Semi-Annual Ground Water Monitoring September 2019

Barelas Bridge 800 Bridge Boulevard SW Albuquerque, New Mexico 87105 Facility # 29854 Release ID #: 54

Job No. 3288JV023

Western **Technologies** Inc.

The Quality People Since 1955

ALBUQUERQUE - NEW MEXICO 8305 Washington Place N.E. Albuquerque, New Mexico 87113-1670 (505) 823-4488 • fax 821-2963

Prepared For:

New Mexico Environment Department Petroleum Storage Tank Bureau 121 Tijeras Avenue NE, Suite 1000 Albuquerque, New Mexico 87102

October 10, 2019

David C. Wagner

David C. Wagner Senior Environmental Scientist

thogy ity

Sean Moggridge **Project Scientist**

COLORADO

PAGOSA SPRINGS

DURANGO

NEVADA LAS VEGAS

NEW MEXICO ALBUQUERQUE FARMINGTON

UTAH SALT LAKE CITY

111-1995 © 040108 WTI, Inc.

ARIZONA

FLAGSTAFF

FORT MOHAVE CASA GRANDE LAKESIDE COTTONWOOD LAKE HAVASU CITY

PHOENIX PRESCOTT

SIERRA VISTA TUCSON

8305 Washington Place N.E. Albuquerque, New Mexico 87113-1670 (505) 823-4488 • fax 821-2963

October 10, 2019

New Mexico Environment Department Petroleum Storage Tank Bureau 121 Tijeras Avenue NE, Suite 1000 Albuquerque, New Mexico 87102

Attn: Corey Jarrett, Geoscientist

Re: Semi-Annual Ground Water Monitoring (September 2019) Job No. 3288JV023 Barelas Bridge 800 Bridge Boulevard SW Albuquerque, New Mexico 87105

Facility #: 29854

Release ID #: 54

WPID #: 4023-2

Western Technologies (WT) is pleased to present this Semi-Annual Ground Water Monitoring Report for the referenced State Lead site. The original tasks were detailed in a WT workplan dated August 7, 2018. The NMED PSTB approval letter was dated February 22, 2019.

Should you have any questions or comments, please call.

Sincerely, WESTERN TECHNOLOGIES INC. Senior Environmental Services

David C. Wagner

David C. Wagner, P. G. Environmental Scientist

Copies to: Addressee (1)

Semi-Annual Ground Water Monitoring (September 2019) Barelas Bridge, 800 Bridge Boulevard SW, Albuquerque, New Mexico 87105 Facility # 29854 Release ID #: 54 Job No. 3288JV023

TABLE OF CONTENTS

Ι.	INTF		2
	Α.	Scope of Work and Site History	2
	В.	Monitoring Events Highlights	4
П.	АСТ	IVITIES PERFORMED DURING THIS MONITORING EVENT	4
	Α.	Brief description of remediation system and date Installed	4
	В.	Description of activities performed to keep system operating	4
	C.	Monitoring activities performed	5
	D.	System performance and effectiveness	7
	Ε.	Statement verifying containment of release	7
III.	SUN	IMARY AND CONCLUSION	7
	Α.	Discussion of any trends or changes noted	7
	В.	Ongoing assessment of remediation system	
	C.	Recommendations	

APPENDIX A - FIGURES

Site Plan overlaid on 2018 Aerial Photograph	.Figure	1
Site Plan and Ground Water Contour Map	.Figure	2
Dissolved Petroleum Hydrocarbon Concentration Map	.Figure	3
Dissolved Total Naphthalenes Concentration Contour Map	.Figure	4

APPENDIX B - TABLES

Ground Water Elevation Data	able 1
Ground Water Field Data	able 2
Summary of Water Sample Analytical Test ResultsTa	able 3
Current Water Sample Analytical Test Results	
Volatile Organic Analysis by EPA Method 8260B	able 4
Summary of Dissolved Metals EPA Method 6010 Analytical Test Results	able 5

APPENDIX C - Hall Environmental Analysis Laboratory Test Results

APPENDIX D - Charts

- Chart 1: Naphthalene Concentrations (linear) MW-8, MW-9, VP-2, VP-5: January 2000 to September 2019
- Chart 2: Naphthalene Concentrations (logarithmic) MW-8, MW-9, VP-2, VP-5: January 2000 to September 2019
- Chart 3: Naphthalene Concentrations (logarithmic) MW-8, MW-9, and VP-5 Versus Ground Water Elevations: January 2000 to September 2019
- APPENDIX E Field Notes
- **APPENDIX F** Physical Setting Report (Electronic Only 65 pages).

COVER PAGE FORM 1216 SEMI-ANNUAL GROUND WATER MONITORING

Please include the following information:

- 1. Site name: Barelas Bridge
- 2. Responsible party: State Lead Site
- 3. Responsible party mailing address (list contact person if different):

Petroleum Storage Tank Bureau 121 Tijeras Avenue NE, Suite 1000 Albuquerque, New Mexico 87102

- 4. Facility number: 29854
- 5. Address/legal description: 800 Bridge Boulevard SW, Albuquerque, New Mexico 87105
- 6. Author/consulting company: David C. Wagner/Western Technologies Inc.
- 7. Date of report: October 10, 2019
- 8. Date of confirmation of release or date PSTB was notified of the release: August 1989

STATEMENT OF FAMILIARITY

I, the undersigned, am personally familiar with the information submitted in this report and the attached documents and attest that it is true and complete.

Signature: David C. Wagner

Name: David C. Wagner, P.G.

Affiliation: Western Technologies Inc.

Title: Environmental Scientist

Certified Scientist #: Not Applicable

Date: October 10, 2019

I. INTRODUCTION:

A. Scope of work: WPID #: 4023-2 and Site History

The following tasks were detailed in a WT workplan dated August 7, 2018. The NMED PSTB approval letter was dated February 22, 2019. Western Technologies (WT) collected ground water samples from all ground water monitor wells specified in the workplan during this monitoring event. This report completes the scope of work for WPID #: 4023-2. Task 2 was the final Task of WPID #: 4023.

Figures are presented in Appendix A. Tables are presented in Appendix B. The laboratory analytical report is presented in Appendix C. Appendix D presents relevant charts. Field Notes are presented in Appendix E. A Physical Setting Report (PSR) is presented in Appendix F.

The current Site and vicinity layout is illustrated on Figure 1, Site Plan overlaid on a 2018 Aerial Photograph. The Site was an active fuel dispensing facility beginning in the 1940s¹. The Site was an active fuel dispensing facility and convenience store during this monitoring event. According to the most recent PSTB UST Report, the Site was 7-Eleven #750 and operated by Southwest Convenience Stores LLC (Tank Owner ID: 17265, Tank Operator ID: 03878).

The Rio Grande River is approximately 1,000 feet east of Site. The Atrisco Drain is about 400 feet east of the Site. According to the Physical Setting Report (PSR), the geology of the Site is Quaternary alluvium deposits of the Rio Grande River floodplain (PSR page 9). Two soil types, Map Unit GB (PSR page 11) and Map Unit VbA (PSR page 12) were present in the vicinity of the Site. Map Unit VbA (Vinton sandy loam) is present at the Site and east, north and west of the Site. Map Unit GB (Gila loam), was south of the site and contained MW-7. WT believes that all Site wells are completed in the silt, sand, and gravelly sand of the Gila loam.

Site History

The Site in an unincorporated area of Bernalillo County and was a gasoline station beginning in the 1940s. A brief summary of investigation and remediation activities completed at the Site is presented below.

• Contaminated soil in the former UST pit area was excavated and removed in August 1989 after the release was first reported. (See Figure 1). Contaminated soil

¹ Intera Geoscience and Engineering Solutions, 2nd Semi-Annual Ground water Monitoring Report, Barelas Bridge Site, Facility # 29854; Release ID # 54, March 2018, Albuquerque, Bernalillo County, New Mexico

along the southern Site boundary was excavated and removed in October 1989. During the October 1989 excavation activities, an approximately 100 to 150 gallon waste-oil tank was removed. The current USTs were installed in 2012.

- Between August 1989 and August 1990, the Albuquerque Environmental Health Department (AEHD) completed an initial hydrogeologic investigation; which included the advancement of 19 soil borings. Four soil borings were converted to monitoring wells MW-1, MW-2, MW-3, and MW-4. Soil and ground water samples were collected for chemical analyses.
- From October to December 1990, Leggette, Brashears & Graham, Inc. (LBG), conducted additional hydrogeologic investigation activities, which included the advancement of five soil borings. Four were converted to monitoring wells (MW-5, MW-6, MW-7, and MW-8. Soil and ground water samples were collected for chemical analyses. Short pumping tests were conducted at two monitoring well locations. LBG concluded that the horizontal extent of contamination was delineated; ground water flow direction was to the south; the southernmost monitoring wells, MW-1, MW-2, and MW-3, did not contain petroleum hydrocarbons in ground water at concentrations that exceeded New Mexico Water Quality Control Commission (NMWQCC) regulatory limits. Contaminants of concern, above NMWQCC regulatory limits, included benzene, toluene, ethylbenzene, total xylenes, iron, and manganese.
- In August 1992, Ground Water Technology (GT) oversaw the advancement of five soil borings. These borings were completed as multi-purpose wells for use in an airsparge/soil vapor extraction (AS/SVE) pilot test. Results of the AS/SVE pilot test indicated that an AS/SVE system could effectively remediate the source zone; therefore, GT proposed installing a full-scale system (GT, 1992). Based on existing monitoring wells, it appears that the full-scale AS/SVE system was installed.
- By 1995, GT installed one monitor well (MW-9) and a total of seven paired AS/SVE wells (AS-1/VP-1 through AS-7/VP-7). WT did not review the operational history of the AS/SVE system.
- WT performed State Lead ground water monitoring events at the Site between January 2000 and July 2003. WT was the first to use EPA Method 8260B for total naphthalenes (naphthalene, 1-methylnaphthalene & 2-methylnaphthalene).
- In May 2003, WT installed four 10-foot deep confirmation borings (See Figure 1).
 WT also decommissioned the inactive AS/SVE system. All remediation system piping was pressure grouted in place. All remediation system well vaults were

grouted in place and capped with approximately six-inches of wire-mesh-reinforced 3,500-psi concrete. SVE wells VP-2 and VP-5 were converted to monitor wells.

- In May 2003, monitor wells MW-2, MW-5, and MW-6 were plugged and abandoned. WT believes that MW-3 was previously plugged and abandoned because WT located a concrete plug in the approximate location of MW-3 in May 2003. The resident of 147 La Vega SW would not allow WT personnel to search for MW-1 and asked WT personnel to leave.
- Two ground water monitoring events were conducted in October 2006 and May 2009 by an unknown State Lead consultant. The data was summarized by the following State Lead consultant, Intera Geoscience and Engineering Solutions (Intera).
- Intera conducted eight ground water monitoring events between April 2014 and March 2018.

B. Monitoring Event Highlights:

Total naphthalene exceeded the NMWQCC Regulatory Limits in VP-5 and MW-8, while all other EPA Method 8260B List compounds below NMWQCC regulatory limits. All MW-4, MW-7, MW-9, and VP-2 EPA Method 8260B List compounds were below NMWQCC regulatory limits.

The 8.24-foot deep MW-1 was last located in January 2000 and was dry. WT attempted to locate MW-1 with magnetic locator on September 23, 2019. WT could not locate MW-1 in the driveway of 147 La Vega SW during this monitoring event. WT believes that MW-1 was probably destroyed.

II. ACTIVITIES PERFORMED DURING THIS MONITORING EVENT:

A. Brief description of remediation system and date installed.

No operating remediation system was present at the site. The remediation system was decommissioned in 2003.

B. Description of activities performed to keep system operating properly including: inspections, maintenance procedures and modifications, if any.

Not applicable.

C. Monitoring activities performed.

WT collected ground water samples from monitor wells MW-4, MW-7, MW-8, MW-9, VP-2, and VP-5 during this monitoring event (see Figure 2, Site Plan and Ground Water Contour Map). Current and historical data is presented in Table 1, Ground Water Elevation Data.

Before collecting ground water samples from the monitor wells, the water levels in the monitor wells were measured with a Heron[™] interface probe (IP). The IP was also used to measure free product, if any. The IP was decontaminated with an Alconox solution, then rinsed with tap water, and finally rinsed with deionized water before and after each water level measurement.

A minimum of three well volumes were removed from each well before collecting a ground water sample (see Table 2, Ground Water Field Data). The well purging was conducted with a new 1.66-inch diameter disposable bailer for each well. During purging activities, ground water parameters of temperature, dissolved oxygen, pH, Oxidation-Reduction Potential (ORP/eH), and specific conductivity were measured and recorded using a YSI Professional Plus[™] multiparameter water quality probe manufactured by In-Situ Inc.

Measurements were digitally recorded as specific volumes of ground water removed from each well as indicated on Table 2. Before and after obtaining ground water parameters from each well, the multiparameter water quality probe was decontaminated with an Alconox solution, then rinsed with tap water, and finally rinsed with deionized water.

All of the ground water samples collected were analyzed for volatile organic compounds (VOCs) by EPA Method 8260B. Each ground water sample for analyses were placed into three pre-cleaned, laboratory supplied 40-milliliter glass containers. The preservative was mercuric chloride (Hg₂Cl₂). Chain-of-custody (COC) records were maintained and accompanied the transfer of samples from field personnel to the laboratory. All laboratory samples were labeled, placed in a cooler with ice, and then transported to the analytical laboratory. Each sample container label mirrored the information on the COC. All laboratory samples were analyzed by Hall Environmental Analysis Laboratory, Inc. in Albuquerque, New Mexico (See Appendix C).

The depths to ground water ranged from 7.59 feet below top of casing (MW-4) to 8.91 feet below top of casing (MW-8) during this monitoring event (see Table 1, Ground Water Elevation Data).

Ground water elevations ranged from 4535.75 feet (VP-5) to 4535.13 feet (VP-2) above mean sea level (MSL). The average ground water elevations decreased 0.002 feet since the previous ground water monitoring event of March 2018. The gradient was 0.002 ft./ft. The essentially flat ground water gradient observed during this ground water monitoring event was be generally to the south-southeast (see Figure 2, Site Plan and Ground Water Contour Map).

Based on the results of the EPA Method 8260B laboratory analysis, total BTEX concentrations ranged from below the respective laboratory Practical Quantitation Limits (PQLs) to 11.3 micrograms per liter (μ g/L) (MW-8) during this monitoring event (see Table 3, Summary of Water Sample Analytical Test Results). Other EPA Method 8260B List compounds were detected during this monitoring event (see Table 4, Current Water Sample Analytical Test Results: Volatile Organic Analysis by EPA Method 8260). Historically, all EPA Method 504.1 results for EDB were below the PQL of 0.010 μ g/L (see Table 3).

No laboratory analytical results exceeded applicable New Mexico Water Quality Control Commission (NMWQCC) regulatory limits for EPA Method 8260B List compounds with the sole exception of total naphthalenes (see Figure 3, Dissolved Petroleum Hydrocarbon Concentration Map).

Total naphthalene concentrations in VP-5 (136.1 μ g/L) and MW-8 (59 μ g/L), exceeded the NMWQCC regulatory limit of 30 μ g/L for total naphthalenes. Total naphthalene concentration contours are presented on Figure 4, Dissolved Total Naphthalenes Concentration Contour Map. The total naphthalenes ground water contamination plume is undefined to the east and north. North was up-gradient and west was cross gradient. Note that the plugged and abandoned VP-6 was non-detect for total naphthalenes for 11 consecutive monitoring events between January 2000 and January 2003.

Historical dissolved lead data from previous monitoring events were below the PQL of 0.005 milligrams per liter (mg/L) for all ground water samples (see Table 5, Summary of Dissolved Metals Analytical Test Results). No historical analytical results exceeded the NMWQCC regulatory limit of 0.05 mg/L for lead, however historical data indicates that all previous analytical results exceeded the NMWQCC regulatory limit of 0.2 mg/L for manganese. Historical data indicates MW-4, MW-8, VP-1, and VP-5 exceeded the NMWQCC regulatory limit of 1.0 mg/L for iron (see Table 5).

Chart 1, Naphthalene Concentrations (linear) in Appendix D illustrates the relative magnitude of naphthalene concentrations in MW-8, MW-9, VP-2, and VP-5 over time. Ground water samples were first analyzed for naphthalenes in January 2000.

Chart 2: Naphthalene Concentrations (logarithmic): MW-8, MW-9, VP-2, VP-5: January 2000 to March 2019, illustrates the naphthalene concentrations over time. The VP-5 and MW-8 naphthalene concentrations exceeded the NMWQCC regulatory limit of 30 μ g/L between 2000 and the date of this report. The MW-9 and VP-2 naphthalene concentrations occasionally exceeded the NMWQCC regulatory limit. The MW-9 naphthalene concentration last exceeded the NMWQCC regulatory limit in January 2018. The VP-2 naphthalene concentration last exceeded the NMWQCC regulatory limit in January 2018. The VP-2 naphthalene concentration last exceeded the NMWQCC regulatory limit in April 2013.

Significant naphthalene concentrations versus ground water elevation is illustrated by Chart 3: Naphthalene Concentrations (logarithmic) MW-8, MW-9, and VP-5 versus MW-8 Ground Water Elevations: January 2000 to March 2019. The MW-8 ground water elevation was chosen because it is representative of historical ground water elevation data. Data indicates the average ground water elevation increased ~0.5 feet since 2000. Total naphthalenes in MW-8 and VP-5 have exceeded the NMWQCC regulatory limit of 30 μ g/L during every monitoring event.

D. System performance and effectiveness-include discussion on estimated amount of hydrocarbon removed in preceding quarter and amount removed to date and provide confidence of the determination.

Not applicable.

E. Statement verifying containment of release.

The total naphthalenes ground water contamination plume is undefined to the north. North was up-gradient. The plugged and abandoned VP-6 defined the contamination plume to the west. VP-6 was non-detect for total naphthalenes for 11 consecutive monitoring events between January 2000 and January 2003.

The contamination plume is defined in the down-gradient direction to the south by MW-4, MW-9, and the more distant MW-7. The contamination plume is defined in the cross-gradient direction to the east by VP-2.

III. SUMMARY AND CONCLUSIONS:

A. Discussion of any trends or changes noted in analytical results or site conditions.

Ground Water Data

The ground water table was always less than 10 feet below ground surface. Historical data indicates the average ground water elevation increased ~ 0.5 feet since 2000.

The 0.002 ft./ft. ground water gradient to the south-southeast observed during this ground water monitoring event is similar to historical gradients. The ground water table appeared essentially flat with little movement of ground water.

Based on site observations, WT believes that the area around VP-5 is a significant ground water recharge area. Surface runoff water pools in the asphalt depression immediately north of VP-5. The surface water percolates through to the shallow ground water table.

Laboratory Analytical Data

The total naphthalenes plume appears confined to the area of VP-5 and MW-8. Analytical results from monitor wells VP-5 and MW-8 have exceeded the NMWQCC regulatory limit of 30 μ g/L for total naphthalenes since EPA Method 8260B was first used in January 2000.

Other EPA Method 8260B VOCs were detected during this monitoring event. None of the laboratory analytical results exceeded the other applicable NMWQCC regulatory limits for EPA Method 8260B List Compounds.

All historical EPA Method 6010 results for lead were below the PQL of 0.005 mg/L. However historical data indicates that all previous analytical results exceeded the NMWQCC regulatory limit of 0.2 mg/L for manganese. Historical data indicates some wells have exceed the NMWQCC regulatory limit of 1.0 mg/L for iron.

B. Ongoing assessment of remediation system.

Not applicable.

C. Recommendations.

- WT recommends plugging and abandoning MW-1 if it can be located and Consent for Access is obtained.
- WT recommends continued semi-annual ground water monitoring at the site.
- WT recommends ground water remediation because 20 years of data indicate that natural attenuation was not effective for total naphthalenes.
- WT recommend installing a monitor well, north of VP-5, to delineate the total naphthalenes plume.

APPENDIX A Figures

APPENDIX B Tables

WESTERN TECHNOLOGIES INC.

Monitor	Date	Casing Rim	Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
Well		Elevation	Bottom	Elevation (measured)	Ground Water	Thickness	Surface Elevation
ID		(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
			Scree	ned Interval: 3.5'-18.5' (Rep	orted)		
MW-4	09/23/19	4943.23	20.70	4922.53	7.59	13.11	4935.64
	03/26/19	4943.23	21.50	4921.73	7.73	13.77	4935.50
	03/06/18	4943.23	16.50	4926.73	7.57	8.93	4935.66
	01/12/18	4943.23	16.50	4926.73	7.75	8.75	4935.48
	05/19/15	4943.23	16.50	4926.73	7.82	8.68	4935.41
	12/02/14	4943.23	16.50	4926.73	8.09	8.41	4935.14
	04/09/14	4943.23	16.50	4926.73	8.16	8.34	4935.07
	01/30/14	4943.23	16.50	4926.73	8.20	8.30	4935.03
	04/02/13	4943.23	16.50	4926.73	7.91	8.59	4935.32
	05/08/09	4943.23	16.50	4926.73	7.67	8.83	4935.56
	10/04/06	4943.23	16.50	4926.73	8.02	8.48	4935.21
	07/17/03	4943.23	16.50	4926.73	8.45	8.05	4934.78
	01/10/03	4943.23	16.50	4926.73	8.35	8.15	4934.88
	09/24/02	4943.23	16.50	4926.73	8.33	8.17	4934.90
	07/03/02	4943.23	16.50	4926.73	8.30	8.20	4934.93
	04/01/02	4943.23	16.50	4926.73	8.48	8.02	4934.75
	01/03/02	4943.23	16.50	4926.73	8.43	8.07	4934.80
	10/01/01	4943.23	16.50	4926.73	8.00	8.50	4935.23
	05/29/01	4943.23	16.48	4926.75	8.08	8.40	4935.15
	02/06/01	4943.23	16.48	4926.75	8.19	8.29	4935.04
	07/27/00	4943.23	16.48	4926.75	9.04	7.44	4934.19
	04/26/00	4943.23	16.48	4926.75	9.16	7.32	4934.07
	01/26/00	4943.23	16.48	4926.75	8.65	7.83	4934.58
	01/06/00	4943.23	16.48	4926.75	8.51	7.97	4934.72
	03/07/96	4943.23	16.48	4926.75	8.48		4934.75

WESTERN TECHNOLOGIES INC.

Barelas Bridge Site 800 Bridge Blvd, SW Albuquerque, New Mexico 87105 PSTB Facility # 29854: Release ID # 54

Monitor	Date	Casing Rim	Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
Well		Elevation	Bottom	Elevation (measured)	Ground Water	Thickness	Surface Elevation
ID		(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
			Scree	ned Interval: 7.0'-22.0' (Rep	orted)		
MW-7	09/23/19	4942.94	21.56	4921.38	7.70	13.86	4935.24
	03/26/19	4942.94	21.56	4921.38	7.79	13.77	4935.15
	03/06/18	4942.94	21.45	4921.49	7.63	13.82	4935.31
	01/12/18	4942.94	21.45	4921.49	7.78	13.67	4935.16
	05/19/15	4942.94	21.45	4921.49	7.91	13.54	4935.03
	12/02/14	4942.94	21.45	4921.49	8.10	13.35	4934.84
	08/13/11	4942.94	21.45	4921.49	7.91	13.54	4935.03
	05/08/09	4942.94	21.45	4921.49	7.81	13.64	4935.13
	10/04/06	4942.94	21.45	4921.49	8.20	13.25	4934.74
	07/17/03	4942.94	21.45	4921.49	8.61	12.84	4934.33
	01/10/03	4942.94	21.45	4921.49	8.45	13.00	4934.49
	09/24/02	4942.94	21.45	4921.49	8.45	13.00	4934.49
	07/03/02	4942.94	21.45	4921.49	8.40	13.05	4934.54
	04/01/02	4942.94	21.45	4921.49	8.66	12.79	4934.28
	01/03/02	4942.94	21.45	4921.49	8.50	12.95	4934.44
	10/02/01	4942.94	21.45	4921.49	8.20	13.25	4934.74
	03/07/96	4942.94	21.45	4921.49	8.61	12.84	4934.33

WESTERN TECHNOLOGIES INC.

Monitor	Date	Casing Rim	Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
Well		Elevation	Bottom	Elevation (measured)	Ground Water	Thickness	Surface Elevation
ID		(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
			Scree	ned Interval: 8.0'-13.0' (Rep	orted)		
MW-8	09/23/19	4944.59	13.27	4931.32	8.91	4.36	4935.68
	03/26/19	4944.59	13.27	4931.32	9.03	4.24	4935.56
	03/06/18	4944.59	13.16	4931.43	8.90	4.26	4935.69
	01/12/18	4944.59	13.16	4931.43	9.02	4.14	4935.57
	05/19/15	4944.59	13.16	4931.43	9.31	3.85	4935.28
	12/02/14	4944.59	13.16	4931.43	9.37	3.79	4935.22
	04/09/14	4944.59	13.16	4931.43	9.47	3.69	4935.12
	01/30/14	4944.59	13.16	4931.43	9.50	3.66	4935.09
	04/02/13	4944.59	13.16	4931.43	9.23	3.93	4935.36
	08/13/11	4944.59	13.16	4931.43	9.12	4.04	4935.47
	05/08/09	4944.59	13.16	4931.43	8.96	4.20	4935.63
	10/04/06	4944.59	13.16	4931.43	9.30	3.86	4935.29
	07/17/03	4944.59	13.16	4931.43	9.71	3.45	4934.88
	01/10/03	4944.59	13.16	4931.43	9.68	3.48	4934.91
	09/24/02	4944.59	13.16	4931.43	9.61	3.55	4934.98
	07/03/02	4944.59	13.16	4931.43	9.53	3.63	4935.06
	04/01/02	4944.59	13.16	4931.43	9.73	3.43	4934.86
	01/04/02	4944.59	13.16	4931.43	9.63	3.53	4934.96
	10/02/01	4944.59	13.16	4931.43	9.35	3.81	4935.24
	05/29/01	4944.59	13.16	4931.43	9.32	3.84	4935.27
	02/06/01	4944.59	13.16	4931.43	9.41	3.75	4935.18
	07/27/00	4944.59	13.16	4931.43	9.32	3.84	4935.27
	04/26/00	4944.59	13.16	4931.43	9.40	3.76	4935.19
	01/26/00	4944.59	13.16	4931.43	9.82	3.34	4934.77
	01/06/00	4944.59	13.16	4931.43	9.82	3.34	4934.77
	03/07/96	4944.59	13.16	4931.43	9.74	3.42	4934.85

WESTERN TECHNOLOGIES INC.

Monitor	Date	Casing Rim	Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
Well		Elevation	Bottom	Elevation (measured)	Ground Water	Thickness	Surface Elevation
ID		(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
			Scree	ned Interval: 5.0'-20.0' (Rep	orted)		
MW-9	09/23/19	4943.98	19.27	4924.71	8.43	10.84	4935.55
	03/26/19	4943.98	19.27	4924.71	8.48	10.79	4935.50
	03/06/18	4943.98	19.43	4924.55	8.40	11.03	4935.58
	01/12/18	4943.98	19.43	4924.55	8.53	10.90	4935.45
	05/19/15	4943.98	19.43	4924.55	8.61	10.82	4935.37
	12/02/14	4943.98	19.43	4924.55	8.83	10.60	4935.15
	04/09/14	4943.98	19.43	4924.55	8.94	10.49	4935.04
	01/30/14	4943.98	19.43	4924.55	8.98	10.45	4935.00
	04/02/13	4943.98	19.43	4924.55	8.71	10.72	4935.27
	08/13/11	4943.98	19.43	4924.55	8.63	10.80	4935.35
	05/08/09	4943.98	19.43	4924.55	8.48	10.95	4935.50
	10/04/06	4943.98	19.43	4924.55	8.83	10.60	4935.15
	07/17/03	4943.98	19.43	4924.55	9.22	10.21	4934.76
	01/10/03	4943.98	19.43	4924.55	9.15	10.28	4934.83
	09/24/02	4943.98	19.43	4924.55	9.10	10.33	4934.88
	07/03/02	4943.98	19.43	4924.55	9.00	10.43	4934.98
	01/26/00	4943.98	19.43	4924.55	9.31	10.12	4934.67
	01/06/00	4943.98	19.43	4924.55	9.30	10.13	4934.68
	03/07/96	4943.98	19.43	4924.55	9.26	10.17	4934.72

WESTERN TECHNOLOGIES INC.

Monitor	Date	Casing Rim	Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
Well		Elevation	Bottom	Elevation (measured)	Ground Water	Thickness	Surface Elevation
ID		(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
			So	creened Interval Not Availab	le		
VP-2	09/23/19	4943.73	12.82	4930.91	8.60	4.22	4935.13
	03/26/19	4943.73	12.82	4930.91	8.12	4.70	4935.61
	03/06/18	4943.73	12.79	4930.94	8.12	4.67	4935.61
	01/12/18	4943.73	12.80	4930.93	8.15	4.65	4935.58
	05/19/15	4943.73	12.80	4930.93	8.24	4.56	4935.49
	12/02/14	4943.73	12.80	4930.93	8.46	4.34	4935.27
	04/09/14	4943.73	12.50	4931.23	8.57	3.93	4935.16
	01/30/14	4943.73	12.50	4931.23	8.61	3.89	4935.12
	04/02/13	4943.73	12.50	4931.23	8.33	4.17	4935.40
	08/13/11	4943.73	12.50	4931.23	7.23	5.27	4936.50
	05/08/09	4943.73	12.50	4931.23	8.07	4.43	4935.66
	10/04/06	4943.73	12.72	4931.01	8.43	4.29	4935.30
	07/17/03	4943.73	12.57	4931.16	8.81	3.76	4934.92
	01/10/03	4943.73	12.57	4931.16	8.83	3.74	4934.90
	09/24/02	4943.73	12.57	4931.16	8.73	3.84	4935.00
	07/03/02	4943.73	12.57	4931.16	8.63	3.94	4935.10
	04/01/02	4943.73	12.57	4931.16	8.94	3.63	4934.79
	01/03/02	4943.73	12.57	4931.16	8.71	3.86	4935.02
	10/01/01	4943.73	12.65	4931.08	8.40	4.25	4935.33
	05/29/01	4943.73	12.57	4931.16	8.44	4.13	4935.29
	02/06/01	4943.73	12.57	4931.16	8.55	4.02	4935.18
	07/27/00	4943.73	12.57	4931.16	8.44	4.13	4935.29
	04/26/00	4943.73	12.57	4931.16	8.53	4.04	4935.20
	01/26/00	4943.73	12.57	4931.16	8.93	3.64	4934.80
	03/24/94	4943.73	12.57	4931.16	8.96	3.61	4934.77

WESTERN TECHNOLOGIES INC.

Monitor	Date	Casing Rim	Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
Well		Elevation	Bottom	Elevation (measured)	Ground Water	Thickness	Surface Elevation
ID		(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
			So	creened Interval Not Availab	ole		
VP-5	09/23/19	4943.52	12.45	4931.07	7.77	4.68	4935.75
	03/26/19	4943.52	12.45	4931.07	7.84	4.61	4935.68
	03/06/18	4943.52	12.42	4931.10	7.77	4.65	4935.75
	01/12/18	4943.52	12.42	4931.10	7.90	4.52	4935.62
	05/19/15	4943.52	12.42	4931.10	7.94	4.48	4935.58
	12/02/14	4943.52	12.42	4931.10	8.19	4.23	4935.33
	04/09/14	4943.52	11.90	4931.62	8.25	3.65	4935.27
	01/30/14	4943.52	11.90	4931.62	8.30	3.60	4935.22
	04/02/13	4943.52	11.90	4931.62	8.06	3.84	4935.46
	08/13/11	4943.52	11.90	4931.62	7.97	3.93	4935.55
	05/08/09	4943.52	11.90	4931.62	7.78	4.12	4935.74
	10/04/06	4943.52	12.12	4931.40	8.10	4.02	4935.42
	07/17/03	4943.52	12.17	4931.35	8.55	3.62	4934.97
	01/10/03	4943.52	12.17	4931.35	8.53	3.64	4934.99
	09/24/02	4943.52	12.17	4931.35	8.44	3.73	4935.08
	07/03/02	4943.52	12.17	4931.35	8.27	3.90	4935.25
	04/01/02	4943.52	12.17	4931.35	8.56	3.61	4934.96
	01/03/02	4943.52	12.17	4931.35	8.55	3.62	4934.97
	10/02/01	4943.52	12.05	4931.47	8.10	3.95	4935.42
	05/29/01	4943.52	12.17	4931.35	8.01	4.16	4935.51
	07/27/00	4943.52	12.17	4931.35	8.18	3.99	4935.34
	04/26/00	4943.52	12.17	4931.35	8.17	4.00	4935.35
	01/26/00	4943.52	12.17	4931.35	8.61	3.56	4934.91
	03/07/96	4943.52	12.17	4931.35	8.55	3.62	4934.97

WESTERN TECHNOLOGIES INC.

Monitor Well ID	Date	Casing Rim Elevation (Feet)	Depth to Bottom (Feet)	Bottom of Casing Elevation (measured) (Feet)	Depth to Ground Water (Feet)	Water Column Thickness (Feet)	Potentiometric Surface Elevation (Feet)
MW-1	01/06/00	4942.99	8.24	4934.75	Dry	Dry	Dry
MW-2	05/30/03 01/06/00	Plugged and Aba 4942.47	andoned 5.94	4936.53	Dry	Dry	Dry
MW-3	05/30/03 01/26/00 01/06/00 03/07/96	Appeared plugge 4942.03 4942.03 4942.03	ed and abandor 20.47 20.47 20.47 20.47	ned before May 2003 4921.56 4921.56 4921.56	8.65 8.59 8.51	11.82 11.88 11.96	4933.38 4933.44 4933.52
MW-5	05/30/03 01/26/00 01/06/00 03/07/96	Plugged and Aba 4942.18 4942.18 4942.18 4942.18	andoned 21.48 21.48 21.48	4920.70 4920.70 4920.70	8.23 8.14 8.07	13.25 13.34 13.41	4933.95 4934.04 4934.11
MW-6	05/30/03 01/26/00 01/06/00 03/07/96	Plugged and Aba 4944.59 4944.59 4944.59 4944.59	andoned 13.16 13.16 13.16	4931.43 4931.43 4931.43	8.36 9.37 9.22	4.80 3.79 3.94	4936.23 4935.22 4935.37

WESTERN TECHNOLOGIES INC.

Monitor	Date	Casing Rim	Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
Well		Elevation	Bottom	Elevation (measured)	Ground Water	Thickness	Surface Elevation
ID		(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
VP-1	05/30/03	Plugged and Aba	andoned				
	04/01/02	4943.75	13.95	4929.79	8.65	5.30	4935.10
	01/03/02	4943.75	13.95	4929.79	8.50	5.45	4935.25
	10/01/01	4943.75	13.96	4929.79	8.10	5.86	4935.65
	05/29/01	4943.75	13.96	4929.79	8.17	5.79	4935.58
	02/06/01	4943.75	13.96	4929.79	8.29	5.67	4935.46
	07/27/00	4943.75	13.96	4929.79	8.28	5.68	4935.47
	04/26/00	4943.75	13.96	4929.79	8.28	NA	4935.47
	01/26/00	4943.75	13.96	4929.79	NM	NA	NA
	01/06/00	4943.75	13.96	4929.79	8.64	5.32	4935.11
	01/10/96	4943.75	13.96	4929.79	8.57	5.39	4935.18
VP-3	05/30/03	Plugged and Aba	andoned				
	01/26/00	4943.73	13.16	4930.57	8.85	4.31	4934.88
	01/06/00	4943.73	13.16	4930.57	8.84	4.32	4934.89
	02/09/95	4943.73	13.16	4930.57	8.93	4.23	4934.80
VP-4	05/30/03	Plugged and Aba	andoned				
	01/26/00	4943.72	12.73	4930.99	8.54	4.19	4935.18
	01/06/00	4943.72	12.73	4930.99	8.53	4.20	4935.19
	03/07/96	4943.72	12.73	4930.99	8.46	4.27	4935.26

WESTERN TECHNOLOGIES INC.

Date		Depth to	Bottom of Casing	Depth to	Water Column	Potentiometric
	Elevation	Bottom (Foot)	Elevation (measured)	Ground Water	I hickness	Surface Elevation
	(reel)	(Feel)	(reel)	(reel)	(Feel)	(Feel)
05/30/03	Plugged and Aba	ndoned				
01/10/03	4943 53	12 55	4930 98	9 10	3 45	4934 43
09/24/02	4943.53	12.55	4930.98	9.06	3.49	4934.47
07/03/02	4943 53	12 55	4930 98	8 99	3 56	4934 54
04/01/02	4943 53	12.55	4930 98	9.20	3 35	4934 33
01/03/02	4943 53	12.55	4930 98	9.05	3 50	4934 48
10/02/01	4943.53	12.33	4931.20	8.75	3.58	4934.78
05/29/01	4943.53	12.60	4930.93	8.73	3.87	4934.80
02/06/01	4943.53	12.60	4930.93	8.81	3.79	4934.72
07/27/00	4943.53	12.60	4930.93	8.81	3.79	4934.72
04/26/00	4943.53	12.60	4930.93	8.80	3.80	4934.73
01/26/00	4943.53	12.60	4930.93	9.23	3.37	4934.30
01/06/00	4943.53	12.60	4930.93	9.23	3.37	4934.30
03/07/96	4943.53	12.60	4930.93	9.20	3.40	4934.33
05/00/00						
05/30/03	Plugged and Aba	indoned	1000 70	0.50	0.00	100.1.00
01/26/00	4943.52	12.82	4930.70	9.52	3.30	4934.00
01/06/00	4943.52	12.82	4930.70	9.52	3.30	4934.00
03/07/90	4943.52	12.82	4930.70	9.40	3.37	4934.07
05/30/03	Plugged and Aba	indoned				
01/06/00	4944.09	9.18	4934.91	Dry	Dry	Dry
05/20/02	Dluggod and Aba	ndonod				
03/30/03		8 73	1035 10	Dry	Dry	Dry
01/00/00	4344.22	0.75	4300.43	лу	ыу	ыу
	05/30/03 01/10/03 09/24/02 07/03/02 04/01/02 01/03/02 10/02/01 05/29/01 02/06/01 07/27/00 04/26/00 01/06/00 01/06/00 03/07/96 05/30/03 01/06/00 05/30/03 01/06/00	Date Casing Kim Elevation (Feet) 05/30/03 Plugged and Aba 4943.53 01/10/03 4943.53 09/24/02 4943.53 07/03/02 4943.53 04/01/02 4943.53 01/03/02 4943.53 01/03/02 4943.53 01/03/02 4943.53 01/02/01 4943.53 05/29/01 4943.53 02/06/01 4943.53 01/26/00 4943.53 01/26/00 4943.53 01/26/00 4943.53 01/26/00 4943.52 03/07/96 4943.52 01/06/00 4943.52 05/30/03 Plugged and Aba 4943.52 05/30/03 Plugged and Aba 4944.09 05/30/03 Plugged and Aba 4944.22	Date Casing Kim Elevation (Feet) Deptit to Bottom (Feet) 05/30/03 01/10/03 Plugged and Abandoned 4943.53 12.55 09/24/02 4943.53 12.55 07/03/02 4943.53 12.55 04/01/02 4943.53 12.55 01/03/02 4943.53 12.55 01/03/02 4943.53 12.55 01/03/02 4943.53 12.55 01/02/01 4943.53 12.60 02/06/01 4943.53 12.60 02/06/01 4943.53 12.60 01/26/00 4943.53 12.60 01/26/00 4943.53 12.60 01/06/00 4943.53 12.60 01/06/00 4943.53 12.60 01/26/00 4943.52 12.82 03/07/96 4943.52 12.82 03/07/96 4943.52 12.82 05/30/03 Plugged and Abandoned 01/06/00 4943.52 12.82 05/30/03 Plugged and Abandoned 01/06/00 <	Date Cashing Kim Depti filo Bottom Elevation (Feet) Elevation (Feet) 05/30/03 Plugged and Abandoned (Feet) (Feet) (Feet) 01/10/03 4943.53 12.55 4930.98 09/24/02 4943.53 12.55 4930.98 07/03/02 4943.53 12.55 4930.98 01/10/20 4943.53 12.55 4930.98 01/03/02 4943.53 12.55 4930.98 01/03/02 4943.53 12.65 4930.93 01/02/01 4943.53 12.60 4930.93 02/06/01 4943.53 12.60 4930.93 07/27/00 4943.53 12.60 4930.93 04/26/00 4943.53 12.60 4930.93 01/26/00 4943.53 12.60 4930.93 01/26/00 4943.53 12.60 4930.93 01/26/00 4943.52 12.82 4930.70 03/07/96 4943.52 12.82 4930.70 03/07/96 <td< td=""><td>Date Clashing Nim Depined Bottom Bottom (Feet) Depined (Feet) Bottom (Feet) Depined (Feet) Bottom (Feet) Depined (Feet) Depined (Feet)</td><td>Date Clashig Kim Deptition (Feet) Dottom (Feet) Dottom (Feet) Dottom (Feet) Optimition (Feet) Optition (Feet) Optimition (Feet)</td></td<>	Date Clashing Nim Depined Bottom Bottom (Feet) Depined (Feet) Bottom (Feet) Depined (Feet) Bottom (Feet) Depined (Feet) Depined (Feet)	Date Clashig Kim Deptition (Feet) Dottom (Feet) Dottom (Feet) Dottom (Feet) Optimition (Feet) Optition (Feet) Optimition (Feet)

WESTERN TECHNOLOGIES INC.

Barelas Bridge Site 800 Bridge Blvd, SW Albuquerque, New Mexico 87105 PSTB Facility # 29854: Release ID # 54

TABLE 2 Ground Water Field Data

Monitor Well ID	Depth DTW DTB	Time 09/23/19	Temp. (°C)	RDO Dissolved Oxygen	рН	Eh ORP (mV)	Specific Conductivity (µS/cm)*	Volume Removed	COMMENTS
				(mg/∟)				(yalions)	
MW-4	DTW	9/23/2019 9:12	21.5	11.32	8.00	542	388	0	clear, slight odor
	7.59	9/23/2019 9:17	20.3	3.59	8.20	408	388	2.00	Slightly turbid grey, slight odor
	<u>TD</u>	9/23/2019 9:24	20.5	3.97	8.28	421	392	4.00	Slightly turbid grey, slight odor
	21.50	9/23/2019 9:30	19.9	4.06	8.37	439	398	6.00	Slightly turbid grey, slight odor
MW-7	DTW	9/23/2019 9:59	20.0	3.25	8.32	450	397	0	clear, slight HC odor
	7.70	9/23/2019 10:05	18.9	3.73	8.89	384	403	2.25	clear, HC odor
	<u>TD</u>	9/23/2019 10:10	19.2	2.25	8.51	287	406	4.50	slightly turbid brown, HC odor
	21.56	9/23/2019 10:16	19.1	3.80	8.59	360	395	6.75	slightly turbid brown, HC odor
MW-8	DTW	9/23/2019 12:43	21.2	4.14	8.59	64	450	0	clear, strong HC odor
	8.91	9/23/2019 12:45	20.5	1.72	8.43	-21	471	1.00	turbid grey, strong HC odor
	TD	9/23/2019 12:48	20.5	1.28	8.38	-64	480	2.00	turbid grey, strong HC odor
	13.27	9/23/2019 12:51	20.5	3.93	8.58	-15	490	3.00	turbid grey, strong HC odor
MW-9	DTW	9/23/2019 11:23	20.0	18.26	8.39	190	373	0	clear. slight HC odor
	8.43	9/23/2019 11:28	20.2	4.59	8.50	149	410	2.00	slightly turbid, black chunks, slight odor
	TD	9/23/2019 11:33	19.8	4.27	8.59	178	420	4.00	slightly turbid, black chunks, HC odor
	19.27	9/23/2019 11:37	19.7	3.62	8.63	169	416	6.00	slightly turbid, black chunks, HC odor
VP-2	DTW	9/23/2019 10:38	22.5	2.68	8.44	399	374	0	clear
	8.60	9/23/2019 10:41	21.6	3.20	8.49	307	378	0.75	turbid grey, slight HC odor
	TD	9/23/2019 10:44	21.4	3.32	8.55	254	389	1.50	turbid grey, slight HC odor
	12.82	9/23/2019 10:47	21.6	3.28	8.58	215	401	2.25	turbid grey, slight HC odor
VP-5	DTW	9/23/2019 13:22	23.9	1.86	8.13	32	817	0	Clear, very strong HC odor
	7.77	9/23/2019 13:25	23.3	2.36	8.23	3	704	0.75	turbid black, very strong HC odor
	TD	9/23/2019 13:27	23.0	3.06	8.41	15	605	1.50	turbid black, very strong HC odor
	12.45	9/23/2019 13:30	22.9	3.26	8.47	17	591	2.25	turbid black, slight odor

ORP = Oxidation Reduction Potential (Eh)

* = temperature compensated specific conductivity

WESTERN TECHNOLOGIES INC.

TABLE 3 Summary of Water Sample Analytical Test Results

					Total	Total					NAPH	THALENES	
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphth ^a	1-Methyl ^b	2-Methyl ^c	Total
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NMWQCC Regu	latory Limits =	5.0	1,000	700	620	none	100	0.05	5.0				30
MW-4	09/23/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	03/26/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	03/06/18	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	01/12/18	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	05/19/15	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.010	<1.0	8.1	< 4.0	< 4.0	8.1
	12/02/14	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.010	<1.0	2.1	< 4.0	< 4.0	2.1
	04/09/14	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	01/30/14	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	-	-	-	-	-	<10.0
	04/02/13	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	-	-	-	-	-	<10.0
	08/13/11	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	-	-	-	-	-	<10.0
	05/08/09	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	-	-	-	-	-	<10.0
	10/04/06	<1.0	<1.0	<1.0	<3.0	<3.0	<1.5	-	-	-	-	-	<10.0
	07/17/03	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<0.010	<1.0	-	-	-	<10.0
	01/10/03	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	09/24/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	07/03/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	04/01/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	01/03/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	10/01/01	<1.0	<1.0	<1.0	<3.0	<6.0	<1.0	<1.0	<1.0	-	-	-	<15.0
	05/29/01	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<6.0
	02/06/01	2.5	<1.0	<1.0	1.5	4.0	<1.0	<1.0	<1.0	-	-	-	3.9
	07/27/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	04/26/00	2.9	<1.0	<1.0	<1.0	2.9	<1.0	<1.0	<1.0	-	-	-	<2.0
	01/30/00	5.4	<1.0	<1.0	2.6	8.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	06/06/95	<0.5	<1.0	<1.0	<2.0	<4.5	-	-	-	-	-	-	-
	03/07/95	40	1.0	54	<2.0	95	-	-	-	-	-	-	-
	11/29/90	49	1.0	8.4	14	72.4	-	-	-	-	-	-	-
	10/30/90	590	35.3	518	1,871	3,015	-	-	-	-	-	-	-

 TABLE 3

 Summary of Water Sample Analytical Test Results

					Total	Total					NAPH	THALENES	
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphth ^a	1-Methyl ^b	2-Methyl ^c	Total
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NMWQCC Regu	latory Limits =	5.0	1,000	700	620	none	100	0.05	5.0				30
MW-7	09/23/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	
	03/26/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	03/06/18	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	01/12/18	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	05/19/15	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.010	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	12/02/14	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.010	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	08/13/11	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	-	-	-	-	-	<10.0
	05/08/09	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	-	-	-	-	-	<10.0
	10/04/06	<1.0	<1.0	<1.0	<3.0	<3.0	<1.5	-	-	-	-	-	<10.0
	07/17/03	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<0.010	<1.0	-	-	-	<10.0
	01/10/03	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	09/24/02	3.1	<1.0	<1.0	1.7	4.8	<1.0	<1.0	<1.0	-	-	-	22.8
	07/03/02	2.6	<1.0	<1.0	3.0	5.6	<1.0	<1.0	<1.0	-	-	-	28.8
	04/01/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	01/03/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	10/02/01	<1.0	<1.0	<1.0	3.3	3.3	<1.0	<1.0	<1.0	-	-	-	<15
	03/07/96	1.9	<1.0	<1.0	<2.0	1.9	-	-	-	-	-	-	-
	12/05/95	6.0	1.2	2.2	<2.0	9.4	-	-	-	-	-	-	-
	09/20/95	78	2.1	9.9	8.7	98.7	-	-	-	-	-	-	-
	10/30/90	9.8	3.0	20.8	4.9	38.5	-	-	-	-	-	-	-

 TABLE 3

 Summary of Water Sample Analytical Test Results

					Total	Total					NAPH	THALENES	1
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphth ^a	1-Methyl ^b	2-Methyl ^c	Total
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NMWQCC Regu	latory Limits =	5.0	1,000	700	620	none	100	0.05	5.0				30
MW-8	09/23/19	<1.0	<1.0	8.8	2.5	11.3	<1.0	<1.0	<1.0	25	15	19	59
	03/26/19	<1.0	<1.0	9.7	2.4	12.1	<1.0	<1.0	<1.0	< 2.0	13	6.2	19.2
	03/06/18	<1.0	<1.0	6.4	1.8	8.2	<1.0	<1.0	<1.0	19	12	14	45
	01/12/18	<1.0	<1.0	7.9	2.4	10.3	<1.0	<1.0	<1.0	25	13	18	56
	05/19/15	<1.0	<1.0	22	4.4	26.4	<1.0	<0.010	<1.0	37	17	28	82
	12/02/14	<5.0	<5.0	17	<7.5	17	<5.0	<0.010	<5.0	33	< 20	29	62
	04/09/14	<1.0	1.2	32	7.3	40.5	<1.0	<1.0	<1.0	53	33	38	124
	01/30/14	1.3	1.4	33	8.2	43.9	<1.0	-	-	-	-	-	134
	04/02/13	<5.0	<5.0	31	10	41	<5.0	-	-	-	-	-	149
	08/13/11	<10	<10	32	<15	32	<10	-	-	-	-	-	72
	05/08/09	<1.0	<1.0	24	8.0	32	<1.0	-	-	-	-	-	92
	10/04/06	<2.0	<2.0	34	18	52	<3.0	-	-	-	-	-	210
	07/17/03	<5.0	<5.0	66	38	104	<5.0	<0.010	<5.0	-	- 1	-	310
	01/10/03	<2.0	<2.0	57	38	95	<2.0	<2.0	<2.0	-	-	-	284
	09/24/02	<5.0	<5.0	58	29	87	<5.0	<5.0	<5.0	-	-	-	238
	07/03/02	<5.0	<5.0	86	40	126	<5.0	<5.0	<5.0	_	-	-	202
	04/01/02	<5.0	<5.0	100	43	143	<5.0	<5.0	<5.0	-	-	-	273
	01/04/02	3.0	3.2	35	50	91.2	<2.0	<2.0	<2.0	-	-	-	313
	10/02/01	<10	<10	90	51	141	<10	<10	<10	-	-	-	120
	05/29/01	4.2	2.6	110	57	173.8	<2.0	<2.0	<2.0	-	-	-	261
	02/06/01	<10	<10	130	43	173	<10	<10	<10	-	-	-	140
	07/27/00	6.0	5.2	150	61	222.2	<1.0	<1.0	<1.0	-	-	-	140
	04/26/00	3.2	2.2	<1.0	35	40.4	<1.0	<1.0	<1.0	-	-	-	136
	01/30/00	<10	<10	150	5.7	155.7	<10	<10	<10	-	-	-	98
	03/07/96	71	24	400	150	645	-	-	-	-	-	-	-
	12/05/95	8.6	8.3	49	18	83.9	-	-	-	-	-	-	-
	09/20/95	11	19	190	74	294	-	-	-	-	-	-	-
	10/30/90	220	120	960	1,140	2,440	-	-	-	-	-	-	-

 TABLE 3

 Summary of Water Sample Analytical Test Results

					Total	Total					j.		
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphth ^a	1-Methyl ^b	2-Methyl ^c	Total
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NMWQCC Regu	latory Limits =	5.0	1,000	700	620	none	100	0.05	5.0				30
MW-9	09/23/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	03/26/19	4.7	<1.0	9.0	32	45.7	<1.0	<1.0	<1.0	11	7.0	7.9	25.9
	03/06/18	<1.0	<1.0	2.1	3.8	5.9	<1.0	<1.0	<1.0	11	7.0	7.9	25.9
	01/12/18	4.0	1.4	11	11	27.4	<1.0	<1.0	<1.0	44	10	14	68
	05/19/15	21	3.0	18	18	60	<1.0	<0.010	<1.0	2.7	< 4.0	< 4.0	2.7
	12/02/14	6.4	<1.0	14	5.5	25.9	<1.0	<0.010	<1.0	2.3	< 4.0	< 4.0	2.3
	04/09/14	100	49	72	110	331	<1.0	<1.0	<1.0	15	9.9	7.5	32.4
	01/30/14	190	59	200	340	789	<2.0	-	-	-	-	-	67
	04/02/13	320	34	<10	150	504	<10	-	-	-	-	-	<40
	08/13/11	750	150	270	880	2,050	12	-	-	-	-	-	93
	05/08/09	12	7.1	45	68	132	<1.0	-	-	-	-	-	77
	10/04/06	62	44	11	42	159	<1.5	-	-	-	-	-	6.9
	07/17/03	98	9.9	2.4	10	120.3	7.1	<0.010	<1.0	-	-	-	<10.0
	01/10/03	2.2	<1.0	<1.0	<1.0	2.2	2.2	<1.0	<1.0	-	-	-	<10.0
	09/24/02	9.2	<1.0	25	20	54.2	1.7	<1.0	<1.0	-	-	-	13
	07/03/02	5.1	1.9	16	18	41.0	<1.0	<1.0	<1.0	-	-	-	28.8
	01/03/02	9.4	6.9	59	51	126.3	<1.0	<1.0	<1.0	-	-	-	2.7
	03/07/96	<0.5	<1.0	<1.0	3.7	3.7	-	-	-	-	-	-	-
	12/05/95	<0.5	<1.0	<1.0	14	14	-	-	-	-	-	-	-
	09/20/95	<0.5	<1.0	<1.0	<2.0	<4.5	-	-	-	-	-	-	-

WESTERN TECHNOLOGIES INC.

TABLE 3 Summary of Water Sample Analytical Test Results

					Total	Total					NAPH	THALENES	
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphth ^a	1-Methyl ^b	2-Methyl ^c	Total
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NMWQCC Regu	ulatory Limits =	5.0	1,000	700	620	none	100	0.05	5.0				30
VP-2	09/23/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	3.0	< 4.0	< 4.0	3.0
	03/26/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	8.7	< 4.0	< 4.0	8.7
	03/06/18	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	01/12/18	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	05/19/15	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.010	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	12/02/14	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<0.010	<1.0	3.6	< 4.0	< 4.0	3.6
	04/09/14	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	< 2.0	< 4.0	< 4.0	<10.0
	01/30/14	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	-	-	-	-	-	2.2
	04/02/13	<2.0	<2.0	<2.0	<3.0	<3.0	<2.0	-	-	-	-	-	34.7
	08/13/11	<1.0	<1.0	2.1	2.4	4.5	<1.0	-	-	-	-	-	78
	05/08/09	<1.0	<1.0	1.3	1.6	2.9	<1.0	-	-	-	-	-	37.3
	10/04/06	<1.0	<1.0	<1.0	<3.0	<3.0	<1.5	-	-	-	-	-	<10.0
	07/17/03	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<0.010	<1.0	-	-	-	<10.0
	01/10/03	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	09/24/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	3.4
	07/03/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	04/01/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	01/03/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	10/01/01	<1.0	<1.0	<1.0	<3.0	<6.0	<1.0	<1.0	<1.0	-	-	-	<15
	05/29/01	<1.0	<1.0	1.2	4.9	6.1	<1.0	<1.0	<1.0	-	-	-	36.7
	02/06/01	<1.0	<1.0	<1.0	2.0	2.0	<1.0	<1.0	<1.0	-	-	-	13
	07/27/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	11
	04/26/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	01/30/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	03/24/94	32	20	94	150	296	-	-	-	-	-	-	-

 TABLE 3

 Summary of Water Sample Analytical Test Results

					Total	Total					NAPH	THALENES	
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphth ^a	1-Methyl ^b	2-Methyl ^c	Total
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
NMWQCC Regu	latory Limits =	5.0	1,000	700	620	none	100	0.05	5.0				30
VP-5	09/23/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	2.1	56	78	136.1
	03/26/19	<1.0	<1.0	<1.0	<1.5	<4.5	<1.0	<1.0	<1.0	3.5	70	93	166.5
	03/06/18	<2.0	<2.0	<2.0	<3.0	<9.0	<2.0	<2.0	<2.0	4.1	58	84	146.1
	01/12/18	<2.0	<2.0	<2.0	<3.0	<9.0	<2.0	<2.0	<2.0	< 4.0	40	55	95
	05/19/15	<5.0	<5.0	<5.0	<7.5	<7.5	<5.0	<0.010	<5.0	17	66	120	203
	12/02/14	<5.0	<10	<10	<15	<15	<10	<0.010	<5.0	<20	99	180	279
	04/09/14	<1.0	1.2	4.5	<1.5	5.7	<1.0	<1.0	<1.0	21	66	130	217
	01/30/14	<1.0	1.0	3.0	<1.5	4.0	<1.0	-	-	-	-	-	187
	04/02/13	<2.0	<2.0	7.7	<3.0	7.7	<2.0	-	-	-	-	-	270
	08/13/11	1.4	1.8	12	2.4	17.6	<1.0	-	-	-	-	-	469
	05/08/09	<5.0	<5.0	7.1	<7.5	7.1	<5.0	-	-	-	-	-	386
	10/04/06	<10	<10	21	<30	21	<15	-	-	-	-	-	430
	07/17/03	<5.0	<5.0	110	54	164	<5.0	<0.010	<5.0	-	-	-	930
	01/10/03	<5.0	<5.0	61	27	88	<5.0	<5.0	<5.0	-	-	-	510
	09/24/02	<5.0	<5.0	34	18	52	<5.0	<5.0	<5.0	-	-	-	510
	07/03/02	<5.0	<5.0	32	19	51	<5.0	<5.0	<5.0	-	-	-	350
	04/01/02	<1.0	<1.0	100	44	144	<1.0	<1.0	<1.0	-	-	-	640
	01/03/02	<5.0	<5.0	50	31	81	<5.0	<5.0	<5.0	-	-	-	340
	10/02/01	<5.0	<5.0	44	35	79	<5.0	<5.0	<5.0	-	-	-	320
	05/29/01	<1.0	1.2	21	17	39.2	<1.0	<1.0	<1.0	-	-	-	330
	07/27/00	<1.0	1.8	20	12	33.8	<1.0	<1.0	<1.0	-	-	-	89
	04/26/00	<1.0	1.4	14	7.1	22.5	<1.0	<1.0	<1.0	-	-	-	142
	01/30/00	<5.0	<5.0	20	10	30	<5.0	<5.0	<5.0	-	-	-	80
	03/07/96	9.5	<1.0	99	81	189.5	-	-	-	-	-	-	-
	12/05/95	<0.5	<1.0	<1.0	<2.0	<4.5	-	-	-	-	-	-	-

WESTERN TECHNOLOGIES INC.

TABLE 3 Summary of Water Sample Analytical Test Results

					Total	Total				NAPHTHALENES			
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphth ^a	1-Methyl ^b	2-Methyl ^c	Total
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NMWQCC Regu	ulatory Limits =	5.0	1,000	700	620	none	100	0.05	5.0				30
MW-1	06/06/95 03/07/95	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	<2.0 <1.0	<4.5 <4.5	-	-	-	-	-	-	-
MW-2	09/20/95 09/08/94	<0.5 <0.5	<1.0 <1.0	<1.0 <1.0	<2.0 <2.0	<4.5 <4.5	-	-	-	-	-	-	- -
MW-3	01/30/00 12/01/94 06/02/94	<1.0 <0.5 11	<1.0 <1.0 <1.0	<1.0 <1.0 1.3	<1.0 <2.0 <2.0	<4.0 <4.0 12.3	<1.0 - -	<1.0 - -	<1.0 - -	- -	- -	- -	<2.0 - -
MW-5	01/30/00 12/05/95 09/20/95	<1.0 <0.5 <0.5	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <2.0 <2.0	<4.0 <4.5 <4.5	<1.0 - -	<1.0 - -	<1.0 - -		- -		<2.0 - -
MW-6	01/30/00 03/07/96 12/05/95 12/01/94	<1.0 1.7 1.2 29	8.3 1.4 4.2 26	18 2.0 2.8 36	54 4.2 12.0 130	80.3 9.3 20.2 221	<1.0 - - -	<1.0 - - -	<1.0 - - -	- - -	- - -	- - -	<2.0 - - -

WESTERN TECHNOLOGIES INC.

TABLE 3 Summary of Water Sample Analytical Test Results

					Total	Total					NAPH	THALENES	
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphth ^a	1-Methyl ^b	2-Methyl ^c	Total
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NMWQCC Regu	ulatory Limits =	5.0	1,000	700	620	none	100	0.05	5.0				30
VP-1	04/01/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	01/03/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	10/01/01	<1.0	<1.0	<1.0	<3.0	<6.0	<1.0	<1.0	<1.0	-	-	-	<15.0
	05/29/01	1.9	<1.0	<1.0	2.0	3.9	<1.0	<1.0	<1.0	-	-	-	<6.0
	02/06/01	1.8	<1.0	<1.0	1.6	3.4	<1.0	<1.0	<1.0	-	-	-	<2.0
	07/27/00	3.5	<1.0	<1.0	1.4	4.9	<1.0	<1.0	<1.0	-	-	-	<2.0
	04/26/00	3.4	<1.0	<1.0	2.4	5.8	<1.0	<1.0	<1.0	-	-	-	<2.0
	01/30/00	1.3	<1.0	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	-	-	-	<2.0
	03/07/96	<0.5	1.4	<1.0	<2.0	1.4	-	-	-	-	-	-	-
	12/05/95	<0.5	1.2	1.0	<2.0	2.2	-	-	-	-	-	-	-
	09/20/95	<0.5	<1.0	4.3	<2.0	4.3	-	-	-	-	-	-	-
VP-3	01/30/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	06/16/93	110	7.3	180	74	371.3	-	-	-	-	-	-	-
VP-4	01/30/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	03/07/96	1.7	<1.0	<1.0	<1.0	1.7	-	-	-	-	-	-	-
	09/20/95	<0.5	<1.0	4.3	<2.0	4.3	-	-	-	-	-	-	-

WESTERN TECHNOLOGIES INC.

TABLE 3 Summary of Water Sample Analytical Test Results

					Total	Total					NAPH	THALENES	1
		Benzene	Toluene	Ethylbenzene	Xylenes	BTEX	MTBE	EDB	EDC	Naphth ^a	1-Methyl ^b	2-Methyl ^c	Total
Monitor Well	Date	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
NMWQCC Regu	ulatory Limits =	5.0	1,000	700	620	none	100	0.05	5.0				30
VP-6	01/10/03	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	09/24/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	07/03/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	04/01/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	01/03/02	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<10.0
	10/02/01	<1.0	<1.0	<1.0	<3.0	<6.0	<1.0	<1.0	<1.0	-	-	-	<15.0
	05/29/01	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<6.0
	02/06/01	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	07/27/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	04/26/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	01/30/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	03/07/95	0.8	<1.0	<1.0	2.1	2.9	-	-	-	-	-	-	-
	09/07/94	0.8	1.3	<1.0	<2.0	2.1	-	-	-	-	-	-	-
VP-7	01/30/00	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	-	-	-	<2.0
	12/05/95	<0.5	<1.0	<1.0	<2.0	<4.5	-	-	-	-	-	-	-
	06/06/95	<0.5	<1.0	<1.0	<2.0	<4.5	-	-	-	-	-	-	-

**Total BTEX = total benzene, toluene, ethylbenzene, and xylenes

MTBE = Methyl-tert-butyl ether EDC = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane. EDB values <1.0 indicates that EDB analyzed by EPA Method 504.1. $1-Methyl^{b} = 1-methylnaphthalene$ Naphth^a = naphthalene

2-Methyl^c = 2-methylnaphthalene

NMWQCC = New Mexico Water Quality Control Commission

BOLD RED Indicates Laboratory Analytical Result ≥ NMWQCC Regulatory Limit

RED (Not bold) Indicates PQLs ≥ NMWQCC Regulatory Limit

µg/L = micrograms per Liter

N/A = Not Analyzed or Not Available

"-" indicates Not Analyzed or Not Available
Barelas Bridge Site 800 Bridge Blvd, SW Albuquerque, New Mexico 87105 PSTB Facility # 29854: Belease ID # 54

WESTERN TECHNOLOGIES INC. TABLE 4 Current Ground Water Sample Analytical Test Results

PSTB Facility # 29854: Release	D # 54	V	olatile Organic	Analysis by EF	A Method 8260)B
Monitor Well ID =	MW-4	MW-7	MW-8	MW-9	VP-2	VP-5
Date =	09/23/19	09/23/19	09/23/19	09/23/19	09/23/19	09/23/19
Units =	ua/L	ug/l	ug/l	ug/l	ug/l	ua/L
Denzene	F-9/-	µg,∟	µg/∟ 	µg/∟ 	µg,∟	r=9;=
Benzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
loluene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	< 1.0	< 1.0	8.8	< 1.0	< 1.0	< 1.0
Methyl tert-butyl ether (MTBE)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.2.4-Trimethylbenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.3.5-Trimethylbenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.2-Dichloroethane (EDC)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichioroethane (EDC)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromoetnane (EDB)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	< 2.0	< 2.0	25	< 2.0	3.0	2.1
1-Methylnaphthalene	< 4.0	< 4.0	15	< 4.0	< 4.0	56
2-Methylnaphthalene	< 4.0	< 4.0	19	< 4.0	< 4.0	78
Total Naphthalenes =	< 10.0	< 10.0	59	< 10.0	3.0	136.1
Acetono	< 10	< 10	< 10	< 10	< 10	< 10
Bromohonzono	< 10	< 10	< 10	< 10	< 10	< 10
Bromobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromoform	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2-Butanone	< 10	< 10	< 10	< 10	< 10	< 10
Carbon disulfide	< 10	< 10	< 10	< 10	< 10	< 10
Carbon Tetrachloride	< 1 0	< 1 0	< 1 0	< 1.0	< 1 0	< 1.0
Chlorobonzono	~ 1.0	~ 1.0	~ 1.0	~ 1.0	~ 1.0	< 1.0
	< 1.0 - 0.0	< 1.0 - 0.0	< 1.0 - 0.0	< 1.U	< 1.0 - 0.0	× 1.0
Chioroethane	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Chloroform	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
2-Chlorotoluene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Chlorotoluene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1 2-DCE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1 3-Dichloropropene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.2 Dibromo 2 obleronronono	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,2-Dibromo-3-chioropropane	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Dibromochloromethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.4-Dichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichlorodifluoromethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1 1 Dichloroothono	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroetnene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2,2-Dichloropropane	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,1-Dichloropropene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Hexanone	< 10	< 10	< 10	< 10	< 10	< 10
Isopropylbenzene	< 1.0	20	11	< 1.0	17	13
	~ 1.0	-10	~ 1.0	~ 1.0	-10	4.9
	N 1.0	N 1.0	N 1.0	N 1.0	N 1.0	1.3
4-ivietnyi-2-pentanone	< 10	< 10	< 10	< 10	< 10	< 10
Methylene Chloride	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
n-Butylbenzene	< 3.0	< 3.0	3.4	< 3.0	< 3.0	10
n-Propylbenzene	< 1.0	1.9	18	< 1.0	3.1	49
sec-Butylbenzene	< 1.0	< 1.0	2.6	< 1.0	< 1.0	4.2
Styrene	< 1 0	< 1.0	< 1 0	< 1 0	< 1 0	< 1.0
tort Butylbonzono	~ 1.0	~ 1.0	~ 1.0	~ 1.0	~ 1.0	~ 1.0
1 1 1 2 Totrochlaroctheres	S 1.0	S 1.0	S 1.0	S 1.0	S 1.0	< 1.U
	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-I etrachloroethane	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
I etrachloroethene (PCE)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,3-Dichloropropene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.2.4-Trichlorobenzene	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1 1 1-Trichloroethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1 1 2 Trichloroothana	~ 1.0	~ 1.0	~ 1.0	~ 1.0	~ 1.0	~ 1.0
1, 1, 2- Inchioroethane	< 1.U	< 1.U	< 1.U	S 1.U	< 1.U	< 1.U
	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Irichlorofluoromethane	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Vinyl chloride	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, Total	< 1.5	< 1.5	2.5	< 1.5	< 1.5	< 1.5
	1					

WESTERN TECHNOLOGIES INC.

Barelas Bridge Site 800 Bridge Blvd, SW Albuquerque, New Mexico 87105 PSTB Facility # 29854: Release ID # 54

TABLE 5Summary of Dissolved MetalsAnalytical Test Results by EPA Method 6010C

Monitor	Date	Lead	Iron	Manganese		
Well		mg/L	mg/L	mg/L		
NMWQCC Regulato	ory Limits	0.015 ^a	1.0 ^b	0.2 ^b		
EPA National Prima	ry & Secondary	(Action Level)	Secondary Drinking W	ater Standards		
Drinking Water Stan	dards	0.015 ^c	0.3 ^d	0.05 ^d		
MW-4	05/19/15	< 0.0050	0.71	0.74		
	12/02/14	<0.0050	0.60	0.78		
	05/29/01		0.17	1.97		
	UZ/U0/U I	<0.0000	1.19	1.70		
N/N/_7	05/10/15	<0.0050	0.20	0.61		
10100-7	12/02/14	<0.0050	0.29	0.01		
	12/02/17	~0.0000	0.00	0.00		
M\\\/-8	05/19/15	<0.0050	0.07	0.28		
	12/02/14	<0.0050	0.08	0.34		
	05/29/01	< 0.0050	1.12	0.39		
	02/06/01	<0.0050	0.68	0.38		
MW-9	05/19/15	<0.0050	0.22	0.70		
	12/02/14	<0.0050	0.31	0.81		
VP-1	05/29/01	<0.0050	1.72	1.67		
	02/06/01	<0.0050	2.07	1.07		
VP-2	05/19/15	<0.0050	0.07	0.46		
	12/02/14	<0.0050	0.11	0.59		
	05/29/01	<0.0050	0.83	1.21		
	02/06/01	<0.0050	0.70	0.92		
VP-5	05/19/15	0.006	1.20	0.12		
	12/02/14	<0.0050	1.00	0.12		
	05/29/01	<0.0050	3.42	0.53		
VP-6	05/29/01	<0.005	0.67	0.62		
	02/06/01	<0.005	0.52	0.45		

a = NMWQCC Regulations: NMAC 20.6.2.3103.A. Human Health Standards

b = NMWQCC Regulations: NMAC 20.6.2.3103.B. Other Standards for Domestic Water Supply

c = 2009 National Primary Drinking Water Standards

d = 2009 National Secondary Drinking Water Standards

BOLD = above NMWQCC Regulatory limits

APPENDIX C Hall Environmental Analysis Laboratory Test Results

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 01, 2019

David Wagner Western Technologies 8305 Washington Place NE Albuquerque, NM 87113-1670 TEL: (505) 823-4488 FAX: (505) 821-2963

RE: Barelas Bridge

OrderNo.: 1909C75

Dear David Wagner:

Hall Environmental Analysis Laboratory received 7 sample(s) on 9/23/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analys	is Laboratory, Inc	•			Date Reported: 10/1/20	19
CLIENT: Western Technologies Project: Barelas Bridge Lab ID: 1909C75-001	Matrix: AQUEOUS	Clie C	ent Sample II ollection Dat Received Dat	D: M e: 9/ e: 9/	IW-4 23/2019 9:35:00 AM 23/2019 2:22:00 PM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JMR
Benzene	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
Toluene	ND	1.0	µ=9/=	1	9/26/2019 4:52:43 PM	R63246
Ethvlbenzene	ND	1.0	µ=9/=	1	9/26/2019 4:52:43 PM	R63246
Methyl tert-butyl ether (MTBE)	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	9/26/2019 4:52:43 PM	R63246
1,3,5-Trimethylbenzene	ND	1.0	μα/L	1	9/26/2019 4:52:43 PM	R63246
1,2-Dichloroethane (EDC)	ND	1.0	μα/L	1	9/26/2019 4:52:43 PM	R63246
1,2-Dibromoethane (EDB)	ND	1.0	μα/L	1	9/26/2019 4:52:43 PM	R63246
Naphthalene	ND	2.0	μα/L	1	9/26/2019 4:52:43 PM	R63246
1-Methylnaphthalene	ND	4.0	μg/L	1	9/26/2019 4:52:43 PM	R63246
2-Methylnaphthalene	ND	4.0	μg/L	1	9/26/2019 4:52:43 PM	R63246
Acetone	ND	10	μg/L	1	9/26/2019 4:52:43 PM	R63246
Bromobenzene	ND	1.0	μg/L	1	9/26/2019 4:52:43 PM	R63246
Bromodichloromethane	ND	1.0	μg/L	1	9/26/2019 4:52:43 PM	R63246
Bromoform	ND	1.0	μg/L	1	9/26/2019 4:52:43 PM	R63246
Bromomethane	ND	3.0	μg/L	1	9/26/2019 4:52:43 PM	R63246
2-Butanone	ND	10	μg/L	1	9/26/2019 4:52:43 PM	R63246
Carbon disulfide	ND	10	μg/L	1	9/26/2019 4:52:43 PM	R63246
Carbon Tetrachloride	ND	1.0	μα/L	1	9/26/2019 4:52:43 PM	R63246
Chlorobenzene	ND	1.0	μα/L	1	9/26/2019 4:52:43 PM	R63246
Chloroethane	ND	2.0	μg/L	1	9/26/2019 4:52:43 PM	R63246
Chloroform	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
Chloromethane	ND	3.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
2-Chlorotoluene	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
4-Chlorotoluene	ND	1.0	µ=9/=	1	9/26/2019 4:52:43 PM	R63246
cis-1.2-DCE	ND	1.0	µ=9/=	1	9/26/2019 4:52:43 PM	R63246
cis-1.3-Dichloropropene	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
1.2-Dibromo-3-chloropropane	ND	2.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
Dibromochloromethane	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
Dibromomethane	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
1.2-Dichlorobenzene	ND	1.0	µ=9/=	1	9/26/2019 4:52:43 PM	R63246
1.3-Dichlorobenzene	ND	1.0	µ=9/=	1	9/26/2019 4:52:43 PM	R63246
1.4-Dichlorobenzene	ND	1.0	µ=9/=	1	9/26/2019 4:52:43 PM	R63246
Dichlorodifluoromethane	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
1,1-Dichloroethane	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
1,1-Dichloroethene	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
1.2-Dichloropropane	ND	1.0	ua/L	1	9/26/2019 4:52:43 PM	R63246
1,3-Dichloropropane	ND	1.0	µa/L	1	9/26/2019 4:52:43 PM	R63246
2,2-Dichloropropane	ND	2.0	μg/L	1	9/26/2019 4:52:43 PM	R63246

Uall Eng nmontal Analysis I abaratar T. •

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information. Value exceeds Maximum Contaminant Level. В

* D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Qualifiers:

Analyte detected in the associated Method Blank Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 1 of 17

S % Recovery outside of range due to dilution or matrix

Date Reported: 10/1/2019

CLIENT: Western Technologies		Cli	ient Sa	ample I	D: M	W-4	
Project: Barelas Bridge		C	Collect	- ion Dat	e: 9/	23/2019 9:35:00 AM	
Lab ID: 1909C75-001	Matrix: AQUEOUS	Matrix: AQUEOUS Received Date: 9/23/2019 2:22:0					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	JMR
1,1-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
Hexachlorobutadiene	ND	1.0		μg/L	1	9/26/2019 4:52:43 PM	R63246
2-Hexanone	ND	10		µg/L	1	9/26/2019 4:52:43 PM	R63246
Isopropylbenzene	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
4-Isopropyltoluene	ND	1.0		μg/L	1	9/26/2019 4:52:43 PM	R63246
4-Methyl-2-pentanone	ND	10		µg/L	1	9/26/2019 4:52:43 PM	R63246
Methylene Chloride	ND	3.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
n-Butylbenzene	ND	3.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
n-Propylbenzene	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
sec-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
Styrene	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
tert-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
Tetrachloroethene (PCE)	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
trans-1,2-DCE	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
1,2,3-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
1,2,4-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
1,1,1-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
1,1,2-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
Trichloroethene (TCE)	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
Trichlorofluoromethane	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
1,2,3-Trichloropropane	ND	2.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
Vinyl chloride	ND	1.0		µg/L	1	9/26/2019 4:52:43 PM	R63246
Xylenes, Total	ND	1.5		µg/L	1	9/26/2019 4:52:43 PM	R63246
Surr: 1,2-Dichloroethane-d4	89.0 7	0-130		%Rec	1	9/26/2019 4:52:43 PM	R63246
Surr: 4-Bromofluorobenzene	96.7 7	0-130		%Rec	1	9/26/2019 4:52:43 PM	R63246
Surr: Dibromofluoromethane	94.4 7	0-130		%Rec	1	9/26/2019 4:52:43 PM	R63246
Surr: Toluene-d8	97.6 7	0-130		%Rec	1	9/26/2019 4:52:43 PM	R63246

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H
 Holding times for preparation or analysis exceeded

 ND
 Not Detected at the Reporting Limit
- ND Not Detected at the Reportir PQL Practical Quanitative Limit

Qualifiers:

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 17

Hall Environmental Analysis	s Laboratory, Inc	•			Date Reported: 10/1/20	19
CLIENT: Western Technologies		Client S	Sample I	D: M	W-7	
Project: Barelas Bridge		Collec	ction Dat	t e: 9/2	23/2019 10:20:00 AM	
Lab ID: 1909C75-002	Matrix: AQUEOUS	Rece	eived Dat	t e: 9/2	23/2019 2:22:00 PM	
Analyses	Result	RL Qua	l Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	JMR
Benzene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Toluene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Ethylbenzene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Naphthalene	ND	2.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1-Methylnaphthalene	ND	4.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
2-Methylnaphthalene	ND	4.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Acetone	ND	10	µg/L	1	9/26/2019 5:21:20 PM	R63246
Bromobenzene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Bromodichloromethane	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Bromoform	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Bromomethane	ND	3.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
2-Butanone	ND	10	µg/L	1	9/26/2019 5:21:20 PM	R63246
Carbon disulfide	ND	10	µg/L	1	9/26/2019 5:21:20 PM	R63246
Carbon Tetrachloride	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Chlorobenzene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Chloroethane	ND	2.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Chloroform	ND	1.0	μg/L	1	9/26/2019 5:21:20 PM	R63246
Chloromethane	ND	3.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
2-Chlorotoluene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
4-Chlorotoluene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
cis-1,2-DCE	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Dibromochloromethane	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Dibromomethane	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,2-Dichlorobenzene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,3-Dichlorobenzene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,4-Dichlorobenzene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/26/2019 5:21:20 PM	R63246
1,1-Dichloroethane	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,1-Dichloroethene	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,2-Dichloropropane	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
1,3-Dichloropropane	ND	1.0	µg/L	1	9/26/2019 5:21:20 PM	R63246
2,2-Dichloropropane	ND	2.0	µg/L	1	9/26/2019 5:21:20 PM	R63246

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Qualifiers: Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Р

Sample pH Not In Range

RL Reporting Limit

Page 3 of 17

• . . . -

Date Reported: 10/1/2019

	• •						
CLIENT: Western Technologies Project: Barelas Bridge		C	lient Sar Collectio	nple II on Dat	D: M e: 9/2	W-7 23/2019 10:20:00 AM	
Lab ID: 1909C75-002	Matrix: AQUEOUS	Matrix: AQUEOUS Received Date: 9/23/2019 2					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	JMR
1,1-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
Hexachlorobutadiene	ND	1.0		μg/L	1	9/26/2019 5:21:20 PM	R63246
2-Hexanone	ND	10		μg/L	1	9/26/2019 5:21:20 PM	R63246
Isopropylbenzene	2.0	1.0		μg/L	1	9/26/2019 5:21:20 PM	R63246
4-Isopropyltoluene	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
4-Methyl-2-pentanone	ND	10		µg/L	1	9/26/2019 5:21:20 PM	R63246
Methylene Chloride	ND	3.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
n-Butylbenzene	ND	3.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
n-Propylbenzene	1.9	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
sec-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
Styrene	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
tert-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
Tetrachloroethene (PCE)	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
trans-1,2-DCE	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
1,2,3-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
1,2,4-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
1,1,1-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
1,1,2-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
Trichloroethene (TCE)	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
Trichlorofluoromethane	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
1,2,3-Trichloropropane	ND	2.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
Vinyl chloride	ND	1.0		µg/L	1	9/26/2019 5:21:20 PM	R63246
Xylenes, Total	ND	1.5		µg/L	1	9/26/2019 5:21:20 PM	R63246
Surr: 1,2-Dichloroethane-d4	93.0 7	0-130		%Rec	1	9/26/2019 5:21:20 PM	R63246
Surr: 4-Bromofluorobenzene	94.0 7	0-130		%Rec	1	9/26/2019 5:21:20 PM	R63246
Surr: Dibromofluoromethane	98.0 7	0-130		%Rec	1	9/26/2019 5:21:20 PM	R63246
Surr: Toluene-d8	104 7	0-130		%Rec	1	9/26/2019 5:21:20 PM	R63246

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

NDNot Detected at the Reporting LimitPQLPractical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 17

Hall	Environmenta	al Analysis	Laboratory,	Inc.

CLIENT: Western Technologies

Lab ID:

Barelas Bridge **Project:** 1909C75-003

Client Sample ID: MW-8 Collection Date: 9/23/2019 1:00:00 PM

Received Date: 9/23/2019 2:22:00 PM

. . . .

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	JMR
Benzene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Toluene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Ethylbenzene	8.8	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	9/26/2019 5:50:08 PM	R63246
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Naphthalene	25	2.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1-Methylnaphthalene	15	4.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
2-Methylnaphthalene	19	4.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Acetone	ND	10	µg/L	1	9/26/2019 5:50:08 PM	R63246
Bromobenzene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Bromodichloromethane	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Bromoform	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Bromomethane	ND	3.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
2-Butanone	ND	10	µg/L	1	9/26/2019 5:50:08 PM	R63246
Carbon disulfide	ND	10	µg/L	1	9/26/2019 5:50:08 PM	R63246
Carbon Tetrachloride	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Chlorobenzene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Chloroethane	ND	2.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Chloroform	ND	1.0	μg/L	1	9/26/2019 5:50:08 PM	R63246
Chloromethane	ND	3.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
2-Chlorotoluene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
4-Chlorotoluene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
cis-1,2-DCE	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Dibromochloromethane	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Dibromomethane	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,2-Dichlorobenzene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,3-Dichlorobenzene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,4-Dichlorobenzene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
Dichlorodifluoromethane	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,1-Dichloroethane	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,1-Dichloroethene	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,2-Dichloropropane	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
1,3-Dichloropropane	ND	1.0	µg/L	1	9/26/2019 5:50:08 PM	R63246
2,2-Dichloropropane	ND	2.0	µg/L	1	9/26/2019 5:50:08 PM	R63246

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:** Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix Н

Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range RL Reporting Limit

Page 5 of 17

Data Penorted: 10/1/2010

	15 Laboratory, 1110	·•				Date Reported: 10/1/20	19
CLIENT: Western TechnologiesProject: Barelas BridgeLab ID: 1909C75-003	Client Sample ID: MW-8Collection Date: 9/23/2019 1:00:00 PMMatrix: AQUEOUSReceived Date: 9/23/2019 2:22:00 PM						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	JMR
1,1-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
Hexachlorobutadiene	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
2-Hexanone	ND	10		µg/L	1	9/26/2019 5:50:08 PM	R63246
Isopropylbenzene	11	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
4-Isopropyltoluene	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
4-Methyl-2-pentanone	ND	10		µg/L	1	9/26/2019 5:50:08 PM	R63246
Methylene Chloride	ND	3.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
n-Butylbenzene	3.4	3.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
n-Propylbenzene	18	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
sec-Butylbenzene	2.6	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
Styrene	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
tert-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
Tetrachloroethene (PCE)	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
trans-1,2-DCE	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
1,2,3-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
1,2,4-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
1,1,1-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
1,1,2-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
Trichloroethene (TCE)	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
Trichlorofluoromethane	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
1,2,3-Trichloropropane	ND	2.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
Vinyl chloride	ND	1.0		µg/L	1	9/26/2019 5:50:08 PM	R63246
Xylenes, Total	2.5	1.5		µg/L	1	9/26/2019 5:50:08 PM	R63246
Surr: 1,2-Dichloroethane-d4	104 7	0-130		%Rec	1	9/26/2019 5:50:08 PM	R63246
Surr: 4-Bromofluorobenzene	98.8 7	0-130		%Rec	1	9/26/2019 5:50:08 PM	R63246
Surr: Dibromofluoromethane	106 7	0-130		%Rec	1	9/26/2019 5:50:08 PM	R63246
Surr: Toluene-d8	101 7	0-130		%Rec	1	9/26/2019 5:50:08 PM	R63246

Hall Environmental Analysis Laboratory Inc.

В Analyte detected in the associated Method Blank

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Qualifiers:

S % Recovery outside of range due to dilution or matrix

- Е Value above quantitation range

J Analyte detected below quantitation limits Р Sample pH Not In Range

RL Reporting Limit

Page 6 of 17

Date Reported: 10/1/2019

	-					-	
CLIENT	: Western Technologies		Clien	t Sample II	D: M	[W-9	
Project:	Barelas Bridge		Col	lection Dat	e: 9/2	23/2019 11:45:00 AM	
Lab ID:	1909C75-004	Matrix: AQUEOUS	Re	eceived Dat	e: 9/	23/2019 2:22:00 PM	
Analyses	3	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA ME	THOD 8260B: VOLATILES					Analyst:	JMR
Benzene	e	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Toluene		ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Ethylber	nzene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Methyl to	ert-butyl ether (MTBE)	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,2,4-Tri	imethylbenzene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,3,5-Tri	imethylbenzene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,2-Dich	lloroethane (EDC)	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,2-Dibr	omoethane (EDB)	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Naphtha	llene	ND	2.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1-Methy	Inaphthalene	ND	4.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
2-Methy	Inaphthalene	ND	4.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Acetone		ND	10	µg/L	1	9/26/2019 6:18:47 PM	R63246
Bromob	enzene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Bromod	ichloromethane	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Bromofo	orm	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Bromom	nethane	ND	3.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
2-Butan	one	ND	10	µg/L	1	9/26/2019 6:18:47 PM	R63246
Carbon	disulfide	ND	10	µg/L	1	9/26/2019 6:18:47 PM	R63246
Carbon	Tetrachloride	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Chlorob	enzene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Chloroet	thane	ND	2.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Chlorofo	orm	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Chlorom	nethane	ND	3.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
2-Chloro	otoluene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
4-Chloro	otoluene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
cis-1,2-[DCE	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
cis-1,3-[Dichloropropene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,2-Dibr	omo-3-chloropropane	ND	2.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Dibromo	ochloromethane	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Dibromo	omethane	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,2-Dich	llorobenzene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,3-Dich	llorobenzene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,4-Dich	llorobenzene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
Dichloro	difluoromethane	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,1-Dich	lloroethane	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,1-Dich	lloroethene	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,2-Dich	lloropropane	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
1,3-Dich	lloropropane	ND	1.0	µg/L	1	9/26/2019 6:18:47 PM	R63246
2,2-Dich	lloropropane	ND	2.0	µg/L	1	9/26/2019 6:18:47 PM	R63246

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit S

% Recovery outside of range due to dilution or matrix

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 7 of 17

Date Reported: 10/1/2019

	C /					F	
CLIENT: Western Technologies Project: Barelas Bridge		Cli (ient Sa Collecti	mple I ion Dat	D: M	W-9 23/2019 11:45:00 AM	
Lab ID: 1909C75-004	Matrix: AQUEOUS		Receiv	ed Dat	e: 9/2	23/2019 2:22:00 PM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	JMR
1,1-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
Hexachlorobutadiene	ND	1.0		μg/L	1	9/26/2019 6:18:47 PM	R63246
2-Hexanone	ND	10		µg/L	1	9/26/2019 6:18:47 PM	R63246
Isopropylbenzene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
4-Isopropyltoluene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
4-Methyl-2-pentanone	ND	10		µg/L	1	9/26/2019 6:18:47 PM	R63246
Methylene Chloride	ND	3.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
n-Butylbenzene	ND	3.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
n-Propylbenzene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
sec-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
Styrene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
tert-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
Tetrachloroethene (PCE)	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
trans-1,2-DCE	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
1,2,3-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
1,2,4-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
1,1,1-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
1,1,2-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
Trichloroethene (TCE)	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
Trichlorofluoromethane	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
1,2,3-Trichloropropane	ND	2.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
Vinyl chloride	ND	1.0		µg/L	1	9/26/2019 6:18:47 PM	R63246
Xylenes, Total	ND	1.5		µg/L	1	9/26/2019 6:18:47 PM	R63246
Surr: 1,2-Dichloroethane-d4	88.2 7	<i>'</i> 0-130		%Rec	1	9/26/2019 6:18:47 PM	R63246
Surr: 4-Bromofluorobenzene	96.7 7	/0-130		%Rec	1	9/26/2019 6:18:47 PM	R63246
Surr: Dibromofluoromethane	95.4 7	/0-130		%Rec	1	9/26/2019 6:18:47 PM	R63246
Surr: Toluene-d8	102 7	/0-130		%Rec	1	9/26/2019 6:18:47 PM	R63246

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Qualifiers:

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 8 of 17

CLIENT:Western TechnologiesProject:Barelas BridgeLab ID:1909C75-005	Client Sample ID: VP-2 Collection Date: 9/23/2019 10:55:00 AM Matrix: AQUEOUS Received Date: 9/23/2019 2:22:00 PM										
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA METHOD 8260B: VOLATILES						Analyst	: JMR				
Benzene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246				
Toluene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246				
Ethylbenzene	ND	1.0		μg/L	1	9/26/2019 6:47:26 PM	R63246				
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	9/26/2019 6:47:26 PM	R63246				
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	9/26/2019 6:47:26 PM	R63246				
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	9/26/2019 6:47:26 PM	R63246				
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	9/26/2019 6:47:26 PM	R63246				
1,2-Dibromoethane (EDB)	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246				
Naphthalene	3.0	2.0		µg/L	1	9/26/2019 6:47:26 PM	R63246				
1-Methylnaphthalene	ND	4.0		µg/L	1	9/26/2019 6:47:26 PM	R63246				
2-Methylnaphthalene	ND	4.0		µg/L	1	9/26/2019 6:47:26 PM	R63246				
Acetone	ND	10		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Bromobenzene	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Bromodichloromethane	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Bromoform	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Bromomethane	ND	3.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
2-Butanone	ND	10		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Carbon disulfide	ND	10		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Carbon Tetrachloride	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Chlorobenzene	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Chloroethane	ND	2.0		µg/=	1	9/26/2019 6:47:26 PM	R63246				
Chloroform	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Chloromethane	ND	3.0		µg/=	1	9/26/2019 6:47:26 PM	R63246				
2-Chlorotoluene	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
4-Chlorotoluene	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
cis-1.2-DCE	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
cis-1,3-Dichloropropene	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
1.2-Dibromo-3-chloropropane	ND	2.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Dibromochloromethane	ND	1.0		µg/=	1	9/26/2019 6:47:26 PM	R63246				
Dibromomethane	ND	1.0		ua/l	1	9/26/2019 6:47:26 PM	R63246				
1.2-Dichlorobenzene	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
1.3-Dichlorobenzene	ND	1.0		ua/l	1	9/26/2019 6:47:26 PM	R63246				
1.4-Dichlorobenzene	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
Dichlorodifluoromethane	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246				
1.1-Dichloroethane	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
1.1-Dichloroethene	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
1.2-Dichloropropane	ND	1.0		ua/l	1	9/26/2019 6:47:26 PM	R63246				
1.3-Dichloropropane	ND	1.0		ua/L	1	9/26/2019 6:47:26 PM	R63246				
2 2-Dichloropropane	ND	2.0		ua/l	1	9/26/2019 6:47:26 PM	R63246				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Qualifiers:

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S

PQL Practical Quanitative Limit % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 9 of 17

Hall Environmental Analysis Laboratory Inc

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Date Reported: 10/1/2019

	0 /	_				1	
CLIENT: Western Technologies Project: Barelas Bridge		Cl	lient Sa Collect	ample I ion Dat	D: V] t e: 9/2	P-2 23/2019 10:55:00 AM	
Lab ID: 1909C75-005	Matrix: AQUEOUS		Receiv	ved Dat	t e: 9/2	23/2019 2:22:00 PM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	JMR
1,1-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
Hexachlorobutadiene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
2-Hexanone	ND	10		µg/L	1	9/26/2019 6:47:26 PM	R63246
Isopropylbenzene	1.7	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
4-Isopropyltoluene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
4-Methyl-2-pentanone	ND	10		µg/L	1	9/26/2019 6:47:26 PM	R63246
Methylene Chloride	ND	3.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
n-Butylbenzene	ND	3.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
n-Propylbenzene	3.1	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
sec-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
Styrene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
tert-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
Tetrachloroethene (PCE)	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
trans-1,2-DCE	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
1,2,3-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
1,2,4-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
1,1,1-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
1,1,2-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
Trichloroethene (TCE)	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
Trichlorofluoromethane	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
1,2,3-Trichloropropane	ND	2.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
Vinyl chloride	ND	1.0		µg/L	1	9/26/2019 6:47:26 PM	R63246
Xylenes, Total	ND	1.5		µg/L	1	9/26/2019 6:47:26 PM	R63246
Surr: 1,2-Dichloroethane-d4	93.6 7	0-130		%Rec	1	9/26/2019 6:47:26 PM	R63246
Surr: 4-Bromofluorobenzene	97.2 7	0-130		%Rec	1	9/26/2019 6:47:26 PM	R63246
Surr: Dibromofluoromethane	97.7 7	0-130		%Rec	1	9/26/2019 6:47:26 PM	R63246
Surr: Toluene-d8	100 7	0-130		%Rec	1	9/26/2019 6:47:26 PM	R63246

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

Qualifiers:

D Sample Diluted Due to Matrix

 H
 Holding times for preparation or analysis exceeded

 ND
 Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 17

Hall E	nvironmental Analys	is Laboratory, Inc	•			Date Reported: 10/1/20	19
CLIENT: Project:	Western Technologies Barelas Bridge		C	lient Sample I Collection Da	D: V te: 9/	P-5 23/2019 1:35:00 PM	
Lab ID:	1909C75-006	Matrix: AQUEOUS		Received Da	23/2019 2:22:00 PM		
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA MET	THOD 8260B: VOLATILES					Analyst	JMR
Benzene		ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Toluene		ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Ethylben	zene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Methyl te	ert-butyl ether (MTBE)	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,2,4-Tri	methylbenzene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,3,5-Tri	methylbenzene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,2-Dichl	loroethane (EDC)	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,2-Dibro	omoethane (EDB)	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Naphtha	lene	2.1	2.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1-Methyl	naphthalene	56	4.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
2-Methyl	naphthalene	78	4.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Acetone		ND	10	µg/L	1	9/26/2019 7:16:01 PM	R63246
Bromobe	enzene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Bromodi	chloromethane	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Bromofo	rm	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Bromom	ethane	ND	3.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
2-Butanc	one	ND	10	µg/L	1	9/26/2019 7:16:01 PM	R63246
Carbon o	disulfide	ND	10	µg/L	1	9/26/2019 7:16:01 PM	R63246
Carbon 7	Tetrachloride	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Chlorobe	enzene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Chloroet	hane	ND	2.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Chlorofo	rm	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Chlorom	ethane	ND	3.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
2-Chloro	toluene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
4-Chloro	toluene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
cis-1,2-D	DCE	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
cis-1,3-D	Dichloropropene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,2-Dibro	omo-3-chloropropane	ND	2.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Dibromo	chloromethane	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Dibromo	methane	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,2-Dichl	lorobenzene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,3-Dichl	lorobenzene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,4-Dichl	lorobenzene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
Dichloro	difluoromethane	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,1-Dichl	loroethane	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,1-Dichl	loroethene	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,2-Dichl	loropropane	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
1,3-Dichl	loropropane	ND	1.0	µg/L	1	9/26/2019 7:16:01 PM	R63246
2,2-Dichl	loropropane	ND	2.0	µg/L	1	9/26/2019 7:16:01 PM	R63246

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Р

Sample pH Not In Range RL Reporting Limit

Page 11 of 17

Date Reported: 10/1/2010

	• •					1	
CLIENT: Western Technologies		Cl	ient Sa	ample I	D: VI	P-5	
Project: Barelas Bridge		(Collect	ion Dat	e: 9/2	23/2019 1:35:00 PM	
Lab ID: 1909C75-006	Matrix: AQUEOUS	23/2019 2:22:00 PM					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	JMR
1,1-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
Hexachlorobutadiene	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
2-Hexanone	ND	10		µg/L	1	9/26/2019 7:16:01 PM	R63246
Isopropylbenzene	13	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
4-Isopropyltoluene	1.3	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
4-Methyl-2-pentanone	ND	10		µg/L	1	9/26/2019 7:16:01 PM	R63246
Methylene Chloride	ND	3.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
n-Butylbenzene	9.7	3.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
n-Propylbenzene	49	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
sec-Butylbenzene	4.2	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
Styrene	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
tert-Butylbenzene	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
1,1,2,2-Tetrachloroethane	ND	2.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
Tetrachloroethene (PCE)	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
trans-1,2-DCE	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
1,2,3-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
1,2,4-Trichlorobenzene	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
1,1,1-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
1,1,2-Trichloroethane	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
Trichloroethene (TCE)	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
Trichlorofluoromethane	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
1,2,3-Trichloropropane	ND	2.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
Vinyl chloride	ND	1.0		µg/L	1	9/26/2019 7:16:01 PM	R63246
Xylenes, Total	ND	1.5		µg/L	1	9/26/2019 7:16:01 PM	R63246
Surr: 1,2-Dichloroethane-d4	108 7	0-130		%Rec	1	9/26/2019 7:16:01 PM	R63246
Surr: 4-Bromofluorobenzene	112 7	0-130		%Rec	1	9/26/2019 7:16:01 PM	R63246
Surr: Dibromofluoromethane	111 7	0-130		%Rec	1	9/26/2019 7:16:01 PM	R63246
Surr: Toluene-d8	104 7	0-130		%Rec	1	9/26/2019 7:16:01 PM	R63246

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceededND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 12 of 17

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Technologies

1909C75-007

Barelas Bridge Project:

Lab ID:

Client Sample ID: TRIP BLANK **Collection Date:**

Matrix: TRIP BLANK

Received Date: 9/23/2019 2:22:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	JMR
Benzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Toluene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Ethylbenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Naphthalene	ND	2.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1-Methylnaphthalene	ND	4.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
2-Methylnaphthalene	ND	4.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Acetone	ND	10	µg/L	1	9/26/2019 7:44:36 PM	R63246
Bromobenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Bromodichloromethane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Bromoform	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Bromomethane	ND	3.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
2-Butanone	ND	10	µg/L	1	9/26/2019 7:44:36 PM	R63246
Carbon disulfide	ND	10	µg/L	1	9/26/2019 7:44:36 PM	R63246
Carbon Tetrachloride	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Chlorobenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Chloroethane	ND	2.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Chloroform	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Chloromethane	ND	3.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
2-Chlorotoluene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
4-Chlorotoluene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
cis-1,2-DCE	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Dibromochloromethane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Dibromomethane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,2-Dichlorobenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,3-Dichlorobenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,4-Dichlorobenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Dichlorodifluoromethane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,1-Dichloroethane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,1-Dichloroethene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,2-Dichloropropane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,3-Dichloropropane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
2,2-Dichloropropane	ND	2.0	µg/L	1	9/26/2019 7:44:36 PM	R63246

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. **Qualifiers:**

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix в Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Р Sample pH Not In Range

RL Reporting Limit

Page 13 of 17

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Technologies

1909C75-007

Project: Barelas Bridge

Lab ID:

Client Sample ID: TRIP BLANK Collection Date:

Matrix: TRIP BLANK

BLANK Received Date: 9/23/2019 2:22:00 PM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	JMR
1,1-Dichloropropene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Hexachlorobutadiene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
2-Hexanone	ND	10	µg/L	1	9/26/2019 7:44:36 PM	R63246
Isopropylbenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
4-Isopropyltoluene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
4-Methyl-2-pentanone	ND	10	µg/L	1	9/26/2019 7:44:36 PM	R63246
Methylene Chloride	ND	3.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
n-Butylbenzene	ND	3.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
n-Propylbenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
sec-Butylbenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Styrene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
tert-Butylbenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
trans-1,2-DCE	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,1,1-Trichloroethane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,1,2-Trichloroethane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Trichloroethene (TCE)	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Trichlorofluoromethane	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
1,2,3-Trichloropropane	ND	2.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Vinyl chloride	ND	1.0	µg/L	1	9/26/2019 7:44:36 PM	R63246
Xylenes, Total	ND	1.5	µg/L	1	9/26/2019 7:44:36 PM	R63246
Surr: 1,2-Dichloroethane-d4	95.1	70-130	%Rec	1	9/26/2019 7:44:36 PM	R63246
Surr: 4-Bromofluorobenzene	96.1	70-130	%Rec	1	9/26/2019 7:44:36 PM	R63246
Surr: Dibromofluoromethane	100	70-130	%Rec	1	9/26/2019 7:44:36 PM	R63246
Surr: Toluene-d8	99.4	70-130	%Rec	1	9/26/2019 7:44:36 PM	R63246

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Value exceeds Maximum Contaminant Level.
 Sample Diluted Due to Matrix

Qualifiers:

D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 14 of 17

Date Reported: 10/1/2019

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Western Technologies

Barelas Bridge

Е	Value above quantitation range
J	Analyte detected below quantitation limits
Р	Sample pH Not In Range

Analyte detected in the associated Method Blank

RL Reporting Limit

В

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOLA	TILES		
Client ID: LCSW	Batch	Batch ID: R63246 RunNo: 63246								
Prep Date:	Analysis D)ate: 9/	26/2019	S	SeqNo: 2'	158361	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	105	70	130			
Toluene	21	1.0	20.00	0	104	70	130			
Chlorobenzene	21	1.0	20.00	0	105	70	130			
1,1-Dichloroethene	19	1.0	20.00	0	93.7	70	130			
Trichloroethene (TCE)	19	1.0	20.00	0	95.3	70	130			
Surr: 1,2-Dichloroethane-d4	9.0		10.00		90.2	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.2	70	130			
Surr: Dibromofluoromethane	9.8		10.00		98.0	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			
Sample ID: rb1	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	n ID: R6	3246	F	RunNo: 6:	3246				
Prep Date:	Analysis D	0ate: 9/	26/2019	S	SeqNo: 2'	158387	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

Client:

Project:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Page 15 of 17

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: **1909C75**

01-Oct-19

Client: Project:	Western ' Barelas B	Technolog Bridge	ies								
Sample ID: rb1		SampT	vde: ME	BLK	Tes	tCode: El	PA Method	8260B: VOL	TILES		
Client ID: PBW		Batch		3246	F	RunNo: 6	3246		-		
Prep Date:		Analysis D	ate: 9/	26/2019	SeqNo: 2158387 Units: µg/L						
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene		ND	1.0					0			
cis-1,2-DCE		ND	1.0								
cis-1,3-Dichloropropene		ND	1.0								
1,2-Dibromo-3-chloropro	pane	ND	2.0								
Dibromochloromethane		ND	1.0								
Dibromomethane		ND	1.0								
1,2-Dichlorobenzene		ND	1.0								
1,3-Dichlorobenzene		ND	1.0								
1,4-Dichlorobenzene		ND	1.0								
Dichlorodifluoromethane		ND	1.0								
1,1-Dichloroethane		ND	1.0								
1,1-Dichloroethene		ND	1.0								
1,2-Dichloropropane		ND	1.0								
1,3-Dichloropropane		ND	1.0								
2,2-Dichloropropane		ND	2.0								
1,1-Dichloropropene		ND	1.0								
Hexachlorobutadiene		ND	1.0								
2-Hexanone		ND	10								
Isopropylbenzene		ND	1.0								
4-Isopropyltoluene		ND	1.0								
4-Methyl-2-pentanone		ND	10								
Methylene Chloride		ND	3.0								
n-Butylbenzene		ND	3.0								
n-Propylbenzene		ND	1.0								
sec-Butylbenzene		ND	1.0								
Styrene		ND	1.0								
tert-Butylbenzene		ND	1.0								
1,1,1,2-Tetrachloroethan	ne	ND	1.0								
1,1,2,2-Tetrachloroethan	ne	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE		ND	1.0								
trans-1,3-Dichloroproper	ne	ND	1.0								
1,2,3-Trichlorobenzene		ND	1.0								
1,2,4-Trichlorobenzene		ND	1.0								
1,1,1-Trichloroethane		ND	1.0								
1,1,2-Trichloroethane		ND	1.0								
Trichloroethene (TCE)		ND	1.0								
Trichlorofluoromethane		ND	1.0								
1,2,3-Trichloropropane		ND	2.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	Western Technologies
Project:	Barelas Bridge

Sample ID: rb1	SampT	SampType: MBLK TestCode: EPA Method						ATILES		
Client ID: PBW	Batch	n ID: R6	3246	F	3246					
Prep Date:	Analysis D	ate: 9/ 2	26/2019	S	SeqNo: 2	158387	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.9	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	10		10.00		100	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 17 of 17

WO#: 1909C75 01-Oct-19

CI	LABOR	'SIS RATORY		TEL: 505-345-3 Website: www	4901 Hawi Albuquerque, NM 975 FAX: 505-34 v.hallenvironmen	kins NE (87109 San 5-4107 tal.com	Sample Log-In Check List					
	lient Name:	WTI		Work Order Numb	ber: 1909C75		RcptNo	: 1				
Re	ceived By:	Daniel Ma	rquez	9/23/2019 2:22:00 F	РМ	CINAT.						
Co Re	empleted By: eviewed By:	Desiree De	ominguez	9/23/2019 3:36:48 F 9/24/19	PM	TP2						
<u>Ch</u>	ain of Cust	tody										
1.	Is Chain of Cu	istody compl	ete?		Yes 🔽	No 🗌	Not Present					
2.	How was the s	sample delive	ered?		Client							
Lo	og In											
3.	Was an attem	pt made to c	ool the sample	es?	Yes 🖌	No 🗌	NA 🗌					
4. ۱	Were all samp	les received	at a temperat	ure of >0° C to 6.0°C	Yes 🖌	No 🗌						
5.	Sample(s) in p	oroper contai	ner(s)?		Yes 🖌	No 🗌						
6. {	Sufficient samp	ole volume fo	or indicated te	st(s)?	Yes 🗹	No 🗌						
7.4	Are samples (e	except VOA a	and ONG) pro	perly preserved?	Yes 🖌	No 🗌						
8. V	Was preservat	ive added to	bottles?		Yes	No 🔽	NA 🗌					
9. \	/OA vials have	e zero heads	pace?		Yes 🗹	No 🗌	No VOA Vials					
10.1	Were any sam	ple containe	rs received br	oken?	Yes 🗌	No 🔽	# of preserved bottles checked					
11.c (Does paperwoi Note discrepa	rk match bot ncies on cha	tle labels? iin of custody)		Yes 🗹	No 🗌	for pH: (<2 or	12 unless noted)				
2. <i>F</i>	Are matrices co	orrectly ident	tified on Chain	of Custody?	Yes 🖌	No 🗌	Adjusted?					
3.1	s it clear what	analyses we	ere requested?	6	Yes 🗸	No 🗌						
4.v (Vere all holdin If no, notify cu	g times able stomer for a	to be met? uthorization.)		Yes 🗹	No 🗌	Checked by:	DAD 9/24/19				
Spe	cial Handli	ng (if app	licable)									
15.'	Was client not	ified of all di	screpancies w	ith this order?	Yes 🗌	No 🗌	NA 🔽					
	Person	Notified:	NEWSON SCHOOL STOCKNER STOCKNER	Date:	I	and and the second s						
	By Who	m: [Via:	eMail	Phone 🗍 Fax	In Person					
	Regardir	ng:										
	Client In	structions:	al fer ola arsidia rumantana doblocuj									
16.	Additional ren	narks:										
17.	Cooler Inform	nation										
	Cooler No	Temp °C	Condition	Seal Intact Seal No	Seal Date	Signed By	a determinant of the second					

Chain-of-Custody Record	Turn-Around Time:							
Client: Western Technologies	Standard	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com						
	Project Name:							
Mailing Address: Operation of the	Rain Pul							
0303 Washington PINE	Darelas Dridge	4901 Hawkins NE - Albuquerque, NM 87109						
Albuquerque NM		Tel. 505-345-3975 Fax 505-345-4107						
Phone #: 505 803-4488	3288JV023	Analysis Request						
email or Fax#:	Project Manager:	30 ⁴						
QA/QC Package:	David Wagner	802 (802) / MF						
Accreditation: Az Compliance	Sampler: Ren Crewford	MB's 082 F 022 F 02, F 02, F						
NELAC Other	On Ice: VZ Yes	S S S S S S S S S S S S S S S S S S S						
EDD (Type)	# of Coolers:							
the first and the first statements of a solution of	Cooler Temp(including CF): $7 \cdot 8 - 0 \cdot 5 = 1 \cdot 5 \cdot$	Althorn Market						
	Container Preservative HEAL No.	PH:80 081 P 081 P						
Date Time Matrix Sample Name	Type and # Type 1909CTS							
1/09/4 0935 AD MW-9	3×VOA Hacia, ice -001							
9/23/19 1020 AQ MW-7	3×VOA Hack, tec -002							
9/23/14/1300 AB MIN-8	3×VOA Hach, ice -003							
9/23/19/1145 AQ MW-9	3×VOA Hactatice -004							
9/23/19 1055 AQ VP-2	3×VOA Haciate -005							
1/23/19/1335 AQ VP-5	3×VOA Hacizice -006							
	0,							
	 A set of the set of							
	The set was a set and the provide the set of							
Inp Blank	- 007							
Date: Time: Relinguished by:	Received by: Via: Date Time	Remarks:						
9/03/19 1422 Barry 1 11	\sim con abaliation							
Date: Time: Relinquished by:	Received by: Via: Date Time							
and the second s	(a) Problem (1997) All Proble							

APPENDIX D Charts

Chart 1: Napthalene Concentrations (linear) MW-8, MW-9, VP-2, VP-5: January 2000 to September 2019

Chart 2: Napthalene Concentrations (logarithmic) MW-8, MW-9, VP-2, VP-5: January 2000 to September 2019

Chart 3: Napthalene Concentrations (logarithmic) MW-8, MW-9, and VP-5 versus MW-8 Ground Water Elevations: January 2000 to September 2019

APPENDIX E Field Notes

Barelas Bridge: 3288JV023: WPID 4023-2 2nd Semi-Annual Sampling Instructions: Sampling Date(s): 9/23-26/19 Site Name: Barelas Bridge Date Report Due: 10/23/19 3288JV023 Project #: Important Site is an active gas station. Wear Safety Vest and use traffic cones. Park truck defensively to shield yourself Double check depth to bottom in MW-4 Only - All other DTBs are good (Optional) Obtain Access Agreement with 147 La Vega Dr. SW occupant to P&A MW-1. In March 2019, the property at 147 La Vega Drive was locked and gated. WT could not contact the current property owner. PHOTOS/MACNEFOMETRR NERD **RECORD ALL Readings and measurements** Tests to be done in field: Time, Temperature, Specific Conductivity, pH, Eh (ORP) Depth to Water Depth to Bottom (1st event at all new sites & as needed) Take Peristaltic Pump because bailers may not penetrate root balls Lab Analysis: EPA Method 8260 (Three (3) 40-ml VOA's) Mercuric chloride $HgCL_2$ (toxic, corrosive, Health Hazard = 4) Six (6) Wells to be Sampled; approximately in this order: Clean – Any order X MW-4, X MW-7 (offsite to south at 121 La Vega Drive west side) Moderately contaminated – \times VP-2 then \times MW-9; CONTAMINATED – \times MW-8 and then \times VP-5 LAST (Well vault will be filled/water) Be sure to fill in all data fields on field form, times, purge water physical appearance, etc. Special Site Access: 96-Hour notice to NMED, Site Owner, & Private residence 222-9565 Corey Jarrett corey.jarrett@state.nm.us - NMED PSTB Project Manager

972-383-0001 Mark Owens mowens@ee-g.com (Site Owner)

Special Equipment to bring:

Normal Sampling gear: Peristaltic Pump, Bailers, string, sampling gloves, alconox, DI water, buckets, water level indicator, tools, cooler (put samples on ice first thing).

HOSPITAL:

Presbyterian Hospital: 1100 Central Ave. (just east of I-25) 505-841-1234

Bail 3 Well Volumes: 2" Well = 0.5 gal/ft 4" Well = 1.5 gal/ft											
Well ID	DATE	CASING RIM	DTB	BOTTOM OF CASING	DTW	WATER COLUMN	0.002 Gradient				
WELL		Chango ir	 A average G	W Elevation between t	he 2 previous M	onitoring Events =	-0.100				
	Screened interval: 3.5'-18.5' (Reported)										
N/N/-/	9/28/19	4943.23	20.70	7.59 13.11							
10100-4	03/26/19	4943.23	21.50	4921.73	7.73	13.77	4935.50				
NO	SIDND										
			Scre	ened interval: 7.0'-2	22.0'						
MW-7	9 238 19	4942.94	21.5k		7.70	13.86					
	03/06/18	4942.94	21.45	4921.49	7.63	13.82	4935.31				
NP	LIG NO										
MW-8	91278/19	4944.59	13.27		8-91	4.3k	1005.00				
	03/06/18	4944.59	13.16	4931.43	8.90	4.26	4935.69				
12.1		- L -	an tean								
	Screened interval: 5.0'-20.0' (Reported)										
MW-9	9/23/19	4943.98	19.27		8.43	10.84					
457	03/06/18	4943.98	19.43	4924.55	8.40	11.03	4935.58				
9)-1											
			Scree	ened interval Not Ava	ailable						
1/0.2	9/22/19	4943 73	12:82	1	8-60	4.22					
VF-2	03/06/18	4943.73	12.79	4930.94	8.12	4.67	4935.61				
17.6	00/00/10	1010110									
			Screened interval Not Available								
VP-5	9/23/19	4943.52	12.45]	7.77	4.68					
VF-5	03/06/18	4943.52	12.42	4931.10	7.77	4.65	4935.75				
NP	1169										

N:\2018\3288JV023-NEW MEXI-BARELAS BRIDGE\2019 Barelas Bridge Data.xlsx: GW Field

Barelas Bridge Site Ground Water Field Data									
Monitor Well ID	Depth DTW DTB	Time	Temp. (°C)	RDO Dissolved Oxygen (mg/L)	рН	Eh ORP (mV)	Specific Conductivity (µS/cm)*	Volume Removed (gallons)	(Rostball)
	ī	0911	21.5	14-58	7.99	541-9	388.3	0	Clear, Slight oder
MW-4	DTW	0914	20.3	4.33	8.20	412.4	387.5	2	turbid grey Slightly, slight oder
0935	7.59	0923	20.5	4.39	8.08	434-1	392.0	4	a 00 00 0 M
	<u>TD</u>	6930	19.9	4.58	8-38	439.8	398.4	le	turbid grey, odor (Possible HC)
Check TD	20.70								0.0.
B			-						
		8959	26-0	3.44	8.32	448-8	397.4	Õ	Clear, Slight HC odor
MW-7	DTW	100.5	18-9	4.26	9-06	387.1	403.4	2.25	clear, HC oder
1020	7.70	1010	19.2	2-39	8-51	289.2	405.7	\$ 4.50	Slightly turbed brown, He ador
10-	TD	1615	19.1	4.50	8.6	364-0	395.3	6-75	Slightly turbed brown,
	21.56		(a			0 0
		3							
		1242	21.3	4.68	8-61	80.6	449.8	0	Clear, Strong HC odor.
MW-8	DTW	1244	20.5	1.80	8.43	-12.3	471-5	1	Turbid grey, Stong He odor
1300	8.91	1248	20.4	1.18	8.37	-57.3	480.0	9	n 00 0 n Sheen
	TD	1251	20.5	4.39	8.59	-8-8	490.5	3	4 / N
	13.27							4	
							N.		
		L .							

Barelas Bridge	e Site			Gi	ound	Water Fi	eld Data		
Monitor Well ID	Depth DTW DTB	Time	Temp. (°C)	RDO Dissolved Oxygen (mg/L)	pН	Eh ORP (mV)	Specific Conductivity (µS/cm)*	Volume Removed (gallons)	COMMENTS
		1183	20-1	24.03	838	190-3	373.2	0	Clear, Slight HC oder.
MW-9	DTW	1127	28-2	4.88	8-51	148-6	410-4	9	Slightly tubid, black churches, slight ade
1145	8.43	1132	12.9	4.49	\$.59	172.2	420.0	4	" HC oder.
	TD	1137	19.7	3.74	8.62	166-5	415.9	le	K K
	19.27								
									4E
		1038	224	278	8-44	395-1	373.5	0	Clear
VP-2	DTW	1041	21.6	3.45	8.50	305-8	377.9	1	turbid grey, Slight HC oder
1055	8.60	1044	21.4	3.54	8-55	231.7	389.4	9	
	TD	1047	21.6	3.49	8.58	214.5	461.0	3	iii iii
	12.82	-							
		*							
		1321	33.9	2.17	8.17	37.7	817	3	Clear, very Strong odor.
VP-5	DTW	1324	23.3	2.81	8.27	10-6	703		Turbid black, very strong oders
	7.77	1327	23.0	3.23	8.41	10.8	606	9	
1335	TD	1330	229	3.34	8-45	3.9	590	3	Turbid black, Slight odor.
	12.45								~

APPENDIX F Physical Setting Report (Electronic Only)

Property Information

Order Number:

20180719121p	
201007101210	

Date Completed:July 20, 2018Project Number:3288PO0717Project Property:3288JV023 -
800 Bridge Be
Coordinates:

Latitude:

Longitude: UTM Northing:

UTM Easting:

Slope Direction:

UTM Zone:

Elevation:

3288JV023 - Barelas Bridge 800 Bridge Boulevard Southwest Albuquerque NM 87105

35.06878714 -106.66433425 3881937.92242 Meters 348246.63884 Meters UTM Zone 13S 4,944.68 ft S

Topographic Information	2
Hydrologic Information	4
Geologic Information	7
Soil Information	9
Wells and Additional Sources	14
Summary	15
Detail Report	17
Radon Information	62
Appendix	63
Liability Notice	65
•	

The ERIS *Physical Setting Report - PSR* provides comprehensive information about the physical setting around a site and includes a complete overview of topography and surface topology, in addition to hydrologic, geologic and soil characteristics. The location and detailed attributes of oil and gas wells, water wells, public water systems and radon are also included for review.

The compilation of both physical characteristics of a site and additional attribute data is useful in assessing the impact of migration of contaminants and subsequent impact on soils and groundwater.

Disclaimer

This Report does not provide a full environmental evaluation for the site or adjacent properties. Please see the terms and disclaimer at the end of the Report for greater detail.

Topographic Information

Topographic Information

The previous topographic map(s) are created by seamlessly merging and cutting current USGS topographic data. Below are shaded relief map(s), derived from USGS elevation data to show surrounding topography in further detail.

Topographic information at project property:

Hydrologic Information

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Hydrologic Information

Hydrologic Information

The Wetland Type map shows wetland existence overlaid on an aerial imagery. The Flood Hazard Zones map shows FEMA flood hazard zones overlaid on an aerial imagery. Relevant FIRM panels and detailed zone information is provided below.

Available FIRM Panels in area:	35001C0334G(effective:2008-09-26) 35001C0341G(effective:2008-09-26) 35001C0333H(effective:2012-08-16)
Flood Zone AE-01 Zone: Zone subtye:	AE
Flood Zone AE-11 Zone: Zone subtye:	AE FLOODWAY
Flood Zone AH-01 Zone: Zone subtye:	АН
Flood Zone X-14 Zone: Zone subtye:	X AREA WITH REDUCED FLOOD RISK DUE TO LEVEE

Geologic Information

This maps shows geologic units in the area. Please refer to the report for detailed descriptions.

Geologic Information

The previous page shows USGS geology information. Detailed information about each unit is provided below.

Geologic Unit Qa

Unit Name: Unit Age: Primary Rock Type: Secondary Rock Type: Unit Description:

alluvium Quaternary alluvium

Alluvium; upper and middle Quaternary

This maps shows SSURGO soil units around the target property. Please refer to the report for detailed soil descriptions.

The previous page shows a soil map using SSURGO data from USDA Natural Resources Conservation Service. Detailed information about each unit is provided below.

Map Unit Af	
Map Unit Name:	Agua loam MLRA 42
Bedrock Depth - Min:	null
Watertable Depth - Annual Min:	null
Drainage Class - Dominant:	Well drained
Hydrologic Group - Dominant:	B - Soils in this group have moderately low runoff potential when thoroughly wet. Water transmission through the soil is unimpeded.
Major components are printed below	
Agua(90%)	
horizon H1(0cm to 25cm)	Loam
horizon H2(25cm to 61cm)	Loam
horizon H3(61cm to 152cm)	Stratified very gravelly sand to very gravelly loamy sand

Map Unit Br

•	
Map Unit Name:	Brazito fine sandy loam MLRA 42
Bedrock Depth - Min:	null
Watertable Depth - Annual Min:	null
Drainage Class - Dominant:	Poorly drained
Hydrologic Group - Dominant:	A - Soils in this group have low runoff potential when thoroughly wet. Water is transmitted freely through the soil.
Major components are printed below	
Brazito(90%)	
horizon H1(0cm to 13cm)	Fine sandy loam
horizon H2(13cm to 152cm)	Coarse sand

Map Unit Bs

Map Unit Name:	Brazito silty clay loam MLRA 42
Bedrock Depth - Min:	null
Watertable Depth - Annual Min:	153cm
Drainage Class - Dominant:	Well drained
Hydrologic Group - Dominant:	C - Soils in this group have moderately high runoff potential when thoroughly wet. Water transmission through the soil is somewhat restricted.
Major components are printed below	Ŭ
Brazito(85%)	
horizon H1(0cm to 30cm)	Silty clay loam
horizon H2(30cm to 152cm)	Fine sand

Map Unit Bt

Map Unit Name:
Bedrock Depth - Min:

Brazito complex null

Watertable Depth - Annual Min:	92cm
Drainage Class - Dominant:	Well drained
Hydrologic Group - Dominant:	C - Soils in this group have moderately high runoff potential when thoroughly wet. Water transmission through the soil is somewhat restricted.
Major components are printed below	Ŭ
Brazito(50%)	
horizon H1(0cm to 25cm)	Silty clay loam
horizon H2(25cm to 152cm)	Fine sand
Brazito(30%)	
horizon H1(0cm to 25cm)	Sandy clay loam
horizon H2(25cm to 152cm)	Sand

Map Unit Gb

Map Unit Name:	Gila loam, 0 to 1 percent slopes mlra 42-1
Bedrock Depth - Min:	null
Watertable Depth - Annual Min:	null
Drainage Class - Dominant:	Well drained
Hydrologic Group - Dominant:	B - Soils in this group have moderately low runoff potential when thoroughly wet. Water transmission through the soil is unimpeded.
Major components are printed below	
Gila(90%)	
horizon Ap(0cm to 25cm)	Loam
horizon C1(25cm to 46cm)	Gravelly fine sandy loam
horizon C2(46cm to 84cm)	Loam
horizon C3(84cm to 107cm)	Loamy fine sand
horizon C4(107cm to 137cm)	Fine sandy loam
horizon C5(137cm to 163cm)	Silt Ioam

Map Unit Ge

Map Unit Name:	Gila clay loam MLRA 42
Bedrock Depth - Min:	null
Watertable Depth - Annual Min:	null
Drainage Class - Dominant:	Well drained
Hydrologic Group - Dominant:	C - Soils in this group have moderately high runoff potential when thoroughly wet. Water transmission through the soil is somewhat restricted.
Major components are printed below	Ũ
Gila(90%)	
horizon H1(0cm to 18cm)	Clay loam
horizon H2(18cm to 152cm)	Stratified gravelly sandy loam to silt loam

Map Unit Gm

Map Unit Name:	Glendale clay loam, 0 to 1 percent slopes MLRA 42.1
Bedrock Depth - Min:	null
Watertable Depth - Annual Min:	null
Drainage Class - Dominant:	Well drained
Hydrologic Group - Dominant:	D - Soils in this group have high runoff potential when thoroughly wet. Water

11

	movement through the soil is restricted or very restricted.
Major components are printed below	
Glendale(85%)	
horizon Ap(0cm to 15cm)	Clay loam
horizon C1(15cm to 33cm)	Silt loam
horizon C2(33cm to 40cm)	Fine sand
horizon C3(40cm to 96cm)	Silt loam
horizon C4(96cm to 116cm)	Clay
horizon C5(116cm to 152cm)	Clay loam

Map Unit TP

Map Unit Name:	Torrifluvents, frequently flooded
Bedrock Depth - Min:	null
Watertable Depth - Annual Min:	null
Drainage Class - Dominant:	Somewhat poorly drained
Hydrologic Group - Dominant:	B - Soils in this group have moderately low runoff potential when thoroughly wet. Water transmission through the soil is unimpeded.
Major components are printed below	ů i
Torrifluvents(100%)	
horizon A(0cm to 33cm)	Loam
horizon C1(33cm to 76cm)	Very fine sandy loam
horizon C2(76cm to 152cm)	Sand

Map Unit VbA

Map Unit Name:	Vinton sandy loam, 0 to 1 percent slopes
Bedrock Depth - Min:	null
Watertable Depth - Annual Min:	null
Drainage Class - Dominant:	Somewhat excessively drained
Hydrologic Group - Dominant:	A - Soils in this group have low runoff potential when thoroughly wet. Water is transmitted freely through the soil.
Major components are printed below	
Vinton(90%)	
horizon H1(0cm to 25cm)	Sandy loam
horizon H2(25cm to 152cm)	Loamy sand

Map Unit VF

Map Unit Name:	Vinton and Brazito soils, occasionally flooded
Bedrock Depth - Min:	null
Watertable Depth - Annual Min:	69cm
Drainage Class - Dominant:	Well drained
Hydrologic Group - Dominant:	A - Soils in this group have low runoff potential when thoroughly wet. Water is transmitted freely through the soil.
Major components are printed below	
Vinton(35%)	
horizon H1(0cm to 25cm)	Fine sandy loam
horizon H2(25cm to 99cm)	Loamy sand

erisinfo.com Environmental Risk Information Services

horizon H3(99cm to 152cm) Brazito(30%) horizon H1(0cm to 23cm) horizon H2(23cm to 152cm) Torrifluvents(20%) horizon A(0cm to 33cm) horizon C1(33cm to 76cm) horizon C2(76cm to 152cm)

Sand

Loamy sand Fine sand

Loam Very fine sandy loam Sand

Wells and Additional Sources

Sites with Unknown Elevation

Federal Sources

Public Water Systems Violations and Enforcement Data

Мар Кеу	PWS ID	Distance (ft)	Direction
24	NM2505201	2 052 85	۱۸/
29	NM3594701	3.721.69	WNW
30	NM3597901	3,757.69	SSW
31	NM3597301	3,963.96	SSW
32	NM3596501	3,978.48	SSW

Safe Drinking Water Information System (SDWIS)

Мар Кеу	PWS ID	Distance (ft)	Direction
		0.050.05	
24	NM3595301	2,952.85	VV
29	NM3594701	3,721.69	WNW
30	NM3597901	3,757.69	SSW
31	NM3597301	3,963.96	SSW
32	NM3596501	3,978.48	SSW

USGS National Water Information System

Мар Кеу	Monitoring Loc Identifier	Distance (ft)	Direction	
1	USGS-350354106395202	983.34	S	
1	USGS-350354106395203	983.34	S	
1	USGS-350354106395201	983.34	S	
2	USGS-350359106394501	995 75	SF	
3	USGS-350359106394410	1.000.67	SE	
4	USGS-350359106394402	1.006.95	SE	
4	USGS-350359106394401	1.006.95	SE	
5	USGS-350359106393902	1.178.00	SE	
5	USGS-350359106393901	1.178.00	SE	
5	USGS-350359106393903	1,178.00	SE	
6	USGS-350353106394301	1,355.64	SSE	
7	USGS-350354106394202	1,361.54	SSE	
7	USGS-350354106394201	1,361.54	SSE	
8	USGS-350400106393702	1,375.92	ESE	
8	USGS-350400106393701	1,375.92	ESE	
9	USGS-350356106393902	1,484.75	SE	
9	USGS-350356106393901	1,484.75	SE	
9	USGS-350356106393903	1,484.75	SE	
10	USGS-350356106393601	1,631.81	SE	
10	USGS-350356106393602	1,631.81	SE	
11	USGS-350402106392810	1,806.54	ESE	
12	USGS-350402106392902	1,851.07	ESE	
12	USGS-350402106392901	1,851.07	ESE	
13	USGS-350409106392510	1,914.64	E	
14	USGS-350402106392601	2,001.69	ESE	
14	USGS-350402106392603	2,001.69	ESE	
14	USGS-350402106392602	2,001.69	ESE	
15	USGS-350357106392901	2,062.41	ESE	
15	USGS-350357106392902	2,062.41	ESE	
16	USGS-350358106392601	2,248.77	ESE	
16	USGS-350358106392603	2,248.77	ESE	
16	USGS-350358106392602	2,248.77	ESE	
17	USGS-350403106392302	2,256.62	ESE	

15

Wells and Additional Sources Summary

17 18	USGS-350403106392301 USGS-350403106392410	2,256.62	ESE
19	USGS-350403106392201	2,288.71	ESE
20	USGS-350358106392301	2,486.51	ESE
20	USGS-350358106392302	2,486.51	ESE
22	USGS-350356106392201	2,555.64	ESE
23	USGS-350432106400500	2,671.06	NNW
25	USGS-350354106391201	3,292.96	ESE
26	USGS-350415106403001	3,333.39	WNW
27	USGS-350447106395201	3,432.38	Ν
28	USGS-350344106391201	3,681.52	SE
33	USGS-350355106390110	4,284.85	ESE
34	USGS-350343106390101	4,625.17	ESE
35	USGS-350329106391701	4,653.70	SE
36	USGS-350426106385601	4,716.27	ENE
37	USGS-350411106405501	5,180.51	W

State Sources

Oil and Gas Wells

Мар Кеу	ID	Distance (ft)	Direction	
	No records found			
Public Water Su	ipply Wells			
Мар Кеу	ID	Distance (ft)	Direction	
	No records found			

Public Water Systems Violations and Enforcement Data

Мар Кеу	Directi	on l	Distance (mi)	Distance (ft)	Elevation (ft)	DB
24	W	(0.56	2,952.85	4,945.65	PWSV
		040 011				
Address Line 2:		916 SUP	NSET RD SW			
State Code:						
Zip Code.						
Address Line 1:		ALBOQU	JERQUE			
		NM3505	301			
PWS Type Code [.]		TNCWS				
PWS Type Descript	tion:	Transier	nt Non-Community Wa	ater System		
Primary Source Co	de:	GW				
Primary Source Des	SC:	Groundy	water			
PWS Activity Code:	:	I				
PWS Activity Descr	ription:	Inactive				
PWS Deactivation I	Date:	01/02/19	984			
Phone Number:		505-247	-7115			
Details	Count	20				
City Served	Count	20				
City Served.						
State Served		NM				
Zip Code Served:						
Мар Кеу	Directi	on I	Distance (mi)	Distance (ft)	Elevation (ft)	DB
29	WNW	(0.70	3,721.69	4,948.65	PWSV
Address Line 2:		541 SUP	NSETSW			
State Code:		NM				
Zip Code:						
City Name.		ALDUQU	JERQUE			
		NM3504	1701			
PWS Type Code:			101			
PWS Type Descript	tion.	Transier	nt Non-Community Wa	ater System		
Primary Source Co	de:	GW				
Primary Source De	SC:	Groundy	water			
PWS Activity Code:	:					
PWS Activity Descr	iption:	Inactive				
PWS Deactivation I	Date:	01/01/19	983			
Phone Number:						

Details	
Population Served Count:	250
City Served:	
County Served:	
State Served:	NM
Zip Code Served:	

Мар Кеу	Directi	on	Distance (mi)	Distance (ft)	Elevation (ft)	DB
30	SSW		0.71	3,757.69	4,943.65	PWSV
Address Line 2:		707 ISL	ETA SW			
State Code:		NM				
Zip Code:		87105				
City Name:		ALBUG	UERQUE			
Address Line 1:						
PWS ID:		NM359	7901			
PWS Type Code:		TNCW	S			
PWS Type Descript	tion:	Transie	ent Non-Community Water	System		
Primary Source Co	de:	GW				
Primary Source Des	sc:	Ground	lwater			
PWS Activity Code:		I				
PWS Activity Descr	iption:	Inactive	9			
PWS Deactivation	Date:	01/10/1	979			
Phone Number:		505-87	7-9852			
Details						
Population Served	Count:	30				
Citv Served:						
County Served:						
State Served:		NM				
Zip Code Served:						

Мар Кеу	Directio	on Distance (mi)	Distance (ft)	Elevation (ft)	DB	
31	SSW	0.75	3,963.96	4,943.65	PWSV	
Address Line 2:		725 ISLETA SW				
State Code:	1	NM				
Zip Code:	8	37105				
City Name:	/	ALBUQUERQUE				
Address Line 1:						
PWS ID:	1	NM3597301				
PWS Type Code:	-	TNCWS				
PWS Type Descript	tion:	Transient Non-Community	Water System			
Primary Source Co	de: (GW				
Primary Source Des	sc: (Groundwater				
PWS Activity Code:	: I					

PWS Activity Description:	Inactive
PWS Deactivation Date:	01/02/1980
Phone Number:	505-877-9970
Details	
Population Served Count:	25
City Served:	
County Served:	
State Served:	NM
Zip Code Served:	

Мар Кеу	Direction	on Distance (mi)	Distance (ft)	Elevation (ft)	DB
32	SSW	0.75	3,978.48	4,943.65	PWSV
Address Line 2:		722 ISLETA SW			
State Code:		NM			
Zip Code:		87105			
City Name:		ALBUQUERQUE			
Address Line 1:					
PWS ID:		NM3596501			
PWS Type Code:		TNCWS			
PWS Type Descript	ion:	Transient Non-Community	y Water System		
Primary Source Coo	de:	GW			
Primary Source Des	SC:	Groundwater			
PWS Activity Code:		I			
PWS Activity Descri	iption:	Inactive			
PWS Deactivation E	Date:	01/02/1980			
Phone Number:		505-873-2949			
Details					
Population Served (Count:	25			
City Served:					
County Served:					
State Served:		NM			
Zip Code Served:					
Safe Drinking	Water	Information System	m (SDWIS)		

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
24	W	0.56	2,952.85	4,945.65	SDWIS
PWS ID:	NM359	95301	Pop Cat 11:	<=100	
Facility ID:	1		Pop Cat 11 Cd:	1	
Facility Name:	WELL		Pop Cat 2:	<10,000	
EPA Region Code:	06		Pop Cat 2 Cd:	1	
EPA Region:	Regior	n 6	Pop Cat 3:	<=3300	
Season Begin Date	: 01-01		Pop Cat 3 Cd:	1	

Season End Date: Deactivation Date: Fac Deactvtn Dt: First Rptd Dt: Last Rptd Date: Primacy Agency: Is Source Ind: Facility Type Cd: Facility Type Desc: Activity Status Cd: Activity Status: Availability Code: Water Type Code: DBPR Schd Ctg Cd: Facility Activity Cd: Filtrtn Status Cd: GW or SW Code: LT2 Sch Ctgry Cd: Owner Type Code: PWS Type Code: Primcy Agency Cd: Primary Source Cd: Seller Treatmnt Cd: Submsn Status Cd: Subms Sts Cd Vio: Is Grant Eligible: Outstnding Perfrm: Outstndng Perf Dt: Schl or Dycare: Source Treated Ind: Src Wtr Protected: Src Wtr Prot Dt: NPM Candidate: Is Wholesaler: Submission Year: Submission Yr Qrtr:

10.01		4.017
12-31	Pop Cat 4:	<10K
01-FEB-84	Pop Cat 4 Cd:	1
01-FEB-84	Pop Cat 5:	<=500
12-MAR-80	Pop Cat 5 Cd:	1
24-JUL-95	ORG Name:	-
New Mexico	Admin Name:	JAK'S HAMBURGERS
Yes	Phone No:	505-247-7115
WL	Phone Ext No:	-
Well	Alt Phone No:	-
I	Fax No:	-
Inactive	Email Addr:	-
Р	Avlblty Desc:	Permanent
GW	Wtr Tp Desc:	Ground water
-	DBPR Schd Ctg:	-
I	Fac Activity:	Inactive
-	Filt Stat Desc:	-
GW	GW or SS:	Groundwater
-	LT2 Sched Ctg:	-
Р	Owner Type:	Private
TNCWS	PWS Type:	Transient non-community system
NM	Primacy Type:	State
GW	Primary Srce:	Ground water
-	Seller Trt Dsc:	-
Y	Sub Stat Dsc:	Reported and accepted
Y	Pop Srvd Cnt:	26
No	Srvc Cnctn Cnt:	1
-	Seller PWSID:	-
-	SIIr PWS Nm:	-
No	CDS ID:	-
U	Country Code:	US
-	Cntry Nm BTP:	-
-	State Code:	NM
No	State Fac ID:	-
No	Sub Quarter:	1
2016	Validity Ind:	Yes
2016Q1	-	

--Details--

Dotalio	
Treatment ID:	-
Treatment Process Code:	-
Treatment Process:	-
Treatment Objective Code:	-
Treatment Objective:	-
Treatment Plant City:	-
Treatment Plant State:	-
Treatment Plant Addr 1:	-
Treatment Plant Addr 2:	-

-

Treatment Plant Zip Code: -Treatment Comments:

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
29	WNW	0.70	3,721.69	4,948.65	SDWIS
PWS ID:	NM3	594701	Pop Cat 11:	101-500	
Facility ID:	1		Pop Cat 11 Cd:	2	
Facility Name:	WEL	L	Pop Cat 2:	<10,000	
EPA Region Code:	06		Pop Cat 2 Cd:	1	
EPA Region:	Regio	on 6	Pop Cat 3:	<=3300	
Season Begin Date:	: 01-0 ²	1	Pop Cat 3 Cd:	1	
Season End Date:	12-3 ⁻	1	Pop Cat 4:	<10K	
Deactivation Date:	01-J/	AN-83	Pop Cat 4 Cd:	1	
Fac Deactvtn Dt:	01-J/	AN-83	Pop Cat 5:	<=500	
First Rptd Dt:	12-M	AR-80	Pop Cat 5 Cd:	1	
Last Rptd Date:	24-Jl	JL-95	ORG Name:	-	
Primacy Agency:	New	Mexico	Admin Name:	BLAKE'S LOTABU	RGER #13
Is Source Ind:	Yes		Phone No:	-	
Facility Type Cd:	WL		Phone Ext No:	-	
Facility Type Desc:	Well		Alt Phone No:	-	
Activity Status Cd:	I		Fax No:	-	
Activity Status:	Inact	ive	Email Addr:	-	
Availability Code:	Р		Avlblty Desc:	Permanent	
Water Type Code:	GW		Wtr Tp Desc:	Ground water	
DBPR Schd Ctg Cd	: -		DBPR Schd Ctg:	-	
Facility Activity Cd:	I		Fac Activity:	Inactive	
Filtrtn Status Cd:	-		Filt Stat Desc:	-	
GW or SW Code:	GW		GW or SS:	Groundwater	
LT2 Sch Ctgry Cd:	-		LT2 Sched Ctg:	-	
Owner Type Code:	Р		Owner Type:	Private	
PWS Type Code:	TNC	WS	PWS Type:	Transient non-com	munity system
Primcy Agency Cd:	NM		Primacy Type:	State	
Primary Source Cd:	GW		Primary Srce:	Ground water	
Seller Treatmnt Cd:	-		Seller Trt Dsc:	-	
Submsn Status Cd:	Y		Sub Stat Dsc:	Reported and acce	pted
Subms Sts Cd Vio:	Y		Pop Srvd Cnt:	250	
Is Grant Eligible:	No		Srvc Cnctn Cnt:	1	
Outstnding Perfrm:	-		Seller PWSID:	-	
Outstndng Perf Dt:	-		SIIr PWS Nm:	-	
Schl or Dycare:	No		CDS ID:	-	
Source Treated Ind:	: U		Country Code:	US	
Src Wtr Protected:	-		Cntry Nm BTP:	-	
Src Wtr Prot Dt:	-		State Code:	NM	
NPM Candidate:	No		State Fac ID:	-	
Is Wholesaler:	No		Sub Quarter:	1	

Submission Year: Submission Yr Qrtr:	2016 2016Q1	Validity Ind:	Yes
Details			
Treatment ID:	-		
Treatment Process Code:	-		
Treatment Process:	-		
Treatment Objective Code:	-		
Treatment Objective:	-		
Treatment Plant City:	-		
Treatment Plant State:	-		
Treatment Plant Addr 1:	-		
Treatment Plant Addr 2:	-		
Treatment Plant Zip Code:	-		
Treatment Comments:	-		

Мар Кеу	Directio	on Distance (mi)	Di	stance (ft)	Elev	ation (ft)	DB
30	SSW	0.71	3,7	757.69	4,943	.65	SDWIS
	,			Dop Cot 11:		-100	
F WOID.	1	1		Pop Cat 11.		<=100 1	
Facility Nome:	1			Pop Cat 11 Cu.		1	
EDA Pagion Codo:				Pop Cat 2.		< 10,000	
EPA Region Code.		Do Pogion 6		Pop Cat 2 Cu.			
Season Begin Date	· (Pop Cat 3 Cd		<=3300 1	
Season End Date:		12-31		Pop Cat 4:		-10K	
Deactivation Date:	(12 01 01-0CT-79		Pop Cat 4 Cd		1	
Fac Deactyth Dt:	(01-OCT-79		Pop Cat 5		<=500	
First Rotd Dt		12-MAR-80		Pop Cat 5 Cd [.]		1	
Last Rotd Date:		24-JUL-95		ORG Name:		-	
Primacy Agency:	1	New Mexico		Admin Name:		OLIVER'S BAI	R & RESTAURANT
Is Source Ind:	Ň	Yes		Phone No:		505-877-9852	
Facility Type Cd:	١	WL		Phone Ext No:		-	
Facility Type Desc:	١	Well		Alt Phone No:		-	
Activity Status Cd:	I			Fax No:		-	
Activity Status:	I	nactive		Email Addr:		-	
Availability Code:	I	c		Avlblty Desc:		Permanent	
Water Type Code:	(GW		Wtr Tp Desc:		Ground water	
DBPR Schd Ctg Cd	l: -			DBPR Schd Ctg:		-	
Facility Activity Cd:	I			Fac Activity:		Inactive	
Filtrtn Status Cd:	-			Filt Stat Desc:		-	
GW or SW Code:	(GW		GW or SS:		Groundwater	
LT2 Sch Ctgry Cd:	-			LT2 Sched Ctg:		-	
Owner Type Code:	F	C		Owner Type:		Private	
PWS Type Code:	-	TNCWS		PWS Type:		Transient non-	community system
Primcy Agency Cd:	1	MM		Primacy Type:		State	

Primary Source Cd:	GW	Primary Srce:	Ground water
Seller Treatmnt Cd:	-	Seller Trt Dsc:	-
Submsn Status Cd:	Υ	Sub Stat Dsc:	Reported and accepted
Subms Sts Cd Vio:	Y	Pop Srvd Cnt:	30
Is Grant Eligible:	No	Srvc Cnctn Cnt:	1
Outstnding Perfrm:	-	Seller PWSID:	-
Outstndng Perf Dt:	-	Sllr PWS Nm:	-
Schl or Dycare:	No	CDS ID:	-
Source Treated Ind:	U	Country Code:	US
Src Wtr Protected:	-	Cntry Nm BTP:	-
Src Wtr Prot Dt:	-	State Code:	NM
NPM Candidate:	No	State Fac ID:	-
Is Wholesaler:	No	Sub Quarter:	1
Submission Year:	2016	Validity Ind:	Yes
Submission Yr Qrtr:	2016Q1		

--Details--

Treatment ID:	-
Treatment Process Code:	-
Treatment Process:	-
Treatment Objective Code:	-
Treatment Objective:	-
Treatment Plant City:	-
Treatment Plant State:	-
Treatment Plant Addr 1:	-
Treatment Plant Addr 2:	-
Treatment Plant Zip Code:	-
Treatment Comments:	-

Мар Кеу	Direction	Distance (mi)	Distan	ce (ft)	Eleva	tion (ft)	DB
31	SSW	0.75	3,963.96	5	4,943.6	65	SDWIS
PWS ID:	NM	3597301	Рор	Cat 11:		<=100	
Facility ID:	1		Рор	Cat 11 Cd:		1	
Facility Name:	WE	LL	Рор	Cat 2:		<10,000	
EPA Region Code:	06		Рор	Cat 2 Cd:		1	
EPA Region:	Reg	jion 6	Рор	Cat 3:		<=3300	
Season Begin Date	: 01-0)1	Рор	Cat 3 Cd:		1	
Season End Date:	12-3	31	Рор	Cat 4:		<10K	
Deactivation Date:	01-F	EB-80	Рор	Cat 4 Cd:		1	
Fac Deactvtn Dt:	01-F	EB-80	Рор	Cat 5:		<=500	
First Rptd Dt:	12-1	MAR-80	Рор	Cat 5 Cd:		1	
Last Rptd Date:	24-	JUL-95	ORG	S Name:		-	
Primacy Agency:	Nev	v Mexico	Adm	in Name:		KATHY'S CARRYOUT	
Is Source Ind:	Yes	i	Phor	ne No:		505-877-9970	
Facility Type Cd:	WL		Phor	ne Ext No:		-	

Facility Type Desc:	Well	Alt Phone No:	-
Activity Status Cd:	I	Fax No:	-
Activity Status:	Inactive	Email Addr:	-
Availability Code:	Р	Avlblty Desc:	Permanent
Water Type Code:	GW	Wtr Tp Desc:	Ground water
DBPR Schd Ctg Cd:	-	DBPR Schd Ctg:	-
Facility Activity Cd:	I	Fac Activity:	Inactive
Filtrtn Status Cd:	-	Filt Stat Desc:	-
GW or SW Code:	GW	GW or SS:	Groundwater
LT2 Sch Ctgry Cd:	-	LT2 Sched Ctg:	-
Owner Type Code:	Р	Owner Type:	Private
PWS Type Code:	TNCWS	PWS Type:	Transient non-community system
Primcy Agency Cd:	NM	Primacy Type:	State
Primary Source Cd:	GW	Primary Srce:	Ground water
Seller Treatmnt Cd:	-	Seller Trt Dsc:	-
Submsn Status Cd:	Y	Sub Stat Dsc:	Reported and accepted
Subms Sts Cd Vio:	Y	Pop Srvd Cnt:	25
Is Grant Eligible:	No	Srvc Cnctn Cnt:	1
Outstnding Perfrm:	-	Seller PWSID:	-
Outstndng Perf Dt:	-	SIIr PWS Nm:	-
Schl or Dycare:	No	CDS ID:	-
Source Treated Ind:	U	Country Code:	US
Src Wtr Protected:	-	Cntry Nm BTP:	-
Src Wtr Prot Dt:	-	State Code:	NM
NPM Candidate:	No	State Fac ID:	-
Is Wholesaler:	No	Sub Quarter:	1
Submission Year:	2016	Validity Ind:	Yes
Submission Yr Qrtr:	2016Q1		
Details			
Treatment ID:	-		
Treatment Process Code:	-		
Treatment Process:	-		
Treatment Objective Code:	-		
Treatment Objective:	-		
Treatment Plant City:	-		
Treatment Plant State:	-		
Treatment Plant Addr 1:	-		
Treatment Plant Addr 2:	-		
Treatment Plant Zip Code:	-		
Treatment Comments:	-		

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
32	SSW	0.75	3,978.48	4,943.65	SDWIS
PWS ID:	NM3	596501	Pop Cat 11:	<=100	
24	erisinfo.com Environ	mental Risk Information	Services	Order No	: 20180719121p

Facility ID:	1	Pop Cat 11 Cd:	1
Facility Name:	WELL	Pop Cat 2:	<10,000
EPA Region Code:	06	Pop Cat 2 Cd:	1
EPA Region:	Region 6	Pop Cat 3:	<=3300
Season Begin Date:	01-01	Pop Cat 3 Cd:	1
Season End Date:	12-31	Pop Cat 4:	<10K
Deactivation Date:	01-FEB-80	Pop Cat 4 Cd:	1
Fac Deactvtn Dt:	01-FEB-80	Pop Cat 5:	<=500
First Rptd Dt:	12-MAR-80	Pop Cat 5 Cd:	1
Last Rptd Date:	24-JUL-95	ORG Name:	-
Primacy Agency:	New Mexico	Admin Name:	EL COMEDOR DEL VALLE
Is Source Ind:	Yes	Phone No:	505-873-2949
Facility Type Cd:	WL	Phone Ext No:	-
Facility Type Desc:	Well	Alt Phone No:	-
Activity Status Cd:	I	Fax No:	-
Activity Status:	Inactive	Email Addr:	-
Availability Code:	Р	Avlblty Desc:	Permanent
Water Type Code:	GW	Wtr Tp Desc:	Ground water
DBPR Schd Ctg Cd:	-	DBPR Schd Ctg:	-
Facility Activity Cd:	I	Fac Activity:	Inactive
Filtrtn Status Cd:	-	Filt Stat Desc:	-
GW or SW Code:	GW	GW or SS:	Groundwater
LT2 Sch Ctgry Cd:	-	LT2 Sched Ctg:	-
Owner Type Code:	Р	Owner Type:	Private
PWS Type Code:	TNCWS	PWS Type:	Transient non-community system
Primcy Agency Cd:	NM	Primacy Type:	State
Primary Source Cd:	GW	Primary Srce:	Ground water
Seller Treatmnt Cd:	-	Seller Trt Dsc:	-
Submsn Status Cd:	Y	Sub Stat Dsc:	Reported and accepted
Subms Sts Cd Vio:	Y	Pop Srvd Cnt:	25
Is Grant Eligible:	No	Srvc Cnctn Cnt:	1
Outstnding Perfrm:	-	Seller PWSID:	-
Outstndng Perf Dt:	-	Sllr PWS Nm:	-
Schl or Dycare:	No	CDS ID:	-
Source Treated Ind:	U	Country Code:	US
Src Wtr Protected:	-	Cntry Nm BTP:	-
Src Wtr Prot Dt:	-	State Code:	NM
NPM Candidate:	No	State Fac ID:	-
Is Wholesaler:	No	Sub Quarter:	1
Submission Year:	2016	Validity Ind:	Yes
Submission Yr Qrtr:	2016Q1		

--Details--

Treatment ID: Treatment Process Code: Treatment Process: Treatment Objective Code:

-

-

-

-

Treatment Objective:-Treatment Plant City:-Treatment Plant State:-Treatment Plant Addr 1:-Treatment Plant Addr 2:-Treatment Plant Zip Code:-Treatment Comments:-

USGS National Water Information System

Мар Кеу	Directi	ion	Distance (mi)	Distance (ft)	Elev	vation (ft)	DB
1	S		0.19	983.34	4,944	4.19	FED USGS
Organiz Identifier:		USGS-	NM	Formation Type:		Santa Fe Group	
Organiz Name:		USGS Center	New Mexico Water Science	e Aquifer Name:			
Well Depth:		32		Aquifer Type:		Unconfined single	e aquifer
Well Depth Unit:		ft		Country Code:		US	
Well Hole Depth:		32		Provider Name:		NWIS	
W Hole Depth Unit:		ft		County:		BERNALILLO	
Construction Date:		200408	323	Latitude:		35.0658444	
Source Map Scale:		24000		Longitude:		-106.6642389	
Monitoring Loc Nan	ne:	10N.03	E.30.232B BWM				
Monitoring Loc Ider	ntifier:	USGS	350354106395202				
Monitoring Loc Type	e:	Well					
Monitoring Loc Des	c:						
HUC Eight Digit Co	de:	130202	203				
Drainage Area:							
Drainage Area Unit	:						
Contrib Drainage A	rea:						
Contrib Drainage A Unit:	rea						
Horizontal Accuracy	y:	1					
Horizontal Accuracy	y Unit:	second	ls				
Horizontal Collectio Mthd:	n	Differe	ntially corrected Global Pos	itioning System.			
Horiz Coord Refer Svstem:		NAD83	3				
Vertical Measure:		4940.7	7				
Vertical Measure U	nit:	feet					
Vertical Accuracy:		.01					
Vertical Accuracy U	Init:	feet					
Vertical Collection	Mthd:	Level o	or other surveyed method.				
Vert Coord Refer S	ystem:	NAVD8	38				

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
1	S	0.19	983.34	4,944.19	FED USGS
Organiz Identifie	r: USG	S-NM	Formation Type:	Santa Fe Group	
erisinfo.com/ Environmental Risk Information Services			Order No: 2	20180719121p	

Organiz Name:	USGS New Mexico Water Science	Aquifer Name:	
Well Depth:	48	Aquifer Type:	Unconfined single aquifer
Well Depth Unit:	ft	Country Code:	US
Well Hole Depth:	48	Provider Name:	NWIS
W Hole Depth Unit:	ft	County:	BERNALILLO
Construction Date:	20040823	Latitude:	35.0658444
Source Map Scale:	24000	Longitude:	-106.6642389
Monitoring Loc Name:	10N.03E.30.232C BWD		
Monitoring Loc Identifier:	USGS-350354106395203		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Differentially corrected Global Positio	ning System.	
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4940.77		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.01		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		

Мар Кеу	Direct	ion	Distance (mi)	Distance (ft)	Ele	vation (ft)	DB
1	S		0.19	983.34	4,94	4.19	FED USGS
Organiz Identifier:		USGS-	NM	Formation Type:		Santa Fe Grou	р
Organiz Name:		USGS Center	New Mexico Water Science	e Aquifer Name:			
Well Depth:		17		Aquifer Type:		Unconfined sin	gle aquifer
Well Depth Unit:		ft		Country Code:		US	
Well Hole Depth:		17		Provider Name:		NWIS	
W Hole Depth Unit:		ft		County:		BERNALILLO	
Construction Date:		200408	323	Latitude:		35.0658444	
Source Map Scale:		24000		Longitude:		-106.6642389	
Monitoring Loc Nam	ne:	10N.03	8E.30.232A BWS				
Monitoring Loc Iden	tifier:	USGS-	350354106395201				
Monitoring Loc Type	e:	Well					
Monitoring Loc Des	c:						
HUC Eight Digit Co	de:	130202	203				
Drainage Area:							

Drainage Area Unit:	
Contrib Drainage Area:	
Contrib Drainage Area Unit:	
Horizontal Accuracy:	1
Horizontal Accuracy Unit:	seconds
Horizontal Collection Mthd:	Differentially corrected Global Positioning System.
Horiz Coord Refer System:	NAD83
Vertical Measure:	4940.77
Vertical Measure Unit:	feet
Vertical Accuracy:	.01
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Level or other surveyed method.
Vert Coord Refer System:	NAVD88

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
2	SE	0.19	995.75	4,943.99	FED USGS
Organiz Identifier:	USG	S-NM	Formation Type:	Santa Fe Group	
Organiz Name:	USG	S New Mexico Water Science	e Aquifer Name:		
Well Depth:	20	CI	Aquifer Type:	Unconfined single aqu	ifer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	20		Provider Name:	NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	2009	0201	Latitude:	35.0663861	
Source Map Scale:	2400	00	Longitude:	-106.6622333	
Monitoring Loc Nam	ne: 10N.	03E.30.232K bwdws-t1			
Monitoring Loc Iden	tifier: USG	S-350359106394501			
Monitoring Loc Type	e: Well				
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 1302	20203			
Drainage Area:					
Drainage Area Unit:					
Contrib Drainage Ar	rea:				
Contrib Drainage Au Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	/ Unit: seco	nds			
Horizontal Collection Mthd:	n Diffe	rentially corrected Global Pos	itioning System.		
Horiz Coord Refer System:	NAD	83			
Vertical Measure:	4943	3.21			
Vertical Measure Ur	nit: feet				
Vertical Accuracy:	.01				
Vertical Accuracy U	nit: feet				
Vertical Collection N	/Ithd: Leve	l or other surveyed method.			

Vert Coord Refer System: NGVD29

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
3	SE	0.19	1,000.67	4,944.65	FED USGS
Organiz Identifier:	US	GS-NM	Formation Type:		
Organiz Name:	US Cei	GS New Mexico Water Scienc hter	e Aquifer Name:		
Well Depth:			Aquifer Type:		
Well Depth Unit:			Country Code:	US	
Well Hole Depth:			Provider Name:	NWIS	
W Hole Depth Unit:			County:	BERNALILLO	
Construction Date:	200	60510	Latitude:	35.0663972	
Source Map Scale:	240	000	Longitude:	-106.6621806	
Monitoring Loc Nam	ne: 101	1.03E.30.232K BWDSW			
Monitoring Loc Iden	ntifier: US	GS-350359106394410			
Monitoring Loc Type	e: Stre	eam			
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 130	20203			
Drainage Area:					
Drainage Area Unit:	:				
Contrib Drainage A	rea:				
Contrib Drainage Au Unit:	rea				
Horizontal Accuracy	/: 10				
Horizontal Accuracy	/ Unit: sec	onds			
Horizontal Collectio Mthd:	n Diff	erentially corrected Global Pos	sitioning System.		
Horiz Coord Refer System:	NA	D83			
Vertical Measure:	494	0.00			
Vertical Measure U	nit: fee	t			
Vertical Accuracy:	1.0				
Vertical Accuracy U	nit: fee	t			
Vertical Collection N	Athd: Inte	erpolated from topographic ma	р.		
Vert Coord Refer S	ystem: NA	VD88			

Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
SE	0.19	1,006.95	4,944.65	FED USGS
US	GS-NM	Formation Type:	Santa Fe Group	
US Cei	GS New Mexico Water Science	e Aquifer Name:		
34		Aquifer Type:	Unconfined single ac	quifer
ft		Country Code:	US	
34		Provider Name:	NWIS	
ft		County:	BERNALILLO	
200	040811	Latitude:	35.0663972	
	Direction SE US US Ce 34 ft 34 ft 200	Direction Distance (mi) SE 0.19 USGS-NM USGS New Mexico Water Science Center 34 ft 34 ft 34 ft 20040811	DirectionDistance (mi)Distance (ft)SE0.191,∪06.95USGS-NMFormation Type: Aquifer Name: Center 34Formation Type: Aquifer Type: Country Code:ftCountry Code: County: 1004811Provider Name: County: Latitude:	DirectionDistance (mi)Distance (ft)Elevation (ft)SE 0.19 $1, \cup 6.95$ $4,944.65$ USGS-NMFormation Type:Santa Fe GroupUSGS New Mexico Water ScienceAquifer Name:Santa Fe Group 34 Aquifer Type:Unconfined single ad ft Country Code:US 34 Provider Name:NWIS 34 County:BERNALILLO $2040 \otimes 11$ Latitude: 35.0663972

Source Man Scale	24000	l ongitude:	-106 6621417
Monitoring Loc Name:	10N 03E 30 232E BW/DEM	Longhudo.	100.0021111
Monitoring Los Identifier			
Monitoring Loc Identifier:	05G5-350359106394402		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Differentially corrected Global Position	ning System.	
Horiz Coord Refer Svstem:	NAD83		
Vertical Measure:	4940.23		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.01		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		

Мар Кеу	Directio	on Distance (mi)	Distance (ft)	Elevation (ft)	DB
4	SE	0.19	1,006.95	4,944.65	FED USGS
Organiz Identifie	r: I	ISGS-NM	Formation Type:	Santa Fe Group	
	·. ·		i officiation type.	Santa i e Gloup	
Organiz Name:	(Center	cience Aquiter Name:		
Well Depth:	1	16	Aquifer Type:	Unconfined single	e aquifer
Well Depth Unit:	f	t	Country Code:	US	
Well Hole Depth:	: 1	16	Provider Name:	NWIS	
W Hole Depth Ur	nit: f	t	County:	BERNALILLO	
Construction Dat	te: 2	20040811	Latitude:	35.0663972	
Source Map Sca	le: 2	24000	Longitude:	-106.6621417	
Monitoring Loc N	lame: 1	10N.03E.30.232D BWDES			
Monitoring Loc Id	dentifier: L	JSGS-350359106394401			
Monitoring Loc T	ype: V	Vell			
Monitoring Loc D)esc:				
HUC Eight Digit	Code: 1	13020203			
Drainage Area:					
Drainage Area U	nit:				
Contrib Drainage	e Area:				
Contrib Drainage Unit:	e Area				
Horizontal Accur	acy: 1	l			
Horizontal Accur	acy Unit: s	seconds			
Horizontal Collec Mthd:	tion [Differentially corrected Globa	al Positioning System.		

30

Horiz Coord Refer	NAD83
Vertical Measure:	4940.23
Vertical Measure Unit:	feet
Vertical Accuracy:	.01
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Interpolated from Digital Elevation Model
Vert Coord Refer System:	NAVD88

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
5	SE	0.22	1,178.00	4,944.65	FED USGS
Onnenia Identifican					
	05		Formation Type:	Santa Fe Group	
Organiz Name:	US Cei	GS New Mexico Water Scienc	e Aquifer Name:		
Well Depth:	32		Aquifer Type:	Unconfined single aqu	lifer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	32		Provider Name:	NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	200)40810	Latitude:	35.06655	
Source Map Scale:	240	000	Longitude:	-106.66105	
Monitoring Loc Nam	ne: 101	N.03E.30.232G BWBM			
Monitoring Loc Iden	tifier: US	GS-350359106393902			
Monitoring Loc Type	e: We	II			
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 130	020203			
Drainage Area:					
Drainage Area Unit:	:				
Contrib Drainage A	rea:				
Contrib Drainage Au Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	/ Unit: sec	conds			
Horizontal Collectio Mthd:	n Diff	erentially corrected Global Po	sitioning System.		
Horiz Coord Refer System:	NA	D83			
Vertical Measure:	494	13.03			
Vertical Measure U	nit: fee	t			
Vertical Accuracy:	.02				
Vertical Accuracy U	nit: fee	t			
Vertical Collection N	/Ithd: Lev	el or other surveyed method.			
Vert Coord Refer S	ystem: NA	VD88			

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
5	SE	0.22	1,178.00	4,944.65	FED USGS
Organiz Identifier:	USGS	NM	Formation Type:	Santa Fe Group	

Organiz Name:	USGS New Mexico Water Science Center	Aquifer Name:	
Well Depth:	17	Aquifer Type:	Unconfined single aquifer
Well Depth Unit:	ft	Country Code:	US
Well Hole Depth:	17	Provider Name:	NWIS
W Hole Depth Unit:	ft	County:	BERNALILLO
Construction Date:	20040810	Latitude:	35.06655
Source Map Scale:	24000	Longitude:	-106.66105
Monitoring Loc Name:	10N.03E.30.232F BWBS		
Monitoring Loc Identifier:	USGS-350359106393901		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Differentially corrected Global Position	ning System.	
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4943.03		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.01		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		

Мар Кеу	Direct	ion	Distance (mi)	Distance (ft)	Elev	vation (ft)	DB
5	SE		0.22	1,178.00	4,944	1.65	FED USGS
Organiz Identifiari				Formation Turner		Santa Fa Oraun	
Organiz identilier.		0363-		Formation Type.		Santa Fe Group	
Organiz Name:		USGS Center	New Mexico Water Science	e Aquifer Name:			
Well Depth:		52		Aquifer Type:		Unconfined single a	quifer
Well Depth Unit:		ft		Country Code:		US	
Well Hole Depth:		52		Provider Name:		NWIS	
W Hole Depth Unit:		ft		County:		BERNALILLO	
Construction Date:		200408	310	Latitude:		35.06655	
Source Map Scale:		24000		Longitude:		-106.66105	
Monitoring Loc Nam	ne:	10N.03	E.32.232H BWBD				
Monitoring Loc Iden	tifier:	USGS-	350359106393903				
Monitoring Loc Type	e:	Well					
Monitoring Loc Des	c:						
HUC Eight Digit Co	de:	130202	203				
Drainage Area:							

Drainage Area Unit:	
Contrib Drainage Area:	
Contrib Drainage Area Unit:	
Horizontal Accuracy:	1
Horizontal Accuracy Unit:	seconds
Horizontal Collection Mthd:	Differentially corrected Global Positioning System.
Horiz Coord Refer System:	NAD83
Vertical Measure:	4943.03
Vertical Measure Unit:	feet
Vertical Accuracy:	.02
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Level or other surveyed method.
Vert Coord Refer System:	NAVD88

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
6	SSE	0.26	1,355.64	4,943.65	FED USGS
Organiz Identifier:	US	GS-NM	Formation Type:	Santa Fe Group	
Organiz Name:	US Ce	GS New Mexico Water Science nter	e Aquifer Name:		
Well Depth:	20		Aquifer Type:	Unconfined single aq	uifer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	20		Provider Name:	NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	200	090201	Latitude:	35.0653833	
Source Map Scale:	240	000	Longitude:	-106.6619556	
Monitoring Loc Nam	ne: 10l	N.03E.30.421F bwdws-t2			
Monitoring Loc Iden	tifier: US	GS-350353106394301			
Monitoring Loc Type	e: We	ell			
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 130	020203			
Drainage Area:					
Drainage Area Unit:					
Contrib Drainage Ar	rea:				
Contrib Drainage Ar Unit:	rea				
Horizontal Accuracy	<i>r</i> : 1				
Horizontal Accuracy	v Unit: sea	conds			
Horizontal Collection Mthd:	n Dif	ferentially corrected Global Pos	sitioning System.		
Horiz Coord Refer System:	NA	.D83			
Vertical Measure:	494	43.14			
Vertical Measure Ur	nit: fee	t			
Vertical Accuracy:	.01				
Vertical Accuracy U	nit: fee	t			
Vertical Collection N	/Ithd: Lev	vel or other surveyed method.			

Vert Coord Refer System: NAVD88

Мар Кеу	Direction	on	Distance (mi)	Dis	stance (ft)	Elevat	tion (ft)	DB
7	SSE		0.26	1,36	61.54	4,943.6	5	FED USGS
Organiz Identifier:		USGS-I	NM		Formation Type:	S	Santa Fe Group	
Organiz Name:		USGS I Center	New Mexico Water Science	Э	Aquifer Name:			
Well Depth:		31			Aquifer Type:	L	Inconfined single aqu	ifer
Well Depth Unit:		ft			Country Code:	ι	JS	
Well Hole Depth:		31			Provider Name:	Ν	IWIS	
W Hole Depth Unit:		ft			County:	E	BERNALILLO	
Construction Date:		200508	23		Latitude:	3	5.0654	
Source Map Scale:		24000			Longitude:		106.6618722	
Monitoring Loc Nam	ne:	T10N.R	03E.30.421B BWDEM-T2					
Monitoring Loc Iden	tifier:	USGS-:	350354106394202					
Monitoring Loc Type	e:	Well						
Monitoring Loc Des	c:							
HUC Eight Digit Cod	de:	130202	03					
Drainage Area:								
Drainage Area Unit:								
Contrib Drainage Ar	ea:							
Contrib Drainage Ar Unit:	ea							
Horizontal Accuracy	/:	1						
Horizontal Accuracy	/ Unit:	second	S					
Horizontal Collection Mthd:	n	Differer	tially corrected Global Pos	itioni	ng System.			
Horiz Coord Refer System:		NAD83						
Vertical Measure:		4939.60)					
Vertical Measure Ur	nit:	feet						
Vertical Accuracy:		.02						
Vertical Accuracy U	nit:	feet						
Vertical Collection M	/Ithd:	Level o	r other surveyed method.					
Vert Coord Refer Sy	/stem:	NAVD8	8					

Мар Кеу	Directio	on Distance (mi)	Distance (ft)	Elevation (ft)	DB
7	SSE	0.26	1,361.54	4,943.65	FED USGS
Organiz Identifier:	I	USGS-NM	Formation Type:	Santa Fe Grou	qı
Organiz Name:		USGS New Mexico Wate Center	er Science Aquifer Name:		
Well Depth:		16	Aquifer Type:	Unconfined sir	ngle aquifer
Well Depth Unit:	1	ft	Country Code:	US	
Well Hole Depth:		16	Provider Name:	NWIS	
W Hole Depth Unit:	t	ft	County:	BERNALILLO	
Construction Date:	:	20050823	Latitude:	35.0654	

Source Map Scale:	24000	Longitude:	-106.6618722
Monitoring Loc Name:	T10N.R03E.30.421A BWDES-T2		
Monitoring Loc Identifier:	USGS-350354106394201		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Differentially corrected Global Position	ning System.	
Horiz Coord Refer Svstem:	NAD83		
Vertical Measure:	4939.60		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.02		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		

Мар Кеу	Directio	on Distance (mi)	Distance (ft)	Elevation (ft)	DB	
8	ESE	0.26	1,375.92	4,944.27	FED USGS	
Organiz Identifier:			Formation Turo:	Santa Eo Croun		
			Formation Type.	Santa Fe Group		
Organiz Name:		USGS New Mexico Water S Center	Science Aquifer Name:			
Well Depth:		32	Aquifer Type:	Unconfined sing	le aquifer	
Well Depth Unit:		ft	Country Code:	US		
Well Hole Depth:		32	Provider Name:	NWIS		
W Hole Depth Unit	:	ft	County:	BERNALILLO		
Construction Date:		20040811	Latitude:	35.0666944		
Source Map Scale:	: :	24000	Longitude:	-106.6600889		
Monitoring Loc Nar	me:	10N.03E.30.232J BWRM				
Monitoring Loc Ide	ntifier:	USGS-350400106393702				
Monitoring Loc Typ	e:	Well				
Monitoring Loc Des	SC:					
HUC Eight Digit Co	ode:	13020203				
Drainage Area:						
Drainage Area Unit	t:					
Contrib Drainage A	rea:					
Contrib Drainage A Unit:	rea					
Horizontal Accurac	y:	1				
Horizontal Accurac	y Unit:	seconds				
Horizontal Collection	on	Differentially corrected Glob	al Positioning System.			

35

Horiz Coord Refer NAD83 System:	
Vertical Measure: 4942.40	
Vertical Measure Unit: feet	
Vertical Accuracy: .02	
Vertical Accuracy Unit: feet	
Vertical Collection Mthd: Level or other surveyed metho	d.
Vert Coord Refer System: NAVD88	

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
8	ESE	0.26	1,375.92	4,944.27	FED USGS
Organiz Identifier:	USG	GS-NM	Formation Typ	be: Santa Fe Grou	qı
Organiz Name:	USG Cent	S New Mexico Water Scienc	e Aquifer Name:	:	
Well Depth:	17		Aquifer Type:	Unconfined sir	ngle aquifer
Well Depth Unit:	ft		Country Code:	: US	
Well Hole Depth:	17		Provider Name	e: NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	2004	40811	Latitude:	35.0666944	
Source Map Scale:	2400	00	Longitude:	-106.6600889	
Monitoring Loc Nam	ne: 10N	.03E.30.232I BWRS			
Monitoring Loc Iden	ntifier: USG	S-350400106393701			
Monitoring Loc Type	e: Well				
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 1302	20203			
Drainage Area:					
Drainage Area Unit:	:				
Contrib Drainage A	rea:				
Contrib Drainage Au Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	/ Unit: seco	onds			
Horizontal Collectio Mthd:	n Diffe	rentially corrected Global Po	sitioning System.		
Horiz Coord Refer Svstem:	NAC	083			
Vertical Measure:	4942	2.40			
Vertical Measure U	nit: feet				
Vertical Accuracy:	.02				
Vertical Accuracy U	nit: feet				
Vertical Collection N	Athd: Leve	el or other surveyed method.			
Vert Coord Refer S	ystem: NAV	/D88			

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
9	SE	0.28	1,484.75	4,944.65	FED USGS
Organiz Identifier:	USGS	NM	Formation Type:	Santa Fe Group	

Organiz Name:	USGS New Mexico Water Science Center	Aquifer Name:	
Well Depth:	31	Aquifer Type:	Unconfined single aquifer
Well Depth Unit:	ft	Country Code:	US
Well Hole Depth:	31	Provider Name:	NWIS
W Hole Depth Unit:	ft	County:	BERNALILLO
Construction Date:	20050824	Latitude:	35.0655611
Source Map Scale:	24000	Longitude:	-106.6608306
Monitoring Loc Name:	10N.03E.30.421D BWBM-T2		
Monitoring Loc Identifier:	USGS-350356106393902		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Differentially corrected Global Position	ning System.	
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4943.59		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.02		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		

Мар Кеу	Direct	ion	Distance (mi)	Distance (ft)	Elevation ((ft) DB
9	SE		0.28	1,484.75	4,944.65	FED USGS
Organiz Identifier:		USGS-	NM	Formation Type:	Santa I	Fe Group
Organiz Name:		USGS Center	New Mexico Water Science	e Aquifer Name:		
Well Depth:		16		Aquifer Type:	Unconf	fined single aquifer
Well Depth Unit:		ft		Country Code:	US	
Well Hole Depth:		16		Provider Name:	NWIS	
W Hole Depth Unit:		ft		County:	BERNA	ALILLO
Construction Date:		200508	324	Latitude:	35.065	5611
Source Map Scale:		24000		Longitude:	-106.66	608306
Monitoring Loc Nam	ne:	10N.03	E.30.421C BWBS-T2			
Monitoring Loc Iden	tifier:	USGS-	350356106393901			
Monitoring Loc Type	e:	Well				
Monitoring Loc Des	c:					
HUC Eight Digit Co	de:	130202	203			
Drainage Area:						

Drainage Area Unit:	
Contrib Drainage Area:	
Contrib Drainage Area Unit:	
Horizontal Accuracy:	1
Horizontal Accuracy Unit:	seconds
Horizontal Collection Mthd:	Differentially corrected Global Positioning System.
Horiz Coord Refer System:	NAD83
Vertical Measure:	4943.59
Vertical Measure Unit:	feet
Vertical Accuracy:	.02
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Level or other surveyed method.
Vert Coord Refer System:	NAVD88

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
9	SE	0.28	1,484.75	4,944.65	FED USGS
Organiz Identifier:	USG	S-NM	Formation Type:	Santa Fe Group	
Organiz Name:	USG	S New Mexico Water Science	e Aquifer Name:		
Well Depth:	51	CI	Aquifer Type:	Unconfined single aq	uifer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	51		Provider Name:	NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	2005	60824	Latitude:	35.0655611	
Source Map Scale:	2400	00	Longitude:	-106.6608306	
Monitoring Loc Nam	ne: 10N.	03E.30.421E BWBD-T2			
Monitoring Loc Iden	ntifier: USG	S-350356106393903			
Monitoring Loc Type	e: Well				
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 1302	20203			
Drainage Area:					
Drainage Area Unit	:				
Contrib Drainage A	rea:				
Contrib Drainage A Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	/ Unit: seco	nds			
Horizontal Collectio Mthd:	n Diffe	rentially corrected Global Pos	itioning System.		
Horiz Coord Refer System:	NAD	83			
Vertical Measure:	4943	3.59			
Vertical Measure U	nit: feet				
Vertical Accuracy:	.02				
Vertical Accuracy U	nit: feet				
Vertical Collection M	Athd: Leve	l or other surveyed method.			

Vert Coord Refer System: NAVD88

Мар Кеу	Directio	on	Distance (mi)	Dis	stance (ft)	Eleva	ation (ft)	DB
10	SE		0.31	1,6	31.81	4,944.	65	FED USGS
Organiz Identifier:	ι	USGS-N	IM		Formation Type:		Santa Fe Group	
Organiz Name:	l (USGS N Center	lew Mexico Water Science	Э	Aquifer Name:			
Well Depth:		16			Aquifer Type:		Unconfined single aquif	er
Well Depth Unit:	f	ft			Country Code:		US	
Well Hole Depth:	1	16			Provider Name:		NWIS	
W Hole Depth Unit:	f	ft			County:		BERNALILLO	
Construction Date:	2	2005082	24		Latitude:		35.0656444	
Source Map Scale:	2	24000			Longitude:		-106.6600028	
Monitoring Loc Nam	ne:	T10N.R	03E.30.422A BWRS-T2					
Monitoring Loc Iden	tifier: l	USGS-3	50356106393601					
Monitoring Loc Type	e: ۱	Well						
Monitoring Loc Desc	c:							
HUC Eight Digit Cod	de: 1	1302020	03					
Drainage Area:								
Drainage Area Unit:								
Contrib Drainage Ar	ea:							
Contrib Drainage Ar Unit:	ea							
Horizontal Accuracy	r: 1	1						
Horizontal Accuracy	Unit: s	seconds	5					
Horizontal Collection Mthd:	n [Differen	tially corrected Global Pos	ition	ing System.			
Horiz Coord Refer System:	1	NAD83						
Vertical Measure:	4	4943.14						
Vertical Measure Ur	nit: f	feet						
Vertical Accuracy:		.02						
Vertical Accuracy U	nit: f	feet						
Vertical Collection M	/Ithd: L	Level or	other surveyed method.					
Vert Coord Refer Sy	/stem:	NAVD88	3					

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
10	SE	0.31	1,631.81	4,944.65	FED USGS
Organiz Identifier:	USG	S-NM	Formation Type:	Santa Fe Group	
Organiz Name:	USG Cent	S New Mexico Water Science er	e Aquifer Name:		
Well Depth:	31		Aquifer Type:	Unconfined single aqu	ifer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	31		Provider Name:	NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	2005	50824	Latitude:	35.0656444	
Source Map Scale:	24000	Longitude:	-106.6600028		
--------------------------------	--	--------------	--------------		
Monitoring Loc Name:	T10N.R03E.30.422B BWRM-T2				
Monitoring Loc Identifier:	USGS-350356106393602				
Monitoring Loc Type:	Well				
Monitoring Loc Desc:					
HUC Eight Digit Code:	13020203				
Drainage Area:					
Drainage Area Unit:					
Contrib Drainage Area:					
Contrib Drainage Area Unit:					
Horizontal Accuracy:	1				
Horizontal Accuracy Unit:	seconds				
Horizontal Collection Mthd:	Differentially corrected Global Position	ning System.			
Horiz Coord Refer Svstem:	NAD83				
Vertical Measure:	4943.14				
Vertical Measure Unit:	feet				
Vertical Accuracy:	.02				
Vertical Accuracy Unit:	feet				
Vertical Collection Mthd:	Level or other surveyed method.				
Vert Coord Refer System:	NAVD88				

Мар Кеу	Directio	on Distance (mi)	Distance (ft)	Elevation (ft)	DB
11	ESE	0.34	1,806.54	4,944.00	FED USGS
Organiz Identifier:	ı	USGS-NM	Formation Type:		
Organiz Name:	l	USGS New Mexico Water Sci Center	ence Aquifer Name:		
Well Depth:	· · ·	Center	Aquifer Type:		
Well Depth Unit:			Country Code:	US	
Well Hole Depth:			Provider Name:	NWIS	
W Hole Depth Unit:			County:	BERNALILLO	
Construction Date:		20060612	Latitude:	35.0671917	
Source Map Scale:		24000	Longitude:	-106.6582278	
Monitoring Loc Nan	ne: ´	10N.03E.30.244H BRGSW			
Monitoring Loc Ider	ntifier: l	USGS-350402106392810			
Monitoring Loc Typ	e: 9	Stream			
Monitoring Loc Des	ic:				
HUC Eight Digit Co	de:	13020203			
Drainage Area:					
Drainage Area Unit	:				
Contrib Drainage A	rea:				
Contrib Drainage A Unit:	rea				
Horizontal Accuracy	y: ^	10			
Horizontal Accuracy	y Unit: s	seconds			
Horizontal Collectio Mthd:	in [Differentially corrected Global	Positioning System.		

40

Horiz Coord Refer	NAD83
Vertical Measure:	4943.00
Vertical Measure Unit:	feet
Vertical Accuracy:	1.0
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Interpolated from topographic map
Vert Coord Refer System:	NAVD88

Мар Кеу	Direction	Distance (mi)	Di	istance (ft)	Elevat	ion (ft)	DB
12	ESE	0.35	1,8	351.07	4,944.68	8	FED USGS
Organiz Identifier:	US	GS-NM		Formation Type:	S	Santa Fe Group	
Organiz Name:	US Ce	GS New Mexico Water Scie	ence	Aquifer Name:			
Well Depth:	30			Aquifer Type:	L	Inconfined single aq	uifer
Well Depth Unit:	ft			Country Code:	L	JS	
Well Hole Depth:	30			Provider Name:	Ν	IWIS	
W Hole Depth Unit:	ft			County:	В	BERNALILLO	
Construction Date:	20	040812		Latitude:	3	5.0672194	
Source Map Scale:	24	000		Longitude:	-'	106.6580611	
Monitoring Loc Nam	ne: 10	N.03E.30.244B BERM					
Monitoring Loc Iden	ntifier: US	GS-350402106392902					
Monitoring Loc Type	e: We	9 1 1					
Monitoring Loc Des	c:						
HUC Eight Digit Co	de: 13	020203					
Drainage Area:							
Drainage Area Unit:							
Contrib Drainage A	rea:						
Contrib Drainage Au Unit:	rea						
Horizontal Accuracy	/: 1						
Horizontal Accuracy	/ Unit: see	conds					
Horizontal Collectio Mthd:	n Dif	ferentially corrected Global F	Position	ning System.			
Horiz Coord Refer System:	NA	D83					
Vertical Measure:	494	43.08					
Vertical Measure U	nit: fee	t					
Vertical Accuracy:	.02						
Vertical Accuracy U	nit: fee	t					
Vertical Collection N	Athd: Le	vel or other surveyed method	d.				
Vert Coord Refer S	ystem: NA	VD88					

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
12	ESE	0.35	1,851.07	4,944.68	FED USGS
Organiz Identifier:	USGS	NM	Formation Type:	Santa Fe Group	

Organiz Name:	USGS New Mexico Water Science Center	Aquifer Name:	
Well Depth:	15	Aquifer Type:	Unconfined single aquifer
Well Depth Unit:	ft	Country Code:	US
Well Hole Depth:	15	Provider Name:	NWIS
W Hole Depth Unit:	ft	County:	BERNALILLO
Construction Date:	20040812	Latitude:	35.0672194
Source Map Scale:	24000	Longitude:	-106.6580611
Monitoring Loc Name:	10N.03E.30.244A BERS		
Monitoring Loc Identifier:	USGS-350402106392901		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Differentially corrected Global Position	ning System.	
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4943.08		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.02		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		

Мар Кеу	Direct	ion	Distance (mi)	Dis	tance (ft)	Eleva	ation (ft)	DB
13	Е		0.36	1,91	4.64	4,945.	.65	FED USGS
Organiz Identifier:		11969-	NIM	F	Formation Type:			
Organiz Name:		USGS Center	New Mexico Water Science	e A	Aquifer Name:			
Well Depth:				ŀ	Aquifer Type:			
Well Depth Unit:				(Country Code:		US	
Well Hole Depth:				F	Provider Name:		NWIS	
W Hole Depth Unit:				(County:		BERNALILLO	
Construction Date:				L	Latitude:		35.0692691	
Source Map Scale:		24000		L	Longitude:		-106.6576088	
Monitoring Loc Nan	ne:	ALBUG	QUERQUE RIVERSIDE DR	RAINN	NEAR BARELAS BRID	OGE		
Monitoring Loc Ider	ntifier:	USGS-	350409106392510					
Monitoring Loc Typ	e:	Stream	l					
Monitoring Loc Des	SC:							
HUC Eight Digit Co	de:	130202	203					
Drainage Area:								

Drainage Area Unit:	
Contrib Drainage Area: Contrib Drainage Area	
Unit: Horizontal Accuracy:	1
Horizontal Accuracy Unit:	seconds
Horizontal Collection Mthd:	Interpolated from MAP.
Horiz Coord Refer System:	NAD83
Vertical Measure:	4950
Vertical Measure Unit:	feet
Vertical Accuracy:	5
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Interpolated from topographic map.
Vert Coord Refer System:	NGVD29

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
14	ESE	0.38	2,001.69	4,944.65	FED USGS
Organiz Identifier:	US	GS-NM	Formation Type:	Santa Fe Group	
Organiz Name:	US	GS New Mexico Water Science	ce Aquifer Name:		
Well Depth:	16	Inter	Aquifer Type:	Unconfined single aqu	uifer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	16		Provider Name:	NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	20	040812	Latitude:	35.0673028	
Source Map Scale:	24	000	Longitude:	-106.6575083	
Monitoring Loc Nam	ne: 10	N.03E.30.244C BEBS			
Monitoring Loc Iden	tifier: US	GS-350402106392601			
Monitoring Loc Type	e: We	ell -			
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 13	020203			
Drainage Area:					
Drainage Area Unit:					
Contrib Drainage A	rea:				
Contrib Drainage Au Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	/ Unit: see	conds			
Horizontal Collectio Mthd:	n Dif	ferentially corrected Global Po	sitioning System.		
Horiz Coord Refer System:	NA	D83			
Vertical Measure:	494	42.18			
Vertical Measure U	nit: fee	t			
Vertical Accuracy:	.02	2			
Vertical Accuracy U	nit: fee	t			
Vertical Collection N	/Ithd: Lev	vel or other surveyed method.			

Vert Coord Refer System: NAVD88

Мар Кеу	Direction	on	Distance (mi)	Dis	tance (ft)	Elevatio	n (ft)	DB
14	ESE		0.38	2,00	1.69	4,944.65		FED USGS
Organiz Identifier:		USGS-N	MM	F	Formation Type:	San	ta Fe Group	
Organiz Name:		USGS N Center	New Mexico Water Science	e A	Aquifer Name:			
Well Depth:		52		A	Aquifer Type:	Unc	onfined single aqui	fer
Well Depth Unit:		ft		(Country Code:	US		
Well Hole Depth:		52		F	Provider Name:	NW	IS	
W Hole Depth Unit:		ft		(County:	BEF	RNALILLO	
Construction Date:		200408	12	L	Latitude:	35.0	673028	
Source Map Scale:		24000		L	Longitude:	-106	6.6575083	
Monitoring Loc Nam	ne:	10N.03	E.30.244D BEBD					
Monitoring Loc Iden	tifier:	USGS-3	350402106392603					
Monitoring Loc Type	e:	Well						
Monitoring Loc Desc	c:							
HUC Eight Digit Cod	de:	130202	03					
Drainage Area:								
Drainage Area Unit:								
Contrib Drainage Ar	ea:							
Contrib Drainage Ar Unit:	ea							
Horizontal Accuracy	/:	1						
Horizontal Accuracy	/ Unit:	seconds	3					
Horizontal Collection Mthd:	n	Differen	tially corrected Global Pos	sitionir	ng System.			
Horiz Coord Refer System:		NAD83						
Vertical Measure:		4942.18	5					
Vertical Measure Ur	nit:	feet						
Vertical Accuracy:		.02						
Vertical Accuracy U	nit:	feet						
Vertical Collection M	/Ithd:	Level or	other surveyed method.					
Vert Coord Refer Sy	/stem:	NAVD8	8					

Мар Кеу	Directio	on Distance (mi)	Distance (ft)	Elevation (ft)	DB
14	ESE	0.38	2,001.69	4,944.65	FED USGS
Organiz Identifier:	ι	JSGS-NM	Formation Type:	Santa Fe Gro	up
Organiz Name:	l	JSGS New Mexico Water S Center	Science Aquifer Name:		
Well Depth:	3	31	Aquifer Type:	Unconfined si	ngle aquifer
Well Depth Unit:	f	ť	Country Code:	US	
Well Hole Depth:	3	31	Provider Name:	NWIS	
W Hole Depth Unit:	f	ť	County:	BERNALILLO	
Construction Date:	2	20040812	Latitude:	35.0673028	

Source Map Scale:	24000	Longitude:	-106.6575083
Monitoring Loc Name:	10N.03E.30.244D BEBM		
Monitoring Loc Identifier:	USGS-350402106392602		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Differentially corrected Global Position	ning System.	
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4942.18		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.02		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		

Мар Кеу	Directio	on Distance (mi)	Distance (ft)	Elevation (ft)	DB
15	ESE	0.39	2,062.41	4,944.29	FED USGS
Organiz Identifier	: L	JSGS-NM	Formation Type:	Santa Fe Group	
Organiz Name:	L	JSGS New Mexico Water S	Science Aquifer Name:		
Well Depth:	1	5	Aquifer Type:	Unconfined single	aquifer
Well Depth Unit:	ft	t	Country Code:	US	
Well Hole Depth:	1	5	Provider Name:	NWIS	
W Hole Depth Un	it: fl	t	County:	BERNALILLO	
Construction Date	e: 2	20050826	Latitude:	35.065975	
Source Map Scale	e: 2	24000	Longitude:	-106.6579417	
Monitoring Loc Na	ame: 1	0N.03E.30.422C BERS-T	2		
Monitoring Loc Id	entifier: L	JSGS-350357106392901			
Monitoring Loc Ty	/pe: V	Vell			
Monitoring Loc De	esc:				
HUC Eight Digit C	Code: 1	3020203			
Drainage Area:					
Drainage Area Ur	nit:				
Contrib Drainage	Area:				
Contrib Drainage Unit:	Area				
Horizontal Accura	acy: 1				
Horizontal Accura	acy Unit: s	seconds			
Horizontal Collect Mthd:	tion E	Differentially corrected Glob	bal Positioning System.		

45

NAD83
4943.41
feet
.01
feet
Level or other surveyed method.
NAVD88

Мар Кеу	Direction	Distance (mi)	Distance (f	t) Eleva	tion (ft)	DB
15	ESE	0.39	2,062.41	4,944.2	29	FED USGS
Onnenia Identifican				Tomas		
	05		Formation	Туре:	Santa Fe Group	
Organiz Name:	Cer	GS New Mexico Water Scier	ice Aquifer Na	ime:		
Well Depth:	30		Aquifer Ty	pe:	Unconfined single a	quifer
Well Depth Unit:	ft		Country Co	ode:	US	
Well Hole Depth:	30		Provider N	lame:	NWIS	
W Hole Depth Unit:	ft		County:	l	BERNALILLO	
Construction Date:	200	050826	Latitude:	:	35.065975	
Source Map Scale:	240	000	Longitude:	: .	-106.6579417	
Monitoring Loc Nam	ne: 10M	N.03E.30.422D BERM-T2				
Monitoring Loc Iden	ntifier: US	GS-350357106392902				
Monitoring Loc Type	e: We	II				
Monitoring Loc Des	c:					
HUC Eight Digit Co	de: 130	020203				
Drainage Area:						
Drainage Area Unit:	:					
Contrib Drainage A	rea:					
Contrib Drainage Au Unit:	rea					
Horizontal Accuracy	y: 1					
Horizontal Accuracy	/ Unit: sec	onds				
Horizontal Collectio Mthd:	n Diff	erentially corrected Global P	ositioning System	l.		
Horiz Coord Refer System:	NA	D83				
Vertical Measure:	494	3.41				
Vertical Measure U	nit: fee	t				
Vertical Accuracy:	.01					
Vertical Accuracy U	Init: fee	t				
Vertical Collection N	Athd: Lev	el or other surveyed method				
Vert Coord Refer S	ystem: NA	VD88				

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
16	ESE	0.43	2,248.77	4,944.65	FED USGS
Organiz Identifier:	USGS	NM	Formation Type:	Santa Fe Group	

Organiz Name:	USGS New Mexico Water Science Center	Aquifer Name:	
Well Depth:	15	Aquifer Type:	Unconfined single aquifer
Well Depth Unit:	ft	Country Code:	US
Well Hole Depth:	15	Provider Name:	NWIS
W Hole Depth Unit:	ft	County:	BERNALILLO
Construction Date:	20050826	Latitude:	35.0660833
Source Map Scale:	24000	Longitude:	-106.657175
Monitoring Loc Name:	10N.03E.29.311C BEBS-T2		
Monitoring Loc Identifier:	USGS-350358106392601		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Differentially corrected Global Position	ning System.	
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4941.91		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.02		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		

Мар Кеу	Direct	ion	Distance (mi)	Distance (ft)	Elevation (ft)	DB
16	ESE		0.43	2,248.77	4,944.65	FED USGS
Organiz Identifiari					Santa Fa Oroun	
Organiz identilier.		0363-		Formation Type.	Santa Fe Group	
Organiz Name:		USGS Center	New Mexico Water Science	e Aquifer Name:		
Well Depth:		40		Aquifer Type:	Unconfined single	e aquifer
Well Depth Unit:		ft		Country Code:	US	
Well Hole Depth:		40		Provider Name:	NWIS	
W Hole Depth Unit:		ft		County:	BERNALILLO	
Construction Date:		200508	326	Latitude:	35.0660833	
Source Map Scale:		24000		Longitude:	-106.657175	
Monitoring Loc Nam	ne:	10N.03	E.29.311E BEBD-T2			
Monitoring Loc Iden	tifier:	USGS-	350358106392603			
Monitoring Loc Type	e:	Well				
Monitoring Loc Des	c:					
HUC Eight Digit Co	de:	130202	203			
Drainage Area:						

Drainage Area Unit:	
Contrib Drainage Area:	
Contrib Drainage Area Unit:	
Horizontal Accuracy:	1
Horizontal Accuracy Unit:	seconds
Horizontal Collection Mthd:	Differentially corrected Global Positioning System.
Horiz Coord Refer System:	NAD83
Vertical Measure:	4941.91
Vertical Measure Unit:	feet
Vertical Accuracy:	.01
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Level or other surveyed method.
Vert Coord Refer System:	NAVD88

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
16	ESE	0.43	2,248.77	4,944.65	FED USGS
Organiz Identifier:	US	GS-NM	Formation Type:	Santa Fe Group	
Organiz Name:	US	GS New Mexico Water Scien	ce Aquifer Name:		
Well Depth:	30		Aquifer Type:	Unconfined single aq	uifer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	30		Provider Name:	NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	20	050826	Latitude:	35.0660833	
Source Map Scale:	24	000	Longitude:	-106.657175	
Monitoring Loc Nam	ne: 10	N.03E.29.311D BEBM-T2			
Monitoring Loc Iden	tifier: US	GS-350358106392602			
Monitoring Loc Type	e: We	ell			
Monitoring Loc Des	C:				
HUC Eight Digit Co	de: 13	020203			
Drainage Area:					
Drainage Area Unit:					
Contrib Drainage Ar	rea:				
Contrib Drainage Au Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	v Unit: se	conds			
Horizontal Collection Mthd:	n Dif	ferentially corrected Global Po	ositioning System.		
Horiz Coord Refer System:	NA	ND83			
Vertical Measure:	49	41.91			
Vertical Measure Un	nit: fee	et			
Vertical Accuracy:	.02	2			
Vertical Accuracy U	nit: fee	et			
Vertical Collection N	/Ithd: Le	vel or other surveyed method.			

Vert Coord Refer System: NAVD88

Мар Кеу	Directio	on Di	stance (mi)	Distance (ft)	Elevation (ft)	DB
17	ESE	0.4	3	2,256.62	4,944.65	FED USGS
Organiz Identifier:	ι	USGS-NM		Formation Type:	Santa Fe Group	
Organiz Name:	l	USGS Nev Center	v Mexico Water Science	Aquifer Name:		
Well Depth:	3	30		Aquifer Type:	Unconfined single aqu	ifer
Well Depth Unit:	f	ft		Country Code:	US	
Well Hole Depth:	3	30		Provider Name:	NWIS	
W Hole Depth Unit:	f	ft		County:	BERNALILLO	
Construction Date:	2	20040812		Latitude:	35.0673917	
Source Map Scale:	2	24000		Longitude:	-106.6566056	
Monitoring Loc Nam	ne: î	10N.03E.3	0.244G BEDWM			
Monitoring Loc Iden	tifier: l	USGS-350	403106392302			
Monitoring Loc Type	e: ۱	Well				
Monitoring Loc Desc	c:					
HUC Eight Digit Cod	de: 1	13020203				
Drainage Area:						
Drainage Area Unit:						
Contrib Drainage Ar	ea:					
Contrib Drainage Ar Unit:	ea					
Horizontal Accuracy	<i>'</i> :	1				
Horizontal Accuracy	/ Unit: s	seconds				
Horizontal Collection Mthd:	n [Differential	ly corrected Global Pos	tioning System.		
Horiz Coord Refer System:	1	NAD83				
Vertical Measure:	4	4941.86				
Vertical Measure Ur	nit: f	feet				
Vertical Accuracy:		.02				
Vertical Accuracy U	nit: f	feet				
Vertical Collection M	/Ithd: L	Level or otl	her surveyed method.			
Vert Coord Refer Sy	/stem:	NAVD88				

Мар Кеу	Directi	on Distance (m	i) Distance (ft)	Elevation (ft)	DB
17	ESE	0.43	2,256.62	4,944.65	FED USGS
Organiz Identifier:		USGS-NM	Formation Typ	be: Santa Fe Gro	up
Organiz Name:		USGS New Mexico Wat Center	er Science Aquifer Name	c	
Well Depth:		15	Aquifer Type:	Unconfined si	ngle aquifer
Well Depth Unit:		ft	Country Code	us us	
Well Hole Depth:		15	Provider Name	e: NWIS	
W Hole Depth Unit:		ft	County:	BERNALILLC)
Construction Date:		20040812	Latitude:	35.0673917	

Source Map Scale:	24000	Longitude:	-106.6566056
Monitoring Loc Name:	10N.03E.30.244F BEDWS		
Monitoring Loc Identifier:	USGS-350403106392301		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Differentially corrected Global Position	ning System.	
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4941.86		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.02		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		

Мар Кеу	Direction	n Distance (mi)	Distance (ft)	Elevation (ft)	DB
18	ESE	0.43	2,274.66	4,944.65	FED USGS
Organiz Identifier:	U	SGS-NM	Formation Type:		
Organiz Name:	U C	SGS New Mexico Water Scienc enter	e Aquifer Name:		
Well Depth:	Ū.		Aquifer Type:		
Well Depth Unit:			Country Code:	US	
Well Hole Depth:			Provider Name:	NWIS	
W Hole Depth Uni	t:		County:	BERNALILLO	
Construction Date	: 20	0060612	Latitude:	35.0674	
Source Map Scale	: 24	4000	Longitude:	-106.6565417	
Monitoring Loc Na	me: 10	0N.03E.30.244I BEDSW			
Monitoring Loc Ide	ntifier: U	SGS-350403106392410			
Monitoring Loc Ty	be: Si	tream			
Monitoring Loc De	SC:				
HUC Eight Digit C	ode: 13	3020203			
Drainage Area:					
Drainage Area Un	it:				
Contrib Drainage	Area:				
Contrib Drainage A	Area				
Horizontal Accurac	cy: 10)			
Horizontal Accurac	cy Unit: se	econds			
Horizontal Collecti Mthd:	on D	ifferentially corrected Global Pos	sitioning System.		

50

Horiz Coord Refer	NAD83
Vertical Measure:	4942.00
Vertical Measure Unit:	feet
Vertical Accuracy:	1.0
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Interpolated from topographic map.
Vert Coord Refer System:	NAVD88

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
19	ESE	0.43	2,288.71	4,944.65	FED USGS
Organiz Identifier:	USG	S-NM	Formation Type:		
Organiz Name:	USG Cent	S New Mexico Water Scien er	ice Aquifer Name:		
Well Depth:	16		Aquifer Type:	Unconfined sir	ngle aquifer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	16		Provider Name:	NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	2008	1030	Latitude:	35.0673972	
Source Map Scale:	2400	0	Longitude:	-106.6564944	
Monitoring Loc Nan	ne: T10N	I.R3E.30.244H bedes			
Monitoring Loc Ider	ntifier: USG	S-350403106392201			
Monitoring Loc Type	e: Well				
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 1302	0203			
Drainage Area:					
Drainage Area Unit	:				
Contrib Drainage A	rea:				
Contrib Drainage A Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	/ Unit: seco	nds			
Horizontal Collectio Mthd:	n Diffe	rentially corrected Global P	ositioning System.		
Horiz Coord Refer System:	NAD	83			
Vertical Measure:	4940	.68			
Vertical Measure U	nit: feet				
Vertical Accuracy:	.01				
Vertical Accuracy U	nit: feet				
Vertical Collection N	Athd: Leve	l or other surveyed method			
Vert Coord Refer S	ystem: NAV	D88			

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
20	ESE	0.47	2,486.51	4,944.65	FED USGS
Organiz Identifier:	USGS	NM	Formation Type:	Santa Fe Group	

Organiz Name:	USGS New Mexico Water Science	Aquifer Name:	
Well Depth:	16	Aquifer Type:	Unconfined single aquifer
Well Depth Unit:	ft	Country Code:	US
Well Hole Depth:	16	Provider Name:	NWIS
W Hole Depth Unit:	ft	County:	BERNALILLO
Construction Date:	20050825	Latitude:	35.0661222
Source Map Scale:	24000	Longitude:	-106.6562861
Monitoring Loc Name:	10N.03E.29.311A BEDWS-T2		
Monitoring Loc Identifier:	USGS-350358106392301		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area			
Unit: Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection	Differentially corrected Global Positic	onina Svstem.	
Mthd:		0 /	
Horiz Coord Refer	NAD83		
Vertical Measure:	4939.88		
Vertical Measure Unit:	feet		
Vertical Accuracy:	.02		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Level or other surveyed method.		
Vert Coord Refer System:	NAVD88		
-			

Мар Кеу	Direct	ion	Distance (mi)	Distance (ft)	Elevation (f	t) DB
20	ESE		0.47	2,486.51	4,944.65	FED USGS
Organiz Identifier:		USGS-	NM	Formation Type:	Santa Fe	e Group
Organiz Name:		USGS Center	New Mexico Water Science	e Aquifer Name:		
Well Depth:		31		Aquifer Type:	Unconfir	ned single aquifer
Well Depth Unit:		ft		Country Code:	US	
Well Hole Depth:		31		Provider Name:	NWIS	
W Hole Depth Unit:		ft		County:	BERNAL	-ILLO
Construction Date:		200508	325	Latitude:	35.0661	222
Source Map Scale:		24000		Longitude:	-106.656	52861
Monitoring Loc Nam	ne:	T10N.F	R03E.29.311B BEDWM-T2			
Monitoring Loc Iden	ntifier:	USGS-	350358106392302			
Monitoring Loc Type	e:	Well				
Monitoring Loc Des	c:					
HUC Eight Digit Co	de:	130202	203			
Drainage Area:						

Drainage Area Unit:	
Contrib Drainage Area:	
Contrib Drainage Area Unit:	
Horizontal Accuracy:	1
Horizontal Accuracy Unit:	seconds
Horizontal Collection Mthd:	Differentially corrected Global Positioning System.
Horiz Coord Refer System:	NAD83
Vertical Measure:	4939.88
Vertical Measure Unit:	feet
Vertical Accuracy:	.02
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Level or other surveyed method.
Vert Coord Refer System:	NAVD88

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
21	ESE	0.48	2,517.33	4,944.65	FED USGS
Organiz Identifier:	US	GS-NM	Formation Type:		
Organiz Name:	US Ce	GS New Mexico Water Scienc	e Aquifer Name:		
Well Depth:	16		Aquifer Type:	Unconfined single aqu	lifer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	16		Provider Name:	NWIS	
W Hole Depth Unit:	ft		County:	BERNALILLO	
Construction Date:	200	081031	Latitude:	35.0661333	
Source Map Scale:	240	000	Longitude:	-106.6561694	
Monitoring Loc Nam	ne: T1	0N.R3E.29.311F bedes-t2			
Monitoring Loc Iden	tifier: US	GS-350358106392201			
Monitoring Loc Type	e: We	ell			
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 130	020203			
Drainage Area:					
Drainage Area Unit:					
Contrib Drainage A	rea:				
Contrib Drainage Au Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	/ Unit: sea	conds			
Horizontal Collectio Mthd:	n Dif	ferentially corrected Global Pos	sitioning System.		
Horiz Coord Refer System:	NA	D83			
Vertical Measure:	493	39.91			
Vertical Measure U	nit: fee	t			
Vertical Accuracy:	.01				
Vertical Accuracy U	nit: fee	t			
Vertical Collection N	/Ithd: Lev	vel or other surveyed method.			

Vert Coord Refer System: NAVD88

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
22	ESE	0.48	2,555.64	4,944.65	FED USGS
Organiz Identifier:	US	GS-NM	Formation Type:	Alluvium, Bol Other Surface	son Deposits and
Organiz Name:	US	GS New Mexico Water Science	ce Aquifer Name:		
Well Depth:	20	llei	Aquifer Type:		
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:	20		Provider Name:	NWIS	
W Hole Depth Uni	t: ft		County:	BERNALILLO)
Construction Date	:		Latitude:	35.0650471	
Source Map Scale	: 240	000	Longitude:	-106.6566921	1
Monitoring Loc Na	me: 101	N.03E.29.311			
Monitoring Loc Ide	entifier: US	GS-350354106392201			
Monitoring Loc Ty	pe: We	II			
Monitoring Loc De	SC:				
HUC Eight Digit C	ode: 130	20203			
Drainage Area:					
Drainage Area Un	it:				
Contrib Drainage	Area:				
Contrib Drainage / Unit:	Area				
Horizontal Accurac	cy: 1				
Horizontal Accurac	cy Unit: sec	onds			
Horizontal Collecti Mthd:	on Inte	erpolated from MAP.			
Horiz Coord Refer System:	NA	D83			
Vertical Measure:	494	3.00			
Vertical Measure l	Jnit: fee	t			
Vertical Accuracy:	11				
Vertical Accuracy	Unit: fee	t			
Vertical Collection	Mthd: Inte	erpolated from topographic ma	ap.		
Vert Coord Refer S	System: NG	VD29			

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
23	NNW	0.51	2,671.06	4,946.67	FED USGS
Organiz Identifier: Organiz Name: Well Depth: Well Depth Unit: Well Hole Depth: W Hole Depth Unit: Construction Date:	USGS USGS	-TX Texas Water Science Cente	Formation Type: Aquifer Name: Aquifer Type: Country Code: Provider Name: County: Latitude:	US NWIS BERNALILLO 35.0756861	

Source Map Scale:	24000	Longitude:	-106.6679639
Monitoring Loc Name:	Rio Grande ups Hwy 314 at Albuquero	que, NM	
Monitoring Loc Identifier:	USGS-350432106400500		
Monitoring Loc Type:	Stream		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	.5		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Interpolated from Digital MAP.		
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4953		
Vertical Measure Unit:	feet		
Vertical Accuracy:	5		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Interpolated from Digital Elevation Mo	del	
Vert Coord Refer System:	NAVD88		

Мар Кеу	Directio	on Distance (mi)	Distance (ft)	Elevation (ft)) DB
25	ESE	0.62	3,292.96	4,944.65	FED USGS
Organiz Identifier:	ι	JSGS-NM	Formation T	ype: Alluvium,	Bolson Deposits and
Organiz Name:	L (JSGS New Mexico Water	Science Aquifer Nam	ie:	
Well Depth:	4	0	Aquifer Type	9:	
Well Depth Unit:	f	t	Country Cod	le: US	
Well Hole Depth:	4	0	Provider Nar	me: NWIS	
W Hole Depth Unit:	f	t	County:	BERNAL	ILLO
Construction Date:			Latitude:	35.06504	71
Source Map Scale:	2	24000	Longitude:	-106.6539	9143
Monitoring Loc Nam	ne: 1	0N.03E.29.312			
Monitoring Loc Iden	tifier: L	JSGS-350354106391201			
Monitoring Loc Type	e: V	Vell			
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 1	3020203			
Drainage Area:					
Drainage Area Unit:	:				
Contrib Drainage Ar	rea:				
Contrib Drainage Au Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	/Unit: s	seconds			
Horizontal Collection	n l	nterpolated from MAP.			

erisinfo.com Environmental Risk Information Services

Mthd:	
Horiz Coord Refer	NAD83
Vertical Measure:	4943.00
Vertical Measure Unit:	feet
Vertical Accuracy:	11
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Interpolated from topographic map.
Vert Coord Refer System:	NGVD29

Мар Кеу	Directio	on Distance (mi)	D	istance (ft)	Elevation (ft)	DB
26	WNW	0.63	3,	333.39	4,946.65	FED USGS
Organiz Identifier:				Formation Type:		
Organiz Name:	l	USGS New Mexico Water Scier	nce	Aquifer Name:		
Well Depth:	· · · ·	Center		Aquifer Type:		
Well Depth Unit:				Country Code:	US	
Well Hole Depth:				Provider Name:	NWIS	
W Hole Depth Unit:				County:	BERNALILLO	
Construction Date:		19530201		Latitude:	35.0708801	
Source Map Scale:	2	24000		Longitude:	-106.6755814	
Monitoring Loc Nam	ne:	10N.02E.24.413				
Monitoring Loc Iden	tifier:	USGS-350415106403001				
Monitoring Loc Type	e: N	Well				
Monitoring Loc Des	c:					
HUC Eight Digit Co	de:	13020203				
Drainage Area:						
Drainage Area Unit:						
Contrib Drainage Ar	rea:					
Contrib Drainage Ar Unit:	rea					
Horizontal Accuracy	/:	1				
Horizontal Accuracy	/ Unit: s	seconds				
Horizontal Collection Mthd:	n l	Interpolated from MAP.				
Horiz Coord Refer System:	I	NAD83				
Vertical Measure:	4	4945.00				
Vertical Measure Ur	nit: f	feet				
Vertical Accuracy:		10				
Vertical Accuracy U	nit: f	feet				
Vertical Collection M	/Ithd: I	Interpolated from topographic m	nap.			
Vert Coord Refer Sy	ystem: I	NGVD29				

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
27	Ν	0.65	3,432.38	4,949.65	FED USGS

Organiz Identifier:	USGS-NM	Formation Type:	Quaternary Alluvium
Organiz Name:	USGS New Mexico Water Science	Aquifer Name:	Rio Grande aquifer system
Well Depth:	18.05	Aquifer Type:	Unconfined single aquifer
Well Depth Unit:	ft	Country Code:	US
Well Hole Depth:	18.05	Provider Name:	NWIS
W Hole Depth Unit:	ft	County:	BERNALILLO
Construction Date:	19930621	Latitude:	35.0784077
Source Map Scale:	24000	Longitude:	-106.6627201
Monitoring Loc Name:	10N.03E.19.2333		
Monitoring Loc Identifier:	USGS-350447106395201		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	.5		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Mapping grade GPS unit (handheld ad	ccuracy range 12 to 40 ft)	
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4945		
Vertical Measure Unit:	feet		
Vertical Accuracy:	5		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Interpolated from topographic map.		
Vert Coord Refer System:	NGVD29		

Мар Кеу	Direction		Distance (mi)	Distance (ft)		Elevation (ft)		DB
28	SE		0.70	3,68	81.52	4,943	.66	FED USGS
							•	
Organiz Identifier:		USGS-	NM		Formation Type:		Quaternary Alluvium	
Organiz Name:		USGS Center	New Mexico Water Science	e	Aquifer Name:		Rio Grande aquifer sys	tem
Well Depth:		29.25			Aquifer Type:		Unconfined single aqui	fer
Well Depth Unit:		ft			Country Code:		US	
Well Hole Depth:		29.25			Provider Name:		NWIS	
W Hole Depth Unit:		ft			County:		BERNALILLO	
Construction Date:		199306	518		Latitude:		35.0624638	
Source Map Scale:		24000			Longitude:		-106.6543031	
Monitoring Loc Nan	ne:	10N.03	BE.29.3342					
Monitoring Loc Ider	ntifier:	USGS	350344106391201					
Monitoring Loc Typ	e:	Well						
Monitoring Loc Des	SC:							
HUC Eight Digit Co	de:	130202	203					

Drainage Area:	
Drainage Area Unit:	
Contrib Drainage Area:	
Contrib Drainage Area Unit:	
Horizontal Accuracy:	.5
Horizontal Accuracy Unit:	seconds
Horizontal Collection Mthd:	Mapping grade GPS unit (handheld accuracy range 12 to 40 ft)
Horiz Coord Refer System:	NAD83
Vertical Measure:	4940
Vertical Measure Unit:	feet
Vertical Accuracy:	5
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Interpolated from topographic map.
Vert Coord Refer System:	NGVD29

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
33	ESE	0.81	4,284.85	4,947.65	FED USGS
Organiz Identifier:	US	GS-NM	Formation Type:		
Organiz Name:	US Cer	GS New Mexico Water Scienc	e Aquifer Name:		
Well Depth:			Aquifer Type:		
Well Depth Unit:			Country Code:	US	
Well Hole Depth:			Provider Name:	NWIS	
W Hole Depth Unit:			County:	BERNALILLO	
Construction Date:			Latitude:	35.0652778	
Source Map Scale:	240	000	Longitude:	-106.6502778	
Monitoring Loc Nam	ne: Wil	liam and Kathryn Streets			
Monitoring Loc Iden	tifier: US	GS-350355106390110			
Monitoring Loc Type	e: Fac	cility: Outfall			
Monitoring Loc Des	c:				
HUC Eight Digit Co	de: 130	020203			
Drainage Area:					
Drainage Area Unit:					
Contrib Drainage A	rea:				
Contrib Drainage Au Unit:	rea				
Horizontal Accuracy	/: 1				
Horizontal Accuracy	/ Unit: sec	onds			
Horizontal Collectio Mthd:	n Ma	pping grade GPS unit (handhe	eld accuracy range 12 to 40) ft)	
Horiz Coord Refer System:	NA	D83			
Vertical Measure:	494	13			
Vertical Measure U	nit: fee	t			
Vertical Accuracy:	4.3				
Vertical Accuracy U	nit: fee	t			

Vertical Collection Mthd: Interpolated from Digital Elevation Model Vert Coord Refer System: NAVD88

Мар Кеу	Directio	on Distance (m	i) I	Distance (ft)	Elevation (ft)	DB
34	ESE	0.88	2	4,625.17	4,945.82	FED USGS
Organiz Identifier:	ι	JSGS-NM		Formation Type:		
Organiz Name:	l (JSGS New Mexico Wa Center	ter Science	Aquifer Name:		
Well Depth:				Aquifer Type:		
Well Depth Unit:				Country Code:	US	
Well Hole Depth:				Provider Name:	NWIS	
W Hole Depth Unit:				County:	BERNALILLO	
Construction Date:	1	1940		Latitude:	35.0619916	
Source Map Scale:	2	24000		Longitude:	-106.6508586	
Monitoring Loc Nam	ne: 1	10N.03E.29.341				
Monitoring Loc Iden	tifier: L	JSGS-3503431063901	01			
Monitoring Loc Type	e: V	Vell				
Monitoring Loc Des	c:					
HUC Eight Digit Co	de: 1	13020203				
Drainage Area:						
Drainage Area Unit:	1					
Contrib Drainage Ar	rea:					
Contrib Drainage Ar Unit:	rea					
Horizontal Accuracy	/: 5	5				
Horizontal Accuracy	/ Unit: s	seconds				
Horizontal Collection Mthd:	n l	nterpolated from MAP.				
Horiz Coord Refer System:	١	NAD83				
Vertical Measure:	4	1952				
Vertical Measure Ur	nit: f	eet				
Vertical Accuracy:	5	5				
Vertical Accuracy U	nit: f	eet				
Vertical Collection M	/Ithd: I	nterpolated from topog	raphic map.			
Vert Coord Refer Sy	ystem: N	NGVD29				

Мар Кеу	Direction	Distance (mi)	Distance (ft)	Elevation (ft)	DB
35	SE	0.88	4,653.70	4,941.65	FED USGS
Organiz Identifier:	USGS-NM		Formation Type:	Alluvium, Bolson Deposits and Other Surface Deposits	
Organiz Name:	USGS Cente	S New Mexico Water Science	e Aquifer Name:		
Well Depth:	51		Aquifer Type:	Unconfined single aqui	fer
Well Depth Unit:	ft		Country Code:	US	
Well Hole Depth:			Provider Name:	NWIS	
W Hole Depth Unit:			County:	BERNALILLO	

Construction Date:	1989	Latitude:	35.0581028
Source Map Scale:	24000	Longitude:	-106.6553031
Monitoring Loc Name:	10N.03E.32.111		
Monitoring Loc Identifier:	USGS-350329106391701		
Monitoring Loc Type:	Well		
Monitoring Loc Desc:			
HUC Eight Digit Code:	13020203		
Drainage Area:			
Drainage Area Unit:			
Contrib Drainage Area:			
Contrib Drainage Area Unit:			
Horizontal Accuracy:	1		
Horizontal Accuracy Unit:	seconds		
Horizontal Collection Mthd:	Interpolated from MAP.		
Horiz Coord Refer System:	NAD83		
Vertical Measure:	4940		
Vertical Measure Unit:	feet		
Vertical Accuracy:	10		
Vertical Accuracy Unit:	feet		
Vertical Collection Mthd:	Interpolated from topographic map.		
Vert Coord Refer System:	NGVD29		

Мар Кеу	p Key Direction Distance (mi) Distar		Distance (ft)	nce (ft) Elevation (ft)			
36	ENE	0.89	4,716.27	4,950.65	FED USGS		
Organiz Identifier:		USGS-NM	Formation Type:	Santa Fe Group			
Organiz Name:		USGS New Mexico Water S Center	cience Aquifer Name:				
Well Depth:		418	Aquifer Type:				
Well Depth Unit:	1	ft	Country Code:	US			
Well Hole Depth:		428	Provider Name:	NWIS			
W Hole Depth Unit	t: t	ft	County:	BERNALILLO			
Construction Date:		19230101	Latitude:	35.0739357			
Source Map Scale	: :	24000	Longitude:	-106.6494698			
Monitoring Loc Na	me:	10N.03E.20.344					
Monitoring Loc Ide	ntifier:	USGS-350426106385601					
Monitoring Loc Typ	be:	Well					
Monitoring Loc De	SC:						
HUC Eight Digit Co	ode:	13020203					
Drainage Area:							
Drainage Area Uni	it:						
Contrib Drainage A	Area:						
Contrib Drainage A Unit:	Area						
Horizontal Accurac	cy:	1					
Horizontal Accurac	cy Unit:	seconds					

Horizontal Collection	Interpolated from MAP.
Horiz Coord Refer	NAD83
Vertical Measure:	4947.00
Vertical Measure Unit:	feet
Vertical Accuracy:	5
Vertical Accuracy Unit:	feet
Vertical Collection Mthd:	Interpolated from topographic map.
Vert Coord Refer System:	NGVD29

Мар Кеу	Directio	n Distance (mi)	D	Distance (ft)	Eleva	tion (ft)	DB
37	W	0.98	5	,180.51	4,946.6	65	FED USGS
Organiz Identifier:	U	ISGS-NM		Formation Type:		Santa Fe Group	
Organiz Name:	U C	ISGS New Mexico Water So Center	ience	Aquifer Name:			
Well Depth:	3	60		Aquifer Type:			
Well Depth Unit:	ft			Country Code:	I	US	
Well Hole Depth:	3	60		Provider Name:	I	NWIS	
W Hole Depth Unit:	ft			County:	I	BERNALILLO	
Construction Date:	1	9510101		Latitude:	:	35.0700468	
Source Map Scale:	2	4000		Longitude:		-106.6819705	
Monitoring Loc Nan	ne: 1	0N.02E.25.213					
Monitoring Loc Ider	ntifier: U	ISGS-350411106405501					
Monitoring Loc Type	e: W	Vell					
Monitoring Loc Des	C:						
HUC Eight Digit Co	de: 1	3020203					
Drainage Area:							
Drainage Area Unit	:						
Contrib Drainage A	rea:						
Contrib Drainage A Unit:	rea						
Horizontal Accuracy	y: 1						
Horizontal Accuracy	y Unit: se	econds					
Horizontal Collectio Mthd:	n Ir	nterpolated from MAP.					
Horiz Coord Refer System:	N	IAD83					
Vertical Measure:	4	945.00					
Vertical Measure U	nit: fe	eet					
Vertical Accuracy:	1						
Vertical Accuracy U	Init: fe	eet					
Vertical Collection	Mthd: Ir	nterpolated from topographic	c map.				
Vert Coord Refer S	ystem: N	IGVD29					

Radon Information

This section lists any relevant radon information found for the target property.

Federal EPA Radon Zone for BERNALILLO County: 1

Zone 1: Counties with predicted average indoor radon screening levels greater than 4 pCi/L Zone 2: Counties with predicted average indoor radon screening levels from 2 to 4 pCi/L Zone 3: Counties with predicted average indoor radon screening levels less than 2 pCi/L

Federal Area Radon Information for BERNALILLO County

406 2.7 3.7 2.6 3.5 27

No Measures/Homes:
Geometric Mean:
Arithmetic Mean:
Median:
Standard Deviation:
Maximum:
% >4 pCi/L:
% >20 pCi/L:
Notes on Data Table:

28 1 TABLE 1. Screening indoor radon data from the EPA/State Residential Radon Survey of New Mexico conducted during 1988-89. Data represent 2-7 day charcoal canister measurements from the lowest level of each home tested.

Federal Sources

FEMA National Flood Hazard Layer	FEMA FLOOD
The National Flood Hazard Layer (NFHL) data incorporates Flood Insurance Rate Map (FIRM) databases bublished by the Federal Emergency Management Agency (FEMA), and any Letters Of Map Revision (LOMRs) that have been issued against those databases since their publication date. The FIRM Database s the digital, geospatial version of the flood hazard information shown on the published paper FIRMs. The FIRM Database depicts flood risk information and supporting data used to develop the risk data. The FIRM Database is derived from Flood Insurance Studies (FISs), previously published FIRMs, flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available.	
Indoor Radon Data	INDOOR RADON
Indoor radon measurements tracked by the Environmental Protection Agency(EPA) and the State Residential Radon Survey.	
Public Water Systems Violations and Enforcement Data	PWSV
List of drinking water violations and enforcement actions from the Safe Drinking Water Information System (SDWIS) made available by the Drinking Water Protection Division of the US EPA's Office of Groundwater and Drinking Water. Enforcement sensitive actions are not included in the data released by the EPA. Address information provided in SWDIS may correspond either with the physical location of the water system, or with a contact address.	
Radon Zone Level	RADON ZONE
Areas showing the level of Radon Zones (level 1, 2 or 3) by county. This data is maintained by the Environmental Protection Agency (EPA).	
Safe Drinking Water Information System (SDWIS)	SDWIS
The Safe Drinking Water Information System (SDWIS) contains information about public water systems as reported to US Environmental Protection Agency (EPA) by the states. Addresses may correspond with the ocation of the water system, or with a contact address.	
Soil Survey Geographic database	SSURGO
The Soil Survey Geographic database (SSURGO) contains information about soil as collected by the National Cooperative Soil Survey at the Natural Resources Conservation Service (NRCS). Soil maps butline areas called map units. The map units are linked to soil properties in a database. Each map unit may contain one to three major components and some minor components.	
U.S. Fish & Wildlife Service Wetland Data	US WETLAND
The U.S. Fish & Wildlife Service Wetland layer represents the approximate location and type of wetlands and deepwater habitats in the United States.	
USGS Current Topo	US TOPO
US Topo topographic maps are produced by the National Geospatial Program of the U.S. Geological Survey (USGS). The project was launched in late 2009, and the term "US Topo" refers specifically to quadrangle topographic maps published in 2009 and later.	
USGS Geology	US GEOLOGY
Seamless maps depicting geological information provided by the United States Geological Survey (USGS).	
USGS National Water Information System	FED USGS
The U.S. Geological Survey (USGS)'s National Water Information System (NWIS) is the nation's principal repository of water resources data. This database includes comprehensive information of well-construction details, time-series data for gage height, streamflow, groundwater level, and precipitation and water use data.	

State Sources

Oil and Gas Wells

Oil and Gas Well Data collected by New Mexico Oil Conservation Division.

Public Water Supply Wells

The New Mexico Office of the State Engineer (OSE) maintains a list of all public water supply wells in the state. The UTM coordinates in the database are point locations of the wells or a centroid of the legal description.

PWSW

64

Liability Notice

Reliance on information in Report: The Physical Setting Report (PSR) DOES NOT replace a full Phase I Environmental Site Assessment but is solely intended to be used as a review of environmental databases and physical characteristics for the site or adjacent properties.

License for use of information in Report: No page of this report can be used without this cover page, this notice and the project property identifier. The information in Report(s) may not be modified or re-sold.

Your Liability for misuse: Using this Service and/or its reports in a manner contrary to this Notice or your agreement will be in breach of copyright and contract and ERIS may obtain damages for such mis-use, including damages caused to third parties, and gives ERIS the right to terminate your account, rescind your license to any previous reports and to bar you from future use of the Service.

No warranty of Accuracy or Liability for ERIS: The information contained in this report has been produced by ERIS Information Inc. ("ERIS") using various sources of information, including information provided by Federal and State government departments. The report applies only to the address and up to the date specified on the cover of this report, and any alterations or deviation from this description will require a new report. This report and the data contained herein does not purport to be and does not constitute a guarantee of the accuracy of the information contained herein and does not constitute a legal opinion nor medical advice. Although ERIS has endeavored to present you with information that is accurate, ERIS Information Inc. disclaims, any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence, negligence or otherwise, and for any consequences arising therefrom. Liability on the part of ERIS is limited to the monetary value paid for this report.

Trademark and Copyright: You may not use the ERIS trademarks or attribute any work to ERIS other than as outlined above. This Service and Report(s) are protected by copyright owned by ERIS Information Inc. Copyright in data used in the Service or Report(s) (the "Data") is owned by ERIS or its licensors. The Service, Report(s) and Data may not be copied or reproduced in whole or in any substantial part without prior written consent of ERIS.

65