

320 Gold Avenue SW, Suite 1300 Albuquerque, NM 87102 Telephone: 505-224-9013 www.eaest.com

May 2, 2022

Mr. Corey Jarrett Geoscientist, Project Manager State of New Mexico Petroleum Storage Tank Bureau 121 Tijeras Avenue NE, Suite 1000 Albuquerque, NM 87102

RECEIVED

Pre-Injection Groundwater Monitoring Report Conoco Service Station, 3837 US Highway 64, Chama, New Mexico Release ID #: 2316 Facility ID #: 27498 Deliverable ID #: 4262-1 Contract #: 22 667 3200 0007

By PSTB at 4:55 pm, May 02, 2022

Dear Mr. Jarrett:

EA Engineering, Science, and Technology, Inc. PBC (EA) has prepared this report to document pre-injection groundwater monitoring at Conoco Service Station, 3837 US Highway 64, Chama New Mexico on March 31, 2022 (Figure 1). This task was performed in preparation for the injection of a controlled release oxygen amendment to reduce recalcitrant petroleum hydrocarbon contamination to below the New Mexico Quality Control Commission (NMWQCC) to facilitate a No Further Action at the site.

BACKGROUND

Provided below is a summary of the site background.

- In well MW-7, a NAPL sheen was noted in April 2021. Before that, in 2016-2017, total naphthalene concentrations exceeded the NMWQCC standard of 30 micrograms per liter (µg/L); concentrations ranged between 180 and 277 micrograms per liter (µg/L).
- The depth to groundwater in recent years has varied between approximately 5 and 8 feet below the top of the well casing (ft btoc). Historically, the groundwater level was as high as 3.5 ft btoc.
- The groundwater flow direction is primarily to the Southwest at a gradient of approximately 0.02 foot per foot.
- In recent years, dissolved oxygen (DO) concentrations were slightly aerobic at approximately 1.0 milligrams per liter (mg/L), as estimated from the oxygen saturation of 15%, indicating that aerobic biodegradation may be supported. Oxidation-reduction potential (ORP) was slightly positive at around 50 millivolts (mV).
- Total petroleum hydrocarbons (TPH) were below the laboratory detection levels indicating low contaminant mass.
- Soil to seven (7) feet below ground surface (ft bgs) is comprised of clay with sand and gravel of slight plasticity and medium stiffness. The soil between 7 ft bgs and 12 ft bgs is

comprised of fine to coarse well-graded sand with some gravel. Large cobbles were noted between 9 ft bgs and 12.5 ft bgs.

- In MW-7, high photoionization detector (PID) readings were observed in the past at 5 ft bgs (3,480 parts per million by volume [ppmv]) and 9 ft bgs (2,470 ppmv).
- Well MW-7 extends to a depth of approximately 12.5 ft bgs, where refusal of the hollow stem auger was noted during well installation.

COMPLETED SCOPE

On March 31, 2022, EA performed the following monitoring activities:

- EA gauges MW-6, MW-7, MW-8, MW-9, MW-11, and MW-12. Well MW-6 could not be found even with the use of a metal detector.
- Before sampling, EA purged approximately three casing volumes of stagnant groundwater from the wells MW-7, MW-8, MW-9, MW-11, and MW-12 and measured temperature, specific conductance (SpC), pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) concentrations.
- Thereafter, EA collect groundwater samples MW-7, MW-8, MW-9, MW-11, and MW-12) and submit them for volatile organic compounds (VOCs) analysis by U.S. Environmental Protection Agency (EPA) Method 8260B and for total dissolved solids (TDS) analysis in MW-8 and MW-9 by SM 2540 C.

RESULTS

mg/L

Provided below is a table summarizing groundwater level gauging and geochemical parameters obtained during the purging of the wells.

Depth to Water feet	Total Depth	Well Casing Elevation	Ground Water Elevation	Temperature	Specific Conductance	рН	Oxidation- Reduction Potential	Dissolved Oxygen
TOC	TOC	AMSL	AMSL	degrees C	μS/cm	units	mV	mg/L
				Could not find t	he well			
5.88	12.16	7,779.28	7,767.12	9.23	533	6.4	698	2.33
6.57	15.04	7,779.64	7,764.60	9.73	1,294	5.76	1,103	1.29
5.64	13.84	7,777.49	7,763.65	9.24	830	6.17	148	2.01
5.64	12.70	7,778.53	7,765.83	8.96	764	6.13	123	2.22
6.43	12.96	7,780.28	7,767.32	6.75	1,874	6.39	1,205	3.63
6.0	13.34	7,779.04	7,765.70	8.8	1,059	6.2	655	2.3
gen conce	ntration	s are from	the first ba	iler. All other	parameters are	e before	sampling.	
feet belo	w top of	f well casir	ıg					
feet above mean sea level								
Celsius								
microSie	emens p	er centimet	er					
	Depth to Water feet TOC 5.88 6.57 5.64 5.64 6.43 6.0 gen conce feet belo feet abov Celsius microSie	Depth to WaterTotal Depthfeet TOCTotal Depthfeet TOCTotal Depth 5.88 12.16 6.57 15.04 5.64 13.84 5.64 12.70 6.43 12.96 6.0 13.34gen concentration feet below top of feet above mean Celsius microSiemens point	Depth to WaterTotal DepthWell Casing Elevationfeet TOCfeet TOCfeet AMSL 5.88 12.167,779.28 6.57 15.047,779.64 5.64 13.847,777.49 5.64 12.707,778.53 6.43 12.967,780.28 6.0 13.347,779.04gen concentrations are from feet below top of well casin feet above mean sea level Celsius microSiemens per centimet	Depth to to WaterTotal Total DepthWell Casing ElevationGround Water Elevationfeet feet TOCfeet feet 	Depth to WaterTotal DepthWell Casing ElevationGround Water ElevationTemperaturefeet TOCfeetfeet AMSLfeet AMSLdegrees C 5.88 12.167,779.287,767.129.23 6.57 15.047,779.647,764.609.73 5.64 13.847,777.497,763.659.24 5.64 12.707,778.537,765.838.96 6.43 12.967,780.287,767.326.75 6.0 13.347,779.047,765.708.8gen concentrations are from the first bailer. All other feet below top of well casing feet above mean sea level Celsius microSiemens per centimeter	Depth to Total WaterWell Casing ElevationGround Water ElevationTemperatureSpecific Conductancefeet TOCfeet TOCfeet AMSLfeet AMSLdegrees C μ S/cm5.8812.167,779.287,767.129.235336.5715.047,779.647,764.609.731,2945.6413.847,777.497,763.659.248305.6412.707,778.537,765.838.967646.4312.967,780.287,767.326.751,8746.013.347,779.047,765.708.81,059gen concentrations are from the first bailer. All other parameters are feet above mean sea level Celsius microSiemens per centimetersea level	Depth to WaterTotal DepthWell Casing ElevationGround Water ElevationTemperatureSpecific ConductancepHfeet TOCfeet TOCfeet AMSLfeet AMSLdegrees C μ S/cmunits5.8812.167,779.287,767.129.235336.46.5715.047,779.647,764.609.731,2945.765.6413.847,777.497,763.659.248306.175.6412.707,78.537,765.838.967646.396.4312.967,780.287,765.708.81,0596.2gen concentrations are from the first bailer. All other parameters are before feet above mean sea level Celsius microSiemens per centimetersecond second sec	Depth to Water PepthWell Casing BetwationGround Water ElevationTemperature TemperatureSpecific ConductancePHOxidation Reduction Potentialfeet feet TOCfeet AMSLfeet AMSLfeet AMSLdegrees CµS/cmunitsmV5.8812.167,779.287,767.129.235336.46986.5715.047,779.647,764.609.731,2945.761,1035.6413.847,777.497,763.659.248306.171485.6412.707,778.537,765.838.967646.131236.4312.967,780.287,767.326.751,8746.391,2056.013.347,779.047,765.708.81,0596.2655gen concertrations are from the first bailer. All other parameters are before sampling. feet below top of well casing feet above mean sea level Celsius microSiemens per centimetersample sample sampling.

Table 1. Summary of Field Measurem

feet TOC	feet below top of well casing
feet AMSL	feet above mean sea level
С	Celsius
μS/cm	microSiemens per centimeter
mV	milliVolt

milligram per liter

- The average depth to water was 6.0 feet below the top of the casing. The corresponding average groundwater elevation was 7,765.7 feet above the mean sea level.
- The groundwater flow direction was to the south-southwest at gradients varying between 0.04 and 0.09 foot per foot (Figure 2).
- The average groundwater temperature was 8.8 degrees Celsius.
- The average DO was 2.5 milligrams per liter (mg/L) and the average ORP was 655 mVs. Groundwater conditions were slightly aerobic and oxidizing.
- The average Specific Conductance (SpC) was 1,059 micro siemens per centimeter.

Provided below is a table summarizing recent groundwater analytical results.

Well ID	Date	Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE	EDC	EDB	Total Naphthalenes	Total Dissolved Solids
Standard		5.0	1,000	700	620	100	5.0	0.05	30	1,000
Units		μg/L	μg/L	μg/L	$\mu g/L$	μg/L	μg/L	μg/L	$\mu g/L$	mg/L
MW-7	4/29/2019			Ν	Non-Aqueou	us Phase L	iquid Sl	neen		
MW-7	4/22/2021			Ν	Non-Aqueou	us Phase L	iquid Sl	ieen		-
MW-7	3/31/2022	<10	<20	140	210	<20	<20	<20	55	
MW-8	4/29/2019	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10	
MW-8	4/22/2021	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10	
MW-8	3/31/2022	<2.0	<2.0	<2.0	<3.0	<2.0	<2.0	<2.0	<20	754
MW-9	4/29/2019	<1.0	<1.0	1.4	<1.5	<1.0	<1.0	<1.0	<10	
MW-9	4/22/2021	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10	
MW-9	3/31/2022	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10	473
MW-11	4/29/2019	1.2	<1.0	2.6	27	<1.0	<1.0	<1.0	8.0	
MW-11	4/22/2021	1.7	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10	
MW-11	3/31/2022	<2.0	<2.0	<2.0	<3.0	<2.0	<2.0	<2.0	<20	
MW-12	4/29/2019	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<1.0	
MW-12	4/22/2021	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<1.0	
MW-12	3/31/2022	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<1.0	
Notes:										
Source of prev	vious data: Ma	y 10, 2021, C	Broundwater	Monitoring	Report, Sou	der, Miller	, & Asso	ciates.		
Empty cells in	dicate that ana	lysis was no	t conducted							
Volatile Organ	nic Compound	s were analy:	zed using EI	PA Method 8	260B.					
Total Dissolve	ed Solids were	analyzed usi	ng Standard	Method 254	0C.					
<	less than			mg/L	milligram	s per liter				
µg/L	micrograms	per liter		MTBE	methyl ter	tiary butyl	ether			
EDB	ethylene dib	romide								
EDC	ethylene dich	nloride								

 Table 2. Summary of Recent Laboratory Analytical Results

- Groundwater concentrations were compared to the concentrations stated in the New Mexico Administrative Code 20.6.2.3103 "Standards for Ground Water of 10,000 mg/L TDS Concentration or less".
- Concentrations of benzene, toluene, ethylbenzene, total xylenes, methyl-tertiary butyl ether (MTBE), ethylene dichloride, and ethylene dibromide were below the standards.
- Concentration of total naphthalenes in MW-7 was 55 μ g/L, above the standard of 30 μ g/L. In 2019 and 2021, a NAPL sheen was present in the well.

• The Total Dissolved Solids concentration in MW-8 was 754 mg/L and in MW-9 was 473 mg/L.

During the field event, the well vault for MW-8 was in a very poor condition and the well vault for MW-12 was missing (Appendix C).

Next, EA is planning to prepare and submit to the New Mexico Environment Department Water Quality Bureau (NMED GWQB) an Underground Injection Control General Discharge Permit (UIC DP) and prepare and submit to the NMED PSTB a Remediation Plan.

Please feel free to contact me at (505) 296-1070 or vmustafin@eaest.com if you have questions or comments.

Sincerely,

EA Engineering, Science, and Technology, Inc., PBC

V. Mustafin

Vener Mustafin, P.E. Project Manager/Engineer

Attachments:

Figures Appendix A – Field Records Appendix B – Laboratory Report Appendix C – Photos

FIGURES

APPENDIX A – FIELD RECORDS

MONITORING WELL SAMPLING FIELD FORM

			FLUI	D LEVEL DATA		
Well ID	NW.	6		Date gauged		
Site	CONOCO	Solvice	Station	Time gauged	-	
		Fact	Wall diameter	Inches	After Bailing N	IAPL
Depin to PSH		Feel	weir diameter		Depth to PSH	Feet
Depth to water		Faat	Height of fluid	Foot	Dopth to water	Foot
Depth to water		Feel	Column	Feel		
Total depth		Feet	Volume in well	Gallons	NAPL thickness	Feet
NAPL thickness	; 	Feet			NAPL Recovered	Gallons
			(3 well volume	es = gallons)		

GROUNDWATER SAMPLING DATA

Time/date purged Purge Method

,	11 C			•		1
Time	Purge Volume (gal)	Temp (°C)	SpC (µs/cm)	pН	ORP (mV)	DO (mg/L)
	2					£1
					v	
				1 - C		
				¥.,		
	d'anna anna anna anna anna anna anna ann					2 X
	-					
				2 1		5,
						-
			$F_{ij} = \alpha F_{ij}$			
	2 A					
					ningen ander einer einen son son handelichen Antergen ergen eine	
Actual purge volume	gal.		Field measurements stabilized	within ± 10%?		
						•
ime/date sampled			Purged/sampled by			

Time/date sampled		Purged/sampled by		
Sample method	2 p. 8			
Requested analyses				
Comments/observations	Sport = lhr	Looking For 1	woll With Mota	l dotactor.
	Could Not Find	. Switched TD.	STU MW-9.	

 Well Casing Volumes

 2" diameter = 0.17 gal/ft
 4" diameter = 0.66 gal/ft
 6" diameter = 1.50 gal/ft

MONITORING WELL SAMPLING FIELD FORM FLUID LEVEL DATA 3/31/22 MW-7 Well ID Date gauged COnoco Sowi St. Studion Chamer Time gauged 1030 Site After Bailing NAPL Inches Well diameter Feet Depth to PSH Depth to PSH Feet Height of fluid 5.88 Feet Feet Depth to water column Depth to water Feet Feet Gallons Volume in well NAPL thickness Total depth Feet NAPL Feet Recovered Gallons NAPL thickness (3 well volumes = 3.56 gallons) GROUNDWATER SAMPLING DATA Hand Ba 1033 3-31-22 Purge Method Time/date purged Purge Volume (gal) SpC (µs/cm) ORP (mV) DO (mg/L) Temp (°C) Time pH 3 20 0.28 1033 0.25 10.2 -93 2.33 56 25 719 1.7s51 1 1035 7 0.23 533 3.5 a SG 1038 3 woll Udam 3.75 Actual purge volume gal. Field measurements stabilized within ± 10%? 3-31-22 1040 WORd Time/date sampled Purged/sampled by bailor & twine Sample method 60 Requested analyses Comments/observations

Well Casing Volumes

2" diameter = 0.17 gal/ft 4" diameter = 0.66 gal/ft 6" diameter = 1.50 gal/ft

MONITORING WELL SAMPLING FIELD FORM

		FLUI	D LEVEL DATA		
Well ID	MW-8		Date gauged	3-31-22	
Site	CONOC Sorvice	Stution	Time gauged	1049	
Depth to PSH	Feet	Well diameter	Inches	After Bailing NAPL	Э.
Dapth to water	6.57 Fast	Height of fluid	8.47 East	Depth to water AM Feet	
Total dopth	SOU Feet	Volume in well	1.44 Gallons	NAPI thickness 3-31-22	
Total depth		Volume in wei	Calloris	NAPL	
NAPL thickness	Feet	(0	4.32	RecoveredGallons	
	n and a second	(3 well volume	ss = gallons)		
	~ 1	GROUNDWA	TER SAMPLING DATA		
Time/date purged	105 3-31-2	2	Purge Method	Hund Bur	
Time	Purge Volume (gal)	Temp (°C)	SpC (µs/cm)	pH ORP (mV) DO (mg/	<u>'L)</u>
1053	2-	1000	1278	5.68 109.6 1.27	
1055	4.25	9.73	1294	5.76 110.3 1.24	<u>.</u>
			-		
				1	
				· · · · · · · · · · · · · · · · · · ·	
					_
	4.5		Field massurements stabilized	within + 108/2 3 WIEll (10/0	mo
Actual purge volun	$m(7 \ large)$	7	rielu measurements stabilizeu		
Time/date sampled	1037 3-31	a	Purged/sampled by	f) wypa	
Sample method	Now build	r t twi	ne		
Requested analyse	s 8260, T	PS	5		
Comments/observa	ations				
				and a second	

Well Casing Volumes

2" diameter = 0.17 gal/ft 4" diameter = 0.66 gal/ft 6" diameter = 1.50 gal/ft

	MON	ITORING WE	LL SAMPLING FIE	
		FLUID	LEVEL DATA	
Nell ID	MW-9	-	Date gauged	3-31-22
Site	Conoco sorvice.	Station	Time gauged	1213
Depth to PSH	Feet	Well diameter	2Inches	After Bailing NAPL
4	564	Height of fluid	82 -	Depth to PSHFeet
epth to water	Feet	column	Feet	Depth to water 3-3(-22
otal depth	Feet	Volume in well	Gallons	NAPL thickness Feet
APL thickness	Feet		1/10	Recovered Gallons
		(3 well volumes	$s = \frac{4.10}{2}$ gallons)	
		GROUNDWA	TER SAMPLING DATA	
meldate nurraed	1215 13-31-28	L PI	urae Method	Hand ban
Time 715	Purge Volume (gal)	Temp (°C)	SpC (µs/cm)	<u>ph</u> ORP (mV) DO (mg/L) 5-40 1524201
1217	2.00	9-20	834	299 198.9 1.89
12 19	4.00	9.44	830	6.17 198.1 2.50
,				
			1	
			and and an	
-				
	1175			No Scall Victor
ctual purge volu	me <u>1.</u> gal.		Field measurements stabiliz	ed within ± 10%? / <u>VU</u> 2 WOLL VOUA
me/date sample	ed 1220/3-31-2		Purged/sampled by	Akappi
ample method	Now banksr	+ twike		
equested analys	ses <u>8260 TD.</u>	S No.		1
omments/obser	vations 10012 T	US Add N	NW-4 Instacc	ver mw-6.
		1. J.		

 Well Casing Volumes

 2" diameter = 0.17 gal/ft
 4" diameter = 0.66 gal/ft
 6" diameter = 1.50 gal/ft

		FLUI	D LEVEL DATA			
Well ID	MW-11		Date gauged	3-31-22		
Site	Conoco sorvice s	tation	Time gauged	1150		-
Depth to PSH	Feet	Well diameter	2 Inches	Afte Depth to PSH	er Bailing NAP	Feet
Depth to water	5.64 Feet	Height of fluid column	LOG Feet	Depth to water	/ph	Feet
Total depth	127 Feet	Volume in well	1.2 Gallons	NAPL thickness	3-31	Feet
NAPL thickness	Feet	(3 well volume	s = 3-60 gallons)	NAPL Recovered		Gallons
Time/date purged	3-31-22	GROUNDWA	ATER SAMPLING DATA	Hund Ba	λ	
Time [(52 [(54 [[56	Purge Volume (gal) 0-2.5 (.25) 3.50	Temp (°C) 4-35 5-36 5-96	SpC (µs/cm) 717 748 764	рн 609 6-12 613	ORP (mV) 148-3 131-3 122-7	DO (mg/L) 2. 72 1. 79 1.84
			L C	1 3.3	22	
Actual purge volume	⇒ <u>3.75</u> gal.		Field measurements stabilize	d within ± 10%?	Nu Zu	well Volu
Time/date sampled	1200/3-31-22		Purged/sampled by	Ampro		
Sample method	Now burlow &	- March 6				
Requested analyses	s 8260					

MONITORING WELL SAMPLING FIELD FORM

 Well Casing Volumes

 2" diameter = 0.17 gal/ft
 4" diameter = 0.66 gal/ft
 6" diameter = 1.50 gal/ft

3		FLU	ID LEVEL DATA			
Well ID	Mw-12		Date gauged	3-31-2	L	
Site	CONOCO SONICO.	station	Time gauged	1127		
Depth to PSH	Feet	Well diameter	L'Inches	Afte Depth to PSH	er Bailing NAP	PL Feet
Depth to water	643 Feet	Height of fluid column	6.53 Feet	Depth to water	An	Feet
Total depth	Feet	Volume in well	Gallons	NAPL thickness	3-2	Feet
NAPL thickness	Feet		A 07	NAPL Recovered		Gallons
		(3 well volume	es = <u>)</u> gallons)		-	
Time/date purged	(3-31-22	GROUNDW	ATER SAMPLING DATA	Hand B	al	
Time	Purge Volume (gal)	Temp (°C)	SpC (µs/cm)	pH G201	ORP (mV)	DO (mg/L)
(131	1.5	2.09	1877	6-38	119.8	3.00
1133	3.23	6-75	1874	6-34	1205	3.19
		- ¹ .	<u>F</u>			
· · · · · · · · · · · · · · · · · · ·			Ale	3-31	22	
****		-	Fin.			
Record Range and Programmers and the softward Program and a second		<u> </u>				
Actual purge volume	3.5 gal.		Field measurements stabilized	d within ± 10%?	No. 3h	ro 11 volu
Time/date sampled	1135 / 3-31-2	2	Purged/sampled by	Auper	/	•
Sample method	NOW bail	ich at	twike			
Requested analyses	8260					
Comments/observat	ions Well has	s been de fut focus	stroyed. Pipe Cusi around to pote	hy was 6x	cposod h	1/ NO CAP

MONITORING WELL SAMPLING FIELD FORM

Well Casing Volumes

2" diameter = 0.17 gal/ft 4" diameter = 0.66 gal/ft 6" diameter = 1.50 gal/ft

MONITORING WELL SAMPLING FIELD FORM

GROUNDWATER SAMPLING DATA

Time/date purged

Purge Method Alecter S

		100102	<u> </u>		÷	
Well_Time	Purge Volume (gał) A	Temp (°C)	SpC (µs/cm)	pН	ORP (mV)	DO (mg/L)
MW-G	<u>.</u>	could not locate				
MW-7	5.88					
MW-8	6.57	11 (14) x				
MW-9	5.64					
MW-11	5.64			1		
MW-12	6.43		1			•
		1. 1		7		
		2				- 10
		5		· · ·		6
ý.						
						- -
Actual purge volume	gal.		Field measurements stabilized	within ± 10%?	E	-
Time/date sampled			Purged/sampled by			

Sample method Requested analyses

Comments/observations

Well Casing Volumes

2" diameter = 0.17 gal/ft 4" diameter = 0.66 gal/ft 6" diameter = 1.50 gal/ft

APPENDIX B – LABORATORY REPORT

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 18, 2022

Vener Mustafin EA Engineering 320 Gold Ave SW Suite 1210 Albuquerque, NM 87102 TEL: (505) 224-9013 FAX:

RE: Conoco Service Station Chama

OrderNo.: 2204046

Dear Vener Mustafin:

Hall Environmental Analysis Laboratory received 6 sample(s) on 4/1/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Date Reported: 4/18/2022

CLIENT:	EA Engineering		Cl	ient Sa	mple I	D: M	W-7					
Project:	Conoco Service Station Chama	Collection Date: 3/31/2022 10:40:00 AM										
Lab ID:	2204046-001	Matrix: AQUEOUS	Matrix: AQUEOUS Received Date: 4/1/2022 1:									
Analyses	3	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA ME	THOD 8260B: VOLATILES						Analys	t: JR				
Benzene		ND	10	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Toluene		ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Ethylben	zene	140	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Methyl te	ert-butyl ether (MTBE)	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,2,4-Tri	methylbenzene	80	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,3,5-Tri	methylbenzene	70	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,2-Dich	loroethane (EDC)	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,2-Dibro	omoethane (EDB)	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Naphtha	lene	55	40	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1-Methyl	naphthalene	ND	80	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
2-Methyl	naphthalene	ND	80	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Acetone		ND	200	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Bromobe	enzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Bromodio	chloromethane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Bromofo	rm	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Bromom	ethane	ND	60	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
2-Butanc	one	ND	200	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Carbon o	disulfide	ND	200	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Carbon 7	Tetrachloride	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Chlorobe	enzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Chloroet	hane	ND	40	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Chlorofo	rm	53	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Chlorom	ethane	ND	60	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
2-Chloro	toluene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
4-Chloro	toluene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
cis-1,2-D	DCE	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
cis-1,3-D	Dichloropropene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,2-Dibro	omo-3-chloropropane	ND	40	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Dibromo	chloromethane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Dibromo	methane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,2-Dich	lorobenzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,3-Dich	lorobenzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,4-Dich	lorobenzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
Dichloro	difluoromethane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,1-Dich	loroethane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,1-Dich	loroethene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,2-Dich	loropropane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
1,3-Dich	loropropane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				
2,2-Dich	loropropane	ND	40	D	µg/L	20	4/8/2022 4:36:06 PM	R87130				

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank В

Е Estimated value

J Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit

Page 1 of 16

Р

Client Sample ID: MW-7

Date Reported: 4/18/2022

Project:Conoco Service Station ChamaLab ID:2204046-001	Matrix: AQUEOUS	(Collect Receiv	ion Dat ved Dat	e: 3/3 e: 4/1	31/2022 10:40:00 AM //2022 1:12:00 PM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analys	t: JR
1,1-Dichloropropene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Hexachlorobutadiene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
2-Hexanone	ND	200	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Isopropylbenzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
4-Isopropyltoluene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
4-Methyl-2-pentanone	ND	200	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Methylene Chloride	ND	60	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
n-Butylbenzene	ND	60	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
n-Propylbenzene	38	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
sec-Butylbenzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Styrene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
tert-Butylbenzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
1,1,1,2-Tetrachloroethane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
1,1,2,2-Tetrachloroethane	ND	40	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Tetrachloroethene (PCE)	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
trans-1,2-DCE	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
trans-1,3-Dichloropropene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
1,2,3-Trichlorobenzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
1,2,4-Trichlorobenzene	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
1,1,1-Trichloroethane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
1,1,2-Trichloroethane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Trichloroethene (TCE)	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Trichlorofluoromethane	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
1,2,3-Trichloropropane	ND	40	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Vinyl chloride	ND	20	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Xylenes, Total	210	30	D	µg/L	20	4/8/2022 4:36:06 PM	R87130
Surr: 1,2-Dichloroethane-d4	107	70-130	D	%Rec	20	4/8/2022 4:36:06 PM	R87130
Surr: 4-Bromofluorobenzene	102	70-130	D	%Rec	20	4/8/2022 4:36:06 PM	R87130
Surr: Dibromofluoromethane	102	70-130	D	%Rec	20	4/8/2022 4:36:06 PM	R87130
Surr: Toluene-d8	101	70-130	D	%Rec	20	4/8/2022 4:36:06 PM	R87130

Hall Environmental Analysis Laboratory, Inc.

CLIENT: EA Engineering

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceededND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Qualifiers:

- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 16

Date Reported: 4/18/2022

CLIENT: EA Engineering	Client Sample ID: MW-8										
Project: Conoco Service Station Chama	Collection Date: 3/31/2022 10:57:00 AM										
Lab ID: 2204046-002	Matrix: AQUEOUS	Received Date: 4/1/2022 1:12:00 PM									
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
SM2540C MOD: TOTAL DISSOLVED SO	LIDS					Analyst	KS				
Total Dissolved Solids	754	20.0	*	mg/L	1	4/12/2022 1:46:00 PM	66703				
EPA METHOD 8260B: VOLATILES						Analyst	JR				
Benzene	ND	2.0		ua/L	2	4/8/2022 5:04:37 PM	R87130				
Toluene	ND	2.0		ua/L	2	4/8/2022 5:04:37 PM	R87130				
Ethylbenzene	ND	2.0		ua/L	2	4/8/2022 5:04:37 PM	R87130				
Methyl tert-butyl ether (MTBE)	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,2,4-Trimethylbenzene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,3,5-Trimethylbenzene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,2-Dichloroethane (EDC)	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,2-Dibromoethane (EDB)	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Naphthalene	ND	4.0		μg/L	2	4/8/2022 5:04:37 PM	R87130				
1-Methylnaphthalene	ND	8.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
2-Methylnaphthalene	ND	8.0		μg/L	2	4/8/2022 5:04:37 PM	R87130				
Acetone	ND	20		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Bromobenzene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Bromodichloromethane	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Bromoform	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Bromomethane	ND	6.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
2-Butanone	ND	20		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Carbon disulfide	ND	20		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Carbon Tetrachloride	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Chlorobenzene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Chloroethane	ND	4.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Chloroform	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Chloromethane	ND	6.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
2-Chlorotoluene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
4-Chlorotoluene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
cis-1,2-DCE	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
cis-1,3-Dichloropropene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,2-Dibromo-3-chloropropane	ND	4.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Dibromochloromethane	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Dibromomethane	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,2-Dichlorobenzene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,3-Dichlorobenzene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,4-Dichlorobenzene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
Dichlorodifluoromethane	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,1-Dichloroethane	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,1-Dichloroethene	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,2-Dichloropropane	ND	2.0		µg/L	2	4/8/2022 5:04:37 PM	R87130				

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank В

Е Estimated value

J Analyte detected below quantitation limits Р

Sample pH Not In Range

Page 3 of 16

RL Reporting Limit

Date Reported: 4/18/2022

CLIENT: EA Engineering Project: Conoco Service Station Chama		Client Sample ID: MW-8 Collection Date: 3/31/2022 10:57:00 AM									
Lab ID:	2204046-002	Matrix: AQUEOUS	RL	Received Dat	e: 4/	1/2022 1:12:00 PM	Batch				
				C							
EPA ME	THOD 8260B: VOLATILES					Analys	t: JR				
1,3-Dich	loropropane	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
2,2-Dich	loropropane	ND	4.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,1-Dich	loropropene	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
Hexachle	orobutadiene	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
2-Hexan	one	ND	20	µg/L	2	4/8/2022 5:04:37 PM	R87130				
Isopropy	lbenzene	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
4-Isopro	pyltoluene	ND	2.0	μg/L	2	4/8/2022 5:04:37 PM	R87130				
4-Methyl	I-2-pentanone	ND	20	μg/L	2	4/8/2022 5:04:37 PM	R87130				
Methyler	ne Chloride	ND	6.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
n-Butylb	enzene	ND	6.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
n-Propyl	benzene	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
sec-Buty	/lbenzene	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
Styrene		ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
tert-Buty	lbenzene	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,1,1,2-7	Tetrachloroethane	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,1,2,2-7	Tetrachloroethane	ND	4.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
Tetrachl	oroethene (PCE)	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
trans-1,2	2-DCE	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
trans-1,3	3-Dichloropropene	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,2,3-Tri	ichlorobenzene	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,2,4-Tri	ichlorobenzene	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,1,1-Tri	ichloroethane	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,1,2-Tri	ichloroethane	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
Trichloro	pethene (TCE)	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
Trichloro	ofluoromethane	ND	2.0	µg/L	2	4/8/2022 5:04:37 PM	R87130				
1,2,3-Tri	ichloropropane	ND	4.0	μg/L	2	4/8/2022 5:04:37 PM	R87130				
Vinyl chl	oride	ND	2.0	μg/L	2	4/8/2022 5:04:37 PM	R87130				
Xylenes.	Total	ND	3.0	μg/L	2	4/8/2022 5:04:37 PM	R87130				
Surr:	1,2-Dichloroethane-d4	104 7	0-130	%Rec	2	4/8/2022 5:04:37 PM	R87130				
Surr:	4-Bromofluorobenzene	97.6 7	0-130	%Rec	2	4/8/2022 5:04:37 PM	R87130				
Surr:	Dibromofluoromethane	108 7	0-130	%Rec	2	4/8/2022 5:04:37 PM	R87130				
Surr:	Toluene-d8	101 7	0-130	%Rec	2	4/8/2022 5:04:37 PM	R87130				

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit

Qualifiers:

- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank В
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 4 of 16

Date Reported: 4/18/2022

CLIENT:	EA Engineering		Client Sample ID: MW-9									
Project:	Conoco Service Station Chama	Collection Date: 3/31/2022 12:20:00 PM										
Lab ID:	2204046-003	Matrix: AQUEOUS		Receiv	ved Dat	e: 4/1	1/2022 1:12:00 PM					
Analyses	1	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
SM25400	C MOD: TOTAL DISSOLVED SO	LIDS					Analyst:	KS				
Total Dis	solved Solids	473	20.0		mg/L	1	4/12/2022 1:46:00 PM	66703				
EPA ME	THOD 8260B: VOLATILES						Analyst:	JR				
Benzene		ND	1.0		ua/L	1	4/8/2022 5:33:11 PM	R87130				
Toluene		ND	1.0		µg/= ua/L	1	4/8/2022 5:33:11 PM	R87130				
Ethylben	zene	ND	1.0		ua/L	1	4/8/2022 5:33:11 PM	R87130				
Methyl te	ert-butvl ether (MTBE)	ND	1.0		ua/L	1	4/8/2022 5:33:11 PM	R87130				
1.2.4-Tri	methylbenzene	ND	1.0		ua/L	1	4/8/2022 5:33:11 PM	R87130				
1.3.5-Tri	methylbenzene	ND	1.0		ua/L	1	4/8/2022 5:33:11 PM	R87130				
1.2-Dich	loroethane (EDC)	ND	1.0		ua/l	1	4/8/2022 5:33:11 PM	R87130				
1.2-Dibro	pmoethane (EDB)	ND	1.0		ua/L	1	4/8/2022 5:33:11 PM	R87130				
Naphtha	lene	ND	2.0		ua/l	1	4/8/2022 5:33:11 PM	R87130				
1-Methyl	naphthalene	ND	4.0		ua/l	1	4/8/2022 5:33:11 PM	R87130				
2-Methyl	naphthalene	ND	4.0		ua/l	1	4/8/2022 5:33:11 PM	R87130				
Acetone		ND	10		ua/l	1	4/8/2022 5:33:11 PM	R87130				
Bromobe	nzene	ND	1.0		ua/l	1	4/8/2022 5:33:11 PM	R87130				
Bromodi	chloromethane	ND	1.0		µg/=	1	4/8/2022 5:33:11 PM	R87130				
Bromofo	rm	ND	1.0		µg/=	1	4/8/2022 5:33:11 PM	R87130				
Bromom	ethane	ND	3.0		µg/=	1	4/8/2022 5:33:11 PM	R87130				
2-Butanc		ND	10		µg/=	1	4/8/2022 5:33:11 PM	R87130				
Carbon	disulfide	ND	10		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
Carbon 1	Fetrachloride	ND	1.0		μg/L	1	4/8/2022 5:33:11 PM	R87130				
Chlorobe	enzene	ND	1.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
Chloroet	hane	ND	2.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
Chlorofo	rm	ND	1.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
Chlorom	ethane	ND	3.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
2-Chloro	toluene	ND	1.0		μg/L	1	4/8/2022 5:33:11 PM	R87130				
4-Chloro	toluene	ND	1.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
cis_1 2_F		ND	1.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
cis-1 3-F		ND	1.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
1 2-Dibro	omo-3-chloropropane	ND	2.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
Dibromo	chloromethane	ND	1.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
Dibromo	methane	ND	1.0		μg/L	1	4/8/2022 5:33:11 PM	R87130				
1.2-Dich		ND	1.0		µg/∟ ug/l	1	4/0/2022 5:33:11 PM	R87130				
1.3-Dich		ND	1.0		µg/∟ ug/l	1	4/0/2022 5:33:11 PM	R87130				
1 4-Dich	lorobenzene		1.0		µg/⊏ µg/I	1	4/8/2022 5.33.11 PM	R87130				
	difluoromethane	ND	1.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
	loroethane	ND	1.0		μg/L μα/Ι	1	4/8/2022 5:33:11 PM	R87130				
	loroethene		1.0		μg/L μα/Ι	1	4/8/2022 5.33.11 IN	R87130				
			1.0		μg/L μα/Ι	1	4/8/2022 5.33.11 IN	R87130				
1,2-DICH	ioi opi opalie		1.0		µy/∟	1	TIOIZUZZ J.JJ. II FIVI	107150				

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank В

Е Estimated value

J Analyte detected below quantitation limits Р

Sample pH Not In Range

RL Reporting Limit

Page 5 of 16

Date Reported: 4/18/2022

CLIENT: EA Engineering Project: Conoco Service Station Chama Lab ID: 2204046-003	Matrix: AQUEOUS	Cli (ient Sample I Collection Dat Received Dat	D: M te: 3/. te: 4/	W-9 31/2022 12:20:00 PM 1/2022 1:12:00 PM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
1,3-Dichloropropane	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
2,2-Dichloropropane	ND	2.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
1,1-Dichloropropene	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
Hexachlorobutadiene	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
2-Hexanone	ND	10	µg/L	1	4/8/2022 5:33:11 PM	R87130
Isopropylbenzene	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
4-Isopropyltoluene	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
4-Methyl-2-pentanone	ND	10	µg/L	1	4/8/2022 5:33:11 PM	R87130
Methylene Chloride	ND	3.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
n-Butylbenzene	ND	3.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
n-Propylbenzene	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
sec-Butylbenzene	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
Styrene	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
tert-Butylbenzene	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	4/8/2022 5:33:11 PM	R87130
trans-1,2-DCE	ND	1.0	μg/L	1	4/8/2022 5:33:11 PM	R87130
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	4/8/2022 5:33:11 PM	R87130
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	4/8/2022 5:33:11 PM	R87130
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
1,1,1-Trichloroethane	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
1,1,2-Trichloroethane	ND	1.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
Trichloroethene (TCE)	ND	1.0	μg/L	1	4/8/2022 5:33:11 PM	R87130
Trichlorofluoromethane	ND	1.0	μg/L	1	4/8/2022 5:33:11 PM	R87130
1,2,3-Trichloropropane	ND	2.0	µg/L	1	4/8/2022 5:33:11 PM	R87130
Vinyl chloride	ND	1.0	μg/L	1	4/8/2022 5:33:11 PM	R87130
Xylenes, Total	ND	1.5	μg/L	1	4/8/2022 5:33:11 PM	R87130
Surr: 1,2-Dichloroethane-d4	105 7	0-130	%Rec	1	4/8/2022 5:33:11 PM	R87130
Surr: 4-Bromofluorobenzene	102 7	0-130	%Rec	1	4/8/2022 5:33:11 PM	R87130
Surr: Dibromofluoromethane	107 7	0-130	%Rec	1	4/8/2022 5:33:11 PM	R87130
Surr: Toluene-d8	101 7	0-130	%Rec	1	4/8/2022 5:33:11 PM	R87130

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit

Qualifiers:

- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 16

Date Reported: 4/18/2022

CLIENT: EA Engineering Client Sample ID: MW-11												
Project:	Conoco Service Station Chama	Collection Date: 3/31/2022 12:00:00 PM										
Lab ID:	2204046-004	Matrix: AQUEOUS	Matrix: AQUEOUS Received Date: 4/1/2022 1:12									
Analyses	3	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA ME	THOD 8260B: VOLATILES						Analys	t: JR				
Benzene		ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Toluene		ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Ethylben	izene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Methyl te	ert-butyl ether (MTBE)	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,2,4-Tri	methylbenzene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,3,5-Tri	methylbenzene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,2-Dich	loroethane (EDC)	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,2-Dibro	omoethane (EDB)	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Naphtha	lene	ND	4.0		μg/L	2	4/8/2022 6:01:38 PM	R87130				
1-Methyl	naphthalene	ND	8.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
2-Methyl	naphthalene	ND	8.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Acetone		ND	20		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Bromobe	enzene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Bromodio	chloromethane	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Bromofo	rm	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Bromom	ethane	ND	6.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
2-Butanc	one	ND	20		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Carbon o	disulfide	ND	20		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Carbon 1	Tetrachloride	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Chlorobe	enzene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Chloroet	hane	ND	4.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Chlorofo	rm	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Chlorom	ethane	ND	6.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
2-Chloro	toluene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
4-Chloro	toluene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
cis-1,2-D	DCE	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
cis-1,3-D	Dichloropropene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,2-Dibro	omo-3-chloropropane	ND	4.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Dibromo	chloromethane	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Dibromo	methane	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,2-Dich	lorobenzene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,3-Dich	lorobenzene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,4-Dich	lorobenzene	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
Dichloro	difluoromethane	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,1-Dich	loroethane	ND	2.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				
1,1-Dich	loroethene	ND	2.0		μg/L	2	4/8/2022 6:01:38 PM	R87130				
1,2-Dich	loropropane	ND	2.0		μg/L	2	4/8/2022 6:01:38 PM	R87130				
1,3-Dich	loropropane	ND	2.0		μg/L	2	4/8/2022 6:01:38 PM	R87130				
2,2-Dich	loropropane	ND	4.0		µg/L	2	4/8/2022 6:01:38 PM	R87130				

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank В

Е Estimated value J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 7 of 16

Date Reported: 4/18/2022

CLIENT	: EA Engineering	Client Sample ID: MW-11										
Project:	Conoco Service Station Chama	Collection Date: 3/31/2022 12:00:00 PM										
Lab ID:	2204046-004	Matrix: AQUEOUS		Received Dat	t e: 4/	1/2022 1:12:00 PM						
Analyses	S	Result	RL	Qual Units	DF	Date Analyzed	Batch					
EPA ME	THOD 8260B: VOLATILES					Analys	st: JR					
1,1-Dich	lloropropene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Hexachl	orobutadiene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
2-Hexan	ione	ND	20	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Isopropy	/lbenzene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
4-Isopro	pyltoluene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
4-Methy	I-2-pentanone	ND	20	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Methyler	ne Chloride	ND	6.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
n-Butylb	enzene	ND	6.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
n-Propyl	lbenzene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
sec-Buty	ylbenzene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Styrene		ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
tert-Buty	/lbenzene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
1,1,1,2-	Tetrachloroethane	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
1,1,2,2-	Tetrachloroethane	ND	4.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Tetrachl	oroethene (PCE)	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
trans-1,2	2-DCE	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
trans-1,3	3-Dichloropropene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
1,2,3-Tr	ichlorobenzene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
1,2,4-Tr	ichlorobenzene	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
1,1,1-Tr	ichloroethane	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
1,1,2-Tr	ichloroethane	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Trichloro	pethene (TCE)	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Trichloro	ofluoromethane	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
1,2,3-Tr	ichloropropane	ND	4.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Vinyl chl	loride	ND	2.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Xylenes,	, Total	ND	3.0	µg/L	2	4/8/2022 6:01:38 PM	R87130					
Surr:	1,2-Dichloroethane-d4	108	70-130	%Rec	2	4/8/2022 6:01:38 PM	R87130					
Surr:	4-Bromofluorobenzene	100	70-130	%Rec	2	4/8/2022 6:01:38 PM	R87130					
Surr:	Dibromofluoromethane	107	70-130	%Rec	2	4/8/2022 6:01:38 PM	R87130					
Surr:	Toluene-d8	99.6	70-130	%Rec	2	4/8/2022 6:01:38 PM	R87130					

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit

ND

Qualifiers:

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank В

Е Estimated value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 8 of 16

Date Reported: 4/18/2022

CLIENT:	: EA Engineering	Client Sample ID: MW-12										
Project:	Conoco Service Station Chama	Collection Date: 3/31/2022 11:35:00 AM										
Lab ID:	2204046-005	Matrix: AQUEOUS		Recei	1/2022 1:12:00 PM							
Analyses	3	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA ME	THOD 8260B: VOLATILES						Analys	it: JR				
Benzene	9	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Toluene		ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Ethylben	izene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Methyl te	ert-butyl ether (MTBE)	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,2,4-Tri	imethylbenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,3,5-Tri	imethylbenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,2-Dich	loroethane (EDC)	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,2-Dibro	omoethane (EDB)	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Naphtha	lene	ND	2.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1-Methyl	Inaphthalene	ND	4.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
2-Methyl	Inaphthalene	ND	4.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Acetone		ND	10		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Bromobe	enzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Bromodi	chloromethane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Bromofo	rm	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Bromom	ethane	ND	3.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
2-Butano	one	ND	10		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Carbon o	disulfide	ND	10		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Carbon ⁻	Tetrachloride	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Chlorobe	enzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Chloroet	hane	ND	2.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Chlorofo	rm	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Chlorom	ethane	ND	3.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
2-Chloro	otoluene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
4-Chloro	otoluene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
cis-1,2-E	DCE	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
cis-1,3-D	Dichloropropene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,2-Dibro	omo-3-chloropropane	ND	2.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Dibromo	chloromethane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Dibromo	methane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,2-Dich	lorobenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,3-Dich	lorobenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,4-Dich	lorobenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Dichloro	difluoromethane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,1-Dich	loroethane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,1-Dich	loroethene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,2-Dich	loropropane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,3-Dich	loropropane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
2,2-Dich	loropropane	ND	2.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank В

Е Estimated value

J Analyte detected below quantitation limits Р

Sample pH Not In Range

Page 9 of 16

RL Reporting Limit

Date Reported: 4/18/2022

CLIENT	: EA Engineering	Client Sample ID: MW-12										
Project:	Conoco Service Station Chama	Collection Date: 3/31/2022 11:35:00 AM										
Lab ID:	2204046-005	Matrix: AQUEOUS		Recei	ved Dat	e: 4/	1/2022 1:12:00 PM					
Analyses	S	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA ME	THOD 8260B: VOLATILES						Analys	it: JR				
1,1-Dich	lloropropene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Hexachl	orobutadiene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
2-Hexan	ione	ND	10		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Isopropy	/lbenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
4-Isopro	pyltoluene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
4-Methy	I-2-pentanone	ND	10		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Methyler	ne Chloride	ND	3.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
n-Butylb	enzene	ND	3.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
n-Propyl	lbenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
sec-Buty	ylbenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Styrene		ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
tert-Buty	/lbenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,1,1,2-	Tetrachloroethane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,1,2,2-	Tetrachloroethane	ND	2.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Tetrachl	oroethene (PCE)	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
trans-1,2	2-DCE	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
trans-1,3	3-Dichloropropene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,2,3-Tr	ichlorobenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,2,4-Tr	ichlorobenzene	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,1,1-Tr	ichloroethane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,1,2-Tr	ichloroethane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Trichloro	pethene (TCE)	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Trichloro	ofluoromethane	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
1,2,3-Tr	ichloropropane	ND	2.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Vinyl chl	loride	ND	1.0		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Xylenes,	, Total	ND	1.5		µg/L	1	4/8/2022 6:30:02 PM	R87130				
Surr:	1,2-Dichloroethane-d4	105 7	/0-130		%Rec	1	4/8/2022 6:30:02 PM	R87130				
Surr:	4-Bromofluorobenzene	97.8 7	<i>'</i> 0-130		%Rec	1	4/8/2022 6:30:02 PM	R87130				
Surr:	Dibromofluoromethane	105 7	<i>'</i> 0-130		%Rec	1	4/8/2022 6:30:02 PM	R87130				
Surr:	Toluene-d8	101 7	<i>'</i> 0-130		%Rec	1	4/8/2022 6:30:02 PM	R87130				

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Qualifiers:

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 16

Date Reported: 4/18/2022

Batch

R87130 R87130

R87130

R87130

R87130

R87130

R87130

R87130

R87130

R87130

R87130

R87130

R87130

R87130

R87130

R87130

R87130

CLIENT: Project: Lab ID:	EA Engineering Conoco Service Station Chama 2204046-006	Matrix: TRIP BL	Clie Co ANK R	nt Sample II ollection Dat Received Dat	D: Tr e: e: 4/1	ip Blank /2022 1:12:00 PM	
Analyses	S	Result	RL (Qual Units	DF	Date Analyzed	Bat
EPA ME	THOD 8260B: VOLATILES					Analys	st: JR
Benzene		ND	1.0	ua/L	1	4/8/2022 6:58:27 PM	R8
Toluene	-	ND	1.0	ua/L	1	4/8/2022 6:58:27 PM	R8
Ethylben	izene	ND	1.0	ua/L	1	4/8/2022 6:58:27 PM	R8
Methyl te	ert-butyl ether (MTBE)	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
1,2,4-Tri	imethylbenzene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
1,3,5-Tri	imethylbenzene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
1,2-Dich	loroethane (EDC)	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
1,2-Dibro	omoethane (EDB)	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
Naphtha	llene	ND	2.0	µg/L	1	4/8/2022 6:58:27 PM	R8
1-Methyl	Inaphthalene	ND	4.0	µg/L	1	4/8/2022 6:58:27 PM	R8
2-Methyl	Inaphthalene	ND	4.0	µg/L	1	4/8/2022 6:58:27 PM	R8
Acetone		ND	10	µg/L	1	4/8/2022 6:58:27 PM	R8
Bromobe	enzene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
Bromodi	chloromethane	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
Bromofo	orm	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
Bromom	lethane	ND	3.0	µg/L	1	4/8/2022 6:58:27 PM	R8
2-Butano	one	ND	10	µg/L	1	4/8/2022 6:58:27 PM	R8
Carbon of	disulfide	ND	10	µg/L	1	4/8/2022 6:58:27 PM	R8
Carbon ⁻	Tetrachloride	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
Chlorobe	enzene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
Chloroet	hane	ND	2.0	µg/L	1	4/8/2022 6:58:27 PM	R8
Chlorofo	orm	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
Chlorom	lethane	ND	3.0	µg/L	1	4/8/2022 6:58:27 PM	R8
2-Chloro	otoluene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R8
4-Chloro	otoluene	ND	1.0	ua/L	1	4/8/2022 6:58:27 PM	R8

ND

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

cis-1,2-DCE

cis-1,3-Dichloropropene

Dibromochloromethane

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

1,2-Dichloropropane

1,3-Dichloropropane

2,2-Dichloropropane

Dichlorodifluoromethane

1,2-Dibromo-3-chloropropane

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

Analyte detected in the associated Method Blank в

Е Estimated value

J Analyte detected below quantitation limits Р

Sample pH Not In Range RL

µg/L

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4/8/2022 6:58:27 PM

Reporting Limit

Page 11 of 16

Date Reported: 4/18/2022

CLIENT	: EA Engineering	Client Sample ID: Trip Blank										
Project:	Conoco Service Station Chama	Collection Date:										
Lab ID:	2204046-006	Matrix: TRIP B	Matrix: TRIP BLANK Received Date: 4/1/2022 1:12:00									
Analyses	8	Result	RL	Qual Units	DF	F Date Analyzed	Batch					
EPA ME	THOD 8260B: VOLATILES					Analys	st: JR					
1,1-Dich	loropropene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
Hexachle	orobutadiene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
2-Hexan	one	ND	10	µg/L	1	4/8/2022 6:58:27 PM	R87130					
Isopropy	Ibenzene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
4-Isopro	pyltoluene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
4-Methyl	I-2-pentanone	ND	10	µg/L	1	4/8/2022 6:58:27 PM	R87130					
Methyler	ne Chloride	ND	3.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
n-Butylb	enzene	ND	3.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
n-Propyl	benzene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
sec-Buty	ylbenzene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
Styrene		ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
tert-Buty	Ibenzene	ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
1,1,1,2-7	Tetrachloroethane	ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
1,1,2,2-7	Tetrachloroethane	ND	2.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
Tetrachl	oroethene (PCE)	ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
trans-1,2	2-DCE	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
trans-1,3	3-Dichloropropene	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
1,2,3-Tri	ichlorobenzene	ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
1,2,4-Tri	ichlorobenzene	ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
1,1,1-Tri	ichloroethane	ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
1,1,2-Tri	ichloroethane	ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
Trichloro	pethene (TCE)	ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
Trichloro	ofluoromethane	ND	1.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
1,2,3-Tri	ichloropropane	ND	2.0	μg/L	1	4/8/2022 6:58:27 PM	R87130					
Vinyl chl	oride	ND	1.0	µg/L	1	4/8/2022 6:58:27 PM	R87130					
Xylenes,	, Total	ND	1.5	μg/L	1	4/8/2022 6:58:27 PM	R87130					
Surr:	1,2-Dichloroethane-d4	112	70-130	%Rec	1	4/8/2022 6:58:27 PM	R87130					
Surr:	4-Bromofluorobenzene	98.7	70-130	%Rec	1	4/8/2022 6:58:27 PM	R87130					
Surr:	Dibromofluoromethane	109	70-130	%Rec	1	4/8/2022 6:58:27 PM	R87130					
Surr:	Toluene-d8	100	70-130	%Rec	1	4/8/2022 6:58:27 PM	R87130					

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit

Qualifiers:

S % Recovery outside of range due to dilution or matrix interference

- В Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 16

Client Sample ID: Trip Blank

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 2204046 18-Apr-22

Client: EA Engineering

Project: Conoco Service Station Chama

Sample ID: 100ng Ics	Samp	Гуре: LC	S	Tes	tCode: EF	PA Method	8260B: VOLA	TILES			
Client ID: LCSW	Batch ID: R87130 RunNo: 87130										
Prep Date:	Analysis [Date: 4/8	3/2022	5	SeqNo: 30	080523	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	23	1.0	20.00	0	115	70	130				
Toluene	20	1.0	20.00	0	97.6	70	130				
Chlorobenzene	20	1.0	20.00	0	102	70	130				
1,1-Dichloroethene	22	1.0	20.00	0	112	70	130				
Trichloroethene (TCE)	21	1.0	20.00	0	106	70	130				
Surr: 1,2-Dichloroethane-d4	10		10.00		105	70	130				
Surr: 4-Bromofluorobenzene	9.9		10.00		98.7	70	130				
Surr: Dibromofluoromethane	11		10.00		109	70	130				
Surr: Toluene-d8	9.9		10.00		99.1	70	130				
Sample ID: mb	Samp	Гуре: МЕ	SLK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES			
Client ID: PBW	Batcl	h ID: R8 '	7130	F	RunNo: 87	7130					
Prep Date:	Analysis [Date: 4/8	3/2022	S	SeqNo: 3(080547	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE)	ND	1.0									
1,2,4-Trimethylbenzene	ND	1.0									
1,3,5-Trimethylbenzene	ND	1.0									
1,2-Dichloroethane (EDC)	ND	1.0									
1,2-Dibromoethane (EDB)	ND	1.0									
Naphthalene	ND	2.0									
1-Methylnaphthalene	ND	4.0									
2-Methylnaphthalene	ND	4.0									
Acetone	ND	10									
Bromobenzene	ND	1.0									
Bromodichloromethane	ND	1.0									
Bromoform	ND	1.0									
Bromomethane	ND	3.0									
2-Butanone	ND	10									
Carbon disulfide	ND	10									
Carbon Tetrachloride	ND	1.0									
Chlorobenzene	ND	1.0									
Chloroethane	ND	2.0									
Chloroform	ND	1.0									
Chloromethane	ND	3.0									
2-Chlorotoluene	ND	1.0									

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 2204046 18-Apr-22

Client:	EA Engineering	ç Ç													
Project:	Conoco Service	Station Cr	iama												
Sample ID: mb	Sa	mpType: M	BLK	Tes	tCode: E	PA Method	8260B: VOLA	TILES							
Client ID: PBW	E	Batch ID: R	37130	RunNo: 87130											
Prep Date:	Analys	sis Date: 4	8/2022	:	SeqNo: 3	080547	Units: µg/L								
Analyte	Resu	ılt PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
4-Chlorotoluene	N	D 1.0													
cis-1,2-DCE	N	D 1.0													
cis-1,3-Dichloropropene	N	D 1.0													
1,2-Dibromo-3-chloroprop	pane N	D 2.0													
Dibromochloromethane	N	D 1.0													
Dibromomethane	N	D 1.0													
1,2-Dichlorobenzene	N	D 1.0													
1,3-Dichlorobenzene	N	D 1.0													
1,4-Dichlorobenzene	N	D 1.0													
Dichlorodifluoromethane	N	D 1.0													
1,1-Dichloroethane	N	D 1.0													
1,1-Dichloroethene	N	D 1.0													
1,2-Dichloropropane	N	D 1.0													
1,3-Dichloropropane	N	D 1.0													
2,2-Dichloropropane	N	D 2.0													
1,1-Dichloropropene	N	D 1.0													
Hexachlorobutadiene	N	D 1.0													
2-Hexanone	N	D 10													
Isopropylbenzene	N	D 1.0													
4-Isopropyltoluene	N	D 1.0													
4-Methyl-2-pentanone	N	D 10													
Methylene Chloride	N	D 3.0													
n-Butylbenzene	N	D 3.0													
n-Propylbenzene	N	D 1.0													
sec-Butylbenzene	N	D 1.0													
Styrene	N	D 1.0													
tert-Butylbenzene	N	D 1.0													
1,1,1,2-Tetrachloroethane	e N	D 1.0													
1,1,2,2-Tetrachloroethane	e N	D 2.0													
Tetrachloroethene (PCE)	N	D 1.0													
trans-1,2-DCE	N	D 1.0													
trans-1,3-Dichloropropene	e N	D 1.0													
1,2,3-Trichlorobenzene	N	D 1.0													
1,2,4-Trichlorobenzene	N	D 1.0													
1,1,1-Trichloroethane	N	D 1.0													
1,1,2-Trichloroethane	N	D 1.0													
Trichloroethene (TCE)	N	D 1.0													
Trichlorofluoromethane	N	D 1.0													
1,2,3-Trichloropropane	N	D 2.0													

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value

J Analyte detected below quantitation limits

- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 16

Client: EA Engineering

Project:	Conoco Service Station Chama

Sample ID: mb	SampT	уре: МВ	TILES							
Client ID: PBW	Batch	n ID: R8	7130	F	RunNo: 87	7130				
Prep Date:	Analysis D	Date: 4/8	3/2022	S	SeqNo: 3	080547	Units: µg/L			
Analyte	Result PQL SPK value SPK Ref Val %REC LowLim			LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		106	70	130			
Surr: 4-Bromofluorobenzene	9.7		10.00		97.2	70	130			
Surr: Dibromofluoromethane	11		10.00		107	70	130			
Surr: Toluene-d8	10	10.00			100	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 16

Client:	EA Engineering												
Project:	Cor	onoco Service Station Chama											
Sample ID: M	D: MB-66703 SampType: MBLK TestCode: SM2540C MOD:								olved Soli	ds			
Client ID: P	BW	Batc	h ID: 667	703	F	RunNo: 8	7179						
Prep Date:	4/7/2022	Analysis [Date: 4/	12/2022	Ş	SeqNo: 3	082418	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Total Dissolved S	olids	ND	20.0										
Sample ID: L	CS-66703	Samp	Гуре: LC	S	Tes	stCode: SI	M2540C MC	D: Total Diss	olved Soli	ds			
Client ID: L	CSW	Batc	h ID: 667	703	F	RunNo: 8	7179						
Prep Date:	4/7/2022	Analysis [Date: 4/	12/2022	SeqNo: 3082419			Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Total Dissolved S	olids	990	20.0	1000	0	99.0	80	120					

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- В Analyte detected in the associated Method Blank
- Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 16 of 16

- Estimated value

HALL ENVIR ANALY LABOR	ONMENTAL (SIS Ratory	Hall Environme TEL: 505-345-3 Website: www	ntal Analysis Labore 4901 Hawkin, Albuquerque, NM 83 8975 FAX: 505-345 w.hallenvironmental.	utory s NE 7109 Sam 4107 com	ple Log-In Check List
Client Name:	EA Engineering	Work Order Num	ber: 2204046		RcptNo: 1
Received By:	Kasandra Payan	4/1/2022 1:12:00 P	M	Hope	
Completed By: Reviewed By:	Sean Livingston In uli/22	4/1/2022 1:37:07 P	Μ	Sala	sol-
Chain of Cust	tody				
1. Is Chain of Cu	stody complete?		Yes 🖌	No 🗌	Not Present
2. How was the s	sample delivered?		<u>Client</u>		
<u>Log In</u> 3. Was an attemp	ot made to cool the sample	s?	Yes 🔽	No 🗌	
4. Were all sample	les received at a temperatu	re of >0° C to 6.0°C	Yes 🔽	No 🗌	
5. Sample(s) in p	roper container(s)?		Yes 🔽	No 🗌	
6. Sufficient samp	ble volume for indicated tes	t(s)?	Yes 🔽	No 🗌	
7. Are samples (e	xcept VOA and ONG) prop	erly preserved?	Yes 🔽	No 🗌	
8. Was preservati	ve added to bottles?		Yes	No 🔽	NA 🗌
9. Received at lea	st 1 vial with headspace <	1/4" for AQ VOA?	Yes 🗸	No 🗌	
10. Were any sam	ple containers received bro	ken?	Yes	No 🗹	# of preserved
1. Does paperwor (Note discrepar	k match bottle labels? ncies on chain of custody)		Yes 🗹	No 🗌	for pH: (<2 or >12 unless noted)
2. Are matrices co	prrectly identified on Chain	of Custody?	Yes 🔽	No 🗌	Adjusted?
3. Is it clear what a	analyses were requested?		Yes 🔽	No 🗌	
4. Were all holding (If no, notify cus	g times able to be met? stomer for authorization.)		Yes 🗹	No 🗆	Checked by: SEC 4/1/22
Special Handlir	ng (if applicable)			2	
15. Was client noti	fied of all discrepancies wit	h this order?	Yes 🗌	No 🗌	NA 🔽
Person N	otified:	Date:	provide the state of the state of the state		
By Whom	n:	Via:	eMail 🗌 Ph	one 🗌 Fax 🛛	In Person
Regardin	g:				
Client Ins	tructions:	na an ann an an Ann ann an Ann an An Ann an Ann			A REALISTING WITH CALL ADDRESS
6. Additional rem	arks:				
7. <u>Cooler Inform</u> Cooler No	ation Temp °C Condition -1.1 Good	Seal Intact Seal No	Seal Date S	Signed By	

Chain-of-Custody Record				Turn-Around Time:																		
Client: EA Engineoring Science +				Standard Rush Project Name:					HALL ENVIRONMENTAL ANALYSIS LABORATORY													
Address: And VISC								www.hallenvironmental.com														
	Address	320	Gold Avo Su	CONOCO	SONICO	Static	n Chamn	4901 Hawkins NE - Albuquerque, NM 87109														
Suto	1300	Albencorg	106 NM 87107	Project #:	7			Tel. 505-345-3975 Fax 505-345-4107														
Phone	#: 50	S 29	61070	6515			1	Analysis Request														
email c	or Fax#:	VMUSto	fin @ Gaost. Com	Project Mana	ager:			(1) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3														
QA/QC	Package:			Name A	A cust o			802	MR	B's		٨S		4, S			psei					
☑ Star	ndard		Level 4 (Full Validation)	NGVIGI IV	Wstation			3's (20/	PC		OSII		РО			nt/A					
	itation:		ompliance	Sampler: He	ron Kopp	Na		TM	/ DF	082	. 1	827		4O ₂			esel					
	AC (Type)			On Ice:	□ Yes	□ No	in all a		RO	es/8	504	D or	s	3, ¹		(AO	(Pr	J				
				Cooler Temp	(including CE): -	0-01=	(ry 9/1/22	1TB	D)D	ticid	pou	831(Aeta	Z	F	Ni-V	orm	01		1 1		
						0 0.1	-1.1	N N	3015	Pes	Met	by	N 8 V	Ъ,	S S	Ser	Colif	25		5.0		
Date	Time	Matrix	Sample Name	Container	Preservative	HEA	L No.	TEX	9:Hc	381	DB (AHs	CRA	щ	60 (0/3	otal (Z				
3-31-77	10(4)	Matrix		3x que uca	HaCla	2204	046	Ē	F	80	Ξ	e.	Ř	Ö	8	82	Ĕ	S		\rightarrow	\rightarrow	
231 22	1090			3240 ML UCH	Hyll2,		001								~				\square	$ \rightarrow$	1000	
301-22	1031		nw-8	1 poly	Non6		200								/			~				
3-31-22	_12.00		Mw-9	1 puls	Figci2, Maria		007								\checkmark			\checkmark				
3-31-22	1200		Mw-IL	3x 40mLuch	Hguz		4004								\checkmark							
3-31-22	1135		MW-12	3x Womh Van	HgClz		200								~				\neg	\top	\neg	
3-31-22	1040		Trip Blank				026								1							
																			+	+	-	
	Υ.																		-	-	+	
																-			-		+	
																			+	+	+	
											\neg								+	+	+	+
					54C.														+	+	+	+
Date:	Time:	Relinquishe	ed by:	Received by:	Via:	Date	Time	Rem	arks	:											<u> </u>	
FIEL		1/2 -		M	020	4/1/27	13:12															
Date:	l ime:	Relinquishe	d by:	Received by:	Via:	/ Date	Time															

APPENDIX C – PHOTOS

MW-8 vault was in poor condition

MW-12 vault missing