SVE Pilot Test Report Shamrock #63 UST Site 3624 Cerrillos Road, Santa Fe, New Mexico Facility #29206, Release ID #4509

Prepared for

New Mexico Environment Department Santa Fe, New Mexico

January 19, 2018

Daniel B. Stephens & Associates, Inc.

125 Mercado Street, Suite 119 • Durango, Colorado 81301

Table of Contents

Section

Page

1.	Introduction	.1 .3 .3			
2.	SVE Pilot Tests 2.1 Quick Test Summary 2.2 Pilot Test Summary. 2.2.1 MW-6 Pilot Test 2.2.2 MW-9 Pilot Test 2.2.3 MW-10 Pilot Test 2.3 Soil Vapor Sample Analytical Results 2.4 SVE Pilot Test Results. 2.4.1 MW-6 Pilot Test 2.4.2 MW-9 Pilot Test 2.4.3 MW-10 Pilot Test 1 2.4.4 Emissions	.4 .5 .6 .7 .8 .9 .9 .0 .1 .2			
3.	Recommended Technologies1	2			
4.	Conclusions1	3			
References13					

List of Figures

Figure

- 1 Area Map
- 2 Site Map
- 3 Cross Section A-A'
- 4 Cross Section B-B'
- 5 Vacuum Response Isopleths SVE Test 1 (MW-6)
- 6 Vacuum Response Isopleths SVE Test 2 (MW-9)

List of Tables

Table

- 1 Summary of Extraction and Observation Well Data
- 2 Summary of Analytical Organic Chemistry Data for Soil Vapor

List of Appendices

Appendix

- A AcuVac Reports
- B AcuVac Equipment Specifications
- C Laboratory Analytical Reports
- D Field Notes
- E Photographic Documentation

SVE Pilot Test Report Shamrock #63 UST Site 3624 Cerrillos Road, Santa Fe, New Mexico Facility #29206, Release ID #4509

1. Introduction

On behalf of Polk Oil Company, responsible party (RP) for Shamrock #63 (the site), Daniel B. Stephens & Associates, Inc. (DBS&A) has prepared this soil vapor extraction (SVE) pilot test report. The site is located at 3624 Cerrillos Road in Santa Fe, New Mexico (Figure 1). The property containing the former Shamrock #63 has hosted gasoline dispensing facilities since at least the mid-1950s. A used car dealership is currently occupying the property, with a Best Western hotel and an abandoned strip mall on adjacent parcels. Fuel is no longer being stored or dispensed at or adjacent to the site. A map showing site features and well locations is provided in Figure 2.

This report presents the results of field activities completed by DBS&A and AcuVac Remediation, LLC (AcuVac) of Houston, Texas under work plan identification (WPID) #17887 (DBS&A, 2016) approved by the New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau (PSTB) on June 26, 2017 (NMED, 2017). Field activities consisted of completing SVE pilot testing as describe herein. All field activities were conducted in accordance with DBS&A standard operating procedures, the New Mexico Environment Department (NMED) Underground Storage Tank Bureau Guidelines for Corrective Action (Guidelines) (NMED, 2000), and the approved work plan.

1.1 Investigation History

Historical aerial photographs indicate that prior to 1958 the site was occupied by a bulk fueling facility with six aboveground storage tanks (ASTs) and four dispenser islands. Between 1979 and 1988, the parcel was subdivided, the ASTs and dispenser islands were removed, and the Shamrock #63 station was constructed on the eastern portion of the original bulk fueling plant

property. A hotel was constructed on the western portion of the former bulk fueling facility in 1991.

The UST system was removed from the former Shamrock #63 site on April 19, 2006. Basin Engineering, Inc. (Basin) conducted the minimum site assessment (MSA) and additional investigations in 2006 and 2007. Results of soil sampling revealed minor impacts to soil in the northwest corner of the former UST nest and near the diesel fuel dispensing island. Soil samples were collected from two borings that were advanced in the area of the former UST nest in December 2006. The samples showed impacts to soil at depths of up to 75 feet below ground surface (ft bgs). The first five monitor wells (MW-1 through MW-5, Figure 2) were installed on-site between 2007 and 2011 (Basin, 2014).

In May 2014 Basin installed three new on-site groundwater monitor wells (MW-6 through MW-8, Figure 2) and completed a semiannual groundwater monitoring event (Basin, 2014). Results of groundwater monitoring completed after well installation showed light nonaqueous-phase liquid (LNAPL) to be present in newly installed monitor well MW-6 at thicknesses up to 1.52 feet. This was the first observed occurrence of LNAPL at the site. Analytical results from groundwater samples collected from the other site wells showed numerous contaminants of concern (COCs) to be present at concentrations above New Mexico Groundwater Quality Control Commission (NMWQCC) and New Mexico Environmental improvement Board (NMEIB) standards.

Basin was acquired by DBS&A in June 2014. DBS&A completed a subsequent second semiannual monitoring event in September 2014, with broadly similar results (DBS&A, 2014). Six new monitor wells were installed at the site in March 2015 (MW-9 through MW-14; Figure 2). Since well installation, LNAPL has been found to also be present in new monitor wells MW-9 (up to 0.99 foot) and MW-10 (up to 5.31 feet). Dissolved-phase contamination above applicable standards was present in groundwater samples collected from new monitor wells MW-11 and MW-14. Additional site activities completed by DBS&A in 2015 included quarterly groundwater monitoring, monthly LNAPL recovery events, and an indoor air screening survey of structures (DBS&A, 2015a and 2015b). Groundwater monitoring results indicated that the extent of LNAPL and dissolved-phase contamination were not delineated west of new monitor wells MW-10 and MW-10 or to the east of new monitor well MW-14.

A work plan for additional site investigation was submitted to the NMED PSTB and approved on June 26, 2017 under WPID #17887 (NMED, 2017). This work plan authorized the installation of additional wells to delineate the extent of LNAPL and dissolved-phase contamination at the site, as well as continued groundwater monitoring and SVE pilot testing. New groundwater monitor wells were installed between October 4 and October 10, 2017 (DBS&A, 2017), and first quarterly groundwater monitoring and LNAPL recovery was conducted from October 16 to 19, 2017 (DBS&A, 2018). Field investigation activities associated with SVE pilot testing are documented in this report in fulfillment of Deliverable ID #17887-3.

1.2 Site Hydrogeology

The geology underlying the site consists of a veneer of unconsolidated alluvial sediments underlain by the Pleistocene/Pliocene-age Ancha Formation. The Ancha Formation deposits comprise heterogeneous alluvial materials, composed of predominantly silty or clayey sand with varying amounts of gravel. The contact between the surficial alluvial material and the underlying sediments of the Ancha Formation is typically not discernable in borehole cuttings. Cross-sections depicting the site geology are provided in Figures 3 and 4.

Groundwater at the site occurs under unconfined conditions and is encountered at depths ranging between 76 and 84 ft bgs. The groundwater flow direction under the site is locally variable but has generally been to the southeast with a typical gradient on the order of 0.007 foot per foot.

1.3 Contaminants of Concern

Field observations and laboratory analytical results indicate that soil and groundwater at the site have been impacted by both diesel and gasoline releases from the former site facilities. COCs at the site include LNAPL, as well as dissolved-phase petroleum hydrocarbons—including benzene, toluene, ethylbenzene, total xylenes (BTEX), methyl tertiary-butyl ether (MTBE), and naphthalenes—and the fuel additives 1,2-dichloroethane (EDC) and 1,2 dibromoethane (EDB).

Initial soil borings and well installations following removal of the USTs from the former Shamrock #63 station indicated soil contamination extending from near the surface to the water

table in the vicinity of well MW-1. Subsequent investigations conducted in 2014 and 2015 indicated soil contamination extending from near the surface to the water table at wells MW-6 and MW-9, near the former bulk plant fuel dispensers. Contamination from these source areas spread out at depth, impacting deeper soils in the vicinity of wells MW-5, MW-7, MW-10, and MW-11.

LNAPL accumulations have consistently been observed in site wells MW-6, MW-9, and MW-10 at thicknesses up to 5.31 feet. LNAPL has not been observed in other site wells. A dissolved-phase contaminant plume extends a significant distance from known source areas and LNAPL accumulations. Benzene and other constituents have been detected in groundwater at concentrations exceeding the NMWQCC standards across a large area of the site bounded in the downgradient direction by wells MW-4, MW-12, MW-13, and MW-19, but undefined to the south and west of wells MW-17 and MW-18. Benzene was also present just above the NMWQCC standard in wells MW-8 and MW-15 at the eastern extent of the plume (DBS&A, 2018). There is limited potential for installing wells upgradient to the northwest from wells with known LNAPL accumulations due to the wide and active public right-of-way (ROW) associated with Cerrillos Road.

2. SVE Pilot Tests

DBS&A coordinated SVE pilot testing at the site on October 20 through 23, 2017. DBS&A subcontracted with AcuVac to perform the SVE pilot testing. Pilot tests were conducted in accordance with the approved work plan and included three 8-hour, step-up vacuum tests and one day of shorter 1-hour quick tests (QTs). The QTs were completed in accordance with a request to access contingency set-aside funds, which was approved by the PSTB on October 18, 2017. Step-up tests involved imposing a set of increasing vacuums and measuring well flow and vapor concentration responses at the extraction well, as well as vacuum response in surrounding wells. QTs involved observation of the extraction well only and provided a substantial amount of data in a short time frame, such as vapor well flow, well vacuum, and vapor concentrations. QTs were performed on six wells (MW-17, MW-11, MW-5, MW-1, MW-7, and MW-2) on October 21, and the full-length SVE pilot tests were conducted on MW-9,

MW-10, and MW-6 on October 20, 22, and 23, respectively. Details and results of pilot testing are discussed in Sections 2.1 through 2.4.

AcuVac reports for the full-length step-up tests and QTs, including field data sheets, are included in Appendix A. The AcuVac reports conform to the requirements stipulated in the PSTB SVE Pilot Testing Reporting Requirements Guidance (NMED, 2008). Details of specific equipment, gauges, and meters used for the pilot testing were included in the pilot test work plan and are included in Appendix B. During the pilot test, soil vapor samples from each well were collected and tested in the field for oxygen, carbon dioxide, and hydrocarbon concentrations (Appendix A, Schedules A and B). Hydrocarbon concentrations were measured in the field using a Horiba Automotive Emission Analyzer, which were compared to extracted air samples analyzed at Hall Environmental Analysis Laboratory (HEAL) of Albuquerque, New Mexico (Appendix C). DBS&A field notes and photographic documentation of the pilot tests are provided in Appendices D and E, respectively.

2.1 Quick Test Summary

QTs were performed on October 21, 2017 using monitor wells MW-1, MW-2, MW-5, MW-7, MW-11, and MW-17. Applied vacuum, well flow, and vapor concentrations measured in the field for each well are summarized in Table 1 of the AcuVac quick test report (Appendix A). The highest vapor concentrations were measured in samples collected from monitor well MW-11 with a maximum concentration of 81,160 parts per million by volume (ppmv); maximum vapor concentrations exceeded 40,000 ppmv in five of the six QT wells. In the remaining well, MW-17, vapor concentrations increased steadily through the hour-long test, with a maximum concentration of 2,920 ppmv. Vapor concentrations measured in the field during all six QTs exceeded the NMED action level of 100 ppmv.

A vacuum of 50 inches of water (" H_2O) was applied during the first two QTs, similar to the anticipated typical operational vacuum of an SVE system. Vapor recovery rates during these initial QTs at wells MW-17 and MW-11 were relatively low (<4.0 standard cubic feet per minute [scfm]). During subsequent QTs at wells MW-1, MW-2, MW-5, and MW-7, substantial vapor flow (approximately 28 to 39 scfm) was achieved at lower applied vacuum ranging from 26 to 42" H_2O .

Vapor flow per foot of open well screen was approximately 0.36 scfm in well MW-17, consistent with pilot test results indicating less conductive subsurface materials in this area of the site; vapor flow per foot of screen was slightly higher in well MW-11 (0.64 scfm). The greatest vapor flows per foot of screen were noted at wells MW-2 and MW-5 (approximately 5.1 and 5.3 scfm, respectively); these wells were also subject to least induced vacuum (27 and 26" H₂O, respectively). Vapor flows per foot of screen were approximately 2.5 and 3.9 scfm from wells MW-1 and MW-7, respectively; applied vacuums at those locations were 38" H₂O at MW-1 and 42" H₂O at MW-7. Limited open well screen intervals likely affected observed results and may not be representative of actual well flow that would be extracted from more typical SVE wells.

2.2 Pilot Test Summary

Longer duration (8-hour) step-up pilot tests were conducted at site monitor wells MW-6, MW-9, and MW-10. These wells are screened from 70 to 90 ft bgs for well MW-6 and from 72 to 92 ft bgs for wells MW-9 and MW-10. LNAPL was observed in each of these wells at the start of pilot testing. Observation wells were located at various directions and distances from the extraction well (Figure 1). Table 1 summarizes details for wells utilized during the pilot tests, including screened interval and distance from each extraction well.

Data recorded during each of the pilot tests are tabulated in Schedule A of the AcuVac report. These data include meteorological conditions (temperature and barometric pressure) and Horiba analyzer concentrations for hydrocarbons, carbon dioxide, and oxygen. The imposed well vacuum, resulting air flow, and the vacuums measured at the observation wells are also included in Schedule A. Graphical representations of the tabulated data are presented in Schedule B of the AcuVac report. Schedule A and Schedule B data for each SVE test are provided in Appendix A.

2.2.1 MW-6 Pilot Test

The MW-6 pilot test (referred to by AcuVac as SVE Test #1) was conducted on October 23, 2017. Three vacuum steps were imposed at MW-6 (25, 50, and 75" H_2O) over the course of approximately 8 hours. Observation wells were left unsealed overnight to minimize the effects of residual vacuum from previous tests and to encourage equalization of formation pressure with the atmosphere prior to testing. Nonetheless, slight initial vacuums ranging from 0.41 to

 0.91° H₂O were observed at observation wells prior to the start of the test. Figure 1 of the AcuVac report (Appendix A) shows selected well vacuum readings, normalized to the average imposed vacuum and adjusted to compensate for initial static vacuum (or pressure) and changes in barometric pressure.

Vacuum response in observation wells was immediate at the start of the test, and relatively small decreases in observed vacuum were noted with increasing distance in all directions from the extraction well. Maximum observed vacuums in all observation wells occurred approximately 5.5 hours into the test and ranged from 2.31 to 3.06° H₂O in observation wells that were 43 to 100 feet from the extraction well (Appendix A). Induced well vacuum measurements at observation wells may have been affected by the initial static vacuum present in the wells and by fluctuations in barometric pressure during the course of the test, which rose during the first part of the test and fell sharply during the afternoon. The observed vacuum response in the observation wells around MW-6 was indicative of conductive, slightly anisotropic subsurface soils.

2.2.2 MW-9 Pilot Test

The MW-9 pilot test (referred to by AcuVac as SVE Test #2) was conducted on October 20, 2017. Three vacuum steps were imposed at MW-9 (25, 50, and 75" H₂O) over the course of approximately 8 hours. Figure 1 of the AcuVac report (Appendix A) shows selected well vacuum readings, normalized to the average imposed vacuum and adjusted to compensate for initial static vacuum (or pressure) and changes in barometric pressure.

Vacuum response in observation wells was immediate at the start of the test, and relatively small decreases in observed vacuum were noted with increasing distance in all directions from the extraction well. At the maximum applied well vacuum (75" H_2O), maximum measured observation well vacuums ranged from 2.75 to 4.43" H_2O in observation wells that were 43 to 93 feet from the extraction well (Appendix A). Observation well MW-12 was considerably farther from the extraction well, at 179 feet, and showed a delayed response of much smaller magnitude, with a maximum observed vacuum of 0.76" H_2O . The barometric pressure fell sharply after 12:00 PM, which may have impacted measurement of induced vacuums at observation wells during the later portion of the test. The observed vacuum response in the

observation wells around MW-9 was indicative of conductive and slightly anisotropic subsurface soils.

2.2.3 MW-10 Pilot Test

The MW-10 pilot test (referred to by AcuVac as SVE Test #3) was conducted on October 22, 2017. Three vacuum steps were imposed at MW-10 (20, 40, and 60" H₂O) over the course of approximately 8 hours. Observation wells were sealed with well caps following the QTs conducted on October 21, and the barometric pressure rose overnight between the QTs and SVE Test #3. As a result, significant initial vacuums ranging from 1.11 to 2.30" H₂O were observed at most observation wells prior to the start of the test; outer well MW-19 did not display an initial vacuum. Figure 1 of the AcuVac report (Appendix A) shows selected well vacuum readings, normalized to the average imposed vacuum and adjusted to compensate for initial static vacuum (or pressure) and changes in barometric pressure.

Vacuum response in observation wells was immediate at the start of the test, although the initial vacuum response was inversely proportional to the pre-test static vacuum, such that wells with high static vacuum showed relatively muted initial vacuum response, regardless of distance from the test well. The greatest induced vacuum measurements at observation wells were noted during the first half of the test and were typically greater than early-time vacuum readings recorded during other tests, despite lower applied vacuum and well flow at the extraction well. Measured observation well vacuums decreased during the second half of the test despite increasing applied vacuum at the extraction well. The observed trends likely reflect equalization of the high initial vacuum over the course of the test period combined with barometric effects.

Relatively small decreases in observed vacuum were noted with increasing distance from the extraction well. Maximum induced vacuums observed during the test ranged from 2.49 to 2.83" H_2O in observation wells that were 49 to 135 feet from the extraction well (Appendix A). Despite the difficulty of quantitatively interpreting the field measurements for this test, the observations are broadly consistent with previous tests and indicate moderately conductive, anisotropic subsurface soils.

2.3 Soil Vapor Sample Analytical Results

Three soil vapor samples were collected from the extraction well for each of the 8-hour SVE pilot tests. For each pilot test, the first sample was collected approximately one hour after system startup, the second half-way through the test, and the third sample one hour prior to system shutdown. One air sample was also collected from each of the QT locations at the end of the one-hour test period. Samples were submitted to HEAL for volatile organic carbon (VOC) analysis using U.S. Environmental Protection Agency (EPA) method 8021B and total petroleum hydrocarbons (TPH) as gasoline range organics GRO) using EPA method 8015B. Soil vapor analytical results are summarized in Table 2. The complete laboratory reports, including chain of custody documentation, are included in Appendix D.

For MW-6, reported TPH (GRO) concentrations for the three samples ranged from 120,000 to 150,000 micrograms per liter (μ g/L). For MW-9, reported TPH (GRO) concentrations for the three samples ranged from 140,000 to 180,000 μ g/L. For MW-10, reported TPH (GRO) concentrations for the three samples ranged from 200,000 to 230,000 μ g/L. TPH (GRO) concentrations in samples collected from QT wells ranged from 28,000 in well MW-17 to 200,000 μ g/L in well MW-11.

2.4 SVE Pilot Test Results

SVE pilot testing provides information about soil vapor flow that can then be used for SVE system design. In addition, the observation well vacuums at a given, imposed extraction well vacuum provide information for determining the corresponding effective radius of influence (ROI). Guidance on defining the limit of ROI varies depending on the source, ranging from 0.1 to 1.0° H₂O as a limit. Other guidance suggests using 3 percent of the applied well vacuum.

2.4.1 MW-6 Pilot Test

The MW-6 pilot test was conducted at an average flow of 6.7 scfm and a maximum flow of 7.8 scfm. Due to a transducer failure, upwelling of fluid inside the well casing cannot be assessed, and flow per foot of open screen must be estimated. Assuming that the upwelling response is similar to that observed during the tests at wells MW-9 and MW-10 (approximately 90 to 100 percent of the applied vacuum), the well yielded an average of 1.0 scfm per foot of

open well screen and a maximum of 1.3 scfm per foot of open well screen at the maximum applied well vacuum (75" H_2O).

Due to the effects of initial residual vacuum and barometric pressure changes, it is likely that early-time data over estimates the induced vacuum at observation wells, while late-time observations may under estimate the induced vacuum. Observational data gathered at 12:30 PM was utilized for the purposes of this evaluation; barometric pressure at this time was close to the daily average at the site, and it is presumed that any residual static vacuum effects would have dissipated by this point in the test. Using the selected observational data, an applied well vacuum of 75" H₂O yields a ROI of approximately 100 feet. This is based on an observed vacuum of approximately 2.25" H₂O, representing 3 percent of the applied well vacuum (Figure 5). The 1.0-inch and 0.1-inch vacuum thresholds would lie beyond the extent of the monitor well network used in this test and are not represented on the figure. The ROI is believed to be nearly circular, despite the lack of observation wells within the Cerrillos Road ROW. The ROI determined by this analysis is greater than the calculated ROI of 55 feet derived by AcuVac's proprietary methodology (Appendix A, Figure 1).

2.4.2 MW-9 Pilot Test

The MW-9 pilot test was conducted at an average flow of 11.9 scfm at an applied well vacuum of 25" H_2O and 17.2 scfm at applied well vacuums of 50 and 75" H_2O . Flow per foot of open screen was approximately 2.1 scfm at an applied vacuum of 25" H_2O and 4.7 scfm at an applied vacuum of 50" H_2O . At the maximum applied vacuum of 75" H_2O , upwelling resulted in an 80 percent reduction of open screen, leaving only one to two feet of exposed screen remaining. In this configuration, vapor flow to the well is affected by surging fluid levels and flow within the outer sand pack, and the measured flow of approximately 12 scfm per foot of screen is not representative of expected performance characteristics of longer open screen intervals.

Observation well data gathered at 11:30 AM was utilized for the purposes of this evaluation; barometric pressure at this time had changed little from the start of the test, and it is presumed that any residual static pressure effects would have dissipated by this time. Using the selected observation well data, the applied well vacuum of 50[°] H₂O yields a ROI of approximately 100 feet. This is based on a vacuum of approximately 1.5 inches, representing 3 percent of the applied well vacuum (Figure 6). Most of the observation wells used in this test lay within the

ROI, with only outer well MW-12 showing less than 3 percent response; thus the radius is considered somewhat approximate. The ROI is also believed to be slightly irregular, with a somewhat reduced vacuum response noted in the vicinity of well MW-10. The ROI determined by this analysis is greater than the calculated ROI of 55 feet derived by AcuVac's proprietary methodology (Appendix A, Figure 1).

2.4.3 MW-10 Pilot Test

The MW-10 pilot test was conducted at an average flow of 4.7 scfm and a maximum of 5.9 scfm at an applied well vacuum of 60" H_2O . Flow per foot of open screen was approximately 0.7 scfm at an applied vacuum of 20" H_2O and 1.3 scfm at an applied vacuum of 40" H_2O . At the maximum applied vacuum of 60" H_2O , the observed upwelling resulted in an 80 percent reduction of open screen, leaving just over 1 foot of exposed screen remaining. In this configuration, vapor flow to the well is affected by surging fluid levels and flow within the outer sand pack, and the measured flow of 3.8 scfm per foot of screen is not representative of expected performance characteristics of longer open screen intervals.

Interpretation of the field vacuum data is complicated by significant residual vacuum present at the start of the test and fluctuating barometric pressure throughout the test period. For example, measured vacuum response at observation wells was observed to decrease significantly during the second half of the test, even as the applied vacuum at the extraction well was stepped up. In many cases, more distal observation wells produced greater vacuum response readings than wells nearer to the extraction point. Measurements from observation wells suggest that complex subsurface conditions exist in the vicinity of MW-10. When combined with variable ambient conditions during the test period, test results are difficult to evaluate quantitatively. Therefore, an isopleth map was not compiled for this test. AcuVac attempted to compensate for the variable test conditions using a proprietary analysis, which yielded adjusted vacuum response of 0.55 and 0.41" H₂O at outer wells MW-16 and MW-11, respectively. The ROI of approximately 30 feet estimated by AcuVac at an extraction vacuum of 50" H₂O is based on an ROI vacuum threshold of approximately 1.5" H₂O, or 3 percent of the applied vacuum (Appendix A, Figure 1). However, the rapid vacuum response at even distal observation wells indicates that soils are reasonably conductive and that this is likely a conservative estimate.

2.4.4 Emissions

The hydrocarbon concentrations in the extracted vapor for both the pilot tests and the QTs were high. As described in the AcuVac report, the calculated average hydrocarbon emission rate was 6.9 pounds per hour (lb/hr) from extraction well MW-6, 17.67 lb/hr from extraction well MW-9, and 5.52 lb/hr from extraction well MW-10. However, the results of TPH GRO laboratory confirmation sampling were lower than the corresponding field screening results by 58 percent in well MW-6, 54 percent in well MW-9, and 38 percent in well MW-10. The age and composition of the petroleum contaminants can affect results obtained from different analytical methods. The emission rates from the AcuVac report are initial estimates of extracted vapor concentration and can be considered maximum expected emission rates. Emission calculations and a final determination of the need for and type of emission controls will need to be evaluated during design and implementation of a full scale remediation system.

3. Recommended Technologies

Actionable contamination appears in both the vadose zone and groundwater at the site. The subsurface soil technologies identified for further consideration as remedial alternatives at the site are direct SVE, bioventing, and natural attenuation.

- Soil vapor extraction: SVE is an in situ, unsaturated (vadose) zone soil remediation technology in which a vacuum is applied to the soil to induce the controlled flow of air through soil to remove volatile and some semivolatile contaminants. SVE requires high well flow through well connected pores to effectively remediate a site. The vapor being extracted from the soil may need to be treated to recover or destroy the contaminants depending on local and state air discharge regulations. Extraction wells are typically used at depths of 1.5 meters (5 feet) or greater and have been successfully applied as deep as 91 meters (300 feet). SVE is an applicable technology for this site. SVE pilot testing shows the site has relatively high ROI (as much as 100 feet) at a reasonable applied well vacuum of 50 to 75" H₂O.
- Bioventing: Bioventing stimulates the natural, in situ biodegradation of any aerobically degradable compounds in soil by providing oxygen to existing soil microorganisms. In

contrast to SVE, bioventing uses low well flow rates to provide only enough oxygen through direct air injection to sustain ongoing microbial activity in the contaminated soil. In addition to degradation of adsorbed fuel residuals (e.g. naphthalenes and other higher molecular weight compounds), VOCs are biodegraded as vapors move slowly through biologically active soil. Although the time frame for bioventing is longer that active extraction by SVE, it is a potentially applicable technology for this site

 Natural Attenuation: Natural attenuation is a collective term for conditions where natural subsurface processes—such as dilution, volatilization, biodegradation, adsorption, and chemical reactions with subsurface materials—are allowed to reduce contaminant concentrations to acceptable levels. The time frame for natural attenuation is much longer than that for the other technologies. It may be appropriate in the future, but is considered a marginal technology at this time.

4. Conclusions

DBS&A completed an SVE pilot test to evaluate subsurface characteristics at the site. Well flow, vacuum responses, and contaminant concentrations indicate that SVE is a viable technology for remediating the vadose zone at the site. The ROI and anticipated vacuum and air flow rates derived from the pilot test will provide valuable information for design and implementation of a full-scale remediation system. The PSTB may also wish to consider fluid recovery and groundwater treatment to combat the LNAPL and solute plumes at the site. Additional investigation may be required to assess the extent of the LNAPL and solute plumes under the Cerrillos Road corridor abutting the site to the north. No matter the remedial alternative selected, groundwater monitoring and LNAPL recovery should continue under the approved work plan to assess the stability of the solute and LNAPL plumes.

References

Basin Engineering, Inc. 2014. *Well installation and semi-annual ground water monitoring report, Shamrock 63, 3624 Cerrillos Road, Santa Fe New Mexico*. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau. June 17, 2014.

- Daniel B. Stephens and Associates, Inc. (DBS&A). 2014. Second semiannual groundwater monitoring report, Shamrock #63, 3624 Cerrillos Road, Santa Fe New Mexico. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau. October 20, 2014, 2014.
- DBS&A. 2015a. Well installation, vapor survey, and first quarter groundwater monitoring and NAPL recovery report, Shamrock #63, 3624 Cerrillos Road, Santa Fe New Mexico. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau. May 21, 2015.
- DBS&A. 2015b. Second quarter groundwater monitoring and NAPL recovery report, Shamrock #63, 3624 Cerrillos Road, Santa Fe New Mexico. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau. August 26, 2015.
- DBS&A. 2016. Work Plan for additional site investigation and SVE pilot testing, Shamrock #63, 3624 Cerrillos Road, Santa Fe, New Mexico. Prepared for New Mexico Environment Department Petroleum Storage Tank Bureau, Albuquerque, New Mexico. March 2, 2016.
- DBS&A. 2017. Letter from John Casey and Jason Raucci to Susan von Gonten, New Mexico Environment Department Petroleum Storage Tank Bureau, regarding well installation for Shamrock #63, 3624 Cerrillos Road, Santa Fe, New Mexico. December 12, 2017.
- DBS&A. 2018. *First groundwater monitoring and LNAPL recovery report, Shamrock #63, 3624 Cerrillos Road, Santa Fe New Mexico*. Submitted to the New Mexico Environment Department Petroleum Storage Tank Bureau. January 12, 2018.
- New Mexico Environment Department (NMED). 2000. *Guidelines for corrective action.* Underground Storage Tank Bureau, Santa Fe, New Mexico. March 13, 2000.
- New Mexico Environment Department (NMED). 2008. SVE pilot testing reporting requirements guidance. Petroleum Storage Tank Bureau. Available at https://www.env.nm.gov/ust/SOPs.htm. October 1, 2008.

NMED. 2017. Letter from Dana Bahar to Jim Polk, Pol Oil Company, regarding approval of Phase 1 fixed-price workplan for Shamrock No. 63, 3624 Cerrillos Road, Santa Fe, New Mexico. June 26, 2017.

Figures

S:\Projects\BE14.0012_Shamrock_63\GIS\MXDs\Reports\Well_Install_2017-10\Fig02_Site_map.mxd

20 2x vertical exaggeration horizontal: 1 inch = 40 feet vertical: 1 inch = 20 feet Feet 80 40 0

PID readings (ppm) are shown at the depth taken next to each well; readings >100ppm are highlighted in red to show areas of actionable contamination.

clayey sand,

silty sand,

silty sand w/gravel

Daniel B. Stephens & Associates, Inc. – 11/20/2017 JN BE14.0012.00

Explanation

Figure 4

Monitor well Newly installed monitor well

1/17/2018

Notes: 1. Isopleth dashed where inferred 2. NM = Not measured

Daniel B. Stephens & Associates, Inc., 1/17/2018 JN BE14.0012

3624 CERRILLOS ROAD SANTA FE, NEW MEXICO

Vacuum Response Isopleths SVE Test 1 (MW-6)

Monitor well

1/17/2018

Newly installed monitor well

Notes: 1. Isopleth dashed where inferred 2. NM = Not measured

Daniel B. Stephens & Associates, Inc., 1/17/2018 JN BE14.0012

SHAMROCK #63 3624 CERRILLOS ROAD SANTA FE, NEW MEXICO

Vacuum Response Isopleths SVE Test 2 (MW-9)

Tables

Distance from Extraction Well (feet) Well Diameter Screen Interval Static Water Depth LNAPL Thickness Water Level Well Purpose MW-6 MW-9 MW-10 (inches) (feet bgs) (feet btoc) Measure Date (feet) MW-1 2 82.08 QT NA NA NA 74 - 94 0.00 10/21/2018 2 MW-2 97 NA 75 - 90 82.07 0.00 OBS. QT NA 10/23/2018 MW-5 OBS, QT 72 2 80.93 0.00 NA 75 - 90 10/20/2018 NA 81.32^a MW-6 EXT, OBS _ 43 99 2 70 - 90 0.70 10/20/2018 MW-7 OBS, QT 2 49 93 70 - 90 82.29 0.00 10/20/2018 NA MW-9 EXT, OBS 43 2 72 - 92 79.34^a 0.19 _ 56 10/20/2018 77.99^a MW-10 EXT. OBS 99 56 2 72 - 92 0.58 10/20/2018 _ 2 MW-11 OBS, QT 72 59 85 72 - 92 77.79 0.00 10/20/2018 MW-12 OBS NA 179 NA 2 72 - 92 76.12 0.00 10/20/2018 MW-16 OBS NA 84 49 2 70 - 90 76.30 0.00 10/20/2018 MW-17 OBS, QT NA NA 64 2 69.5 - 89.5 78.95 0.00 10/22/2018 MW-18 2 69.5 - 89.5 76.64 0.00 OBS NA NA 105 10/22/2018 MW-19 OBS NA NA 135 2 70 - 90 76.30 0.00 10/22/2018

Table 1. Summary of Extraction and Observation Well DataFormer Shamrock No. 63, Santa Fe, New Mexico

bgs = Below ground surface

QT = Quick test NA = Not available

btoc = Below top of casing N

EXT = Extraction

LNAPL = Light nonaqueous-phase liquid

OBS = Observation

		Concentration ^a (µg/L)						
Sampling Point	Date Sampled	Benzene	Toluene	Ethyl- benzene	Total Xylenes	BTEX	МТВЕ	TPH (GRO)
MW-6 @ 0730	10/23/17	830	670	39	190	1,729	<50	150,000
MW-6 @ 1030	10/23/17	670	390	37	200	1,297	<50	120,000
MW-6 @ 1330	10/23/17	740	340	19	99	1,198	<50	130,000
MW-9 @ 0930	10/20/17	980	260	42	190	1,472	<120	180,000
MW-9 @ 1230	10/20/17	760	230	38	200	1,228	<50	140,000
MW-9 @ 1530	10/20/17	800	230	26	140	1,196	<50	150,000
MW-10 @ 0930	10/22/17	980	970	56	260	2,266	<50	200,000
MW-10 @ 1230	10/22/17	880	930	69	370	2,249	<50	220,000
MW-10 @ 1530	10/22/17	860	840	56	300	2,056	<50	230,000
MW-1 QT	10/21/17	430	76	20	120	646	<50	130,000
MW-2 QT	10/21/17	220	15	<10	<20	235	<50	77,000
MW-5 QT	10/21/17	340	130	12	63	545	<50	79,000
MW-7 QT	10/21/17	380	50	13	40	483	<50	120,000
MW-11 QT	10/21/17	890	300	34	260	1,484	<50	200,000
MW-17 QT	10/21/17	58	14	<10	<20	72	<50	28,000

Table 2. Summary of Analytical Organic Chemistry Data for Soil Vapor Former Shamrock No. 63, Santa Fe, New Mexico

^a Analyzed in accordance with U.S. Environmental Protection Agency (EPA) methods 8021B for

VOCs and 8015B for TPH (GRO).

µg/L = Micrograms per liter

BTEX = Benzene, toluene, ethylbenzene, and total xylenes

MTBE = Methyl tertiary-butyl ether

TPH = Total petroleum hydrocarbons

GRO = Gasoline range organics

Appendix A

AcuVac Reports

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

October 28, 2017

Mr. John Casey P.E. Daniel B. Stevens & Associates 125 Mercado Street, Suite 119 Durango, Colorado 81301

Re: Shamrock #63, 3624 Cerrillos Road, Santa Fe, NM

Dear John:

At your request, we performed three Soil Vapor Extraction (SVE) Pilot Tests on October 20, 22 and 23, 2017 at the above referenced site. An Environmental Specialist, with extensive experience of onsite testing, conducted the Pilot Test. The total SVE test time for each test, including static data time, was 8.6 hours. The contaminant was weathered gasoline. Phase separated Hydrocarbons (PSH) are referred to as Light Non-Aqueous Phase Liquids (LNAPL). The Tests were performed in the following order:

- October 20, 2017- SVE Test #2 was performed on Well MW-9 due to limitations related to the hotel parking lot traffic.
- October 21, 2017- SVE Quick Tests were performed on several observation wells. The results of these Quick Tests is covered in a separate report.
- October 22, SVE Test #3 was performed on well MW-10.
- October 23, 2017- SVE Test #1 was performed on well MW-6.

SUMMARY OF CONDITIONS

SVE Test #2 was performed on October 20, 2017 when the site was in its static condition- that is there was no vacuum applied to any part of the formation prior to the start of the test. At the end of the test, the well plugs were replaced in all wells that were part of the test.

On October 22, 2017, the SVE Quick Tests were performed that applied vacuum to wells throughout the formation. At the end of each test, the well plug was replaced thus sealing the well. The barometric pressure increased during the course of the Quick Tests 0.06 "Hg, or 0.82 "H₂O. The effect of the increase in barometric pressure was to increase the static vacuums in the wells.

On October 22, 2017, SVE Test #3 was performed on well MW-10. In the period of time from the end of the Quick Tests to the start of SVE Test #3, the barometric pressure had increased from 29.94 "Hg to 30.31"Hg, or 5.04 "H₂O. This created high static vacuums in the monitoring wells at the start and the conclusion of SVE Test #3. To partially compensate for the increase in the static well vacuums, the start of Test #3 was delayed 30 minutes. At the conclusion of Test #3 the wells were

left open, no plugs, but the cover to the well vault was secured. This was done to allow the wells to equilibrate overnight before the start of SVE Test #1 on October 23, 2017. By leaving the wells open, the static vacuums/(pressures) in the well at the start of SVE Test #1 were lower.

		Barometric Pressure					
		Т	Test	Increase	/Decrease		
Test Number	Date	Start	End	"Hg	"H₂O		
SVE #2	10/20/2017	29.98	29.82	(0.16)	(2.18)		
Quick Tests	10/21/2017	29.88	29.94	0.06	0.82		
SVE #3	10/22/2017	30.31	30.24	(0.07)	(0.95)		
SVE #1	10/23/20107	30.31	30.27	(0.04)	(0.54)		

The table below illustrates the barometric pressure during the course of the tests.

CONDITIONS AFFECTING PILOT TESTS

- Generally, a decreasing barometric pressure results in increased well pressures (decreased vacuums) on those wells plugged and sealed at the TOC, while an increasing barometric pressure results in increased well vacuums. This is the function of liquid levels increasing and decreasing. There are many variables that can affect Pilot Test data, but barometric pressure fluctuations have the most immediate and profound effect. This assumes that SVE short-circuiting is not a factor.
- To offset the induced vacuum/pressure as a result of liquid depression or upwelling in the outer monitoring wells, the wells are vented periodically to atmosphere and then re-plugged prior to recording data at select intervals. The potential for increased vacuum or pressure as a result of in/decreasing liquid levels will be minimized. Liquid depression surrounding an outer observation well will result in an induced vacuum not associated with the induced vacuum created in the EW. Likewise, liquid mounding will create the opposite effect creating well pressures.

OBJECTIVES

The Objectives of an SVE Pilot Test are to:

- Evaluate the potential for removing vapor phase LNAPL from the vadose zone.
- Provide data on the vapor phase concentrations in the influent vapors.
- Determine the SVE ROI to remove vapor phase LNAPL

The purpose of the extraction well induced vacuum variable rate test is to define the pressure/flow characteristics of sub-surface soils around the extraction well and to estimate potential conditions for an operational SVE System. Starting a test with lower variable rates of vacuum and flow allows the extraction well and outer wells sufficient time to adjust and stabilize and minimizes the risk of developing preferential paths. This will also assist the development of newly installed extraction wells.

METHODS AND EQUIPMENT

The test was conducted using AcuVac's I-6 System, with Roots RAI-33 and RAI-22 blowers, various instrumentation, including the HORIBA[®] Analyzer, Solinst Interface Probes, Lumidor O₂ Meter, In-Situ data logger, vapor flow gauges, a sensitive instrument to determine barometric pressure, V-1 vacuum box to capture non-diluted vapor samples, and other special equipment.

The vacuum extraction portion of the AcuVac System consists of a vacuum pump driven by an internal combustion (IC) engine. The vacuum pump is connected to the extraction well and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank, to the vacuum pump and the IC engine where they are burned as part of the normal combustion process. Propane is used as auxiliary fuel to help power the engine if the well vapors do not provide the required BTU.

The AcuVac IC engine is fully loaded for maximum power that is necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum SVE Radius of Influence (ROI) for Pilot Tests and short term Event remediation. The lower part of the IC engine is encased with a liquid collection pan designed to catch any oil drips or liquid leaks if it should occur.

Emissions from the engine are passed through three catalytic converters to ensure maximum destruction of removed hydrocarbon vapors. The engine's fuel to air ratio can be adjusted to maintain efficient combustion. Because the engine is the power source for all IC engine driven equipment, all systems stop when the engine stops. This eliminates any uncontrolled release of hydrocarbons. Since the AcuVac System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure, over speed or overheating.

PROJECT SCOPE AND PROCEDURES

- Open selected extraction well and outer observation wells. Install In-Situ data logger in the extraction well to record any groundwater and LNAPL that enters the extraction well during the test period. Install an interface probe in the extraction well to determine if groundwater is present.
- Record the distances from the selected extraction well to the outer wells.
- Connect the AcuVac System to the extraction well and record the static/baseline well data, total depth and screen intervals and then apply vacuum. Record the vacuum and well flow, all System data (including fuel flow of propane), temperature, barometric and absolute pressures.
- Set the SVE induced vacuum and vapor well flow at the selected range.
- Install and observe the magnehelic gauges or connect a digital manometer on the outer observantion wells to determine if the selected extraction well is in vacuum communication with the outer observation wells. Record the data at a selected interval of time.
- Collect non-diluted influent vapor samples to provide on-site HORIBA® and Lumidor Analyzer analytical data consisting of TPH up to 100,000 ppmv, C0₂%. CO%, 0₂% and H₂S ppm.

- Record the vacuums or pressures on the outer observation wells.
- Operate the SVE System in such a manner that all well vapors are passed through the engine and catalytic converters to destruct the contaminants, and exhausted, meeting air emission standards.
- Comply with all safety regulations.
- Complete the SVE test by providing a report consisting of operating and analytical data, and projection of an SVE ROI.

The reports for each SVE Test is attached. Once you have reviewed the report, please call me if you have any questions.

Sincerely,

ACUVAC REMEDIATION, LLC

James E. Sadler, VP Engineering/Environmental

Pulltion

Paul D. Faucher VP Operations

TEST #SVE-1

PRE-TEST FUNCTIONS - TEST #SVE-1

Prior to starting this test, all the AcuVac systems were checked for normal and safe operation. The barometric and absolute pressure and ambient air temperature levels were recorded. The depth to groundwater (82.3.3 ft BTOC) and depth to LNAPL (81.45 ft BTOC), this resulted in an LNAPL thickness of 0.88 ft. in the SVE extraction well (MW-6). Each magnehelic gauge was checked and calibrated zero. The outer monitoring wells were plugged with expandable designed to accept a digital manometer. The data logger (pressure transducer) was installed in the extraction well MW-6. The propane tank fuel level was recorded so that an accurate fuel consumption could be estimated for the total test period. The HORIBA® Analyzer was set for the local elevation and calibrated with SPAN gas, which contains hexane and CO₂. All required static/baseline data was recorded before engaging the SVE System and the required safety checks were performed on the System.

DISCUSSION OF DATA - TEST #SVE-1

Test #SVE-1, with vacuum extraction, was an 8.6 hour MDP test, including static well data, conducted from well MW-6 as the extraction well. Immediately prior to starting the test, the selected outer observation wells; MW-9 (43.0 ft), MW-11 (73.0 ft) and MW-10 (99.0 ft), were recording slight vacuums of 0.90 "H₂O, 0.41 "H₂O and 0.51 "H₂O, respectively. The high static vacuums on the wells is most likely the results of previous SVE Tests and SVE Quick Tests, and the increase in barometric pressure from the conclusion of the QTs to the start of Test #SVE-3. Wells MW-5 (49.0 ft), MW-7 (50.0 ft) and MW-2 (100.0 ft) were not accessible. The general weather conditions were clear and cool. At the start of the SVE test, the extraction induced vacuum was set at 25"H₂O, with an initial well vapor flow of 4.72 scfm.

An In-Situ Data Logger was positioned slightly above the bottom (90.0 ft BTOC) of the extraction well MW-6 and well MW-9 (43.0 ft) to determine the extent of upwelling that may occur during the test.

During the first 2.0 hours of the test, the extraction well induced vacuum remained constant at 25"H₂O with a well vapor flow of 4.72 scfm, which remained steady during the period. Outer well MW-9, which is located 43.0 ft from the extraction well, immediately recorded an increasing well vacuum from 0.90 to 0.94"H₂O and continued on an increasing vacuum trend during the test period to 1.83"H₂O. Outer well MW-11 which is located 73.0 ft from the extraction well had an immediate reaction to the induced well vacuum, increasing to 1.34"H₂O during the test period. Well MW-10 which is located 99.0 ft from the extraction well had an immediate reaction to the induced well vacuum, increasing to 1.26"H₂O during the test period. Outer wells MW-5, MW-7 and MW-2 were not accessible at the start of the test. Accordingly, no data was recorded for these wells.

HORIBA[®] analytical data indicated the two influent vapor samples taken from the extraction well had TPH vapor concentrations of 55,770 and 75,720 ppmv, with CO₂ at 2.06 and 2.54%, CO at 1.78 and 4.22%, O₂ at 6.9 and 5.7% and H₂S at 3.1 and 2.1 ppm. Some propane was required as the influent vapors were supplying approximately 70% of the IC engine fuel. The HC levels were within the

range normally found in soil gas samples collected from an area contaminated with gasoline and weathered gasoline.

At test hour 2.0, the test continued with the induced vacuum increased to $50"H_2O$ and a well flow of 6.94 scfm. The test period was 3.0 hours with the extraction well induced vacuum and well vapor flow remaining steady during the period. Outer well MW-9 continued on an increasing vacuum trend to 2.16"H₂O at test hour 2.0 and then increased for the next 2.5 hours to 2.94"H₂O. Outer well MW-11 continued to record an increasing vacuum trend to 1.71"H₂O at test hour 2 and then increased for the next 2.5 hours to 2.57"H₂O at test hour 4.5. Outer well MW-10 continued to record an increasing vacuum trend to 1.26"H₂O at test hour 2 and then increased for the next 2.5 hours to 2.36"H₂O at test hour 4.5. Outer wells MW-5, MW-7 and MW-2 became accessible at test hour 3.0. These wells recorded vacuums at test hour 3.0 and remained on an increasing trend through test hour 4.5. The ambient air temperature increased to 55.0°F and the barometric increased from 30.32 to 30.37"Hg. The influent vapor temperature increased from 56.0 to 60°F.

Additional HORIBA[®] analytical data indicated the influent vapor samples recorded TPH levels of 77,870, 74,890, 77,550 and 76,240 ppmv, with CO_2 at 2.40, 2.10, 2.53 and 2.47%, CO at 4.36, 4.34, 4.48 and 4.40%, O_2 at 5.9, 5.5, 5.7, and 5.9% and H_2S at 0 ppm. The influent vapors supplied 100% of the IC engine's fuel and the TPH levels continued to be within the range of gasoline.

At test hour 5.0, the test continued with the induced vacuum increased to $75"H_2O$ and a well flow of 7.75 scfm. The test period was 3.0 hours, and the extraction well induced vacuum and well vapor flow remained steady. Outer well MW-9 vacuum increased to 2.97 "H₂O and remained mostly steady until test hour 7.5 when it deceased to 2.79 "H₂O. Outer well MW-11 continued to record an increasing vacuum trend to 2.70"H₂O at test hour 5.5 and then had a decreasing trend for the remainder of the test, most likely as a result of the deceasing barometric pressure. Outer wells MW-5, MW-7, and MW-2 recorded a mostly decreasing trend from test hour 5 through the end of the test. The ambient air temperature increased to 65.0°F and the barometric pressure decreased to 30.28 "Hg. The influent vapor temperature increased from 60 to 64°F.

Additional HORIBA[®] analytical data indicated the influent vapor samples recorded HC levels of 82,700, 79,980, 81,110 and 72,340 ppmv, with CO_2 at 2.60, 4.58, 4.70, and 3.52%, CO at 5.34, 1.72, 1.82 and 1.28%, O_2 at 6.9, 6.7, 6.5 and 6.3% and H_2S at 3.0, 3.0, 3.1 and 2.0 ppm. The influent vapors continued to supply 100% of the IC engine's fuel.

RADIUS OF INFLUENCE

<u>Figure #1</u> indicates that the effective vacuum radius of influence from Test #SVE-1 would be from 34.17 to 39.44 ft, with extraction well flow of 6.50 to 7.50 scfm and extraction well vacuum in the 55 to 60"H₂O range. An approximation of the radius of influence may be obtained by determining the point at which the measured vacuum is 1.65 to 1.80"H₂O or approximately 3.0% of the average induced vacuum of 55.41"H₂O. It is assumed that beyond the lower point, the pressure gradient (driving force) is negligible to effectively transport vaporized contaminants to the extraction well. Under continuous operation, vacuum and radius of influence will most likely continue to increase horizontally and vertically. All ROI calculations are site specific. At this site, the projected ROI is based on approximately 6.0 ft of well screen available to the induced vacuum. This equates to approximately 1.12 scfm per foot of screen. With an induced vacuum in the 55 - 60"H₂O range, liquid most likely will continue to accumulate in the well. A liquid recovery system may be required and be operational on the same schedule as the SVE induced vacuum.

The effective vacuum radius of influence is based on calculations and equations using a software program of which data was provided from an extensive database collected by AcuVac over a period of years. Each projection is based on the test data and site parameters, and takes into consideration such variables as barometric pressure oscillations and gauge error. Although we cannot provide total assurance of accuracy, past experience and results have proven these projections to be well within the acceptable range of accuracy.

To calculate MDP well placement, the equation we use is as follows:

L= 2 ROI Cos 30° (L = distance between wells; ROI = radius of influence)

All other data, including the groundwater depth, well placement, extraction well screened intervals, induced vacuum and vapor well flow, and liquid recovery rate, must be considered in the final design for a Corrective Action Plan (CAP).

CONCLUSION

Pilot Tests are conducted to provide information on short term tests that can be projected into long term remedial plans. These feasibility tests indicated that Soil Vapor Extraction (SVE) should provide **the most effective method** of remediation for this facility. **The tests results provided sufficient data to project that certain wells are in vacuum communication with the selected extraction well.** The vacuum radius of influence defines the region within which the vapor in the vadose zone flows to the extraction well under the influence of a vacuum. The radius of influence depends on the soil properties of the vented zone, properties of surrounding soil layers, the depth at which the well is screened, well installation and the presence of any impermeable boundaries such as the water table, clay layers, surface seal, building basements and the presence of such areas as tank pits with backfill and underground utilities..

EMISSION DATA

During this Pilot Test, HORIBA[®] data indicated that the influent vapors had an average hydrocarbon level (TPH) of 75,417 ppmv. Using an average well flow of 6.72 scfm from this extended test, **the calculated emissions from** <u>one</u> **extraction well without vapor treatment were as follows:**

HC	=	165.60 lbs/day =	6.90 lbs/hr
Benzene (1%)	=	1.66 lbs/day =	0.07 lbs/hr
ADDITIONAL INFORMATION

The HORIBA® analytical instrument is calibrated with Hexane and CO₂.

The formula used to calculate the emission rate is: ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E⁻⁷ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

ATTACHED SCHEDULES AND FIGURES

- Figure #1: Plot of Observed Vacuum vs Distance at the Facility (ROI) at 3% of Induced Vacuum
- Table #1A: Well Data
- Table #1B: Extraction Well Operating Data
- Table #1C: Observation Well Operating Data
- Schedule A: Summary of Test Data
- Schedule B: Graphic Summary of Data
- Field Operating Data and Notes Test #SVE-1
- Site Photographs

TEST #SVE-2

PRE-TEST FUNCTIONS - TEST #SVE-2

Prior to starting this test, all the AcuVac systems were checked for normal and safe operation. The barometric and absolute pressure and ambient air temperature levels were recorded. The depth to groundwater (79.53 ft BTOC) and depth to LNAPL (79.34 ft BTOC), this resulted in an LNAPL thickness of 0.19 ft. in the SVE extraction well (MW-6). Each magnehelic gauge was checked and calibrated zero. The outer monitoring wells were plugged with expandable designed to accept a digital manometer. The data logger (pressure transducer) was installed in the extraction well MW-9. The propane tank fuel level was recorded so that an accurate fuel consumption could be estimated for the total test period. The HORIBA® Analyzer was set for the local elevation and calibrated with SPAN gas, which contains hexane and CO₂. All required static/baseline data was recorded before engaging the SVE System and the required safety checks were performed on the System.

DISCUSSION OF DATA - TEST #SVE-2

Test #SVE-2, with vacuum extraction, was an 8.6 hour MDP test, including static well data, conducted from well MW-9 as the extraction well. Immediately prior to starting the test, the selected outer observation wells; MW-6 (43.0 ft), MW-10 (56.0 ft) and MW-11 (59.0 ft), were recording slight pressures or no influence of (0.49) "H₂O, 0 "H₂O and (0.06) "H₂O, respectively. Wells MW-5 (72.0 ft), MW-7 (93.0 ft) and MW-12 (179.0 ft) were not accessible. The general weather conditions were clear and cool. At the start of the SVE test, the extraction induced vacuum was set at 25"H₂O, with an initial well vapor flow of 11.91 scfm.

An In-Situ Data Logger was positioned slightly above the bottom (92.0 ft BTOC) of the extraction well MW-9 and well MW-6 (43.0 ft) to determine the extent of upwelling that may occur during the test.

During the first 2.0 hours of the test, the extraction induced vacuum remained constant at 25"H₂O with a well vapor flow of 11.91 scfm, which remained steady during the period. Outer well MW-6, which is located 43.0 ft from the extraction well, immediately recorded an increasing well vacuum from a pressure of (0.49) to a vacuum of 0.21"H₂O and continued on an increasing vacuum trend during the test period to 1.67"H₂O. Outer well MW-10 which is located 56.0 ft from the extraction well had an immediate reaction to the induced well vacuum, increasing to 1.32"H₂O during the test period. Well MW-16 which is located 84.0 ft from the extraction well had an immediate reaction to the induced well vacuum, increasing to 1.14"H₂O during the test period. Outer wells MW-5, MW-7 and MW-12 were not accessible at the start of the test. Accordingly, no data was recorded for these wells.

HORIBA[®] analytical data indicated the two influent vapor samples taken from the extraction well had TPH vapor concentrations of 83,120 and 80,300 ppmv, with CO₂ at 2.68 and 2.28%, CO at 5.28, and 5.05%, O₂ at 5.7 and 4.8% and H₂S at 4.1 and 3.1 ppm. The influent vapors were supplying 100% of the IC engine fuel. The HC levels were within the range normally found in soil gas samples collected from an area contaminated with gasoline and weathered gasoline.

At test hour 2.0, the test continued with the induced vacuum increased to $50^{\circ}H_2O$ and a well flow of 17.09 scfm. The test period was 3.0 hours with the extraction well induced vacuum and well vapor flow remaining mostly steady during the period. Outer well MW-6 continued on an increasing vacuum trend to 2.39"H₂O at test hour 2.0 and then increased for the next 2.5 hours to 3.22"H₂O. Outer well MW-10 continued to record an increasing vacuum trend to 1.61"H₂O at test hour 2 and then increased for the next 2.5 hours to 2.37"H₂O at test hour 4.5. Outer well MW-11 continued to record an increasing vacuum trend to 1.71"H₂O at test hour 2.0 and then increased for the next 2.5 hours to 2.86"H₂O at test hour 4.5. Outer wells MW-5, MW-7 and MW-2 became accessible at test hour 3.0. These wells recorded vacuums at test hour 3.0 and remained on an increasing trend through test hour 4.5. The ambient air temperature increased to 61.0°F and the barometric decreased from 29.98 to 29.89"Hg. The influent vapor temperature increased from 60.0 to 62°F.

Additional HORIBA[®] analytical data indicated the influent vapor samples recorded HC levels of 81,160, 75,330 and 78,010 ppmv, with CO₂ at 2.50, 2.30, 1.87, and 2.20%, CO at 4.26, 4.14, 3.76 and 5.56%, O₂ at 5.5, 5.3, 5.5, and 4.8% and H₂S at 0, 0, 0 and 2.0 ppm. The influent vapors continued to supply 100% of the IC engine's fuel.

At test hour 5.0, the test continued with the induced vacuum increased to $75"H_2O$ and a well flow of 17.18 scfm. The test period was 3.0 hours, and the extraction well induced vacuum and well vapor flow remained mostly steady. Outer well MW-6 vacuum increased to 3.49 "H₂O and continued on a mostly increasing trend for the remainder of the test. Outer well MW-10 continued to record an increasing vacuum trend to $3.91"H_2O$ at test hour 8.0. Outer wells MW-11, MW-5, MW-16, MW-7, and MW-2 recorded a mostly increasing trend from test hour 5 through the end of the test. The ambient air temperature increased to 63.0°F and the barometric pressure decreased to 29.82 "Hg. The influent vapor temperature decreased from 62 to 60°F.

Additional HORIBA[®] analytical data indicated the influent vapor samples recorded HC levels of 85,960, 86,750 and 85,960 ppmv, with CO₂ at 2.20, 2.62 and 2.10%, CO at 5.56, 5.80 and 4.78%, O₂ at 4.8, 5.2 and 5.4% and H₂S at 2.0 ppm. The influent vapors continued to supply 100% of the IC engine's fuel.

RADIUS OF INFLUENCE

Figure #1 indicates that the effective vacuum radius of influence from Test #SVE-2 would be from 40.68 to 45.96 ft, with extraction well flow of 16.0 to 17.5 scfm and extraction well vacuum in the 45 to 50"H₂O range. An approximation of the radius of influence may be obtained by determining the point at which the measured vacuum is 1.50 to 1.35"H₂O or approximately 3.0% of the average induced vacuum of 55.41"H₂O. It is assumed that beyond the lower point, the pressure gradient (driving force) is negligible to effectively transport vaporized contaminants to the extraction well. Under continuous operation, vacuum and radius of influence will most likely continue to increase horizontally and vertically.

The radius of influence calculation was affected by the high static well vacuums that were recorded prior to the start and after the conclusion of SVE Test #1. SVE Test #2 was performed after SVE Tests #2, SVE Test #3 and the SVE Quick Tests.

All ROI calculations are site specific. At this site, the projected ROI is based on approximately 6.0 ft of well screen available to the induced vacuum. This equates to approximately 2.65 scfm per foot of screen. With an induced vacuum in the 45 - 50" H_2O range, liquid most likely will continue to accumulate in the well.

The effective vacuum radius of influence is based on calculations and equations using a software program of which data was provided from an extensive database collected by AcuVac over a period of years. Each projection is based on the test data and site parameters, and takes into consideration such variables as barometric pressure oscillations and gauge error. Although we cannot provide total assurance of accuracy, past experience and results have proven these projections to be well within the acceptable range of accuracy.

To calculate MDP well placement, the equation we use is as follows: L= 2 ROI Cos 30° (L = distance between wells; ROI = radius of influence)

All other data, including the groundwater depth, well placement, extraction well screened intervals, induced vacuum and vapor well flow, and liquid recovery rate, must be considered in the final design for a Corrective Action Plan (CAP).

CONCLUSION

Pilot Tests are conducted to provide information on short term tests that can be projected into long term remedial plans. These feasibility tests indicated that Soil Vapor Extraction (SVE) should provide **the most effective method** of remediation for this facility. **The tests results provided sufficient data to project that certain wells are in vacuum communication with the selected extraction well.** The vacuum radius of influence defines the region within which the vapor in the vadose zone flows to the extraction well under the influence of a vacuum. The radius of influence depends on the soil properties of the vented zone, properties of surrounding soil layers, the depth at which the well is screened, well installation and the presence of any impermeable boundaries such as the water table, clay layers, surface seal, building basements and the presence of such areas as tank pits with backfill and underground utilities..

EMISSION DATA

During this Pilot Test, HORIBA[®] data indicated that the influent vapors had an average hydrocarbon level (TPH) of 81,565 ppmv. Using an average well flow of 15.91 scfm from this extended test, **the calculated emissions from** <u>one</u> **extraction well without vapor treatment were as follows:**

HC	=	424.05 lbs/day =	17.67 lbs/hr
Benzene (1%)	=	4.24 lbs/day =	0.18 lbs/hr

ADDITIONAL INFORMATION

The HORIBA® analytical instrument is calibrated with Hexane and CO₂.

The formula used to calculate the emission rate is: ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E⁻⁷ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

ATTACHED SCHEDULES AND FIGURES

- Figure #1: Plot of Observed Vacuum vs Distance at the Facility (ROI) at 3% of Induced Vacuum
- Table #1A: Well Data
- Table #1B: Extraction Well Operating Data
- Table #1C: Observation Well Operating Data
- Schedule A: Summary of Test Data
- Schedule B: Graphic Summary of Data
- Field Operating Data and Notes Test #SVE-2
- Site Photographs

TEST #SVE-3

PRE-TEST FUNCTIONS - TEST #SVE-3

Prior to starting this test, all the AcuVac systems were checked for normal and safe operation. The barometric and absolute pressure and ambient air temperature levels were recorded, depth to groundwater (78.91 ft BTOC) and depth to LNAPL (78.09ft BTOC), were recorded as in the vapor extraction well (MW-10) resulting in and an LNAPL thickness of 0.82 ft. Each magnehelic gauge was checked and calibrated to zero. The outer monitoring wells were plugged with expandable well plugs designed to accept the digital manometer. The data logger was installed in the extraction well (MW-10). The propane tank fuel level was recorded so that an accurate fuel consumption could be estimated for the total test period. The HORIBA® Analyzer was set for the local elevation and calibrated with SPAN gas, which consists of Hexane and C02. All required static/baseline data was recorded before engaging the SVE System and the required safety checks were performed on the System.

DISCUSSION OF DATA - TEST #SVE-3

It should be noted in Test SVE #3 that the actual well vacuums were lower that what was recorded due to the high static vacuums that were recorded prior to the start of the test.

Test #SVE-3, with vacuum extraction, was an 8.6 hour MDP test, including static well data, conducted from well MW-10 as the extraction well. Immediately prior to starting the test, the selected outer observation wells; MW-16 (49.0 ft), MW-9 (56.0 ft) and MW-17 (65.0 ft), MW-11 (85.0 ft), and MW-6 (99.0 ft) were recording vacuums ranging from 1.11"H₂O to 2.30 "H₂O. The high static vacuums on the wells is most likely the results of previous SVE Test and SVE Quick Tests, and the increase in barometric pressure from the conclusion of the QTs to the start of Test #SVE-3. On October 22, 2017, SVE Test #3 was performed on well MW-10. From the end of the Quick Tests which were performed on October 21, to the start of SVE Test #3, the barometric pressure had increased from 29.94 "Hg to 30.31 "Hg, or 5.04 "H₂O. This created high static vacuums at the start of SVE Test #3. To partially compensate for the increase in static well vacuums, the start of Test #3 was delayed 30 minutes. Well MW-18 (106.0 ft) was not accessible. The general weather conditions were clear and cool. At the start of the SVE test, the extraction induced vacuum was set at 25"H₂O, with an initial well vapor flow of 3.24 scfm.

An In-Situ Data Logger was positioned slightly above the bottom (92.0 ft BTOC) of the extraction well MW-10 and well MW-16 (49.0 ft) to determine the extent of upwelling that may occur during the test.

During the first 2.0 hours of the test, the extraction induced vacuum remained constant at 20"H₂O with a well vapor flow of 3.24 scfm, which remained mostly steady during the period. The changes in the well vapor flow related to increasing temperature of the influent vapors. Outer well MW-16, which is located 49.0 ft from the extraction well, immediately recorded an increasing well vacuum of 2.07"H₂O and continued on an increasing vacuum trend during the test period to 2.27"H₂O. Outer well MW-9 which is located 56.0 ft from the extraction well had an immediate reaction to the induced well vacuum, increasing to 2.73"H₂O during the test period. Well MW-17 which is located 65.0 ft from the extraction to the induced well vacuum, increasing to 2.64"H₂O

during the test period. Well MW-6 and MW-19 which are located 99.0 ft and 135.0 ft from the extraction well had an immediate reaction to the induced well vacuum, remained on an increasing trend during the test period. Outer well MW-18 was not accessible at the start of the test. Accordingly, no data was recorded for this well.

HORIBA[®] analytical data indicated the two influent vapor samples taken from the extraction well had TPH vapor concentrations of 82,100 and 79,340 ppmv, with CO₂ at 1.30 and 1.30%, CO at 5.22 and 4.08%, O₂ at 5.9 and 5.7% and H₂S at 7.4 and 6.3 ppm. The influent vapors were supplying approximately 70% of the IC engine fuel. The HC levels were within the range normally found in soil gas samples collected from an area contaminated with gasoline and weathered gasoline.

At test hour 2.0, the test continued with the induced vacuum increased to $40"H_2O$ and a well flow of 4.40 scfm. The test period was 3.0 hours with the extraction well induced vacuum and well vapor flow remaining mostly steady during the period. Outer well MW-16 continued on an increasing vacuum trend to 2.32"H₂O at test hour 2.5 and then increased until test hour 3.0 to 2.53"H₂O and then started a mostly decreasing trend until test hour 5.0. Outer well MW-9 continued to record an increasing vacuum trend to 2.83"H₂O at test hour 2.5 and then decreased through test hour 4.5 to 2.31"H₂O. Outer well MW-17 continued to record an increasing vacuum trend to 1.71"H₂O at test hour 2 and then decreased for the next 2.5 hours to 2.24"H₂O at test hour 4.5. Outer wells MW-5, MW-7 and MW-2 became accessible at test hour 3.0. These wells recorded vacuums at test hour 3.0 and remained on an increasing trend through test hour 4.5. The ambient air temperature increased to 56.0°F and the barometric was steady at 30.32"Hg. The influent vapor temperature increased from 56.0 to 62°F.

Additional HORIBA[®] analytical data indicated the influent vapor samples recorded HC levels of 84,180, 83,050, 89,380 and 80,120 ppmv, with CO₂ at 1.22, 1.10, 1.33, and 1.14%, CO at 5.18, 4.72, 5.92 and 4.60%, O₂ at 6.0, 6.2, 6.8, and 5.4% and H₂S at 6.1, 3.4, 2.0 and 2.0 ppm. The influent vapors continued to supply 80% of the IC engine's fuel.

At test hour 5.0, the test continued with the induced vacuum increased to $60"H_2O$ and a well flow of 5.91 scfm. The test period was 3.0 hours, and the extraction well induced vacuum and well vapor flow remained mostly steady. Outer well MW-16 vacuum decreased to 2.08"H₂O and continued on a mostly decreasing trend for the remainder of the test. Outer well MW-9 continued to record a decreasing vacuum trend to 1.69"H₂O at test hour 8.0. Outer well MW-17 continued to record a decreasing vacuum trend to 1.45"H₂O at test hour 8.0. Outer wells MW-11, MW-6, MW-18, and MW-19 recorded a mostly decreasing trend from test hour 5 through the end of the test. The ambient air temperature increased to 59.0°F and the barometric pressure decreased to 30.24"Hg. The influent vapor temperature increased from 64 to 66°F.

Additional HORIBA[®] analytical data indicated the influent vapor samples recorded HC levels of 87,050, 92,080, 87,830 and 91,690 ppmv, with CO₂ at 0.80, 0.78, 1.10, and 1.32%, CO at 6.46, 4.23, 6.30 and 5.69%, O₂ at 5.2, 5.2, 5.7, and 5.6% and H₂S at 2.0 ppm. The influent vapors continued to supply 90% of the IC engine's fuel.

RADIUS OF INFLUENCE

Figure #1 indicates that the effective vacuum radius of influence from Test #SVE-3 would be from 26.24 to 31.01 ft, with extraction well flow of 4.8 to 5.9 scfm and extraction well vacuum in the 50 to 55"H₂O range. An approximation of the radius of influence may be obtained by determining the point at which the measured vacuum is 1.50 to 1.65"H₂O or approximately 3.0% of the average induced vacuum of 52.53"H₂O. It is assumed that beyond the lower point, the pressure gradient (driving force) is negligible to effectively transport vaporized contaminants to the extraction well. Under continuous operation, vacuum and radius of influence will most likely continue to increase horizontally and vertically.

It should be noted in Test SVE #3 that the actual well vacuums were lower that what was recorded due to the high static vacuums that were recorded prior to the start of the test.

All ROI calculations are site specific. At this site, the projected ROI is based on approximately 6.0 ft of well screen available to the induced vacuum. This equates to approximately 0.79 scfm per foot of screen. With an induced vacuum in the 50 - 55"H₂O range, liquid most likely will continue to accumulate in the well.

The effective vacuum radius of influence is based on calculations and equations using a software program of which data was provided from an extensive database collected by AcuVac over a period of years. Each projection is based on the test data and site parameters, and takes into consideration such variables as barometric pressure oscillations and gauge error. Although we cannot provide total assurance of accuracy, past experience and results have proven these projections to be well within the acceptable range of accuracy.

To calculate MDP well placement, the equation we use is as follows:

L= 2 ROI Cos 30° (L = distance between wells; ROI = radius of influence)

All other data, including the groundwater depth, well placement, extraction well screened intervals, induced vacuum and vapor well flow, and liquid recovery rate, must be considered in the final design for a Corrective Action Plan (CAP).

CONCLUSION

Pilot Tests are conducted to provide information on short term tests that can be projected into long term remedial plans. These feasibility tests indicated that Soil Vapor Extraction (SVE) should provide **the most effective method** of remediation for this facility. **The tests results provided sufficient data to project that certain wells are in vacuum communication with the selected extraction well.** The vacuum radius of influence defines the region within which the vapor in the vadose zone flows to the extraction well under the influence of a vacuum. The radius of influence depends on the soil properties of the vented zone, properties of surrounding soil layers, the depth at which the well is screened, well installation and the presence of any impermeable boundaries such as the water table, clay layers, surface seal, building basements and the presence of such areas as tank pits with backfill and underground utilities..

EMISSION DATA

During this Pilot Test, HORIBA[®] data indicated that the influent vapors had an average hydrocarbon level (TPH) of 81,565 ppmv. Using an average well flow of 15.91 scfm from this extended test, **the calculated emissions from** <u>one</u> **extraction well without vapor treatment were as follows:**

HC	=	132.55 lbs/day =	5.52 lbs/hr
Benzene (1%)	=	1.33 lbs/day =	0.06 lbs/hr

ADDITIONAL INFORMATION

The HORIBA® analytical instrument is calibrated with Hexane and CO₂.

The formula used to calculate the emission rate is: $ER = HC (ppmv) \times MW (Hexane) \times Flow Rate (scfm) \times 1.58E^{-7} (min)(lb mole) = lbs/hr (hr)(ppmv)(ft^3)$

ATTACHED SCHEDULES AND FIGURES

- Figure #1: Plot of Observed Vacuum vs Distance at the Facility (ROI) at 3% of Induced Vacuum
- Table #1A: Well Data
- Table #1B: Extraction Well Operating Data
- Table #1C: Observation Well Operating Data
- Schedule A: Summary of Test Data
- Schedule B: Graphic Summary of Data
- Field Operating Data and Notes Test #SVE-3
- Site Photographs

WELL DATA TEST #SVE-1 TABLE #1A

Location: Shamrock #63, Santa Fe, NM											
Project Date 10/23/2017		MW-6	MW-9	MW-7	MW-5	MW-11	MW-10	MW-2			
Well Data											
TD	ft	90.0	92.0	90.0	90.0	92.0	92.0	90.0			
Screen	ft	70.0 90.0	72.0- 92.0	70.0 90.0	75.0 - 90.0	72.0- 92.0	72.0- 92.0	75.0 - 90.0			
Well Size	in	2.0	2.0	2.0	2.0	2.0	2.0	2.0			
Distance From EW	ft	0	43.0	49.0	50.0	73.0	99.0	100.00			
Static Basleine Data- Start	"H ₂ O	-	0.90	ND	ND	0.41	0.51	ND			
Static Basleine Data- Start	"H2O	-	2.05	2.15	1.90	2.05	1.95	1.79			

ND- No Data Recorded

EXTRACTION WELL MW-6 OPERATING DATA TEST #SVE-1 TABLE #1B

Location: Shamrock #63, Santa Fe, NM												
				EXTRACT	ION WELL		OBSERVATION WELL					
				MV	V-6		MV	V-9				
Project Date 10/22	2/2017	Unito	DTGW	GWU (GWD)	Vacuum	Vapor Flow	DTGW	GWU (GWD)				
Well Data	5/2017	Units	Brom	(6115)	1120		Dion	(0112)				
		ft bas	90.0	_	_	_	92.00	_				
Screen		ft	70.0 - 90.0	_	_	_	72.0 - 92.0	_				
Well Size		in	2.0	_	_	_	2.0	_				
Static Data- 0750 H	Irs											
DTGW		ft bgs	82.33	-	-		79.90	-				
DTGW Hydro Ec	quivalent	ft bgs	81.68	-	-		79.46	-				
DTNAPL		ft bgs	81.45	-	-		79.30	-				
NAPL		ft bgs	0.88	-	-		0.60	-				
Drawdown Data												
Data Logger	0620 hrs	Static ft	7.88	-	-	-	9.87	-				
Data Logger	0630 hrs	Start ft	7.49	(0.39)	25	4.72	9.90	0.03				
Data Logger	0700 hrs	ft	7.68	(0.20)	25	4.72	9.92	0.05				
Data Logger	0730 hrs	ft	7.68	(0.20)	25	4.71	9.93	0.06				
Data Logger	0800 hrs	ft	7.68	(0.20)	25	4.71	9.93	0.06				
Data Logger	0830 hrs	ft	7.28	(0.60)	50	6.94	9.95	0.08				
Data Logger	0900 hrs	ft	7.62	(0.26)	50	7.35	9.96	0.09				
Data Logger	0930 hrs	ft	7.65	(0.23)	50	7.35	9.96	0.09				
Data Logger	1000 hrs	ft	7.66	(0.22)	50	6.54	9.97	0.10				
Data Logger	1030 hrs	ft	7.62	(0.26)	50	6.54	9.98	0.11				
Data Logger	1100 hrs	ft	7.63	(0.25)	50	6.54	9.98	0.11				
Data Logger	1130 hrs	ft	7.60	(0.28)	75	7.78	9.99	0.12				
Data Logger	1200 hrs	ft	7.64	(0.24)	75	7.78	9.99	0.12				
Data Logger	1230 hrs	ft	7.65	(0.23)	75	7.74	10.00	0.13				
Data Logger	1300 hrs	ft	7.67	(0.21)	75	7.74	10.01	0.14				
Data Logger	1330 hrs	ft	7.69	(0.19)	75	7.74	10.01	0.14				
Data Logger	1400 hrs	ft	7.69	(0.19)	75	7.72	10.01	0.14				
Data Logger	1430 hrs	Stop ft	7.69	(0.19)	75	7.72	10.02	0.15				
Data Logger	1500 hrs	Static ft	7.72	(0.16)	-		9.95	0.08				
DTGW	1500 hrs		81.82	-	-		80.37	-				
DTGW Hydro Ec	81.60	-	-		79.66	-						
DTNAPL	81.52	-	_		79.41	-						
NAPL			0.30	-	-		0.96	-				
Average GW Upw	velling / (Depressio	on)	-	(0.26)				0.10				

OBSERVATION WELLS INDUCED HYDRAULIC GRADIENT DATA TEST #SVE-1 TABLE #1C

Location: Shamrock #63, Santa Fe, NM												
Project Date 10/23/2017		MW-6	MW-9	MW-7	MW-5	MW-11	MW-10	MW-2				
Well Data												
TD	ft	90.0	92.0	90.0	90.0	92.0	92.0	90.0				
Screen	ft	70.0 90.0	72.0- 92.0	70.0 90.0	75.0 - 90.0	72.0- 92.0	72.0- 92.0	75.0 - 90.0				
Well Size	in	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
Distance From EW	ft	0	43.0	49.0	50.0	73.0	99.0	100.00				
Static/Start Data - 0620 hrs	Static/Start Data - 0620 hrs											
DTGW	ft	82.33	79.90	82.43	81.14	77.79	78.72	82.07				
DTGW - Hydro Equivalent	ft	81.68	79.46	82.43	81.14	77.79	78.31	82.07				
DTNAPL	ft	81.45	79.30	-	-	-	78.17	-				
NAPL	ft	0.88	0.60	-	-	-	0.55	-				
Drawdown Data - 1500 hrs												
DTGW	ft	81.82	80.37	82.35	81.08	77.82	78.73	82.02				
DTGW - Hydro Equivalent	ft	81.60	79.66	82.35	81.08	77.82	78.26	82.02				
DTNAPL	ft	81.52	79.41	-	-	-	78.09	-				
LNAPL	ft	0.30	0.96	-	-	-	0.64	-				
Change ion Hydro Equavalent	ft	0.08	(0.20)	0.08	0.06	(0.03)	0.06	0.05				

Specific Gravity .74

SCHEDULE A TEST #SVE-1 SUMMARY TEST DATA

Shamrock #63 Santa Fe, NM October 23, 2017

			DATA ELEMENT							
		STATIC	START	1	2	3	4	5		
	Units	6:20	6:30	7:00	7:30	8:00	8:30	9:00		
Influent Vapor Data	[
Horiba TPH	ppmv	ND	ND	ND	55,770	75,720	77,870	74,890		
Horiba CO ₂	%	ND	ND	ND	2.06	2.54	2.40	2.10		
Horiba CO	%	ND	ND	ND	1.78	4.22	4.36	4.34		
Lumidor O ₂	%	ND	ND	ND	6.9	5.7	5.9	5.5		
Lumidor H_2S	ppm	ND	ND	ND	3.1	2.1	2.0	2.0		
Influent Vapor	°F	OFF	50.0	52.0	54.0	54.0	56.0	56.0		
Extraction Well- We	ell SVE-1		•		•					
Well Flow	scfm	0.00	4.72	4.72	4.71	4.71	6.94	7.35		
Well Vacuum	"H ₂ O	OFF	25.0	25.0	25.0	25.0	50.0	50.0		
Observation Well D	ata- Vacı	um (Pressu	re)							
MW-9 - 43.0 ft	"H₂O	0.90	0.94	0.99	1.15	1.83	2.16	2.35		
MW-7 - 50.0 ft	"H ₂ O	ND	ND	ND	ND	ND	ND	ND		
MW-5 - 49.0 ft	"H ₂ O	ND	ND	ND	ND	ND	ND	ND		
MW-11 - 73.0 ft	"H ₂ O	0.41	0.72	1.01	1.27	1.34	1.71	1.87		
MW-10 - 99.0 ft	"H ₂ O	0.51	0.62	0.88	1.10	1.26	1.56	1.75		
MW-2 - 100.0 ft	"H ₂ O	ND	ND	ND	ND	ND	ND	ND		
ATMOSPHERIC DA	TA									
Barometric Pressure	"Hg	30.31	30.31	30.31	30.31	30.32	30.32	30.34		
Absolute Pressure	"Hg	23.73	23.73	23.73	23.73	23.73	23.73	23.75		

() Indicates Well Pressure

SCHEDULE A TEST #SVE-1 SUMMARY TEST DATA

Shamrock #63 Santa Fe, NM October 23, 2017

				D	ATA ELEMEN	NT		
		7	8	9	10	11	12	13
	Units	9:30	10:00	10:30	11:00	11:30	12:00	12:30
Influent Vapor Data	ı		-	-	-	-		-
Horiba TPH	ppmv	ND	77,550	ND	76,240	82,700	79,980	ND
Horiba CO ₂	%	ND	2.53	ND	2.47	2.60	4.58	ND
Horiba CO	%	ND	4.48	ND	4.40	5.34	1.72	ND
Lumidor O ₂	%	ND	5.7	ND	8.9	6.9	6.7	ND
Lumidor H_2S	ppm	ND	2.1	ND	3.0	3.0	3.0	ND
Influent Vapor	°F	56.0	56.0	58.0	60.0	60.0	60.0	62.0
Extraction Well- We	ell SVE-1		•	•	•	•	•	•
Well Flow	scfm	7.35	6.54	6.52	6.51	7.75	7.75	7.74
Well Vacuum	"H ₂ O	50.0	50.0	50.0	50.0	75.0	75.0	75.0
Observation Well D	ata- Vacu	ium (Pressu	re)					
MW-9 - 43.0 ft	"H ₂ O	2.53	2.83	2.87	2.94	2.97	3.06	2.98
MW-7 - 50.0 ft	"H₂O	2.10	2.55	2.55	2.63	2.65	2.73	2.65
MW-5 - 49.0 ft	"H ₂ O	2.23	2.65	2.64	2.73	2.74	2.81	2.78
MW-11 - 73.0 ft	"H ₂ O	2.13	2.51	2.53	2.57	2.60	2.70	2.58
MW-10 - 99.0 ft	"H ₂ O	2.04	2.29	2.31	2.36	2.36	2.44	2.35
MW-2 - 100.0 ft	"H ₂ O	1.96	2.26	2.26	2.33	2.29	2.31	2.25
ATMOSPHERIC DA	TA		•	•	•		•	•
Barometric Pressure	"Hg	30.35	30.37	30.37	30.37	30.35	30.35	30.33
Absolute Pressure	"Hg	23.76	23.77	23.77	23.77	23.76	23.76	23.74

() Indicates Well Pressure

SCHEDULE A TEST #SVE-1 SUMMARY TEST DATA

Shamrock #63 Santa Fe, NM October 23, 2017

				D	ATA ELEMEI	NT		
		14	15	16	17	Static	Average	Maximum
	Units	13:00	13:30	14:00	14:30	15:00	Data	Data
Influent Vapor Data	a							
Horiba TPH	ppmv	81,110	ND	72,340	ND	ND	75,417	82,700
Horiba CO ₂	%	4.70	ND	3.52	ND	ND	2.95	4.70
Horiba CO	%	1.82	ND	1.28	ND	ND	3.37	5.34
Lumidor O ₂	%	6.5	ND	6.3	ND	ND	6.5	8.9
Lumidor H ₂ S	ppm	3.1	ND	2.0	ND	ND	2.5	3.1
Influent Vapor	°F	62	62	64	64	OFF	58	64
Extraction Well- W	ell SVE-1		•	•		•	•	
Well Flow	scfm	7.74	7.74	7.72	7.72	OFF	6.72	7.75
Well Vacuum	"H₂O	75.0	75.0	75.0	75.0	OFF	54.4	75.0
Observation Well D	Data- Vacu	ium (Pressui	re)					
MW-9 - 43.0 ft	"H₂O	2.96	2.91	2.95	2.79	2.02	2.42	3.06
MW-7 - 50.0 ft	"H ₂ O	2.60	2.51	2.54	2.38	2.16	2.54	2.73
MW-5 - 49.0 ft	"H₂O	2.72	2.65	2.67	2.53	1.99	2.65	2.81
MW-11 - 73.0 ft	"H₂O	2.57	2.51	2.52	2.35	2.05	2.09	2.70
MW-10 - 99.0 ft	"H₂O	2.30	2.26	2.27	2.13	1.95	1.90	2.44
MW-2 - 100.0 ft	"H₂O	2.18	2.07	2.09	1.97	1.79	2.18	2.33
ATMOSPHERIC DA	ATA							
Barometric Pressure	"Hg	30.32	30.31	30.30	30.28	30.27	30.33	30.37
Absolute Pressure	"Hg	23.73	23.72	23.72	23.71	23.70	23.74	23.77

() Indicates Well Pressure

SCHEDULE B Summary of TEST #SVE-1 Atmospheric Conditions

SCHEDULE B Summary of TEST #SVE-1 Influent Vapors

SCHEDULE B Summary of Test #SVE-1 **Recorded Well Vacuums**

Well Vapor Flow

SCHEDULE B Summary of Test #SVE-1 Recorded Well Vacuums

ſ

OPERATING DATA - TEST # SVE #1

PAGE #

ACUVAC SVE SYSTEM

Locatio	n: Shamrock #63, Santa Fe	e, NM	7		Project Mana	agers: Fauch	er/ Hendle
		10/23/17	•				
Diamete ID- 90.0 Vell Scr	er- 2.0" D Ft bas reen- 7 •,0 – 90.0 ft bgs	Time 0620 Hr Meter	Time 0630 Hr Meter	Time 0700 Hr Meter	Time 0730 Hr Meter	Time 0800 Hr Meter 874(Time 0830 Hr Mete
	Engine Speed	mar	2000	1500	1900	1900	202112
IGINE/BLOWER	Oil Pressure	nsi	2000	50	1000	1000	1800
	Water Temp	°E	170	120	50	50	50
	Alternator			100	120	120	120
NGIN	Intako Vac		19	19	17	11	19
Ξ		ng -0-	16	18	18	18	18
	Propane	ctn	90	85	80	80	0
	Extraction Well Vac. "H	120 OFF	25	25	25	25	50
E	Extraction Well Flow se	ofm off	4.72	4.72	4.71	4.71	6.94
HER	Influent Vapor Temp.	°F OFF	50	52	54	54	56
ATMOSPI VAPOR	Air Temp.	°F 43	44	44	44	44	44
	Barometric Pressure "	Hg 3031	30.31	30.31	30.31	30.32	30.32
	Absolute Pressure	'Hg 23. 73 ⁴	23.73	23.73	23.73	2373	23.73
	MW-9 34.0 ft "	H20 ,90	.94	.99	1.15	1.83	2.16
	MW-7 50.0 ft "	H20 ND	(IN	NO	ND	ND	ND
MUL	MW-5 56.0 ft "H	H20 ND	ND	ND	ND	ND	ND
VACI	MW-11 71.0 ft "	H20 .41	.72	1.01	1.27	1.34	1.71
ELL	MW-10 90.0 ft "H	120.51	.62	. 98	1.10	1.26	1.56
N NO	MW-2 106.0 ft "H	20 ND	ND	ND	ND	ND	NO
NITO	"	l ₂ O					
MO	"⊦	I ₂ O					
	"⊢	20					
	"⊢	20					
	SVE ON/O	F OFF	on	ON	ON	on	ON
CD	Data Logger	ft .7.88	7.49	7.68	7.68	7.68	7.28
NIFO	GW Upwelling く ひょうう	ft —	(.39)	6,207	(.207	(.207	6,607
MAN	Extraction Well DTNA	PL					
	Extraction Well DTG	W					

() Indicates Well Pressure

OPERATING DATA SVE PILOT TEST #1

PAGE____

ACUVAC SVE SYSTEM

Loc	ation: Sham	nrock #6	3, Santa Fe, N	M		Project Managers: Faucher/Hendle					
Date			10/23/17								
Time	9		0730	0800	0830						
ST	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA			
۳	Well No.		MW-6	mw-6	mw-6						
Ę	нс	ppmv	55,770	75,720	77,870						
LUEI	CO ₂	%	2.06	2.54	2,40						
SINF	со	%	1.78	4.22	4.36						
APOF	O ₂	%	6.9	5.7	5.9						
>	H ₂ S	ppm	3.1	2.1	2,0						
	0550 Hrs	Pos	MONED AC	WAR SYSTEM	NEAR WEL	1 mors-6.	OPENERA	ND GAUGED			
		war	LS MW-6,	AND MW-9.	INSTALLED	SVEMAN	FOLD ON W	ELL MW-6			
		AND	A DASA LOGG	EN MANIFOLI	ON MW-9.	OPONED, C	SAUGED AND	PWSGOD			
		ALL ACCESSIBLE WELLS - MW-11 AND MW-10. BP 30.31" Hg									
	0630 425	I TEST STARTED. INITIAL WELLVAC 25" ALD, WVF 4.72 SCFM, OBTAINED									
		MANOMETER READINGS ON OUTER WELLS - ALL RECORDED ENCREASE IN									
		VAG	UUM INFL	ENCE. GU	I IN MW-6	\$ 7.49 FT,	GW EN MW	-1 \$ TO 9.50FT			
	0700 HRS	BPS	READY AT 3	0.31" HG. AL	LOVTER WEL	IS RECORDER	D INCREASES	S IN VACUUM			
		INF	LUENCE F	20m.88 70	1.01" H20. G	W UPWELLIN	16 IN MW-6	7.68 Pr.			
	6730 HRS	BPS	TEADY AS 3	0.31"Hg. A	L OVTER WE	u RECORDER	DINCREASES	IN VACUUM			
		INF	LO ENCE FRO	m 1.1000	1.27 "H20. U	UELL VAPOR	SAMPLE OBT	AINED TPH			
		VAPON	2 CONCENTI	LADONS 55,	770 PBMV.						
	0800 Hrs	BPT	TU 30.32"	4 TPH COM	ICENTRATIONS	1 75,720 7	PM. OUTOR	WELLMW-9			
		VAC .	ENFLUENCE	1 TO 2-03,	ALL onter	OURA WEL	I VACUUM I	~ FLUENCE			
		Inc	ZEASED.								
	0830 Has	BP S.	RAADY AT 30.	32"HG. WE	LL VAC TTO	50 "Hz0, W1	IFTTO 6.96	. GW FW			
		mw-l	, IS BEING	FRAGMENTE	BYWELL	VAC, DEDU	IGNE PRES	SUREON			
		DLC	REATING A	IARANT G	W DEPRESS	ion. MAR	som era R	EADINGS			
		OBT	FIMED AT	0835 Hizs	- AU OUR	nweus	RECORDED	ENCREASES			
		In	VACUUM I	CAFLUENC	Ξ.						

OPERATING DATA - TEST # SVE #1 PAGE # 3

ACUVAC SVE SYSTEM

Location	n: Shamrock #63, Sar	nta Fe, NM	1		F	Project Mana	agers: Fauch	er/ Hendley
			10/22/17					
Diamete TD- 90.0 Well Scr	r- 2.0") Ft bgs een- 79.0 – 90.0 ft bgs		Time 0900 Hr Meter	Time 0930 Hr Meter	Time 1000 Hr Meter	Time 1030 Hr Meter	Time 1100 Hr Meter 82,49,5	Time 1/30 Hr Meter
EXTINC	Engine Speed	rpm	1800	1900	1800	1 800	1800	1900
VGINE/BLOWER	Oil Pressure	psi	50	50	50	50	50	50
	Water Temp	°F	125	125	125	130	130	130
	Alternator	Volts	14	14	14	14	14	14
ENGI	Intake Vac.	"Hg	18	18	13	18	18	18
	Propane	cfh	0	0	0	0	0	O
	Extraction Well Vac.	"H₂O	50	50	-50	50	50	75
n	Extraction Well Flow	scfm	7.35	7.35	6.54	6.52	4.51	7.75
HERE /AIR	Influent Vapor Temp.	°F	56	56	56	58	60	60
ATMOSPH VAPOR//	Air Temp.	°F	47	49	51	54	55	58
	Barometric Pressure	"Hg	30.34	30.35	30.37	30.37	30.37	30.35
	Absolute Pressure	"Hg	23.75	23.76	23.77	23.77	23.77	23.76
	MW-9 34.0 ft	"H ₂ O	7.35	2.53	2,83	2.87	2.94	2.97
	MW-7 50.0 ft	"H ₂ O	ND	2,10	2.55	2.55	2.63	2.65
MUU	MW-5 56.0 ft	"H ₂ O	ND	2.23	2.45	2.64	2.73	2.74
VAC	MW-11 71.0 ft	"H₂O	1.87	2.13	2,51	2.53	2.57	2.60
ELL	MW-10 90.0 ft	"H ₂ O	1.75	2.04	2.29	2.31	2.36	2.36
OR M	MW-2 106.0 ft	"H ₂ O	ND	1.96	2.26	2.26	2.33	2.29
LINC		"H ₂ O						
W		"H ₂ O						
		"H ₂ O						
	SVE	"H ₂ O	0.1	01	aul			ait
0	Data Logger	ft	712	7.65	7.66	7.67	7.63	760
MANIFOLD	GW Upwelling	ft	(.26)	(.23)	6.227	6.267	(.25)	1.287
	Extraction Well	DTNAPL						<u> </u>
	Extraction Well	DTGW						

() Indicates Well Pressure

OPERATING DATA SVE PILOT TEST #1

PAGE 4

ACUVAC SVE SYSTEM

Loc	tion: Shamrock #63, Santa Fe, NM Project Managers: Faucher/Hendl											
Date			10/23/17									
Time)		0900	1000	1100	1130						
ST	Instrument	ment HORIBA HORIBA HORIBA HORIBA HORIBA HORIBA HORIBA										
۳	Well No.		mas-6	MW-6	mw-6	mw-6						
F	НС	ppmv	74,890	77, 550	76,240	82,700						
LUE	CO ₂	%	2.10	2.53	2.47	2.60						
RINF	со	%	4.34	4.48	4.40	5.34						
APOF	O ₂	%	5.5	5.7	8.9	6.9						
>	H ₂ S	ppm	2.0	2.1	3.0	3.0						
	0900 Hrs	3Pr	30.34 "Hg	WELL FLOW	J 1 70 7. 835	CFM. Ulwer	undy En me	W-6 K.267 R.				
		TPHO	THE CONCENTRATIONS \$ FO TY, 890 POMV. ALL OUTOR RECORDED INCREASES									
		IN VACUUM INFLUENCE FROM 1.75 TO 2.35" 420										
-	5930 Has	BPP 30.35"Hg. ALLOUND? WELL RECORDED ENCREASES IN VACUUM										
		INFLUENCE FROM 1.56 TO 2.53"420										
	1000 Hrs	BPA	30.37 Hay	TPH VAPORS	1 77,550 PR	mr. wuff 6	. 54 scrm.	ALL OUTER				
		WELL	S RECORDE	D INCREAS	ED VACUUM	JAJ FLU ENCE	WHICH CON	10 BETHE				
		RESU	ILT OF PLIS	NG BP. I	NGREASE I	z BP = .2	s"H20					
	1030 408	3757	OHOV AT 30	37"44,007	na weas i	RECORDOD M	INOR ENGRE	EASES DECESSE				
		INI	ACUUM INF	WENCS.								
	1100	1325	TEANY AT	30.37" HG. 7	THE VAPOR CO	2 CENTRATO.	NS \$ 76,24	10 PPMV				
		ALLO	DUTENWEU	S RECORDER	SLIGHT I	SCREASES I	V racuum s	EN FLUENCE				
-	1130 1425	BPL	30.35 44	OBTAINED	WELL VAPO	R SAMPLE D	EFARE VA	coumt				
		TPHV	APORS 182,	700 PPMV.	INDUCED W	ELL VACT	15"H20, WV	F 1 7.78 Ser				
n-		OBTA	NOO MANO	menous Ar	1135 HRS. 4	JEU HAD M.	NOT RESPO	NSETO				
		Int	ZEASED VI	tc.								

OPERATING DATA - TEST # SVE #1 PAGE # 5

ACUVAC SVE SYSTEM

Locatio	n: Shamrock #63, Sar	nta Fe, NN	1	1		Project Mana	gers: Fauch	er/ Hendley	
Diamete D- 90.0 Vell Scr	or- 2.0") Ft bgs een- 79.0 – 90.0 ft bgs CTION WELL- MW-6		1200 Time 1200 Hr Meter 8250.5	Time /230 Hr Meter 825/.0	Time 1300 Hr Meter 8251.5	Time 1'330 Hr Meter 8252,0	Time 1900 Hr Meter 8252-5	Time 1430 Hr Meter 8253.0	1:
	Engine Speed	rpm	1800	(900	1800	1800	1800	1800	
WER	Oil Pressure	psi	50	50	50	50	60	50	
NOT	Water Temp	°F	135	135	135	140	140	140	
INE/B	Alternator	Volts	14	14	14	14	14	14	
ENG	Intake Vac.	"Hg	18	18	18	18	18	18	
<u> </u>	Propane	cfh	0	0	0	0	0	0	
	Extraction Well Vac.	"H2O	75	75	75	75	75	75	
- VACUUM ATMOSPHERE/ VAPOR/AIR	Extraction Well Flow	scfm	7.75	7.74	7.74	7.74	7.72	7.72	
	Influent Vapor Temp.	°F	60	62	62	62	64	64	
	Air Temp.	°F	59	61	61	62	63	65	
	Barometric Pressure	"Hg	30.35	30.33	30,32	30.31	30.30	30.28	30
	Absolute Pressure	"Hg	23.96	23.74	23.73	23.72	23.72	23.71	23.
	MW-9 34.0 ft	"H ₂ O	3.06	2.98	2.96	2.91	2.95	2.79	2.0
	MW-7 50.0 ft	"H₂O	2.13	2.65	2.60	251	2.54	2.38	2.1
MUN	MW-5 56.0 ft	"H₂O	2.81	7.78	2.72	2.65	2.67	2.53	1-
VAC	MW-11 71.0 ft	"H₂O	2,70	2.58	2.57	2.51	2.52	2.35	2.0
/ELL	MW-10 90.0 ft	"H ₂ O	2.44	2.35	2.30	2.26	2.27	2.13	1.9
OR V	MW-2 106.0 ft	"H ₂ O	2.31	2-25	2.18	2,07	2.09	1.97	1-7
DNIT		"H₂O							
MONITOR WELL VACUUM		"H ₂ O							
		"H ₂ O							
	SVE	"H ₂ O DN/OFF	00)	04	0.1	2	~.)	a Co	
q	Data Logger	ft	7.64	715	7.67	7.69	7.69	2.69	
IIFOL	GW Upwelling	ft	(,247	(.23)	(.21)	6,197	4.197	5.15)	
MAN	Extraction Well	DTNAPL							
	Extraction Well	DTGW							

() Indicates Well Pressure

OPERATING DATA SVE PILOT TEST #1

PAGE_6

ACUVAC SVE SYSTEM

Loc	ation: Sham	rock #6	3, Santa Fe, N	M		Project M	anagers: Fau	cher/Hendley
Date			10/23/17					
Time	9		1200	1300	1400			
ST	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA
٣	Well No.		mw-6	mw-6	mw -6			
F	нс	ppmv	79980	81,110	72 340			
LUE	CO ₂	%	4.58	4.70	3.52			
SINF	со	%	1.72	1.82	1.28			
APOF	O ₂	%	6.7	6.5	6,3			
>	H ₂ S	ppm	3.0	3,1	2.0			
	1200 Hizs	BPST	EADY AT 30.	35"Hg. TPH	4 VAPOR CON	CENTRAMON	+ 79, 980 A	PMV
		ALLO	UNRWEL	RECORDE	D AN INCRE	EASE IN TH	E VACUUM I	W FLUENCE
	1230 Has	BPY	30,33"Hg.	OUTR WI	EU RECORDES	D DECREASE	ES To VACU	IM IN RUEN
		MOST	W LIKELY	DUE TO DEC	AZE ASED TSP	(.28"H20)		
	1300 Has	BPJ	30.32 "46 -	THE VAPORS	1 81, 110 PPN	V. ALL OUT	erweu Ze	C012020
		SLIGH	500 DECRE	ASED VACU	UM EVPLUE	NCO.		
	1330 Hrs	BPL	30.31"49	ALL OUTER	WELLS CON	TINUE TO R	ECORD SUG	user
		DEGZ	FASING VAC	WM. ENFLU	ENCE.			
_	1400 H25	BPL	30.30 "HG.	RH VAPOT	25 \$ 72, 3404	PPMV. ALLO	NTENWEU	5120202020
		SLIG	How Inc	REASING V	Acuum Int	พรณร.		
	1430 Hay	BPG	30.29 46.	ALL OUTE	n wens in	2000000)	ECIZATED V	Acum
		INFL	NENCE.	TEST CON	CW DED.			
	1445425	STAZ	ner witht	MOST DISN	ANTWEUS	AND RECORD	OCO STATIC .	MANOMEDER
		READ	ing And L	JORKED In	170 WELLS	mw C An	omw-9.	
	1500	Comp	ieres Au	STARC RE	Adings. Se	ECUREN AU	wens.	
		DEPA	LAD SITE	•				

SHAMROCK #63 TEST SVE #1 SANTA FE, NM

SHAMROCK #63 TEST SVE #1 SANTA FE, NM

OBSERVATION WELLS INDUCED HYDRAULIC GRADIENT DATA TEST #SVE-2 TABLE #1A

Location: Shamrock #63, Sar	nta Fe, NN	Λ						
Project Date 10/20/2017	MW-6	MW-9	MW-5	MW-7	MW-11	MW-10	MW-2	
Well Data								
TD	ft	90.0	92.0	90.0	90.0	92.0	92.0	90.0
Screen	ft	70.0 90.0	72.0- 92.0	70.0 90.0	75.0 - 90.0	72.0- 92.0	72.0- 92.0	75.0 - 90.0
Well Size	in	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Distance From EW	ft	0	43.0	49.0	50.0	73.0	99.0	100.00
Static Basleine Data- Start	"H ₂ O	-	0.90	ND	ND	0.41	0.51	ND
Static Basleine Data- Start	"H₂O	-	2.05	2.15	1.90	2.05	1.95	1.79

ND- No Data Recorded

EXTRACTION WELL MW-6 OPERATING DATA TEST #SVE-2 Table #1B

Location: Shamrock #63, Santa Fe, NM										
				EXTRACT	OBSERVATION WELL					
				MV	V-9		MW-6			
Project Date 10/20	/2017	Units	DTGW	GWD GWU	Vacuum "H₂O	Vapor Flow SCFM	DTGW	GWD GWU		
Well Data										
TD		ft bgs	92.0	-	-	-	90.00	-		
Screen		ft	72.0 - 92.0	-	-	-	70.0 - 90.0	-		
Well Size		in	2.0	-	-	-	2.0	-		
Static Data- 0750 H	rs				•	•				
DTGW		ft bgs	79.53	-	-		82.02	-		
DTGW Hydro Eq	uivalent	ft bgs	79.20	-	-		80.80	-		
DTNAPL		ft bgs	79.34	-	-		81.32	-		
NAPL		ft bgs	0.19	-	-		0.70	-		
Drawdown Data										
Data Logger	0820 hrs	Start ft	13.08	-	-	-	7.65	-		
Data Logger	0830 hrs	ft	14.92	1.84	25	11.91	7.70	0.05		
Data Logger	0900 hrs	ft	14.83	1.75	25	11.91	7.72	0.07		
Data Logger	0930 hrs	ft	14.95	1.87	25	11.91	7.73	0.08		
Data Logger	1000 hrs	ft	14.89	1.81	25	11.91	7.74	0.09		
Data Logger	1030 hrs	ft	17.01	3.93	50	17.09	7.77	0.12		
Data Logger	1100 hrs	ft	17.20	4.12	50	17.09	7.79	0.14		
Data Logger	1130 hrs	ft	16.95	3.87	50	17.09	7.80	0.15		
Data Logger	1200 hrs	ft	16.97	3.89	50	17.09	7.54	(0.11)		
Data Logger	1230 hrs	ft	17.00	3.92	50	17.09	7.81	0.16		
Data Logger	1300 hrs	ft	16.90	3.82	50	17.09	7.82	0.17		
Data Logger	1330 hrs	ft	19.45	6.37	75	17.21	7.55	(0.10)		
Data Logger	1400 hrs	ft	18.61	5.53	75	17.18	7.86	0.21		
Data Logger	1430 hrs	ft	19.46	6.38	75	17.18	7.86	0.21		
Data Logger	1500 hrs	ft	18.94	5.86	75	17.18	7.88	0.23		
Data Logger	1530 hrs	ft	18.81	5.73	75	17.21	7.53	(0.12)		
Data Logger	1600 hrs	ft	19.06	5.98	75	17.21	7.88	0.23		
Data Logger	1630 hrs	Stop ft	18.55	5.47	75	17.21	7.00	(0.65)		
Data Logger	1700 hrs	Static ft	12.80	(0.28)	-	-	7.89	0.24		
DTGW	1700 hrs		79.86	-	-	-	81.95	-		
DTGW Hydro Eq	uivalent		79.32	-	-	-	81.51	-		
DTNAPL			79.13	-	-	-	81.36	-		
NAPL			0.73	-	-	-	0.59	-		
Average GW Upwe	elling / (Depressio	n)	-	4.24	-	-		0.05		

OBSERVATION WELL DATA TEST #SVE-2 TABLE #1C

Location: Shamrock #63, Santa F	e, NM								
Project Date 10/20/2017		MW-9	MW-6	MW-10	MW-11	MW-5	MW-16	MW-7	MW-12
Well Data									
TD	ft	90.0	92.0	90.0	92.0	90.0	90.0	90.0	92.0
Screen	ft	70.0 90.0	72.0- 92.0	70.0 90.0	72.0- 92.0	75.0- 90.0	70.0 90.0	70.0 90.0	72.0 - 92.0
Well Size	in	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Distance From EW	ft	0	43.0	56.0	59.0	72.0	84.0	93.0	179.00
Static/Start Data - 0620 hrs									
DTGW	ft	79.53	82.02	78.57	77.62	80.93	76.30	82.29	76.12
DTGW - Hydro Equivalent	ft	79.39	81.50	78.14	77.62	80.93	76.30	82.29	76.12
DTNAPL	ft	79.34	81.32	77.99	-	-	-	-	-
NAPL	ft	0.19	0.70	0.58	-	-	-	-	-
Drawdown Data - 1500 hrs									
DTGW	ft	79.86	81.95	78.55	77.73	81.02	76.44	82.30	76.04
DTGW - Hydro Equivalent	ft	79.32	81.51	78.07	77.73	81.02	76.44	82.30	76.04
DTNAPL	ft	79.13	81.36	77.90	-	-	-	-	-
LNAPL	ft	0.73	0.59	0.65	-	_	-	-	-
Change ion Hydro Equavalent	ft	0.07	(0.01)	0.07	(0.11)	(0.09)	(0.14)	(0.01)	0.08

Specific Gravity .74

SCHEDULE A TEST # SVE-2 SUMMARY OF TEST DATA

				D	ATA ELEMEN	NT							
10/22/2017		STATIC	START	1	2	3	4	5					
	Units	8:20	8:30	9:00	9:30	10:00	10:30	11:00					
Influent Vapor Data													
Horiba TPH	ppmv	ND	ND	83,120	80,300	ND	81,160	75,330					
Horiba CO ₂	%	ND	ND	2.68	2.28	ND	2.50	2.30					
Horiba CO	%	ND	ND	5.28	5	ND	4	4.14					
Lumidor O ₂	%	ND	ND	5.7	4.8	ND	5.5	5.3					
Lumidor H ₂ S	ppm	ND	ND	4	3	ND	0	0					
Influent Vapor	°F	OFF	60.0	60.0	60.0	60.0	60.0	60.0					
Extraction Well- We	Extraction Well- Well SVE-1												
Well Flow	scfm	0.00	11.91	11.91	11.91	11.91	17.09	17.09					
Well Vacuum	"H ₂ O	OFF	25.0	25.0	25.0	25.0	50.0	50.0					
Observation Well Da	ata- Vacu	um (Pressu	re)										
MW-6 - 43.0 ft	"H₂O	(0.49)	0.21	1.03	1.38	1.67	2.39	2.85					
MW-10 - 56.0 ft	"H₂O	0.00	0.35	0.50	0.90	1.24	1.61	2.09					
MW-11 - 59.0 ft	"H₂O	(0.06)	0.23	0.70	1.03	1.32	1.71	2.44					
MW-5 - 72.0 ft	"H₂O	ND	ND	ND	0.71	1.15	1.68	2.14					
MW-16 - 84.0 ft	"H₂O	(0.03)	0.46	0.44	0.77	1.14	1.54	2.05					
MW-7 - 93.0 ft	"H₂O	ND	ND	ND	0.31	0.69	1.10	1.49					
MW-12 - 179.0 ft	"H ₂ O	ND	ND	ND	ND	ND	ND	ND					
ATMOSPHERIC DAT	ГА												
Barometric Pressure	"Hg	29.98	29.98	29.98	29.98	29.98	29.98	29.98					
Absolute Pressure	"Hg	23.46	23.46	23.46	23.46	23.46	23.46	23.46					

() Indicates Well Pressure

SCHEDULE A TEST SVE-2 SUMMARY OF TEST DATA

	DATA ELEMENT											
10/22/2017		7	8	9	10	11	12	13				
	Units	11:30	12:00	12:30	13:00	13:30	14:00	14:30				
Influent Vapor Data												
Horiba TPH	ppmv	ND	ND	78,010	ND	85,960	ND	86,750				
Horiba CO ₂	%	ND	ND	1.87	ND	2.20	ND	2.62				
Horiba CO	%	ND	ND	3.76	ND	5.56	ND	5.80				
Lumidor O ₂	%	ND	ND	5.5	ND	4.8	ND	5.2				
Lumidor H ₂ S	ppm	ND	ND	0.0	ND	2.0	ND	2.0				
Influent Vapor	°F	60.0	60.0	62.0	62.0	62.0	62.0	62.0				
Extraction Well- Well SVE-1												
Well Flow	scfm	17.09	17.09	17.06	17.06	17.18	17.18	17.18				
Well Vacuum	"H ₂ O	50.0	50.0	50.0	50.0	75.0	75.0	75.0				
Observation Well Da	ata- Vacu	ium (Pressu	re)									
MW-6 - 43.0 ft	"H ₂ O	3.12	3.15	3.21	3.22	3.49	3.62	4.00				
MW-10 - 56.0 ft	"H ₂ O	2.46	2.64	2.42	2.37	2.85	2.87	3.32				
MW-11 - 59.0 ft	"H ₂ O	2.73	2.72	2.82	2.86	3.05	3.07	3.49				
MW-5 - 72.0 ft	"H ₂ O	2.50	2.53	2.60	2.63	2.78	2.85	3.26				
MW-16 - 84.0 ft	"H ₂ O	2.68	2.53	2.45	2.66	2.74	2.85	3.17				
MW-7 - 93.0 ft	"H ₂ O	1.75	1.77	1.81	1.80	1.93	2.03	2.35				
MW-12 - 179.0 ft	"H ₂ O	0.06	0.25	0.22	0.23	0.21	0.24	0.41				
ATMOSPHERIC DAT	ГА											
Barometric Pressure	"Hg	29.97	29.95	29.91	29.89	29.87	29.86	29.85				
Absolute Pressure	"Hg	23.46	23.44	23.41	23.40	23.38	23.37	23.36				

() Indicates Well Pressure ND - No Recorded Data

SCHEDULE A TEST SVE-2 SUMMARY OF TEST DATA

				D	ATA ELEMEI	Т						
10/22/2017		14	15	16	17	Static	Average	Maximum				
	Units	15:00	15:30	16:00	16:30	17:00	Data	Data				
Influent Vapor Data												
Horiba TPH	ppmv	ND	81,890	ND	ND	ND	81,565	86,750				
Horiba CO ₂	%	ND	2.10	ND	ND	ND	2.32	2.68				
Horiba CO	%	ND	4.78	ND	ND	ND	4.83	5.80				
Lumidor O ₂	%	ND	5.4	ND	ND	ND	5.3	5.7				
Lumidor H ₂ S	ppm	ND	2.0	ND	ND	ND	1.7	4.1				
Influent Vapor	°F	62	60	60	60	OFF	61	62				
Extraction Well- We	Extraction Well- Well SVE-1											
Well Flow	scfm	17.18	17.21	17.21	17.21	OFF	15.91	17.21				
Well Vacuum	"H₂O	75.0	75.0	75.0	75.0	OFF	54.4	75.0				
Observation Well Da	ata- Vacu	ium (Pressu	re)									
MW-6 - 43.0 ft	"H₂O	4.12	4.27	4.43	4.39	1.45	2.97	4.43				
MW-10 - 56.0 ft	"H₂O	3.55	3.70	3.92	3.91	2.73	2.39	3.92				
MW-11 - 59.0 ft	"H₂O	3.66	3.80	3.98	4.01	2.51	2.57	4.01				
MW-5 - 72.0 ft	"H₂O	3.36	3.53	3.70	3.67	2.37	2.61	3.70				
MW-16 - 84.0 ft	"H₂O	3.38	3.52	3.70	3.76	2.54	2.34	3.76				
MW-7 - 93.0 ft	"H ₂ O	2.46	2.59	2.75	2.73	2.16	1.84	2.75				
MW-12 - 179.0 ft	"H ₂ O	0.49	0.64	0.76	0.75	0.75	0.39	0.76				
ATMOSPHERIC DA	ГА											
Barometric Pressure	"Hg	29.84	29.83	29.82	29.82	29.82	29.91	29.98				
Absolute Pressure	"Hg	23.36	23.35	23.34	23.34	23.34	23.41	23.46				

() Indicates Well Pressure

SCHEDULE B Summary of TEST #SVE-2 Atmospheric Conditions

SCHEDULE B Summary of TEST #SVE-1 Influent Vapors

SCHEDULE B Summary of ACUVAC TEST #SVE-1 Recorded Well Vacuums and/or Pressures

Induced Well Vacuum

F

OPERATING DATA - TEST # SVE #2 PAGE # /

ACUVAC SVE SYSTEM

Locatio	n: Shamrock #63, Sa	nta Fe, NM	1			Project Man	agers: Fauch	ner/ Hendle
Diamete TD- 92.0 Well Scr	er- 2.0" D Ft bgs reen- 72.0 – 92.0 ft bgs		10/20/17 Time 0820 Hr Meter	Time 0830 Hr Meter	Time 0900 Hr Meter	Time 0530 Hr Meter	Time 1000 Hr Meter	Time 1030 Hr Meter
EXTRAC	CTION WELL- MW-9		8220.0	8220.0	8720.5	0.1558	8221.5	8222.0
~	Engine Speed	rpm		2000	2000	2000	2000	2100
INE/BLOWER	Oil Pressure	psi		50	50	50	50	50
	Water Temp	°F		125	125	125	130	130
SINE/	Alternator	Volts		14	14	14	14	14
ENG	Intake Vac.	"Hg		14	14	14	14	14
	Propane	cfh		6	0	0	0	0
	Extraction Well Vac.	"H2O		25	25	25	25	50
ATMOSPHERE/ VAPOR/AIR	Extraction Well Flow	scfm		11.91	1491	11.91	11.91	17.09
	Influent Vapor Temp.	°F	OFF	60	60	60	60	60
	Air Temp.	°F	48	48	50	50	52	54
	Barometric Pressure	"Hg	29.98	29.98	29.58	29.98	29.98	29.98
	Absolute Pressure	"Hg	23.46	23.46	23.46	23.46	23.46	23.46
	MW-6 43.0 Fr	"H₂O	5.487	. 21	1.03	1.38	467	2.39
-	MW-10 56.0 ft	"H₂O	6	.35	.50	.90	1.24	1.61
WNn	MW-11 59.0 ft	"H ₂ O	4.067	, 23	.70	1.03	1.32	1.71
VACI	MW-5 72.0 ft	"H ₂ O	NO	es)	ND	.71	1.15	1.68
ELL	MW-16 84.0 ft	"H ₂ O	6.037	,46	.44	.77	1.14	1.54
RW	MW-7 84.0 ft	"H ₂ O	ND	(5	ND	.31	.69	1.10
NITO	MW-12 179.0 ft	"H ₂ O	ND	ND	ND	ND	ND	ND
WO		"H ₂ O						
		"H₂O						
		"H ₂ O						
	SVE (ON/OFF	OFF	ON	GN	ON	on	ON
CD	Data Logger	ft	13.08	44.92	14.83	14.95	14.89	17.01
ANIFO	GW Upwelling	ft	-	1.84	1.75	1.87	1.81	3.93
W	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

() Indicates Well Pressure

OPERATING DATA SVE PILOT TEST #2

PAGE 2

Loc	ation: Shan	nrock #6	3, Santa Fe, N	М		Project M	anagers: Fau	cher/Hendley			
Date)		10/20/17								
Tim	9		0900	0930	1030						
ST	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA			
۳	Well No.		mw-9	Mw-9	mw-q						
F	НС	ppmv	83,120	80, 300	81,160						
LUE	CO ₂	%	2.68	2.28	2.50						
SINF	со	%	5.28	5.05	4,26						
APOF	O ₂	%	5.7	4.8	5.5						
>	H ₂ S	ppm	4.1	3.1	0						
	0720 Has	ARRI	NED ON SINE	Position	DO THE ACUVAC	C SUSTEM NO	AN WELL MW	-9.			
		OPEN	BO WELLS M	NW-9 ADDN	w-6. GAUGE	D THE WEL	S AND PLACE	D UATA			
		LOGGERS IN OACH APPROXIMATELY 1,8" ABOVE WELL BOTTOM. OPENDO ALL									
		0072	wous, GA	JG OD THE W	EUS AND ENS	TALLED WEL	PWGS WITH	A VENT.			
	0820 Hay	OBTAI	men sond or c	DATA REAL	ounds BP 2	2.98" NG, A1	R TEMP 48	RECORDED			
		MANON	WEFER REA	DINGS Rom	ALL ONDEL	NEUS RANG	NG FRom (.4	57 TO O"H20			
	0830 Hrs	TEST	STARAZO. BP	STOADV AT	29.58" 44.00	BTAINED MA	Nomenon 2	EADINGS			
		ONA	uounarw	EUS A5 083	RSHRS. AUL	BUS RECORD	NEVAcom	ERWENG			
		RANG	why From .	21 70. 46" 4	4. Gw UPW	ELING IN W	EL Mar-9	1.84 Fr.			
		AND .	FUDICATES U	UEUS, WER	ENOT ACOS	SIBLE					
	Ogoo Hes	BPSD	SADV AT 29.	98"HG WV	F STEADY AT	11,91 scim.	ourshwit	u Inacos			
		VACU	UM INFLUED	NE INCREAS	FING ALLW	EUS RANGE	FROM . 40	TOLO3"Heo			
	0930 -	BP ST	EADY AT 25.9	18"Ha WVF	STEADU AT	11.91 Scim.	OUTOR WEL	CONTINUE			
	1000 Has	TO R	SSPOND TO S	VE INDUCED	VAcrum. As	TIDOO HAS AL	U WELL AQ	20587 1515			
		EXCEP	T mw-12.								
1	030 HRS	BPST	DADY AT 29.	.98"Hg In	CREASED WE	SUL VAC TO C	TO "HZO, EVVF	17.09 Scm			
		OBTAIN	30 MANOME	NON ROADA	45 AT 1035	HAS ALLOUT	scarsus R	ECORDED			
		Incre	EASES For V	Acron In	FLUENCE R	ANGING FRO	m 1.10 To 2	-39 "420			
		Cyw u	ANGCHNG	IN WELL ,	mw-9 117.	OIFT, A3	53 FT ENC	REASS			
		FROM	n STATIC,								

PERATING DATA - TEST # SVE #2	P
-------------------------------	---

PAGE # 3

ACUVAC SVE SYSTEM

Locatio	n: Shamrock #63, Sa	nta Fe, NM	1			Project Mana	gers: Fauch	er/ Hendle
			1dzdn					
Diamete FD- 92.0 Well Scr	er- 2.0") Ft bgs reen- 72.0 – 92.0 ft bgs		Time 100 Hr Meter	Time <u>// 3o</u> Hr Meter	Time 1200 Hr Meter	Time 1230 Hr Meter	Time 1300 Hr Meter	Time 1330 Hr Meter
EXTRAC	CTION WELL- MW-9		8222.5	8223.0	8223.5	8224.0	8224.5	8725.
	Engine Speed	rpm	2100	2100	2100	2100	2100	2000
E/BLOWER	Oil Pressure	psi	50	50	50	50	50	50
SLOV	Water Temp	°F	130	130	130	130	130	135
INE/E	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vac.	"Hg	14	14	14	14	14	14
	Propane	cfh	0	0	0	0	0	0
ATMOSPHERE/ VAPOR/AIR	Extraction Well Vac.	"H ₂ O	50	50	50	50	50	75
	Extraction Well Flow	scfm	17.09	17.09	17.09	17.0.6	17.0%	17.18
	Influent Vapor Temp.	°F	60	60	60	62	62	62
	Air Temp.	°F	54	57	58	59	60	61
	Barometric Pressure	"Hg	29.98	28-97	29.95	29.91	29.89	29.9
	Absolute Pressure	"Hg	23.46	23.46	23.44	23.41	23.40	23.38
	MW-6 34.0 ft	"H ₂ O	2.85	3.12	3.15	3.21	3.22	3.49
	MW-10 56.0 ft	"H ₂ O	2.09	2.46	2.64	2.42	2.37	2.85
MUN	MW-11 59.0 ft	"H ₂ O	2.44	2.73	2.72	2.82	2.86	3.05
VAC	MW-5 72.0 ft	"H ₂ O	2.14	2.50	2.53	2.60	2.63	2.78
ELL	MW-16 89:0 ft	"H ₂ O	2.05	2.68	2.53	2.45	2.46	2.74
N NO	MW-7 84.0 ft	"H₂O	1.49	1.75	1.77	1.81	1.80	1.93
NITO	MW-12 179.0 ft	"H₂O	ND	.06	, 25	,22	.23	.21
MO		"H ₂ O						
		"H ₂ O						
		"H ₂ O					1	
	SVE	ON/OFF	ON	ON	ON	ON	ON	02
OLD	Data Logger	ft	17.20	16.95	16.97	17,00	16.90	12.45
ANIFO	GW Upwelling	ft	412	3.87	3.89	3.92	3.82	6.37
MAN	Extraction Well	DTNAPL	-	1. 1. 1.				
	Extraction Well	DTGW						

() Indicates Well Pressure

OPERATING DATA SVE PILOT TEST #2

PAGE 4

Loc	ation: Sham	nrock #6	3, Santa Fe, N	IM		Project M	anagers: Fau	cher/Hendley			
Date			10/20/17								
Time)		1100	1230	1330						
ST	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA			
۳	Well No.		MW-9	mw-9	Mw-9						
Ę	нс	ppmv	75,330	78,010	85,960						
L'UEI	CO ₂	%	2.30	1.87	2.20						
R/INF	со	%	4.14	3.76	5.56						
APOI	O ₂	%	5.3	5.5	4.8			-			
>	H ₂ S	ppm	0	0	2.0						
u	ou this	BPS	TEADY AT 2	8.58"44 TP	H VAPOTES & T	5. 330 PPMV.	AUOVER	WELLS			
		RECO	Nes Ducz	SAS 20 VACU	IM IN FLUEN	KE.					
4	1130 Hizs	425 B2428.87"HG. ALL OUTOR WELLS RECORDED INCREASED VACUUM INFUE									
1	200 this	876 2	28.95"Hg 1	ALL OVER W	EUS Excop	MW-11 REC	corver sug	HT			
		ENCI	LEASES IN	VACUUM In	FLUENCE						
-	1230 Has	BPU	29.91" Hq.	TOTAL DECK	EASE SINCE	1100 HRS .	08 "4G. TPH	VADORS			
		178,	010 PPMV.	OUTER WEL	IS CONTINUE	ED TO RECORD	O INCREASE	D VACUUM			
		FASFLI	JENCE DESI	P. NE THE. 04	"HE DEGREAS	5 EJ 87.					
	1300 14725	BPYZ	7.89 "Hy we	eus mu-c i	ZECONDED A SI	LIGHT INCZ	EAST IN VAC	um			
		EN FL	NENCE M	s-10, mw, m	w- 1 & VACUN	M INFLUENC	3				
	1330 Hrs	BPH	29.87 44, 0	Ac 775" 42	O, WELL FLOR	17 17.18 SCA	m. ALL OUT	A			
		RECON	WED INCIL	ASE VACUN	n RESPONSE	RELAND TO	INCREASE	IN WELLVAR			
_											
-											

Г

OPERATING DATA - TEST # SVE #2

PAGE # 5

ocatio	on: Shamrock #63, Sar	nta Fe, NM	Λ			Project Man	agers: Fauch	er/ Hendley
			10/20/17					
Diamete D- 92.0 Vell Sc	er- 2.0" 0 Ft bgs reen- 72.0 – 92.0 ft bgs		Time 1400 Hr Meter	Time 1938 Hr Meter	Time 1500 Hr Meter	Time 1530 Hr Meter	Time 1600 Hr Meter	Time /6.30 Hr Meter
XTRA	CTION WELL- MW-9		8225.5	8226.0	8226.5	8222.0	8227.5	8728 0
	Engine Speed	rpm	2100	2100	2100	2100	2100	2100
ENGINE/BLOWER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	°F	135	140	135	135	135	135
SINE/	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vac.	"Hg	14	12	12	12	12	12
	Propane	cfh	0	0	0	0	6	0
	Extraction Well Vac.	"H ₂ O	75	75	75	75	75	75
E	Extraction Well Flow	scfm	17.18	17.18	17,18	17.21	17.21	17.21
ATMOSPHERE VAPOR/AIR	Influent Vapor Temp.	°F	62	62	62	60	60	60
	Air Temp.	°F	63	63	63	63	63	63
	Barometric Pressure	"Hg	29.86	29.85	29.84	29.83	29,82	29.82
	Absolute Pressure	"Hg	23.37	23.36	23.36	23.35	23.34	23.34
	MW-6 34.0 ft	"H ₂ O	3.62	4.00	4.12	4.27	4.43	4.39
	MW-10 56.0 ft	"H₂O	2.87	3.32	3.55	3.70	3.92	3-91
MUU	MW-11 59.0 ft	"H₂O	3.07	3.49	3.66	3.90	3.98	4.01
VAC	MW-5 72.0 ft	"H ₂ O	2,85	3.26	3.36	3.53	3.70	3.67
ELL	MW-16 89.0 ft	"H ₂ O	2.85	3.17	3.38	3.52	3.70	3.76.
N NO	MW-7 84.0 ft	"H₂O	2.03	2.35	2.46	2.59	2.75	2.73
NITC	MW-12 179.0 ft	"H ₂ O	.24	,41	.49	.64	:76	.75
ž		"H ₂ O						
		"H ₂ O						
		"H ₂ O						
	SVE C	DN/OFF	ON	ON	ON	ON	ON	OFF
OLD	Data Logger	ft	18.61	19,40	18.94	18.81	1206	18.55
ANIFO	GW Upwelling	ft	5.53	6.38	5.86	5.73	5.98	5.47
ź	Extraction Well D	TNAPL						
	Extraction Well	DTGW	\					

OPERATING DATA SVE PILOT TEST #2

PAGE_6

Loc	ation: Sham	nrock #6	3, Santa Fe, N	IM		Project M	anagers: Fau	cher/Hendley				
Date	1		10/20/17									
Time	9		1430	1530								
ST	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA				
Ë	Well No.		mw-9	mw-9								
Ę	нс	ppmv	86,750	81,890								
LUE	CO ₂	%	2.62	2.10								
R/INF	со	%	5.80	4.78								
APOF	O ₂	%	5:2	5.4								
>	H ₂ S	ppm	2.0	2.0								
	1400 Has	BPJ	28.80"He A	LOVTER WI	EUS RECEILU	न हादाम्झ	IN VACUUM	INFLUENCE				
	1430 HAVS	BP4 2	19.85 "HG A	LOUTER WE	US RECERCE	ED INCREASE	TO VAQUE IN	FWENCE				
	TOTAL DECREASE IN BP FROM START OF TEST , 13"HG. TPH VAPONS 186 20 Mm											
	1500 Has	Auo	WTER WELL	5 RECENTED 32	IN GREASE	D V.A.Cum	ENFW ENG	.				
	1530 425	BPt	2283 "HG	TOH VAPOR	1 \$ \$ 1, 890 P	PMV. ALLO	TA WELL	REanas				
		DUCZ	EASED VACU	m ENFLUER	ICE.							
	1600 HRS	BPF	2282"49,	ALLOVTONE	eus recorde	30 INCREAS	ED VACUUM I	2 FLUENCE				
		TOTAL	DECZEASE	TAN BP .0	4" 4G SINCE	1400 1425.						
	1630 H725	BPS	READY ATZ	9.92°Hg W	ELES MW - G	,10, 5,7 6	12 & MAAN	n Instructed				
		WELL	5 mw-11 \$	16 A VACON	IM INFLUEN	W. TEST	CONCLUDED.					
	1645 HAY	57452	RED WITH	WELL MW-1	2, RECORD	BD STANC	WELL VAC A	NO THEN				
		GAUC	AD WEU.	WORLED F	Zom Disson	IT WELLS T	TO WELLSM	w-9 Ano				
		mus-	6									
	1700	RECO	WED STATIC	DASA IN	wells mu	1-6 AND 9.						
_												

SHAMROCK #63 TEST SVE #2 SANTA FE, NM

SHAMROCK #63 TEST SVE #2 SANTA FE, NM

STATIC WELL DATA TEST #SVE-3 TABLE #1A

Location: Shamrock #63, Santa Fe, NM											
Project Date 10/22/2017		MW-10	MW-16	MW-9	MW-17	MW-11	MW-6	MW-18	MW-19		
Well Data											
TD	ft	92.0	90.0	92.0	90.0	92.0	90.0	90.0	90.0		
Screen	ft	72.0- 92.0	70.0 90.0	72.0- 92.0	70.0 90.0	72.0- 92.0	70.0 90.0	70.0 90.0	70.0 90.0		
Well Size	in	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		
Distance From EW	ft	0.0	49.0	56.0	65.0	85.0	99.0	106.0	135.00		
Static Basleine Data- Start	"H ₂ O	-	0.90	ND	ND	0.51	0.41	0.51	ND		
Static Basleine Data- Start	"H2O	-	2.05	2.15	1.90	1.95	2.05	1.95	1.79		

ND- No Data Recorded

EXTRACTION WELL MW-10 OPERATING DATA TEST #SVE-3 TABLE #1B

Location: Shan	_ocation: Shamrock #63, Santa Fe, NM											
EXTRACTION WELL									OBSERVATIO	N WELL		
						MM	/-10		MM	/-16		
						GWD	Vacuum	Vapor Flow		GWD		
Project Date 10/2	22/2017		Ur	nits	DTGW	GWU	"H₂O	SCFM	DTGW	GWU		
Well Data							[[
TD				ft bgs	92.0	-	-	-	90.00	-		
Screen				ft	72.0 - 92.0	-	-	-	70.0 - 90.0	-		
Well Size				in	2.0	-	-	-	2.0	-		
Static Data- 0750	Hrs											
DIGW				ft bgs	78.91	-	-		76.64	-		
DTGW Hydro E	Equivalent			ft bgs	77.48	-	-		76.64	-		
DTNAPL				ft bgs	78.09	-	-		-	-		
				ft bgs	0.82	-	-		-	-		
Drawdown Data	0000	h ar	Olard	0	40.00				40.00			
Data Logger	0820	nrs	Start	π	13.80	-	-	-	12.60	-		
Data Logger	0830	nrs		ft	15.29	1.49	20	3.24	12.60	0.00		
Data Logger	0900	hrs		ft	15.26	1.46	20	3.20	12.77	0.17		
Data Logger	0930	hrs		ft	15.34	1.54	20	3.20	12.75	0.15		
Data Logger	1000	hrs		ft	15.43	1.63	20	3.17	12.78	0.18		
Data Logger	1030	hrs		ft	16.33	2.53	40	4.39	12.78	0.18		
Data Logger	1100	hrs		ft	16.98	3.18	40	4.38	12.78	0.18		
Data Logger	1130	hrs		ft	16.98	3.18	40	4.37	12.78	0.18		
Data Logger	1200	hrs		ft	16.97	3.17	40	4.37	12.80	0.20		
Data Logger	1230	hrs		ft	17.01	3.21	40	4.37	12.80	0.20		
Data Logger	1300	hrs		ft	16.97	3.17	40	4.37	12.81	0.21		
Data Logger	1330	hrs		ft	18.36	4.56	60	5.91	12.83	0.23		
Data Logger	1400	hrs		ft	18.82	5.02	60	5.91	12.82	0.22		
Data Logger	1430	hrs		ft	18.80	5.00	60	5.91	12.80	0.20		
Data Logger	1500	hrs		ft	18.98	5.18	60	5.91	12.82	0.22		
Data Logger	1530	hrs		ft	18.81	5.01	60	5.90	12.85	0.25		
Data Logger	1600	hrs		ft	18.79	4.99	60	5.90	12.85	0.25		
Data Logger	1630	hrs	Stop	ft	18.77	4.97	60	5.90	12.85	0.25		
Data Logger	1700	hrs	Static	ft	13.86	0.06	-		12.67	0.07		
DTGW 1700 hrs					78.42	-	-		78.42	-		
DTGW Hydro E	Equivalent				78.39	-	-		78.42	-		
DTNAPL					78.38	-	-		-	-		
NAPL					0.04	-	-		-	-		
Average GW Up	welling				-	3.488	-			0.192		

OBSERVATION WELL DATA TEST #SVE-3 TABLE #1C

_ocation: Shamrock #63, Santa Fe, NM										
Project Date 10/22/2017		MW-10	MW-16	MW-9	MW-17	MW-11	MW-6	MW-18	MW-19	
Well Data										
TD	ft	92.0	90.0	92.0	90.0	92.0	90.0	90.0	90.0	
Screen	ft	72.0- 92.0	70.0 90.0	72.0- 92.0	70.0 90.0	72.0- 92.0	70.0 90.0	70.0 90.0	70.0 90.0	
Well Size	in	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Distance From EW	ft	0.0	49.0	56.0	65.0	85.0	99.0	106.0	135.00	
Static Data - 0620 hrs										
DTGW	ft	78.91	76.64	80.21	78.95	77.95	82.38	76.64	76.30	
DTGW - Hydro Equivalent	ft	78.30	76.64	79.60	78.95	77.95	81.67	76.64	76.30	
DTNAPL	ft	78.09	-	79.39	-	-	81.42	-	-	
NAPL	ft	0.82	-	0.82	-	-	0.96	-	-	
Static Data - 1500 hrs										
DTGW	ft	78.42	76.62	80.11	78.82	77.82	82.34	76.62	76.23	
DTGW - Hydro Equivalent	ft	78.39	76.62	79.51	78.82	77.82	81.64	76.62	76.23	
DTNAPL	ft	78.38	-	79.30	-	-	81.39	-	-	
LNAPL	ft	0.04	_	0.81	_	-	0.95	-	-	
Change ion Hydro Equavalent	ft	(0.09)	0.02	0.09	0.13	0.13	0.03	0.02	0.07	

Specific Gravity .74

SCHEDULE A Test # SVE-3 SUMMARY OF TEST DATA

		DATA ELEMENT									
		STATIC	START	1	2	3	4	5			
	Units	8:20	8:30	9:00	9:30	10:00	10:30	11:00			
Influent Vapor Data	l										
Horiba TPH	ppmv	ND	ND	82,100	ND	79,340	84,180	83,050			
Horiba CO ₂	%	ND	ND	1.30	ND	1.30	1.22	1.10			
Horiba CO	%	ND	ND	5.22	ND	4.08	5	4.72			
Lumidor O ₂	%	ND	ND	5.9	ND	5.7	6.0	6.2			
Lumidor H_2S	ppm	ND	ND	7	ND	6	6	3			
Influent Vapor	°F	OFF	37.0	48.0	50.0	56.0	56.0	60.0			
Extraction Well- We	ell SVE-1		•	•			•				
Well Flow	scfm	OFF	3.24	3.20	3.20	3.18	4.40	4.38			
Well Vacuum	"H ₂ O	OFF	20.0	20.0	20.0	20.0	40.0	40.0			
Observation Well D	ata- Vacu	um (Pressu	re)								
MW-16 - 49.0 ft	"H ₂ O	1.43	2.07	2.17	2.25	2.27	2.32	2.41			
MW-9 - 56.0 ft	"H ₂ O	2.27	2.60	2.66	2.69	2.73	2.70	2.83			
MW-17 - 65.0 ft	"H ₂ O	1.11	2.22	2.42	2.47	2.49	2.49	2.68			
MW-11 - 85.0 ft	"H ₂ O	1.95	2.48	2.64	2.63	2.64	2.64	2.77			
MW-6 - 99.0 ft	"H ₂ O	2.30	2.61	2.68	2.71	2.73	2.70	2.78			
MW-18 - 106.0 ft	"H ₂ O	ND	ND	ND	ND	ND	2.35	2.73			
MW-19 - 135.0 ft	"H ₂ O	0.00	1.21	1.96	2.31	2.12	2.34	2.49			
ATMOSPHERIC DA	ТА										
Barometric Pressure	"Hg	30.31	30.31	30.32	30.32	30.32	30.32	30.33			
Absolute Pressure	"Hg	23.72	23.72	23.73	23.73	23.73	23.73	23.74			

() Indicates Well Pressure

ND - No Recorded Data

SCHEDULE A TEST SVE-3 SUMMARY OF TEST DATA

				D	ATA ELEMEN	NT		
		7	8	9	10	11	12	13
	Units	11:30	12:00	12:30	13:00	13:30	14:00	14:30
Influent Vapor Data	1							
Horiba TPH	ppmv	ND	89,380	ND	80,120	87,230	92,080	ND
Horiba CO ₂	%	ND	1.33	ND	1.14	0.80	0.78	ND
Horiba CO	%	ND	5.92	ND	4.60	6	4.23	ND
Lumidor O ₂	%	ND	6.8	ND	5.4	5.2	5.2	ND
Lumidor H ₂ S	ppm	ND	2	ND	2	2	2	ND
Influent Vapor	°F	62.0	62.0	62.0	62.0	64.0	64.0	64.0
Extraction Well- We	ell SVE-1		•	•	•	•	•	•
Well Flow	scfm	4.37	4.37	4.37	4.37	5.91	5.91	5.91
Well Vacuum	"H₂O	40.0	40.0	40.0	40.0	60.0	60.0	60.0
Observation Well D	ata- Vacu	ium (Pressu	re)					
MW-16 - 49.0 ft	"H₂O	2.53	2.35	2.34	2.14	2.08	1.82	1.70
MW-9 - 56.0 ft	"H ₂ O	2.83	2.60	2.47	2.31	2.18	2.18	2.01
MW-17 - 65.0 ft	"H ₂ O	2.63	2.52	2.27	2.24	2.10	2.12	1.96
MW-11 - 85.0 ft	"H ₂ O	2.70	2.55	2.36	2.22	2.13	2.03	1.87
MW-6 - 99.0 ft	"H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MW-18 - 106.0 ft	"H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MW-19 - 135.0 ft	"H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ATMOSPHERIC DA	TA							
Barometric Pressure	"Hg	30.34	30.33	30.32	30.32	30.30	30.28	30.27
Absolute Pressure	"Hg	23.75	23.74	23.73	23.73	23.72	23.70	23.69

() Indicates Well Pressure

ND - No Recorded Data

SCHEDULE A TEST SVE-3 SUMMARY OF TEST DATA

SHAMROCK #63 SANTA FE, NM October 22, 2017

		DATA ELEMENT									
		14	15	16	17	Static	Average	Maximum			
	Units	15:00	15:30	16:00	16:30	17:00	Data	Data			
Influent Vapor Data	a			_			_	_			
Horiba TPH	ppmv	87,830	ND	91,690	ND	ND	85,700	92,080			
Horiba CO ₂	%	1.10	ND	1.32	ND	ND	1.14	1.33			
Horiba CO	%	6.30	ND	5.69	ND	ND	5.24	6.46			
Lumidor O ₂	%	5.7	ND	5.6	ND	ND	5.8	6.8			
Lumidor H ₂ S	ppm	2	ND	2	ND	ND	4	7			
Influent Vapor	°F	64	66	66	66	OFF	59	66			
Extraction Well- W	ell SVE-1										
Well Flow	scfm	5.91	5.90	5.90	5.90	OFF	4.73	5.91			
Well Vacuum	"H ₂ O	60.0	60.0	60.0	60.0	OFF	43.5	60.0			
Observation Well	Data- Vacu	um (Pressu	re)								
MW-16 - 49.0 ft	"H ₂ O	1.49	1.51	1.39	1.37	1.21	2.01	2.53			
MW-9 - 56.0 ft	"H ₂ O	1.82	1.75	1.70	1.69	1.48	2.34	2.83			
MW-17 - 65.0 ft	"H ₂ O	1.87	1.80	1.67	1.69	1.45	2.21	2.68			
MW-11 - 85.0 ft	"H ₂ O	1.74	1.69	1.64	1.57	1.54	2.25	2.77			
MW-6 - 99.0 ft	"H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
MW-18 - 106.0 ft	"H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
MW-19 - 135.0 ft	"H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
ATMOSPHERIC DA	TA										
Barometric Pressure	"Hg	30.26	30.25	30.24	30.24	30.24	30.30	30.34			
Absolute Pressure	"Hg	23.68	23.68	23.67	23.67	23.67	23.71	23.75			

() Indicates Well Pressure

ND - No Recorded Data

SCHEDULE B Summary of TEST #SVE-3 Atmospheric Conditions

SCHEDULE B Summary of TEST #SVE-3 Influent Vapors

SCHEDULE B Summary of TEST #SVE-3 Recorded Well Vacuums

Induced Well Vacuum

SCHEDULE B Summary of TEST #SVE-3 Recorded Well Vacuums

OPERATING DATA - TEST # SVE #3 PAGE # /

			10/22/17					
Diameter- 2.0" TD- 92.0 Ft bgs Well Screen- 72.0 – 92.0 ft bgs EXTRACTION WELL- MW-10		Time 0820 Hr Meter	Time 0830 Hr Meter 8296 5	Time 0900 Hr Meter 8292.0	Time 0930 Hr Meter 8257.5	Time 1000 Hr Meter 8298-0	Time 1030 Hr Meter 9259.8	
	Engine Speed	rpm		1800	1800	1900	1800	1800
LOWER	Oil Pressure	psi		50	50	50	50	50
	Water Temp	°F		(20	125	125	130	130
NE/B	Alternator	Volts		14	14	14	14	14
ENGI	Intake Vac.	"Hg		18	18	13	13	18
	Propane	cfh		105	105	105	105	90
	Extraction Well Vac.	"H ₂ O		20	20	20	20	40
	Extraction Well Flow	scfm		3.24	3.20	3.20	3.18	4.35
AIR	Influent Vapor Temp.	°F		37	40	50	56	58
ATMOSPH VAPOR/	Air Temp.	°F	35	35	36	42	44	46
	Barometric Pressure	"Hg	3031	30.31	30.32	30.32	30.32	30.32
	Absolute Pressure	"Hg	23.72	23.72	23.73	23.73	23.73	2373
	MW-16 - 49.0 ft	"H ₂ O	1.43	207	2.17	2.25	2.27	2.32
	MW-9 - 56.0 ft	"H₂O	2.27	260	2.66	2.69	2.73	2.70
WN	MW-17 65.0 FF	"H₂O	1.10	2.22	2.42	2.47	2.49	2.45
VACI	MW-11 85.0 FT	"H ₂ O	1.55	2.48	2.64	263	2.64	2.64
ELL	MW-6 590 FT	"H₂O	2.30	261	2.68	2.71	2.73	2.70
R W	MW -18 106 FT	"H ₂ O	NO	ND	~0	NO	ND	235
NITC	MW-18.1350 FT	"H₂O	0	1.21	1.96	2.31	2.12	234
MO		"H ₂ O						
		"H ₂ O						
		"H ₂ O						
	SVE OI	N/OFF	OFF	on	0~	no	NO	02
PD	Data Logger	ft	13.80	15.29	15.26	15.34	15.43	16.33
NIFC	GW Upwelling	ft		1.49	1.46	.54	1.63	2.53
MA	Extraction Well DT	NAPL						
	Extraction Well	DTGW						

OPERATING DATA SVE PILOT TEST # 3 PAGE 2

Loc	ation: Shar	mrock #6	3, Santa Fe, N	IM		Project M	anagers: Fau	cher/Hendley					
Date	9	_	10/22/17										
Time	9		0900	1000	1030								
ST	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA					
Ш Н	Well No.		mw-10	MW-10	MW-10								
INT	нс	ppm v	87,100	79,340	84,180								
LUE	CO2	%	1.30	1.30	1.22								
RVINF	со	%	5.22	4.08	5.18								
APO	O ₂	%	5.9	5.7	6.0								
~	H₂S	ppm	7,4	6.3	6.1								
(0630	ARR	VED ON SIT	E. AwVAc	SYSTEM P	REVIOUSLYPO	SITTONEDN	EAR MW-10.					
		OPENED MW-10 AND MW-16. GAUGED TITE WELLS, INSTALLED DATA											
		LOGGERS. OPENED ALL OTHER OUTER WELLS GAUGED THEM AND INSTALL											
		PLUGS WITH VENTS											
	0720	REM	OVED PLUG	VENTS AN	6 BTAINED	MANOMET	DA READING.	S. ALL WELLS					
		RECO	ROUNG VAD	Jums. RANG	Inly From 1.	27 TO 2.4-1	HZO. SVEW	EU MW-10					
		RECURDED 30 "H, O VACUUM ON THE MAGNETELIC GANGE, THE DECISION											
		WAS MADE TO REMOVE ALL WELL PLUGS AND RE-PLACE THEM AT 0820Hm											
		AND STATE THE TEST AT 0830 Hizs.											
0	820	0874	OBTAINED MANOMETER READINGS ON OUTRE WELLS RANGING FROM . 11 TO										
		2.30"	HZO VAENM.	BP 30.	3íHg								
6	830	TEST	ה הבתהאתב	P 30.31"HG	OBTANTO N	ANOMETER ;	READINGS A	+ 0835 Hps					
		AUW	EUS RESPON	NOST TO IND	NED WELL	OF 20" H20	. IN MAN	WELL From					
		3.24	SCFM.										
0	900	BPT	30.32"Hq	OUTER WE	US CONTAR	15 TO SAICRO	ASE VACUUM	ENFLUENAS					
		Aun	reus Record	NNG 1.96 TO	2.68"4								
1	030	IN DUG	39 WELL VAC	7 40" H20, 0	NVET TO 4.39	sam. we	LI VAPOR 087	azura					
		Imme	DIATELY PRI	OR TO WACU	Um INGREM	E. MANON	Eren Reto	1265					
		OBTAIN	NOD AT 1035	HRS. OUNAL	WELLS AIL	NOT RESPO	NO FMMBOI	ATTELY					
		TOTH	B FUCKEAS	5 IN VAC	cours. BP	STORDY AT	30.32° No						

OPERATING DATA - TEST # SVE #3

PAGE #3

ACUVAC SVE SYSTEM

Location	n: Shamrock #63, Santa F	e, NN				Project Mana	agers: Fauch	er/ Hendley
			10/22/17					
Diamete TD- 92.0 Well Scr	Diameter- 2.0" TD- 92.0 Ft bgs Well Screen- 72.0 – 92.0 ft bgs		Time 1100 Hr Meter	Time 1130 Hr Meter	Time 1200 Hr Meter	Time 1230 Hr Meter	Time 1300 Hr Meter	Time 1330 Hr Meter
EXTRAC	TION WELL- MW-10	_	8259.0	8299.5	8300-0	8301.5	8302.0	8302.5
	Engine Speed	rpm	1300	1800	1800	1800	1800	(800
INE/BLOWER	Oil Pressure	psi	50	50	50	50	50	50
	Water Temp	°F	130	130	130	130	130	130
	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vac.	"Hg	18	18	18	18	18	18
	Propane	cfh	90	90	90	90	90	65
	Extraction Well Vac.	"H ₂ O	40	40	40	40	40	60
11	Extraction Well Flow	scfm	4.38	4.37	4.37	4.37	4.37	5.91
HERE	Influent Vapor Temp.	°F	60	62	62	62	62	64
ATMOSPI VAPOR	Air Temp.	°F	45	50	52	54	56	57
	Barometric Pressure	"Hg	30.33	30.34	30.33	30.32	30.32	30-36
	Absolute Pressure	"Hg	23.74	23.75	23.74	2373	23.73	23.72
	MW-16 - 49.0 ft	"H₂O	2.41	2.53	2.35	2.34	2.14	2.08
6.1	MW-9 - 56.0 ft	"H ₂ O	2.83	2-83	2.60	2.47	2.31	2.18
MUM	MW-17-650 FF	"H ₂ O	268	2.63	2.52	2.27	2.24	2.10
VACI	MW-11 85.0 Fr	"H₂O	2.77	270	2.55	2.36	2.22	2.13
ELL	MW-6 98.0 FT	"H ₂ O	2.79	2.83	2.57	2.42	2.30	2.16
JR W	MW-18 106.0 FT	"H ₂ O	2.13	2.78	2,57	2.42	233	2.17
NITO	MW-19 136.0 FF	"H ₂ O	2.49	2.43	2.31	2.12	2.03	1.86
WO	· · · · · · · · · · · · · · · · · · ·	"H ₂ O		·				
		"H ₂ O						
		"H ₂ O						
	SVE ON/	OFF	ON	on	on	on	0~	ON
DLD	Data Logger	ft	16.98	16.98	16.97	17.01	16.97	18.36
NIFC	GW Upwelling	ft	3.18	3.18	3.17	3.21	3.17	4.56
W	Extraction Well DTN	APL						
	Extraction Well DT	GW						

() Indicates Well Pressure

OPERATING DATA SVE PILOT TEST #2

PAGE 4

Loc	ation: Sha	mrock #6	3, Santa Fe, N	M		Project Ma	anagers: Fau	cher/Hendley					
Date)		10/22/17										
Time	9		1100	1200	1300	1330							
ST	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA					
TE	Well No.		MW-10	mw-10	MW-10	mw-10							
NT	нс	ppm v	83,050	89.330	80,120	87,230							
LUE	CO ₂	%	1.10	1.33	114	80							
SUNF	со	%	4.72	5.92	4.60	6.46							
APOF	O ₂	%	6.2	6.8	5.4	5.2							
VF	H ₂ S	ppm	3.4	2,0	2.0	2.0							
	100	BP	RPT TO 3033"He WINF& 4. 28 5050 Dus TO PLOCULE & SUNS OF VILLAS OF										
		OU DAR WELL VAC IN FUIENCE RESPONSE MA AN ENCRESASSING TRAM											
		GUI UPWOTLING IN WELL MW-10 & TO 16. 98 FF. Coul infantions =											
		yw i	WEU MW-16 1 TO 12, 78 15										
ŀ	130	RPT	n 30.24 "H.	OURR IN	EUS RECERD	n Bort T. ICE	EASSS LOD	1202-45-6					
		TaluA	IN VACUUM ENFLUENCE, GW VPARELING EN WELL WAS STEADY.										
120	n m Ranil	L. BP.	BP+ 1200 HRS TO 30.35"He And + TO 30.32"He Ar 1780 HES ALL OWN										
100	0 10 1300 4	IN FILS	LIPRE OUCA	DECREASUL	a mass lav.	XACA DE	CULT OF TH	S FALLIN D					
		GULVE	WELLING IN	WELL AND -1	0 \$ 70 17.01	F Ar 1230	HITS Ann THE	N \$ 16.97 Ar					
		Rock	D<										
1-	330 Hrs	BPt	To 30, 30" He	, SVEWELL	VACT 60"H	O, WVF TTO	5,91 SCFM.						
1	335Hz	SVEL	TELL GW UI	WELLING +	TO 18.36 FT	OR 4.56 FF	UPW ELLING						
		OURAR DWD WOT RECORD ENCREASES EN VACUUM & S ENPRECTED MAST											
		LIKELY THE RESULT OF THE FALLING RP.											
	4												
								1					

OPERATING DATA - TEST # SVE #3

PAGE # 5

ACUVAC SVE SYSTEM

ocation:	Shamrock #63, Santa	a Fe, NN	1		Project Managers: Faucher/ Hend				
			10/22/17						
iameter- 2 D- 92.0 Ft /ell Scree	2.0" t bgs n- 72.0 – 92.0 ft bgs		Time 1400	Time 1430	Time 1500	Time 1530	Time 1600	Time 1630	
XTRACTI	ON WELL- MW-10		8303.0	8303.5	830%.0	830 4.5	83050	83as.s	
E	Engine Speed	rpm	1800	(800	1800	(800	1800	1800	
ER C)il Pressure	psi	50	50	50	50	50	50	
V SLOW	Vater Temp	°F	130	130	135	135	135	135	
A INE/E	Iternator	Volts	14	14	14	14	14	14	
ENG	ntake Vac.	"Hg	18	18	18	18	18	18	
F	ropane	cfh	70	60	60	60	60	60	
E	extraction Well Vac.	"H2O	60	60	66	60	60	60	
E	xtraction Well Flow	scfm	5.91	5.91	5.91	5.50	5.90	5.50	
HERE	nfluent Vapor Temp.	°F	64	64	64	66	66	66	
POR	ir Temp.	°F	58	58	58	58	59	60	
ATM B	arometric Pressure	"Hg	30.28	30.27	30.26	30,25	30.24	30.24	
A	bsolute Pressure	"Hg	23.70	23.65	23.69	23.68	23.67	23.67	
N	1W-16 - 49.0 ft	"H ₂ O	1.82	1.70	1.49	1.51	1.39	1.37	
N	1W-9 - 56.0 ft	"H ₂ O	2.18	2.01	1.92	1.75	1.70	1.69	
WNN N	1W-17 65.0.Fr	"H ₂ O	2.12	1.96	1.87	1.80	1.67	1.69	
VACI	1W-11 85.0 Fr	"H ₂ O	2.03	1.87	1.74	1.65	1.64	1.57	
≤ ELL	1W-6 98.0 F	"H ₂ O	2.10	1.93	1.80	1.75	1.67	1.60	
N N	1W-18 106 FF	"H ₂ O	2.13	1-57	1.79	1.75	1-71	1.67	
JUITO	nw-19 136.0 FF	"H ₂ O	1.92	1.66	1.54	1.52	1.45	1.41	
ž –		"H ₂ O	1						
		"H ₂ O							
		"H ₂ O							
S	VE Of	N/OFF	02	52	on	0~	ON	OFF	
	ata Logger	ft	18.92	18.80	18.98	18.81	18.79	18.77	
ANIF	W Upwelling	ft	5.02	5.0	5.18	5.01	4.99	4.97	
E E	xtraction Well DT	NAPL							
E	xtraction Well	DTGW							

() Indicates Well Pressure

OPERATING DATA SVE PILOT TEST #2

PAGE 6

Loc	ation: Sham	rock #6	3, Santa Fe, N	M		Project M	anagers: Fau	cher/Hendley
Date			10/22/17		1600			
Time	9		1400	1500	1600			
ST	Instrument		HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA
Ë	Well No.		Mw-10	mw-10	MW-10			
NT	НС	ppm v	92,080	87,830	91,690			
LUE	CO ₂	%	.78	(.10	1.32			
R/INF	со	%	4.23	6.30	5.69			
APO	O ₂	%	5.2	5.7	5,6			
>	H ₂ S	ppm	2.0	2.0	2.0			
1	400 HZS	BP	30.28"Hg	SVEWEU	UPWELLING	100 18.82	OR SOLF	· UPWELLING
		LEAV	ING APPROX	IMARELY I	1:0 F OF A	VAILABLE S	area. or	TERWEU
		VACI	UM ENFLU	ENCE DEG	reasing w	ISTLY LIKE	E IN RESPO	wse ro
		FALL	LING BP.		10-	1.1.a		
1	430 HRS	BPJ	30.27 "HG A	KOUTOR W	EUS RECOM	Was DECIZEN	ASED VACUM	DUFWENCE
1	Do His	BPJ	30.26 "46	TPH VAPOR	5 + 87, 830	PPMV ALL O	vrol weus	CONTINUE
11		TOR	ECOND DELRE	ASON VACU	UM INFLUE	ENCE		
	1530 Has	BPt	30.25 Hg .	TOTAL DECI	ZEASE SINC	E 1400 Hay	. 03 "HG. OU	TER WEUS
		RECON	was decre	ASED VACU	UM INFLUER	UCE.		
	1600 His	BPJ	30.24"46	TPA VARON	1 F FI, 680	PPMV. ALL C	WTERWEUS	RECORDOD
		DECR	EASED VACUU	M INFLUE	NCE.			
	1630HRS	BP 5	TEADY AT 30	.24 . 4 AL	LOUTER WE	US RECORDE	A. DEGREASE	DVAcum_
		IN FI	WENCE. TO	EST CONCL	-VDZD			
	1645 1475	5745	LAED WITH	WELL ME	J-19, DECON	2020 STATIC	VAC PRESS	URE AT
		BACH	WELL					
	6700	Recoi	WED STATIC	DATA ON	WELLS M	W-10 AND ,	nw-16.	
		SELU	200 AU W	ELLS.				

SHAMROCK #63 TEST SVE #3 SANTA FE, NM

SHAMROCK #63 TEST SVE #3 SANTA FE, NM

AcuVac Remediation, LLC

1656-H Townhurst • Houston, Texas 77043 713 468 6688 • acuvac.com

October 27, 2017

Mr. John Casey P.E. Daniel B. Stevens & Associates 125 Mercado Street, Suite 119 Durango, Colorado 81301

Re: Shamrock #63, 3624 Cerrillos Road, Santa Fe, NM

Dear John:

At your request, we performed six 1.0-hour Soil Vapor Extraction (SVE) Quick Tests on the wells contained in Table #1, at the above referenced location on October 23, 2017. Following is the Report and a copy of the Operating Data collected during the Quick Tests. Table #1 is the Summary Data recorded. The contaminant is Non-Aqueous Phase Liquid (NAPL) which includes Light Non-Aqueous Phase Liquid (LNAPL).

SVE QUICK TEST OBJECTIVES

- Determine well vacuum and vapor flow of each well.
- Provide vapor phase total petroleum hydrocarbons concentrations in the influent vapors.
- Provide background data on the soil vapor plume area.

SVE QUICK TEST DESCRIPTION

A Quick Test is a short SVE Test of 0.5 to1.0 hours conducted from existing monitoring or observation wells located on-site and off-site. The test provides data on the soil vapor plume area, which may not totally conform to the groundwater plume. Each Quick Test provides well vacuum and well vapor flow data. From a soil gas sample (influent vapor), the HORIBA[®] Analyzer can provide total petroleum hydrocarbons in ppmv and the percent of CO₂ and CO. Additional instrumentation provides O₂ data. The depth to groundwater and depth to NAPL are also recorded. This informative data is very helpful as it confirms whether or not the outer wells are within the vapor plume area and are functional.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE events. The events at the above referenced site were conducted using the AcuVac I-6 System with Roots RAI-33 blower used as a vacuum pump and Roots RAI-22 positive displacement blower. The following table lists equipment and instrumentation employed in these events and the data recorded by each.

Instrumentation Err	ployed by AcuVac
Measurement Equipment	Data Element
Extraction Well Induced Vacuum and Flow	
Dwyer Magnehelic Gauges	Extraction Well Vacuum
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extractions Well Vapor Flow
Well Vapor Samples	
V-1 vacuum box	Extraction Well Non-Diluted Vapor Samples
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration
Lumidor MicroMax Pro O2 Monitor	Extraction Well Vapor Oxygen Content
LNAPL Thickness (if present)	
Solinst Interface Probes Model 122	Depth to NAPL and Depth to Groundwater
Atmospheric Conditions	
Testo Model 511	Relative and Absolute Barometric Pressure

The vacuum extraction portion of the AcuVac System consists of a vacuum pump driven by an internal combustion (IC) engine. The vacuum pump is connected to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and IC engine where they are burned as part of the normal combustion process. Propane is used as auxiliary fuel to help power the engine if the well vapors do not provide the required energy.

AcuVac utilizes a HORIBA[®] Analyzer to test the TPH concentrations contained in the extraction well vapors. A non-diluted vapor sample is obtained from the AcuVac well manifold. The non-diluted vapor sample is then processed by the HORIBA[®] to determine the TPH content. Well vapor samples are obtained throughout the event to calculate the TPH vapors burned as IC engine fuel. The manifold is designed to enable all of the induced well vacuum to be applied to the entire available well screen to ensure a representative vapor sample.

The AcuVac internal combustion engine is fully loaded for the maximum power necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum radius of influence.

Emissions from the engine are passed through two of three catalytic converters to ensure maximum destruction of removed hydrocarbon vapors. The engine's fuel-to-air ratio can be adjusted to maintain efficient combustion. Because the engine is the power source for all equipment, all systems stop when the engine stops, thus eliminating any uncontrolled release of hydrocarbons. Since the AcuVac System is held entirely under vacuum, any leaks in the seals or connections are leaked into the AcuVac System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure, over speed, or overheating.

SVE QUICK TEST PROCEDURES

- Gauge the extraction well for depth to NAPL and depth to groundwater and record static data.
- Calculate the hydro-equivalent of the static groundwater level.
- Record all baseline data.
- Install vacuum manifold and hose.
- Connect the AcuVac System to the extraction well and then apply vacuum. Record the well vacuum and well flow, all system data (including fuel flow of propane), ambient temperature, and barometric pressure.
- Collect non-diluted influent vapor (well gas) samples to provide on-site HORIBA[®] Analyzer and Lumidor analytical data consisting of TPH ppmv, CO₂%, CO%, and O₂% every 15 minutes during the Quick Test.
- The SVE Quick Test procedures are to provide variable rates of induced well vacuum and flow over the test period.

CONCLUSION

Although most Quick Tests include variable rates of induced well vacuum, it was decided for these Quick Tests that the vacuum would be set at 50"H₂O and remain constant as this is the approximate range of vacuum that would be applied by the SVE system contemplated for the site.

The SVE Quick Tests provided excellent data regarding the contaminant plume. The influent vapor TPH concentration levels from all wells except MW-17 indicated that weathered gasoline exists in the general site area of these wells. For tests #3, #4, #5 and #6 conducted from wells MW-5, MW-1, MW-7 and well MW-2, the TPH concentrations in the well vapors provided 100% of the fuel required for the IC engine. The well vapor flow rates of wells MW-5, MW-1, MW-7 and well MW-2 indicate the wells would function adequately in the contemplated SVE system at the site.

Should you have any questions, please give me a call.

Sincerely,

Mark

Paul D. Faucher Vice President, Operations

TABLE #1

SVE QUICK TESTS

SUMMARY DATA

Quick Test Number		#1	#2	#3	#4	#5	#6
Well Number		MW- 17	MW- 11	MW- 5	MW- 1	MW- 7	MW- 2
Well Data				•	•		
TD	ft bgs	90.0	92.0	90.0	Unknown	90.0	90.0
Well Size	inches	2.0	2.0	2.0	2.0	2.0	2.0
Screen Interval	ft	70.0- 90.0	72.0- 92.0	75.0- 90.0	Unknown	70.0- 90.0	75.0- 90.0
Site Elevation	ft	6,620	6,620	6,620	6,620	6,620	6,620
NAPL Data			•	•		•	•
Start of Test					•	-	
Depth to Groundwater	ft BTOC	78.71	77.69	80.96	81.15	82.32	82.08
Depth to NAPL	ft BTOC	-	-	-	-	-	-
LNAPL	ft	-	-	-	-	-	-
Hydro Equivalent	ft	78.71	77.69	80.96	81.15	82.32	82.08
End of Test			T	I	I		
Depth to Groundwater	ft BTOC	79.66	77.23	81.11	81.18	81.18	82.43
Depth to NAPL	ft BTOC	-	-	-	-	-	-
LNAPL	ft	-	-	-	-	-	-
Hydro Equivalent	ft	79.66	77.23	81.11	81.18	81.18	82.43
Well Vacuum and Well Flow				1	1		
Max Extraction Well Vacuum	"H₂O	50.00	50.00	27.00	38.00	42.00	26.00
Avg Extraction Well Vacuum	"H2O	50.00	50.00	25.60	36.40	35.60	24.80
Max Extraction Well Vapor Flow	scfm	3.05	3.46	35.61	27.54	34.22	38.64
Avg Extraction Well Vapor Flow	scfm	3.05	3.46	29.91	26.69	30.89	34.80
Vapor Data							
Maximum TPH	ppmv	2,920	81,160	43,370	58,090	64,290	50,920
Average TPH	ppmv	1,496	74,534	39,407	53,600	50,508	36,685
Minimum TPH	ppmv	28	67,560	37,890	49,880	43,470	41,820
Average CO2	%	0.09	2.50	2.06	2.30	2.06	2.03
Average CO	%	0.00	3.94	0.77	2.14	1.49	0.95
Average O ₂	%	19.7	5.2	9.6	5.2	7.7	8.0
Average H ₂ S	maa	0.0	3.0	1.4	0.4	0.0	0.0

		-19-14	1		1		There	1				
Date:	and the state of the	and a subscription of the	10/21/17									
TD S2.0	ters		Time	Time	Time	Time	Time	Time				
SCREEN	72.0 - 92.0	F	0700 Hr Meter	0715 Hr Meter	0730 Hr Meter	0745 Hr Meter	0 800 Hr Meter	Hr Moto				
2.0 "	mw-	- 17	-	-			-					
	TPH	ppmv	-	28	244	2790	2920					
	CO ₂	%	-	0	0	.14	. 20					
VAPORS	со	%	÷	0	0	0	0					
	O ₂	%	-	19.7	19.6	19.7	19.7					
a na sa subantunya da anju ta subantunya	H ₂ S	%		0	0	0	0					
ENCINE	Fuel/Propane	cfh	120	120	120	120	120					
ENGINE	Engine Speed	rpm	6800	1800	1800	1800	1800					
VACUUM/ FLOW	Well Vacuum	"H2O	50	50	50	50	50					
	Well Flow	scfm	3.05	3.05	3.05	3.05	3.05					
07050	Air Temp	°F	48	48	48	48	48					
OTHER	Barometric Press	ure "Hg	29.98	29.08	29.83	29.90	29.91					
		2										
	DTLNAPL	ft	-				-					
	DTGW	ft	78.71		aline for the former of the solution of the so	10.4. (a. 1. (a.	79.66					
	OPERATING DATA AND NOTES											
645	POSITIONED AQUIR SYSTEM NEAR WELLMW-17. GAUGED											
	WELL, IA	J STAL	Les Su	EQTM	ANIFOLD	l						
700	SUE STAI	2720,	VERY	TIGHT	FORMAT	70N. UF	tarum St	nikeo				
	TO 150"420 MOST LIKELY UPWELLING THE WATER IN THE											
	WELL OCO	clubin	IG THE	SCIZEEN	J AND i	22DUGN	GTHEU	IEU				
	VAPOR FLOU	N. AS	THEW	ATER Le	Ever De	ECREAS	CO, THE	F				
	VAPOR CO,	VAPOR CONCENTRATIONS ENCREMSED.										
ర్రీలు	TEST CONCLUDED. RELOCATE ACUVACSISTEM TO WELL MW-11											

-

. .

AcuVac Remediation

C	PERATING DA	ATA - TE	ST # SVE	QT- 2 PA	IGE /	ACU	VAC SVE	SYSTEM			
Location:	SHAMROCK +6:	3, Situr	FE, NM	Project Ma	anagers:	FAUCHAR / HENDLEY					
Date:			iolalin			-					
Well/Paramet	ters	in the second second second	Time	Time	Time	Time	Time	Time			
TD FZ.C	A	6-	0830	0845	0900	0915	0930				
Sazen	72.0 - 92.01		Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter			
5125-20	" Mw-	11	-	-		-	-				
	ТРН	ppmv	81,160	67560	77420	74.630	71850				
	CO ₂	%	2.96	2.10	2.66	256	2.22				
VAPORS	со	%	4.82	3.08	4.18	380	3.80				
	O ₂	%	5.2	5.4	5.0	5.3	5.3				
	H ₂ S	%	4.1	3.0	3.0	3.1	2.0				
	Fuel/Propane	cfh	120	120	90	50	80				
ENGINE	Engine Speed	rpm	2100	2000	2000	2000	2000				
VACUUM/ FLOW	Well Vacuum	"H2O	50	50	50	50	50				
	Well Flow	scfm	3.4.6	3.46	3.46	3.46	3.46				
	Air Temp	°F	48	48	50	51	52				
OTHER	Barometric Press	ure "Hg	22.91	29.92	29.99	29.94	29.94				
	Air Temp	°F	-	-	-						
	DTLNAPL	ft	-								
	DTGW	ft	77.69				77.23				
	OPERATING DATA AND NOTES										
0820	POSIDONE	D Acui	VAC SI SI	TEM NO	Anwe	LL MW.	-11. GA	1600			
	INFU TA	STAL	LED SVL	= mAar	FOLD.						
0830	GT STAZ	השת	TARGET	TAIDU	C=D ULC	= LL VAC	so"Han				
	WELL VAT 50"HOD LIVE 245 SCEN										
	weiling our site some										
	TPH VAPORY	HIGH	ANDON	4 moster	DECREI	ASING TRE	END.				
	LOW WVF ?	DROVID	es um	E FUEL	For Ic	ENGINE	AS IZOC	RH			
	OF PIZOPAN	EWAS	S REQUIE	20.							
0930	EVENT CONCLUDED. ACUVAC RELOCATED TO WELL MU-5										
AcuVac Remediation

OPERATING DATA - TEST # SVE QT-3 PAGE ACUVAC SVE SYSTEM Location: SHAMROUC +63, SANTA RENM Project Managers: FAUCHER HENDLEY 10/21/17 Date: Well/Parameters Time Time Time Time Time Time 7) 90.0 FT 1100 50,2200 75.0-90.0Fr 1030 1000 1015 1045 Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter 5122 2.0" MW-5 TPH ppmv 33,366 43,370 40,500 44.510 37890 CO₂ % 4.20 1.57 1.36 1.61 1.53 INFLUENT CO % 1.2 .56 . 78 .66 .65 VAPORS 02 % 9.1 5.3 9.5 9.3 10.6 % H₂S 2.0 2.0 1.0 1.0 1.0 Fuel/Propane cfh 0 0 O 0 0 ENGINE **Engine Speed** rpm 2000 2000 2000 2000 2000 Well Vacuum "H2O 27 22 27 25 27 VACUUM/ FLOW Well Flow scfm 26.28 2213 28.77 35.61 30.78 °F Air Temp 53 51 51 51 53 OTHER Barometric Pressure "Hg 29.95 28.95 29.95 29.95 29.95 DTLNAPL ft -DTGW ft 80.96 81.11 **OPERATING DATA AND NOTES** POSITIONED AQUÍAC SISTEM NEAR WELL MW-S. GAUGED 6940 WELL INSTALLED SVE MANIFOLD. STAR DED SVE. MAGNEHELIC GAUGES WERE NOT RECORDING 0945 THE SAME VACUUM. TESTED EQUIPMENT, DECIDED TO RELY ON GAUGE AT WELLHEAD. QT STARTED. INITTALWELL VAC 22"HZO, WVF 27.73 SCFM. 1000 INTAL VAPOR SAMPLE OBTAINED AT 1005HRS EVENT CONCLUDED. VACUUM HOSE RELOCATED TO WELL MW-S. 1100

ocation:	1/2 2mm #17	C= 100	Project M	anagers.	Taur Han 145-101 50						
.ocation. 54	HAMKOCK + 63	Staria	IENM	Froject Ma		Thousay	TENUE				
)ate:	long		10/2/117 Time	Timo	Timo	Timo	Timo	Timo			
ven/Paramet	lers		1100	1115	1130	1145	1200	Time			
	n	nw-1	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Mete			
	ТРН	ppmv	49.730	54700	53,090	49,990	55,600				
	CO ₂	%	2.52	2-9.8	3.34	(.18	1.49				
VAPORS	со	%	1.30	1.81	2.13	2.46	2.94				
	O ₂	%	5.7	5.3	4.8	5.1	5,3				
	H ₂ S	%	1.0	1.0	0	O	0				
ENGINE	Fuel/Propane	cfh	0	0	0	G	0				
	Engine Speed	rpm	2100	2200	2200	2200	2200				
VACUUM/ FLOW	Well Vacuum	"H ₂ O	38	36	36	36	36				
	Well Flow	scfm	25.78	25.87	26.71	27.54	27.54				
OTHER	Air Temp	°F	53	54	54	55	55				
	Barometric Press	sure "Hg	29.95	29.96	29.96	29.95	29.95				
	DTLNAPL	ft	-				-				
	DTGW	ft	81.15				81.18				
	OPERATING DATA AND NOTES										
1100	RELOCATE)	VACUU	n Hose o	NU FRO	MUEU	mw-5	TO MW-	1			
	WELL HAD	BREN	PREVLOUS	W GAU	ied.						
1105	ENIMALO	JELL V	APOZ SA	MRE di	STAINED.	TPH Cor	SCENTRAT	TONS			
	IN THE GASOLINE RANGE										
	INITAL WELLVAR 30"HZO, WVF 27.26 SCAM										
	WELLVAR	WELL VACT TO 36 "H2O AT 1115 HARS, THEN STEADY.									
	WVF ON A	SLIG	HTLY IA	ICREASI.	NG TRE	JD.					
	TPH VAPOR	CONCER	TIZANON	IS ON A	MOSTLY	INCREAS	ING TREA	se.			
1200	EVENT CO.	NCUDS	D. VAC	sum Has	ERELOC	ANEYTO	WEU	mw-7			

C	OPERATING DATA - TE			QT-5 PA	AGE /	ACUVAC SVE SYSTEM				
Location:	SHAMROCIC#63	3, Stant	FE, NM	Project Ma	anagers:	Houter	2/ HENDO	27		
Date:			10/21/17							
Well/Paramet	ters Fr		Time	Time	Time	Time	Time 1300	Time		
SCREEN SIZE ZO	70.0 - 90.0 FT	w-7	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Mete		
	ТРН	ppmv	20390	113 474	(132.0	64 750			
	CO ₂	%	130	167	2.32	7 40	260			
	со	%	.28	1.16	1-80	2.01	2,22			
VAPORS	O ₂	%	14.4	9.8	40	4.8	4.6			
	H ₂ S	%	0	0	0	0	0			
	Fuel/Propane	cfh	120	0	0	0	0	an fan staat die september op konstantige op		
ENGINE	Engine Speed	rpm	2000	2100	2100	2100	2100			
VACUUM/ FLOW	Well Vacuum	"H2O	36	36	42	38	26			
	Well Flow	scfm	3422	34.22	30.55	29.11	26:33			
	Air Temp	°F	55	55	55	55	57	a a ana ana ang ang ang ang ang ang ang		
OTHER	Barometric Press	sure "Hg	29.95	29.95	29.94	29.94	29.94			
	DTLNAPL	ft	~				-			
	DTGW	ft	82.32				82.35			
	OPERATING DATA AND NOTES									
1200	RELUCATED VAC HASE FROM WELL MW-1 TO MW-7									
	ENITHAL WELL VAR 36"HO, WELL VAPOR POW" 36,17 SCAM									
	ENITAL WELL VAR SAMPLE OBTAINED AT 1205 HES.									
1215	TPH VAPO	2 Con	ENTIZAT	70NS IN	CREASED	TO 43.	470 wtha	H		
	PROVIDED 1	00% OF	IC ENG	INE FUE	L					
	THE VAPOR CONCENTIONS ON AN INCREASING TREND									
1300	EVENT CON	lewoer	. REPO	SITTOME	D ACUVA	C SYSTER	n rowe	EU		
	mw-2									

Location: C	PERATING DA	:51 # 5VE	Project M	AGE /	ACUVAC SVE STSTEM						
Location: 5.	HAMKOCK =6.	3 SAN	A FE, NR	Project Wi	anagers:	HOUR	IC/Itende	87			
Date: Well/Parame	ters		Time	Time	Time	Time	Time	Time			
	MU	1-2	1395 Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Mete			
<u></u>	ТРН	ppmv	5670	_	50.920	48.330	41 820				
	CO ₂	%	1.12	-	2.30	2.51	2.20				
VAPORS	со	%	0	-	1.18	1.52	1.08				
VAPORO	O ₂	%	7.9	-	8.4	8.0	7.8				
	H ₂ S	%	0	-	0	0	0				
	Fuel/Propane d		140	0	0	6	0	nalysi kinganaki sadang - shukkay			
ENGINE	Engine Speed	rpm	2100	2200	2200	2200	2200				
VACUUM/ FLOW	Well Vacuum	"H2O	26	26	24	24	24				
	Well Flow	scfm	33.64	38.22	32.38	3238	32.38				
OTHER	Air Temp	°F	57	57	57	58	58	an a spandale i constant			
	Barometric Press	ure "Hg	29.93	29.94	29.94	29.94	29.94				
	DTLNAPL	ft	-				-				
	DTGW	ft	82.08				BZ.43				
T TK/CANDOOR BOOMER	OPERATING DATA AND NOTES										
330	RELOCANOS	Acula	r syster	M NEAR	WELL	mw-2.	SAUGED	Veu			
	Any INST	AUED	SVEDT	MANIA	aw.						
1345	OT STARTE	20. In	SITACW	EU VAC	26°H20	, WVF	40.77 50	Sm			
	INITAL WELL VAPOR SAMPLE OSTAINED 1350 HZS.										
	TPIt VAQU	n Con	CENTRAI	TONS 5	670 PPMV	1.					
1415	TPH VATOR	Conce	ENTRATI	uns T50	,000+ SU	FACIER	TTO PRO	VIDE			
	100 90 OF I	C ENG	INE FU	EL							
1445	EVENT CON	uclose	en. 5Ea	nzes u	eus.	DEPARO	20 5 172	-			
							· · · · · · · · · · · · · · · · · · ·				

Appendix B

AcuVac Equipment Specifications

ACUVAC SYSTEM - SVE I-6								
OPERATING SPECIFICATIONS 300 Cubic Inch/4.9 Liter/6 Cylinder IC Engine								
Electrical Requirements		None						
Engine RPM		1,800 RPM to 2,500 RPM/site specific. Calculations below based upon 2,200 RPM						
Fuel Source		Well flow/contamination (or) natural gas (or) propane (or) combination well flow and alternate fuel						
Fuel Consumption/Propane	1.	Maximum usage 4.8 gallons/hour Actual usage 3.0 gallons/hour						
Fuel Consumption/Natural Gas	1.	Maximum usage 4.39 therms/hr Actual usage 2.74 therms/hr						
Fuel Consumption/Well Flow		Site specific, 0 to 4.5 gal/hr projected						
Fuel Consumption/BTUs	1.	Maximum usage 432,000 BTUs/hour Actual usage 274,000 BTUs/hour						
Total Fresh Air/Fuel Flow		Maximum usage 160 cfm Actual usage 90 - 120 cfm						
Well Flow		0 to 120/site specific						
Fresh Air Flow		0 to 80/site specific						
Combustion Efficiency with Catalytic Converters	2. 2.	87% 99.9% (less than .9 lbs VOC/day)						
Vacuum/Well Manifold		0" to 15" HG/site specific Actual 0.25" to 3.00" HG						
Noise Level		Less than 50 db at 20 feet						
Ambient Temperature		-20°F to + 120°F						

^{1.} Maximum usage and actual usage differ because of the load factor on the engine. Actual information has been obtained from field data. Fuel usage stated for propane and natural gas assumes no BTU value from well flow.

^{2.} This efficiency rating assumes the engine is maintained and tuned and the catalysts are in good working order.

PC-12-33

AcuVac System SVE I-6 Specifications

• • •

Engine - Power Source/Thermal Oxidizer

Make: Ford internal combustion engine with power with power take-off Model: CSG-649P 300 cubic inch displacement (4.9), 120 HP, 6 cylinders Propane or natural gas co-fired

Catalytic Converter

Make: NAPA Model: ICEN 703 100 cfm, temperature 600-1500°F Anticipated life 4,000 hours; performance examination recommended every 500 hours; three in series

Vacuum Pump

Make: Dresser-Roots Model: 33 RAI Universal Engine driven, maximum flow 155 scfm, Actual operating flow rates 20 - 70 scfm

*Air Injection Pump

Make: Dresser-Roots Model: 22 RAI Universal Engine driven, maximum flow 55 scfm, Actual operating flow rates 18 - 40 scfm Heat Exchanger: Stainless Steel Fin Tube

System Dimensions

8.0' length, 4.0' width, 6.5' height (with trailer 12' 6" L X 4' 9" W x 8' H; 2,900 lbs) Tank size: 3.0' diameter, 5.0' height Trailer: Custom made by Manufacturer

Stack

 Height:
 10'

 Temperature:
 700 - 850°F

 Exhaust Pipe:
 2 ½"

Other

Flow Gauges:Dwyer (including flow sensors)Instrumentation & Safety Shut-off; Murphy GaugesElectrical:12 volts, HD batteryAir Intake Filter:Ford IndustrialValves:Heavy Duty BrassMoisture Knockout Tank:Custom made by ManufacturerMoisture Knockout Filter:Custom made by ManufacturerLeveling Jacks:Custom made by ManufacturerVacuum Connection Hose to SVE Manifold (2.0 inch HD)

*Optional Equipment

Measurement Instrumentation for SVE Pilot Test, Lovington, NM (See attached sheets for equipment details)

Air flow will be measured using Dwyer Visi-Float VFC flow meters with ranges of 0-25 or 0-50 CFM.

Vacuum measurement at the SVE equipment will be performed using Dwyer magnehelic gauges with various ranges. Ranges include 0-50, 0-100, and 0-150 inches H2O. Additionally, one capsuhelic gauge with a range of 0-300" H2O will be available.

Vacuum measurement at the observation wells equipment using a Dwyer series 477 digital manometer with a range from 0-40" H2O.

Temperature will be recorded using a Rattec Raynger ST3 Infrared non-contact thermometer with a range of -25°F to 750°F. (Similar to ST20 Pro)

Barometric pressure will be recorded using two FAA certified altimeters and knowing the site elevation. Changes in barometric pressure can then be directly read.

The accurate and durable VFC Visi-Float[®] flowmeter contains a stainless steel guide rod and large diameter float for excellent stability and visibility in high flow rates. The large 5" scale provides a +/-2% full scale accuracy for precision measurement required in medical or laboratory applications. The VFC models have PVC 1" female NPT connections. VFC II units are equipped with acetal thermoplastic 1" male NPT fittings. VFC II fittings also include hex wrench flats to prevent stripped threads. All models have metal mounting inserts on the back for panel mounting. Units may also be supported directly by system piping.

How To Order

Series—Range No.—Option **Example:** VFC-123-EC Series VFC with 10-100 SCFM Air Range and 1⁻ female NPT End Connections

POPULAR RANGES

	Model VFC — 5" Scale								
Range No.	Range SCFM Air	Range No.	Range GPM Water						
121	4-25	141	.5-5						
122	5-50	142	1-10						
123	10 -100	143	2-20						
	LPM Air	1	LPM Water						
131	60-700	151	2-20						
132	200-1400	152	4-40						
133	300-2800	153	10-75						

SPECIFICATIONS

Service: Compatible gases & liquids. Wetted Materials:

Body: Acrylic plastic.

O-Ring: Buna-N (Fluoroelastomer available).

Metal Parts: Stainless steel.

Float: Stainless steel.

Temperature & Pressure Limits: 100 psig (6.9 bar) @ 120°F (48°C)

Accuracy: 2% of full scale.

Process Connection: VFC: 1 female NPT back connections. End connections optional. VFCII: 1 male NPT back connections. End Connections optional.

Scale Length: 5° typical length.

Mounting Orientation: Mount in vertical position. **Weight:** 24-25 oz (.68-.71 kg).

Series VFC & VFCII Models

Options

-EC, End Connections

-VIT, Fluoroelastomer O-Rings

-FDA, 316 SS Float & Guide Rod (only available on VFCII with Fluoroelastomer O-Rings)

Flow

^{series} Magnehelic[®] Differential Pressure Gages

Indicate Positive, Negative or Differential, Accurate within 2%

Select the Dwyer® Magnehelic® gage for high accuracy - guaranteed within 2% of full scale - and for the wide choice of 81 models available to suit your needs precisely. Using Dwyer's simple, frictionless Magnehelic® gage movement, it quickly indicates low air or non-corrosive gas pressures - either positive, negative (vacuum) or differential. The design resists shock, vibration and over-pressures. No manometer fluid to evaporate, freeze or cause toxic or leveling problems. It's inexpensive, too.

The Magnehelic® gage is the industry standard to measure fan and blower pressures, filter resistance, air velocity, furnace draft, pressure drop across orifice plates, liquid levels with bubbler systems and pressures in fluid amplifier or fluidic systems. It also checks gas-air ratio controls and automatic valves, and monitors blood and respiratory pressures in medical care equipment.

Note: May be used with Hydrogen. When ordering a Buna-N diaphragm pressures must be less than 35 psi.

MOUNTING. A single case size is used for most models of Magnehelic" gages. They can be flush or surface mounted with standard hardware supplied. With the optional A-610

Pipe Mounting Kit they may be conveniently installed on horizontal or vertical 11/4 - 2 pipe. Although calibrated for vertical position, many ranges above 1 may be used at any angle by simply re-zeroing. However, for maximum accuracy, they must be calibrated in the same position in which they are used. These characteristics make Magnehelic* gages ideal for both stationary and portable applications. A 4% hole is required for flush panel mounting. Complete mounting and connection fittings plus instructions are furnished with each instrument.

VENT VALVES

In applications where pressure is continuous and the Magnehelic® gage is connected by metal or plastic tubing which cannot be easily removed, we suggest using Dwyer A-310A vent valves to connect gage. Pressure can then be removed to check or re-zero the gage.

HIGH AND MEDIUM PRESSURE MODELS

Installation is similar to standard gages except that a 41% hole is needed for flush mounting. The medium pressure construction is rated for internal pressures up to 35 psig and the high pressure up to 80 psig. Available for all models. Because of larger case, the medium pressure and high pressure models will not fit in a portable case size. Installation of the A-321 safety relief valve on standard Magnehelic's gages often provides adequate protection against infrequent overpressure.

SPECIFICATIONS

Service: Air and non-combustible, compatible gases. (Natural Gas option avail-

able.) Wetted Materials: Consult factory. Housing: Die cast aluminum case and bezel, with acrylic cover Exterior finish is coated gray to withstand 168 hour salt spray corrosion test Accuracy: $\pm 2\%$ of full scale ($\pm 3\%$ on -0, -100 Pa, -125 Pa, 10MM and $\pm 4\%$ on -00, -60 Pa, -6MM ranges), throughout range at $70^{\circ}F$ ($21.1^{\circ}C$). Pressure Limits: ± 20 Hg, to 15 psig, 1 (± 0.677 bar to 1.034 bar); MP option: 35 psig (± 4.1 bar), HP option: 80 psig (5.52 bar). Overpressure: Relief plug opens at approximately 25 psig (1.72 bar), standard cases out

aades onlv Temperature Limits: 20 to 140°F.* (-6.67 to 60°C).

Size: 4 (101.6 mm) Diameter dial face. Mounting Orientation: Diaphragm in vertical position. Consult factory for other position orientations. Process Connections: 1/8' female NPT duplicate high and low pressure taps

 one pair side and one pair back.
 Weight: 1 lb 2 oz (510 g). MP & HP 2 lb 2 oz (963 g).
 Standard Accessories: Two 1/8: NPT plugs for duplicate pressure taps, two 1/8: pipe thread to rubber tubing adapter and three flush mounting adapters. We have thread to roubler fubling adapter and three flush mounting adapters with screws. (Mounting and snap ring retainer substituted for 3 adapters in MP & HP gage accessories.) *Low temperature models available as special option. #For applications with high cycle rate within gage total pressure rating, next higher rating is recommended. See Medium and High pressure options at lower left.

OPTIONS AND ACCESSORIES Transparent Overlays

Furnished in red and green to highlight and emphasize critical pressures.

Integral with plastic gage cover. Available for most models except those with medium or high pressure construction. Can be ordered with gage or separate.

LED Setpoint Indicator

Bright red LED on right of scale shows when setpoint is reached. Field adjustable from gage face, unit operates on 12-24 VDC. Requires MP or HP style cover and bezel

Portable Units

Combine carrying case with any Magnehelic' gage of standard range, except high pressure connection. Includes 9 ft. (2 7 m) of 🖅 I.D. rubber tubing, standhang bracket and terminal tube with holder.

Air Filter Gage Accessory Package

Adapts any standard Magnehelic' gage for use as an air filter gage Includes aluminum surface mounting bracket with screws, two 5 ft. (1.5 m) lengths of ¼ aluminum tubing two static pressure tips and two molded plastic vent valves, integral compression fittings on both tips and valves

4

www.dwyer-inst.com.au

•

Quality design and construction features

Bezel provides flange for flush mounting in panel.

Clear plastic face is highly resistant to breakage. Provides undistorted viewing of pointer and scale.

Precision litho-printed scale is accurate and easy to read

Red tipped pointer of heat treated aluminum tubing is easy to see. It is rigidly mounted on the helix shaft

Pointer stops of molded rubber prevent pointer over-travel without damage.

"Wishbone" assembly provides mounting for helix, helix bearings and pointer shaft.

Jeweled bearings are shock-resistant mounted; provide virtually friction-free motion for helix. Motion damped with high viscosity silicone fluid.

Zero adjustment screw is conveniently located in the plastic cover, and is accessible without removing cover. O-ring seal provides pressure tightness.

Helix is precision made from an alloy of high magnetic permeability. Mounted in jeweled bearings, it turns freely, following the magnetic field to move the pointer across the scale.

SERIES 2000 MAGNEHELIC® GAGE — MODELS AND RANGES

The models below will fulfill most requirements. Page V also shows examples of special models built for OEM customers. For special scales furnished in ounces per square inch, inches of mercury, metric units, etc., contact the factory.

O-ring seal for cover assures pressure integrity of case.

Blowout plug of silicone rubber protects against overpressure on 15 psig rated models. Opens at approximately 25 psig

Die cast aluminum case is precision made and iridite-dipped to withstand 168 hour salt spray corrosion test. Exterior finished in baked dark gray hammerloid. One case size is used for all standard pressure options, and for both surface and flush mounting.

Silicone rubber diaphragm with integrally molded O-ring is supported by front and rear plates. It is locked and sealed in position with a sealing plate and retaining ring. Diaphragm motion is restricted to prevent damage due to overpressures.

Calibrated range spring is flat spring steel. Small amplitude of motion assures consistency and long life. It reacts to pressure on diaphragm. Live length adjustable for calibration.

Samarium Cobalt magnet mounted at one end of range spring rotates helix without mechanical linkages.

Dual Scale English/Metric Models								
Model Number	Range, In. W.C.	Range, Pa or kPa						
2000-OD	0-0.5	0-125 Pa						
2001D	0-1.0	0-250 Pa						
2002D	0-2.0	0-500 Pa						
2003D	0-3.0	0-750 Pa						
2004D	0-4.0	0-1.0 kPa						
2006D	0-6.0	0-1.5 kPa						
2008D	0-8.0	0-2.0 kPa						
2010D	0-10	0-2.5 KPa						

Mode) Number	Range inches of Water	Model Number	Range Zero Center Inches of Water	Dual Scal Model Number	e Air Velocity Units Range in W.C. Velocity, F.P.M.	Model Number	Range, CM of Water	Mode) Number	Range,Pascals	
2000-00N7 **	.05-02	2300-01 .	.25-025	2000-00AV7 .	025/300-2000	2000-15CM	0-15	Zero Center Ranges		
2000-001** 2000-01* 2001 2002 2003 2004	0-25 0-50 0-1.0 0-2.0 0-3.0 0-4.0	2301 2302 2304 2310 2320 2330	.5-05 1-0-1 2-0-2 5-0-5 10-0-10 15-0-15	2000-0AV† • 2001AV 2002AV 2010AV For us	2000-0AV1 • 0 - 50/500-2800 2001AV 0 - 10/500-4000 2002AV 0 - 2.0/1000-5600 2010AV 0 - 10/2000-12500 For use with pitot tube. For use with pitot tube.		0-20 0-25 0-50 0-80 0-100 0-150	2300-60PA 2300-100PA 2300-120PA 2300-250PA 2300-500PA	30-0-30 50-0-50 60-0-60 125-0-125 250-0-250	
2005 2006 2008	D-5.0 0-6.0 0-8.0 0-30	Model Number	Range PSI	Model Number	Range MM of Water	2000-200CM 2000-250CM 2000-300CM	0-200 0-250 0-300			
2010	0-15	2201	0-1	2000-6MM1 ·	• 0-6	Zero Cente	r Ranges	Model Number	Range,	
2020 2025 2030 2040 2050	0-20 0-25 0-30 0-40 0-50	2203 2204 2205 2210* 2215*	0-3 0-4 0-5 0-10 0-15	2000-10MM† 2000-25MM 2000-50MM 2000-80MM 2000-100MM	• 0-10 0-25 0-50 0-80 0-100	2300-4CM 2300-10CM 2300-30CM	2-0-2 5-0-5 15-0-15	2000-1KPA 2000-1.5KPA 2000-2KPA 2000-3KPA	30-0-50 50-0-50 60-0-60 125-0-125 250-0-250	
2060 2080	0-80	2220* 2230**	D-20	Zero	Zero Center Ranges			2000-4KPA	0-4	
2100 2150	0-100 0-150	"MP option s	tandard standard	2300-20MM†	10-0-10	Model Number	Range, Pascals	2000-5KPA 2000-8KPA	0-5	
Accessories A-299, Surface A-300, Flat Flus A-310A, 3-Way	Mounting Brac h Mounting Br. Vent Valve	ket acket	Option ASF (Ad	is — To order, add sul Ijustable Signal Flag	fix: I.E. 2001-ASF	2000-60PA†++ 2000-100PA†+ 2000-125PA†+ 2000-250PA	0-60 0-100 0-125 0-250	2000-15KPA 2000-20KPA 2000-25KPA 2000-30KPA	0-10 0-15 0-20 0-25 0-30	
A-321, Safety R A-432 Portable	telief Valve		HP (Hig	h Pressure Option)	0°E)	2000-300PA	0-300	Zero Cen	nter Ranges	
A-605, Air Filter A-610, Pipe Mo	Kit unt Kit	Mirrorad or D	MP (Me SP (Set	d. Pressure Option)		2000-500PA 2000-750PA	0-500 0-750	2300-1KPA 2300-3KPA	.5-05 1.5-0-1.5	

†These ranges calibrated for vertical scale position.

Accuracy +/-3%.
 Accuracy +/-4%

1011R01-0298F

Series 4000 Capsuhelic[®] Differential Pressure Gages Measures Pressure, Vacuum or Differential, Suitable for Internal Pressures to 500 psig

The Capsuhelic[®] gage is designed to give fast, accurate indication of differential pressures. The gage may be used as a readout device when measuring flowing fluids, pressure drop across filters, liquid levels in storage tanks and many other applications involving pressure, vacuum or differential pressure.

Using the basic design of Dwyer's time-proven Magnehelic* gage, the Capsuhelic® gage contains a simple, frictionless movement that permits full scale readings as low as 0.5 inch water column. The pressure being measured is held within a capsule which is an integral part of the gage. This containment of the pressure permits the use of the gage on system pressures of up to 500 psig, even when differentials to be read are less than 0.1 inch w.c.

The diaphragm-actuated Capsuhelic[®] gage requires no filling liquid which might limit its outdoor applications. Zero and range adjustments are made from outside the gage, and there is no need to disassemble the gage in normal service.

Note: May be used with hydrogen where pressures are less than 35 psi.

SPECIFICATIONS

Service: Aluminum Case: Air and compatible gases and oil based liquids. Brass Case: Air and compatible gases and water based liauids

Wetted Materials: Consult factory. Housing: Die cast aluminum with impregnated hard coating standard. Optional forged brass housing is required for water or water based fluids. Special material diaphragms available, contact facto-

Accuracy: ±3% of full scale at 70°F (21.1°C). (±2% on 4000S models, ±4% on 4200, 4210, 4215, 4220, 4300, 4400, and 4500). Pressure Limits: -20 Hg to 500 psig. (-0.677 bar to 34.4 bar).

OPTIONS AND ACCESSORIES

Temperature Limits: 20 to 200°F (-6.67 to 93.3°C). Size: 4 (101.6 mm) diameter dial

face **Mounting Orientation:**

Diaphragm in vertical position. Consult factory for other position orientations.

Process Connections: 1/4 female NPT high and low pressure taps, duplicated - one pair top for air and gas, and one pair bottom for liquids.

Weight: 3 lb, 3 oz (1.45 kg) aluminum case; 7 lb, 13 oz (3.54 kg) brass case.

Standard Accessories: Two 1/4" NPT plugs for duplicate pressure taps, four flush mounting adapters with screws and four surface mounting screws

MOUNTING

Capsuhelic' gages may be flush mounted in a panel or surface mounted. Hardware is included for either. For flush mounting, a 41% diameter cutout in panel is required. Where high shock or vibration are problems, order optional A-496 Heavy Duty flush mount bracket. Optional A-610 kit provides simple means of attaching gage to 11/2" horizontal or vertical pipe. Installation is same as Magnehelic* gage shown on page 4. All standard models are calibrated for vertical mounting. Gages with ranges above 5 in. w.c. can be factory calibrated for horizontal or inclined mounting on special order.

Flush mounted Back view shows flush mounting adapters in panel

Back view for surface mounting

Adjustable Signal Flag - Integral with plastic gage cover: has external reset screw. May be ordered factory installed on gage or separately for field installation. Specify ASF suffix after model number.

A-314 Bleed Fitting — For easier, safer purging of trapped air when using gage with liquids. Also useful for draining condensate when installed in lower ports. To open, simply loosen hex nut. Solid brass.

Forged Brass Case — For applications involving water or water based liquids. To order, add suffix "B" after model number. Example: 4205B

Transparent Scale Overlays Available in bright red, green or yellow to accent critical pressure zones. Specify which color and portion of scale to be covered with each

A-471 Portable Kit - Includes plastic case, mounting bracket. A-309 3-way manifold valve, (2) A-230 high pressure hoses and all necessary fittings. Assembly required. Gage not included.

www.dwyer-inst.co.uk

•

Straightforward design assures maintenance-free performance

Top low pressure connection (for Air or Gas) connects to chamber in back of diaphragm. High pressure air or gas port (cut away; not shown) connects with chamber in front of diaphragm through passageways in case.

Precision made case is offered in two materials Standard is die cast aluminum coated inside for resistance to most oils and similar fluids. Optional forged brass case is recommended when using water or water based liquids. One case size for all pressure ranges - can be either surface or flush mounted

Silicone rubber diaphragm with integrally molded O-ring is sealed between the case and backplate. Diaphragm motion is restricted to prevent damage due to over-pressure

Diaphragm support plate of stainless steel minimizes position or attitude sensitivity

Calibrated range spring is a flat leaf of nickel plat-ed spring steel. Small amplitude of motion assures consistency and long life. It reacts to pressure on diaphragm. Live length factory adjusted for calibration

Bottom high pressure connection (for Liquids) connects to chamber in front of diaphragm. Low pressure liquid connection (not visible) connects with chamber in back of diaphragm through passageways in case.

Range spring calibration is set by custom camlock. Rate adjust and rate adjust lock are coaxial and are factory set and sealed.

Patent Nos. 4,011,759 4,030,365

SERIES 4000 CAPSUHELIC® GAGE

Scales reading directly in flow, heights, etc., are also available.

Model Number	Range, Inches of Water	Mode) Number	Range Zero Center Inches of Water	Model Number	Range MM of Water	Model Number	Range, CM of Water	Mode) Number	Range, Pascals	
*4000-0 *4001 *4002 *4003 *4004	050 0-1.0 0-2.0 0-3.0 0-4.0	*4302 *4304 4310 4320 4330	1-0-1 2-0-2 5-0-5 10-0-10 15-0-15	*4000-25MM 0-25 *4000-50MM 0-50 *4000-80MM 0-80 *4000-100MM 0-100		*4000-25MM 0-25 4000-15CM 0-15 *4000-50MM 0-50 4000-20CM 0-20 *4000-80MM 0-80 4000-25CM 0-25 *4000-100MM 0-100 4000-40CM 0-40 4000-50CM 0-50 0-50 0-50		*4000-125PA *4000-250PA *4000-500PA *4000-750PA	0-125 0-250 0-500 0-750	
*4005	0-5.0	Model	Range			4000-80CM 4000-100CM	0-80 0-100 0-150 0-200	Zero Center Ranges		
4008	0-8.0	A201	0-1			4000-150CM 4000-200CM		*4300-500PA	250-0-250	
4015 4020	0-15 0-20	4202 4203	0-2 0-3	Ranges	4000-250CM 4000-300CM	0-250 0-300	Model Number	Range, Kilopascals		
4025 4030	0-25 0-30	4204 4205	0-4 0-5	Scale No. 4401 Square Root Specify Range Scale No. 4402 Blank Scale Specify Range		Zero Ce	nter Ranges	*4000-1KPA	0-1	
4040 4050 4060 4080 4100 4150 4200 4300 4400	0-40 0-50 0-60 0-80 0-100 0-150 0-200 0-300 0-400 0-400	4210 4215 4220 14230S 14240S 14260S 14260S 14280S 142100S 142200S	0-10 0-15 0-20 0-30 0-40 0-60 0-80 0-100 0-200 0-200			*4300-4CM *4300-10CM 4300-30CM	2-0-2 5-0-5 15-0-15	4000-1.5KPA 4000-2KPA 4000-3KPA 4000-3KPA 4000-5KPA 4000-8KPA 4000-15KPA 4000-15KPA 4000-15KPA	0-1.5 0-2 0-3 0-4 0-5 0-8 0-10 0-15 0-20	
4500	Range	1423003	rios		Ontions			4000-25KPA 4000-30KPA	0-30	
Model Number	Feet of Water	A-298 Fla	t Flush Mounting I	Options Bracket Add Options on Suffix Example 4001 ASE				Zero Center Ranges		
46168 46358 Available with	0-16 0-35	A-314 Ble A-370 Mo A-471 Pol	ed Fitting ounting Bracket rtable Kit		-ASF (Adj B (Brass (Scale Ove	ustable Signal Flag) Case) rlays - Red, Green, Mir	rrored or	*4300-1KPA 4300-3KPA	.5-05 1.5-0-1.5	
	brudo bade only	A-496 Flu A-610 Pip	sh Mount Bracket e Mount Kit	combination. Specify Locations						

These ranges available for vertical scale position only. †These ranges use Spirahelic gage movement.

Bezel provides flange for flush mounting in panel

O-ring seal for cover assures dust tight integrity of case

Clear plastic front cover is highly resistant to breakage. Provides undistorted viewing of pointer and scale.

Precision scale, screen printed on aluminum, is accurate and easy to read

Samarium cobalt magnet mounted at end of range spring rotates helix without mechanical linkages.

"Wishbone" assembly provides mounting for helix. helix bearings and pointer shaft.

Thin wall magnetic "window" is well braced and of minimum area for maximum pressure capability.

Jeweled bearings for helix are shock resistant mounted. They provide virtually friction-free rotation for helix. Rotation is damped with high viscosity silicone fluid

Helix is precision milled from an alloy of high magnetic permeability, mounted in jeweled bearings, and rotates to align with magnetic field of magnet and transmit pressure indication to pointer.

Zero adjustment screw is conveniently located in plastic cover. accessible without removing cover. "O" ring seal provides dust seal.

Series 477

Handheld Digital Manometer Selectable Pressure Onits, $\pm 0.5\%$ Accuracy, FM Approved Intrinsically Safe for Hazardous Locations, Class 1, Div. 1, Group A, B, C, D, T4

- · New Low Pressure Ranges
- USB Option Comes with Cable and Software for Easy Data Downloading
- · Instant Selection from up to Nine English/Metric Units.
- Stores 40 Readings in Memory for Later Reference.
- Measure Positive, Negative or Differential Pressures. Large Easy-to-Read 0.4" LCD Display Includes
- Switchable Backlight for Great Visibility Anywhere!
- Both Audible and Visual Overpressure Alarms.
- Includes + and Indicators plus Low Battery Warning.
- Operates up to 100 Hours on a Single 9 Volt Battery.

Series 477 Handheld Digital Manometers are packed

with features you need to make pressure measurement and recording faster, easier and more accurate than ever. First, you can instantly select from up to nine of the most widely used pressure units without having to waste time and risk mistakes with tedious conversions. Next, a non-volatile memory function enables storage of up to 40 readings - perfect for HVAC technicians making Pitot tube traverses of airflow readings across a duct. The FM approved models are intrinsically safe for hazardous locations, Class 1, Div. 1, Group A, B, C, D, T4.

When working in poorly lighted areas, just switch on the handy backlight feature. It automatically shuts itself off after 20 minutes to minimize battery drain. Electronic zeroing means you simply touch a single key to perfectly null out any minor pressure differences. A display HOLD key freezes the current pressure for those all-too-common situations where readings fluctuate. We even included an audible alarm to warn you of overpressure plus a visual alarm warning in case ambient noise levels are too high to hear the alarm. Audible alarm also confirms a value has been stored, eliminating the need to observe display during a duct traverse.

A new option for the Series 477 is a USB interface. Combined with the 477's datalogging capability, a user can now quickly and conveniently download the stored readings to any USB compatible device. Data manipulation can be easily accomplished in a multitude of word processing or spreadsheet programs. USB models come with a USB cable and a software CD.

New USB Connection Capability

SPECIFICATIONS

Service: Air and compatible gases. FM models air and compatible combustible gases Wetted Materials: Consult factory. Accuracy: ±0.5% F.S., 60 to 78°F (15.6 to 25.6°C); ±1.5% F.S. from 32 to 60°F and 78 to 104°F (0 to 15.6°C and 25.6 to 40°C). Pressure Hysteresis: ±0.1% of full scale. Pressure Limits: See chart. Temperature Limits: 0 to 140°F (.17.8 to 60°C). Compensated Temperature Limits: 32 to 104°F (-0 to 40°C). Storage Temperature Limits: -4 to 176°F (-20 to 80°C). Display: 0.42 (10.6 mm) 4 digit LCD. Response Time: 1 seconds. Resolution: See chart. Power Requirements: 9 volt alkaline battery. Battery included but not connected. Weight: 10.2 oz (289 g). Connections: Two barbed connections for use with 1/8" (3.18 mm) or

3/16 (4.76 mm) I.D. tubing. Two compression fittings for use with 1/8 (3.18 mm) I.D. x 1/4 (6.35 mm) O.D. tubing for 477-7-FM & 477-8-FM only

Agency Approvals: CE and FM, USB models are not FM approved Intrinsically safe.

A-402A Carrying Case — Tough gray nylon pouch protects any Series 477 Manometer. Double zippered for quick and easy access. With belt loop that snaps closed.

7-1/2H x 3W x 2-1/4D (191 x 76 x 57 mm)

Model				Maximum							
Number*	Range	bar	psi	in Ha	kPa	in w.c.	mm Hq	mbar	mm w.c.	Pa	Pressure
477-000-FN	0-1.000 in w.c.			.0736	.2491	1.000	1.868	2.491	25.40	249.1	5 psig
477-00-FM	0-4.000 in w.c.		.1445	.2942	0.996	4.000	7.473	9.96	101.6	996	5 psig
477-0-FM	0-10.00 in w.c.		.3613	.7355	2.491	10.00	18.68	24.91	254.0	2491	5 psig
477-1-FM	0-20.00 in w.c.	.0498	.7225	1.471	4.982	20.00	37.36	49.82	508.0	4982	10 psig
477-2-FM	0-40.00 in w.c.	.0996	1.445	2.942	9.96	40.00	74.73	99.6	1016	9964	10 psig
477-3-FM	0-200.0 in w.c.	.4982	7.225	14.71	49.82	200.0	373.6	498.2	5080		30 psig
477-4-FM	0-10.00 psi	.6895	10.00	20.36	68.95	276.8	517.1	689.5	7031		30 psig
477-5-FM	0-20.00 psi	1.379	20.00	40.72	137.9	553.6	1034	1379			60 psig
477-6-FM	0-30.00 psi	2.069	30.00	61.08	206.9	830.4	1551	2069			60 psig
477-7-FM	0-100.0 psi	6.895	100.0	203.6	689.5	2768	5171	6895	1		150 psig
477-8-FM	0-150.0 psi	10.34	150.0	305.4	1034	4152	7757				200 psig

*Note: USB models include a software CD and cable. Change "FM" to "USB". Example: 477-2-FM becomes 477-2-USB

VISIT OUR WEBSITES: www.dwyer-inst.com

www.dwyer-inst.co.uk

RAYNGER[®] ST[™] 20/30 PRO

THE PROFESSIONAL'S CHOICE FOR VALUE AND PRECISION

Raytek's ST20 and ST30 Pro Infrared Non-Contact Thermometers offer accurate readings in a compact and reliable design. The ST20 Pro has a user selectable temperature range of -25 to 750°F (-32 to 400°C) and the ST30 has a range of -25 to 950°F (-32 to 510°C). They both have a 500 msec reading response time and a weight of 11 ounces. These thermometers are safe to use as they require no contact with the surface measured so long as it is within the thermometer's range (D:S=12:1).

With ST 20's single-point laser sighting, ST 30's 8-point circular laser sighting, their MAX temperature displays and rugged rubber over molding, they can prevent downtime by permitting preventative and predictive maintenance by simply pointing, shooting and reading temperature measurements. These thermometers are perfect for automotive and diesel applications, facility maintenance, fire safety, marine maintenance, electrical and industrial, asphalt work and HVAC systems, and these are just of few of the applications in which ST20s and ST30s can be utilized.

- Wide Temperature Range
- Low Cost
- Max Temperature Display
- Choice of Laser Sighting Options
- Tripod Mountable
- Applications
 Automotive and Diesel
 HVAC/R Systems
 Electrical and Industrial
 Facility Maintenance
 Food Safety
 Asphalt Work
 Fire Safety
 Marine Maintenance

ST20 Pro with laser

-25 to 750°F (-32 to 400°C); °F/°C, backlight

ST30 Pro with circular laser
 -25 to 950°F (-32 to 510°C); °F/°C, backlight

RAYNGER® ST™ SERIES

SPECIFICATIONS

ACCURACY	±1% of reading or ±2°F (±1°C), whichever is greater, at 73°F (23°C) ambient temperature
REPEATABILITY	$\pm 0.5\%$ of reading or $\pm 2^{\circ}F$ ($\pm 1^{\circ}C$), whichever is greater
RESPONSE TIME	(95%) 500 mSec
AMBIENT OPERATING RANGE	32 to 122°F (0 to 50°C)
POWER	9V Alkaline or NiCad battery
DIMENSIONS	8 x 6 x 2 in. (200 x 160 x 55 mm)
WEIGHT	11 oz. (320g)
OPTIONS/ACCESSORIES	Hard Case and Wrist Strap (standard) Nylon Holster with Belt Clip NIST/DKD Certification Contact Probe (ST60/80)

	ST20	ST30	ST60	ST80
TEMPERATURE RANGE	-25 to 750°F (-32 to 400°C)	-25 to 950°F (-32 to 545°C)	-25 to 1100°F (-32 to 600°C)	-25 to 1400°F (-32 to 760°C)
DISPLAY RESOLUTION	0.5°F (0.2°C)	0.5°F (0.2°C)	0.1°F/C	0.1°F/C
MAX, MIN, DIF AND AVG TEMPERATURE	Νο	No	Yes	Yes
RECALL LAST READING	No	Νο	Yes	Yes
DISPLAY HOLD	Yes	Yes	Yes	Yes
HIGH AND LOW AUDIBLE AND VISIBLE ALARMS	Νο	Νο	Yes	Yes
LCD BACKLIGHT	Yes	Yes	Yes	Yes
LASER (CLASS II)*	Yes	Yes	Yes	Yes
EMISSIVITY	Pre-set 0.95	Pre-set 0.95	0.1 to 1.0 digitally adjustable	0.1 to 1.0 digitally adjustable
CONTACT PROBE INPUT	No	No	Yes	Yes
DISTANCE TO SPOT RATIO	12:1	12:1	30:1	50:1

* ST20 and ST80-IS have a single spot laser; ST30, ST60, and ST80 have an eight point circular laser.

Appendix C

Laboratory Analytical Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

November 08, 2017

John Casey Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX (505) 822-8877

RE: Shamrock 63

OrderNo.: 1710C22

Dear John Casey:

Hall Environmental Analysis Laboratory received 6 sample(s) on 10/23/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Shamrock 63

1710C22-001

Lab ID:

Client Sample ID: MW-17 SVE Pilot Quick Test Collection Date: 10/21/2017 8:15:00 AM Received Date: 10/23/2017 4:20:00 PM

Analyses	Result	PQL Qu	al Units	DF Date Analyzed Batch
EPA METHOD 8015D: GASOLINE RA	NGE			Analyst: NSB
Gasoline Range Organics (GRO)	28000	1000	µg/L	200 11/1/2017 11:45:17 AM D4679
Surr: BFB	106	80.2-145	%Rec	200 11/1/2017 11:45:17 AM D46792
EPA METHOD 8021B: VOLATILES				Analyst: NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200 11/1/2017 11:45:17 AM B46792
Benzene	58	20	µg/L	200 11/1/2017 11:45:17 AM B46792
Toluene	14	10	µg/L	200 11/1/2017 11:45:17 AM B46792
Ethylbenzene	ND	10	µg/L	200 11/1/2017 11:45:17 AM B46792
Xylenes, Total	ND	20	µg/L	200 11/1/2017 11:45:17 AM B46792
Surr: 4-Bromofluorobenzene	110	81.9-144	%Rec	200 11/1/2017 11:45:17 AM B46792

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Shamrock 63

1710C22-002

Lab ID:

Client Sample ID: MW-11 SVE Pilot Quick Test Collection Date: 10/21/2017 9:15:00 AM Received Date: 10/23/2017 4:20:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	NSB
Gasoline Range Organics (GRO)	200000	2500	µg/L	500	11/2/2017 8:52:03 AM	G46838
Surr: BFB	110	80.2-145	%Rec	500	11/2/2017 8:52:03 AM	G46838
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200	11/1/2017 12:07:55 PM	B46792
Benzene	890	20	µg/L	200	11/1/2017 12:07:55 PM	B46792
Toluene	300	20	µg/L	200	11/1/2017 12:07:55 PM	B46792
Ethylbenzene	34	20	µg/L	200	11/1/2017 12:07:55 PM	B46792
Xylenes, Total	260	40	µg/L	200	11/1/2017 12:07:55 PM	B46792
Surr: 4-Bromofluorobenzene	114	81.9-144	%Rec	200	11/1/2017 12:07:55 PM	B46792

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 8 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Shamrock 63

1710C22-003

Lab ID:

Client Sample ID: MW-5 SVE Pilot Quick Test Collection Date: 10/21/2017 10:45:00 AM Received Date: 10/23/2017 4:20:00 PM

Analyses	Result	PQL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RAI	NGE			Analys	t: NSB
Gasoline Range Organics (GRO)	79000	1000	µg/L	200 11/2/2017 8:29:27 AM	G46838
Surr: BFB	107	80.2-145	%Rec	200 11/2/2017 8:29:27 AM	G46838
EPA METHOD 8021B: VOLATILES				Analys	t: NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200 11/2/2017 8:29:27 AM	B46838
Benzene	340	20	µg/L	200 11/2/2017 8:29:27 AM	B46838
Toluene	130	20	µg/L	200 11/2/2017 8:29:27 AM	B46838
Ethylbenzene	12	10	µg/L	200 11/2/2017 8:29:27 AM	B46838
Xylenes, Total	63	40	µg/L	200 11/2/2017 8:29:27 AM	B46838
Surr: 4-Bromofluorobenzene	113	81.9-144	%Rec	200 11/2/2017 8:29:27 AM	B46838

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Shamrock 63

1710C22-004

Lab ID:

Client Sample ID: MW-1 SVE Pilot Quick Test Collection Date: 10/21/2017 11:45:00 AM Received Date: 10/23/2017 4:20:00 PM

Analyses	Result	POL Ou	al Units	DF Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RA	NGE			Analys	t: NSB
Gasoline Range Organics (GRO)	130000	1000	µg/L	200 11/2/2017 9:37:04 AM	G46838
Surr: BFB	132	80.2-145	%Rec	200 11/2/2017 9:37:04 AM	G46838
EPA METHOD 8021B: VOLATILES				Analys	t: NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200 11/2/2017 9:37:04 AM	B46838
Benzene	430	20	µg/L	200 11/2/2017 9:37:04 AM	B46838
Toluene	76	20	µg/L	200 11/2/2017 9:37:04 AM	B46838
Ethylbenzene	20	20	µg/L	200 11/2/2017 9:37:04 AM	B46838
Xylenes, Total	120	40	µg/L	200 11/2/2017 9:37:04 AM	B46838
Surr: 4-Bromofluorobenzene	115	81.9-144	%Rec	200 11/2/2017 9:37:04 AM	B46838

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Shamrock 63

1710C22-005

Lab ID:

Client Sample ID: MW-7 SVE Pilot Quick Test Collection Date: 10/21/2017 12:45:00 PM Received Date: 10/23/2017 4:20:00 PM

Analyses	Result	PQL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RA	NGE			Analysi	: NSB
Gasoline Range Organics (GRO)	120000	1000	µg/L	200 11/2/2017 9:59:22 AM	G46838
Surr: BFB	113	80.2-145	%Rec	200 11/2/2017 9:59:22 AM	G46838
EPA METHOD 8021B: VOLATILES				Analyst	II NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200 11/2/2017 9:59:22 AM	B46838
Benzene	380	20	µg/L	200 11/2/2017 9:59:22 AM	B46838
Toluene	50	20	µg/L	200 11/2/2017 9:59:22 AM	B46838
Ethylbenzene	13	10	µg/L	200 11/2/2017 9:59:22 AM	B46838
Xylenes, Total	40	40	µg/L	200 11/2/2017 9:59:22 AM	B46838
Surr: 4-Bromofluorobenzene	115	81.9-144	%Rec	200 11/2/2017 9:59:22 AM	B46838

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Shamrock 63

1710C22-006

Lab ID:

Client Sample ID: MW-2 SVE Pilot Quick Test Collection Date: 10/21/2017 2:30:00 PM Received Date: 10/23/2017 4:20:00 PM

Analyses	Posult	POI Ou	ol Unite	DF Date Analyzed	Batch
Analyses	Kesuit	TQL Qu	al Units	DF Date Analyzeu	Datti
EPA METHOD 8015D: GASOLINE RAI	NGE			Analys	t: NSB
Gasoline Range Organics (GRO)	77000	1000	µg/L	200 11/2/2017 10:21:41 AM	1 G46838
Surr: BFB	106	80.2-145	%Rec	200 11/2/2017 10:21:41 AM	1 G46838
EPA METHOD 8021B: VOLATILES				Analys	t: NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200 11/2/2017 10:21:41 AM	1 B46838
Benzene	220	20	µg/L	200 11/2/2017 10:21:41 AM	1 B46838
Toluene	15	10	µg/L	200 11/2/2017 10:21:41 AM	1 B46838
Ethylbenzene	ND	10	µg/L	200 11/2/2017 10:21:41 AM	1 B46838
Xylenes, Total	ND	20	µg/L	200 11/2/2017 10:21:41 AM	1 B46838
Surr: 4-Bromofluorobenzene	112	81.9-144	%Rec	200 11/2/2017 10:21:41 AM	1 B46838

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Page 7 of 8

Client:	Daniel B. Stephens & Assoc.
Project:	Shamrock 63

Sample ID	1710C22-003ADUP	JP	TestCode: EPA Method 8015D: Gasoline Range								
Client ID:	2: MW-5 SVE Pilot Qui Batch ID: G46838 RunNo: 46838										
Prep Date:	A	nalysis Da	te: 1	1/2/2017	S	SeqNo: 1	493886	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	77000	1000						2.80	20	
Surr: BFB	4	30000		400000		107	80.2	145	0	0	

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 1710C22 08-Nov-17

Client:Daniel B. Stephens & Assoc.Project:Shamrock 63

Sample ID 1710C22-003ADUP SampType: DUP TestCode: EPA Method 8021B: Volatiles Client ID: MW-5 SVE Pilot Qui Batch ID: B46838 RunNo: 46838										
Prep Date:	Analysis D	ate: 1 1	1/2/2017	S	SeqNo: 1	493921	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	50						0	20	
Benzene	330	20						2.63	20	
Toluene	120	20						3.25	20	
Ethylbenzene	11	10						5.78	20	
Xylenes, Total	61	40						3.19	20	
Surr: 4-Bromofluorobenzene	450		400.0		113	81.9	144	0	0	

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 8 of 8

HALL ENVIRONMENTAL ANALYSIS LABORATORY	riau Environmeniai A Albuq TEL: 505-345-3975 F Website: www.hall	natysis Laborata 4901 Hawkins I uerque, NM 871 AX: 505-345-41 environmental.co	vy NE 09 Sam 07 07	ole Log-In Ch	eck List
Client Name: DBS	Work Order Number:	1710C22		RcptNo:	1
Received By: Erin Melendrez Completed By: Ashley Gallegos Reviewed By:	10/23/2017 4:20:00 PM 10/24/2017 8:06:55 AM [0[24]]4	•	ULNA AZ	-	
Chain of Custody		_	_	_	
1. Custody seals intact on sample bottles	?	Yes	No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?		Yes ⊻	No 🗌	Not Present	
3. How was the sample delivered?		<u>Client</u>			
<i>Log In</i> 4. Was an attempt made to cool the sam	bles?	Yes 🗹	No 🗔	na 🗆	
5. Were all samples received at a temper	ature of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗀	
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated	test(s)?	Yes 🔽	No 🗌		
8, Are samples (except VOA and ONG) p	operly preserved?	Yes 🗹	No 🗌		
9. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗌	
10.VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA Vials 🗹	
11. Were any sample containers received	broken?	Yes 🗌	No 🗹 🏾	# of preserved	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custod	y)	Yes 🗹	No 🗌	for pH: (<2 or	>12 unless noted)
13. Are matrices correctly identified on Cha	in of Custody?	Yes 🗹	No 🗌	Adjusted?	
14. Is it clear what analyses were requested	d?	Yes 🗹	No 🗌	.	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No ∐	Checked by:	
Special Handling (if applicable)					
16. Was client notified of all discrepancies	with this order?	Yes	No 🗌	NA 🗹	
Person Notified:	Date				

Person Notified:	Date	
By Whom:	Via: 🗌 eMail 🛄 Phone 🗌 Fax 🗌 In Persol	n
Regarding:		*******
Client Instructions:		

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No Seal	Date Signed By
1	NA	Good	Not Present		

_ _

C	Chain [,]	-of-Cu	istody Record	Turn-Around	Time:	· · · ·				-			_								
Client:	DG	s#A			□ Rush	1				ŀ			. E Vi	NV Sto	/1F 8 1	05 05		ME	NT		-
				Project Name	∋:								• T 5					/ PC.P	11	JK	T
Mailing	Address	: 100	Acity and	l Sh	amode	#62															
		-602 N.P	O Acoremy Kd NE	Project #:				Tol 505 345 2075 Eox 505 345 4107													
Phone	#· C	505-80	x «1101 -9.100	BE14,0021 00 00005,0005				Analysis Request													
email o	r Fax#:	tald	en@ dbstechens cm	Project Manager:				ly)	Ô					-4							
QA/QC	Package:	<u> </u>			<u> </u>		021)	s on	MR			6		S.	B's						
Star	dard		□ Level 4 (Full Validation)	J. 1	Casey		s (8	(Ga	02			SIMS		Q	D D D D						
Accred			Sampler:	T. Goldes	~] [B]	Hd	IO V	(E)	Ę	70 8		NON NON	3082						I ç	
			۲	On Ice:	· 🖾 · Yes 👘	NO NO	+	+/	۲Q.	418 18	504	or 82	<u>0</u>	0°) / Se		(YO				or
)(lype)_ 			Sampleriem	perature: NYA	<u> </u>	ITBE	E E		po	por	10 c	leta	C, N	icid€	(YC	ni-V(∑ s
Date	Time	Motrix	Sample Request ID	Container	Preservative		≥ +	≥ +	3015	Met	Met	\$ (83	\ 8	s (F,	Pest	S	(Sen				bble
Date	1 MILE	IVIGUIA		Type and #	Туре	ITURO	ЦЩ.	ЦЩ Ц	PH 8	РН (DB	AH's	CR/	nion	381	260E	270				r Bu
	c. Ir			ν	1-0		<u> </u>	₽ V			<u>ш</u>	<u>م</u>	<u></u>	A	8	.8	80				┦╕
10/24/17	8.15	AIR	MW-17 SVE FILOT WHICK IS MW-11 SVE PILOT	- IL Textar	None	-2001		\triangle	\sim									\vdash	·		+
	9:15		MW-5 SVE PILOT		<u> </u>	-00d			$\left \right $										-+		_
	10:45	\square	QUICK TEST			-003		\square								·			\rightarrow		
	11:45		Quick TEST			-004		\square													\perp
	12:45		QUICK TEST			-005		\square	\square										\square		_
ł	14:30	(QUICIC TEST	'	L	-00LP		1	1												
			,																		
Date:	Time:	Relinquish	the second secon	Received by:		Date Time	Ren	nark	s:												
10/23/17	4:20	7	the the	674		10/23/17															
Date:	e: Time: Relinquished by:		ea dy:	Received by:		Date lime															

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

November 08, 2017

John Casey Daniel B. Stephens & Assoc. 6020 Academy NE Suite 100 Albuquerque, NM 87109 TEL: (505) 822-9400 FAX (505) 822-8877

RE: Shamrock 63

OrderNo.: 1710C23

Dear John Casey:

Hall Environmental Analysis Laboratory received 9 sample(s) on 10/23/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Project: Shamrock 63

1710C23-001

Lab ID:

Client Sample ID: MW-9 SVE Pilot Collection Date: 10/20/2017 9:30:00 AM Received Date: 10/23/2017 4:15:00 PM

Analyses	Result	PQL Qu	al Units	DF D	ate Analyzed	Batch
EPA METHOD 8015D: GASOLINE RA	ANGE				Analys	t: NSB
Gasoline Range Organics (GRO)	180000	2500	µg/L	500 ²	11/1/2017 8:44:37 AM	D46792
Surr: BFB	108	80.2-145	%Rec	500 ²	11/1/2017 8:44:37 AM	D46792
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Methyl tert-butyl ether (MTBE)	ND	120	µg/L	500 ²	11/1/2017 8:44:37 AM	B46792
Benzene	980	50	µg/L	500 <i>^</i>	11/1/2017 8:44:37 AM	B46792
Toluene	260	50	µg/L	500 <i>^</i>	11/1/2017 8:44:37 AM	B46792
Ethylbenzene	42	25	µg/L	500 <i>î</i>	11/1/2017 8:44:37 AM	B46792
Xylenes, Total	190	100	µg/L	500 <i>^</i>	11/1/2017 8:44:37 AM	B46792
Surr: 4-Bromofluorobenzene	110	81.9-144	%Rec	500 <i>^</i>	11/1/2017 8:44:37 AM	B46792

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Shamrock 63

1710C23-002

Lab ID:

Client Sample ID: MW-9 SVE Pilot Collection Date: 10/20/2017 12:30:00 PM Received Date: 10/23/2017 4:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	NSB
Gasoline Range Organics (GRO)	140000	1000	µg/L	200	11/1/2017 10:59:59 AM	D46792
Surr: BFB	112	80.2-145	%Rec	200	11/1/2017 10:59:59 AM	D46792
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200	11/1/2017 10:59:59 AM	B46792
Benzene	760	20	µg/L	200	11/1/2017 10:59:59 AM	B46792
Toluene	230	20	µg/L	200	11/1/2017 10:59:59 AM	B46792
Ethylbenzene	36	20	µg/L	200	11/1/2017 10:59:59 AM	B46792
Xylenes, Total	200	40	µg/L	200	11/1/2017 10:59:59 AM	B46792
Surr: 4-Bromofluorobenzene	115	81.9-144	%Rec	200	11/1/2017 10:59:59 AM	B46792

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

Matrix: AIR

CLIENT: Daniel B. Stephens & Assoc.**Project:** Shamrock 63

1710C23-003

Lab ID:

Client Sample ID: MW-9 SVE Pilot Collection Date: 10/20/2017 3:30:00 PM Received Date: 10/23/2017 4:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	NSB
Gasoline Range Organics (GRO)	150000	1000	µg/L	200	11/1/2017 11:22:37 AM	D46792
Surr: BFB	109	80.2-145	%Rec	200	11/1/2017 11:22:37 AM	D46792
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200	11/1/2017 11:22:37 AM	B46792
Benzene	800	20	µg/L	200	11/1/2017 11:22:37 AM	B46792
Toluene	230	20	µg/L	200	11/1/2017 11:22:37 AM	B46792
Ethylbenzene	26	20	µg/L	200	11/1/2017 11:22:37 AM	B46792
Xylenes, Total	140	40	µg/L	200	11/1/2017 11:22:37 AM	B46792
Surr: 4-Bromofluorobenzene	112	81.9-144	%Rec	200	11/1/2017 11:22:37 AM	B46792

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc.**Project:** Shamrock 63

1710C23-004

Lab ID:

Client Sample ID: MW-10 SVE Pilot Collection Date: 10/22/2017 9:30:00 AM Received Date: 10/23/2017 4:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RAI	NGE				Analysi	: NSB
Gasoline Range Organics (GRO)	200000	2500	µg/L	500	11/3/2017 9:03:58 AM	G46868
Surr: BFB	110	80.2-145	%Rec	500	11/3/2017 9:03:58 AM	G46868
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200	11/2/2017 10:44:00 AM	B46838
Benzene	980	20	µg/L	200	11/2/2017 10:44:00 AM	B46838
Toluene	970	20	µg/L	200	11/2/2017 10:44:00 AN	B46838
Ethylbenzene	56	20	µg/L	200	11/2/2017 10:44:00 AN	B46838
Xylenes, Total	260	40	µg/L	200	11/2/2017 10:44:00 AN	B46838
Surr: 4-Bromofluorobenzene	113	81.9-144	%Rec	200	11/2/2017 10:44:00 AM	B46838

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Project: Shamrock 63

1710C23-005

Lab ID:

Client Sample ID: MW-10 SVE Pilot Collection Date: 10/22/2017 12:30:00 PM Received Date: 10/23/2017 4:15:00 PM

Result	PQL Qu	al Units	DF	Date Analyzed	Batch
IGE				Analyst	: NSB
220000	2500	µg/L	500	11/3/2017 9:28:23 AM	G46868
113	80.2-145	%Rec	500	11/3/2017 9:28:23 AM	G46868
				Analyst	: NSB
ND	50	µg/L	200	11/2/2017 11:28:42 AN	B46838
880	20	µg/L	200	11/2/2017 11:28:42 AN	B46838
930	20	µg/L	200	11/2/2017 11:28:42 AN	B46838
69	20	µg/L	200	11/2/2017 11:28:42 AN	B46838
370	40	µg/L	200	11/2/2017 11:28:42 AN	B46838
116	81.9-144	%Rec	200	11/2/2017 11:28:42 AN	B46838
	Result NGE 220000 113 ND 880 930 69 370 116	Result PQL Qu NGE 220000 2500 113 80.2-145 ND 50 880 20 930 20 69 20 370 40 116 81.9-144	Result PQL Qual Units NGE 220000 2500 µg/L 113 80.2-145 %Rec ND 50 µg/L 880 20 µg/L 930 20 µg/L 69 20 µg/L 370 40 µg/L 116 81.9-144 %Rec	Result PQL Qual Units DF NGE 220000 2500 µg/L 500 113 80.2-145 %Rec 500 ND 50 µg/L 200 880 20 µg/L 200 930 20 µg/L 200 69 20 µg/L 200 370 40 µg/L 200 116 81.9-144 %Rec 200	Result PQL Qual Units DF Date Analyzed NGE Analyst 220000 2500 µg/L 500 11/3/2017 9:28:23 AM 113 80.2-145 %Rec 500 11/3/2017 9:28:23 AM ND 50 µg/L 200 11/3/2017 9:28:23 AM ND 50 µg/L 200 11/2/2017 9:28:23 AM 880 20 µg/L 200 11/2/2017 9:28:23 AM 930 20 µg/L 200 11/2/2017 9:28:23 AM 69 20 µg/L 200 11/2/2017 11:28:42 AM 69 20 µg/L 200 11/2/2017 11:28:42 AM 69 20 µg/L 200 11/2/2017 11:28:42 AM 370 40 µg/L 200 11/2/2017 11:28:42 AM 116 81.9-144 %Rec 200 11/2/2017 11:28:42 AM

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Project: Shamrock 63

1710C23-006

Lab ID:

Client Sample ID: MW-10 SVE Pilot Collection Date: 10/22/2017 3:30:00 PM Received Date: 10/23/2017 4:15:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	NSB
Gasoline Range Organics (GRO)	230000	2500	µg/L	500	11/3/2017 9:50:58 AM	G46868
Surr: BFB	112	80.2-145	%Rec	500	11/3/2017 9:50:58 AM	G46868
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200	11/2/2017 11:51:02 AN	B46838
Benzene	860	20	µg/L	200	11/2/2017 11:51:02 AN	B46838
Toluene	840	20	µg/L	200	11/2/2017 11:51:02 AN	B46838
Ethylbenzene	56	20	µg/L	200	11/2/2017 11:51:02 AM	B46838
Xylenes, Total	300	40	µg/L	200	11/2/2017 11:51:02 AM	B46838
Surr: 4-Bromofluorobenzene	113	81.9-144	%Rec	200	11/2/2017 11:51:02 AN	B46838

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
Analytical Report
Lab Order 1710C23

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Shamrock 63

1710C23-007

Lab ID:

Client Sample ID: MW-6 SVE Pilot Collection Date: 10/23/2017 7:30:00 AM Received Date: 10/23/2017 4:15:00 PM

Analyses	Recult	POI Ou	ol Unite	DF	Data Analyzad	Ratch
Anaryses	Kesuit	TQL Qu	ai Units	DI	Date Analyzeu	Datti
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	NSB
Gasoline Range Organics (GRO)	150000	1000	µg/L	200	11/2/2017 12:13:24 PM	G46838
Surr: BFB	112	80.2-145	%Rec	200	11/2/2017 12:13:24 PM	G46838
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200	11/2/2017 12:13:24 PM	B46838
Benzene	830	20	µg/L	200	11/2/2017 12:13:24 PM	B46838
Toluene	670	20	µg/L	200	11/2/2017 12:13:24 PM	B46838
Ethylbenzene	39	20	µg/L	200	11/2/2017 12:13:24 PM	B46838
Xylenes, Total	190	40	µg/L	200	11/2/2017 12:13:24 PM	B46838
Surr: 4-Bromofluorobenzene	113	81.9-144	%Rec	200	11/2/2017 12:13:24 PM	B46838

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 7 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1710C23

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. Project: Shamrock 63

1710C23-008

Lab ID:

Client Sample ID: MW-6 SVE Pilot Collection Date: 10/23/2017 10:30:00 AM Received Date: 10/23/2017 4:15:00 PM

Analyses	Result	PQL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RA	NGE			Analyst	: NSB
Gasoline Range Organics (GRO)	120000	1000	µg/L	200 11/3/2017 8:41:27 AM	G46868
Surr: BFB	113	80.2-145	%Rec	200 11/3/2017 8:41:27 AM	G46868
EPA METHOD 8021B: VOLATILES				Analyst	II NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200 11/3/2017 8:41:27 AM	B46868
Benzene	670	20	µg/L	200 11/3/2017 8:41:27 AM	B46868
Toluene	390	20	µg/L	200 11/3/2017 8:41:27 AM	B46868
Ethylbenzene	37	20	µg/L	200 11/3/2017 8:41:27 AM	B46868
Xylenes, Total	200	40	µg/L	200 11/3/2017 8:41:27 AM	B46868
Surr: 4-Bromofluorobenzene	115	81.9-144	%Rec	200 11/3/2017 8:41:27 AM	B46868

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 8 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1710C23

Date Reported: 11/8/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Daniel B. Stephens & Assoc. **Project:** Shamrock 63

1710C23-009

Lab ID:

Client Sample ID: MW-6 SVE Pilot Collection Date: 10/23/2017 1:30:00 PM Received Date: 10/23/2017 4:15:00 PM

Analyses	Result	PQL Qu	al Units	DF Date Analyzed Batch
EPA METHOD 8015D: GASOLINE RAI	NGE			Analyst: NSB
Gasoline Range Organics (GRO)	130000	1000	µg/L	200 11/3/2017 10:35:57 AM G468
Surr: BFB	110	80.2-145	%Rec	200 11/3/2017 10:35:57 AM G468
EPA METHOD 8021B: VOLATILES				Analyst: NSB
Methyl tert-butyl ether (MTBE)	ND	50	µg/L	200 11/3/2017 10:35:57 AM B4686
Benzene	740	20	µg/L	200 11/3/2017 10:35:57 AM B4686
Toluene	340	20	µg/L	200 11/3/2017 10:35:57 AM B4686
Ethylbenzene	19	10	µg/L	200 11/3/2017 10:35:57 AM B4686
Xylenes, Total	99	40	µg/L	200 11/3/2017 10:35:57 AM B4686
Surr: 4-Bromofluorobenzene	113	81.9-144	%Rec	200 11/3/2017 10:35:57 AM B4686

Matrix: AIR

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 9 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:DanielProject:Shamr	B. Stephens ock 63	& Asso	c.							
Sample ID 1710C23-001ADUP SampType: DUP TestCode: EPA Method 8015D: Gasoline Range Cligat ID: MW-0 SVE Billet Batch ID: D45702 Burble: 45702										
Prep Date:	Analysis D	n ID: D4 vate: 1 1	6792 I/1/2017	R S	SeqNo: 1	6792 492582	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	150000	2500						16.7	20	
Surr: BFB	1100000		1000000		107	80.2	145	0	0	
Sample ID 1710C23-008A	DUP SampT	ype: DL	IP	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e	
Client ID: MW-6 SVE Pild	ot Batch	n ID: G4	6868	R	RunNo: 4	6868				
Prep Date:	Analysis D	ate: 11	1/3/2017	S	SeqNo: 1	495152	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	150000	1000						19.5	20	
Surr: BFB	460000		400000		115	80.2	145	0	0	

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 10 of 11

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

1710C23

WO#:

Client:Daniel B. Stephens & Assoc.Project:Shamrock 63

Sample ID 1710C23-001ADU	P Samp	Гуре: DU	IP	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: MW-9 SVE Pilot	Batc	h ID: B4	6792	R	aunNo: 4	6792				
Prep Date:	Analysis E	Date: 11	/1/2017	S	SeqNo: 1	492623	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	120						0	20	
Benzene	830	50						16.4	20	
Toluene	250	50						3.71	20	
Ethylbenzene	45	25						7.32	20	
Xylenes, Total	220	100						13.2	20	
Surr: 4-Bromofluorobenzene	1100		1000		111	81.9	144	0	0	
Sample ID 1710C23-008ADUP SampType: DUP TestCode: EPA Method 8021B: Volatiles										
Sample ID 1710C23-008ADU	P Samp	Гуре: DU	IP	Tes	tCode: E	PA Method	8021B: Volat	iles		
Sample ID 1710C23-008ADUI Client ID: MW-6 SVE Pilot	P Samp [¬] Batc	Гуре: DU h ID: B4	IP 6868	Tes R	tCode: El RunNo: 4	PA Method 6868	8021B: Volat	iles		
Sample ID 1710C23-008ADUI Client ID: MW-6 SVE Pilot Prep Date:	P Samp Batc Analysis [Гуре: DU h ID: B4 Date: 1 1	IP 6868 1/3/2017	Tes R S	tCode: E RunNo: 4 SeqNo: 1	PA Method 6868 495168	8021B: Volat Units: μg/L	iles		
Sample ID 1710C23-008ADUI Client ID: MW-6 SVE Pilot Prep Date: Analyte	P Samp Batc Analysis I Result	Гуре: DU h ID: B4 Date: 1 1 PQL	IP 6868 I/3/2017 SPK value	Tes R S SPK Ref Val	tCode: El RunNo: 4 SeqNo: 1 %REC	PA Method 6868 495168 LowLimit	8021Β: Volat Units: μ g/L HighLimit	iles %RPD	RPDLimit	Qual
Sample ID 1710C23-008ADUI Client ID: MW-6 SVE Pilot Prep Date: Analyte Methyl tert-butyl ether (MTBE)	P SampT Batc Analysis E Result ND	Fype: DU h ID: B4 Date: 11 PQL 50	IP 6868 I/3/2017 SPK value	Tes R S SPK Ref Val	tCode: El RunNo: 4 SeqNo: 1 %REC	PA Method 6868 495168 LowLimit	8021Β: Volat Units: μg/L HighLimit	iles %RPD 0	RPDLimit 20	Qual
Sample ID 1710C23-008ADUI Client ID: MW-6 SVE Pilot Prep Date: Analyte Methyl tert-butyl ether (MTBE) Benzene	P SampT Batc Analysis E Result ND 830	Type: DU h ID: B4 Date: 1 1 <u>PQL</u> 50 20	IP 6868 I/ 3/2017 SPK value	Tes R SPK Ref Val	tCode: E RunNo: 4 SeqNo: 1 %REC	PA Method 6868 495168 LowLimit	8021Β: Volat Units: μg/L HighLimit	iles %RPD 0 21.7	RPDLimit 20 20	Qual R
Sample ID 1710C23-008ADUI Client ID: MW-6 SVE Pilot Prep Date: Analyte Methyl tert-butyl ether (MTBE) Benzene Toluene	P Samp Batc Analysis I Result ND 830 500	Type: DU h ID: B4 Date: 11 PQL 50 20 20	IP 6868 I/ 3/2017 SPK value	Tes R SPK Ref Val	tCode: E RunNo: 4 SeqNo: 1 %REC	PA Method 6868 495168 LowLimit	8021Β: Volat Units: μg/L HighLimit	iles %RPD 0 21.7 24.4	RPDLimit 20 20 20	Qual R R
Sample ID 1710C23-008ADUI Client ID: MW-6 SVE Pilot Prep Date: Analyte Methyl tert-butyl ether (MTBE) Benzene Toluene Ethylbenzene	P Samp Batc Analysis I Result ND 830 500 39	Type: DU h ID: B4 Date: 11 PQL 50 20 20 20	IP 6868 I/3/2017 SPK value	Tes F SPK Ref Val	tCode: El RunNo: 4 SeqNo: 1 %REC	PA Method 6868 495168 LowLimit	8021Β: Volat Units: μg/L HighLimit	iles %RPD 0 21.7 24.4 4.44	RPDLimit 20 20 20 20 20	Qual R R
Sample ID 1710C23-008ADUI Client ID: MW-6 SVE Pilot Prep Date: Analyte Methyl tert-butyl ether (MTBE) Benzene Toluene Ethylbenzene Xylenes, Total	P Samp Batc Analysis E Result ND 830 500 39 220	Fype: DU h ID: B4 Date: 1 1 PQL 50 20 20 20 40	IP 6868 I/3/2017 SPK value	Tes F SPK Ref Val	tCode: El RunNo: 4 SeqNo: 1 %REC	PA Method 6868 495168 LowLimit	8021B: Volat Units: μ g/L HighLimit	iles %RPD 0 21.7 24.4 4.44 10.1	RPDLimit 20 20 20 20 20 20 20	Qual R R

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 11 of 11

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Analysis 4901 H Albuquerque, TEL: 505-345-3975 FAX: 50 Website: www.hallenviron	Laboratory Jawkins NE NM 87109 St 5-345-4107 mental.com	ample Log-In C	heck List
Client Name: DBS	Work Order Number: 1710C2	23	RcptNo:	1
Received By: Erin Melendrez	0/23/2017 4:15:00 PM	U.M.	6	
Completed By: Ashley Gallegos 1 Reviewed By: A	0/24/2017 8:14:20 AM D 24 /7	AJ		
Chain of Custody				,
1. Custody seals intact on sample bottles?	Yes	No [Not Present 🗹	
2. Is Chain of Custody complete?	Yes	No 🛛	Not Present	
3. How was the sample delivered?	Client			
Log In				
4. Was an attempt made to cool the samples?	Yes	✓ No [
5. Were all samples received at a temperature of	f>0° C to 6.0°C Yes 🗹] No [
6. Sample(s) in proper container(s)?	Yes	Σ Νο [
7. Sufficient sample volume for indicated test(s)?	Yes 🔽	No []	
8. Are samples (except VOA and ONG) properly	preserved? Yes 🗹	No []]	
9. Was preservative added to bottles?	Yes	No 🗹		
10.VOA vials have zero headspace?	Yes] No [No VOA Vials 🗹	
11. Were any sample containers received broken?	Yes	No 🖪	# of preserved	- <u></u>
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No [bottles checked for pH:	>12 unless noted)
13. Are matrices correctly identified on Chain of Cu	istody? Yes 🗹	No 🗆] Adjusted?	
14. Is it clear what analyses were requested?	Yes 🔽	No 🗆]	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🔽	No 🗌	Checked by:	
<u>Special Handling (if applicable)</u>				

NA 🗹

16.1	Was client notified of al	I discrepancies with this order?	Yes 🗌	No 🗌	N
	Person Notified:		Date		
	By Whom:		Via: 🗍 eMail 🗍	Phone Fax	In Person
	Regarding:			 	

Client Instructions: 17. Additional remarks:

18. Cooler Information

Cooler No Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1 NA	Good	Not Present			

C	Chain	-of-Cı	stody Record	Turn-Around	Time:		1.			_								_			
Client:	DB5.	ŧA		Standard	I 🗆 Rush	·		20.3		F	1A \N	LL Al	. Ei .YS	NN SI:	/17 5 L	05 A	BO	ME)R/	NT 4.T.('AL DR'	Y
				Project Nam	e:]			-		 v hai	llonu	/iron	mon	tol o	om				•
Mailing	Address	:: 60Z	o Acadeny Rd NE	- tot 5	shamrock	#63		49	01 H	awki	ins N	IF -		anon Mon	erau	iai.u	оп M 87	7109			
		 ^rB	Q 87109	Project #:	· · · · · · ·		1	Те	1 50	15_34	15_30		,	Eav	505	245	440	100			
Phone	#: 9	515-82	2-9400	BE14.	0021.00.	00005.0003			<i>.</i> 00	/0-04	-0-0:	л 3 А	naly	ysis	Req	ues	-410 1				
email c	email or Fax#: tgolden@ dbsteph			Project Mana	ager:			ily)	Ô					(1)							T
QA/QC	Package:				CASON		8021	as on	/ MR			IS)	i	04,SC	CB's						
Star	ndard		□ Level 4 (Full Validation)				3's (<u>9</u>	2 2 2			SIIV		۲ ۳	D N						
Accred	itation AP	Othe	er	Sampler: On Ice:	T. Gold		TM	TPL		. -)	(1-1)	8270		3.NO	/ 808		()				
	(Type)			Sample Tem	perature: N	14	Ш	ш	(U)	剧	d 50	ō	als	2	des		10				
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	BTEX + MTE	BTEX + MTE	ТРН 8015В(TPH (Method	EDB (Metho	PAH's (8310	RCRA 8 Met	Anions (F,Cl	8081 Pestici	8260B (VOA	8270 (Semi-'				עור חייר ובי י
10/201	9:30	AIR	MW-9 SVE PILOT	11 Tedlar	None	- 001		\mathbf{X}	А												T
	12:30		MW-9 SVE PILOT	1		-002			}	-											T
l l	15:30		MW-9 SVE PILOT			-003															
10/22/17	9:30		MW-10 SVE PILOT			-004															Τ
	12:30		MW-10 SVE PILOT			-065															
	15:30		MW-10 SVE PLLOT			-00(9															
10/230	7:30		MW-6 SVE PILOT			-007															Τ
	10:30		MW-6 SVE AILOT			-008															
-	13:30	1	MW-6 SVEPILOT		<u>۱</u>	- 009			4												\Box
																		.			
				·····																	
Date: 10/22/17	Time: 4:\5	Relinquish	Aby Alexandre	Received by:		Date Time 10/23/14/5	Ren	narks	:												
	ring.	n computant	ла бу.	Traderved by.																	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Appendix D

Field Notes

10/20/17	SVEPILOT TESTING JG	TG
	50° mostly surry slight northerly breeze	1230
0745	DBSEA on-site.	
	Aculac is already set up on mw-9	1430
	Hotel manager rearrested That MW-6	
	be tested on Monday due to traffic	
	through parking lot Will do quick	
	tests Saturday and MW-19 Sunlay.	
	Discuss access in Manny's auto lot.	
0800	Conduct tailgate health and setely	
	Discuss traffic, altitude, sun,	
	and huspital location	
0830	Begin test on MW-9.	1500
	Measure / vente distances between	
	wells Mark up table from work plan.	
0845	Getting decent from at applied vacuum	
	of 25" Hz Q High concentration (no	1530
	propane usage). Plan to run at steps	1630
	of 25, 50 75" H.O.	
0930	Collect MW-9 SVE pilot lab sample	
	after 1-hour testing. will analyze	
	all samples for 80150/8021B.	
1030	PSTB on site, Susan von Contin,	
	Chris Hamilton.	1700
	Step vacuum up to 50" Hz O.	
1245	PSTB off-ste	1720
1230	Collect MW-9 SVE pilot fest sample.	

TG		10/20/17
1330	Increase applied well vacuum	70
	about 75 ttz o.	
1430	Discuss quick testing with	Jesus
	@ Manues Auto Sales. They	have
	already moved vehicles off	of
	MW-1 and MW-2 locations.	MW-5
	and MM-7 have vehicles a	pund
	but should be available for	testing
	Mul-1 well VanVt is 6" b	eluri gradi
	Surrounded by stone parce	s to
	Kap dit at	
1500	Flow relatively unchanged @	17 solon,
	but have 6 fait uprelling.	Acsumily
	H feet open Screen, ty s	em/A
1530	Collect My allie plat pres	+
1945	Status updates for Casey a	P Raucei.
1630	Shut town test of MW-9	
	Collection tinal vacuum r	eridual
	Nacuum, and Final Water	levels.
	Secure well vanits Excep	1-10-
	MW-12, Solts hand tighte	red
1700	P. Proparation to testing	tononon.
	art na more domand,	
1130	'Officito "	

10/21/17				TG	
	48°F, F	atly cla	ley, sont	haly breeze	08
0630	AcuVac on.	site war	ming 4	ρ	of
	equipment	and se	ting up	on MW-17	
0700	Start quic	k test or	MW-1	7. Running	
	at 50 Hz	O. All	nick te	ets will	09
	be run	at this	Vacuu	m	09
0705	Daily tailge	te health	and so	efety	
· <u> </u>	Discuss tra	ffe, Kill	switch	trips	0
	and falls	, and co	itters m	carlot.	
0120	Vacuum Sp	ites at	100 "+	open	
	dilution to	It we	ster tabl	cettle:	10
	back dow	۸			
0730	Pulling about	t 3.5 A	m @ 2	50" H2 0.	
	Tighter form	ation. c	nhy 20	ppmy	10
	in Horiba	Screenin	g sam	ple.	
0745	XCollect MV-	17 quick	tist s	angleX	10
	Will continu	u to co	llect so	mples	
	every 15 r	ninutes		~2,000 pr+1	
0815	Hydrocarbon	s climb	ing ba	et up.	
	Assume V.	acuum spi	ke sub	nerged	113
	Smear Zon	e and e	vell sc	reen,	
	but now	returning	g to sta	tic.	112
	Collect M	W-17 gu	ick test	- Sample	12
0920	Shut off	MW-17 9	juict te	+	
	Set up on	MW-11.			

TG	· · · · · · · · · · · · · · · · · · ·	10/21/17
0825	Place comes around trike and	ng.
0830	Bean test on MW-11.	
	Pulling about 4 cfm @ 50"	H-0
	Hydrocarbon vapors ~ 80,000	P Damy
0915	Collect MW-11 quick test sa	mole.
0930	Shut off Mw-11 quick ter	t.
	Mobilize vig into Mannie tut	to lot.
0935	Set up on MW-5.	
	Apparently have maneel sy	1sten
	find (~35 cm) at only 22	+ 23 Hzo
1000	official start of MW-5 quie	t test
	Vacuum creeping up slightly (~27"H20)
	Flow also up. HC ~ 40,000	POMU
1025	Vacuum back down to 21	4-25" #0
	Flow around 30 cm	
1045	Collect MW-5 quick test Sa	mple
1100	Shut down MW-5 test. Mon	ve hose
	and gauge to MW-1. Begin	test
	Maxing out around 38" Hz	Ð.
1130	Getting max flow @ ~ 35"Hz	b.
	With 4' open screen, ~ 8 c	· for/ft.
1145	Collect MW-1 quick test se	inple_
1200	Stop test on Mul-1	
	Move have and stitlings to MI	w-Z
	Max FLOW at 1-36" Hz	0.

10/21	76-	TG
1210	DBSEA off-site to pick up lunch	
	for all AchVac puching to finish	0740
	testing.	
12.45	DBS « A on site.	
	Collect MW-7 quick test samply	
	He concentrations rising quickly.	
	Started at 20,000 ppmv. Now 60,000 pmv.	
1300	Complete quick test on MW-7.	
	Break for lunch	
1330	Will more rig to set up on M/W-2	
1345	Begin test on MW-2. 26"the vacuum	0830
	Another high flow, low vacuum test.	
1415	Flow started at 40 cm, hes	
	propped to 34 cfm as they mix in	0900
	dilution air due to rising HC values.	
1430	Collect MW-2 quick test sample	0930
	PSTB on-site (Susan).	
1445	Complete last quick test on MW-2	1030
	Close and secure all wells.	
	Notify Jesus of Manny's that Testing	1130
	is done for the day.	
1500	NMED, AcuVac, and DBSan off-site.	
	10/22/10/ 27	1230

	_	ΓG-													10/2	2/1-	7
				36	ΎF,	ch	ear	, (:ali	n							
	Ø	74	0		DB	s 🛉	. (on s	ite	,	Aci	r Vo	ıc	ìs	dr.	ead	5
					se	1	ч -	on	^	111	-10		Siq	nifi	car	nt	
					1	sid	nal		Jac	uu	m	ÌA.	5	m	our	Q.	1
-					ol	eser	Va	tì <i>a</i> n	V	v-e	۶	(1-	3"	H_0	, (and	
					M	N-1	0	is	hol	din	5-	~ 30	<u>, H</u>	20	ω	the	nt
phv.					er	gìn	e	Vq	cui	yn.	T	z cì	de :	10	Pu	M	
					Pl	ugs		ven	t	to	at	mos	ph	ve,	. 4	nd	
					. (1	este	int		est C	a	t_	08	30	h): IL_	ve	E
<u>N</u> -2	- 01	20			0\ 0	14M	igh	<u>х</u>	tr	<u> </u>	nes	ct	Tes	<u>+ -</u>	DM	0W2	W.
<u>~</u>		5 50	2		120	g.	te	<u>\$†</u>	On	M	W - 1	. <u>().</u> 	Du	e -t		mT	rd (
ST .					op	un Lac	50	ree	n	, 1/2 110) III (-	a['' 1	en	μ7	-+0	ru	1
	Ð	901	 ר		AL	ey> 	ot	2 2 5	ر ب م	49 (60	ر ا	1212 0' 1	^ L	رىدە	14	•
		100					<u>ان</u>	.,	 				4 1	ت <u>ح</u> ت ر		5 · 1 · 6	
<u>, <</u>	n	921	2		- 14 Co	llect			-10	ر د	FA	n ilat	+	Ţ€ +	la.	San	een h
		• / •	<u> </u>		w	U .	anal	474	11	14	BTE	_ b	 	ko21	180	5	4
	l	030	>		10	cie.	~	a	no li	ed 1	ι ω	ell) Vag	un	1	to	
_					40	• +	.0.	F	ow	at	ん	5	ch	1.			
1		130)		Ma	int	Tai.	5	a	5	cfm	0) 4	0`'	vac	uun	٩.
					N	st_	5e	ùni		mn	edi	ate	_ r	પંદર	ìn		
te.					ob	rser	vat	<u>vir</u>)	jell	J	acu	un	-	pot	enti	h
-					SÌ	z	0	f <	A	ter	for	Ma	tie	n a	t n	w-	0.
	12	230	>		2011	ect		W-	10	5	E	<u>و</u> زار	+	tes	F		
				1	7 B	5*1	۲	• 64	٠۲	te	њ	pie	e y	p]4	nd	۰ ۱ - ۱	

10 22	7
1250	DBS&A back on site.
1330	Increase Vacuum to 60" H20.
	Well flow up to 6.5 cfm despite
	increased upwelling Approximately
	4 to 5 chil of open screen.
1500	System stable at 6.5 cfm @ 60"Hz0.
	Don't have a clear picture of ROI
	on this test as observation well
	Vacuum are all similar, regardless
	of distance from well Believed
	to be related to residual vacuum
	in the formation from provious
	testing last 2 days.
1515	Changes in observed well vacuum
	tracking barometric preserve, not
	necessarily applied well yecurm
1530	Collect MW-10 SVE pilot test sample
	Discuss plan for tomorrow. Will block
	entire entrance / driveway near MW-6
	for safety reasons South driveway
	will remain open for hotel access.
16.20	Plan to start test at 0630.
020	Conclude test on MN-10.
	Secure well vantis Learning cops
1700	DBS * A off-site.

TG		•• ••••••		,							10	23	1
	42°F	, c	\ea	r,	sli	ut	n	orth	ely	b	442	e	
0630		784	s∉A	0	n-5	te.	A	cul	lac	a	rea	ly	
		iet	ш	0	n	M	N-6	u	th	6	bser	uat	en
		we	15	70	ad	9	and	1	stat	ìC	dæt	n	
		coll	• đ	ed.	Ī	Þesp	ite	ω	ell	Cá	P5	off	
		ove	mì	gut	,	The	<u>re</u>	ÌS	۶۴ll	(esid	ual	vac.
0630	C	seg	^	Мn	1-6	S.	ιE	pilo	+ -	est.	Pl	an [.]	to
	¥	m	- 9	1-195	6	ιt ,	25	, 50	, 7	2	H ₂ 0	Va	<u>c.</u>
-/ 10	<u>k</u>	tan	<u> </u>	1000	بر	12	op	en '	scr.	ien A	đ	stat 1	٢.
0640		Va	y 1	rul	مع م	<u>د ا</u> ر	nea	th	an	لم	Sat	-dy	•
		"SCY	155 11 1	_ ?	ede	smo	m -	jvæt	hic I	, S ^	In Ce	: Th	uck
	1P	f,	n Ne to	the second	hp	C	ی د ارب	ەر 11	- 5	de	201	<u> </u>	men .
	D	cò	te	د ر م	ne		va.	uas	<u> </u>	mo	ie to		rey.
	al a	re	din	h	,	a -	nvd	ict	and C.	<u>*</u> + +	100	e, vel	
	e	xcl	nsi	27	Zo	ne	-1- . (ł	-ent	siti a	5	Con	R	
	_ W	511	n	ed	t t	D	ra		the	àn	ch	di	
0700	5	5	cfr	à	> 2	<u>5</u> '	H.,	2.	init	al	H	C	
		کم <i>م</i>	ent	rat	hon	2	5	ьK	epe	nv			
0730		Colle	a	M	W	6	SVE	Qi	01	test	- 19	65	ande
0830	> \$	ster	2	rac	uu	~ \	re	to	50	<u>, </u>	tec).	
1000		<u>،</u>	cfm	G		20"	Hz	0	A	i er	st	7 ,	
		Cw	Ł	۰Ff	<u> </u>	npa	ne	. F	Enoy	sfr.	fior	200	Atto
		Co	nce	ntr	ati	m	4	7\$	к f	pr	w.		
1030		iol.	ect	N	٨w	-6	Ş	E	ما أم	, † †	est	Sa	mple

102317		1			TG
1130	Step	Vacuna	up to	75" Hz	D. Flow
	increa	ses to	9.5 0	Fm	
1230	PSTB	on-site	. (50	san Chu	ns)
1330	Collect	MW-6	SVE F	ilot test	
1400	10 cf	m @ T	5" H, 0	applied 3	kacuum.
1415	PSTB	off-sit-	•		
1430	Stop 1	1~-6	SVE pil	ot test	
	Lock	and s	cure n	conitor .	wells
	Pack	up equi	ement	and the	yler.
1515	DBS	A off	site.		
1600	Drop	samples	at l	A.	
	(\rightarrow			
			7£		
		1023			
				\	
				-	
				1	

Appendix E

Photographic Documentation

1. Equipment set up for SVE pilot test, well MW-10.

2. Wellhead configuration for SVE pilot test.

SHAMROCK #63 3624 CERRILLOS ROAD SANTA FE, NEW MEXICO Photographs

Daniel B. Stephens & Associates, Inc.

3. Vapor flow gauge.

4. Wellhead configuration for quick test.

SHAMROCK #63 3624 CERRILLOS ROAD SANTA FE, NEW MEXICO **Photographs**

5. Vacuum monitoring port installed at well MW-6; well MW-9 in background.

6. Wellhead configuration with transducer for monitoring vacuum and fluid upwelling.

SHAMROCK #63 3624 CERRILLOS ROAD SANTA FE, NEW MEXICO **Photographs**

Daniel B. Stephens & Associates, Inc.