS LCS							

%Recovery	Qualifier	Limits
103		70 - 130
90		70 - 130
84		70 - 130
119		70 - 130
	%Recovery 103 90 84 119	%Recovery Qualifier 103 90 84 119

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-2610 Matrix: Water)/8						Cli	ent Sam	ple ID: Methoo Prep Type: To	l Blank otal/NA
Analysis Batch. 2010	м	R MR								
Analyte	Resu	It Qualifier	RL		Unit	D	F	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	N	D	0.050		mg/L			•	04/01/24 10:59	1
	М	B MB								
Surrogate	%Recove	ry Qualifier	Limits				F	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	1(15 - 270						04/01/24 10:59	1
Lab Sample ID: LCS 885-261	0/7					Clien	t Sa	mple ID	: Lab Control S	Sample
Matrix: Water									Prep Type: To	otal/NA
Analysis Batch: 2610										
-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics [C6 - C10]			0.500	0.538		mg/L		108	70 - 130	
	LCS L	cs								
Surrogate	%Recovery Q	ualifier	Limits							
4-Bromofluorobenzene (Surr)	210		15-270							

Eurofins Albuquerque

4/22/2024

QC Sample Results

Lab Sample ID: 885-2074-16 MS

Matrix: Water

Analysis Batch: 2610

Method: 8015D - Gasoline Range Organics (GRO) (GC) (Continued)

Job ID: 885-2074-1

Prep Type: Total/NA

Client Sample ID: FY Treated EFF

5 6

	Sample	San	nple	Spike		MS	MS						%Rec			
Analyte	Result	Qua	alifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits			÷
Gasoline Range Organics [C6 - C10]	ND			0.500		0.582			mg/L		_	112	41 - 148			ł
	MS	мs														
Surrogate	%Recovery	Qua	alifier	Limits												2
4-Bromofluorobenzene (Surr)	262			15_270												
Lab Sample ID: 885-2074-1	6 MSD									Cli	en	it Samp	le ID: FY	Treate	d EFF	
Matrix: Water													Prep Ty	pe: To	tal/NA	
Analysis Batch: 2610																
	Sample	San	nple	Spike		MSD	MSD						%Rec		RPD	
Analyte	Result	Qua	alifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics [C6 - C10]	ND			0.500		0.549			mg/L			105	41 - 148	6	20	
	MSD	MS	D													
Surrogate	%Recovery	Qua	alifier	Limits												
4-Bromofluorobenzene (Surr)	214			15_270												
Lab Sample ID: MB 885-276 Matrix: Air Analysis Batch: 2766	66/7									C	;lie	ent Sam	ple ID: M Prep Ty	ethod pe: To	Blank tal/NA	
		MB	MB													
Analyte	Re	sult	Qualifier		RL			Unit		D	Ρ	repared	Analyz	2ed	Dil Fac	
Gasoline Range Organics [C6 - C10]	ND			5.0			ug/L					04/03/24	10:19	1	
		MR	MR													
Surrogate	%Reco	verv	Qualifier	l im	its						P	renared	Analyz	zed	Dil Fac	
4-Bromofluorobenzene (Surr)		100			412					_			04/03/24	10:19	1	
l ah Sample ID: I CS 885-27	766/6								CI	ient S	Sar	mnle ID	· Lah Cor	ntrol S	amnle	
Matrix: Air													Prep Tv	pe: To	tal/NA	
Analysis Batch: 2766														<i>p</i> o o		
				Spike		LCS	LCS						%Rec			
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits			
Gasoline Range Organics [C6 - C10]				50.0		53.5			ug/L		_	107	70 - 130			
	LCS	LCS	5													
Surrogate	%Recovery	Qua	alifier	Limits												
4-Bromofluorobenzene (Surr)	211			15-412												
Lab Sample ID: 885-2074-1	3 DU											Client	Sample	D: DT	A-EFF	
Matrix: Air													Prep Ty	ре: То	tal/NA	

Matrix: Air Analysis Batch: 2766

Analysis Daton. 2700									
	Sample	Sample		DU	DU				RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit
Gasoline Range Organics [C6 - C10]	ND			ND		ug/L		NC	20
	DU	DU							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	88		15-412						

Job ID: 885-2074-1

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-2	767/7						Clie	ent Sam	ple ID: Method	Blank
Matrix: Air									Prep Type: To	tal/NA
Analysis Batch: 2767										
-	Μ	В МВ								
Analyte	Resu	lt Qualifier	RL		Unit	ſ	р р	repared	Analyzed	Dil Fac
Benzene	N	5	0.10		ug/L				04/03/24 10:19	1
Ethylbenzene	N	C	0.10		ug/L				04/03/24 10:19	1
Toluene	N	C	0.10		ug/L				04/03/24 10:19	1
Xylenes, Total	N	D	0.20		ug/L				04/03/24 10:19	1
	М	B MB								
Surrogate	%Recover	y Qualifier	Limits				F	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	8	7	70 - 130					-	04/03/24 10:19	1
Lab Comple ID: LCC 995	0767/6					Clie			Lab Control S	omolo
Lab Sample ID: LCS 665-	2/0//0					Cile	ni Sa		Drep Types To	
Watrix: Air									Prep Type: To	nal/NA
Analysis Batch: 2767			Cmiles	1.00	1.00				%/ D oo	
Analyta			Spike	LUS	LUS	Unit	n	% Bee	%Rec	
Benzene			2 00	1 75	Quaimer			87	70 130	·
Ethylbonzono			2.00	1.75		ug/L		80	70 - 130	
m p-Xylene			2.00	3.61		ug/L		09	70-130	
o Yvlene			4.00	1 76		ug/L		88	70 130	
			2.00	1.70		ug/L		99	70 - 130	
Yulonos Total			2.00	5.37		ug/L		80	70 - 130	
Aylenes, Iotal			0.00	5.57		ug/L		03	70-150	
	LCS LO	cs								
Surrogate	%Recovery Q	ualifier	Limits							
4-Bromofluorobenzene (Surr)	90		70 - 130							
l ah Sample ID: 885-2074.	.13 DU							Client	Sample ID: DT	
Matrix: Air								onem	Pren Tyne: To	
Analysis Batch: 2767									Thep Type. To	
Analysis Baton. 2101	Sample Sa	mple		DU	DU					RPD
Analyte	Result Q	ualifier		Result	Qualifier	Unit	D		RPD	Limit
Benzene	0.13			0.122		ug/L			8	20
Ethylbenzene	ND			ND		ug/L			NC	20
Toluene	ND			ND		ug/L			NC	20
Xylenes, Total	ND			ND		ug/L			NC	20
	וח נום	U.								
Surrogate	%Recoverv Q	- ualifier	Limits							
4-Bromofluorobenzene (Surr)	75		70 - 130							

Method: 504.1 - EDB, DBCP and 1,2,3-TCP (GC)

Lab Sample ID: MB 885-2602/3-A Matrix: Water Analysis Batch: 2698						Client Samp	le ID: Methoo Prep Type: To Prep Batcl	I Blank otal/NA n: 2602
-	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.010	ug/L		04/02/24 09:39	04/02/24 15:42	1

QC Sample Results

Job ID: 885-2074-1

5 6 7

Method: 504.1 - EDB, DBCP and 1,2,3-TCP (GC) (Continued)

Lab Sample ID: MRL 885-260 Matrix: Water Analysis Batch: 2698	2/1-A							CI	ient	Sar	nple ID:	Lab Cor Prep Ty Prep	itrol S pe: To Batch	ample tal/NA : 2602
-				Spike		MRL	MRL					%Rec		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
1,2-Dibromoethane				0.0100		ND		ug/L			65	60 - 140		
Lab Sample ID: MB 885-2608 Matrix: Water Analysis Batch: 2698	/ 3-A	MB	МВ							Clie	ent Samp	ole ID: M Prep Ty Prep	ethod pe: To Batch	Blank tal/NA : 2608
Analyte	Re	sult	Qualifier		RL		Unit		D	Р	repared	Analyz	ed	Dil Fac
1,2-Dibromoethane		ND			0.010		ug/L			04/0	2/24 10:14	04/03/24	02:12	1
Lab Sample ID: LCS 885-260 Matrix: Water Analysis Batch: 2698	8/4- A			Sniko				CI	ient	Sar	nple ID:	Lab Cor Prep Ty Prep %Rec	itrol S pe: To Batch	ample tal/NA : 2608
Analyte						Result	Qualifier	Unit		п	%Rec	limits		
1.2-Dibromoethane				0.100		0.106		ua/L			106	70_130		
Lab Sample ID: LCSD 885-26 Matrix: Water Analysis Batch: 2698	08/5-A			Spike		LCSD		Client	Sam	ple	ID: Lab	Control S Prep Ty Prep %Rec	Samp pe: To Batch	le Dup tal/NA : 2608 RPD
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane				0.100		0.105		ug/L			105	70 - 130	0	20
Lab Sample ID: 885-2074-10 Matrix: Water Analysis Batch: 2698 Analyte	MS Sample Result	Sam Qua	nple Ilifier	Spike Added		MS Result	MS Qualifier	Unit	Cli	ent D	Sample %Rec	ID: MW-′ Prep Ty Prep %Rec Limits	I4-202 pe: To Batch	240329 tal/NA : 2608
1,2-Dibromoethane	ND			0.0954		0.0855		ug/L			90	65 - 130		
Method: 8015D - Diesel R Lab Sample ID: MB 885-2699 Matrix: Water Analysis Batch: 2722	ange O /1-A)rga MB	MB)RO) ((GC)					Clie	ent Samp	ole ID: M Prep Ty Prep	ethod pe: To Batch	Blank tal/NA : 2699
Analyte	Re	esult	Qualifier		RL		Unit		D	P	repared	Analyz	ed	Dil Fac
Diesel Range Organics [C10-C28]		ND			1.0		mg/L			04/0	3/24 09:31	04/03/24	13:18	1
Motor Oil Range Organics [C28-C40]		ND MB	MB		5.0		mg/L			04/0	3/24 09:31	04/03/24	13:18	1
Surrogate	%Reco	verv	Qualifier	Lim	nits					Р	repared	Analvz	ed	Dil Fac
Di-n-octyl phthalate (Surr)		108			159					04/0	3/24 09:31	04/03/24	13:18	1
Lab Sample ID: LCS 885-269 Matrix: Water Analysis Batch: 2722	9/2-A			Spike			LCS	CI	ient	Sar	nple ID:	Lab Cor Prep Ty Prep %Rec	itrol S pe: To Batch	ample tal/NA : 2699
Analyte						LUU	200							
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		

QC Sample Results

Job ID: 885-2074-1

5 6

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

	LCS	LCS	;									
Surrogate	%Recovery	Qua	lifier	Limits								
Di-n-octyl phthalate (Surr)	99			46 - 159	_							
Method: 300.0 - Anions,	lon Chro	oma	atograp	ohy								
Lab Sample ID: MB 885-2582	2/4								Clie	ent Sam	ple ID: Metho	d Blank
Matrix: Water											Prep Type: T	otal/NA
Analysis Batch: 2582												
· ····· , ··· · ··· · · · · · · · · · · · · · ·		мв	МВ									
Analyte	Re	sult	Qualifier		RL		Unit		D P	repared	Analyzed	Dil Fac
Chloride		ND			0.50		mg/L			· ·	04/01/24 09:15	1
Sulfate		ND			0.50		mg/L				04/01/24 09:15	1
Lab Sample ID: LCS 885-258	2/5							Clie	nt Sa	mple ID	: Lab Control	Sample
Matrix: Water											Prep Type: T	otal/NA
Analysis Batch: 2582												
				Spike		LCS	LCS				%Rec	
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	
Chloride				5.00		4.70		mg/L		94	90 - 110	
Sulfate				10.0		9.57		mg/L		96	90 - 110	
Lab Sample ID: MRL 885-258	32/3							Clie	nt Sa	mple ID	: Lab Control	Sample
Matrix: Water										- C	Prep Type: T	otal/NA
Analysis Batch: 2582												
				Spike		MRL	MRL				%Rec	
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	
Chloride				0.500		0.516		mg/L		103	50 - 150	
Sulfate				0.500		0.506		mg/L		101	50 - 150	
Lab Sample ID: MB 885-2583	3/4								Clie	ent Sam	ple ID: Metho	d Blank
Matrix: Water											Prep Type: T	otal/NA
Analysis Batch: 2583												
		мв	мв									
Analyte	Re	sult	Qualifier		RL		Unit		D P	repared	Analyzed	Dil Fac
Nitrate Nitrite as N		ND			0.20		mg/L				04/01/24 09:15	1
- Lab Sample ID: LCS 995 259	2/5							Clie	nt Sa	molo ID	Lab Control	Sampla
Matrix: Water	010							one	in Ja		Bron Type: T	
Analysis Ratch: 2583											гтер туре. т	Utal/INA
Analysis Batch. 2000				Sniko		1.05	1.05				%Rec	
Analyte				Papha Papha		Result	Qualifier	Unit	п	%Rec	l imite	
Nitrate as N				2 50		2 47	guainer	ma/l			90 110	
Nitrite as N				1.00		0.985		mg/L		98	90 ₋ 110	
<u>с</u> Г								_				_
Lab Sample ID: MRL 885-258	33/3							Clie	nt Sa	mple ID	: Lab Control	Sample
Matrix: Water											Prep Type: T	otal/NA
Analysis Batch: 2583												
				Spike		MRL	MRL				%Rec	
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N				0.100		0.100		mg/L		100	50 - 150	
Nitrite as N				0.0999		0.101		mg/L		101	50 - 150	

Job ID: 885-2074-1

5 6 7

Method: 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 885-2642/1 Matrix: Water Analysis Batch: 2642							CI	ient Sam	ple ID: Method Prep Type: T	d Blank otal/NA
	MB	МВ								
Analyte	Result	Qualifier		RL	Un	it	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND			50	mg	/L			04/02/24 11:29	1
Lab Sample ID: LCS 885-2642/2						Cli	ent Sa	ample ID	: Lab Control S	Sample
Matrix: Water									Prep Type: T	otal/NA
Analysis Batch: 2642										
-			Spike	LC	S LCS				%Rec	
Analyte			Added	Res	ılt Qualifie	r Unit	0) %Rec	Limits	
Total Dissolved Solids			1000	10	20	mg/L		102	80 - 120	

QC Association Summary

GC/MS VOA

Analysis Batch: 2761

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2074-1	RW-1-20240327	Total/NA	Water	8260B	
885-2074-3	RW-4-20240326	Total/NA	Water	8260B	
885-2074-4	BW-5-20240329	Total/NA	Water	8260B	
885-2074-5	BW-7-20240329	Total/NA	Water	8260B	
885-2074-7	BW-8-20240329	Total/NA	Water	8260B	
885-2074-8	MW-12-20240326	Total/NA	Water	8260B	
885-2074-9	MW-15-20240329	Total/NA	Water	8260B	
885-2074-10	MW-14-20240329	Total/NA	Water	8260B	
885-2074-11	MW-17-20240329	Total/NA	Water	8260B	
885-2074-12	MW-13-20240326	Total/NA	Water	8260B	
885-2074-14	MW-16-20240326	Total/NA	Water	8260B	
885-2074-14	MW-16-20240326	Total/NA	Water	8260B	
885-2074-15	BW-4-20240329	Total/NA	Water	8260B	
885-2074-16	FY Treated EFF	Total/NA	Water	8260B	
MB 885-2761/26	Method Blank	Total/NA	Water	8260B	
LCS 885-2761/25	Lab Control Sample	Total/NA	Water	8260B	

Analysis Batch: 2809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2074-2	RW-3-20240326	Total/NA	Water	8260B	
885-2074-5	BW-7-20240329	Total/NA	Water	8260B	
885-2074-6	BW-7R-20240328	Total/NA	Water	8260B	
885-2074-7	BW-8-20240329	Total/NA	Water	8260B	
885-2074-17	FY RAW	Total/NA	Water	8260B	
885-2074-18	Trip Blank	Total/NA	Water	8260B	
MB 885-2809/16	Method Blank	Total/NA	Water	8260B	
LCS 885-2809/15	Lab Control Sample	Total/NA	Water	8260B	
885-2074-17 MS	FY RAW	Total/NA	Water	8260B	
885-2074-17 MSD	FY RAW	Total/NA	Water	8260B	

Analysis Batch: 2875

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-2074-17	FY RAW	Total/NA	Water	8260B	
MB 885-2875/22	Method Blank	Total/NA	Water	8260B	
LCS 885-2875/21	Lab Control Sample	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 2610

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2074-16	FY Treated EFF	Total/NA	Water	8015D	
885-2074-17	FY RAW	Total/NA	Water	8015D	
MB 885-2610/8	Method Blank	Total/NA	Water	8015D	
LCS 885-2610/7	Lab Control Sample	Total/NA	Water	8015D	
885-2074-16 MS	FY Treated EFF	Total/NA	Water	8015D	
885-2074-16 MSD	FY Treated EFF	Total/NA	Water	8015D	
Analysis Batch: 276	6				
Lab Sample ID 885-2074-13	Client Sample ID DTA-EFF	Prep Type Total/NA	Matrix	Method 8015D	Prep Batch
MB 885-2766/7	Method Blank	Total/NA	Air	8015D	

GC VOA (Continued)

Analysis Batch: 2766 (Continued)

Lab Sample ID LCS 885-2766/6	Client Sample ID Lab Control Sample	Prep Type Total/NA	Air	Method 8015D	Prep Batch
885-2074-13 DU	DTA-EFF	Total/NA	Air	8015D	
Analysis Batch: 27	67				

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-2074-13	DTA-EFF	Total/NA	Air	8021B	
MB 885-2767/7	Method Blank	Total/NA	Air	8021B	
LCS 885-2767/6	Lab Control Sample	Total/NA	Air	8021B	
885-2074-13 DU	DTA-EFF	Total/NA	Air	8021B	

GC Semi VOA

Prep Batch: 2602

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2074-1	RW-1-20240327	Total/NA	Water	504.1	
885-2074-2	RW-3-20240326	Total/NA	Water	504.1	
885-2074-3	RW-4-20240326	Total/NA	Water	504.1	
885-2074-4	BW-5-20240329	Total/NA	Water	504.1	
885-2074-5	BW-7-20240329	Total/NA	Water	504.1	
885-2074-6	BW-7R-20240328	Total/NA	Water	504.1	
885-2074-7	BW-8-20240329	Total/NA	Water	504.1	
885-2074-8	MW-12-20240326	Total/NA	Water	504.1	
885-2074-9	MW-15-20240329	Total/NA	Water	504.1	
MB 885-2602/3-A	Method Blank	Total/NA	Water	504.1	
MRL 885-2602/1-A	Lab Control Sample	Total/NA	Water	504.1	

Prep Batch: 2608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2074-10	MW-14-20240329	Total/NA	Water	504.1	
885-2074-11	MW-17-20240329	Total/NA	Water	504.1	
885-2074-12	MW-13-20240326	Total/NA	Water	504.1	
885-2074-14	MW-16-20240326	Total/NA	Water	504.1	
885-2074-15	BW-4-20240329	Total/NA	Water	504.1	
885-2074-16	FY Treated EFF	Total/NA	Water	504.1	
885-2074-17	FY RAW	Total/NA	Water	504.1	
MB 885-2608/3-A	Method Blank	Total/NA	Water	504.1	
LCS 885-2608/4-A	Lab Control Sample	Total/NA	Water	504.1	
LCSD 885-2608/5-A	Lab Control Sample Dup	Total/NA	Water	504.1	
885-2074-10 MS	MW-14-20240329	Total/NA	Water	504.1	

Analysis Batch: 2698

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-2074-1	RW-1-20240327	Total/NA	Water	504.1	2602
885-2074-9	MW-15-20240329	Total/NA	Water	504.1	2602
885-2074-10	MW-14-20240329	Total/NA	Water	504.1	2608
885-2074-11	MW-17-20240329	Total/NA	Water	504.1	2608
885-2074-12	MW-13-20240326	Total/NA	Water	504.1	2608
885-2074-15	BW-4-20240329	Total/NA	Water	504.1	2608
885-2074-16	FY Treated EFF	Total/NA	Water	504.1	2608
MB 885-2602/3-A	Method Blank	Total/NA	Water	504.1	2602
MB 885-2608/3-A	Method Blank	Total/NA	Water	504.1	2608

QC Association Summary

GC Semi VOA (Continued)

Analysis Batch: 2698 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 885-2608/4-A	Lab Control Sample	Total/NA	Water	504.1	2608
LCSD 885-2608/5-A	Lab Control Sample Dup	Total/NA	Water	504.1	2608
MRL 885-2602/1-A	Lab Control Sample	Total/NA	Water	504.1	2602
885-2074-10 MS	MW-14-20240329	Total/NA	Water	504.1	2608
Prep Batch: 2699					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2074-16	FY Treated EFF	Total/NA	Water	3511	
885-2074-17	FY RAW	Total/NA	Water	3511	
MB 885-2699/1-A	Method Blank	Total/NA	Water	3511	
LCS 885-2699/2-A	Lab Control Sample	Total/NA	Water	3511	
Analysis Batch: 272	2				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2074-16	FY Treated EFF	Total/NA	Water	8015D	2699
885-2074-17	FY RAW	Total/NA	Water	8015D	2699
MB 885-2699/1-A	Method Blank	Total/NA	Water	8015D	2699
LCS 885-2699/2-A	Lab Control Sample	Total/NA	Water	8015D	2699
Analysis Batch: 277	7				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2074-2	RW-3-20240326	Total/NA	Water	504.1	2602
885-2074-3	RW-4-20240326	Total/NA	Water	504.1	2602
885-2074-4	BW-5-20240329	Total/NA	Water	504.1	2602
885-2074-5	BW-7-20240329	Total/NA	Water	504.1	2602
885-2074-6	BW-7R-20240328	Total/NA	Water	504.1	2602
885-2074-7	BW-8-20240329	Total/NA	Water	504.1	2602
885-2074-8	MW-12-20240326	Total/NA	Water	504.1	2602
885-2074-14	MW-16-20240326	Total/NA	Water	504.1	2608
885-2074-17	FY RAW	Total/NA	Water	504.1	2608

HPLC/IC

Analysis Batch: 2582

Lab Sample ID 885-2074-16	Client Sample ID FY Treated EFF	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
885-2074-17	FY RAW	Total/NA	Water	300.0	
MB 885-2582/4	Method Blank	Total/NA	Water	300.0	
LCS 885-2582/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-2582/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 2583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2074-16	FY Treated EFF	Total/NA	Water	300.0	
885-2074-17	FY RAW	Total/NA	Water	300.0	
MB 885-2583/4	Method Blank	Total/NA	Water	300.0	
LCS 885-2583/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-2583/3	Lab Control Sample	Total/NA	Water	300.0	

QC Association Summary

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Job ID: 885-2074-1

General Chemistry

Analysis Batch: 2642

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
885-2074-16	FY Treated EFF	Total/NA	Water	2540C
885-2074-17	FY RAW	Total/NA	Water	2540C
MB 885-2642/1	Method Blank	Total/NA	Water	2540C
LCS 885-2642/2	Lab Control Sample	Total/NA	Water	2540C

4/22/2024

Client Sample ID: RW-1-20240327 Date Collected: 03/27/24 08:30 Date Received: 03/29/24 16:35

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	2761	JR	EET ALB	04/03/24 13:33
Total/NA	Prep	504.1			2602	DH	EET ALB	04/02/24 09:39
Total/NA	Analysis	504.1		1	2698	DH	EET ALB	04/02/24 20:15

Client Sample ID: RW-3-20240326 Date Collected: 03/26/24 14:10 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	2809	JR	EET ALB	04/04/24 17:08
Total/NA	Prep	504.1			2602	DH	EET ALB	04/02/24 09:39
Total/NA	Analysis	504.1		5	2777	DH	EET ALB	04/03/24 15:01

Client Sample ID: RW-4-20240326 Date Collected: 03/26/24 13:35 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		20	2761	JR	EET ALB	04/03/24 14:28
Total/NA	Prep	504.1			2602	DH	EET ALB	04/02/24 09:39
Total/NA	Analysis	504.1		200	2777	DH	EET ALB	04/03/24 15:18

Client Sample ID: BW-5-20240329 Date Collected: 03/29/24 10:25 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		20	2761	JR	EET ALB	04/03/24 14:55
Total/NA	Prep	504.1			2602	DH	EET ALB	04/02/24 09:52
Total/NA	Analysis	504.1		100	2777	DH	EET ALB	04/03/24 15:35

Client Sample ID: BW-7-20240329 Date Collected: 03/29/24 10:00 Date Received: 03/29/24 16:35

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		2	2761	JR	EET ALB	04/03/24 15:22
Total/NA	Analysis	8260B		5	2809	JR	EET ALB	04/04/24 17:36
Total/NA	Prep	504.1			2602	DH	EET ALB	04/02/24 09:52
Total/NA	Analysis	504.1		5	2777	DH	EET ALB	04/03/24 15:52

4/22/2024

Job ID: 885-2074-1

Matrix: Water

Matrix: Water

Lab Sample ID: 885-2074-1

Lab Sample ID: 885-2074-2

2 3 4 5 6 7 8

9 10

Lab Sample ID: 885-2074-3

Lab Sample ID: 885-2074-4

Matrix: Water

Matrix: Water

Lab Sample ID: 885-2074-5 Matrix: Water

Client Sample ID: BW-7R-20240328 Date Collected: 03/28/24 14:40 Date Received: 03/29/24 16:35

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		2	2809	JR	EET ALB	04/04/24 18:03
Total/NA	Prep	504.1			2602	DH	EET ALB	04/02/24 09:52
Total/NA	Analysis	504.1		20	2777	DH	EET ALB	04/03/24 16:10

Client Sample ID: BW-8-20240329 Date Collected: 03/29/24 10:55 Date Received: 03/29/24 16:35

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		50	2761	JR	EET ALB	04/03/24 16:18
Total/NA	Analysis	8260B		500	2809	JR	EET ALB	04/04/24 18:30
Total/NA	Prep	504.1			2602	DH	EET ALB	04/02/24 09:52
Total/NA	Analysis	504.1		5	2777	DH	EET ALB	04/03/24 16:27

Client Sample ID: MW-12-20240326 Date Collected: 03/26/24 15:00 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		10	2761	JR	EET ALB	04/03/24 16:45
Total/NA	Prep	504.1			2602	DH	EET ALB	04/02/24 09:54
Total/NA	Analysis	504.1		10	2777	DH	EET ALB	04/03/24 16:44

Client Sample ID: MW-15-20240329 Date Collected: 03/29/24 09:34 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B			2761	JR	EET ALB	04/03/24 17:13
Total/NA	Prep	504.1			2602	DH	EET ALB	04/02/24 09:54
Total/NA	Analysis	504.1		1	2698	DH	EET ALB	04/02/24 22:48

Client Sample ID: MW-14-20240329 Date Collected: 03/29/24 09:15 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	2761	JR	EET ALB	04/03/24 17:40
Total/NA	Prep	504.1			2608	DH	EET ALB	04/02/24 10:14
Total/NA	Analysis	504.1		1	2698	DH	EET ALB	04/03/24 03:02

Lab Sample ID: 885-2074-9

Lab Sample ID: 885-2074-10

Lab Sample ID: 885-2074-8

Matrix: Water

Matrix: Water

Matrix: Water

Lab Sample ID: 885-2074-6

Job ID: 885-2074-1

Matrix: Water

Lab Sample ID: 885-2074-7

Matrix: Water

Client Sample ID: MW-17-20240329 Date Collected: 03/29/24 09:45 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type Total/NA	Type Analysis	8260B	Run	Factor 1	Number 2761	Analyst JR	Lab EET ALB	or Analyzed 04/03/24 18:07
Total/NA	Prep	504.1		1	2608	DH	EET ALB	04/02/24 10:14

Client Sample ID: MW-13-20240326 Date Collected: 03/26/24 15:52 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		2	2761	JR	EET ALB	04/03/24 18:35
Total/NA	Prep	504.1			2608	DH	EET ALB	04/02/24 10:14
Total/NA	Analysis	504.1		1	2698	DH	EET ALB	04/03/24 04:10

Client Sample ID: DTA-EFF Date Collected: 03/27/24 10:30 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015D		1	2766	JP	EET ALB	04/03/24 10:43
Total/NA	Analysis	8021B		1	2767	JP	EET ALB	04/03/24 10:43

Client Sample ID: MW-16-20240326 Date Collected: 03/26/24 15:17 Date Received: 03/29/24 16:35

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		20	2761	JR	EET ALB	04/03/24 19:02
Total/NA	Analysis	8260B		2	2761	JR	EET ALB	04/03/24 19:30
Total/NA	Prep	504.1			2608	DH	EET ALB	04/02/24 10:14
Total/NA	Analysis	504.1		5	2777	DH	EET ALB	04/03/24 17:01

Client Sample ID: BW-4-20240329 Date Collected: 03/29/24 10:38 Date Received: 03/29/24 16:35

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	2761	JR	EET ALB	04/03/24 19:57
Total/NA	Prep	504.1			2608	DH	EET ALB	04/02/24 10:14
Total/NA	Analysis	504.1		1	2698	DH	EET ALB	04/03/24 04:43

Leb Comple ID: 005 0074 44

Lab Sample ID: 885-2074-15

Lab Sample ID: 885-2074-13

Lab Sample ID: 885-2074-14

Matrix: Water

Matrix: Water

Matrix: Air

Matrix: Water

Matrix: Water

Lab Sample ID: 885-2074-12

Lab Sample ID: 885-2074-11

Dilution

Factor

1

1

1

1

10

5

1

Run

Batch

2761

2610 JP

2608 DH

2698 DH

2699 JU

2722 JU

2582 RC

2583 RC

2642 JU

Number Analyst

JR

Lab

EET ALB

Client Sample ID: FY Treated EFF Date Collected: 03/27/24 10:00 Date Received: 03/29/24 16:35

Batch

Туре

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Prep

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Batch

Method

8260B

8015D

504.1

504.1

3511

8015D

300.0

300.0

2540C

Lab Sample ID: 885-2074-16 Matrix: Water

Prepared

or Analyzed

04/03/24 20:25

04/01/24 12:56

04/02/24 10:14

04/03/24 05:00

04/03/24 09:31

04/03/24 13:43

04/01/24 16:24

04/01/24 23:28

04/02/24 11:29

Lab Sample ID: 885-2074-17

Lab Sample ID: 885-2074-18

Client Sample ID: FY RAW Date Collected: 03/27/24 09:38 Date Received: 03/29/24 16:35

_	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	2809	JR	EET ALB	04/04/24 18:58
Total/NA	Analysis	8260B		10	2875	JR	EET ALB	04/05/24 12:35
Total/NA	Analysis	8015D		1	2610	JP	EET ALB	04/01/24 13:20
Total/NA	Prep	504.1			2608	DH	EET ALB	04/02/24 10:14
Total/NA	Analysis	504.1		50	2777	DH	EET ALB	04/03/24 17:18
Total/NA	Prep	3511			2699	JU	EET ALB	04/03/24 09:31
Total/NA	Analysis	8015D		1	2722	JU	EET ALB	04/03/24 13:56
Total/NA	Analysis	300.0		10	2582	RC	EET ALB	04/01/24 16:49
Total/NA	Analysis	300.0		5	2583	RC	EET ALB	04/01/24 23:41
Total/NA	Analysis	2540C		1	2642	JU	EET ALB	04/02/24 11:29

Client Sample ID: Trip Blank Date Collected: 03/26/24 00:00 Date Received: 03/29/24 16:35

-	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	2809	JR	EET ALB	04/04/24 20:20

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Matrix: Water

Matrix: Water

Accreditation/Certification Summary

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y

Job ID: 885-2074-1

therwise noted, all an	alytes for this laboratory v	vere covered under eac	h accreditation/certification below.	_
rity	Progr	am	Identification Number Expiration Date	
exico	State		NM9425, NM0901 02-26-25	
The fellowing enables	in -luded in Ahie news			
for which the agency of	does not offer certification	rt, but the laboratory is r	for certified by the governing authority. This list may include analytes	
Analysis Method	Prep Method	 Matrix	Analyte	
2540C		Water	Total Dissolved Solids	
300.0		Water	Chloride	
300.0		Water	Nitrate Nitrite as N	
300.0		Water	Sulfate	
504.1	504.1	Water	1,2-Dibromoethane	_
8015D		Air	Gasoline Range Organics [C6 - C10]	
8015D		Water	Gasoline Range Organics [C6 - C10]	
8015D	3511	Water	Diesel Range Organics [C10-C28]	
8015D	3511	Water	Motor Oil Range Organics [C28-C40]	
8021B		Air	Benzene	
8021B		Air	Ethylbenzene	
8021B		Air	Toluene	
8021B		Air	Xylenes, Total	
8260B		Water	1,1,1,2-Tetrachloroethane	
8260B		Water	1,1,1-Trichloroethane	
8260B		Water	1,1,2,2-Tetrachloroethane	
8260B		Water	1,1,2-Trichloroethane	
8260B		Water	1,1-Dichloroethane	
8260B		Water	1,1-Dichloroethene	
8260B		Water	1,1-Dichloropropene	
8260B		Water	1,2,3-Trichlorobenzene	
8260B		Water	1,2,3-Trichloropropane	
8260B		Water	1,2,4-Trichlorobenzene	
8260B		Water	1,2,4-Trimethylbenzene	
8260B		Water	1,2-Dibromo-3-Chloropropane	
8260B		Water	1,2-Dibromoethane (EDB)	
8260B		Water	1,2-Dichlorobenzene	
8260B		Water	1,2-Dichloroethane (EDC)	
8260B		Water	1,2-Dichloropropane	
8260B		Water	1,3,5-Irimethylbenzene	
8260B		Water	1,3-Dichlorobenzene	
8260B		vvater	1,3-Dichloropropane	
8260B		Water	1,4-Dichlorobenzene	
8260B		Water		
8260B		Water	2,2-Dichioropropane	
8260B		Water	2-Butanone	
0260P		Water		
8260B		Walei		
8260B 8260B 8260B		\M/otor	2-Methylpaphthalono	
8260B 8260B 8260B 8260B		Water	2-Methylnaphthalene	
8260B 8260B 8260B 8260B 8260B		Water Water Water	2-Methylnaphthalene 4-Chlorotoluene 4-Isopropyltoluene	
8260B 8260B 8260B 8260B 8260B 8260B		Water Water Water	2-Methylnaphthalene 4-Chlorotoluene 4-Isopropyltoluene	
8260B 8260B 8260B 8260B 8260B 8260B 8260B		Water Water Water Water	2-Methylnaphthalene 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone	
8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B		Water Water Water Water Water	2-Methylnaphthalene 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone Acetone Benzene	

Accreditation/Certification Summary

Project/Site: Former Y	• Albumunereus (Continued)		
Laboratory: Euronn Unless otherwise noted, all ana	S AIDUQUERQUE (CONTINUED) lytes for this laboratory were covered under e	ach accreditation/certification below.	
Authority	Program	Identification Number Expiration Date	
The following analytes for which the agency do	are included in this report, but the laboratory i bes not offer certification.	is not certified by the governing authority. This list may include analytes	5
Analysis Method	Prep Method Matrix	Analyte	
8260B	Water	Bromodichloromethane	
8260B	Water	Bromoform	
8260B	Water	Bromomethane	
8260B	Water	Carbon disulfide	
8260B	Water	Carbon tetrachloride	8
8260B	Water	Chlorobenzene	
8260B	Water	Chloroethane	9
8260B	Water	Chloroform	
8260B	Water	Chloromethane	
8260B	Water	cis-1,2-Dichloroethene	
8260B	Water	cis-1,3-Dichloropropene	
8260B	Water	Dibromochloromethane	
8260B	Water	Dibromomethane	
8260B	Water	Dichlorodifluoromethane	
8260B	Water	Ethylbenzene	
8260B	Water	Hexachlorobutadiene	
8260B	Water	Isopropylbenzene	
8260B	Water	Methylene Chloride	
8260B	Water	Methyl-tert-butyl Ether (MTBE)	
8260B	Water	Naphthalene	
8260B	Water	n-Butylbenzene	
8260B	Water	N-Propylbenzene	
8260B	Water	sec-Butylbenzene	
8260B	Water	Styrene	
8260B	Water	tert-Butylbenzene	
8260B	Water	Tetrachloroethene (PCE)	
8260B	Water	Toluene	
8260B	Water	trans-1,2-Dichloroethene	
8260B	Water	trans-1,3-Dichloropropene	
8260B	Water	Trichloroethene (TCE)	
8260B	Water	Trichlorofluoromethane	
8260B	Water	Vinyl chloride	
8260B	Water	Xylenes, Total	
Oregon	NELAP	NM100001 02-26-25	

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
504.1	504.1	Water	1,2-Dibromoethane
8015D		Air	Gasoline Range Organics [C6 - C10]
8021B		Air	Benzene
8021B		Air	Ethylbenzene
8021B		Air	Toluene
8021B		Air	Xylenes, Total

Chain-of-Custody Record	Turn-Around Time:	
client: Daniel B Stephons	Standard 🗆 Rush	
E ASSOCIATES	Project Name:	www.hallenvironmental.com
Mailing Address: 10020 ACADEMS NE	tormer y	4901 Hawkins NE - Albuquerque, NM 87109
ABA INM 871199	Project #:	Tel. 505-345-3975 Fax 505-345-4107
Phone #: 505 882 802-9400	DB18.1157	Analysis Request
email or Fax#: gherman @ geo - logic .com	Project Manager:	
QA/QC Package:	Gine Herman	802 (802) 107 (8
□ Standard □ Level 4 (Full Validation)	Onderonner	
Accreditation: Az Compliance	Sampler: [Tones	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Unice: yres ⊥ No	
	Cooler Temp(Including CF): 4,8-0.1=4.7 (°C)	MTH Bilifor
Date Time Matrix Sample Name	Type and # Type	808 820 CC CI, F PAF
\$21112 1830 AQ RW-1-20240327	510PS Janous -1	
3/24/24/140 RW-3-20240324	Λ Ι -2	
3/20/24 1335 RW-4-20240326	-3	
2/21/24/1025 BW-5-20240329	-4	
3/29/24 1000 BW-7-20240329	-5	
3/28/24/1440 RW-7R-20230238	-6	
2/24/24 1055 BIN-8-20240329		
Amur-11=203403		
3/24/24 1500 MW-12-20240326	-8	
349/22 0934 mw-15-20240329	-9	
2/19/24 0915 MW-14-20740329	-10	
313/21 0945 MU-17-20240329		
Date Time Relinquished by.	Received by: Via: Date Time	Remarks:
912412411634	FOM CPU 7/01/07 1077	
Date Time: Relinquished by	Received by: Via Date Time	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories This serves as notice of this possibility Any sub-contracted data will be clearly notated on the analytical report.

10

Chain-of-Custody Record Client: Daniel B Stephans And Associates Mailing Address: 6020 ACALENY NF ABQ NUL 87109 Phone #: 505 822. 9400	Turn-Around Time: Standard Rush Project Name: For Marc Project #: DB18. [157	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request			
email or Fax#: 44 gho man o geo logh. com QA/QC Package: □ Level 4 (Full Validation) Accreditation: □ Az Compliance	Project Manager: Grace Horman Sampler: Tomes	TMB's (8021) DRO / MRO) 8082 PCB's 8270SIMS 8270SIMS 8270SIMS 8270SIMS 1 B 1 B 1 B 1 B 1 B 2 00. 7 2 00. 0 2 00. 0			
Date Time Matrix Sample Name	On Ice: Yes No # of Coolers: MURTH Cooler Temp(including CF): Y.SU.1=4-7 (°C) Container Preservative Type HEAL No.	TPH:8015D GRO 3081 Pesticides/8 3081 Pesticides/8 2081 Pesticides/8 201, F, Br, NO3, N 3260 (VOA) 3260 (VOA) 3270 (Semi-VOA) 3270 (Semi-VOA) 3			
2012 10 1552 PQ MU-13-20240320 3121241030 AIR DTA-EFF 22024 1512 AD MUL-10-20200200	500As Vartous -12 BAG713 BUDAG WALLOUL				
3/29/24 1038 BU-4-20240329 3/27/24 1020 Fy Treated EFF 3/27/24 1020 EV RAW	John Volvious -14 John Jarious - 14 7 John Jarious - 14 14 14 14 14 14 14 14 14 14				
persony te bottie Tw HII	- 18				
Date: Time: Relinquished by:	Received by: Via: Date Time	Remarks:			

IT necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

10

Login Sample Receipt Checklist

Client: Daniel B. Stephens & Associates Inc.

Login Number: 2074 List Number: 1 Creator: Proctor, Nancy

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received Trip Blank(s) not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	False	Narrative to indicate if headspace container used for analysis.
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	False	Refer to Job Narrative for details.

List Source: Eurofins Albuquerque

Job Number: 885-2074-1

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Grace Herrmann Daniel B. Stephens & Associates Inc. 6020 Academy Road NE Suite 100 Albuquerque, New Mexico 87109 Generated 5/23/2024 3:14:16 PM

JOB DESCRIPTION

Former Y Station State Lead Site

JOB NUMBER

885-3049-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Jurel

Authorized for release by John Caldwell, Project Manager john.caldwell@et.eurofinsus.com (505)345-3975 Generated 5/23/2024 3:14:16 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	12
QC Association Summary	18
Lab Chronicle	20
Certification Summary	21
Chain of Custody	23
Receipt Checklists	24

3

Qualifiers

GC Semi VOA		
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	Ę

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.				
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis				
%R	Percent Recovery				
CFL	Contains Free Liquid				
CFU	Colony Forming Unit				
CNF	Contains No Free Liquid				
DER	Duplicate Error Ratio (normalized absolute difference)				
Dil Fac	Dilution Factor				
DL	Detection Limit (DoD/DOE)				
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample				
DLC	Decision Level Concentration (Radiochemistry)				
EDL	Estimated Detection Limit (Dioxin)				
LOD	Limit of Detection (DoD/DOE)				
LOQ	Limit of Quantitation (DoD/DOE)				
MCL	EPA recommended "Maximum Contaminant Level"				
MDA	Minimum Detectable Activity (Radiochemistry)				
MDC	Minimum Detectable Concentration (Radiochemistry)				
MDL	Method Detection Limit				
ML	Minimum Level (Dioxin)				
MPN	Most Probable Number				
MQL	Method Quantitation Limit				
NC	Not Calculated				
ND	Not Detected at the reporting limit (or MDL or EDL if shown)				
NEG	Negative / Absent				
POS	Positive / Present				
PQL	Practical Quantitation Limit				
PRES	Presumptive				
QC	Quality Control				
RER	Relative Error Ratio (Radiochemistry)				
RL	Reporting Limit or Requested Limit (Radiochemistry)				
RPD	Relative Percent Difference, a measure of the relative difference between two points				
TEF	Toxicity Equivalent Factor (Dioxin)				
TEQ	Toxicity Equivalent Quotient (Dioxin)				
TNTC	Too Numerous To Count				

1 2 3 4 5 6 7 8 9 10

Job ID: 885-3049-1

Eurofins Albuquerque

Job Narrative 885-3049-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/18/2024 8:01 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.8°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 504.1_PREC: The following sample(s) are flagged for being analyzed outside of analytical holding time. However these are not drinking water samples and the 24 hour limit does not apply: FY Treated EFF (885-3049-1) and FY Raw (885-3049-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample ID: FY Treated EFF Date Collected: 04/17/24 14:40 Date Received: 04/18/24 08:01

Lab Sample ID: 885-3049-1

Matrix: Water

Method: SW846 8260B - Vola	atile Organic Comp	ounds (GC/N	IS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			04/30/24 02:55	1
1,1,1-Trichloroethane	ND		1.0	ug/L			04/30/24 02:55	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			04/30/24 02:55	1
1,1,2-Trichloroethane	ND		1.0	ug/L			04/30/24 02:55	1
1,1-Dichloroethane	ND		1.0	ug/L			04/30/24 02:55	1
1,1-Dichloroethene	ND		1.0	ug/L			04/30/24 02:55	1
1,1-Dichloropropene	ND		1.0	ug/L			04/30/24 02:55	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			04/30/24 02:55	1
1,2,3-Trichloropropane	ND		2.0	ug/L			04/30/24 02:55	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			04/30/24 02:55	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			04/30/24 02:55	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			04/30/24 02:55	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			04/30/24 02:55	1
1,2-Dichlorobenzene	ND		1.0	ug/L			04/30/24 02:55	1
1,2-Dichloroethane (EDC)	2.2		1.0	ug/L			04/30/24 02:55	1
1,2-Dichloropropane	ND		1.0	ug/L			04/30/24 02:55	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			04/30/24 02:55	1
1,3-Dichlorobenzene	ND		1.0	ug/L			04/30/24 02:55	1
1,3-Dichloropropane	ND		1.0	ug/L			04/30/24 02:55	1
1,4-Dichlorobenzene	ND		1.0	ug/L			04/30/24 02:55	1
1-Methylnaphthalene	ND		4.0	ug/L			04/30/24 02:55	1
2,2-Dichloropropane	ND		2.0	ug/L			04/30/24 02:55	1
2-Butanone	ND		10	ug/L			04/30/24 02:55	1
2-Chlorotoluene	ND		1.0	ug/L			04/30/24 02:55	1
2-Hexanone	11		10	ug/L			04/30/24 02:55	1
2-Methylnaphthalene	ND		4.0	ug/L			04/30/24 02:55	1
4-Chlorotoluene	ND		1.0	ug/L			04/30/24 02:55	1
4-Isopropyltoluene	ND		1.0	ug/L			04/30/24 02:55	1
4-Methyl-2-pentanone	ND		10	ug/L			04/30/24 02:55	1
Acetone	14		10	ug/L			04/30/24 02:55	1
Benzene	ND		1.0	ug/L			04/30/24 02:55	1
Bromobenzene	ND		1.0	ug/L			04/30/24 02:55	1
Bromodichloromethane	ND		1.0	ug/L			04/30/24 02:55	1
Dibromochloromethane	ND		1.0	ug/L			04/30/24 02:55	1
Bromoform	ND		1.0	ug/L			04/30/24 02:55	1
Bromomethane	ND		3.0	ug/L			04/30/24 02:55	1
Carbon disulfide	ND		10	ug/L			04/30/24 02:55	1
Carbon tetrachloride	ND		1.0	ug/L			04/30/24 02:55	1
Chlorobenzene	ND		1.0	ug/L			04/30/24 02:55	1
Chloroethane	ND		2.0	ug/L			04/30/24 02:55	1
Chloroform	ND		1.0	ug/L			04/30/24 02:55	1
Chloromethane	ND		3.0	ug/L			04/30/24 02:55	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			04/30/24 02:55	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			04/30/24 02:55	1
Dibromomethane	ND		1.0	ug/L			04/30/24 02:55	1
Dichlorodifluoromethane	ND		1.0	ug/L			04/30/24 02:55	1
Ethylbenzene	ND		1.0	ug/L			04/30/24 02:55	1
Hexachlorobutadiene	ND		1.0	ug/L			04/30/24 02:55	1

Eurofins Albuquerque

04/30/24 02:55

1.0

ug/L

ND

Isopropylbenzene

1
Client Sample ID: FY Treated EFF Date Collected: 04/17/24 14:40 Date Received: 04/18/24 08:01

Job ID: 885-3049-1

Lab Sample ID: 885-3049-1

Matrix: Water

5

Wethou. 30040 0200D - Volatile					_	_ .		- ·· -
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Aethyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/30/24 02:55	1
Methylene Chloride	ND		3.0	ug/L			04/30/24 02:55	1
n-Butylbenzene	ND		3.0	ug/L			04/30/24 02:55	1
N-Propylbenzene	ND		1.0	ug/L			04/30/24 02:55	1
Naphthalene	ND		2.0	ug/L			04/30/24 02:55	1
sec-Butylbenzene	ND		1.0	ug/L			04/30/24 02:55	1
Styrene	ND		1.0	ug/L			04/30/24 02:55	1
ert-Butylbenzene	ND		1.0	ug/L			04/30/24 02:55	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/30/24 02:55	1
Toluene	ND		1.0	ug/L			04/30/24 02:55	1
rans-1,2-Dichloroethene	ND		1.0	ug/L			04/30/24 02:55	1
rans-1,3-Dichloropropene	ND		1.0	ug/L			04/30/24 02:55	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/30/24 02:55	1
Trichlorofluoromethane	ND		1.0	ug/L			04/30/24 02:55	1
√inyl chloride	ND		1.0	ug/L			04/30/24 02:55	1
Xylenes, Total	ND		1.5	ug/L			04/30/24 02:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		70 - 130				04/30/24 02:55	1
Toluene-d8 (Surr)	94		70 - 130				04/30/24 02:55	1
4-Bromofluorobenzene (Surr)	102		70 - 130				04/30/24 02:55	1
Dibromofluoromethane (Surr)	101		70 - 130				04/30/24 02:55	1
Method: SW846 8015D - Gasolin	e Range Organ	ics (GRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	0.073		0.050	mg/L			04/23/24 17:39	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	124		15 _ 270				04/23/24 17:39	1
Method: EPA-DW2 504.1 - EDB, I	DBCP and 1,2,3	B-TCP (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
,2-Dibromoethane	0.55	н	0.048	ug/L		04/23/24 09:00	04/24/24 13:06	5
Method: SW846 8015D - Diesel R	ange Organics	s (DRO) (GC	;)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		1.0	mg/L	_	04/22/24 15:02	04/23/24 18:13	1
Notor Oil Range Organics [C28-C40]	ND		5.0	mg/L		04/22/24 15:02	04/23/24 18:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)			46 - 159			04/22/24 15:02	04/23/24 18:13	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	77		10	mg/L			04/18/24 16:03	20
Nitrate	1.6		0.10	mg/L			04/18/24 15:51	1
Sulfate	43		10	mg/L			04/18/24 16:03	20
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	520		100	mg/L			04/19/24 13:54	1

Client Sample ID: FY Raw Date Collected: 04/17/24 15:01 Date Received: 04/18/24 08:01

Job ID: 885-3049-1

Lab Sample ID: 885-3049-2

Matrix: Water

5

AnalyceResultQualifierRLUnitDPreparedAnalyzedOI11,12-ritentoneshnaneND5.0uqL0430224 04:56511,12-ritentoneshnaneND5.0uqL0430224 04:56511,12-ritentoneshnaneND5.0uqL0430224 04:56511,12-ritentoneshnaneND5.0uqL0430224 04:56511,12-ritentoneshnaneND5.0uqL0430224 04:56511,12-ritentoneshnaneND5.0uqL0430224 04:56511,23-ritentoneshnaneND5.0uqL0430224 04:56512,3-ritentoneshnaneND5.0uqL0430224 04:56512,3-ritentoneshnaneND5.0uqL0430224 04:56512,3-ritentoneshnaneND5.0uqL0430224 04:56512,3-ritentoneshnane (ED)5.6uqL0430224 04:56512,3-ritentoneshnane (ED)5.0uqL0430224 04:56512,3-ritentoneshnane (ED)5.0uqL0430224 04:56512,3-ritentoneshnane (ED)5.0uqL0430224 04:56513,2-ritentoneshnane (ED)5.0uqL0430224 04:56513,2-ritentoneshnane (ED)5.0uqL0430224 04:56513,2-ritentoneshnane (ED)5.0uqL0430224 04:56513,2-ritentoneshnane (ED)5.0uqL0430224 04:56513,2-ritentoneshnane (ND5.0 <td< th=""><th>Method: SW846 8260B - Volatile</th><th>Organic Comp</th><th>ounds (GC/MS</th><th>5)</th><th></th><th></th><th></th><th></th><th></th></td<>	Method: SW846 8260B - Volatile	Organic Comp	ounds (GC/MS	5)					
11,12-TindingentameND5.0ugl.0.40024.0458S11,22-TindingentameND10ugl.0.40024.0458S11,23-TindingentameND5.0ugl.0.40024.0458S11,23-TindingentameND5.0ugl.0.40024.0458S11-DichiorgentameND5.0ugl.0.40024.0458S11-DichiorgentameND5.0ugl.0.40024.0458S11-DichiorgentameND5.0ugl.0.40024.0458S12.3-TindingentameND10ugl.0.40024.0458S12.3-TindingentameND5.0ugl.0.40024.0458S12.3-TindingentameND5.0ugl.0.40024.0458S12.4-TindingthetameND5.0ugl.0.40024.0458S12.2-DichorgentameND5.0ugl.0.40024.0458S12.2-DichorgentameND5.0ugl.0.40024.0458S12.2-DichorgentameND5.0ugl.0.40024.0458S12.3-DichorgentameND5.0ugl.0.40024.0458S12.3-DichorgentameND5.0ugl.0.40024.0458S13.5-DichorgentameND5.0ugl.0.40024.0458S13.5-DichorgentameND5.0ugl.0.40024.0458S13.2-DichorgentameND5.0ugl.0.40024.0458S13.5-DichorgentameND5.0ugl.0.40024.0	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1.T.C.2.Teles/InformationND5.0ug/t.C.4.00224.04:5651,1.2.T.C.2.Teles/InformationND5.0ug/t.C.4.00224.04:5651,1.2.T.C.Teles/InformationND5.0ug/t.C.4.00224.04:5651,1.D.EchronethaneND5.0ug/t.C.4.00224.04:5651,1.D.EchronethaneND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,2.3.TinctionodenganeND5.0ug/t.C.4.00224.04:5651,3.Dichronethane (EDD)9.55.0ug/t.C.4.00224.04:5651,3.DichronethaneND5.0ug/t.C.4.00224.04:5651,3.DichronethaneND5.0ug/t.C.4.00224.04:5651,3.DichronethaneND<	1,1,1,2-Tetrachloroethane	ND		5.0	ug/L			04/30/24 04:56	5
11,2.2.TrainformationND10up1,0.4002/24.05851.1-DechrosontanaND5.0up1,0.4002/24.05851.1-DechrosontanaND5.0up1,0.4002/24.05851.1-DechrosontanaND5.0up1,0.4302/24.05851.1-DechrosontanaND5.0up1,0.4302/24.05851.2.3-TrainformogramND10up1,0.4302/24.05851.2.3-TrainformogramND10up1,0.4302/24.05851.2.4-Trainful/program6.05.0up1,0.4302/24.05851.2.3-TrainformogramND10up1,0.4302/24.05851.2.3-TrainformogramND5.0up1,0.4302/24.05851.2.DechrosontaneND5.0up1,0.4302/24.05851.2.DechrosontaneND5.0up1,0.4302/24.05851.2.DechrosontaneND5.0up1,0.4302/24.05851.3.DechrosontaneND5.0up1,0.4302/24.05851.3.DechrosontaneND5.0up1,0.4302/24.05851.3.DechrosontaneND5.0up1,0.4302/24.05851.3.DechrosontaneND5.0up1,0.4302/24.05851.3.DechrosontaneND5.0up1,0.4302/24.05851.3.DechrosontaneND5.0up1,0.4302/24.05852.3.DechrosontaneND5.0up1, </td <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>5.0</td> <td>ug/L</td> <td></td> <td></td> <td>04/30/24 04:56</td> <td>5</td>	1,1,1-Trichloroethane	ND		5.0	ug/L			04/30/24 04:56	5
1,4.2-finite/indexentameND5.0ug/L0.402024 0.6551,1-DebitoredheneND5.0ug/L0.402024 0.5551,1-DebitoredheneND5.0ug/L0.402024 0.6551,2-3-finite/opropeneND5.0ug/L0.402024 0.6551,2-3-finite/opropeneND10ug/L0.402024 0.6551,2-3-finite/opropeneND5.0ug/L0.402024 0.6551,2-4-finite/opropeneND10ug/L0.402024 0.6551,2-4-finite/opropeneND10ug/L0.402024 0.6551,2-Ditroms-5-finite/opropeneND5.0ug/L0.402024 0.6551,2-Ditroms-5-finite/opropeneND5.0ug/L0.402024 0.6551,2-Ditroms-5-finite/OpropeneND5.0ug/L0.402024 0.6551,2-Ditroms-5-finite/OpropeneND5.0ug/L0.402024 0.6551,3-Ditroms-finite/OpropeneND5.0ug/L0.402024 0.6551,3-Ditroms-finite/OpropeneND5.0ug/L0.402024 0.6551,3-Ditroms-finite/OpropeneND5.0ug/L0.402024 0.6551,3-Ditroms-finite/OpropeneND5.0ug/L0.402024 0.6551,3-Ditroms-finite/OpropeneND5.0ug/L0.402024 0.6551,3-Ditroms-finite/OpropeneND5.0ug/L0.402024 0.6551,3-Ditroms-finite/OpropeneND<	1,1,2,2-Tetrachloroethane	ND		10	ug/L			04/30/24 04:56	5
1.1-DicktoorethaneND5.0ug/L04/3024 04.5651.1-DicktoorethaneND5.0ug/L04/3024 04.5651.2-ShrinchorpropeneND5.0ug/L04/3024 04.5651.2.3-TrinchorpropaneND10ug/L04/3024 04.5651.2.4-Trinchyberzone6.05.0ug/L04/3024 04.5651.2.4-TrinchyberzoneND10ug/L04/3024 04.5651.2.Dichorothane (EDB)9.65.0ug/L04/3024 04.5651.2.Dichorothane (EDG)9.55.0ug/L04/3024 04.5651.2.Dichorothane (EDG)9.55.0ug/L04/3024 04.5651.3.Dichorothane (EDG)9.55.0ug/L04/3024 04.5651.3.Dichorothane (EDG)9.05.0ug/L04/3024 04.5651.3.Dichorothane (EDG)9.05.0ug/L04/3024 04.5651.3.Dichorothane (EDG)9.05.0ug/L04/3024 04.5651.3.Dichorothane (EDG)9.05.0ug/L04/3024 04.5651.3.Dichorothane (EDG)9.05.0ug/L04/3024 04.5651.3.Dichorothane (EDG)9.05.0ug/L04/3024 04.5652.3.Dichorothane (EDG)9.05.0ug/L04/3024 04.5652.3.Dichorothane (EDG)9.09.0ug/L04/3024 04.5652.3.Dichorothane (EDG)9.09.0ug/L04/3024 04.56	1,1,2-Trichloroethane	ND		5.0	ug/L			04/30/24 04:56	5
1.1-DelthorophaneND5.0uglU40202 40.5651.2.3-TitchiorophaneND5.0uglU40202 40.5651.2.3-TitchiorophaneND1.0uglU40202 40.5651.2.3-TitchiorophaneND5.0uglU40202 40.5651.2.4-Titchioroberzene6.05.0uglU40202 40.5651.2.4-Titchioroberzene6.05.0uglU40202 40.5651.2.Ditchioros-CharophaneND10uglU40202 40.5651.2.Ditchioros-CharophaneND5.0uglU40202 40.5651.2.DitchiorophaneND5.0uglU40202 40.5651.2.DitchiorophaneND5.0uglU40202 40.5651.2.DitchiorophaneND5.0uglU40202 40.5651.3.DitchiorophaneND5.0uglU40202 40.5651.3.DitchiorophaneND5.0uglU40202 40.5651.3.DitchiorophaneND5.0uglU40202 40.5651.3.DitchiorophaneND5.0uglU40202 40.5651.4.DitchiorophaneND5.0uglU40202 40.5652.4.DitchiorophaneND5.0uglU40202 40.5651.4.DitchiorophaneND5.0uglU40202 40.5652.4.DitchiorophaneND5.0uglU40202 40.5652.4.DitchiorophaneND5.0uglU4	1,1-Dichloroethane	ND		5.0	ug/L			04/30/24 04:56	5
1.1-Dichloropropane ND 5.0 ugL 043024 0458 5 1.2.3-Trichloropropane ND 10 ugL 043024 0458 5 1.2.3-Trichloropropane ND 5.0 ugL 043024 0458 5 1.2.3-Trichloropropane ND 5.0 ugL 043024 0458 5 1.2.0-Dironocthane (EDC) 9.6 5.0 ugL 043024 0458 5 1.2.Dichloropropane ND 5.0 ugL 043024 0458 5 1.3.Dichlorobenzene ND 5.0 ugL 043024 0458 5 1.3.Dichloropropane ND 5.0 ugL 043024 0458 5 1.3.Dichloropropane ND 5.0 ugL 043024 0458 5 2.Dichloropropane ND 5.0 ugL 043024 0458 5 2	1,1-Dichloroethene	ND		5.0	ug/L			04/30/24 04:56	5
12.3-Tirkitoryopane ND 5.0 uglt 04/3024 04:56 5 12.4-Tirkitoryopane ND 5.0 uglt 04/3024 04:56 5 12.4-Tirkitoryopane ND 10 uglt 04/3024 04:56 5 12.4-Tirkitoryopane ND 10 uglt 04/3024 04:56 5 12.0-Ditorocthane (EDC) 95 5.0 uglt 04/3024 04:56 5 1.2-Dichtorocthane (EDC) 95 0 uglt 04/3024 04:56 5 1.2-Dichtorocthane (EDC) 90 0.0 uglt 04/3024 04:56 5 1.2-Dichtorocthane (EDC) 90 0.0 uglt 04/3024 04:56 5 1.2-Dichtorocthane (EDC) 910 0.0 uglt <t< td=""><td>1,1-Dichloropropene</td><td>ND</td><td></td><td>5.0</td><td>ug/L</td><td></td><td></td><td>04/30/24 04:56</td><td>5</td></t<>	1,1-Dichloropropene	ND		5.0	ug/L			04/30/24 04:56	5
12.3-TirchicorepaneND10upLU+3024 04:56512.4-TrinkotesseneND5.0upL04/3024 04:56512.4-TrinkotesseneND10upL04/3024 04:56512.0-Dironocital met (EDB)9.65.0upL04/3024 04:5651.2-DichoroptaneND5.0upL04/3024 04:5651.2-Dichoroptane (EDC)965.0upL04/3024 04:5651.2-DichoroptaneND5.0upL04/3024 04:5651.2-DichoroptaneND5.0upL04/3024 04:5651.3-DichoroptaneND5.0upL04/3024 04:5651.3-DichoroptaneND5.0upL04/3024 04:5651.3-DichoroptaneND5.0upL04/3024 04:5651.3-DichoroptaneND5.0upL04/3024 04:5651.4-DichoroptaneND5.0upL04/3024 04:5652.2-DichoroptaneND5.0upL04/3024 04:5652.2-DichoroptaneND5.0upL04/3024 04:5652.2-DichoroptaneND5.0upL04/3024 04:5652.2-DichoroptaneND5.0upL04/3024 04:5652.2-DichoroptaneND5.0upL04/3024 04:5652.2-DichoroptaneND5.0upL04/3024 04:5652.2-DichoroptaneND5.0upL04/3024 04:565 </td <td>1,2,3-Trichlorobenzene</td> <td>ND</td> <td></td> <td>5.0</td> <td>ug/L</td> <td></td> <td></td> <td>04/30/24 04:56</td> <td>5</td>	1,2,3-Trichlorobenzene	ND		5.0	ug/L			04/30/24 04:56	5
1,2.4.Trinethylenzne ND 5.0 ugL 04/30/24 04:58 5 1,2.4.Trinethylenzne ND 10 ugL 04/30/24 04:58 5 1,2.Dhromos-Alhoropropane ND 5.0 ugL 04/30/24 04:58 5 1,2.Dhromos-Alhoropropane ND 5.0 ugL 04/30/24 04:58 5 1,2.Dichloroschane (EDC) 95 5.0 ugL 04/30/24 04:58 5 1,2.Dichloroschane (EDC) 95 5.0 ugL 04/30/24 04:58 5 1,3.Dichloroschane (EDC) 95 5.0 ugL 04/30/24 04:58 5 1,3.Dichloroschane (EDC) 95 5.0 ugL 04/30/24 04:58 5 1,3.Dichloroschane (EDC) 91 0.0 0.0 ugL 04/30/24 04:58 5 1,3.Dichloroschane ND 5.0 ugL 04/30/24 04:58 5 5 1,3.Dichloroschane ND 5.0 ugL 04/30/24 04:58 5 5 1,4.Dichloroschane ND 5.0 ugL 04/30/24 04:58 5 5 1,4.Dichloroschane	1,2,3-Trichloropropane	ND		10	ug/L			04/30/24 04:56	5
1,2-4Timethylbenzene 6.0 5.0 upl. 04/30/24 04:56 5 1,2-Dibromo-3-Chicopopane ND 10 upl. 04/30/24 04:56 5 1,2-Dibromo-3-Chicopopane ND 5.0 upl. 04/30/24 04:56 5 1,2-Dichlorosthine (EDC) 95 5.0 upl. 04/30/24 04:56 5 1,2-Dichlorosthine (EDC) 95 5.0 upl. 04/30/24 04:56 5 1,2-Dichlorosthine (EDC) 95 5.0 upl. 04/30/24 04:56 5 1,3-Dichlorosthine (EDC) 95 5.0 upl. 04/30/24 04:56 5 1,3-Dichlorosthine (EDC) 90 5.0 upl. 04/30/24 04:56 5 1,3-Dichlorosthine (EDC) ND 5.0 upl. 04/30/24 04:56 5 1,3-Dichlorosthine (EDC) ND 5.0 upl. 04/30/24 04:56 5 1,3-Dichlorosthine (EDC) ND 5.0 upl. 04/30/24 04:56 5 1,4-Dichlorosthine (EDC) ND 5.0 upl.	1,2,4-Trichlorobenzene	ND		5.0	ug/L			04/30/24 04:56	5
1,2-Ditromochane (EDB) ND 10 up(L 04/30/24 04:56 S 1,2-Ditromochane (EDD) 5.6 5.0 up(L 04/30/24 04:56 S 1,2-Ditromochane (EDC) 55 5.0 up(L 04/30/24 04:56 S 1,2-Ditromochane (EDC) 55 5.0 up(L 04/30/24 04:56 S 1,2-Ditromochane (EDC) 55 up(L 04/30/24 04:56 S 1 1,3-Ditromochane (EDC) 50 up(L 04/30/24 04:56 S 1 1,3-Ditromochane ND 5.0 up(L 04/30/24 04:56 S 1 1,3-Ditromochane ND 5.0 up(L 04/30/24 04:56 S 1 1,3-Ditromochane ND 5.0 up(L 04/30/24 04:56 S 2 1,3-Ditromochane ND 5.0 up(L 04/30/24 04:56 S 2 1,3-Ditromochane ND 5.0 up(L 04/30/24 04:56 S 2 2,4-Ditromochane ND 5.0 </td <td>1,2,4-Trimethylbenzene</td> <td>6.0</td> <td></td> <td>5.0</td> <td>ug/L</td> <td></td> <td></td> <td>04/30/24 04:56</td> <td>5</td>	1,2,4-Trimethylbenzene	6.0		5.0	ug/L			04/30/24 04:56	5
1,2-Disconcettame (EDD) 9.6 5.0 upL 04/30/24 04:56 5 1,2-Dichloredma (EDC) 95 5.0 upL 04/30/24 04:56 5 1,2-Dichloredma (EDC) 95 5.0 upL 04/30/24 04:56 5 1,2-Dichloredma (EDC) 95 5.0 upL 04/30/24 04:56 5 1,3-Dichloredmane (EDC) 90 5.0 upL 04/30/24 04:56 5 1,3-Dichloredmane ND 5.0 upL 04/30/24 04:56 5 1,3-Dichloredmane ND 5.0 upL 04/30/24 04:56 5 1,3-Dichloredmane ND 2.0 upL 04/30/24 04:56 5 1,4-Dichloredmane ND 5.0 upL 04/30/24 04:56 5 2,2-Dichoredmane ND 5.0 upL 04/30/24 04:56 5 2,2-Dichoredmane ND 5.0 upL 04/30/24 04:56 5 2,2-Dichoredmane ND 5.0 upL 04/30/24 04:56 5 <	1,2-Dibromo-3-Chloropropane	ND		10	ug/L			04/30/24 04:56	5
1,2-Dichloroothane (EDC) 95 5.0 ug/L 04/30/24 04:56 5 1,2-Dichloroothane (EDC) 95 5.0 ug/L 04/30/24 04:56 5 1,3,5-Tinnethylbanzane 12 5.0 ug/L 04/30/24 04:56 5 1,3-Dichlorophane ND 5.0 ug/L 04/30/24 04:56 5 1,3-Dichlorophane ND 5.0 ug/L 04/30/24 04:56 5 1,4-Dichlorophane ND 5.0 ug/L 04/30/24 04:56 5 1,4-Dichlorophane ND 20 ug/L 04/30/24 04:56 5 2,4-Dichlorophane ND 5.0 ug/L 04/30/24 04:56 5 <td>1,2-Dibromoethane (EDB)</td> <td>9.6</td> <td></td> <td>5.0</td> <td>ug/L</td> <td></td> <td></td> <td>04/30/24 04:56</td> <td>5</td>	1,2-Dibromoethane (EDB)	9.6		5.0	ug/L			04/30/24 04:56	5
1.2-Dichloroethane (EDC) 95 5.0 ug/L 04/30/24 04:56 5 1.2-Dichloropropane ND 5.0 ug/L 04/30/24 04:56 5 1.3-Dichloropropane ND 5.0 ug/L 04/30/24 04:56 5 1.3-Dichloropropane ND 5.0 ug/L 04/30/24 04:56 5 1.3-Dichloropropane ND 5.0 ug/L 04/30/24 04:56 5 1.4-Dichloroberzene ND 5.0 ug/L 04/30/24 04:56 5 2.2-Dichloropropane ND 10 ug/L 04/30/24 04:56 5 2.2-Dichloropropane ND 5.0 ug/L 04/30/24 04:56 5 2.2-Dichloropropane ND 5.0 ug/L 04/30/24 04:56 5 2.2-Dichloropropane ND 5.0 ug/L 04/30/24 04:56 5 2.4-Dichloroberzene ND 5.0 ug/L 04/30/24 04:56 5 2.4-Dichloroberzene ND 5.0 ug/L 04/30/24 04:56 5 2.4-Dichloroberzene ND 5.0 ug/L 04/30/24 04:56	1,2-Dichlorobenzene	ND		5.0	ug/L			04/30/24 04:56	5
1.2-Dicklorepropane ND 5.0 ug/L 04/30/24 04:56 5 1.3,5-Trimethylberzene 12 5.0 ug/L 04/30/24 04:56 5 1.3-Dicklorophorzene ND 5.0 ug/L 04/30/24 04:56 5 1.3-Dicklorophorzene ND 5.0 ug/L 04/30/24 04:56 5 1.4-Dicklorophorzene ND 5.0 ug/L 04/30/24 04:56 5 2.2-Dicklorophorzene ND 10 ug/L 04/30/24 04:56 5 2.2-Dicklorophorzene ND 5.0 ug/L 04/30/24 04:56 5 2.2-Dicklorophorzene ND 5.0 ug/L 04/30/24 04:56 5 2.4-Dicklorophorzene ND 5.0 ug/L 04/30/24 04:56 5	1,2-Dichloroethane (EDC)	95		5.0	ug/L			04/30/24 04:56	5
1,3.5-Trimethybenzene 12 5.0 ug/L 04/30/24 04/56 5 1,3Dichlorophezene ND 5.0 ug/L 04/30/24 04/56 5 1,4Dichlorophezene ND 5.0 ug/L 04/30/24 04/56 5 1,4Dichlorophezene ND 2.0 ug/L 04/30/24 04/56 5 1,4Dichlorophezene ND 2.0 ug/L 04/30/24 04/56 5 2Dichlorophezene ND 5.0 ug/L 04/30/24 04/56 5 2Hexanone ND 5.0 ug/L 04/30/24 04/56 5 2Hexanone ND 5.0 ug/L 04/30/24 04/56 5 2Hexanone ND 5.0 ug/L 04/30/24 04/56 5 2He	1,2-Dichloropropane	ND		5.0	ug/L			04/30/24 04:56	5
1.3-Dicklorobenzene ND 5.0 ug/L 04/30/24 04:56 5 1.4-Dicklorobenzene ND 5.0 ug/L 04/30/24 04:56 5 1-Abchlorobenzene ND 20 ug/L 04/30/24 04:56 5 1.4-Dicklorobenzene ND 20 ug/L 04/30/24 04:56 5 2.2-Dickloropropane ND 10 ug/L 04/30/24 04:56 5 2.2-Dickloropropane ND 5.0 ug/L 04/30/24 04:56 5 2Dickloropropane ND 5.0 ug/L 04/30/24 04:56 5 2Dickloropropane ND 5.0 ug/L 04/30/24 04:56 5 2Horotoluene ND 5.0 ug/L 04/30/24 04:56 5 2Horotoluene ND 5.0 ug/L 04/30/24 04:56 5 4Iborotobenzene ND 5.0 ug/L 04/30/24 04:56 5 6.Dicorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5	1,3,5-Trimethylbenzene	12		5.0	ug/L			04/30/24 04:56	5
1.3-Dichloropropane ND 5.0 ug/L 04/30/24 04:56 5 1.4-Dichlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 2.2-Dichloropropane ND 10 ug/L 04/30/24 04:56 5 2.2-Dichloropropane ND 50 ug/L 04/30/24 04:56 5 2.2-Dichloropropane ND 50 ug/L 04/30/24 04:56 5 2-Chlorotoluene ND 50 ug/L 04/30/24 04:56 5 2-Hexanone ND 50 ug/L 04/30/24 04:56 5 2-Hexanone ND 50 ug/L 04/30/24 04:56 5 4-SopropyHoulene ND 50 ug/L 04/30/24 04:56 5 4-SopropyHoulene ND 50 ug/L 04/30/24 04:56 5 4-SopropyHoulene ND 50 ug/L 04/30/24 04:56 5 Bornobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bornobenzene	1,3-Dichlorobenzene	ND		5.0	ug/L			04/30/24 04:56	5
1,4-Dichlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 1-Mettyinaphthalene ND 20 ug/L 04/30/24 04:56 5 2.2-Dichloropropane ND 10 ug/L 04/30/24 04:56 5 2-Dichloropropane ND 5.0 ug/L 04/30/24 04:56 5 2-Chontotluene ND 5.0 ug/L 04/30/24 04:56 5 2-Methyinaphthalene ND 5.0 ug/L 04/30/24 04:56 5 4-Methyin2-pentanone ND 5.0 ug/L 04/30/24 04:56 5 4-Methyi2-pentanone ND 5.0 ug/L 04/30/24 04:56 5 A-Methyi2-pentanone ND 5.0 ug/L 04/30/24 04:56 5 Bromodehloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodehloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodehloromethane ND 5.0 ug/L 04/30/24 04:56 5	1,3-Dichloropropane	ND		5.0	ug/L			04/30/24 04:56	5
1-Methylnaphthalene ND 20 ug/L 04/30/24 04:56 5 2.2-Dichtoropropane ND 10 ug/L 04/30/24 04:56 5 2-Butanone ND 50 ug/L 04/30/24 04:56 5 2-Chlorobluene ND 50 ug/L 04/30/24 04:56 5 2-Hexanone ND 50 ug/L 04/30/24 04:56 5 2-Hexanone ND 50 ug/L 04/30/24 04:56 5 2-Methylnaphthalene ND 50 ug/L 04/30/24 04:56 5 4-Sopropyltoliene ND 50 ug/L 04/30/24 04:56 5 4-sopropyltoliene ND 50 ug/L 04/30/24 04:56 5 Benzone ND 50 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane N	1,4-Dichlorobenzene	ND		5.0	ug/L			04/30/24 04:56	5
2.2-Dichloropropane ND 10 ug/L 04/30/24 04:56 5 2-Butanone ND 50 ug/L 04/30/24 04:56 5 2-Chorotoluene ND 50 ug/L 04/30/24 04:56 5 2-Hexanone ND 50 ug/L 04/30/24 04:56 5 2-Hexanone ND 5.0 ug/L 04/30/24 04:56 5 2-Hexanone ND 5.0 ug/L 04/30/24 04:56 5 4-Chorotoluene ND 5.0 ug/L 04/30/24 04:56 5 4-Stopropytloluene ND 50 ug/L 04/30/24 04:56 5 Adethyl-2-pentanone ND 50 ug/L 04/30/24 04:56 5 Bornobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND<	1-Methylnaphthalene	ND		20	ug/L			04/30/24 04:56	5
2-Butanone ND 50 ug/L 04/30/24 04:56 5 2-Chorotoluene ND 5.0 ug/L 04/30/24 04:56 5 2-Metnyinphthalene ND 20 ug/L 04/30/24 04:56 5 2-Metnyinphthalene ND 20 ug/L 04/30/24 04:56 5 4-Chorotoluene ND 5.0 ug/L 04/30/24 04:56 5 4-Stopropytoluene ND 5.0 ug/L 04/30/24 04:56 5 4-Stopropytoluene ND 5.0 ug/L 04/30/24 04:56 5 4-Stopropytoluene ND 5.0 ug/L 04/30/24 04:56 5 Benzene ND 5.0 ug/L 04/30/24 04:56 5 Bromobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromochichoromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromochichoromethane ND 5.0 ug/L 04/30/24 04:56 5 Dibromochioromethane	2,2-Dichloropropane	ND		10	ug/L			04/30/24 04:56	5
2-Chlorotoluene ND 5.0 ug/L 04/30/24 04:56 5 2-Hexanone ND 50 ug/L 04/30/24 04:56 5 2-Methylnaphthalene ND 20 ug/L 04/30/24 04:56 5 2-Methylnaphthalene ND 5.0 ug/L 04/30/24 04:56 5 4-Sopropyltolene ND 5.0 ug/L 04/30/24 04:56 5 4-Astopropyltolene ND 5.0 ug/L 04/30/24 04:56 5 4-Astopropyltolene ND 5.0 ug/L 04/30/24 04:56 5 Bornzolen ND 5.0 ug/L 04/30/24 04:56 5 Bornobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Carbon distlifde<	2-Butanone	ND		50	ug/L			04/30/24 04:56	5
2-Hexanone ND 50 ug/L 04/30/24 04:56 5 2-Methylnaphthalene ND 20 ug/L 04/30/24 04:56 5 4-Chlorobluene ND 5.0 ug/L 04/30/24 04:56 5 4-Isopropyltoluene ND 5.0 ug/L 04/30/24 04:56 5 4-Methyl-2-pentanone ND 50 ug/L 04/30/24 04:56 5 A-Methyl-2-pentanone ND 50 ug/L 04/30/24 04:56 5 Acetone ND 50 ug/L 04/30/24 04:56 5 Benzene 290 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Dibromochloromethane ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide	2-Chlorotoluene	ND		5.0	ug/L			04/30/24 04:56	5
2-Methylnaphthalene ND 20 ug/L 04/30/24 04:56 5 4-Chorotoluene ND 5.0 ug/L 04/30/24 04:56 5 4-Isopropyltoluene ND 5.0 ug/L 04/30/24 04:56 5 4-Methyl-2-pentanone ND 50 ug/L 04/30/24 04:56 5 Acetone ND 50 ug/L 04/30/24 04:56 5 Benzone 290 5.0 ug/L 04/30/24 04:56 5 Bromobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide ND 5.0 ug/L 04/30/24 04:56 5 Chiorobenzene	2-Hexanone	ND		50	ug/L			04/30/24 04:56	5
4-Chlorotoluene ND 5.0 ug/L 04/30/24 04:56 5 4-Isopropytloluene ND 5.0 ug/L 04/30/24 04:56 5 4-Metryl-2-pentanone ND 50 ug/L 04/30/24 04:56 5 Acetone ND 50 ug/L 04/30/24 04:56 5 Benzene 290 5.0 ug/L 04/30/24 04:56 5 Bromobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromochiromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromochiromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromochiromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromorethane ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide ND 5.0 ug/L 04/30/24 04:56 5 Chlorotomthane ND 5.0 ug/L 04/30/24 04:56 5 Chlorotomthane ND	2-Methylnaphthalene	ND		20	ua/L			04/30/24 04:56	5
4-Isoprop/Itoluene ND 5.0 ug/L 04/30/24 04:56 5 4-Methyl-2-pentanone ND 50 ug/L 04/30/24 04:56 5 Acetone ND 50 ug/L 04/30/24 04:56 5 Benzone 290 5.0 ug/L 04/30/24 04:56 5 Bromodenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Dibromochloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide ND 5.0 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chloroethane	4-Chlorotoluene	ND		5.0	ua/L			04/30/24 04:56	5
Her Her <td>4-Isopropyltoluene</td> <td>ND</td> <td></td> <td>5.0</td> <td>ua/L</td> <td></td> <td></td> <td>04/30/24 04:56</td> <td>5</td>	4-Isopropyltoluene	ND		5.0	ua/L			04/30/24 04:56	5
Actone ND 50 ug/L 04/30/24 04:56 5 Benzene 290 5.0 ug/L 04/30/24 04:56 5 Bromobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Dibromochloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromomethane ND 5.0 ug/L 04/30/24 04:56 5 Bromomethane ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chloroffrm ND 5.0 ug/L 04/30/24 04:56 5 Chloroffru ND 5.0	4-Methyl-2-pentanone	ND		50	ua/L			04/30/24 04:56	5
Benzene 290 5.0 ug/L 04/30/24 04:56 5 Bromobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Dibromochloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodif ND 5.0 ug/L 04/30/24 04:56 5 Bromothane ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon tetrachloride ND 5.0 ug/L 04/30/24 04:56 5 Chloromethane ND 5.0 ug/L 04/30/24 04:56 5 Chloromethane ND 5.0 ug/L 04/30/24 04:56 5 Chloromethane ND 5.0 ug/L 04/30/24 04:56 5 cis-1,2-Dichloroethene <td< td=""><td>Acetone</td><td>ND</td><td></td><td>50</td><td>ua/L</td><td></td><td></td><td>04/30/24 04:56</td><td>5</td></td<>	Acetone	ND		50	ua/L			04/30/24 04:56	5
ND 5.0 ug/L 04/30/24 04:56 5 Bromobenzene ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Dibromochloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromoter ND 5.0 ug/L 04/30/24 04:56 5 Bromoter ND 5.0 ug/L 04/30/24 04:56 5 Bromoter ND 5.0 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon tetrachloride ND 5.0 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chloroform ND 5.0 ug/L 04/30/24 04:56 5 Chloromethane ND 5.0 ug/L 04/30/24 04:56 5 cis-1,2-Dichloroethene ND 5.0 u	Benzene	290		5.0	ua/L			04/30/24 04:56	5
Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Dibromochloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodichloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromodifunc ND 5.0 ug/L 04/30/24 04:56 5 Bromodifunc ND 15 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chloroform ND	Bromobenzene	ND		5.0	ua/L			04/30/24 04:56	5
Dibromochloromethane ND 5.0 ug/L 04/30/24 04:56 5 Bromoform ND 5.0 ug/L 04/30/24 04:56 5 Bromomethane ND 15 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chloroethane ND 10 ug/L 04/30/24 04:56 5 Chloroform ND 10 ug/L 04/30/24 04:56 5 Chloroform ND 5.0 ug/L 04/30/24 04:56 5 Chloroform ND 5.0 ug/L 04/30/24 04:56 5 Chloroform ND 5.0 ug/L 04/30/24 04:56 5 Dishonomethane ND 5.0	Bromodichloromethane	ND		5.0	ua/L			04/30/24 04:56	5
Bromoform ND 5.0 ug/L 04/30/24 04:56 5 Bromofethane ND 15 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon tetrachloride ND 5.0 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chlorothane ND 10 ug/L 04/30/24 04:56 5 Chlorothane ND 5.0 ug/L 04/30/24 04:56 5 Chlorothane ND 5.0 ug/L 04/30/24 04:56 5 Chlorothane ND 5.0 ug/L 04/30/24 04:56 5 Cis-1,2-Dichloroethene ND 5.0 ug/L 04/30/24 04:56 5 Dibromomethane ND <t< td=""><td>Dibromochloromethane</td><td>ND</td><td></td><td>5.0</td><td>ua/L</td><td></td><td></td><td>04/30/24 04:56</td><td>5</td></t<>	Dibromochloromethane	ND		5.0	ua/L			04/30/24 04:56	5
Bromomethane ND 15 ug/L 04/30/24 04:56 5 Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon tetrachloride ND 5.0 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chloroethane ND 5.0 ug/L 04/30/24 04:56 5 Chloroethane ND 10 ug/L 04/30/24 04:56 5 Chloroethane ND 5.0 ug/L 04/30/24 04:56 5 Chloroethane ND 5.0 ug/L 04/30/24 04:56 5 Chloromethane ND 5.0 ug/L 04/30/24 04:56 5 cis-1,2-Dichloroethene ND 5.0 ug/L 04/30/24 04:56 5 Dibromomethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene ND<	Bromoform	ND		5.0	ua/L			04/30/24 04:56	5
Carbon disulfide ND 50 ug/L 04/30/24 04:56 5 Carbon tetrachloride ND 5.0 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chlorobethane ND 5.0 ug/L 04/30/24 04:56 5 Chlorobethane ND 10 ug/L 04/30/24 04:56 5 Chlorobethane ND 10 ug/L 04/30/24 04:56 5 Chlorobethane ND 5.0 ug/L 04/30/24 04:56 5 Chlorobethane ND 5.0 ug/L 04/30/24 04:56 5 Chlorobethane ND 5.0 ug/L 04/30/24 04:56 5 Cisi-1,2-Dichloroethene ND 5.0 ug/L 04/30/24 04:56 5 Dibromomethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene <	Bromomethane	ND		15	ua/L			04/30/24 04:56	5
Carbon tetrachloride ND 5.0 ug/L 04/30/24 04:56 5 Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chloroethane ND 10 ug/L 04/30/24 04:56 5 Chloroethane ND 10 ug/L 04/30/24 04:56 5 Chloroethane ND 5.0 ug/L 04/30/24 04:56 5 Cibromethane ND 5.0 ug/L 04/30/24 04:56 5 cis-1,2-Dichloropropene ND 5.0 ug/L 04/30/24 04:56 5 Dibromomethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene ND 5.0 ug/L 04/30/24 04:56 5 Hexachlorobutadiene </td <td>Carbon disulfide</td> <td>ND</td> <td></td> <td>50</td> <td>ug/L</td> <td></td> <td></td> <td>04/30/24 04:56</td> <td>5</td>	Carbon disulfide	ND		50	ug/L			04/30/24 04:56	5
Initial Chlorobenzene ND 5.0 ug/L 04/30/24 04:56 5 Chloroethane ND 10 ug/L 04/30/24 04:56 5 Chloroethane ND 10 ug/L 04/30/24 04:56 5 Chloroform ND 5.0 ug/L 04/30/24 04:56 5 Chloromethane ND 15 ug/L 04/30/24 04:56 5 Chloromethane ND 15 ug/L 04/30/24 04:56 5 cis-1,2-Dichloroethene ND 5.0 ug/L 04/30/24 04:56 5 cis-1,3-Dichloropropene ND 5.0 ug/L 04/30/24 04:56 5 Dibromomethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene ND 5.0 ug/L 04/30/24 04:56 5 Hexachlorobutadiene ND 5.0 ug/L 04/30/24 04:56 5	Carbon tetrachloride	ND		5.0	ug/l			04/30/24 04:56	5
Chloroethane ND 10 ug/L 04/30/24 04:56 5 Chloroform ND 5.0 ug/L 04/30/24 04:56 5 Chloromethane ND 15 ug/L 04/30/24 04:56 5 Chloromethane ND 15 ug/L 04/30/24 04:56 5 cis-1,2-Dichloroethene ND 5.0 ug/L 04/30/24 04:56 5 cis-1,3-Dichloropropene ND 5.0 ug/L 04/30/24 04:56 5 Dibroromethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene ND 5.0 ug/L 04/30/24 04:56 5 Hexachorobutadiene ND 5.0 ug/L 04/30/24 04:56 5	Chlorobenzene	ND		5.0	ua/L			04/30/24 04:56	5
Chloroform ND 5.0 ug/L 04/30/24 04:56 5 Chloromethane ND 15 ug/L 04/30/24 04:56 5 cis-1,2-Dichloroethene ND 5.0 ug/L 04/30/24 04:56 5 cis-1,2-Dichloroethene ND 5.0 ug/L 04/30/24 04:56 5 cis-1,3-Dichloropropene ND 5.0 ug/L 04/30/24 04:56 5 Dibromomethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene ND 5.0 ug/L 04/30/24 04:56 5 Hexachlorobutadiene ND 5.0 ug/L 04/30/24 04:56 5	Chloroethane	ND		10	ug/L			04/30/24 04:56	5
Chloromethane ND 15 ug/L 04/30/24 04:56 5 cis-1,2-Dichloroethene ND 5.0 ug/L 04/30/24 04:56 5 cis-1,3-Dichloropropene ND 5.0 ug/L 04/30/24 04:56 5 Dibromomethane ND 5.0 ug/L 04/30/24 04:56 5 Dibromomethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene ND 5.0 ug/L 04/30/24 04:56 5 Hexachlorodutatiene ND 5.0 ug/L 04/30/24 04:56 5	Chloroform	ND		5.0	- <u>-g</u> /			04/30/24 04:56	5
Instrumentation Instrument	Chloromethane			15	ug/L			04/30/24 04:56	5
Lic in 2 Extraction Lic in 2 S.0 ug/L 60/30/24 04:56 5 cis-1,3-Dichloropropene ND 5.0 ug/L 04/30/24 04:56 5 Dibromomethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene ND 5.0 ug/L 04/30/24 04:56 5 Hexachlorobutadiene ND 5.0 ug/L 04/30/24 04:56 5	cis-1 2-Dichloroethene			50	ug/L			04/30/24 04:56	5
Dibromomethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene ND 5.0 ug/L 04/30/24 04:56 5 Hexachlorobutadiene ND 5.0 ug/L 04/30/24 04:56 5	cis-1 3-Dichloropropene			5.0	ug/L			04/30/24 04:56	5
Dichlorodifluoromethane ND 5.0 ug/L 04/30/24 04:56 5 Ethylbenzene ND 5.0 ug/L 04/30/24 04:56 5 Hexachlorobutadiene ND 5.0 ug/L 04/30/24 04:56 5	Dibromomethane			5.0	ug/L			04/30/24 04:56	5
Ethylbenzene ND 5.0 ug/L 04/30/24 04:56 5 Hexachlorobutadiene ND 5.0 ug/L 04/30/24 04:56 5	Dichlorodifluoromethane			5.0	ug/L			04/30/24 04:56	5
Largestization Ho 5.0 Largestization 64/30/24 04:00 5 Hexachlorobutadiene ND 5.0 ug/L 04/30/24 04:56 5	Ethylbenzene			5.0	ug/L			04/30/24 04:56	5
1910 1910 1910 1910 1910 1910 1910 1910	Hexachlorobutadiene			5.0	ug/L			04/30/24 04.50	5
		סיו חוא		5.0	ug/L			04/30/24 04.50	

Client Sample ID: FY Raw Date Collected: 04/17/24 15:01

Date Received: 04/18/24 08:01

Lab Sample ID: 885-3049-2 Matrix: Water

5

Method: SW846 8260B - Volatile C	Organic Comp	ounas (GC/I	ws) (Continued)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		5.0	ug/L			04/30/24 04:56	5
Methylene Chloride	ND		15	ug/L			04/30/24 04:56	5
n-Butylbenzene	ND		15	ug/L			04/30/24 04:56	5
N-Propylbenzene	ND		5.0	ug/L			04/30/24 04:56	5
Naphthalene	ND		10	ug/L			04/30/24 04:56	5
sec-Butylbenzene	ND		5.0	ug/L			04/30/24 04:56	5
Styrene	ND		5.0	ug/L			04/30/24 04:56	5
tert-Butylbenzene	ND		5.0	ug/L			04/30/24 04:56	5
Tetrachloroethene (PCE)	ND		5.0	ug/L			04/30/24 04:56	5
Toluene	270		5.0	ug/L			04/30/24 04:56	5
trans-1,2-Dichloroethene	ND		5.0	ug/L			04/30/24 04:56	5
trans-1,3-Dichloropropene	ND		5.0	ug/L			04/30/24 04:56	5
Trichloroethene (TCE)	ND		5.0	ug/L			04/30/24 04:56	5
Trichlorofluoromethane	ND		5.0	ug/L			04/30/24 04:56	5
Vinyl chloride	ND		5.0	ug/L			04/30/24 04:56	5
Xylenes, Total	130		7.5	ug/L			04/30/24 04:56	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 130				04/30/24 04:56	5
Toluene-d8 (Surr)	96		70 - 130				04/30/24 04:56	5
4-Bromofluorobenzene (Surr)	102		70 - 130				04/30/24 04:56	5
Dibromofluoromethane (Surr)	97		70 - 130				04/30/24 04:56	5
Mothod: SW846 8015D - Gasolino	Pango Organ		20)					
Method: SW846 8015D - Gasoline	Range Organ	i <mark>cs (GRO) (</mark> Qualifier	GC) RI	Unit	р	Prepared	Analyzed	Dil Fac
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics IC6 -	Range Organ Result	ics (GRO) (Qualifier	GC) 	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10]	Range Organ Result 2.0	ics (GRO) (0 Qualifier	GC) RL 0.25	<mark>Unit</mark> mg/L	D	Prepared	Analyzed 04/23/24 03:57	Dil Fac
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10]	Range Organ Result 2.0	ics (GRO) ((Qualifier	GC) 	Unit mg/L	<u> </u>	Prepared	Analyzed 04/23/24 03:57	Dil Fac
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate	Range Organ Result 2.0 %Recovery	ics (GRO) ((Qualifier Qualifier	C) 	Unit mg/L	<u> </u>	Prepared Prepared	Analyzed 04/23/24 03:57 Analyzed	Dil Fac 5 Dil Fac
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr)	Range Organ Result 2.0 %Recovery 117	ics (GRO) (0 Qualifier Qualifier	C) <u>RL</u> 0.25 <u>Limits</u> 15 - 270	Unit mg/L	<u> </u>	Prepared Prepared	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57	Dil Fac 5 Dil Fac 5
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr)	Range Organ Result 2.0 %Recovery 117	Qualifier	C) <u>RL</u> 0.25 <u>Limits</u> 15 - 270	mg/L	<u> </u>	Prepared Prepared	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57	Dil Fac 5 Dil Fac 5
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3	ualifier Qualifier Qualifier	SC) <u>RL</u> 0.25 <u>Limits</u> 15 - 270	Unit mg/L	<u>D</u>	Prepared Prepared	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57	Dil Fac 5 Dil Fac 5
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result	Qualifier Qualifier Qualifier G-TCP (GC) Qualifier	RL 0.25 Limits 15 - 270 RL 0.47	Unit mg/L	<u>D</u>	Prepared Prepared Prepared	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed	Dil Fac 5 Dil Fac 5 Dil Fac
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3	Qualifier Qualifier B-TCP (GC) Qualifier H	RL 0.25 Limits 15 - 270 RL 0.47	Unit mg/L	D	Prepared Prepared 04/23/24 09:00	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/24/24 13:23	Dil Fac 5 Dil Fac 5 Dil Fac 50
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3	Qualifier Qualifier B-TCP (GC) Qualifier H Gualifier	RL 0.25 Limits 15 - 270 RL 0.47	Unit mg/L	D	Prepared Prepared 04/23/24 09:00	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/24/24 13:23	Dil Fac 5 Dil Fac 5 Dil Fac 50
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result	Qualifier Qualifier G-TCP (GC) Qualifier H G (DRO) (GC) Qualifier	GC) <u>RL</u> 0.25 <u>Limits</u> 15 - 270 <u>RL</u> 0.47 RL	Unit mg/L Unit ug/L	D	Prepared Prepared 04/23/24 09:00 Prepared	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/24/24 13:23 Analyzed	Dil Fac 5 Dil Fac 5 Dil Fac 50
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte Diesel Range Organics [C10-C28]	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND	Aualifier Qualifier G-TCP (GC) Qualifier H G (DRO) (GC Qualifier	C) <u>RL</u> 0.25 <u>Limits</u> 15 - 270 <u>RL</u> 0.47 <u>RL</u> 10	Unit mg/L Unit ug/L Unit ug/L	D D D	Prepared Prepared 04/23/24 09:00 Prepared 04/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/24/24 13:23 Analyzed 04/23/24 18:37	Dil Fac 5 Dil Fac 5 Dil Fac 50 Dil Fac 1
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40]	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND	Audifier Qualifier Qualifier G-TCP (GC) Qualifier H G(DRO) (GC Qualifier	RL 0.25 Limits 15 - 270 RL 0.47 RL 0.47 10 5.0	Unit mg/L Unit ug/L Unit mg/L mg/L mg/L	D	Prepared Prepared 04/23/24 09:00 Prepared 04/22/24 15:02 04/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/24/24 13:23 Analyzed 04/23/24 18:37 04/23/24 18:37	Dil Fac 5 Dil Fac 5 Dil Fac 50 Dil Fac 1
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40]	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND ND	audifier Qualifier Qualifier Qualifier Qualifier H G(DRO) (GC Qualifier	RL	Unit mg/L Unit ug/L Unit mg/L mg/L	D D	Prepared Prepared 04/23/24 09:00 Prepared 04/22/24 15:02 04/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/24/24 13:23 Analyzed 04/23/24 18:37 04/23/24 18:37	Dil Fac 5 Dil Fac 5 Dil Fac 50 Dil Fac 1 1
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Rat Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND ND %Recovery	audifier Qualifier Qualifier CP (GC) Qualifier H (DRO) (GC Qualifier Qualifier	RL 0.25 Limits 15 - 270 RL 0.47 RL 1.0 5.0 Limits	Unit mg/L Unit ug/L Unit mg/L mg/L mg/L	D D	Prepared Prepared 04/23/24 09:00 O4/22/24 15:02 04/22/24 15:02 O4/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/24/24 13:23 04/24/24 13:23 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37	Dil Fac 5 Dil Fac 50 Dil Fac 1 1 Dil Fac
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr)	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND ND ND	ics (GRO) ((Qualifier Qualifier G-TCP (GC) Qualifier H G (DRO) (GC Qualifier Qualifier	RL 0.25 Limits 15 - 270 RL 0.47 RL 0.47 Limits 1.0 5.0 Limits 46 - 159	Unit mg/L Unit ug/L Unit mg/L mg/L mg/L	D D	Prepared Prepared 04/23/24 09:00 Prepared 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/23/24 13:23 Analyzed 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37	Dil Fac 5 Dil Fac 5 Dil Fac 50 Dil Fac 1 1 Dil Fac 1
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr)	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND ND %Recovery 107	ics (GRO) ((Qualifier -TCP (GC) Qualifier H 6 (DRO) (GC Qualifier Qualifier	RL 0.25 Limits 15 - 270 RL 0.47 N RL 1.0 5.0 Limits 46 - 159	Unit mg/L Unit Unit Unit mg/L mg/L	D D D	Prepared Prepared 04/23/24 09:00 Prepared 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/23/24 13:23 Analyzed 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37	Dil Fac 5 Dil Fac 5 Dil Fac 50 Dil Fac 1 1 Dil Fac 1 1 1 1 1 1 1 1
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion C	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND ND %Recovery 107	ics (GRO) ((Qualifier G-TCP (GC) Qualifier H G (DRO) (GC Qualifier Qualifier	RL 0.25 Limits 15 - 270 RL 0.47 N RL 1.0 5.0 Limits 46 - 159	Unit mg/L Unit Ug/L Unit mg/L mg/L	D D D	Prepared Prepared 04/23/24 09:00 Prepared 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/23/24 13:23 Analyzed 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37	Dil Fac 5 Dil Fac 5 Dil Fac 50 Dil Fac 1 1 Dil Fac 1 1 1 1 1 1
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion C Analyte	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND ND %Recovery 107 Chromatograp Result	ics (GRO) ((Qualifier Qualifier G-TCP (GC) Qualifier H G(DRO) (GC Qualifier Qualifier	RL 0.25 Limits 15 - 270 RL 0.47 RL 0.47 Limits 46 - 159 RL 12	Unit mg/L Unit Unit Unit Unit mg/L mg/L Unit Unit	D D D	Prepared Prepared 04/23/24 09:00 Prepared 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02 Prepared 04/22/24 15:02 Prepared 04/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/23/24 13:23 Analyzed 04/23/24 13:23 Analyzed 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 Analyzed 04/23/24 18:37 Analyzed 04/23/24 18:37	Dil Fac 5 Dil Fac 50 Dil Fac 1 1 1 Dil Fac 1 Dil Fac
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion C Analyte Chloride	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND ND %Recovery 107 Chromatograp Result 72	ics (GRO) ((Qualifier Qualifier H G(DRO) (GC Qualifier Qualifier Qualifier	RL 0.25 Limits 15 - 270 RL 0.47 RL 0.47 Limits 46 - 159 RL 10 5.0 Limits 46 - 159 RL 10	Unit mg/L Unit Ug/L Unit mg/L mg/L mg/L mg/L mg/L	D D D	Prepared Prepared 04/23/24 09:00 Prepared 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02 Prepared 04/22/24 15:02 Prepared 04/22/24 15:02 Prepared 04/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/23/24 13:23 Analyzed 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37	Dil Fac 5 Dil Fac 5 Dil Fac 1 1 1 Dil Fac 1 Dil Fac 20
Method: SW846 8015D - Gasoline Analyte Gasoline Range Organics [C6 - C10] Surrogate 4-Bromofluorobenzene (Surr) Method: EPA-DW2 504.1 - EDB, D Analyte 1,2-Dibromoethane Method: SW846 8015D - Diesel Ra Analyte Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr) Method: EPA 300.0 - Anions, Ion C Analyte Chloride Nitrate	Range Organ Result 2.0 %Recovery 117 BCP and 1,2,3 Result 9.3 ange Organics Result ND ND %Recovery 107 Chromatograp Result 72 1.5	ics (GRO) (Qualifier Qualifier B-TCP (GC) Qualifier H 6 (DRO) (GC Qualifier Qualifier	RL 0.25 Limits 15 - 270 RL 0.47 RL 1.0 5.0 Limits 46 - 159 RL 10 0.10 0.10	Unit mg/L Unit ug/L Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D D D	Prepared Prepared 04/23/24 09:00 Prepared 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02 04/22/24 15:02 Prepared 04/22/24 15:02 Prepared 04/22/24 15:02	Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/23/24 03:57 Analyzed 04/23/24 13:23 Analyzed 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/23/24 18:37 04/18/24 16:28 04/18/24 16:16 04/18/24 16:16	Dil Fac 5 Dil Fac 50 Dil Fac 1 1 Dil Fac 1

General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	490		250	mg/L			04/19/24 13:54	1

Client Sample ID: Trip Blank Date Collected: 04/17/24 00:00 Date Received: 04/18/24 08:01

Lab Sample ID: 885-3049-3 Matrix: Water

5

Method: SW846 8260B - Volatile Organic Comp	ounds (GC/MS)						
Analyte Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane ND		1.0	ug/L			04/30/24 03:19	1
1,1,1-Trichloroethane ND		1.0	ug/L			04/30/24 03:19	1
1,1,2,2-Tetrachloroethane ND		2.0	ug/L			04/30/24 03:19	1
1,1,2-Trichloroethane ND		1.0	ug/L			04/30/24 03:19	1
1,1-Dichloroethane ND		1.0	ug/L			04/30/24 03:19	1
1,1-Dichloroethene ND		1.0	ug/L			04/30/24 03:19	1
1,1-Dichloropropene ND		1.0	ug/L			04/30/24 03:19	1
1,2,3-Trichlorobenzene ND		1.0	ug/L			04/30/24 03:19	1
1,2,3-Trichloropropane ND		2.0	ug/L			04/30/24 03:19	1
1,2,4-Trichlorobenzene ND		1.0	ug/L			04/30/24 03:19	1
1,2,4-Trimethylbenzene ND		1.0	ug/L			04/30/24 03:19	1
1,2-Dibromo-3-Chloropropane ND		2.0	ug/L			04/30/24 03:19	1
1,2-Dibromoethane (EDB) ND		1.0	ug/L			04/30/24 03:19	1
1,2-Dichlorobenzene ND		1.0	ug/L			04/30/24 03:19	1
1,2-Dichloroethane (EDC) ND		1.0	ug/L			04/30/24 03:19	1
1,2-Dichloropropane ND		1.0	ug/L			04/30/24 03:19	1
1,3,5-Trimethylbenzene ND		1.0	ug/L			04/30/24 03:19	1
1,3-Dichlorobenzene ND		1.0	ug/L			04/30/24 03:19	1
1,3-Dichloropropane ND		1.0	ug/L			04/30/24 03:19	1
1,4-Dichlorobenzene ND		1.0	ug/L			04/30/24 03:19	1
1-Methylnaphthalene ND		4.0	ug/L			04/30/24 03:19	1
2,2-Dichloropropane ND		2.0	ug/L			04/30/24 03:19	1
2-Butanone ND		10	ua/L			04/30/24 03:19	1
2-Chlorotoluene ND		1.0	ua/L			04/30/24 03:19	1
2-Hexanone ND		10	ua/L			04/30/24 03:19	1
2-Methylnaphthalene ND		4.0	ua/L			04/30/24 03:19	1
4-Chlorotoluene ND		1.0	ua/L			04/30/24 03:19	1
4-Isopropyltoluene ND		1.0	ua/L			04/30/24 03:19	1
4-Methyl-2-pentanone ND		10	ua/L			04/30/24 03:19	1
Acetone ND		10	ua/L			04/30/24 03:19	1
Benzene ND		1.0	ua/L			04/30/24 03:19	1
Bromobenzene ND		1.0	ua/L			04/30/24 03:19	1
Bromodichloromethane ND		10	ug/l			04/30/24 03:19	1
Dibromochloromethane ND		1.0	ug/L			04/30/24 03:19	
Bromoform ND		1.0	ua/L			04/30/24 03:19	1
Bromomethane ND		3.0	ug/l			04/30/24 03:19	1
Carbon disulfide ND		10	ug/L			04/30/24 03:19	
Carbon tetrachloride ND		10	ug/l			04/30/24 03:19	1
Chlorobenzene ND		1.0	ug/L			04/30/24 03:19	1
Chloroethane ND		2.0	ug/L			04/30/24 03:19	· · · · · · · · 1
Chloroform ND		10	ug/l			04/30/24 03:19	1
Chloromethane ND		3.0	ug/L			04/30/24 03:19	1
cis-1 2-Dichloroethene ND		10	9' ua/l			04/30/24 03:19	· · · · · · 1
cis-1.3-Dichloropropepe ND		1.0	ua/l			04/30/24 03:19	י 1
Dibromomethane ND		1.0	ua/l			04/30/24 03:19	י 1
Dichlorodifluoromethane ND		10	~9'⊏ ua/l			04/30/24 03:19	· · · · · · · · · · · · · · · · · · ·
Ethylpenzene ND		1.0	ua/l			04/30/24 03.19	1
Hexachlorobutadiene ND		1.0	~9, ⊏ ua/l			04/30/24 03:19	י 1
Isopropylbenzene ND		1.0	ua/L			04/30/24 03:19	····· ' 1

Client Sample ID: Trip Blank Date Collected: 04/17/24 00:00

Date Received: 04/18/24 08:01

Lab Sample ID: 885-3049-3 Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/30/24 03:19	1
Methylene Chloride	ND		3.0	ug/L			04/30/24 03:19	1
n-Butylbenzene	ND		3.0	ug/L			04/30/24 03:19	1
N-Propylbenzene	ND		1.0	ug/L			04/30/24 03:19	1
Naphthalene	ND		2.0	ug/L			04/30/24 03:19	1
sec-Butylbenzene	ND		1.0	ug/L			04/30/24 03:19	1
Styrene	ND		1.0	ug/L			04/30/24 03:19	1
tert-Butylbenzene	ND		1.0	ug/L			04/30/24 03:19	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/30/24 03:19	1
Toluene	ND		1.0	ug/L			04/30/24 03:19	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/30/24 03:19	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/30/24 03:19	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/30/24 03:19	1
Trichlorofluoromethane	ND		1.0	ug/L			04/30/24 03:19	1
Vinyl chloride	ND		1.0	ug/L			04/30/24 03:19	1
Xylenes, Total	ND		1.5	ug/L			04/30/24 03:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		70 - 130				04/30/24 03:19	1
Toluene-d8 (Surr)	97		70 - 130				04/30/24 03:19	1
4-Bromofluorobenzene (Surr)	99		70 - 130				04/30/24 03:19	1
Dibromofluoromethane (Surr)	104		70 - 130				04/30/24 03:19	1
Method: EPA-DW2 504.1 - EDB	, DBCP and 1,2,3	B-TCP (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	ND		0.0096	ug/L		04/23/24 09:00	04/23/24 15:56	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-4113/3 Matrix: Water

Analysis Batch: 4113

	MB	MB					
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		04/30/24 00:28	1
1,1,1-Trichloroethane	ND		1.0	ug/L		04/30/24 00:28	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L		04/30/24 00:28	1
1,1,2-Trichloroethane	ND		1.0	ug/L		04/30/24 00:28	1
1,1-Dichloroethane	ND		1.0	ug/L		04/30/24 00:28	1
1,1-Dichloroethene	ND		1.0	ug/L		04/30/24 00:28	1
1,1-Dichloropropene	ND		1.0	ug/L		04/30/24 00:28	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		04/30/24 00:28	1
1,2,3-Trichloropropane	ND		2.0	ug/L		04/30/24 00:28	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		04/30/24 00:28	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L		04/30/24 00:28	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		04/30/24 00:28	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		04/30/24 00:28	1
1,2-Dichlorobenzene	ND		1.0	ug/L		04/30/24 00:28	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L		04/30/24 00:28	1
1,2-Dichloropropane	ND		1.0	ug/L		04/30/24 00:28	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L		04/30/24 00:28	1
1,3-Dichlorobenzene	ND		1.0	ug/L		04/30/24 00:28	1
1,3-Dichloropropane	ND		1.0	ug/L		04/30/24 00:28	1
1,4-Dichlorobenzene	ND		1.0	ug/L		04/30/24 00:28	1
1-Methylnaphthalene	ND		4.0	ug/L		04/30/24 00:28	1
2,2-Dichloropropane	ND		2.0	ug/L		04/30/24 00:28	1
2-Butanone	ND		10	ug/L		04/30/24 00:28	1
2-Chlorotoluene	ND		1.0	ug/L		04/30/24 00:28	1
2-Hexanone	ND		10	ug/L		04/30/24 00:28	1
2-Methylnaphthalene	ND		4.0	ug/L		04/30/24 00:28	1
4-Chlorotoluene	ND		1.0	ug/L		04/30/24 00:28	1
4-Isopropyltoluene	ND		1.0	ug/L		04/30/24 00:28	1
4-Methyl-2-pentanone	ND		10	ug/L		04/30/24 00:28	1
Acetone	ND		10	ug/L		04/30/24 00:28	1
Benzene	ND		1.0	ug/L		04/30/24 00:28	1
Bromobenzene	ND		1.0	ug/L		04/30/24 00:28	1
Bromodichloromethane	ND		1.0	ug/L		04/30/24 00:28	1
Dibromochloromethane	ND		1.0	ug/L		04/30/24 00:28	1
Bromoform	ND		1.0	ug/L		04/30/24 00:28	1
Bromomethane	ND		3.0	ug/L		04/30/24 00:28	1
Carbon disulfide	ND		10	ug/L		04/30/24 00:28	1
Carbon tetrachloride	ND		1.0	ug/L		04/30/24 00:28	1
Chlorobenzene	ND		1.0	ug/L		04/30/24 00:28	1
Chloroethane	ND		2.0	ug/L		04/30/24 00:28	1
Chloroform	ND		1.0	ug/L		04/30/24 00:28	1
Chloromethane	ND		3.0	ug/L		04/30/24 00:28	1
cis-1,2-Dichloroethene	ND		1.0	ug/L		04/30/24 00:28	1
cis-1,3-Dichloropropene	ND		1.0	ug/L		04/30/24 00:28	1
Dibromomethane	ND		1.0	ug/L		04/30/24 00:28	1
Dichlorodifluoromethane	ND		1.0	ug/L		04/30/24 00:28	1
Ethylbenzene	ND		1.0	ug/L		04/30/24 00:28	1
Hexachlorobutadiene	ND		1.0	ug/L		04/30/24 00:28	1

Job ID: 885-3049-1

Prep Type: Total/NA

Client Sample ID: Method Blank

8 9

6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-4113/3 Matrix: Water

Analysis Batch: 4113

MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac ND 1.0 04/30/24 00:28 Isopropylbenzene ug/L 1 Methyl-tert-butyl Ether (MTBE) ND 1.0 ug/L 04/30/24 00:28 1 Methylene Chloride ND 04/30/24 00:28 3.0 ug/L 1 n-Butylbenzene ND 3.0 ug/L 04/30/24 00:28 1 ND N-Propylbenzene 1.0 ug/L 04/30/24 00:28 1 Naphthalene ND 2.0 ug/L 04/30/24 00:28 1 sec-Butylbenzene ND 1.0 ug/L 04/30/24 00:28 1 Styrene ND 1.0 ug/L 04/30/24 00:28 tert-Butylbenzene ND 1.0 ug/L 04/30/24 00:28 1 Tetrachloroethene (PCE) ND 1.0 ug/L 04/30/24 00:28 1 ND Toluene 1.0 ug/L 04/30/24 00:28 1 ND ug/L 04/30/24 00:28 trans-1,2-Dichloroethene 1.0 1 trans-1,3-Dichloropropene ND 04/30/24 00:28 1.0 ug/L 1 Trichloroethene (TCE) ND 1.0 ug/L 04/30/24 00:28 1 Trichlorofluoromethane ND 1.0 ug/L 04/30/24 00:28 1 ND Vinyl chloride 1.0 ug/L 04/30/24 00:28 1 Xylenes, Total ND 1.5 ug/L 04/30/24 00:28 1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		70 - 130		04/30/24 00:28	1
Toluene-d8 (Surr)	94		70 - 130		04/30/24 00:28	1
4-Bromofluorobenzene (Surr)	100		70 - 130		04/30/24 00:28	1
Dibromofluoromethane (Surr)	106		70 - 130		04/30/24 00:28	1

Lab Sample ID: LCS 885-4113/2 Matrix: Water Analysis Batch: 4113

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	19.8		ug/L		98	70 - 130	
Benzene	20.1	21.0		ug/L		105	70 - 130	
Chlorobenzene	20.1	20.6		ug/L		103	70 - 130	
Toluene	20.2	19.6		ug/L		97	70 - 130	
Trichloroethene (TCE)	20.2	19.6		ug/L		97	70 - 130	
100	1.00							

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		70 - 130
Toluene-d8 (Surr)	95		70 _ 130
4-Bromofluorobenzene (Surr)	100		70 _ 130
Dibromofluoromethane (Surr)	107		70 - 130

Client Sample ID: Method Blank Prep Type: Total/NA

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-3745/3 Matrix: Water									Client S	ample ID: M Prep T	Methoo ype: To	l Blank otal/NA
Analysis Batch: 3745												
Analyto	P	MB MB	Ы		Unit		п	D	roparod	Analyz	ad a	Dil Eac
Casolino Pango Organics [C6_C10]								F	repareu	Allaly20	≠u 	
		ND	0.000		iiig/L					04/22/24 1	0.40	
		MB MB										
Surrogate	%Reco	overy Qualifier	Limits				-	P	repared	Analyz	ed	Dil Fac
4-Bromofluorobenzene (Surr)		99	15 - 270							04/22/24 1	5:45	1
Lab Sample ID: 1 CS 885-3745/2							CI	iont	Sample	ID: Lab Co	ntrol 9	Samplo
Matrix: Water							0	ient	Campic	Pren T	vne: Tr	otal/NA
Analysis Batch: 3745											,	
· · · · · · , · · · · · · · · · · · · · · · · · · ·			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics [C6 -			0.500	0.490		mg/L		-	98	70 - 130		
C10]												
	105	105										
Surrogate	%Recoverv	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	220		15 - 270									
Lab Sample ID: 885-3049-2 MS									С	lient Samp	le ID: F	Y Raw
Matrix: Water										Prep T	ype: To	otal/NA
Analysis Batch: 3745												
	Sample	Sample	Spike	MS	MS					%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics [C6 - C10]	2.0		2.50	4.35		mg/L			92	41 - 148		
	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	235		15 - 270									
Lab Sample ID: 885-3049-2 MSD									С	lient Samp	le ID: F	Y Raw
Matrix: Water										Prep T	ype: To	otal/NA
Analysis Batch: 3745												
	Sample	Sample	Spike	MSD	MSD					%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		<u>D</u>	%Rec	Limits		Limit
Gasoline Range Organics [C6 - C10]	2.0		2.50	4.27		mg/L			89	41 - 148	2	20
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	238		15 - 270									
Method: 504.1 - EDB, DBCP	and 1,2,3	B-TCP (GC)										
Lab Sample ID: MR 885-3662/3	۵								Client 9	ample ID: M	lether	Blank
Matrix: Water	•								Short O	Pron T	vne · T	otal/NA
Analysis Batch: 3805										Pror	Batel	h: 3662
		MB MB									- Dato	
Analyte	R	esult Qualifier	RL		Unit		D	Р	repared	Analvze	ed	Dil Fac
· ·					•							

Job ID: 885-3049-1

Method: 504.1 - EDB, DBCP and 1,2,3-TCP (GC) (Continued)

_ Lab Sample ID: LCS 885-3662/4	- A							Cli	ient	t Sample	ID: Lab Cont	rol Sample
Matrix: Water											Prep Typ	e: Total/NA
Analysis Batch: 3805											Prep B	Batch: 3662
				Spike	LCS	LCS					%Rec	
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits	
1,2-Dibromoethane				0.100	0.0955		ug/L		_	96	70 - 130	
- Lab Sample ID: MRL 885-3662/1	-A							CI	ient	t Sample	ID: Lab Cont	rol Sample
Matrix: Water											Prep Typ	e: Total/NA
Analysis Batch: 3805											Prep B	Batch: 3662
-				Spike	MRL	MRL					%Rec	
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits	
1,2-Dibromoethane				0.0100	0.00841	J	ug/L		_	84	60 - 140	
Method: 8015D - Diesel Ran Lab Sample ID: MB 885-3684/1-, Matrix: Water	ge Organ A	ics ((DRO) (GC)						Client Sa	ample ID: Me Prep Typ	thod Blank e: Total/NA
Analysis Batch: 3794											Prep B	Batch: 3684
		МВ	МВ									
Analyte	R	esult	Qualifier	R	۹L 	Unit			Р	repared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]		ND		1.	.0	mg/L			04/2	22/24 15:02	04/23/24 16:1	1 1
Motor Oil Range Organics [C28-C40]		ND		5.	.0	mg/L			04/2	22/24 15:02	04/23/24 16:1	1 1
		MB	МВ									
Surrogate	%Reco	overy	Qualifier	Limits					P	Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)		117		46 - 159				_	04/2	22/24 15:02	04/23/24 16:1	11 1
_ Lab Sample ID: LCS 885-3684/2	- A							Cli	ient	t Sample	ID: Lab Cont	rol Sample
Matrix: Water											Prep Typ	e: Total/NA
Analysis Batch: 3794											Pren B	atch: 3684
Analysis Baton. or of				Spike	LCS	LCS					%Rec	
Analyte				Added	Result	Qualifier	Unit		р	%Rec	Limits	
Diesel Range Organics				2 50	2 88		mg/l		_	115	57 - 147	
[C10-C28]				2.00	2.00		<u>9</u> , _				0	
[0.0.020]												
	LCS	LCS										
Surrogate	%Recovery	Quali	ifier	Limits								
Di-n-octyl phthalate (Surr)	113			46 - 159								
Lab Sample ID: 885-3049-1 MS									C	lient San	nple ID: FY T	reated EFF
Matrix: Water											Prep Typ	e: Total/NA
Analysis Batch: 3794											Prep B	Batch: 3684
	Sample	Samp	ble	Spike	MS	MS					%Rec	
Analyte	Result	Quali	fier	Added	Result	Qualifier	Unit		D	%Rec	Limits	
Diesel Range Organics	ND			2.50	3.07		mg/L		_	94	33 - 161	
[C10-C28]												
	MS	MS										
Surrogate	%Recovery	Quali	ifier	Limits								
Di-n-octvl phthalate (Surr)	93			46 - 159								
	50											

Method: 8015D - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 885-3049-1 MSD										С	lient Sa	mple ID: FY	Treate	d EFF
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 3794												Prep	Batch	: 3684
	Sample	Sam	ple	Spike		MSD	MSD					%Rec		RPD
Analyte	Result	Qua	lifier	Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Diesel Range Organics	ND			2.50		3.26		mg/L		_	102	33 - 161	6	20
[C10-C28]														
	MSD	MSE)											
Surrogate	%Recovery	Qua	lifier	Limits										
Di-n-octyl phthalate (Surr)	102			46 _ 159	-									
Method: 300.0 - Anions. Ion	Chromat	toar	aphy											
· · · · · · · · · · · · · · · · · · ·														
Lab Sample ID: MB 885-3566/4											Client S	Sample ID: N	lethod	Blank
Matrix: Water												Prep Ty	vpe: To	tal/NA
Analysis Batch: 3566														
		MB	MB											
Analyte	R	esult	Qualifier		RL		Unit		<u>D</u>	Ρ	repared	Analyze	d	Dil Fac
Chloride		ND			0.50		mg/L					04/18/24 12	2:33	1
Sulfate		ND			0.50		mg/L					04/18/24 12	2:33	1
Lab Sample ID: MB 885-3566/44											Client S	ample ID: M	lethod	Blank
Matrix: Water											onente	Pron Ty	ne: To	
Analysis Batch: 3566												i i cp i j	pc. 10	
Analysis Baten. 0000		мв	мв											
Analyte	R	esult	Qualifier		RL		Unit		D	Р	repared	Analyze	d	Dil Fac
Chloride		ND			0.50		mg/L					04/18/24 2	0:48	1
Sulfate		ND			0.50		mg/L					04/18/24 2	0:48	1
							-							
Lab Sample ID: LCS 885-3566/45	5								CI	ient	Sample	ID: Lab Co	ntrol S	ample
Matrix: Water												Prep Ty	vpe: To	tal/NA
Analysis Batch: 3566														
				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
Chloride				5.00		4.95		mg/L			99	90 - 110		
Sulfate				10.0		10.0		mg/L			100	90 - 110		
									0		Comple		-	
Lab Sample ID: LCS 885-3566/5									CI	ient	Sample			ample
Matrix, Water												Prep 15	pe. io	
Analysis Batch: 3566				Sniko		1.09	1.09					% Poc		
Analyte						Posult	Oualifier	Unit		п	%Pec	/intec		
Chloride				5.00		4 98		ma/l		_	100	90 110		
Sulfate				10.0		10.1		ma/l			101	90 - 110		
				10.0		10.1					101	00-110		
Lab Sample ID: MRL 885-3566/3									CI	ient	Sample	D: Lab Co	ntrol S	ample
Matrix: Water											-	Prep Ty	vpe: To	tal/NA
Analysis Batch: 3566														
				Spike		MRL	MRL					%Rec		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
Chloride				0.500		0.546		mg/L		_	109	50 - 150		
Sulfate				0.500		0.560		mg/L			112	50 - 150		

Eurofins Albuquerque

Analyte

Total Dissolved Solids

Job ID: 885-3049-1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 885-3567/4										Client S	ample ID: Metho	od Blank
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 3567												
	МВ	МВ										
Analyte	Result	Qualifier		RL		Unit		D	Р	repared	Analyzed	Dil Fac
Nitrate	ND			0.10		mg/L					04/18/24 12:33	1
Lab Sample ID: MB 885-3567/44										Client S	ample ID: Metho	od Blank
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 3567												
	МВ	МВ										
Analyte	Result	Qualifier		RL		Unit		D	Р	repared	Analyzed	Dil Fac
Nitrate	ND			0.10		mg/L					04/18/24 20:48	1
						Ū						
Lab Sample ID: LCS 885-3567/45								CI	ient	Sample	ID: Lab Control	Sample
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 3567												
			Spike		LCS	LCS					%Rec	
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	
Nitrate			2.50		2.59		mg/L		_	103	90 - 110	
Lab Sample ID: LCS 885-3567/5								CI	ient	Sample	ID: Lab Control	Sample
Matrix: Water											Pren Type:	Total/NA
Analysis Batch: 3567												· · · · · · · · · · · · · · · · · · ·
Analysis Baton. coor			Spike		LCS	LCS					%Rec	
Analyte			Added		Result	Qualifier	Unit		р	%Rec	Limits	
Nitrate			2 50		2 60	quamor	mg/l		_	104	90 - 110	
Lab Sample ID: MRL 885-3567/3								CI	ient		D: Lab Control	Sample
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 3567												
			Spike		MRL	MRL					%Rec	
Analyte			Added		Result	Qualifier	Unit		D	%Rec	Limits	
Nitrate			0.100		0.104		mg/L		—	104	50 _ 150	
L												
Method: 2540C - Solids, Total I	Dissolved	(TDS)										
Lab Sample ID: MB 885-3597/1										Client S	ample ID: Metho	od Blank
Matrix: Water											Prep Type:	Total/NA
Analysis Batch: 3597												
	МВ	МВ										
Analyte	Result	Qualifier		RL		Unit		D	Р	repared	Analyzed	Dil Fac
Total Dissolved Solids	ND			50		mg/L					04/19/24 13:54	1
Lab Sample ID: LCS 885-3597/2								CI	ient	Sample	ID: Lab Control	Sample
Matrix: Water										Sample	Pren Type	Total/NA
Analysis Batch: 3597												
			Spike		LCS	LCS					%Rec	

Eurofins Albuquerque

Added

1000

Result Qualifier

1000

Unit

mg/L

D

%Rec

100

Limits

80 - 120

GC/MS VOA

Analysis Batch: 4113

Lab Sample ID 885-3049-1	Client Sample ID FY Treated EFF	Prep Type Total/NA	Matrix Water	Method 8260B	Prep Batch
885-3049-2	FY Raw	Total/NA	Water	8260B	
885-3049-3	Trip Blank	Total/NA	Water	8260B	
MB 885-4113/3	Method Blank	Total/NA	Water	8260B	
LCS 885-4113/2	Lab Control Sample	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 3745

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3049-2	FY Raw	Total/NA	Water	8015D	
MB 885-3745/3	Method Blank	Total/NA	Water	8015D	
LCS 885-3745/2	Lab Control Sample	Total/NA	Water	8015D	
885-3049-2 MS	FY Raw	Total/NA	Water	8015D	
885-3049-2 MSD	FY Raw	Total/NA	Water	8015D	
_ Analysia Datahy 2700					

Analysis Batch: 3798

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3049-1	FY Treated EFF	Total/NA	Water	8015D	

GC Semi VOA

Prep Batch: 3662

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3049-1	FY Treated EFF	Total/NA	Water	504.1	
885-3049-2	FY Raw	Total/NA	Water	504.1	
885-3049-3	Trip Blank	Total/NA	Water	504.1	
MB 885-3662/3-A	Method Blank	Total/NA	Water	504.1	
LCS 885-3662/4-A	Lab Control Sample	Total/NA	Water	504.1	
MRL 885-3662/1-A	Lab Control Sample	Total/NA	Water	504.1	
<u> </u>					

Prep Batch: 3684

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3049-1	FY Treated EFF	Total/NA	Water	3511	
885-3049-2	FY Raw	Total/NA	Water	3511	
MB 885-3684/1-A	Method Blank	Total/NA	Water	3511	
LCS 885-3684/2-A	Lab Control Sample	Total/NA	Water	3511	
885-3049-1 MS	FY Treated EFF	Total/NA	Water	3511	
885-3049-1 MSD	FY Treated EFF	Total/NA	Water	3511	

Analysis Batch: 3794

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3049-1	FY Treated EFF	Total/NA	Water	8015D	3684
885-3049-2	FY Raw	Total/NA	Water	8015D	3684
MB 885-3684/1-A	Method Blank	Total/NA	Water	8015D	3684
LCS 885-3684/2-A	Lab Control Sample	Total/NA	Water	8015D	3684
885-3049-1 MS	FY Treated EFF	Total/NA	Water	8015D	3684
885-3049-1 MSD	FY Treated EFF	Total/NA	Water	8015D	3684
Analysis Batch: 3805					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3049-3	Trip Blank	Total/NA	Water	504.1	3662

3662

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

GC Semi VOA (Continued)

Analysis Batch: 3805 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 885-3662/3-A	Method Blank	Total/NA	Water	504.1	3662
LCS 885-3662/4-A	Lab Control Sample	Total/NA	Water	504.1	3662
MRL 885-3662/1-A	Lab Control Sample	Total/NA	Water	504.1	3662

Lab Sample ID

I	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	885-3049-1	FY Treated EFF	Total/NA	Water	504.1	3662
l	885-3049-2	FY Raw	Total/NA	Water	504.1	3662

HPLC/IC

Analysis Batch: 3566

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3049-1	FY Treated EFF	Total/NA	Water	300.0	
885-3049-2	FY Raw	Total/NA	Water	300.0	
885-3049-2	FY Raw	Total/NA	Water	300.0	
MB 885-3566/4	Method Blank	Total/NA	Water	300.0	
MB 885-3566/44	Method Blank	Total/NA	Water	300.0	
LCS 885-3566/45	Lab Control Sample	Total/NA	Water	300.0	
LCS 885-3566/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-3566/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 3567

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3049-1	FY Treated EFF	Total/NA	Water	300.0	
885-3049-2	FY Raw	Total/NA	Water	300.0	
MB 885-3567/4	Method Blank	Total/NA	Water	300.0	
MB 885-3567/44	Method Blank	Total/NA	Water	300.0	
LCS 885-3567/45	Lab Control Sample	Total/NA	Water	300.0	
LCS 885-3567/5	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-3567/3	Lab Control Sample	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 3597

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method Prep Batc
885-3049-1	FY Treated EFF	Total/NA	Water	2540C
885-3049-2	FY Raw	Total/NA	Water	2540C
MB 885-3597/1	Method Blank	Total/NA	Water	2540C
LCS 885-3597/2	Lab Control Sample	Total/NA	Water	2540C

Dilution

Factor

1

1

5

1

1

20

1

Run

Batch

4113 CM

3662 DH

3847 DH

3684

3794 JU

3567 SS

3566 SS

3597 JU

JU

Number Analyst

3798 RA

Lab

EET ALB

Client Sample ID: FY Treated EFF Date Collected: 04/17/24 14:40 Date Received: 04/18/24 08:01

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Batch

Туре

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Prep

Batch

Method

8260B

8015D

504.1

504.1

3511

8015D

300.0

300.0

2540C

Lab Sample ID: 885-3049-1

Prepared

or Analyzed

04/30/24 02:55

04/23/24 17:39

04/23/24 09:00

04/24/24 13:06

04/22/24 15:02

04/23/24 18:13

04/18/24 15:51

04/18/24 16:03

04/19/24 13:54

Matrix: Water

Lab Sample ID: 885-3049-2

Lab Sample ID: 885-3049-3

Matrix: Water

Matrix: Water

Client Sample ID: FY Raw Date Collected: 04/17/24 15:01 Date Received: 04/18/24 08:01

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		5	4113	СМ	EET ALB	04/30/24 04:56
Total/NA	Analysis	8015D		5	3745	RA	EET ALB	04/23/24 03:57
Total/NA	Prep	504.1			3662	DH	EET ALB	04/23/24 09:00
Total/NA	Analysis	504.1		50	3847	DH	EET ALB	04/24/24 13:23
Total/NA	Prep	3511			3684	JU	EET ALB	04/22/24 15:02
Total/NA	Analysis	8015D		1	3794	JU	EET ALB	04/23/24 18:37
Total/NA	Analysis	300.0		1	3566	SS	EET ALB	04/18/24 16:16
Total/NA	Analysis	300.0		1	3567	SS	EET ALB	04/18/24 16:16
Total/NA	Analysis	300.0		20	3566	SS	EET ALB	04/18/24 16:28
Total/NA	Analysis	2540C		1	3597	JU	EET ALB	04/19/24 13:54

Client Sample ID: Trip Blank Date Collected: 04/17/24 00:00 Date Received: 04/18/24 08:01

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	4113	СМ	EET ALB	04/30/24 03:19
Total/NA	Prep	504.1			3662	DH	EET ALB	04/23/24 09:00
Total/NA	Analysis	504.1		1	3805	DH	EET ALB	04/23/24 15:56

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

8260B

8260B

8260B

Laboratory: Eurofins Albuquerque Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Identification Number **Expiration Date** Program New Mexico State NM9425, NM0901 02-26-25 5 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 2540C Water Total Dissolved Solids 300.0 Water Chloride 300.0 Water Nitrate 300.0 Water Sulfate 504.1 504.1 Water 1,2-Dibromoethane 9 8015D Water Gasoline Range Organics [C6 - C10] 8015D 3511 Water Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] 8015D 3511 Water Water 8260B 1,1,1,2-Tetrachloroethane 8260B Water 1.1.1-Trichloroethane 8260B Water 1,1,2,2-Tetrachloroethane 8260B 1,1,2-Trichloroethane Water 8260B Water 1,1-Dichloroethane 8260B Water 1,1-Dichloroethene 8260B Water 1,1-Dichloropropene 8260B Water 1,2,3-Trichlorobenzene 8260B Water 1,2,3-Trichloropropane 8260B Water 1,2,4-Trichlorobenzene 8260B Water 1,2,4-Trimethylbenzene 8260B Water 1,2-Dibromo-3-Chloropropane 8260B 1,2-Dibromoethane (EDB) Water 8260B Water 1,2-Dichlorobenzene 8260B Water 1,2-Dichloroethane (EDC) 8260B Water 1,2-Dichloropropane 8260B Water 1,3,5-Trimethylbenzene 8260B Water 1,3-Dichlorobenzene 8260B Water 1,3-Dichloropropane 8260B Water 1,4-Dichlorobenzene 8260B Water 1-Methylnaphthalene 8260B Water 2,2-Dichloropropane Water 8260B 2-Butanone 8260B Water 2-Chlorotoluene 8260B Water 2-Hexanone 8260B Water 2-Methylnaphthalene 8260B Water 4-Chlorotoluene 8260B Water 4-Isopropyltoluene 8260B Water 4-Methyl-2-pentanone 8260B Water Acetone 8260B Water Benzene 8260B Water Bromobenzene 8260B Water Bromodichloromethane 8260B Water Bromoform

Bromomethane

Carbon disulfide

Carbon tetrachloride

Water

Water

Water

. 2 3 4 5 6 7 8 9

/	Progr	am	Identification Numbe	r Expiration Date
he following analytes a or which the agency do	are included in this report, b bes not offer certification.	ut the laboratory is not certit	ied by the governing authority. Th	is list may include analytes
analysis Method	Prep Method	Matrix	Analyte	
260B		Water	Chlorobenzene	
260B		Water	Chloroethane	
260B		Water	Chloroform	
260B		Water	Chloromethane	
260B		Water	cis-1,2-Dichloroethene	9
260B		Water	cis-1,3-Dichloroproper	ne
260B		Water	Dibromochloromethan	e
260B		Water	Dibromomethane	
260B		Water	Dichlorodifluorometha	ne
260B		Water	Ethylbenzene	
260B		Water	Hexachlorobutadiene	
260B		Water	Isopropylbenzene	
260B		Water	Methylene Chloride	
260B		Water	Methyl-tert-butyl Ether	(MTBE)
260B		Water	Naphthalene	
260B		Water	n-Butylbenzene	
260B		Water	N-Propylbenzene	
260B		Water	sec-Butylbenzene	
260B		Water	Styrene	
260B		Water	tert-Butylbenzene	
260B		Water	Tetrachloroethene (PC	CE)
260B		Water	Toluene	
260B		Water	trans-1,2-Dichloroethe	ene
260B		Water	trans-1,3-Dichloroprop	bene
260B		Water	Trichloroethene (TCE))
260B		Water	Trichlorofluoromethan	е
260B		Water	Vinyl chloride	
260B		Water	Xylenes, Total	
	NELA	Р	NM100001	02-26-25
be following apolytop	are included in this conart, b	It the laboratory is not corti	ied by the governing outbority. Th	is list may include analytos
or which the agency do	bes not offer certification.		ied by the governing authority. Th	is list may include analytes
analysis Method	Prep Method	Matrix	Analyte	
,			<u></u>	

С	hain	-of-Cu	istody Record	Turn-Around	Time:									MM	TDC		ENT	AL	
Client:				Standard	🗆 Rush						N		V	TS		BOE		AL	
Daniel Mailing	B Steph Address	ens & As 6020 Ac	sociates cademy Rd NE, STE 100	Project Name	e: ation State L	ead Site		49	01 H	awki	www ins N	v.hal		ironn	nental. roue	com			
Albuqu	ierque, l	NM 87109)	Project #:		* (* 	1	Te	el. 50)5-34	15-39	975	F	Fax 5	505-34	5-4107	885-30	885-3049 COC	
Phone	#: 505-8:	22-9400		DB18.1157								A	naly	/sis F	Reque	st			
email o	r Fax#: ç	gherrman	n@geo-logic.com	Project Mana	ager:						0.0			5B			-		
QA/QC	Package: Idard	2	□ Level 4 (Full Validation)	Grace Herrn	nann		3260B	4.1	hod 8015B	hod 200.	thod 300		3021B	100 801					
Accred	itation: AC	□ Az Co □ Other	mpliance	Sampler Re On Ice:	X Whez-T	hompsoh	nethod 8	thod 50	- EPA met	EPA met	EPA me	C	nethod 8	⊃A met					
) (Type)			# of Coolers:		Mu. 44	PAn	A me	I DRO	ride -	- N	254(PA n	Ш -					1.5
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No.	VOCs - El	EDB - EP/	TPH GRO and	Sulfate/Chlo	Nitrate (as	TDS - SM	VOCs - El	TPH GRO					
4/17	1440	HZO	FY Treated EFF	7-40ml, 2 plust, lambe	HCI, Thio,	-1	X	X	X	X	X	X							
4/17	1501	H20	FY Raw	7-40ml, 2 plust,	HCl, this, H2504	-2	x	8	X	X	X	X							
-	1									_						++			
															_		++	_	
							-					_					+		\square
Date:	Time:	Relinquish	led by:	Received by:	Ha .	Date Time	Rer	nark	s:										Ц
7/18 Date:	Time:	Relinquish	Winez-Irompon (1)////	Received by:	Via	<u>4 18 24 5,0</u> Date Time													
			havitud to Liell Equizoemental may be sub		accredited laboratori	es. This serves as notice of th	is noss	ibility	Anve	ub-con	tractor	data	will be	clearly	notated	on the ana	ution const		

Ċ7

Login Sample Receipt Checklist

Client: Daniel B. Stephens & Associates Inc.

Login Number: 3049 List Number: 1 Creator: Proctor, Nancy

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

Job Number: 885-3049-1

List Source: Eurofins Albuquerque

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Grace Herrmann Daniel B. Stephens & Associates Inc. 6020 Academy Road NE Suite 100 Albuquerque, New Mexico 87109 Generated 5/16/2024 9:44:11 AM

JOB DESCRIPTION

Former Y Station State Lead Site

JOB NUMBER

885-3785-1

5 6

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

durel

Authorized for release by John Caldwell, Project Manager john.caldwell@et.eurofinsus.com (505)345-3975 Generated 5/16/2024 9:44:11 AM

Table of Contents

l
3
ł
5
3
5
<u>2</u> 4
26
28
32
33

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Dilution Factor

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

0

Dil Fac

DL, RA, RE, IN

DL

DLC

EDL

LOD

LOQ

MCL

MDA

MDC

MDL

MPN

MQL

NC

ND

NEG

POS

PQL PRES

QC

RL RPD

TEF

TEQ

TNTC

RER

ML

	3
Α	
Qualifier Description	
Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.	5
Qualifier Description	
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
	7
These commonly used abbreviations may or may not be present in this report.	•
Listed under the "D" column to designate that the result is reported on a dry weight basis	0
Percent Recovery	
Contains Free Liquid	9
Colony Forming Unit	
Contains No Free Liquid	
Duplicate Error Ratio (normalized absolute difference)	
	A Cualifier Description Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D. Qualifier Description Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery Contains Free Liquid Colony Forming Unit Contains No Free Liquid Duplicate Error Ratio (normalized absolute difference)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Job ID: 885-3785-1

Eurofins Albuquerque

Job Narrative 885-3785-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/1/2024 2:41 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.5°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8011: The following sample(s) was diluted due to the high concentration of target analytes. A more concentrated analysis was not possible. FY Raw (885-3785-2) and RW-2-2024-04-28 (885-3785-3). Surrogates were not recovered due to dilution.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample ID: FY Treated Eff Date Collected: 04/28/24 16:50 Date Received: 05/01/24 14:41

Lab Sample ID: 885-3785-1

Matrix: Groundwater

5
8
9

Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		05/06/24 18:29	1
1,1,1-Trichloroethane	ND		1.0	ug/L		05/06/24 18:29	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L		05/06/24 18:29	1
1,1,2-Trichloroethane	ND		1.0	ug/L		05/06/24 18:29	1
1,1-Dichloroethane	ND		1.0	ug/L		05/06/24 18:29	1
1,1-Dichloroethene	ND		1.0	ug/L		05/06/24 18:29	1
1,1-Dichloropropene	ND		1.0	ug/L		05/06/24 18:29	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		05/06/24 18:29	1
1,2,3-Trichloropropane	ND		2.0	ug/L		05/06/24 18:29	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		05/06/24 18:29	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L		05/06/24 18:29	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		05/06/24 18:29	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		05/06/24 18:29	1
1,2-Dichlorobenzene	ND		1.0	ug/L		05/06/24 18:29	1
1,2-Dichloroethane (EDC)	1.5		1.0	ug/L		05/06/24 18:29	1
1,2-Dichloropropane	ND		1.0	ug/L		05/06/24 18:29	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L		05/06/24 18:29	1
1,3-Dichlorobenzene	ND		1.0	ug/L		05/06/24 18:29	1
1,3-Dichloropropane	ND		1.0	ug/L		05/06/24 18:29	1
1,4-Dichlorobenzene	ND		1.0	ug/L		05/06/24 18:29	1
1-Methylnaphthalene	ND		4.0	ug/L		05/06/24 18:29	1
2,2-Dichloropropane	ND		2.0	ug/L		05/06/24 18:29	1
2-Butanone	ND		10	ug/L		05/06/24 18:29	1
2-Chlorotoluene	ND		1.0	ug/L		05/06/24 18:29	1
2-Hexanone	ND		10	ug/L		05/06/24 18:29	1
2-Methylnaphthalene	ND		4.0	ug/L		05/06/24 18:29	1
4-Chlorotoluene	ND		1.0	ug/L		05/06/24 18:29	1
4-Isopropyltoluene	ND		1.0	ug/L		05/06/24 18:29	1
4-Methyl-2-pentanone	ND		10	ug/L		05/06/24 18:29	1
Acetone	16		10	ug/L		05/06/24 18:29	1
Benzene	ND		1.0	ug/L		05/06/24 18:29	1
Bromobenzene	ND		1.0	ug/L		05/06/24 18:29	1
Bromodichloromethane	ND		1.0	ug/L		05/06/24 18:29	1
Dibromochloromethane	ND		1.0	ug/L		05/06/24 18:29	1
Bromoform	ND		1.0	ug/L		05/06/24 18:29	1
Bromomethane	ND		3.0	ug/L		05/06/24 18:29	1
Carbon disulfide	ND		10	ug/L		05/06/24 18:29	1
Carbon tetrachloride	ND		1.0	ug/L		05/06/24 18:29	1
Chlorobenzene	ND		1.0	ug/L		05/06/24 18:29	1
Chloroethane	ND		2.0	ug/L		05/06/24 18:29	1
Chloroform	ND		1.0	ug/L		05/06/24 18:29	1
Chloromethane	ND		3.0	ug/L		05/06/24 18:29	1
cis-1,2-Dichloroethene	ND		1.0	ug/L		05/06/24 18:29	1
cis-1,3-Dichloropropene	ND		1.0	ug/L		05/06/24 18:29	1
Dibromomethane	ND		1.0	ug/L		05/06/24 18:29	1
Dichlorodifluoromethane	ND		1.0	ug/L		05/06/24 18:29	1
Ethylbenzene	ND		1.0	ug/L		05/06/24 18:29	1
Hexachlorobutadiene	ND		1.0	ua/L		05/06/24 18:29	1

Eurofins Albuquerque

05/06/24 18:29

1.0

ug/L

ND

Isopropylbenzene

Client Sample ID: FY Treated Eff Date Collected: 04/28/24 16:50 Date Received: 05/01/24 14:41

Job ID: 885-3785-1

Lab Sample ID: 885-3785-1

Matrix: Groundwater

5

Method: SW846 8260B - Volatile	Organic Comp	ounds (GC)	(MS) (Continued)		_	- ·		
	- Result	Qualifier	RL		D	Prepared	Analyzed	Dil Fac
	ND		1.0	ug/L			05/06/24 18:29	1
	ND		3.0	ug/L			05/06/24 18:29	
n-Butylbenzene	ND		3.0	ug/L			05/06/24 18:29	1
N-Propylbenzene	ND		1.0	ug/L			05/06/24 18:29	1
Naphthalene	ND		2.0	ug/L			05/06/24 18:29	1
sec-Butylbenzene	ND		1.0	ug/L			05/06/24 18:29	1
Styrene	ND		1.0	ug/L			05/06/24 18:29	1
tert-Butylbenzene	ND		1.0	ug/L			05/06/24 18:29	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			05/06/24 18:29	1
Toluene	ND		1.0	ug/L			05/06/24 18:29	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			05/06/24 18:29	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			05/06/24 18:29	1
Trichloroethene (TCE)	ND		1.0	ug/L			05/06/24 18:29	1
Trichlorofluoromethane	ND		1.0	ug/L			05/06/24 18:29	1
Vinyl chloride	ND		1.0	ug/L			05/06/24 18:29	1
Xylenes, Total	ND		1.5	ug/L			05/06/24 18:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	125		70 - 130				05/06/24 18:29	1
Toluene-d8 (Surr)	83		70 - 130				05/06/24 18:29	1
4-Bromofluorobenzene (Surr)	111		70 - 130				05/06/24 18:29	1
Dibromofluoromethane (Surr)	101		70 - 130				05/06/24 18:29	1
Method: SW846 8015D - Gasoline	e Range Organ	ics (GRO) ((GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.050	mg/L			05/07/24 23:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		15 - 270				05/07/24 23:36	1
Method: SW846 8011 - EDB, DBC	P, and 1,2,3-T	CP (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	0.22		0.047	ug/L		05/07/24 06:27	05/08/24 14:32	5
Method: SW846 8015D - Diesel R	ange Organics	s (DRO) (GO	>)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		1.0	mg/L		05/03/24 13:51	05/06/24 12:22	1
Motor Oil Range Organics [C28-C40]	ND		5.0	mg/L		05/03/24 13:51	05/06/24 12:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	65		10	mg/L			05/03/24 09:15	20
Sulfate	43		0.50	mg/L			05/03/24 09:03	1
Nitrate Nitrite as N	ND		1.0	mg/L			05/03/24 20:22	5
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	460		50	mg/L			05/03/24 09:03	1

Client Sample ID: FY Raw Date Collected: 04/28/24 16:45 Date Received: 05/01/24 14:41

Job ID: 885-3785-1

Lab Sample ID: 885-3785-2

Matrix: Groundwater

5

Method: SW846 8260B - Volatile	Organic Comp	ounds (GC/M	S)				
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0	ug/L		05/06/24 18:57	5
1,1,1-Trichloroethane	ND		5.0	ug/L		05/06/24 18:57	5
1,1,2,2-Tetrachloroethane	ND		10	ug/L		05/06/24 18:57	5
1,1,2-Trichloroethane	ND		5.0	ug/L		05/06/24 18:57	5
1,1-Dichloroethane	ND		5.0	ug/L		05/06/24 18:57	5
1,1-Dichloroethene	ND		5.0	ug/L		05/06/24 18:57	5
1,1-Dichloropropene	ND		5.0	ug/L		05/06/24 18:57	5
1,2,3-Trichlorobenzene	ND		5.0	ug/L		05/06/24 18:57	5
1,2,3-Trichloropropane	ND		10	ug/L		05/06/24 18:57	5
1,2,4-Trichlorobenzene	ND		5.0	ug/L		05/06/24 18:57	5
1,2,4-Trimethylbenzene	11		5.0	ug/L		05/06/24 18:57	5
1,2-Dibromo-3-Chloropropane	ND		10	ug/L		05/06/24 18:57	5
1,2-Dibromoethane (EDB)	12		5.0	ug/L		05/06/24 18:57	5
1,2-Dichlorobenzene	ND		5.0	ug/L		05/06/24 18:57	5
1,2-Dichloroethane (EDC)	130		5.0	ug/L		05/06/24 18:57	5
1,2-Dichloropropane	ND		5.0	ug/L		05/06/24 18:57	5
1,3,5-Trimethylbenzene	19		5.0	ug/L		05/06/24 18:57	5
1,3-Dichlorobenzene	ND		5.0	ug/L		05/06/24 18:57	5
1,3-Dichloropropane	ND		5.0	ug/L		05/06/24 18:57	5
1,4-Dichlorobenzene	ND		5.0	ug/L		05/06/24 18:57	5
1-Methylnaphthalene	ND		20	ug/L		05/06/24 18:57	5
2,2-Dichloropropane	ND		10	ug/L		05/06/24 18:57	5
2-Butanone	ND		50	ug/L		05/06/24 18:57	5
2-Chlorotoluene	ND		5.0	ug/L		05/06/24 18:57	5
2-Hexanone	ND		50	ug/L		05/06/24 18:57	5
2-Methylnaphthalene	ND		20	ug/L		05/06/24 18:57	5
4-Chlorotoluene	ND		5.0	ug/L		05/06/24 18:57	5
4-Isopropyltoluene	ND		5.0	ug/L		05/06/24 18:57	5
4-Methyl-2-pentanone	ND		50	ug/L		05/06/24 18:57	5
Acetone	ND		50	ug/L		05/06/24 18:57	5
Benzene	490		50	ug/L		05/07/24 09:57	50
Bromobenzene	ND		5.0	ug/L		05/06/24 18:57	5
Bromodichloromethane	ND		5.0	ug/L		05/06/24 18:57	5
Dibromochloromethane	ND		5.0	ug/L		05/06/24 18:57	5
Bromoform	ND		5.0	ug/L		05/06/24 18:57	5
Bromomethane	ND		15	ug/L		05/06/24 18:57	5
Carbon disulfide	ND		50	ug/L		05/06/24 18:57	5
Carbon tetrachloride	ND		5.0	ug/L		05/06/24 18:57	5
Chlorobenzene	ND		5.0	ug/L		05/06/24 18:57	5
Chloroethane	ND		10	ug/L		05/06/24 18:57	5
Chloroform	ND		5.0	ug/L		05/06/24 18:57	5
Chloromethane	ND		15	ug/L		05/06/24 18:57	5
cis-1,2-Dichloroethene	ND		5.0	ug/L		05/06/24 18:57	5
cis-1,3-Dichloropropene	ND		5.0	ug/L		05/06/24 18:57	5
Dibromomethane	ND		5.0	ug/L		05/06/24 18:57	5
Dichlorodifluoromethane	ND		5.0	ua/L		05/06/24 18:57	5
Ethylbenzene	7.5		5.0	ug/L		05/06/24 18:57	5
Hexachlorobutadiene	ND		5.0	ua/L		05/06/24 18:57	5
Isopropylbenzene	ND		5.0	ug/L		05/06/24 18:57	5

RL

5.0

15

15

5.0 10

5.0

5.0

5.0

5.0 5.0

5.0

5.0

5.0

5.0

5.0

7.5

Unit

D

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

ND

ND

ND

13

ND

ND

ND

ND

410

ND

ND

ND

ND

ND

200

43

ND

Client Sample ID: FY Raw Date Collected: 04/28/24 16:45

Date Received: 05/01/24 14:41

Methyl-tert-butyl Ether (MTBE)

Methylene Chloride

n-Butylbenzene

Naphthalene

Styrene

Toluene

N-Propylbenzene

sec-Butylbenzene

tert-Butylbenzene Tetrachloroethene (PCE)

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichloroethene (TCE)

Trichlorofluoromethane

Vinyl chloride

Sulfate

Nitrate Nitrite as N

Xylenes, Total

Analyte

Lab Sample ID: 885-3785-2 Matrix: Groundwater

Analyzed

Dil Fac

ug/L	05/06/24 18:57	5
ug/L	05/06/24 18:57	5

Prepared

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	122		70 - 130		05/06/24 18:57	5
1,2-Dichloroethane-d4 (Surr)	119		70 - 130		05/07/24 09:57	50
Toluene-d8 (Surr)	84		70 - 130		05/06/24 18:57	5
4-Bromofluorobenzene (Surr)	109		70 _ 130		05/06/24 18:57	5
Dibromofluoromethane (Surr)	98		70 _ 130		05/06/24 18:57	5
Dibromofluoromethane (Surr)	98		70 - 130		05/07/24 09:57	50

Method: SW846 8015D - Gasoline Range Organics (GRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	3.2		0.050	mg/L			05/07/24 23:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	149		15 - 270		-		05/07/24 23:59	1

Method: SW846 8011 - EDB, DBC	P, and 1,2,3-T	CP (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylene Dibromide	9.5	D	0.96	ug/L		05/07/24 06:53	05/08/24 14:49	100
- Method: SW846 8015D - Diesel R	ange Organics	s (DRO) (GO	2)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	1.1		1.0	mg/L		05/03/24 13:51	05/06/24 12:46	1
Motor Oil Range Organics [C28-C40]	ND		5.0	mg/L		05/03/24 13:51	05/06/24 12:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	105		46 - 159			05/03/24 13:51	05/06/24 12:46	1
- Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	64		10	mg/L			05/03/24 09:40	20

Eurofins Albuquerque

05/03/24 09:28

05/03/24 20:35

0.50

1.0

mg/L

mg/L

1

Client Sample Results

Client: Daniel B. Stephens & Associates Inc.

Job ID: 885-3785-1

Project/Site: Former Y Station State L	ead Site							
Client Sample ID: FY Raw						Lab Sa	mple ID: 885-	3785-2
Date Collected: 04/28/24 16:45				Matrix: Grou	ndwater			
Date Received: 05/01/24 14:41								
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	470		100	mg/L			05/03/24 09:03	1

Client Sample ID: RW-2-2024-04-28 Date Collected: 04/28/24 16:13 Date Received: 05/01/24 14:41

Lab Sample ID: 885-3785-3

Matrix: Groundwater

5

Method: SW846 8260B - Volatile	e Organic Compo	ounds (GC/MS	5)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0	ug/L			05/06/24 19:26	5
1,1,1-Trichloroethane	ND		5.0	ug/L			05/06/24 19:26	5
1,1,2,2-Tetrachloroethane	ND		10	ug/L			05/06/24 19:26	5
1,1,2-Trichloroethane	ND		5.0	ug/L			05/06/24 19:26	5
1,1-Dichloroethane	ND		5.0	ug/L			05/06/24 19:26	5
1,1-Dichloroethene	ND		5.0	ug/L			05/06/24 19:26	5
1,1-Dichloropropene	ND		5.0	ug/L			05/06/24 19:26	5
1,2,3-Trichlorobenzene	ND		5.0	ug/L			05/06/24 19:26	5
1,2,3-Trichloropropane	ND		10	ug/L			05/06/24 19:26	5
1,2,4-Trichlorobenzene	ND		5.0	ug/L			05/06/24 19:26	5
1,2,4-Trimethylbenzene	470		50	ug/L			05/08/24 11:30	50
1,2-Dibromo-3-Chloropropane	ND		10	ug/L			05/06/24 19:26	5
1,2-Dibromoethane (EDB)	17		5.0	ug/L			05/06/24 19:26	5
1,2-Dichlorobenzene	ND		5.0	ug/L			05/06/24 19:26	5
1,2-Dichloroethane (EDC)	26		5.0	ug/L			05/06/24 19:26	5
1,2-Dichloropropane	ND		5.0	ug/L			05/06/24 19:26	5
1,3,5-Trimethylbenzene	150		5.0	ug/L			05/06/24 19:26	5
1,3-Dichlorobenzene	ND		5.0	ug/L			05/06/24 19:26	5
1,3-Dichloropropane	ND		5.0	ug/L			05/06/24 19:26	5
1,4-Dichlorobenzene	ND		5.0	ug/L			05/06/24 19:26	5
1-Methylnaphthalene	42		20	ug/L			05/06/24 19:26	5
2,2-Dichloropropane	ND		10	ug/L			05/06/24 19:26	5
2-Butanone	ND		50	ug/L			05/06/24 19:26	5
2-Chlorotoluene	ND		5.0	ug/L			05/06/24 19:26	5
2-Hexanone	ND		50	ug/L			05/06/24 19:26	5
2-Methylnaphthalene	78		20	ug/L			05/06/24 19:26	5
4-Chlorotoluene	ND		5.0	ug/L			05/06/24 19:26	5
4-Isopropyltoluene	5.5		5.0	ug/L			05/06/24 19:26	5
4-Methyl-2-pentanone	ND		50	ug/L			05/06/24 19:26	5
Acetone	300		50	ug/L			05/06/24 19:26	5
Benzene	100		5.0	ug/L			05/06/24 19:26	5
Bromobenzene	ND		5.0	ug/L			05/06/24 19:26	5
Bromodichloromethane	ND		5.0	ug/L			05/06/24 19:26	5
Dibromochloromethane	ND		5.0	ug/L			05/06/24 19:26	5
Bromoform	ND		5.0	ug/L			05/06/24 19:26	5
Bromomethane	ND		15	ug/L			05/06/24 19:26	5
Carbon disulfide	ND		50	ug/L			05/06/24 19:26	5
Carbon tetrachloride	ND		5.0	ug/L			05/06/24 19:26	5
Chlorobenzene	ND		5.0	ug/L			05/06/24 19:26	5
Chloroethane	ND		10	ug/L			05/06/24 19:26	5
Chloroform	ND		5.0	ug/L			05/06/24 19:26	5
Chloromethane	ND		15	ug/L			05/06/24 19:26	5
cis-1,2-Dichloroethene	ND		5.0	ug/L			05/06/24 19:26	5
cis-1,3-Dichloropropene	ND		5.0	ug/L			05/06/24 19:26	5
Dibromomethane	ND		5.0	ug/L			05/06/24 19:26	5
Dichlorodifluoromethane	ND		5.0	ug/L			05/06/24 19:26	5
Ethylbenzene	130		5.0	ug/L			05/06/24 19:26	5
Hexachlorobutadiene	ND		5.0	ug/L			05/06/24 19:26	5
Isopropylbenzene	14		5.0	ug/L			05/06/24 19:26	5

Client Sample ID: RW-2-2024-04-28 Date Collected: 04/28/24 16:13 Date Received: 05/01/24 14:41

Toluene

trans-1,2-Dichloroethene

Trichloroethene (TCE)

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

trans-1,3-Dichloropropene

Lab Sample ID: 885-3785-3 Matrix: Groundwater

05/08/24 11:30

05/06/24 19:26

05/06/24 19:26

05/06/24 19:26

05/06/24 19:26

05/06/24 19:26

05/08/24 11:30

5 5

5

5 5

5

5

5

5

5

50

5 5

5

5

5

50

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		5.0	ug/L			05/06/24 19:26	5
Methylene Chloride	ND		15	ug/L			05/06/24 19:26	5
n-Butylbenzene	16		15	ug/L			05/06/24 19:26	5
N-Propylbenzene	43		5.0	ug/L			05/06/24 19:26	5
Naphthalene	130		10	ug/L			05/06/24 19:26	5
sec-Butylbenzene	6.4		5.0	ug/L			05/06/24 19:26	5
Styrene	ND		5.0	ug/L			05/06/24 19:26	5
tert-Butylbenzene	ND		5.0	ug/L			05/06/24 19:26	5
Tetrachloroethene (PCE)	ND		5.0	ug/L			05/06/24 19:26	5

50

5.0

5.0

5.0

5.0

5.0

75

690

ND

ND

ND

ND

ND

1600

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	117		70 - 130		-		05/06/24 19:26	5
Toluene-d8 (Surr)	85		70 - 130				05/06/24 19:26	5
Toluene-d8 (Surr)	85		70 - 130				05/08/24 11:30	50
4-Bromofluorobenzene (Surr)	110		70 _ 130				05/06/24 19:26	5
4-Bromofluorobenzene (Surr)	108		70 - 130				05/08/24 11:30	50
Dibromofluoromethane (Surr)	97		70 - 130				05/06/24 19:26	5
- Method: SW846 8011 - EDB, D	BCP, and 1,2,3-T	CP (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Ana	yte	Result	Qualifier	RL	Unit	U	Prepared	Analyzed	DIFac
Ethy	rlene Dibromide	16	D	1.9	ug/L		05/07/24 06:53	05/08/24 15:06	200

Method: SW846 8260B - Volatile Organic Compounds (GC/MS)

Client Sample ID: Trip Blank Date Collected: 04/28/24 00:00 Date Received: 05/01/24 14:41

Lab Sample ID: 885-3785-4 Matrix: Trip Blank

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			05/06/24 19:54	1
1,1,1-Trichloroethane	ND		1.0	ug/L			05/06/24 19:54	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			05/06/24 19:54	1
1,1,2-Trichloroethane	ND		1.0	ug/L			05/06/24 19:54	1
1,1-Dichloroethane	ND		1.0	ug/L			05/06/24 19:54	1
1,1-Dichloroethene	ND		1.0	ug/L			05/06/24 19:54	1
1,1-Dichloropropene	ND		1.0	ug/L			05/06/24 19:54	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			05/06/24 19:54	1
1,2,3-Trichloropropane	ND		2.0	ug/L			05/06/24 19:54	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			05/06/24 19:54	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			05/06/24 19:54	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			05/06/24 19:54	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			05/06/24 19:54	1
1,2-Dichlorobenzene	ND		1.0	ug/L			05/06/24 19:54	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			05/06/24 19:54	1
1,2-Dichloropropane	ND		1.0	ug/L			05/06/24 19:54	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			05/06/24 19:54	1
1,3-Dichlorobenzene	ND		1.0	ug/L			05/06/24 19:54	1
1,3-Dichloropropane	ND		1.0	ug/L			05/06/24 19:54	1
1,4-Dichlorobenzene	ND		1.0	ug/L			05/06/24 19:54	1
1-Methylnaphthalene	ND		4.0	ug/L			05/06/24 19:54	1
2,2-Dichloropropane	ND		2.0	ug/L			05/06/24 19:54	1
2-Butanone	ND		10	ug/L			05/06/24 19:54	1
2-Chlorotoluene	ND		1.0	ug/L			05/06/24 19:54	1
2-Hexanone	ND		10	ug/L			05/06/24 19:54	1
2-Methylnaphthalene	ND		4.0	ug/L			05/06/24 19:54	1
4-Chlorotoluene	ND		1.0	ug/L			05/06/24 19:54	1
4-Isopropyltoluene	ND		1.0	ug/L			05/06/24 19:54	1
4-Methyl-2-pentanone	ND		10	ug/L			05/06/24 19:54	1
Acetone	ND		10	ug/L			05/06/24 19:54	1
Benzene	ND		1.0	ug/L			05/06/24 19:54	1
Bromobenzene	ND		1.0	ug/L			05/06/24 19:54	1
Bromodichloromethane	ND		1.0	ug/L			05/06/24 19:54	1
Dibromochloromethane	ND		1.0	ug/L			05/06/24 19:54	1
Bromoform	ND		1.0	ug/L			05/06/24 19:54	1
Bromomethane	ND		3.0	ug/L			05/06/24 19:54	1
Carbon disulfide	ND		10	ug/L			05/06/24 19:54	1
Carbon tetrachloride	ND		1.0	ug/L			05/06/24 19:54	1
Chlorobenzene	ND		1.0	ug/L			05/06/24 19:54	1
Chloroethane	ND		2.0	ug/L			05/06/24 19:54	1
Chloroform	ND		1.0	ug/L			05/06/24 19:54	1
Chloromethane	ND		3.0	ug/L			05/06/24 19:54	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			05/06/24 19:54	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			05/06/24 19:54	1
Dibromomethane	ND		1.0	ug/L			05/06/24 19:54	1
Dichlorodifluoromethane	ND		1.0	ug/L			05/06/24 19:54	1
Ethylbenzene	ND		1.0	ug/L			05/06/24 19:54	1
Hexachlorobutadiene	ND		1.0	ug/L			05/06/24 19:54	1

Eurofins Albuquerque

05/06/24 19:54

1.0

ND

Isopropylbenzene

ug/L

Client Sample ID: Trip Blank Date Collected: 04/28/24 00:00

Date Received: 05/01/24 14:41

Lab Sample ID: 885-3785-4 Matrix: Trip Blank

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			05/06/24 19:54	1
Methylene Chloride	ND		3.0	ug/L			05/06/24 19:54	1
n-Butylbenzene	ND		3.0	ug/L			05/06/24 19:54	1
N-Propylbenzene	ND		1.0	ug/L			05/06/24 19:54	1
Naphthalene	ND		2.0	ug/L			05/06/24 19:54	1
sec-Butylbenzene	ND		1.0	ug/L			05/06/24 19:54	1
Styrene	ND		1.0	ug/L			05/06/24 19:54	1
tert-Butylbenzene	ND		1.0	ug/L			05/06/24 19:54	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			05/06/24 19:54	1
Toluene	ND		1.0	ug/L			05/06/24 19:54	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			05/06/24 19:54	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			05/06/24 19:54	1
Trichloroethene (TCE)	ND		1.0	ug/L			05/06/24 19:54	1
Trichlorofluoromethane	ND		1.0	ug/L			05/06/24 19:54	1
Vinyl chloride	ND		1.0	ug/L			05/06/24 19:54	1
Xylenes, Total	ND		1.5	ug/L			05/06/24 19:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		70 - 130				05/06/24 19:54	1
Toluene-d8 (Surr)	84		70 - 130				05/06/24 19:54	1
4-Bromofluorobenzene (Surr)	111		70 - 130				05/06/24 19:54	1
Dibromofluoromethane (Surr)	99		70 - 130				05/06/24 19:54	1
- Method: SW846 8011 - EDB, DI	BCP, and 1,2,3-T	CP (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ethvlene Dibromide	ND		0.0094	ua/L		05/07/24 06:53	05/07/24 15:58	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-4462/3 Matrix: Water

Analysis Batch: 4462

-	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			05/06/24 09:54	1
1,1,1-Trichloroethane	ND		1.0	ug/L			05/06/24 09:54	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			05/06/24 09:54	1
1,1,2-Trichloroethane	ND		1.0	ug/L			05/06/24 09:54	1
1,1-Dichloroethane	ND		1.0	ug/L			05/06/24 09:54	1
1,1-Dichloroethene	ND		1.0	ug/L			05/06/24 09:54	1
1,1-Dichloropropene	ND		1.0	ug/L			05/06/24 09:54	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			05/06/24 09:54	1
1,2,3-Trichloropropane	ND		2.0	ug/L			05/06/24 09:54	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			05/06/24 09:54	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			05/06/24 09:54	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			05/06/24 09:54	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			05/06/24 09:54	1
1,2-Dichlorobenzene	ND		1.0	ug/L			05/06/24 09:54	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			05/06/24 09:54	1
1,2-Dichloropropane	ND		1.0	ug/L			05/06/24 09:54	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			05/06/24 09:54	1
1,3-Dichlorobenzene	ND		1.0	ug/L			05/06/24 09:54	1
1,3-Dichloropropane	ND		1.0	ug/L			05/06/24 09:54	1
1,4-Dichlorobenzene	ND		1.0	ug/L			05/06/24 09:54	1
1-Methylnaphthalene	ND		4.0	ug/L			05/06/24 09:54	1
2,2-Dichloropropane	ND		2.0	ug/L			05/06/24 09:54	1
2-Butanone	ND		10	ug/L			05/06/24 09:54	1
2-Chlorotoluene	ND		1.0	ug/L			05/06/24 09:54	1
2-Hexanone	ND		10	ug/L			05/06/24 09:54	1
2-Methylnaphthalene	ND		4.0	ug/L			05/06/24 09:54	1
4-Chlorotoluene	ND		1.0	ug/L			05/06/24 09:54	1
4-Isopropyltoluene	ND		1.0	ug/L			05/06/24 09:54	1
4-Methyl-2-pentanone	ND		10	ug/L			05/06/24 09:54	1
Acetone	ND		10	ug/L			05/06/24 09:54	1
Benzene	ND		1.0	ug/L			05/06/24 09:54	1
Bromobenzene	ND		1.0	ug/L			05/06/24 09:54	1
Bromodichloromethane	ND		1.0	ug/L			05/06/24 09:54	1
Dibromochloromethane	ND		1.0	ug/L			05/06/24 09:54	1
Bromoform	ND		1.0	ug/L			05/06/24 09:54	1
Bromomethane	ND		3.0	ug/L			05/06/24 09:54	1
Carbon disulfide	ND		10	ug/L			05/06/24 09:54	1
Carbon tetrachloride	ND		1.0	ug/L			05/06/24 09:54	1
Chlorobenzene	ND		1.0	ug/L			05/06/24 09:54	1
Chloroethane	ND		2.0	ug/L			05/06/24 09:54	1
Chloroform	ND		1.0	ug/L			05/06/24 09:54	1
Chloromethane	ND		3.0	ug/L			05/06/24 09:54	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			05/06/24 09:54	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			05/06/24 09:54	1
Dibromomethane	ND		1.0	ug/L			05/06/24 09:54	1
Dichlorodifluoromethane	ND		1.0	ug/L			05/06/24 09:54	1
Ethylbenzene	ND		1.0	ug/L			05/06/24 09:54	1
Hexachlorobutadiene	ND		1.0	ug/L			05/06/24 09:54	1

Prep Type: Total/NA

5

6

Client Sample ID: Method Blank

6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-4462/3 Matrix: Water

Analysis Batch: 4462

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared ND 1.0 05/06/24 09:54 Isopropylbenzene ug/L 1 Methyl-tert-butyl Ether (MTBE) ND 1.0 ug/L 05/06/24 09:54 1 Methylene Chloride ND 05/06/24 09:54 3.0 ug/L 1 n-Butylbenzene ND 3.0 ug/L 05/06/24 09:54 1 ND N-Propylbenzene 1.0 ug/L 05/06/24 09:54 1 Naphthalene ND 2.0 ug/L 05/06/24 09:54 1 sec-Butylbenzene ND 1.0 ug/L 05/06/24 09:54 1 Styrene ND 1.0 ug/L 05/06/24 09:54 1 tert-Butylbenzene ND 1.0 ug/L 05/06/24 09:54 1 Tetrachloroethene (PCE) ND 1.0 ug/L 05/06/24 09:54 1 Toluene ND 1.0 ug/L 05/06/24 09:54 1 ND 05/06/24 09:54 trans-1,2-Dichloroethene 1.0 ug/L 1 trans-1,3-Dichloropropene ND 1.0 ug/L 05/06/24 09:54 1 Trichloroethene (TCE) ND 1.0 ug/L 05/06/24 09:54 1 Trichlorofluoromethane ND 1.0 ug/L 05/06/24 09:54 1 ND 05/06/24 09:54 Vinyl chloride 1.0 ug/L 1 Xylenes, Total ND 1.5 ug/L 05/06/24 09:54 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		70 - 130		05/06/24 09:54	1
Toluene-d8 (Surr)	85		70 - 130		05/06/24 09:54	1
4-Bromofluorobenzene (Surr)	111		70 - 130		05/06/24 09:54	1
Dibromofluoromethane (Surr)	94		70 - 130		05/06/24 09:54	1

MR MR

Lab Sample ID: LCS 885-4462/2 Matrix: Water Analysis Batch: 4462

Prep Type: Total/NA 201 201 %Rec

Client Sample ID: Lab Control Sample

	Opine	200	200				/01/000	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	21.7		ug/L		108	70 - 130	
Benzene	20.1	20.3		ug/L		101	70 - 130	
Chlorobenzene	20.1	17.0		ug/L		85	70 - 130	
Toluene	20.2	17.6		ug/L		87	70 - 130	
Trichloroethene (TCE)	20.2	17.5		ug/L		87	70 - 130	

Sniko

	LCS	LCS			
Surrogate	%Recovery	Qualifier	Limits		
1,2-Dichloroethane-d4 (Surr)			70 - 130		
Toluene-d8 (Surr)	87		70 - 130		
4-Bromofluorobenzene (Surr)	110		70 - 130		
Dibromofluoromethane (Surr)	93		70 - 130		

Lab Sample ID: MB 885-4552/3 Matrix: Water Analysis Batch: 4552

	MB MB						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			05/07/24 09:29	1
1,1,1-Trichloroethane	ND	1.0	ug/L			05/07/24 09:29	1

Eurofins Albuquerque

Prep Type: Total/NA

Client Sample ID: Method Blank

5

6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-4552/3 Matrix: Water

Analysis Batch: 4552

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	МВ					
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L		05/07/24 09:29	1
1,1,2-Trichloroethane	ND		1.0	ug/L		05/07/24 09:29	1
1,1-Dichloroethane	ND		1.0	ug/L		05/07/24 09:29	1
1,1-Dichloroethene	ND		1.0	ug/L		05/07/24 09:29	1
1,1-Dichloropropene	ND		1.0	ug/L		05/07/24 09:29	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L		05/07/24 09:29	1
1,2,3-Trichloropropane	ND		2.0	ug/L		05/07/24 09:29	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L		05/07/24 09:29	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L		05/07/24 09:29	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		05/07/24 09:29	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		05/07/24 09:29	1
1,2-Dichlorobenzene	ND		1.0	ug/L		05/07/24 09:29	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L		05/07/24 09:29	1
1,2-Dichloropropane	ND		1.0	ug/L		05/07/24 09:29	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L		05/07/24 09:29	1
1,3-Dichlorobenzene	ND		1.0	ug/L		05/07/24 09:29	1
1.3-Dichloropropane	ND		1.0	ua/L		05/07/24 09:29	
1.4-Dichlorobenzene	ND		1.0	ua/L		05/07/24 09:29	1
1-Methylnaphthalene	ND		4.0	ug/l		05/07/24 09:29	1
2 2-Dichloropropage	ND		2.0	ug/L		05/07/24 09:29	
2-Butanone	ND		10	ug/L		05/07/24 09:29	1
2-Chlorotoluene			10	ug/L		05/07/24 09:29	1
2 Hovanono	ND		10	ug/L		05/07/24 09:29	
2 Mothylpaphthalono			10	ug/L		05/07/24 09:29	1
			4.0	ug/L		05/07/24 09:29	1
	ND		1.0	ug/L		05/07/24 09:29	
	ND		1.0	ug/L		05/07/24 09:29	1
	ND		10	ug/L		05/07/24 09:29	1
Acetone	ND		10	ug/L		05/07/24 09:29	1
Benzene	ND		1.0	ug/L		05/07/24 09:29	1
Bromobenzene	ND		1.0	ug/L		05/07/24 09:29	1
Bromodichloromethane	ND		1.0	ug/L		05/07/24 09:29	1
Dibromochloromethane	ND		1.0	ug/L		05/07/24 09:29	1
Bromoform	ND		1.0	ug/L		05/07/24 09:29	1
Bromomethane	ND		3.0	ug/L		05/07/24 09:29	1
Carbon disulfide	ND		10	ug/L		05/07/24 09:29	1
Carbon tetrachloride	ND		1.0	ug/L		05/07/24 09:29	1
Chlorobenzene	ND		1.0	ug/L		05/07/24 09:29	1
Chloroethane	ND		2.0	ug/L		05/07/24 09:29	1
Chloroform	ND		1.0	ug/L		05/07/24 09:29	1
Chloromethane	ND		3.0	ug/L		05/07/24 09:29	1
cis-1,2-Dichloroethene	ND		1.0	ug/L		05/07/24 09:29	1
cis-1,3-Dichloropropene	ND		1.0	ug/L		05/07/24 09:29	1
Dibromomethane	ND		1.0	ug/L		05/07/24 09:29	1
Dichlorodifluoromethane	ND		1.0	ug/L		05/07/24 09:29	1
Ethylbenzene	ND		1.0	ug/L		05/07/24 09:29	1
Hexachlorobutadiene	ND		1.0	ug/L		05/07/24 09:29	1
Isopropylbenzene	ND		1.0	ug/L		05/07/24 09:29	1
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L		05/07/24 09:29	1
Methylene Chloride	ND		3.0	ug/L		05/07/24 09:29	1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-4552/3 Matrix: Water

Analysis Batch: 4552

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	ND		3.0	ug/L			05/07/24 09:29	1
N-Propylbenzene	ND		1.0	ug/L			05/07/24 09:29	1
Naphthalene	ND		2.0	ug/L			05/07/24 09:29	1
sec-Butylbenzene	ND		1.0	ug/L			05/07/24 09:29	1
Styrene	ND		1.0	ug/L			05/07/24 09:29	1
tert-Butylbenzene	ND		1.0	ug/L			05/07/24 09:29	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			05/07/24 09:29	1
Toluene	ND		1.0	ug/L			05/07/24 09:29	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			05/07/24 09:29	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			05/07/24 09:29	1
Trichloroethene (TCE)	ND		1.0	ug/L			05/07/24 09:29	1
Trichlorofluoromethane	ND		1.0	ug/L			05/07/24 09:29	1
Vinyl chloride	ND		1.0	ug/L			05/07/24 09:29	1
Xylenes, Total	ND		1.5	ug/L			05/07/24 09:29	1
	МВ	МВ						

Surrogate	%Recovery	Qualifier L	imits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119	7	0 - 130		05/07/24 09:29	1
Toluene-d8 (Surr)	85	70	0 - 130		05/07/24 09:29	1
4-Bromofluorobenzene (Surr)	109	70	0 - 130		05/07/24 09:29	1
Dibromofluoromethane (Surr)	97	70	0 - 130		05/07/24 09:29	1

Lab Sample ID: LCS 885-4552/2 Matrix: Water Analysis Batch: 4552

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	23.2		ug/L		115	70 _ 130	
Benzene	20.1	22.0		ug/L		110	70 - 130	
Chlorobenzene	20.1	17.4		ug/L		87	70 - 130	
Toluene	20.2	17.9		ug/L		89	70 _ 130	
Trichloroethene (TCE)	20.2	18.8		ug/L		93	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	119		70 - 130
Toluene-d8 (Surr)	86		70 - 130
4-Bromofluorobenzene (Surr)	113		70 - 130
Dibromofluoromethane (Surr)	97		70 - 130

ND

Lab Sample ID: MB 885-4652/3 Matrix: Water Analysis Batch: 4652

Analyte

1,1-Dichloroethane

MB MB Result Qualifier RL Unit D Prepared Analyzed Dil Fac 1.0 ug/L 1,1,1,2-Tetrachloroethane ND 05/08/24 11:01 1,1,1-Trichloroethane ND 1.0 ug/L 05/08/24 11:01 ND 2.0 ug/L 05/08/24 11:01 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane ND 1.0 ug/L 05/08/24 11:01

ug/L

Client Sample ID: Method Blank Prep Type: Total/NA

5 6

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA

05/08/24 11:01

Eurofins Albuquerque

1.0

1

1

1

1
Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

--- ---

Lab Sample ID: MB 885-4652/3 Matrix: Water

Analysis Batch: 4652

Client Sample ID: Method Blank Prep Type: Total/NA

	мв	мв						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		1.0	ug/L			05/08/24 11:01	1
1,1-Dichloropropene	ND		1.0	ug/L			05/08/24 11:01	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			05/08/24 11:01	
1,2,3-Trichloropropane	ND		2.0	ug/L			05/08/24 11:01	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			05/08/24 11:01	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			05/08/24 11:01	
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			05/08/24 11:01	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			05/08/24 11:01	1
1,2-Dichlorobenzene	ND		1.0	ug/L			05/08/24 11:01	
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			05/08/24 11:01	1
1,2-Dichloropropane	ND		1.0	ug/L			05/08/24 11:01	
1,3,5-Trimethylbenzene	ND		1.0	ug/L			05/08/24 11:01	
1,3-Dichlorobenzene	ND		1.0	ug/L			05/08/24 11:01	
1,3-Dichloropropane	ND		1.0	ug/L			05/08/24 11:01	1
1,4-Dichlorobenzene	ND		1.0	ug/L			05/08/24 11:01	1
1-Methylnaphthalene	ND		4.0	ug/L			05/08/24 11:01	
2.2-Dichloropropane	ND		2.0	ua/L			05/08/24 11:01	
2-Butanone	ND		10	ua/L			05/08/24 11:01	1
2-Chlorotoluene	ND		1.0	ua/L			05/08/24 11:01	1
2-Hexanone	ND		10	ug/L			05/08/24 11:01	1
2-Methylnaphthalene	ND		4.0	ua/L			05/08/24 11:01	1
4-Chlorotoluene	ND		1.0	ug/l			05/08/24 11:01	1
4-lsopropyltoluene	ND		10	ug/L			05/08/24 11:01	,
4-Methyl-2-pentanone	ND		10	ua/L			05/08/24 11:01	1
Acetone	ND		10	ug/l			05/08/24 11:01	
Benzene	ND		10	ug/L			05/08/24 11:01	,
Bromobenzene	ND		1.0	ug/L			05/08/24 11:01	
Bromodichloromethane	ND		1.0	ug/L			05/08/24 11:01	1
Dibromochloromethane	ND		10	ug/L			05/08/24 11:01	
Bromoform	ND		1.0	ug/L			05/08/24 11:01	1
Bromomethane	ND		3.0	ug/L			05/08/24 11:01	1
Carbon disulfide	ND		10	ug/L			05/08/24 11:01	
			10	ug/L			05/08/24 11:01	1
Chlorobenzene			1.0	ug/L			05/08/24 11:01	
Chloroethane			2.0	ug/L			05/08/24 11:01	
Chloroform			2.0	ug/L			05/08/24 11:01	1
Chloromothano			3.0	ug/L			05/08/24 11:01	
cis 1.2 Dichloroothono			1.0	ug/L			05/08/24 11:01	
cis-1,2-Dichloropropopo			1.0	ug/L			05/08/24 11:01	
			1.0	ug/L			05/08/24 11.01	ا م
Diplomomethane	ND		1.0	ug/L			05/06/24 11:01	ا • • • • • • •
	ND		1.0	ug/L			05/06/24 11:01	
	ND		1.0	ug/L			05/08/24 11:01	
	ND		1.0	ug/L			05/08/24 11:01	1
	ND		1.0	ug/L			05/08/24 11:01	
Netholen a Oblarida	ND		1.0	ug/L			05/08/24 11:01	
	ND		3.0	ug/L			05/08/24 11:01	1
n-Butylbenzene	ND		3.0	ug/L "			05/08/24 11:01	-
N-Propylbenzene	ND		1.0	ug/L			05/08/24 11:01	-
Naphthalene	ND		2.0	ug/L			05/08/24 11:01	1

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-4652/3 Matrix: Water

Analysis Batch: 4652

	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		1.0	ug/L			05/08/24 11:01	1
Styrene	ND		1.0	ug/L			05/08/24 11:01	1
tert-Butylbenzene	ND		1.0	ug/L			05/08/24 11:01	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			05/08/24 11:01	1
Toluene	ND		1.0	ug/L			05/08/24 11:01	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			05/08/24 11:01	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			05/08/24 11:01	1
Trichloroethene (TCE)	ND		1.0	ug/L			05/08/24 11:01	1
Trichlorofluoromethane	ND		1.0	ug/L			05/08/24 11:01	1
Vinyl chloride	ND		1.0	ug/L			05/08/24 11:01	1
Xylenes, Total	ND		1.5	ug/L			05/08/24 11:01	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)			70 - 130				05/08/24 11.01	1

Dibromofluoromethane (Surr)	97	70 - 130	05/08/24 11:01	1
4-Bromofluorobenzene (Surr)	109	70 - 130	05/08/24 11:01	1
Toluene-d8 (Surr)	85	70 - 130	05/08/24 11:01	1
1,2-Dichloroethane-d4 (Surr)	116	70 - 130	05/08/24 11:01	1

Lab Sample ID: LCS 885-4652/2

Matrix: Water Analysis Batch: 4652

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 1,1-Dichloroethene 20.1 22.9 114 70 - 130 ug/L Benzene 20.1 21.1 ug/L 105 70 - 130 Chlorobenzene 20.1 16.1 ug/L 80 70 - 130 70 - 130 Toluene 20.2 17.0 ug/L 84 Trichloroethene (TCE) 20.2 18.2 ug/L 90 70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			70 - 130
Toluene-d8 (Surr)	84		70 - 130
4-Bromofluorobenzene (Surr)	110		70 - 130
Dibromofluoromethane (Surr)	96		70 - 130

Method: 8015D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-4543/5 Matrix: Water Analysis Batch: 4543						Client S	ample ID: Metho Prep Type: 1	d Blank Fotal/NA
Analysis Datch. 4040	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		0.050	mg/L			05/07/24 13:01	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		15 - 270		-		05/07/24 13:01	1

Eurofins Albuquerque

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Method: 8015D - Gasoline Range Organics (GRO) (GC) (Continued)

Lab Sample ID: LCS 885-4543/4									CI	ient	Sample	ID: Lab Contro	I Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 4543													
				Spike		LCS	LCS					%Rec	
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	
Gasoline Range Organics [C6 -				0.500		0.508		mg/L			102	70 - 130	
C10]													
	LCS	LCS											
Surrogate	%Recovery	Qualif	fier	Limits									
4-Bromofluorobenzene (Surr)	211			15_270									
 Method: 8011 - EDB. DBCP. a	and 1.2.3	-TCF	P (GC)										
			(Client S	male ID: Meth	od Bloph
Lab Sample ID: WB 885-4458/3-A											Client Sa		
Matrix: water												Prep Type:	Iotal/NA
Analysis Batch: 4638												Prep Bat	ch: 4458
		мві	мв										
Analyte	Re	esult (Qualifier		RL		Unit		_ <u>D</u>	Р	repared	Analyzed	Dil Fac
Ethylene Dibromide		ND		C	0.010		ug/L			05/0	7/24 06:27	05/07/24 14:32	1
Lab Sample ID: LCS 885-4458/4-	Α								CI	ient	Sample	ID: Lab Contro	I Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 4638												Prep Bat	ch: 4458
				Spike		LCS	LCS					• %Rec	
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	
Ethylene Dibromide				0.100		0.0943		ug/L		-	94	70 - 130	
								U					
Lab Sample ID: MRL 885-4458/1-	A								CI	ient	Sample	ID: Lab Contro	I Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 4638												Prep Bat	ch: 4458
· · · · · · · · · · · · · · · · · · ·				Spike		MRL	MRL					%Rec	
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	
Ethylene Dibromide				0.0100		0.0104		ug/L		_	104	60 - 140	
Method: 8015D - Diesel Rand	de Organ	ics (DRO) (GC)									
	<u>je ergan</u>												
Lab Sample ID: WB 885-4352/1-A											Client Sa		
Watrix: water												Prep Type:	Iotal/NA
Analysis Batch: 4499												Prep Bat	ch: 4352
		MB	МВ										
Analyte	Re	esult (Qualifier		RL		Unit		_ <u>D</u>	P	repared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]		ND			1.0		mg/L			05/0	3/24 13:51	05/06/24 11:35	1
Motor Oil Range Organics [C28-C40]		ND			5.0		mg/L			05/0	3/24 13:51	05/06/24 11:35	1
		MB	мв										
Surrente	%/ D agaa			l inci	4 -						wa ma wa al	Amelymed	
Di p ostul phtholoto (Surr)	%Reco	100	Quaimer		150				-	P	12/24 12:51	Analyzed	Dii Fac
Di-n-ociyi phinalale (Surr)		100		40 - 1	159					05/0	3/24 13.51	05/06/24 11.35	1
									CI	ient	Sample	ID: Lab Contro	l Sample
	Α								_	_			
 Lab Sample ID: LCS 885-4352/2-, Matrix: Water	A											Prep Type:	Total/N4
Lab Sample ID: LCS 885-4352/2- Matrix: Water Analysis Batch: 4499	Α											Prep Type: Prep Bat	Total/NA
Lab Sample ID: LCS 885-4352/2-, Matrix: Water Analysis Batch: 4499	A			Spike		108	LCS					Prep Type: Prep Bat	Total/NA ch: 4352
Lab Sample ID: LCS 885-4352/2-, Matrix: Water Analysis Batch: 4499 Analyte	A			Spike Added		LCS	LCS	Unit		п	%Rec	Prep Type: Prep Bat %Rec	Total/NA ch: 4352
Lab Sample ID: LCS 885-4352/2-, Matrix: Water Analysis Batch: 4499 Analyte	A			Spike		LCS Result	LCS Qualifier	Unit		<u>D</u>	<u>%Rec</u>	Prep Type: Prep Bat %Rec Limits	Total/NA

Method: 8015D - Diesel Ran	ge Organ	ics	(DRO) (GC) (Co	ontin	ued)							
Lab Sample ID: LCS 885-4352/2-	A								CI	ient	Sample	ID: Lab Contro	I Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 4499												Prep Bat	tch: 4352
	LCS	LCS											
Surrogate	%Recovery	Qua	lifier	Limits	_								
Di-n-octyl phthalate (Surr)	100			46 - 159									
Method: 300.0 - Anions, Ion	Chromat	ogr	aphy										
Lab Sample ID: MB 885-4379/12											Client S	Sample ID: Meth	od Blank
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 4379													
-		ΜВ	MB										
Analyte	R	esult	Qualifier		RL		Unit		D	Р	repared	Analyzed	Dil Fac
Chloride		ND			0.50		mg/L					05/03/24 08:30	1
Sulfate		ND			0.50		mg/L					05/03/24 08:30	1
Lab Sample ID: LCS 885-4379/13	2								CI	ient	Sample	D: Lab Contro	I Sample
Matrix: Water											oumpre	Pren Type:	
Analysis Batch: 4379												Trop Type.	Totalina
Analysis Baten. 4015				Spike		LCS	LCS					%Rec	
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	
Chloride				5.00		4.57		mg/L		-	91	90 - 110	
Sulfate				10.0		9.46		mg/L			95	90 - 110	
								0					
Lab Sample ID: MRL 885-4379/1	1								CI	ient	Sample	ID: Lab Contro	I Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 4379													
				Spike		MRL	MRL					%Rec	
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	
Chloride				0.500		0.512		mg/L		_	102	50 - 150	
Sulfate				0.500		0.518		mg/L			104	50 - 150	
											0		
Lab Sample ID: MB 885-4380/12											Client S	sample ID: Meth	od Blank
Matrix: water												Prep Type:	Iotal/NA
Analysis Batch: 4380													
Awalida		IN B					11			_		A	D!! [
	K		Quaimer		0.20					P	repared	Analyzed	
		ND			0.20		mg/∟					03/03/24 08:30	1
Lab Sample ID: LCS 885-4380/13	3								CI	ient		D: Lab Contro	Sample
Matrix: Water												Prep Type:	Total/NA
Analysis Batch: 4380													
				Spike		LCS	LCS					%Rec	
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	
Nitrate as N				2.50		2.39		mg/L		_	96	90 - 110	
Nitrite as N				1.00		0.937		mg/L			94	90 - 110	
Lab Sample ID: MRI 885-4380/1	1								CI	ient	Sample	ID: Lab Contro	I Sample
Matrix: Water											. Jampie	Pron Typo	
Analysis Batch: 4380												пер туре.	
Analysis Batell. 7000				Snike		MRI	MRL					%Rec	
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	
Nitrate as N				0.100		0.0929	J	ma/L		_	93	50 - 150	
Nitrite as N				0.0999		0.0976	J	ma/L			98	50 - 150	
1								J. –				· · · · ·	

Method: 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 885-4314/1 Matrix: Water Analysis Batch: 4314									Client S	ample ID: Metho Prep Type: 1	d Blank ſotal/NA
-	МВ	МВ									
Analyte	Result	Qualifier		RL		Unit		D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND			50		mg/L				05/03/24 09:03	1
Lab Sample ID: LCS 885-4314/2 Matrix: Water								Clien	t Sample	ID: Lab Control Prep Type: 1	Sample ſotal/NA
Analysis Batch: 4314			Calles							%/ Doc	
Amelida			эріке Аліліалі	L.	,3 LU3) 	11	-	0/ D	%Rec	
Analyte			Added	Res	ut Qua	alifier	Unit	D	%Rec	Limits	
Total Dissolved Solids			1000	10	10		mg/L		101	80 - 120	

GC/MS VOA

Analysis Batch: 4462

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3785-1	FY Treated Eff	Total/NA	Groundwater	8260B	
885-3785-2	FY Raw	Total/NA	Groundwater	8260B	
885-3785-3	RW-2-2024-04-28	Total/NA	Groundwater	8260B	
885-3785-4	Trip Blank	Total/NA	Trip Blank	8260B	
MB 885-4462/3	Method Blank	Total/NA	Water	8260B	
LCS 885-4462/2	Lab Control Sample	Total/NA	Water	8260B	
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Γ					
885-3785-2	EV Raw		Groundwater	8260B	
MB 885-4552/3	Method Blank	Total/NA	Water	8260B	
LCS 885-4552/2	Lab Control Sample	Total/NA	Water	8260B	
Analysis Batch: 4652	2				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3785-3	RW-2-2024-04-28	Total/NA	Groundwater	8260B	
MB 885-4652/3	Method Blank	Total/NA	Water	8260B	
LCS 885-4652/2	Lab Control Sample	Total/NA	Water	8260B	

GC VOA

Analysis Batch: 4543

Lab Sample ID 885-3785-1	Client Sample ID FY Treated Eff	Prep Type Total/NA	Matrix Groundwater	Method 8015D	Prep Batch
885-3785-2	FY Raw	Total/NA	Groundwater	8015D	
MB 885-4543/5	Method Blank	Total/NA	Water	8015D	
LCS 885-4543/4	Lab Control Sample	Total/NA	Water	8015D	

GC Semi VOA

Prep Batch: 4352

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3785-1	FY Treated Eff	Total/NA	Groundwater	3511	
885-3785-2	FY Raw	Total/NA	Groundwater	3511	
MB 885-4352/1-A	Method Blank	Total/NA	Water	3511	
LCS 885-4352/2-A	Lab Control Sample	Total/NA	Water	3511	

Prep Batch: 4458

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3785-1	FY Treated Eff	Total/NA	Groundwater	8011	
885-3785-2	FY Raw	Total/NA	Groundwater	8011	
885-3785-3	RW-2-2024-04-28	Total/NA	Groundwater	8011	
885-3785-4	Trip Blank	Total/NA	Trip Blank	8011	
MB 885-4458/3-A	Method Blank	Total/NA	Water	8011	
LCS 885-4458/4-A	Lab Control Sample	Total/NA	Water	8011	
MRL 885-4458/1-A	Lab Control Sample	Total/NA	Water	8011	

Analysis Batch: 4499

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3785-1	FY Treated Eff	Total/NA	Groundwater	8015D	4352
885-3785-2	FY Raw	Total/NA	Groundwater	8015D	4352
MB 885-4352/1-A	Method Blank	Total/NA	Water	8015D	4352

GC Semi VOA (Continued)

Analysis Batch: 4499 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 885-4352/2-A	Lab Control Sample	Total/NA	Water	8015D	4352
Analysis Batch: 4638					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3785-4	Trip Blank	Total/NA	Trip Blank	8011	4458
MB 885-4458/3-A	Method Blank	Total/NA	Water	8011	4458
LCS 885-4458/4-A	Lab Control Sample	Total/NA	Water	8011	4458
MRL 885-4458/1-A	Lab Control Sample	Total/NA	Water	8011	4458
Analysis Batch: 4639					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-3785-1	FY Treated Eff	Total/NA	Groundwater	8011	4458
885-3785-2	FY Raw	Total/NA	Groundwater	8011	4458
885-3785-3	RW-2-2024-04-28	Total/NA	Groundwater	8011	4458

HPLC/IC

Analysis Batch: 4379

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
885-3785-1	FY Treated Eff	Total/NA	Groundwater	300.0	
885-3785-1	FY Treated Eff	Total/NA	Groundwater	300.0	
885-3785-2	FY Raw	Total/NA	Groundwater	300.0	
885-3785-2	FY Raw	Total/NA	Groundwater	300.0	
MB 885-4379/12	Method Blank	Total/NA	Water	300.0	
LCS 885-4379/13	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-4379/11	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 4380

Lab Sample ID 885-3785-1	Client Sample ID FY Treated Eff	Prep Type Total/NA	Matrix Groundwater	Method 300.0	Prep Batch
885-3785-2	FY Raw	Total/NA	Groundwater	300.0	
MB 885-4380/12	Method Blank	Total/NA	Water	300.0	
LCS 885-4380/13	Lab Control Sample	Total/NA	Water	300.0	
MRL 885-4380/11	Lab Control Sample	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 4314

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-3785-1	FY Treated Eff	Total/NA	Groundwater	2540C	
885-3785-2	FY Raw	Total/NA	Groundwater	2540C	
MB 885-4314/1	Method Blank	Total/NA	Water	2540C	
LCS 885-4314/2	Lab Control Sample	Total/NA	Water	2540C	

5/16/2024

Dilution

Factor

1

1

5

1

1

20

5

1

Run

Batch

Туре

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Prep

Prep

Batch

Method

8260B

8015D

8011

8011

3511

8015D

300.0

300.0

300.0

2540C

Client Sample ID: FY Treated Eff Date Collected: 04/28/24 16:50 Date Received: 05/01/24 14:41

Prep Type

Total/NA

Lab Sample ID: 885-3785-1 Matrix: Groundwater

Prepared

or Analyzed 05/06/24 18:29

05/07/24 23:36

05/07/24 06:27

05/08/24 14:32

05/03/24 13:51

05/06/24 12:22

05/03/24 09:03

05/03/24 09:15 05/03/24 20:22

05/03/24 09:03

Lab Sample ID: 885-3785-2

Matrix: Groundwater

Client Sample ID: FY Raw

Date Collected: 04/28/24 16:45 Date Received: 05/01/24 14:41

—	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		5	4462	JR	EET ALB	05/06/24 18:57
Total/NA	Analysis	8260B		50	4552	JR	EET ALB	05/07/24 09:57
Total/NA	Analysis	8015D		1	4543	JP	EET ALB	05/07/24 23:59
Total/NA	Prep	8011			4458	MB	EET ALB	05/07/24 06:53
Total/NA	Analysis	8011		100	4639	MB	EET ALB	05/08/24 14:49
Total/NA	Prep	3511			4352	JU	EET ALB	05/03/24 13:51
Total/NA	Analysis	8015D		1	4499	JU	EET ALB	05/06/24 12:46
Total/NA	Analysis	300.0		1	4379	JT	EET ALB	05/03/24 09:28
Total/NA	Analysis	300.0		20	4379	JT	EET ALB	05/03/24 09:40
Total/NA	Analysis	300.0		5	4380	JT	EET ALB	05/03/24 20:35
Total/NA	Analysis	2540C		1	4314	KS	EET ALB	05/03/24 09:03

Client Sample ID: RW-2-2024-04-28

```
Date Collected: 04/28/24 16:13
Date Received: 05/01/24 14:41
```

Jale Received	. 05/01/24 14.4	1						
_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		5	4462	JR	EET ALB	05/06/24 19:26
Total/NA	Analysis	8260B		50	4652	JR	EET ALB	05/08/24 11:30
Total/NA	Prep	8011			4458	MB	EET ALB	05/07/24 06:53
Total/NA	Analysis	8011		200	4639	MB	EET ALB	05/08/24 15:06

Client Sample ID: Trip Blank

Date Collected: 04/28/24 00:00 Date Received: 05/01/24 14:41

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260B		1	4462	JR	EET ALB	05/06/24 19:54	

Eurofins Albuquerque

Batch

4462 JR

4458

4639 MB

4499 JU

4543 JP

4352 JU

4379 JT

4379 JT

4380 JT

4314 KS

MB

Analyst

Lab

EET ALB

Number

Lab Sample ID: 885-3785-4

05/08/24 15:06

Lab Sample ID: 885-3785-3

Matrix: Groundwater

Matrix: Trip Blank

Matrix: Trip Blank

Lab Sample ID: 885-3785-4

Client Sample ID: Trip Blank Date Collected: 04/28/24 00:00 Date Received: 05/01/24 14:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	8011			4458	MB	EET ALB	05/07/24 06:53
Total/NA	Analysis	8011		1	4638	MB	EET ALB	05/07/24 15:58

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site Job ID: 885-3785-1

Laboratory: Eurofins Albuquerque Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Identification Number Expiration Date Program New Mexico State NM9425, NM0901 02-26-25 5 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Analyte Prep Method Matrix 2540C Groundwater Total Dissolved Solids 300.0 Groundwater Chloride 300.0 Groundwater Nitrate Nitrite as N 300.0 Groundwater Sulfate 8011 8011 Groundwater Ethylene Dibromide 9 8011 8011 Trip Blank Ethylene Dibromide 8015D Groundwater Gasoline Range Organics [C6 - C10] Diesel Range Organics [C10-C28] 8015D 3511 Groundwater 3511 Motor Oil Range Organics [C28-C40] 8015D Groundwater 8260B Groundwater 1,1,1,2-Tetrachloroethane 8260B Groundwater 1,1,1-Trichloroethane 8260B Groundwater 1,1,2,2-Tetrachloroethane 8260B Groundwater 1,1,2-Trichloroethane 8260B Groundwater 1.1-Dichloroethane 8260B Groundwater 1,1-Dichloroethene 8260B Groundwater 1,1-Dichloropropene 8260B Groundwater 1,2,3-Trichlorobenzene 8260B Groundwater 1,2,3-Trichloropropane 8260B Groundwater 1,2,4-Trichlorobenzene 8260B Groundwater 1,2,4-Trimethylbenzene 8260B 1,2-Dibromo-3-Chloropropane Groundwater 8260B Groundwater 1,2-Dibromoethane (EDB) 8260B Groundwater 1,2-Dichlorobenzene 8260B Groundwater 1,2-Dichloroethane (EDC) 8260B Groundwater 1,2-Dichloropropane 8260B Groundwater 1,3,5-Trimethylbenzene 8260B Groundwater 1,3-Dichlorobenzene 8260B Groundwater 1,3-Dichloropropane 8260B Groundwater 1,4-Dichlorobenzene 8260B Groundwater 1-Methylnaphthalene 8260B Groundwater 2,2-Dichloropropane 8260B Groundwater 2-Butanone 8260B Groundwater 2-Chlorotoluene 8260B Groundwater 2-Hexanone 8260B Groundwater 2-Methylnaphthalene 8260B Groundwater 4-Chlorotoluene 8260B Groundwater 4-Isopropyltoluene 8260B Groundwater 4-Methyl-2-pentanone 8260B Groundwater Acetone 8260B Groundwater Benzene 8260B Groundwater Bromobenzene 8260B Groundwater Bromodichloromethane 8260B Groundwater Bromoform 8260B Groundwater Bromomethane 8260B Carbon disulfide Groundwater

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

8260B

Laboratory: Eurofins Albuquerque (Continued) Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Identification Number **Expiration Date** Program 5 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 8260B Groundwater Carbon tetrachloride 8260B Groundwater Chlorobenzene 8260B Groundwater Chloroethane 8260B Groundwater Chloroform 8260B Groundwater Chloromethane 8260B Groundwater cis-1,2-Dichloroethene 9 8260B Groundwater cis-1,3-Dichloropropene 8260B Groundwater Dibromochloromethane 8260B Groundwater Dibromomethane 8260B Dichlorodifluoromethane Groundwater 8260B Groundwater Ethylbenzene 8260B Groundwater Hexachlorobutadiene 8260B Groundwater Isopropylbenzene 8260B Groundwater Methylene Chloride 8260B Groundwater Methyl-tert-butyl Ether (MTBE) 8260B Groundwater Naphthalene 8260B Groundwater n-Butylbenzene 8260B Groundwater N-Propylbenzene 8260B Groundwater sec-Butylbenzene 8260B Groundwater Styrene 8260B Groundwater tert-Butylbenzene 8260B Tetrachloroethene (PCE) Groundwater 8260B Groundwater Toluene 8260B Groundwater trans-1,2-Dichloroethene 8260B Groundwater trans-1,3-Dichloropropene 8260B Groundwater Trichloroethene (TCE) 8260B Groundwater Trichlorofluoromethane 8260B Groundwater Vinyl chloride 8260B Groundwater Xylenes, Total 8260B Trip Blank 1,1,1,2-Tetrachloroethane 8260B Trip Blank 1,1,1-Trichloroethane Trip Blank 8260B 1,1,2,2-Tetrachloroethane 8260B Trip Blank 1,1,2-Trichloroethane 8260B Trip Blank 1,1-Dichloroethane 8260B Trip Blank 1,1-Dichloroethene 8260B Trip Blank 1,1-Dichloropropene 8260B Trip Blank 1,2,3-Trichlorobenzene 8260B Trip Blank 1,2,3-Trichloropropane 8260B Trip Blank 1,2,4-Trichlorobenzene 8260B Trip Blank 1,2,4-Trimethylbenzene 8260B Trip Blank 1,2-Dibromo-3-Chloropropane 8260B Trip Blank 1,2-Dibromoethane (EDB) Trip Blank 8260B 1,2-Dichlorobenzene 8260B Trip Blank 1,2-Dichloroethane (EDC) 8260B Trip Blank 1,2-Dichloropropane 8260B Trip Blank 1,3,5-Trimethylbenzene

1,3-Dichlorobenzene

Trip Blank

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

8260B

5

9

Laboratory: Eurofins Albuquerque (Continued) Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Authority Identification Number Expiration Date Program The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 8260B Trip Blank 1,3-Dichloropropane 8260B Trip Blank 1,4-Dichlorobenzene 8260B Trip Blank 1-Methylnaphthalene 8260B Trip Blank 2,2-Dichloropropane 8260B Trip Blank 2-Butanone 8260B Trip Blank 2-Chlorotoluene 8260B Trip Blank 2-Hexanone 8260B Trip Blank 2-Methylnaphthalene 8260B Trip Blank 4-Chlorotoluene 8260B Trip Blank 4-Isopropyltoluene 4-Methyl-2-pentanone 8260B Trip Blank 8260B Trip Blank Acetone 8260B Trip Blank Benzene 8260B Trip Blank Bromobenzene 8260B Trip Blank Bromodichloromethane 8260B Trip Blank Bromoform 8260B Trip Blank Bromomethane 8260B Trip Blank Carbon disulfide 8260B Trip Blank Carbon tetrachloride 8260B Trip Blank Chlorobenzene Trip Blank 8260B Chloroethane 8260B Trip Blank Chloroform 8260B Trip Blank Chloromethane 8260B Trip Blank cis-1,2-Dichloroethene 8260B Trip Blank cis-1,3-Dichloropropene 8260B Trip Blank Dibromochloromethane 8260B Trip Blank Dibromomethane 8260B Trip Blank Dichlorodifluoromethane 8260B Trip Blank Ethylbenzene 8260B Trip Blank Hexachlorobutadiene 8260B Trip Blank Isopropylbenzene Trip Blank 8260B Methylene Chloride 8260B Trip Blank Methyl-tert-butyl Ether (MTBE) 8260B Trip Blank Naphthalene 8260B Trip Blank n-Butylbenzene 8260B Trip Blank N-Propylbenzene 8260B Trip Blank sec-Butylbenzene 8260B Trip Blank Styrene 8260B Trip Blank tert-Butylbenzene 8260B Trip Blank Tetrachloroethene (PCE) 8260B Trip Blank Toluene 8260B Trip Blank trans-1,2-Dichloroethene Trip Blank 8260B trans-1,3-Dichloropropene 8260B Trip Blank Trichloroethene (TCE) 8260B Trip Blank Trichlorofluoromethane Trip Blank 8260B Vinyl chloride

Xylenes, Total

Trip Blank

Accreditation/Certification Summary

Client: Daniel B. Stephens & Associates Inc. Project/Site: Former Y Station State Lead Site

Laboratory: Eurofins Albuquerque (Continued) Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	Progra	am	Identification Number	Expiration Date 02-26-25		
egon	NELA	P	NM100001			
The following analytes for which the agency of	are included in this report, bu loes not offer certification.	It the laboratory is not certified	by the governing authority. This lis	t may include analyte		
The following analytes for which the agency of Analysis Method	are included in this report, bu loes not offer certification . Prep Method	It the laboratory is not certified Matrix	by the governing authority. This lis Analyte	t may include analyte		
The following analyte: for which the agency Analysis Method 8011	are included in this report, but loes not offer certification.	it the laboratory is not certified <u>Matrix</u> Groundwater	by the governing authority. This lis Analyte Ethylene Dibromide	t may include analyte		

	Client:	hain	-of-Cu	istody Record	Turn	Around	Time:								IAI	LL	E	٧V	'IR	20	NP	Л	間に	1.4.s	
		Danie	1. 13. 0	Stephens and Associates	Proie	tandard	[⊐ Rush)					A	N	AL	YS	SIS	5 L	AB	50	F	民		
	Mailing	Address	6020	Academy Rd NE		Form	er γ	'Stat	ion State	Lead Site		49	01 H	awki	www Ins N	/.hal IE -	lenvi Alb	ironn uque	nent erqu	al.co ə, NN	om VI 87	885	5-3785	COC	
	ک Phone #	TE 10 #:	0, <u>Al</u> E	505-822-9400	Proje	ct #:	OBI	8.115	7			Te	el. 50)5-34	5-39	975 A	F naly	ax (sis l	505- Reqi	345- uest	410	7			
	email or	r Fax#:	qh	<u>errmann@geo-logiC.G</u>	Proje	ct Mana	iger:				<u>(</u>	Ô					S04			ent)	0				
	QA/QC F	Package: dard	1	Level 4 (Full Validation)		6	race	e H	errman	n	3's (802	SQ/ MF	PCB's		SWISO.		, PO4,			nt/Abse	လို ကိုလို	300,0	HOC		
	Accredi	tation: AC	□ Az Co □ Other	ompliance 	Samı On Ic	oler: R ce:	Const ZYE	and f	<u>R. Villan</u> □ No	enva	TME	RQ/DF	es/8082	504.1)	or 827	S	3, NO ₂		(YO	(Prese	loride	\mathcal{S}	Mas		
		(Type)_		<u> </u>	# of C	Coolers: er Temp		CEL O	10-01	morty	ATBE	D B D G	ticide	thod	8310	Metal	2 Z	(A	ni-V	form	10	as			
P	Date	Time	Matrix	Sample Name	Conta Type	ainer and #	Prese	ervative	HEAI	- No.	BTEX / N	TPH:8015	8081 Pes	EDB (Me	PAHs by	RCRA 81	Cl, F, Br,	8260 (VO	8270 (Sei	Total Coli	Sulfate	Nitrate	TOS		
age (4/28/24	16:50	GW	FY Treated Eff	Va	ries	Var	ies				X		$\overline{\mathbf{X}}$	_	_		Ž			X	Ż	Ż		
32 of		16:45		FYRaw								X		X				X			X	X	Ż		
ယ်		16:13		RW-2-2024-0428	•									X				X					\frown		
				Trip Blank		, 																			
				· · · · · · · · · · · · · · · · · · ·																					
																									_
ļ															_								\downarrow		
																		_					\rightarrow		
							ļ																		_
															\dashv		\neg			-+	-+		-+		
	Date. 51124	Time [.] 14:41	Relinquish	ed by.	Receiv	ved by	Via	00	Date 5/1/24	Time 14:4)	Ren	nark	s:	ł	l	1			ł					!	
5/16/20	Date	Time.	Relinquish	ed by.	Receiv	ved by.	Via:	<u>1.1.0</u>	Date	Time															
Ň	L		V								L														

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories This serves as notice of this possibility Any sub-contracted data will be clearly notated on the analytical report

10

Login Sample Receipt Checklist

Client: Daniel B. Stephens & Associates Inc.

Login Number: 3785 List Number: 1 Creator: Lowman, Nick

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

List Source: Eurofins Albuquerque

Appendix E

Mass Removal Calculations

Calculation Cover Sheet

Project Name Former Y Station State Lead Site	Project Number <u>DB18.1157</u>
Calculation Number <u>001</u> Discipline <u>Environmental</u>	No. of Sheets <u>8</u>
PROJECT:	
Former Y Station State Lead Site	NS A. GOLA
SITE:	S CHARTER ST
1905 N Prince St, Clovis, NM 88101	22750
SUBJECT:	OFESSIONAL
Hydrocarbon Mass Removal Calculation	
SOURCES OF DATA:	
A. System operations summary data recorded by DBS&A staff	
B. Summary of Analytical Organic Chemistry Data for Soil Vapor, D Laboratory)	BS&A. (Results reported by Hall Environmental Analysis
C. Fundamentals of Fluid Mechanics - Munson et al, 2006	
D. "Conversion Unmasked" - Rong and Yu, 1996	
SOURCES OF FORMULAE & REFERENCES:	
1. Rotameter Flow Measurement, January 29, 2010	
2. Alnor HVAC Handbook, 2007	

 \boxtimes Preliminary Calculation

□ Final Calculation

Supersedes Calculation No.

Rev. No.	Revision	Calculation By	Calculation By Date Ch		Date	Approved By	Date
0	Startup / As-Built Report	ANT	12/06/2023	TG	12/08/2023	TG	12/27/2023
1	1 st GWM Report	Report TG 2/12/2024 GN		GMH	2/16/2024	TG	2/16/2024

Project No. <u>DB18.1157</u>	Date <u>12/6/2023</u>			
Subject <u>Hydrocarbon Mass Removal Calculation</u>	Sheet <u>1</u> of <u>7</u>			
By <u>A. Nuñez-Thompson</u> Checked By <u>T. Golden</u>	Calculation No. <u>001</u>			

1. Purpose

- Calculate the total mass of hydrocarbons removed by the remediation system, including the soil vapor extraction (SVE) and groundwater extraction components
- Calculate the hydrocarbon destruction efficiency of the SVE system
- Calculate the hydrocarbon emission rates from the SVE system

2. Given

- System operations data recorded by technical staff, including air flow rate in cubic feet per minute [cfm] or standard cfm and totalized water flow in gallons; blower effluent temperature, vacuum, hours of operation; and influent and effluent concentrations as measured with a PID ^A
- Total petroleum hydrocarbons as gasoline and diesel range organics (TPH GRO and DRO) concentrations from laboratory analyses of soil vapor and groundwater samples ^B
- Absolute atmospheric pressure, P_{atm}, in Clovis, NM at an elevation of 4,280 feet above mean sea level (ft msl) is 12.53 pounds per square inch (psi) (linearly interpolated from the reference) ^C
- Conversion factor of 4.16 from gasoline concentrations measured in parts per million by volume (ppmv) to micrograms per liter (μ g/L) ^D

3. Method

Methods for calculating air flow rates and hydrocarbon mass removal, destruction efficiency, and emission rates are provided below.

Project No. <u>DB18.1157</u>	Date <u>12/6/2023</u>			
Subject <u>Hydrocarbon Mass Removal Calculation</u>	Sheet <u>2</u> of <u>7</u>			
By <u>A. Nuñez-Thompson</u> Checked By <u>T. Golden</u>	Calculation No. <u>001</u>			

3.1 Air Flow Rates

The combined influent flow rate for the SVE system is reported in standard cubic feet per minute (scfm). Calculate the actual (Q_{acfm}) system air flow rates based on the standard system flow and the actual pressure and temperature relative to standard conditions (14.7 psi and 530 degrees Rankine) using equations 1 and 2.¹

$$Q_{acfm} = Q_{scfm} \cdot \frac{P_{std}}{P_{actual}} \cdot \frac{T_{actual}}{T_{std}}$$
(1)

3.2 Mass Removal by Laboratory Analysis

The first mass removal calculation is performed using laboratory analyses of concentrations of total petroleum hydrocarbons as gasoline range organics (TPH GRO) in μ g/L^B and the air flow rate. Laboratory concentrations (C_{lab}, mass per volume) are first converted to a volume of air under standard conditions, C_{std} (Hall Environmental Analysis Laboratory stated that concentrations are reported under actual laboratory conditions):

$$C_{std} = C_{lab} \cdot \left(\frac{P_{std}}{P_{lab}} \cdot \frac{T_{lab}}{T_{std}}\right)$$
(2)

The combined well influent air flow rate (measured in the same point in the process as the laboratory samples) is recorded by the MPE system in standard cfm using an averaging pitot tube.² The standard combined well influent concentration of TPH (GRO), mass per volume, is multiplied by the standard air flow, volume per time, and the equipment run time to obtain the mass of hydrocarbons removed.

Laboratory analysis of groundwater is used with similar methodology to calculate mass removal from the groundwater extraction component of the remediation system. The groundwater concentration, mass per volume, is multiplied by a measured volume of groundwater extracted over the period of operation. Mass of both TPH and gasoline constituents of benzene, toluene, ethylbenzene, and total xylenes (BTEX) are evaluated to estimate approximate mass of gasoline-equivalent hydrocarbons in the groundwater medium, with the maximum of the two values taken.

Project No. <u>DB18.1157</u>	Date <u>12/6/2023</u>			
Subject <u>Hydrocarbon Mass Removal Calculation</u>	Sheet <u>3</u> of <u>7</u>			
By <u>A. Nuñez-Thompson</u> Checked By <u>T. Golden</u>	Calculation No. <u>001</u>			

3.3 Mass Removal by PID Analysis

A second mass removal calculation is performed using PID field screening readings^A measured in ppmv and the air flow rate. PID readings are first converted from volumetric concentrations (ppmv) to mass-based concentrations (μ g/L) using a factor of 4.16^D. The combined well influent air flow rate (measured in the same point in the process as the PID samples) is recorded by the SVE system in standard cfm using an averaging pitot tube.⁴ The standard combined well influent PID reading is multiplied by the standard air flow and the equipment run time to obtain the mass of hydrocarbons removed, similar to the method above.

3.4 Destruction Efficiency

System destruction efficiency (DE) is computed based on the system influent and effluent laboratory concentrations (C_{inf} and C_{eff}):

$$DE = (C_{inf} - C_{eff}) / (C_{inf})$$
(3)

3.5 Emission Rates

Estimated hydrocarbon emission rates are calculated based on the oxidizer standard effluent concentration of TPH (GRO) and an assumed oxidizer standard effluent air flow rate. The effluent concentration is converted to a volume of air under standard conditions using equation 2. The effluent air flow rate will include well flow, dilution air, combustion air, and tertiary (cooling) air, where applicable. The SVE system is estimated conservatively to have a discharge air flow rate of 1,000 scfm.

4. Solution

Sample calculations are provided below for a period between November 1 and November 9 (laboratory samples collected on November 1 and November 9), with calculations summarized in attached spreadsheets. Removal by the groundwater treatment system is calculated based on a laboratory sample collected on November 9, 2023.

Project No. <u>DB18.1157</u>	Date <u>12/6/2023</u>			
Subject Hydrocarbon Mass Removal Calculation	Sheet <u>4</u> of <u>7</u>			
By <u>A. Nuñez-Thompson</u> Checked By <u>T. Golden</u>	Calculation No. <u>001</u>			

4.1 Air Flow Rates

The standard combined well influent flow rate, Q_{scfm} , during the period of 138 hours is 750 scfm, combined well vacuum, P_{vac} , is 50 inches of water column (" H₂O). Calculate the actual system flow rate, Q_{acfm} , using equation 1.

Calculate the actual pressure, P_{actual} , at the system flow meter based on atmospheric pressure (P_{atm}) and the applied well vacuum (P_{vac}):

 $P_{vac} = 49'' H_2O$

$$P_{actual} = P_{atm} - P_{vac} = 12.5 \ psi - \frac{50" \ H_2 O}{1} * \frac{1' H_2 O}{12" \ H_2 O} * \frac{1 \ psi}{2.31' \ H_2 O} = 10.70 \ psi$$
$$Q_{acfm} = Q_{scfm} * \frac{P_{std}}{P_{actual}} * \frac{T_{actual}}{T_{std}} = 750 \ scfm * \frac{14.7 \ psi}{10.70 \ psi} * \frac{530 \ R}{530 \ R} = 1,028 \ acfm$$

4.2 Mass Removal by Laboratory Analysis

The standard combined well influent flow rate, Q_{scfm} , during the period of 138 hours is 750 scfm, and TPH (GRO) laboratory concentration, C_{lab} , is 13,800 micrograms per liter (μ g/L)^B. Calculate the TPH (GRO) concentration under standard conditions, C_{std} , using equation 3 and assuming the absolute pressure and temperature at the laboratory (5000 ft msl) are 12.23 psi and 70° F, respectively:

$$C_{std} = C_{lab} * \left(\frac{P_{std}}{P_{lab}} * \frac{T_{lab}}{T_{std}}\right) = 13,800 \ \mu g/L * \left(\frac{14.7}{12.23} * \frac{530}{530}\right) = 16,587 \ \mu g/L$$

Mass = $Q_{scfm} * C_{std} * time = 750 scfm * 16,587 \mu g/L * 138 hr * (28.317 L/ft³) * (60 min/hr) *$

(1 pound / 454 grams) * (1 gram / $10^6 \mu g$) = **Mass = 6,430 lb gasoline**

December 6, 2023

Project No. DB18.1157	Date <u>12/6/2023</u>			
Subject <u>Hydrocarbon Mass Removal Calculation</u>	Sheet <u>5</u> of <u>7</u>			
By <u>A. Nuñez-Thompson</u> Checked By <u>T. Golden</u>	Calculation No. 001			

Calculate the daily mass removal and total mass removed by the groundwater treatment system based on concentrations of TPH (GRO), TPH (DRO), and BTEX of 6.1, 2.4, and 2.9 mg/L, respectively, for the samples collected on November 9, 2023. The sum total of TPH is 8.5 mg/L, which is greater than the BTEX concentrations. The effluent totalizing flow meter read 133,800 gallons on November 9 and 42,000 gallons on November 3, so approximately 91,800 gallons were processed during this time period. Calculate the mass removed using the concentration and volumetric flow for the period:

Mass removed = $V_{period} * C_{lab} =$

91,800 gal * (8.5 mg/L) * 2.20x10⁻⁶ lb/mg * 3.8 L/gal= Mass = 6.5 lb gasoline

Total mass removed from both air and water phases of contamination:

Mass = 6,430 + 6.5 = 6,437 lb / 6 lb/gal = Mass = 1,073 gallons gasoline-equivalent

Conversions from mass to gallons are provided only as a frame of reference. Some constituents in gasoline may not readily volatilize or may be oxidized by natural processes. Complete results are provided on attached spreadsheets.

4.3 Mass Removal by PID Analysis

The standard combined well influent flow rate, Q_{scfm}, during the period of 138 hours is 750 scfm, and the PID reported a volumetric concentration of 847 ppmv^A. Convert the volumetric concentration to a mass-based concentration at standard conditions:

 $C_{std} = 847 \text{ ppmv} * (4.16 \mu g/L \text{ per ppmv}) = 3,524 \mu g/L$

Mass = Q_{scfm} * C_{std} * time = 750 scfm * 3,524 µg/L * 138 hr * (28.317 L/ft³) * (60 min/hr) *

(1 pound / 454 grams) * (1 gram / $10^6 \mu g$) = Mass = 1,366 lb gasoline

Mass removal estimates obtained using PID data were lower than laboratory results. However, concentration estimates measured in the field using a portable PID are considered to be for screening purposes only and won't necessarily correlate with mass concentrations measured with laboratory data.

Project No. <u>DB18.1157</u>	Date <u>12/6/2023</u>			
Subject <u>Hydrocarbon Mass Removal Calculation</u>	Sheet <u>6</u> of <u>7</u>			
By <u>A. Nuñez-Thompson</u> Checked By <u>T. Golden</u>	Calculation No. <u>001</u>			

4.4 Destruction Efficiency

Calculate destruction efficiency using equation 3, assuming TPH (GRO) influent and effluent laboratory concentrations of 13,800 and 2,700 μ g/L^B, respectively, from the November 9 sampling event:

DE = $(C_{inf} - C_{eff}) / (C_{inf}) = (13,800 \ \mu g/L - 2,700 \ \mu g/L) / 13,800 \ \mu g/L = DE = 80.4\%$

Calculate destruction efficiency using equation 3, assuming TPH (GRO) influent and effluent laboratory concentrations of 9,800 and 220 μ g/L^B, respectively, from the November 28 sampling event:

 $DE = (C_{inf} - C_{eff}) / (C_{inf}) = (9,800 \ \mu g/L - 220 \ \mu g/L) / 9,800 \ \mu g/L = \textbf{DE} = \textbf{97.8\%}$

Destruction efficiency has improved as the system has continued to operate. Based on how the remediation system operated during the startup period, it is likely that process air was initially oxygen deficient. In this state, hydrocarbons were not oxidized as completely, despite normal operation of the thermal oxidizer. Normal operation of the oxidizer has created subsurface circulation and is increasing subsurface oxygen content over time. This has translated to improved oxidizer efficiency, as observed in the laboratory data.

4.5 Emission Rates

Calculate the oxidizer effluent TPH (GRO) concentration under standard conditions, C_{std} , using equation 2 and assuming the absolute pressure and temperature at the laboratory (5000 ft msl) are 12.23 psi and 70° F, respectively:

$$C_{std} = C_{lab} * \left(\frac{P_{std}}{P_{lab}} * \frac{T_{lab}}{T_{std}}\right) = 2,700 \ \mu g/L * \left(\frac{14.7}{12.23} * \frac{530}{530}\right) = 3,245 \ \mu g/L$$

Calculate emissions rates in pounds per hour (lb/hr) and tons per year (ton/yr) assuming a system discharge air flow rate, Q_{out}, of 1000 scfm (including combustion blower air):

Project No. <u>DB18.1157</u>	Date <u>12/6/2023</u>			
Subject <u>Hydrocarbon Mass Removal Calculation</u>	Sheet <u>7</u> of <u>7</u>			
By <u>A. Nuñez-Thompson</u> Checked By <u>T. Golden</u>	Calculation No. <u>001</u>			

Emissions = $Q_{out} * C_{std}$ = 1,000 scfm * 3,245 µg/L * (28.317 L/ft³) * (60 min/hr) *

(1 pound / 454 grams) * (1 gram / $10^6 \mu g$) = **Emissions = 12.16 lb/hr**

Emissions = 12.16 lb/hr * (8760 hr/yr) * (1 ton/2000 lb) = Emissions = 53.24 ton/yr

Time weighted average emission rates involve summing the product of the emission rate and run time for each individual period and dividing by the total run time.

Total period average emission rates involve summing the product of the emission rate and run time for each individual period and dividing by the current calendar time since startup.

As discussed above, oxidizer emission rates have improved as the oxidizer has continued to operate. Since November 16, 2023, TPH emission rates have been below 2 lb/hr and 9 ton/yr. Emissions of regulated constituents of gasoline, such as benzene, have been less than 0.2 lb/hr and 0.9 ton/yr. Emission rates will continue to improve as oxidizer efficiency increases and contaminant concentrations decrease with optimized mass removal.

Former Y Station, Clovis New Mexico Mass removal calculation (PID results) System start date November 1, 2023 The sample point is the combined influent sample port. Air flow is measured by the SVE system.

Date	Time	Total Oxidizer Hours	Run Time during period	Run Time during period	Combined Well Vacuum	Combined Well Vacuum	Standard Combined Well Flow	Actual Combined Well Flow	PID Concentration	PID Concentration	Total Well Flow	Mass Removed During Period	Cumulative Mass Removed	Mass Removal Rate	Cumulative Mass Removal Rate
		(hr)	(hr)	(min)	(in Hg)	(in H ₂ O)	(scfm)	(acfm)	(ppmv)	(µg/L)*	(scf)	(lb)	(lb)	(lb/hr)	(lb/hr)
11/1/2023	10:00	5							Syster	n started					
11/1/2023	13:56	9	4	240	3.1	42	761	1,016	15,000	62,400	182,640	711	711	177.9	177.9
11/3/2023	15:08	58	49	2,940	3.5	47	762	1,034	1,446	6,015	2,240,280	841	1,553	17.2	29.3
11/9/2023	8:30	196	138	8,280	3.7	50	750	1,028	847	3,524	6,210,000	1,366	2,919	9.9	15.3
11/16/2023	14:10	368	172	10,320	3.5	48	766	1,043	1,368	5,691	7,905,120	2,808	5,727	16.3	15.8
11/21/2023	15:08	485	117	7,020	3.9	53	762	1055	1,523	6,336	5,349,240	2,116	7,843	18.1	16.3
11/27/2023	16:01	633	148	8,880	3.9	53	765	1059	1,105	4,597	6,793,200	1,949	9,793	13.2	15.6
12/12/2023	8:00	963	330	19,800	4.1	55	775	1082	825	3,434	15,345,000	3,289	13,082	10.0	13.7
1/3/2024	7:30	1,463	500	30,000	4.1	56	775	1084	788	3,277	23,250,000	4,756	17,838	9.5	12.2
1/16/2024	12:30	1,756	293	17,580	4.2	57	781	1096	702	2,918	13,729,980	2,501	20,339	8.5	11.6
1/31/2024	8:27	2,109	353	21,162	4.4	59	764	1081	896	3,727	16,167,768	3,762	24,101	10.7	11.5
2/8/2024	8:40	2,300	191	11,478	5.0	68	725	1059	1,026	4,268	8,321,550	2,217	26,319	11.6	11.5
2/19/2024	14:43	2,568	268	16,080	5.1	69	729	1068	647	2,692	11,722,320	1,970	28,289	7.4	11.0
3/5/2024															
3/26/2024							61	/E Sustem Off	due to Thormal C	widizer Coult					
4/47/0004							31		uue to mermant						

Notes

4/17/2024 4/28/2024

 µg/L = micrograms per liter

 lb= pounds

 cfm = cubic feet per minute

 acfm = actual cfm

 scfm = standard cfm

 scf = standard cubic feet

 STP = standard temperature and

 pressure

 $\label{eq:hardward} \begin{array}{l} hr = hours \\ min = minutes \\ in H_2O = inches water column \\ psi = pounds per square inch \\ {}^\circ F = degrees Fahrenheit \\ {}^\circ R = degrees Rankine \\ ft msi = feet above mean sea level \\ \end{array}$

Conversions

* micrograms per liter = milligrams per cubic meter. 454 gram / lb 1.00E+06 ug / gram 60 min / hr 28.317 liter / cubic foot 1000 liter / cubic meter 35.315 cubic feet / cubic meter 4.16 ug/L per ppmv for gasoline at STP

Flow Conversions

12.5 absolute air pressure at 4280 ft msl 14.7 absolute air pressure at 0 ft msl

13.6 Inches water per inches Hg 12 inches per foot water

2.31 feet of water (head) per psi

70 °F, standard temperature 70 °F, assumed lab temperature 460 °R Former Y Station, Clovis New Mexico Mass removal calculation (laboratory results) System start date November 1, 2023 The sample point is the combined influent sample port. Air flow is measured by the SVE system.

		Total			Combined	Combined	Standard	Actual		Lab Results		Mass	Cumulative		Cumulative
		Oxidizer			Well	Well	Combined	Combined	Lab Results	TPH GRO	Total Well	Removed	Mass	Mass	Mass Removal
Date	Time	Hours	Run Time	Run Time	Vacuum	Vacuum	Well Flow	Well Flow	TPH GRO	at STP	Flow	During Period	Removed	Removal Rate	Rate
		(hr)	(hr)	(min)	(in Hg)	(in H ₂ O)	(scfm)	(acfm)	(µg/L)*	(µg/L)*	(scf)	(lb)	(lb)	(lb/hr)	(lbs/hr)
11/1/2023	13 10:00 5 System Started														
11/1/2023	13:56	9	4	240	3	42	761	1016	36,000	43,271	182,640	493	493	123.3	123.3
11/3/2023	15:08	58	49	2,940	3	47	762	1034	34,000	40,867	2,240,280	5,715	6,209	116.6	117.1
11/9/2023	8:30	196	138	8,280	4	50	750	1028	13,800	16,587	6,210,000	6,430	12,639	46.6	66.2
11/16/2023	14:10	368	172	10,320	4	48	766	1043	16,000	19,231	7,905,120	9,491	22,130	55.2	61.0
11/21/2023	15:08	485	117	7,020	4	53	762	1055	12,000	14,424	5,349,240	4,817	26,947	41.2	56.1
11/27/2023	16:01	633	148	8,880	4	53	765	1059	9,800	11,779	6,793,200	4,995	31,942	33.8	50.9
12/12/2023	8:00	963	330	19,800	4	55	775	1082	7,800	9,375	15,345,000	8,981	40,923	27.2	42.7
1/3/2024	7:30	1,463	500	30,000	4	56	775	1084	7,700	9,255	23,250,000	13,433	54,356	26.9	37.3
1/16/2024	12:30	1,756	293	17,580	4	57	781	1096	7,700	9,255	13,729,980	7,933	62,289	27.1	35.6
1/31/2024	8:27	2,109	353	21,162	4	59	764	1081	6,500	7,813	16,167,768	7,886	70,175	22.4	33.4
2/8/2024	8:40	2,300	191	11,478	5	68	725	1059	14,000	16,827	8,321,550	8,742	78,917	45.7	34.4
2/19/2024	14:43	2,568	268	16,080	5	69	729	1068	6,700	8,053	11,722,320	5,893	84,810	22.0	33.1
3/5/2024															
3/26/2024							SV	E Svetom Off a	lue to Thermal ()	vidizer Fault					
4/17/2024							54								
4/28/2024															
Notes							Conversions				Flow Co	onversions			
µg/L =	micrograms p	er liter	hr =	hours							12.5	absolute air pres	sure at 4280 ft	msl, psi	
lb=	pounds		min =	minutes			* micrograms	per liter = millig	rams per cubic r	neter.	12.2	absolute air pres	sure at 5000 ft	msl, psi	
cfm =	cubic feet per	minute	in H ₂ O =	inches water co	lumn		454	gram / lb			14.7	absolute air pres	sure at 0 ft msl,	psi	
acfm =	actual cfm		psi =	pounds per squ	are inch		1.00E+06	ug / gram							
scfm =	standard cfm		°F =	degrees Fahren	heit		60 min / hr				13.6	Inches water per	inches Hg		
scf =	scf = standard cubic feet °R = degrees Rankine					28.317 liter / cubic foot				2.31 feet of water (head) per psi					
STP =	standard temp	perature and	ft msl =	teet above mea	n sea level		1000	liter / cubic me	eter		70	°E standard tam	n o roturo		
	pressure half the detect	tion limit is use	4				35.315 cubic feet / cubic meter					70 °F, standard temperature			

460 °R

S:\Projects\DB18.1157_Former_Y_Station\Engineering\Calculations\Mass Removal\Mass Removal Summary_FormerY.xlsx

Former Y Station, Clovis New Mexico Mass removal calculation (GW lab results) System start date November 1, 2023 Raw water samples are collected prior to the oil-water separator

Date	Time	Effluent Totalizer (gal)	Effluent per period (gal)	Lab Results TPH GRO (mg/L)	Lab Results TPH DRO (mg/L)	Lab Results BTEX (mg/L)	Mass Removed During Period (Ib)	Cumulative Mass Removed (lb)	Mass Removal Rate (Ibs/day)	Cumulative Mass Removal Rate (Ibs/day)	Cumulative Mass Removed (gal)
11/1/2023		0					Syster	n Started	<u> </u>	· · · · ·	
11/1/2023	13:56	3,300	3,300	3.8	NA	1.1	0.11	0	0.6	0.6	0.02
11/3/2023	15:08	42,000	38,700	6.9	NA	2.4	2.24	2	1.1	1.2	0.39
11/9/2023	8:30	133,800	91,800	6.1	2.4	2.9	6.50	9	1.1	1.1	1.47
11/16/2023	14:10	221,900	88,100	7.8	2.8	3.1	7.82	17	1.1	1.1	2.78
11/21/2023	15:08	300,900	79,000	7.0	1.1	2.7	5.36	22	1.1	1.1	3.67
11/27/2023	16:01	385,800	84,900	8.2	<1.0	3.6	5.83	28	1.0	1.1	4.64
12/12/2023	8:00	566,000	180,200	11	2.5	4.6	20.4	48	1.4	1.2	8.04
1/3/2024	7:30	780,000	214,000	5.3	2.3	1.8	13.63	62	0.6	1.0	10.31
1/16/2024	12:30	892,000	112,000	5.6	1.3	1.9	6.47	68	0.5	0.9	11.39
1/31/2024	8:27	1,024,824	132,824	4.1	<1.0	0.07	4.56	73	0.3	0.8	12.15
2/8/2024	8:40	1,083,365	58,541	4.2	1.6	1.5	2.84	76	0.4	0.8	12.62
2/19/2024	14:43	1,130,794	47,429	4.5	1.4	1.7	2.34	78	0.2	0.7	13.01
3/5/2024	15:10	1,225,700	94,906	0.35	<1.0	0.04	0.28	78	0.0	0.6	13.06
3/26/2024	8:00	1,313,500	87,800	0.71	<1.0	0.19	0.52	79	0.0	0.5	13.15
4/17/2024	14:10	1,439,700	126,200	2.0	<1.0	0.69	2.11	81	0.1	0.5	13.50
4/28/2024	7:30	1,488,845	49,145	3.2	1.1	1.1	1.77	83	0.2	0.5	13.80

<u>Notes</u> mg/L = miligrams per liter lb= pounds NA= Not analyzed Conversions 2.20E-06 lb / mg 3.8 L / gallon 6 lb/ gallon (gasoline)

		Cumulative Mass		
	Cumulative Mass	Removed		
	Removed (Lab air	(Lab water	TOTAL MASS	TOTAL MASS
Date	TPH)	TPH+BTEX)	REMOVED	REMOVED
	(lb)	(lb)	(lb)	(gal)
11/1/2023	493	0	493	82
11/3/2023	6,209	2	6,211	1,035
11/9/2023	12,639	9	12,648	2,108
11/16/2023	22,130	17	22,147	3,691
11/21/2023	26,947	22	26,969	4,495
11/27/2023	31,942	28	31,970	5,328
12/12/2023	40,923	48	40,971	6,829
1/3/2024	54,356	62	54,418	9,070
1/16/2024	62,289	68	62,358	10,393
1/31/2024	70,175	73	70,248	11,708
2/8/2024	78,917	76	78,993	13,165
2/19/2024	84,810	78	84,888	14,148
3/5/2024	84,810	78	84,888	14,148
3/26/2024	84,810	79	84,889	14,148
4/17/2024	84,810	81	84,891	14,149
4/28/2024	84,810	83	84,893	14,149

Conversions 6 lb/ gallon (gasoline)

Mass Removal in Vapor and Groundwater Phases

SVE System Emissions Summary Based on Effluent Analytical Organic Chemistry Data for Soil Vapor Former Y Station, Clovis, New Mexico

	Run Time	Ben	zene	Tol	uene	Ethylbenzene		Total Xylenes		TPH (GRO)	
Date	hr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
11/1/2023	4	0.675	2.958	0.720	3.155	0.068	0.296	0.212	0.927	29.26	128.2
11/3/2023	49	0.855	3.747	1.035	4.535	1.035	4.535	0.360	1.578	19.81	86.77
11/9/2023	138	0.445	1.950	1.531	6.705	0.131	0.576	0.567	2.485	12.16	53.24
11/16/2023	172	0.198	0.868	0.180	0.789	0.018	0.077	0.081	0.355	1.89	8.28
11/21/2023	117	0.108	0.473	0.068	0.296	0.005	0.024	0.018	0.081	0.72	3.16
11/27/2023	148	0.077	0.335	0.090	0.394	0.013	0.055	0.077	0.335	0.99	4.34
12/12/2023	330	0.037	0.164	0.023	0.099	0.002	0.007	0.005	0.024	0.25	1.08
1/3/2024	500	0.027	0.118	0.016	0.071	0.001	0.005	0.004	0.016	0.16	0.71
1/16/2024	293	0.031	0.134	0.028	0.124	0.002	0.009	0.009	0.039	0.33	1.46
1/31/2024	353	0.019	0.085	0.029	0.128	0.005	0.020	0.027	0.120	0.34	1.50
2/8/2024	191	0.017	0.073	0.042	0.185	0.009	0.039	0.054	0.237	0.50	2.17
2/19/2024	268	0.013	0.057	0.012	0.051	0.001	0.006	0.009	0.037	0.12	0.53
3/5/2024											
3/26/2024		SV/E Suptom Off									
4/17/2024		SVE System OII									
4/28/2024											
Run time weighted average:		0.083	0.363	0.141	0.619	0.031	0.137	0.060	0.261	1.49	6.54
Total period average ^a :			0.147		0.195		0.028		0.163		2.25

TPH = Total petroleum hydrocarbons GRO = Gasoline range organics hr = hour lb/hr = Pounds per hour

ton/yr = Tons per year

Italic = Laboratory result below reporting limit - emissions value calculated using half of the laboratory reporting limit

^a Total period = 1/3/2024 to 04/28/24 (calendar year)

2. System discharge air flow rate of 1,000 scfm used as a conservative estimate, including combustion blower air.

Notes: 1. NMED Air Quality Bureau Notice of Intent to Discharge required for any regulated air contaminant greater than 10 ton/yr. Permitting is based on emissions for a calendar year from start up.

SVE Systems Operation Data

See Tables Section of this Report

Summary of Analytical Organic Chemistry Data for Soil Vapor

See Tables Section of this Report

Fifth Edition Fundamentals of Fluid Mechanics

BRUCE R. MUNSON DONALD F. YOUNG

Department of Aerospace Engineering and Engineering Mechanics

THEODORE H. OKIISHI

Department of Mechanical Engineering Iowa State University Ames, Iowa, USA

John Wiley & Sons, Inc.

Appendix C Properties of the U.S. Standard Atmosphere

TABLE C.1 Properties of the U.S. Standard Atmosphere (BG Units)^a

	Altitude (ft)	Temperature (°F)	Acceleration of Gravity, g (ft/s ²)	Pressure, p [lb/in. ² (abs)]	Density, ho (slugs/ft ³)	Dynamic Viscosity, µ (lb·s/ft ²)	
	-5,000	76.84	32.189	17.554	2.745 E - 3	3.836 E - 7	
	0	59.00	32.174	14.696	2.377 E - 3	3.737 E - 7	
ine interviation	5,000	41.17	32.159	12.228	2.048 E - 3	3.637 E - 7	
1000 > 1129 .	7 10,000	23.36	32.143	10.108	1.756 E - 3	3.534 E - 7	
1,000	15,000	5.55	32.128	8.297	1.496 E - 3	3.430 E - 7	
	20,000	-12.26	32.112	6.759	1.267 E - 3	3.324 E - 7	
	25,000	-30.05	32.097	5.461	1.066 E - 3	3.217 E - 7	
	30,000	-47.83	32.082	4.373	8.907 E – 4	3.107 E - 7	
	35,000	-65.61	32.066	3.468	7.382 E – 4	2.995 E - 7	
	40,000	-69.70	32.051	2.730	5.873 E - 4	2.969 E - 7	
	45,000	-69.70	32.036	2.149	4.623 E – 4	2.969 E - 7	
	50,000	-69.70	32.020	1.692	3.639 E - 4	2.969 E - 7	
	60,000	-69.70	31.990	1.049	2.256 E-4	2.969 E - 7	
	70,000	-67.42	31.959	0.651	1.392 E - 4	2.984 E - 7	
	80,000	-61.98	31.929	0.406	8.571 E - 5	3.018 E - 7	
	90,000	-56.54	31.897	0.255	5.610 E - 5	3.052 E - 7	
	100,000	-51.10	31.868	0.162	3.318 E - 5	3.087 E - 7	
	150,000	19.40	31.717	0.020	3.658 E - 6	3.511 E - 7	
	200,000	-19.78	31.566	0.003	5.328 E - 7	3.279 E - 7	
	250,000	-88.77	31.415	0.000	6.458 E - 8	2.846 E - 7	

^aData abridged from U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.

Conversion unmasked

What is the relationship between µg/L and ppmv?

By Yue Rong, Ph.D. and Samuel C.T. Yu, D. Env

Solution of variation of contaminant concentration and evaluate the effect of vapor extraction. Soil vapor sample results can be reported in either micrograms per liter (μ g/L) or parts per million by volume (ppmv). What is the relationship between these two units of vapor concentration? Basic laws:

A. Definition: One mole of a substance is its formula weight in grams, i.e., MW •n = g (equation one) B. Ideal Gas Law: p•V = n•R•T (equation two) Yue Rong, Ph.D., is environmental specialist with

the California Regional Water Quality Control Board, Los Angeles Region, and Samuel Yu, D. Env., is project engineer in the Safety and Environmental Protection Office of the Hong Kong University of Science and Technology, Hong Kong. Where: MW is molecular weight (gram per mold), n is numbers of mole, g is gram, P is total gas pressure (atmosphere unit, or atm), V is volume in liters, R is the gas constant (Liter • atm/°K • mole), and T is gas temperature (°K)

 $(^{\circ}K = ^{\circ}C + 273.15).$

By definition, ppmv = $\mu V/V = \mu L/L$.

We are looking for relationship between mass (g) and volume (L). Substitute equation two into one for n:

 $g = MW \bullet (P \bullet V / R \bullet T)$ (equation three)

Given $R = 0.08205 L \cdot atm/°K \cdot mole$, T = 293.15°K (@ 20°C), P = 1 atm, equation three becomes:

 $g = MW \bullet V \bullet [P/(R \bullet T)] = MW \bullet V \bullet [1 / (0.08205 \times 293.15)]$

= MW • V / 24.05 (equation four)

Check units in equation four:

 $g = (g/mole) \cdot L \cdot [atm/((L \cdot atm/°K \cdot mole) \cdot K°)]$

	the second	A Ward State and the set of the set of the set of the set of the descent on the set
VOC	MW	Conversion Factor (MW/24.05)
	100	416
Benzene	78	3.2
Carbon tetrachloride	154	64
Chloroform	120	5.0
Dichlorobenzene	147	6 1
Dichlorodifluoromethane (Freon 12)	120	0.1 E 0
Dichloroethane (DCA) (all isomers)	00	0.0
Dichloroethylene (DCF) (all isomers)	33 07	4.
Methylene chloride	9/	4.0
	C8	3.5
Trichloroethano (TCA) (all isomers)	166	6.9
Troblereethalle (TCA) (all isomers)	134	5.6
	132	5.5
Find of the second seco	137	5.7
Irichlorotrifluoroethane (Freon 113)	186	7.7
Vinyl chloride	63	26
E AND THE REPORT OF THE REPORT		2.0

Figure 1

Notice V is in liters (L), equation four can be expressed as: u_{g}/L

as: $g = (MW/24.05) \cdot L$ $\rho \rho_{MWZ} \frac{u_q/L}{4.16}$ quere live $\mu g = (MW/24.05) \cdot \mu L$ $\mu g/L = (MW/24.05) \cdot \mu L/L$ i.e., $\mu g/L = (MW/24.05) \cdot \rho pmv$ (equation five) Let X = concentration in ppmv and Y = concentration in $\mu g/L$, and equation five becomes: Y ($\mu g/L$) = (MW/24.05) \cdot X (ppmv) (equation six) $\rho \rho b$

Equation six converts soil vapor concentration from ppmv to μ g/L, or vice versa. In order to use this equation, it is necessary to know molecular weight of a particular compound. Figure one, above, shows the conversion factor of (MW/24.05) in equation six for some common VOCs. For example, if vapor concentration is measured in 100 ppmv for PCE, then PCE concentration is also equal to 6.9 x 100 = 690 ug/L.

April 1996 Soil & Groundwater Cleanup

Daniel B. Stephens & Associates, Inc.

MEMORANDUM

TO: Gundar Peterson, PE

FROM Tom Golden, Kelly Isaacson

DATE. January 29, 2010

SUBJECT Rotameter flow measurement

In response to Katherine MacNeil's email, we researched the apparent discrepancy between standard cubic feet per minute (SCFM) measurements given by a rotameter and the SCFM calculated by AcuVac in their soil vapor extraction (SVE) pilot test reports. The results of our research are summarized below

Definition of variables

ACFM actual cubic feet per minute (cfm) at a given temperature, pressure (elevation), and operating conditions

 CFM_{meter} cubic feet per minute (cfm) measured by a rotameter In the documentation provided, this is also called observed cfm and indicated scfm.

SCFM: equivalent flow in cubic feet per minute (cfm) at STP

STP[.] standard temperature and pressure, 70°F and 14 7 psi.

 ρ density of a fluid, given in mass per unit volume

Problem statement

In the AMEC calculation provided regarding cfm measured with a rotameter, the author reports that the correct reporting unit from a rotameter calibrated for STP is SCFM. The AcuVac documentation refers to the flow rate measured with a rotameter as ACFM and converts this value to SCFM in the field. Does the value measured on the rotameter by AcuVac need to be converted to SCFM?

Solution

The need for the definition of three different types of CFM arises from the difference in calibration versus operation temperature and pressure conditions.

An analysis of the free body diagram of the float in a rotameter is given by Wellin¹, which shows that Q is dependent on the area of flow and density of air¹

$$Q = K \cdot \frac{A}{\sqrt{\rho}} \tag{1}$$

When a rotameter is calibrated at STP, $\sqrt{\rho}$ is absorbed into the value of *K*, because ρ (air) is defined. When the density of the air is changed (i.e. elevation of the rotameter is changed), the

Daniel B Stephens & Associates, Inc.

calibrated rotameter no longer yields flow rate in SCFM, but instead what we will call CFM_{meter}.

The Dwyer technical documentation² for the VFC series rotameter used by AcuVac acknowledges this fact in the third paragraph under "Operation", which states,

"the flowmeter is calibrated to operate at a specific set of conditions, and deviation from those standard conditions will require correction for the calibration to be valid. In practice, the reading taken from the flowmeter scale must be corrected back to standard conditions to be used with the scale units. The correct location to measure the actual pressure and temperature is at the exit of the flowmeter, except under vacuum applications where they should be measured at the flowmeter inlet."

The conversion given to convert CFM_{meter} to SCFM^{1,2} is a non linear relationship:

$$Q(SFCM) = CFM_{meter} \quad \sqrt{\frac{P_{actual}}{P_{calibration}} \cdot \frac{T_{calibration}}{T_{actual}}}$$
(2)

It can be noted that the calibration temperature and pressure are generally STP; however, calibration information should be provided by the flowmeter manufacturer

The relationship between SCFM and ACFM is linear

$$ACFM = SCFM \quad \frac{P_{s \tan dard}}{P_{actual}} \cdot \frac{T_{actual}}{T_{s \tan dard}}$$
(3)

For completeness, the relationship between ACFM and CFM_{meter} is given by

$$ACFM = CFM_{meter} \quad \sqrt{\frac{P_{s \tan dard}}{P_{actual}}} \quad \frac{T_{actual}}{T_{s \tan dard}} \tag{4}$$

Supporting documentation

Two Dwyer specification sheets for rotameters² (including the VFC Series Visi-Float used by AcuVac) are attached, which include the calculation of SCFM from the meter reading. This calculation is also discussed in Wellin¹

The correct conversion from SCFM to ACFM is included in the documentation with the AMEC calculation (page 3 of 4 from King Correction Formulae & Sizing)³, as well as in Wellin¹.

Implications

The primary problem here is one of terminology, although there are implications if formulas in either the AcuVac or AMEC documents were used to back-calculate ACFM/SCFM values. Although it may not be intuitive, ACFM is not the value read straight from the meter, rather the

Daniel B. Stephens & Associates, Inc.

calculated actual volumetric flow rate through the meter.

Page 2 of the AMEC calculation gives an equation to calculate ACFM. This non-linear equation is the correct way to calculate ACFM from CFM_{meter} . It is not the correct way to calculate SCFM from ACFM or vice versa.

For most SVE applications in New Mexico (i.e. 3000-7000 feet elevation, air temperature of 50-70°F), the value of CFM_{meter} falls between the ACFM and SCFM, such that $ACFM > CFM_{meter} > SCFM$.

In the design equation given in the AMEC calculation

$$Q = kA(gh)^{0.5} \tag{5}$$

the fluid density, $\rho(air)$, is included in the calibration coefficient, *k*, a fact which is not acknowledged by the AMEC calculation. While the equation is valid for the calibration conditions, the flow rate read from the meter must be corrected as indicated above in equation 2 to reflect the correct SCFM.

Conclusions

In the problem statement of the AMEC calculation regarding CFM used in SVE systems, the correct answer to the question "What is the correct reporting unit directly read off the scale; SCFM, ACFM, or other?" is "other", and in this discussion is termed CFM_{meter} .

Additionally, AcuVac is correct in converting the CFM value read on the flowmeter to SCFM to adjust for changes in temperature and pressure, with the non-linear relationship given above, although what they call ACFM in their sample calculation is actually CFM_{meter}.

In summary, both the SCFM value in the AMEC calculation⁴ and the ACFM value in the AcuVac report⁵ refer to the value measured at the flowmeter, CFM_{meter}, therefore, both equations provided are true, but do not represent the actual relationship between true SCFM and ACFM.

Alnor® HVAC Handbook

A Practical Guide to Performance Measurements in Mechanical Heating, Ventilating and Air Conditioning Systems

Rugged. Reliable Professional.

Appendix G—Density Correction

Velocity is generally expressed in one of two ways. actual (true) velocity or standard velocity. Actual velocity is the average speed at which the molecules are traveling. Standard velocity is referenced to standard conditions (using a reference of 70°F [21 1°C] and 29 92 in. Hg [101.4 kPa]) and is equal to the actual velocity of the air only when the air is at standard density The Alnor calibration facilities adjust the actual velocity so that the same number of molecules per unit time are passing over the probe, as if the density were standard density This makes the instruments display standard velocity

As a practical matter, many users do not concern themselves with standard versus actual air velocity corrections unless the density of air in their application is more than 10 percent different from standard air density

Density Correction for Thermo-Anemometers

Thermo-anemometer sensors measure mass air flow velocity which is a measurement of the air mass moving past the sensor and is displayed as standard velocity. Air mass is what gives air its heat holding capacity. Since thermal anemometers measure air mass and display it as standard velocity, many people doing measurements on indoor air are more concerned with standard air velocity

Standard readings can be converted to actual air velocity to compensate for temperature and barometric pressures. Actual or standard measurements will give the same readings at standard conditions (using a reference of 70°F [21 1°C] and 29.92 in. Hg [101.4 kPa]), but not if pressure or temperature stray from standard conditions.

To calculate actual air velocity, multiply the standard velocity reading indicated by the thermoanemometer by the following density correction factor

Actual Velocity = (Standard Velocity) $[(460 + T) / (460 + 70)] \times 29.92 / P_m$ or

Actual Velocity = (Standard Velocity) $[(273 + T_m) / (273 + 211)] \times 101.4 / P$

Where:

T = Ambient temperature in degrees Fahrenheit

- P_m = Ambient pressure in inches of Hg.
- T_m = Ambient temperature in degrees Centigrade
- P = Ambient pressure in kPa

Density Correction for Pressure Based Manometers or Deflecting Vane Anemometers

Manometers and deflecting vane anemometers read a nominal velocity that is neither standard nor actual, but a combination of both. This is the velocity read by any Pitot tube and pressure device that does not perform a density correction.

When Bernoulli's equation is applied to the Pitot-static probe, the resultant equation has the form $\text{fpm} = 4005 \sqrt{\Delta P (\text{in}. \text{H}_2 \text{O})} (\text{m/s} = 1.29 \sqrt{\Delta P (\text{Pa})})$ when the density of the air is 0.075 lb/ft² (0.366 kgs/m³). The velocity values displayed by the pressure instrument are the actual velocities *only* if the density where the Pitot probe measurements are being taken is 0.075 lb/ft² (0.366 kgs/m³). Otherwise, a correction step must be performed to obtain a correct value.

Nominal velocity is a velocity reading that is between actual and standard velocity. It is a good estimation of the actual or standard velocity Nominal measurements are made using a pitot tube.

Actual velocity is the velocity at which a molecule would be traveling in the air stream.

Standard velocity is the velocity as if the measurement was taken with a thermal anemometer at standard temperature and barometric pressure.

Appendix F

Sampling Protocol

Appendix F. Sampling Protocol

Fluid Level and Parameter Measurements

Prior to collection of groundwater samples, a Solinst interface probe or equivalent device will be used to determine depths to water and nonaqueous-phase liquid (NAPL), if present. Water level data will be used to construct a site potentiometric surface map. A YSI 556 Multi-Probe System (MPS) water quality meter or equivalent device will be used to measure specific conductivity, pH, temperature, dissolved oxygen (DO), and oxidation/reduction potential (ORP). Field parameters are measured one time during sample collection via HydraSleeve or via sample port at the wellhead.

Groundwater Monitor Well Sampling

Samples from remediation wells equipped with pumps are sampled using the sample tap at the wellhead while the remediation pump is running. All other wells are sampled using dedicated, disposable HydraSleeves with dedicated tethers and weights. HydraSleeves are installed in wells and are removed after 24 hours. To minimize volatilization and ensure sample integrity, the sample bag is pierced with a straw to transfer groundwater samples from the bailers to the appropriate sample containers.

Samples analyzed for volatile organic analytes (VOAs) will be collected in 40-milliliter (mL) glass vials containing hydrochloric acid preservative and capped with Teflon septa caps. Samples analyzed for 1,2-dibromoethane (EDB) are collected in two 40-milliliter (mL) glass vials containing sodium thiosulfate preservative and capped with Teflon septa caps. VOA containers will be filled in a manner that prevents headspace in the vials.

Immediately after collection, the sample containers will be placed on ice in an insulated cooler for delivery to the laboratory for analyses. Groundwater samples will be accompanied by full chain of custody documentation at all times.

US Patent No. 6,481,300; No. 6,837,120; No. 9,726,013; others pending

Standard Operating Procedure: Sampling Groundwater with a HydraSleeve

Copyright 2019 GeoInsight

This guide should be used in addition to field manuals and instructions appropriate to the chosen sampling device (i.e., HydraSleeve, SpeedBag or Super/Skinny Sleeve and W3 HybridSleeve).

Find the appropriate field manual and instructions on the HydraSleeve website at http://www.hydrasleeve.com.

For more information about the HydraSleeve, or if you have questions, contact: GeoInsight, P.O. Box 1266, Mesilla Park, NM 88047 800-996-2225, info@hydrasleeve.com.

Copyright, GeoInsight.

Table of Contents

Introduction
Applications of the HydraSleeve1
Description of the HydraSleeve
Selecting the HydraSleeve Size to Meet Site-Specific Sampling Objectives
HydraSleeve Deployment
Information Required Before Deploying a HydraSleeve5
HydraSleeve Placement
Procedures for Sampling with the HydraSleeve
Measurement of Field Indicator Parameters11
Alternate Deployment Strategies11
Post-Sampling Activities14
References

Introduction

The HydraSleeve is classified as a no-purge (passive) grab sampling device, meaning that it is used to collect groundwater samples directly from the screened interval of a well without having to purge the well prior to sample collection. When it is used as described in this Standard Operating Procedure (SOP), the HydraSleeve causes no drawdown in the well (until the sample is withdrawn from the water column) and only minimal disturbance of the water column, because it has a very thin cross section and it displaces very little water (<100 ml) during deployment in the well. The HydraSleeve collects a sample from within the screen only. It excludes water from any other part of the water column in the well through the use of a self-sealing check valve at the top of the sampler. It is a single-use (disposable) sampler that is not intended for reuse, so there are no decontamination requirements for the sampler itself.

The use of no-purge sampling as a means of collecting representative groundwater samples depends on the natural movement of groundwater (under ambient hydraulic head) from the formation adjacent to the well screen through the screen. Robin and Gillham (1987) demonstrated the existence of a dynamic equilibrium between the water in a formation and the water in a well screen installed in that formation, which results in formation-quality water being available in the well screen for sampling at all times. No-purge sampling devices like the HydraSleeve collect this formation-quality water as the sample, under undisturbed (non-pumping) natural flow conditions. Samples collected in this manner generally provide more conservative (i.e., higher concentration) values than samples collected using well-volume purging, and values equivalent to samples collected using low-flow purging and sampling (Parsons, 2005).

Applications of the HydraSleeve

The HydraSleeve can be used to collect representative samples of groundwater for all analytes (volatile organic compounds [VOCs], semi-volatile organic compounds [SVOCs], common metals, trace metals, major cations and anions, dissolved gases, total dissolved solids, radionuclides, pesticides, PCBs, explosive compounds, and all other analytical parameters). Designs are available to collect samples from wells from 1" inside diameter and larger. The HydraSleeve can collect samples from wells of any yield, but it is especially well-suited to collecting samples from low-yield wells, where other sampling methods can't be used reliably because their use results in dewatering of the well screen and alteration of sample chemistry (McAlary and Barker, 1987).

The HydraSleeve can collect samples from wells of any depth, and it can be used for singleevent sampling or long-term groundwater monitoring programs. Because of its thin cross section and flexible construction, it can be used in narrow, constricted or damaged wells where rigid sampling devices may not fit. Using multiple HydraSleeves deployed in series along a single suspension line or tether, it is also possible to conduct in-well vertical profiling in wells in which contaminant concentrations are thought to be stratified. As with all groundwater sampling devices, HydraSleeves should not be used to collect groundwater samples from wells in which separate (non-aqueous) phase hydrocarbons (i.e., gasoline, diesel fuel or jet fuel) are present because of the possibility of incorporating some of the separate-phase hydrocarbon into the sample.

Description of the HydraSleeve

The basic HydraSleeve (Figure 1) consists of the following components*:

- A suspension line or tether (A.), attached to the spring clip or directly to the top of the sleeve to deploy the device into and recover the device from the well. Tethers with depth indicators marked in 1-foot intervals are available from the manufacturer.
- A long, flexible, 4-mil thick lay-flat polyethylene sample sleeve (C.) sealed at the bottom (this is the sample chamber), which comes in different sizes, as discussed below with a self-sealing reed-type flexible polyethylene check valve built into the top of the sleeve (B.) to prevent water from entering or exiting the sampler except during sample acquisition.
- A reusable stainless-steel weight with clip (D.), which is attached to the bottom of the sleeve to carry it down the well to its intended depth in the water column. Bottom weights available from the manufacturer are 0.75" OD and are available in a variety of sizes. An optional top weight may be attached to the top of the HydraSleeve to carry it to depth and to compress it at the bottom of the well (not shown in Figure 1);
- A discharge tube that is used to puncture the HydraSleeve after it is recovered from the well so the sample can be decanted into sample bottles (not shown).
- Just above the self-sealing check valve at the top of the sleeve are two holes which provide attachment points for the spring clip and/or suspension line or tether. At the bottom of the sample sleeve are two holes which provide attachment points for the weight clip and weight.

C. D.

*Other configurations such as top weighted assemblies, Super/SkinnySleeves, Speedbags, and W3 Hybrids are available.

Note: The sample sleeve and the discharge tube are designed for one-time use and are disposable. The spring clip, weight and weight clip may be reused after thorough cleaning. Suspension cord is generally disposed after one use although, if it is dedicated to the well, it may be reused at the discretion of the sampling personnel.

Selecting the HydraSleeve Size to Meet Site-Specific Sampling Objectives

It is important to understand that each HydraSleeve is able to collect a finite volume of sample because, after the HydraSleeve is deployed, you only get one chance to collect an undisturbed sample. Thus, the volume of sample required to meet your site-specific sampling and analytical requirements will dictate the size of HydraSleeve you need to meet these requirements.

Diameter	Volume	Length	Lay-Flat Width	Filled Dia.
2-Inch HydraSleeves			1	
Standard 600 mls HydraSleeve	~600mls	30"	2.5"	1.4"
Standard 1-liter HydraSleeve	~1 Liter	38"	3"	1.9"
Super/SkinnySleeve 1-liter	~1 Liter	38"	2.5"	1.5"*
Super/SkinnySleeve 1.5-liter	~1.5 Liters	52"	2.5"	1.5"*
Super/SkinnySleeve 2-liter	~2Liters	66"	2.5"	1.5"*
4-Inch HydraSleeves				
Standard 2.5 liter	~2 Liters	38"	4"	2.7"

Table 1. Dimensions and Volumes of HydraSleeve Models.

* *o*utside diameter on the Heavy Duty Universal Super/SkinnySleeves is 1.5" however when using with schedule 40 hardware the O.D. of the assembly will be 1.9"

It's also recommended that you size the diameter of the HydraSleeve according to the diameter of the well (i.e. use 2-inch HydraSleeves in 2-inch wells). Using smaller sleeves in larger diameter wells (i.e. 2-inch HydraSleeves in 4-inch wells) will result in a longer fill rate and will require special retrieval instructions (explained later).

The volume of sample collected by the HydraSleeve varies with the diameter and length of the HydraSleeve. Dimensions and volumes of available HydraSleeve models are detailed in Table 1.

HydraSleeves can be custom-fabricated by GeoInsight in varying diameters and lengths to meet specific volume requirements. HydraSleeves can also be deployed in series (i.e., multiple HydraSleeves attached to one tether) to collect additional sample to meet specific volume requirements, as described below.

If you have questions regarding the availability of sufficient volume of sample to satisfy laboratory requirements for analysis, it is recommended that you contact the laboratory to discuss the minimum volumes needed for each suite of analytes. Laboratories often require only 10% to 25% of the volume they specify to complete analysis for specific suites of analytes, so they can often work with much smaller sample volumes that can easily be supplied using a HydraSleeve.

HydraSleeve Deployment

Information Required Before Deploying a HydraSleeve

Before installing a HydraSleeve in any well, you will need to know the following:

- The inside diameter of the well
- The length of the well screen
- The water level in the well
- The position of the well screen in the well
- The total depth of the well

The inside diameter of the well is used to determine the appropriate HydraSleeve diameter for use in the well. The other information is used to determine the proper placement of the HydraSleeve in the well to collect a representative sample from the screen (see HydraSleeve Placement, below), and to determine the appropriate length of tether to attach to the HydraSleeve to deploy it at the appropriate position in the well.

Most of this information (with the exception of the water level) should be available from the well log; if not, it will have to be collected by some other means. The inside diameter of the well can be measured at the top of the well casing, and the total depth of the well can be measured by sounding the bottom of the well with a weighted tape. The position and length of the well screen may have to be determined using a down-hole camera if a well log is not available. The water level in the well can be measured using any commonly available water-level gauge.

HydraSleeve Placement

The HydraSleeve is designed to collect a sample directly from the well screen. It fills by pulling it up through the screen a distance equivalent to the length of the sampler when correctly sized to the well diameter. This upward motion causes the top check valve to open, which allows the device to fill. To optimize sample recovery, it is recommended that the HydraSleeve be placed in the well so that the bottom weight rests on the bottom of the well and the top of the HydraSleeve is as close to the bottom of the well screen as possible. This should allow the sampler to fill before the top of the device reaches the top of the screen as it is pulled up through the water column, and ensure that only water from the screen is collected as the sample. In short-screen wells, or wells with a short water column, it may be necessary to use a top-weight on the HydraSleeve to compress it in the bottom of the well so that, when it is recovered, it has room to fill before it reaches the top of the screen.

This example illustrates one of many types of HydraSleeve placements. More complex placements are discussed in a later section.

NOTE: Using smaller diameter HydraSleeves (2-inch) in larger diameter wells (4-inch) causes a slower fill rate. Special retrieval methods are necessary if this is your set up (shown later in this document).

Procedures for Sampling with the HydraSleeve

Collecting a groundwater sample with a HydraSleeve is usually a simple one-person operation.

Note: Before deploying the HydraSleeve in the well, collect the depth-to-water measurement that you will use to determine the preferred position of the HydraSleeve in the well. This measurement may also be used with measurements from other wells to create a groundwater contour map. If necessary, also measure the depth to the bottom of the well to verify actual well depth to confirm your decision on placement of the HydraSleeve in the water column.

Measure the correct amount of tether needed to suspend the HydraSleeve in the well so that the weight will rest on the bottom of the well (or at your preferred position in the well). Make sure to account for the need to leave a few feet of tether at the top of the well to allow recovery of the sleeve.

Note: Always wear sterile gloves when handling and discharging the HydraSleeve.

I. Assembling the Basic HydraSleeve*

- 1. Remove the HydraSleeve from its packaging, unfold it, and hold it by its top.
- 2. Crimp the top of the HydraSleeve by folding the hard polyethylene reinforcing strips at the holes.
- 3. Attach the spring clip to the holes to ensure that the top will remain open until the sampler is retrieved.
- 4. Attach the tether to the spring clip by tying a knot in the tether.

Note: Alternatively, if spring clips are not being utilized, attach the tether to one (NOT both) of the holes at the top of the Hydrasleeve by tying a knot in the tether.

- 5. Fold the flaps with the two holes at the bottom of the HydraSleeve together to align the holes and slide the weight clip through the holes.
- 6. Attach a weight to the bottom of the weight clip to ensure that the HydraSleeve will descend to the bottom of the well.

*See Super/SkinnySleeve assembly manual and HydraSleeve Field Manual for other assembly instructions.

II. Deploying the HydraSleeve

1. Using the tether, carefully lower the HydraSleeve to the bottom of the well, or to your preferred depth in the water column

During installation, hydrostatic pressure in the water column will keep the self-sealing check valve at the top of the HydraSleeve closed, and ensure that it retains its flat, empty profile for an indefinite period prior to recovery.

Note: Make sure that it is not pulled upward at any time during its descent. If the HydraSleeve is pulled upward at a rate greater than 0.5'/second at any time prior to recovery, the top check valve will open and water will enter the HydraSleeve prematurely.

2. Secure the tether at the top of the well by placing the well cap on the top of the well casing and over the tether.

Note: Alternatively, you can tie the tether to a hook on the bottom of the well cap (you will need to leave a few inches of slack in the line to avoid pulling the sampler up as the cap is removed at the next sampling event).

III. Equilibrating the Well

The equilibration time is the time it takes for conditions in the water column (primarily flow dynamics and contaminant distribution) to restabilize after vertical mixing occurs (caused by installation of a sampling device in the well).

• Situation: The HydraSleeve is deployed for the first time or for only one time in a well

The basic HydraSleeve is very thin in cross section and displaces very little water (<100 ml) during deployment so, unlike most other sampling devices, it does not disturb the water column to the point at which long equilibration times are necessary to ensure recovery of a representative sample.

In some cases, like when useing the SpeedBags, the HydraSleeve can be recovered immediately (with no equilibration time) or within a few hours. In regulatory jurisdictions that impose specific requirements for equilibration times prior to recovery of no-purge sampling devices, these requirements should be followed.

NOTE: If using top weights additional equilibration time is needed to allow the top weight time to compress the HydraSleeve into the bottom of the well.

• Situation: The HydraSleeve is being deployed for recovery during a future sampling event.

In periodic (i.e., quarterly, semi-annual, or annual) sampling programs, the sampler for the current sampling event can be recovered and a new sampler (for the next sampling event) deployed immediately thereafter, so the new sampler remains in the well until the next sampling event. Thus, a long equilibration time is ensured and, at the next sampling event, the sampler can be recovered immediately. This means that separate mobilizations, to deploy and then to recover the sampler, are not required. HydraSleeves can be left in a well for an indefinite period of time without concern.

IV. HydraSleeve Recovery and Sample Collection

- 1. Hold on to the tether while removing the well cap.
- 2. Secure the tether at the top of the well while maintaining tension on the tether (but without pulling the tether upwards)
- 3. Measure the water level in the well.
- 4. Use one of the following 3 retrieval methods. In all 3 scenarios, when the HydraSleeve is full, the top check valve will close. You should begin to feel the weight of the HydraSleeve on the tether and it will begin to displace water. The closed check valve prevents loss of sample and entry of water from zones above the well screen as the HydraSleeve is recovered.

a. In one smooth motion, pull the tether up 30"-60" (the length of the sampler) at a rate of about 1 foot per second (or faster). The motion will open the top check valve and allow the HydraSleeve to fill (it should fill in about 1:1 ratio or the length of the HydraSleeve if the sleeve is sized to fit the well). This is analogous to coring the water column in the well from the bottom up.

b. There are times it is recommended that the HydraSleeve be oscillated in the screen zone to ensure it is full before leaving the screen area. Pull up 1-3 feet, let the sleeve assembly drop back down and repeat 3-5 times before pulling the sleeve to the surface. The collection zone will be the oscillation zone. *When in doubt use this retrieval method.*

c. SpeedBags require check valve activation and oscillation during recovery: When retrieving the SpeedBag, pull up hard 1-2 feet to open the check valve; let the assembly drop back down to the starting point; REPEAT THIS PROCESS 4 TIMES; and then quickly recover the SpeedBag through the well sceen to the surface.

- 5. Continue pulling the tether upward until the HydraSleeve is at the top of the well.
- 6. Discard the small volume of water trapped in the Hydrasleeve above the check valve by pinching it off at the top under the stiffeners (above the check valve).

v. Sample Discharge

NOTE: Sample collection should be done immediately after the HydraSleeve has been brought to the surface to preserve sample integrity.

Be sure you have discarded the water sitting above the check valve – see step #6 above.

- 1. Remove the discharge tube from its sleeve.
- 2. Hold the HydraSleeve at the check valve
- 3. Puncture the HydraSleeve at least 3-4 inches below the reinforcement strips with the pointed end of the discharge tube. NOTE: For some contaminants (VOC's/sinkers) the best location for discharge is the middle to bottom of the sampler. This would be representative of the deeper portion of the well screen.
- 4. Discharge water from the HydraSleeve into your sample containers. Control the discharge from the HydraSleeve by either raising the bottom of the sleeve, by squeezing it like a tube of toothpaste, or both.
- 5. Continue filling sample containers until all are full.

Measurement of Field Indicator Parameters

Field indicator parameter measurement is generally done during well purging and sampling to confirm when parameters are stable and sampling can begin. Because no-purge sampling does not require purging, field indicator parameter measurement is not necessary for the purpose of confirming when purging is complete.

If field indicator parameter measurement is required to meet a specific non-purging regulatory requirement, it can be done by taking measurements from water within a HydraSleeve that is not used for collecting a sample to submit for laboratory analysis (i.e., a second HydraSleeve installed in conjunction with the primary sample collection HydraSleeve [see Multiple Sampler Deployment below]).

Alternate Deployment Strategies

Deployment in Wells with Limited Water Columns

For wells in which only a limited water column needs to be sampled, the HydraSleeve can be deployed with an optional top weight in addition to a bottom weight. The top weight will collapse the HydraSleeve to a very short (approximately 6" to 24") length, depending on the length and volume of the sampler. This allows the HydraSleeve to fill in a water column only 3' to 10' in height (again) depending on the sampler size. Note the SuperSleeves accomplish the same thing but provide greater sample volume at a lower per sample cost.

Multiple Sampler Deployment

Multiple sampler deployment in a single well screen can accomplish two purposes:

- 1. It can collect additional sample volume to satisfy site or laboratory-specific sample volume requirements.
- 2. It can be used to collect samples from multiple intervals in the screen to allow identification of possible contaminant stratification.

Figure 5. Multiple HydraSleeve deployment

If there is a need for only 2 samplers, they can be installed as follows. The first sampler can be attached to the tether as described above, a second attached to the bottom of the first using your desired length of tether between the two and the weight attached to the bottom of the second sampler (figure 6). This method can only be used with 2 samplers; 3 or more HydraSleeves in tandem need to be attached as described above.

Figure 5. Alternative method for deploying multiple HydraSleeves.

In either case, when attaching multiple HydraSleeves in series, more weight will be required to hold the samplers in place in the well than would be required with a single sampler. Recovery of multiple samplers and collection of samples is done in the same manner as for single sampler deployments.

Post-Sampling Activities

The recovered HydraSleeve and the sample discharge tubing should be disposed as per the solid waste management plan for the site. To prepare for the next sampling event, a new HydraSleeve can be deployed in the well (as described previously) and left in the well until the next sampling event, at which time it can be recovered.

The weight and weight clip can be reused on this sampler after they have been thoroughly cleaned as per the site equipment decontamination plan. The tether may be dedicated to the well and reused or discarded at the discretion of sampling personnel.

References

McAlary, T. A. and J. F. Barker, 1987, Volatilization Losses of Organics During groundwater Sampling From Low-Permeability Materials, <u>groundwater Monitoring R</u>eview, Vol. 7, No. 4, pp. 63-68

Parsons, 2005, Results Report for the Demonstration of No-Purge groundwater Sampling Devices at Former McClellan Air Force Base, California; Contract F44650-99-D-0005, Delivery Order DKO1, U.S. Army Corps of Engineers (Omaha District), U.S. Air Force Center for Environmental Excellence, and U.S. Air Force Real Property Agency

Robin, M. J. L. and R. W. Gillham, 1987, Field Evaluation of Well Purging Procedures, groundwater Monitoring Review, Vol. 7, No. 4, pp. 85-93

Appendix G

Graphs

Groundwater Elevations

S:\Projects\DB18.1157_Former_Y_Station\Docs\Tables for Reports\Appx_Charts.xls GW Elevations

BW-5 Fluid LevelsFormer Y Station State Lead Site Clovis New Me

----Groundwater elevation ----LNAPL thickness

Benzene Concentrations

Toluene Concentrations

Ethylbenzene Concentrations

Former Y Station State Lead Site, Clovis, New Mexico

Total Xylene Concentrations

S:\Projects\DB18.1157_Former_Y_Station\Docs\Tables for Reports\Appx_Charts.xls Xylenes

EDC Concentrations

S:\Projects\DB18.1157_Former_Y_Station\Docs\Tables for Reports\Appx_Charts.xls EDC

Total Naphthalene Concentrations

S:\Projects\DB18.1157_Former_Y_Station\Docs\Tables for Reports\Appx_Charts.xls Naphthalenes

Appendix H

Baseline Plume Maps

Explanation

75

0

• Single completion monitor well

150 Feet

Nested monitor well

Location des	Sample Date		
Benzene	Toluene	Ethylbenzene	Total Xylenes
BTEX	EDB	EDC	Total Naphthalenes
		MTBE	

Notes: 1. All concentrations reported in micrograms per liter (µg/L).

2. **RED** indicates concentration that exceeds NMWQCC standard.

209

- 3. ^a Laboratory reporting limit is equal to or greater than the applicable standard.
- 4. Samples presented on this figure were collected using HydraSleeve sampling devices.

FORMER Y STATION STATE LEAD SITE

Distribution of Dissolved-Phase

Contaminants - March 2021

CLOVIS, NEW MEXICO

Daniel B. Stephens & Associates, Inc. -4/15/2021 JN DB18.1157.00

S:\Projects\DB18.1157_Former_Y_Station\GIS\MXDs\Chemistry\Benzene\Bz_2021-03.m

- Single completion monitor well •
- \odot Nested monitor well

Notes: 1. All concentrations reported in micrograms per liter (μ g/L).

- 2. **RED** indicates concentration that exceeds NMWQCC standard.
- 3. Samples collected on this figure were collected using HydraSleeve sampling devices.

Daniel B. Stephens & Associates, Inc. -4/15/2021 JN DB18.1157.00

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **Benzene Isoconcentration Map**

March 2021

S:\Projects\DB18.1157_Former_Y_Station\GIS\MXDs\Chemistry\EDC\EDC_2021-03.mx

- Single completion monitor well

\odot Nested monitor well

Notes: 1. All concentrations reported in micrograms per liter (μ g/L).

- 2. **RED** indicates concentration that exceeds NMWQCC standard.
- 3. Samples collected on this figure were collected using HydraSleeve sampling devices.

Daniel B. Stephens & Associates, Inc. -4/15/2021 JN DB18.1157.00

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **EDC** Isoconcentration Map March 2021
S:\Projects\DB18.1157_Former_Y_Station\GIS\MXDs\Chemistry\EDB\EDB_2021-03.mx

- Single completion monitor well •
- \odot Nested monitor well

Notes: 1. All concentrations reported in micrograms per liter (μ g/L).

- 2. RED indicates concentration that exceeds NMWQCC standard.
- 3. Samples collected on this figure were collected using HydraSleeve sampling devices.

Daniel B. Stephens & Associates, Inc. -4/15/2021 JN DB18.1157.00

FORMER Y STATION STATE LEAD SITE CLOVIS, NEW MEXICO **EDB** Isoconcentration Map March 2021