

FIRST SEMI-ANNUAL GROUNDWATER MONITORING REPORT (FORM 1216)

September 2017 Event

Lovington 66
PSTB Facility #1489
503 S. Main Street
Lovington, New Mexico

Submitted To: NMED-PSTB

2905 Rodeo Park Drive East, Building 1

Santa Fe, NM 87505

On Behalf of: Jack Walstad Oil Company

c/o Robert Murrell 2317 Tuttington Circle Oklahoma City, OK 73170

Submitted By: Golder Associates Inc.

5200 Pasadena Avenue NE, Suite C Albuquerque, NM 87113 USA

Distribution:

1 Copy – Mr. Tim Noger, NMED-PSTB1 Copy – Jack Walstad Oil Company2 Copies – Golder Associates Inc.

September 28, 2017

Project No. 1782919 Deliverable ID: 17926-1

Form 1216 First Semi-Annual Groundwater Monitoring Report

Site: Lovington 66

Responsible Party: Jack Walstad Oil Company Inc., Robert C. Murrell

Responsible Party Mailing Address: 2317 Tuttington Circle

Oklahoma City, OK 73170

Facility ID: 1489

Release ID: 1182

Site Address: 424 S. Main St., Lovington, NM

Author/Consulting Company: Golder Associates Inc.

Date of Report: September 28, 2017

Date of Confirmation of Release: December 5, 1991

STATEMENT OF FAMILIARITY

I, the undersigned, am personally familiar with the information submitted in this report and the attached documents and attest that it is complete and true to the best of my knowledge.

Signature:

Date: September 28, 2017

Name: Emily Clark

Affiliation: Golder Associates Inc.
Title: Project Manager

Table of Contents

COVE	R PAGE (FORM 1216)	CP-1
STATE	MENT OF FAMILIARITY	SOF-1
1.0	INTRODUCTION	1
2.0	ACTIVITIES PERFORMED DURING THIS PERIOD	2
2.1	Brief Description of Corrective Action Activities	2
2.2	Monitoring Activities Performed	3
2.2	2.1 W-7 Rehabilitation	3
2.2	2.2 NAPL Gauging, Recovery and Disposal	4
2.2	2.3 Groundwater Gauging and Sampling Activities	4
2.2	2.4 Groundwater Sampling Results	5
2.3	Statement Verifying Containment of Release	6
3.0	SUMMARY AND CONCLUSIONS	7
3.1	Discussion of any Trends or Changes Noted in Analytical Results or Site Conditions	7
3.2	Recommendations	8

i

List of Tables

Table 1	Summary of NAPL Gauging and Recovery
Table 2	Summary of Fluid Gauging Data
Table 3	Summary of Groundwater Purging Field Parameter Data
Table 4	Summary of Groundwater Sample Results: Volatile Organic Compounds

List of Figures

Figure 1	Site Map
Figure 2	Potentiometric Surface Map – September 2017
Figure 3	Distribution of Organic Contaminants in Groundwater – September 2017
Figure 4	Distribution of Dissolved Benzene in Groundwater – September 2017
Figure 5	Distribution of Dissolved MTBE in Groundwater – September 2017
Figure 6	Distribution of Dissolved EDC in Groundwater – September 2017
Figure 7	Distribution of Oxidation-Reduction Potential (ORP) in Groundwater – September 2017

List of Appendices

Appendix A	NAPL Disposai Manifest
Appendix B	Hydrographs
Appendix C	Field Forms
Appendix D	Analytical Laboratory Reports
Appendix E	Concentration Trend Plots

1.0 INTRODUCTION

On behalf of Jack Walstad Oil Company (Walstad), Golder Associates Inc. (Golder) completed the first semi-annual groundwater monitoring event and first quarter NAPL recovery at the former Lovington 66 site. The monitoring event was completed in accordance with the *Work Plan for Groundwater Monitoring and NAPL Bailing/Disposal, Lovington 66 (LUST ID #1182), Lovington, New Mexico* dated June 27, 2017. This work plan satisfies the requirements stated in the New Mexico Administrative Code, Title 20, Chapter 5, Section 12 and the New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau (PSTB) Guidelines for Corrective Action (GCA). The work plan was approved by the NMED PSTB on August 8, 2017 under work plan identification number (WPID #) 17926. This is the first deliverable under WPID #17926, and is identified as deliverable ID 17926-1.

The former Lovington 66 Site is located at 424 South Main Street, Lovington, New Mexico (**Figure 1**). This site is bounded by Highway 83/Avenue D on the south, and Main Street on the east. Avenue C is north of the site; west of the site is commercial property. Southeast of the site is Allsup's #109 convenience store and self-service gasoline station (Allsup's), which is also a PSTB corrective action site. Immediately south of the site, is an Exxon self-service gasoline station. The original Lovington 66 building has been demolished, and a McDonald's restaurant is presently located on the property. The former Lovington 66 was located on the southern portion of the property that now is the parking lot for McDonald's. The Lovington 66 dissolved phase plume has migrated southeast across the intersection of Main and Avenue D and is commingled with the Allsup's site dissolved phase plume.

Significant thickness of nonaqueous phase liquid (NAPL) fuels has been detected at the site in monitoring wells W-1, W-2 and W-3, as well as in Allsup's monitoring well MW-3, located approximately 200 feet downgradient and southeast across the intersection of NM 83 (Avenue D) and Main Street (**Figure 1**). In 2015, Golder further characterized the NAPL accumulation and performed pilot testing. The pilot testing results indicated that multiple remedial strategies could be implemented at the site including: NAPL recovery, water level suppression with enhanced NAPL recovery, multiphase extraction, or secondary enhanced bioremediation using oxygen injection once NAPL has been recovered. To date a remedial strategy has not been selected. At the request of NMED PSTB, Golder has continued NAPL recovery and disposal and groundwater monitoring events at the site to maximize contaminant reduction during the time required to plan, install, and operate capital remediation equipment at the site.

This document (Deliverable 17926-1) includes the 1st quarterly NAPL bailing information and the first semiannual groundwater monitoring data collected in September 2017.

2.0 ACTIVITIES PERFORMED DURING THIS PERIOD

This section provides a brief description of previous corrective action activities conducted at the site, and monitoring activities performed during this monitoring period.

2.1 Brief Description of Corrective Action Activities

No active remediation activities have been completed at the site and the site is does not have a remedial action system installed. Previous corrective action activities that have occurred at the site include the following:

- July 1991 AEI Tank, Inc. (AEI) conducted a site assessment that included seven soil borings advanced within the underground storage tank (UST) backfill or UST perimeter, and five borings in or near product pipe trenches. Hydrocarbon contamination was observed.
- November 1991 AEI removed five USTs that contained diesel, unleaded fuels, and used oil, as well as the associated product piping and fuel dispensers. Hydrocarbon contamination was observed in the location of the dispensers and the location of the diesel tank. It was determined that a release likely occurred from overfilling the USTs and from the dispensers and product lines (a large section of product piping had been replaced).
- November and December 1991 AEI excavated approximately 600 cubic yards of contaminated soil from product line trenches, dispenser islands and tank excavations.
- December 1991 AEI attempted to delineate the vertical extent of contamination by installing one soil boring. The location of this soil boring was never documented. During the drilling of the boring auger refusal was encountered at 40 feet below ground surface (bgs).
- February 1992 AEI installed one groundwater monitoring well. Groundwater sample results indicated that groundwater contamination was present above New Mexico Water Quality Control Commission (NMWQCC) standards.
- March 1992 AEI installed two additional monitor wells to determine the extent of dissolved phase hydrocarbon contamination. Both wells had dissolved phase hydrocarbon concentrations well above NMWQCC standards.
- June 1992 Billings & Associates, Inc. (BAI) completed an Interim Hydrogeologic Investigation Report (on-site). During this investigation six soil borings (B-4 through B-9) were advanced at the site to a depth of 40 feet bgs. Heated headspace measurements above action levels were present in all borings except B-8. NAPL was present in the three monitor wells installed by AEI. Three additional monitor wells W-4, W-5, and W-6 were installed. The three new wells exceeded NMWQCC standards.
- September 1993 BAI completed a 2nd Interim Hydrogeologic Investigation Report. During this investigation free product recovery efforts commenced using BAI's Product Recovery Filter system. In addition six new monitor wells (W-7 through W-12) and vertical extent well V-1, were installed.
- June 1993 BAI submitted the 3rd Interim Hydrogeologic Investigation Report. Five wells (W-13 through W-17) were installed to delineate the dissolved phase plume. NAPL was present in vertical extent well V-1, which Billings attributed to leaking well casing.
- August 2006 Golder sampled the Lovington 66 wells as part of an investigation conducted at the Allsup's site located downgradient from the Lovington 66 site.

- November 2007 Golder completed a Continued Secondary Investigation in which three downgradient wells (W-19, W-20, and W-21) were installed and a NAPL bail down test was completed on wells W-2 and W-3. The downgradient extent of contamination was delineated.
- August 2008 Golder completed four quarters of groundwater monitoring at the Lovington 66 site.
- February 2009 Golder completed the first biannual monitoring event and associated quarterly product recovery from wells W-1, W-2, W-3, and V-1. The site data for the First Biannual Groundwater Monitoring Report was completed in January, 2009.
- August 2009 Golder completed the second biannual monitoring event and associated quarterly product recovery from wells W-1, W-2 and W-3. The site data for the second Biannual Groundwater Monitoring Report was completed in July, 2009.
- February 2014 Golder completed the first biannual monitoring event and associated quarterly product recovery from wells W-1, W-2, W-3, and V-1. The site data for the First Biannual Groundwater Monitoring Report was completed in January 2014.
- October 2014 Golder completed the second biannual monitoring event and associated quarterly product recovery from wells W-1, W-2 and W-3. The site data for the second Biannual Groundwater Monitoring Report was completed in October 2014.
- June 2015 Golder completed installation of a multiphase extraction pilot test well (MPE-1) at the property on June 14, 2015.
- July 2015 Golder completed multiphase vacuum extraction pilot testing on Walstad wells MPE-1, W-1, W-2 and W-3 on July 12 and 13, 2015.
- June 2015 Golder completed NAPL bail-down and recovery testing on wells W-1, W-2 and W-3 in June 2015.
- Golder conducted on-going semi-annual groundwater monitoring and quarterly NAPL removal/disposal from June 2017 to present.

2.2 Monitoring Activities Performed

Monitoring activities performed this period under WPID # 17926 included monitoring well W-7rehabilitation, the first semi-annual groundwater monitoring event, and the first quarterly NAPL recovery. Golder subcontracted CMB Environmental & Geological Services, Inc. (CMB) to perform all field monitoring activities at the site. Field activities were performed on September 11 and 12, 2017.

2.2.1 W-7 Rehabilitation

Since June 2015, root mass in W-7 at about 57 feet below the casing elevation has obstructed water level measurements. Before rehabilitating the well, CMB video surveyed the well to confirm the blockage and to determine if the casing was compromised. CMB rehabbed W-7 on September 11, 2017 by swabbing, surging and bailing the well to clean out the root material and silt build up. CMB repeated swabbing, surging, and bailing until tagging hard bottom. The total depth pre-rehab was measured at 57 feet below casing elevation and post-rehab the total depth was measured at 65.21 feet below casing elevation. Once the rehab was complete, CMB video surveyed the well again to ensure all the root material was removed and to inspect the casing and screen slots. A snap shot from the pre-rehab video and post-rehab videos are shown in Photos 1 and 2 below. The video surveys confirmed the casing for the well is intact.

Roots from a nearby elm tree appear to be growing through the slotted screen. The elm tree was cut sometime in the past; however, CMB observed new growth at the time of the rehab. CMB sprayed the tree with herbicide to inhibit future growth.

2.2.2 NAPL Gauging, Recovery and Disposal

CMB measured fluid levels in wells MPE-1, W-1, W-2 and W-3 on September 11, 2017 pursuant to the first quarterly NAPL bailing event. The four wells were gauged, bailed and then re-gauged. NAPL was present in all four of the Lovington 66 monitor wells (MPE-1, W-1, W-2, and W-3) and is also present in Allsup's well MW-3, located approximately 200 feet downgradient to the southeast. For the first time in the monitoring period of record, 0.74 feet of NAPL was observed in W-14 which is approximately 49 feet northwest of Allsup's well MW-3 (**Figure 1**).

Table 1 contains a cumulative summary of the NAPL thicknesses and recovered quantities from the Lovington 66 monitor wells since 2008. **Table 1** also contains NAPL gauging and recovery data collected during the Multiphase Extraction (MPE) pilot testing that was performed in July, 2015. Approximately 418 gallons of NAPL have been recovered since 2008.

A total of 17.03 gallons of NAPL were recovered from the wells during the September 11, 2017 bailing event. The NAPL and highly contaminated groundwater that were recovered during NAPL bailing at the site on September 11, 2017 were transported to the Gandy Marley disposal facility in Roswell; a copy of the documentation of disposal is included in **Appendix A**.

2.2.3 Groundwater Gauging and Sampling Activities

Groundwater gauging and sampling was conducted on September 11 and 12, 2017. Prior to collecting groundwater samples, CMB measured fluid levels with an electronic water level meter or interface probe. Lovington 66 wells W-4, W-6, W-10, and W-17 were inaccessible. Wells W-4, W-6 and W-17 have been destroyed since 2006. Well W-10 has a broken well vault and is located in the middle of Main Street. Thus, it is generally unsafe to measure fluid levels at this well without a formal traffic control plan. Allsup's site

wells MW-1 and MW-2 were also inaccessible. Allsup's well MW-2 was covered in 2014 when the parking lot was repaved. Allsup's well MW-1 well vault is cemented shut.

Table 2 provides a summary of the groundwater level and NAPL measurements collected from the accessible monitoring wells. A potentiometric surface map was prepared using the collected data and is included in **Figure 2**. Hydrographs showing water levels and NAPL thickness trends in selected wells are included in **Appendix B**.

Eight Lovington 66 monitoring wells (W-5, W-8, W-9, W-11, W-16, W-19, W-20, and W-21) were purged and sampled with disposable polyethylene bailers following the measurement of fluid levels in the wells. MW-14 was scheduled to be sampled, but was not sampled because there was 0.74 feet of NAPL observed in the well. The wells were sampled from least to most contaminated where possible to minimize cross-contamination. All equipment was decontaminated between wells with an Alconox™ solution to prevent cross-contamination. Purge water was ground discharged in accordance with Section 1.7.2 of the GCA. Sampling was accomplished by carefully pouring groundwater from new disposable bailers into the sample containers.

CMB measured field parameters of produced water during purging and prior to sampling. The multi-parameter meter was calibrated and/or checked against standards in accordance with manufacturer's specifications prior to use. Specific conductance, dissolved oxygen (DO), pH, Oxidation-Reduction Potential (ORP) and temperature were recorded on monitoring well sampling field forms. Monitoring well sampling field forms are provided in **Appendix C**. A summary of field parameter data from well purging activities is presented in **Table 3**.

Samples for VOC analysis were collected such that no headspace air existed in the sample vial. All samples were preserved in accordance with analytical method EPA 8260B requirements, then immediately cooled to 4°C with ice and delivered under chain-of-custody to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico within the applicable hold time of 14 days. The analytical laboratory report is provided in **Appendix D**.

2.2.4 Groundwater Sampling Results

The laboratory analytical results for the first semi-annual monitoring event are summarized in **Table 4**. Notable findings from this event are summarized as follows:

- Dissolved phase hydrocarbon concentrations were at or above NMWQCC standards in five of the eight monitor wells sampled.
- Well W-14 was not sampled due to the presence of NAPL. Well W-14 is presumed to exceed regulated limits for gasoline derived groundwater contaminants.

- Benzene concentrations exceeding the New Mexico Water Quality Control Commission (NMWQCC) standard of 10 micrograms per liter (μg/L) in samples collected from W-5 (42 μg/L), W-8 (15,000 μg/L), and W-9 (2,500 μg/L).
- Toluene concentrations exceeding the New Mexico Water Quality Control Commission (NMWQCC) standard of 750 micrograms per liter (μg/L) in the sample collected from W-8 (6,100 μg/L).
- Ethylbenzene concentrations exceeding the New Mexico Water Quality Control Commission (NMWQCC) standard of 750 micrograms per liter (µg/L) in the sample collected from W-8 (2.100 µg/L).
- Xylenes concentration exceeding the New Mexico Water Quality Control Commission (NMWQCC) standard of 620 micrograms per liter (μg/L) in the sample collected from W-8 (4,900 μg/L).
- Methyl tert-butyl ether (MTBE) concentrations exceeding the New Mexico Water Quality Control Commission (NMWQCC) standard of 100 micrograms per liter (μg/L) in samples collected from W-8 (14,000 μg/L) and W-9 (420 μg/L).
- **E**thylene dichloride (EDC) concentrations exceeded the 10 μg/L NMWQCC standard in samples collected from W-8 (260 μg/L), W-9 (510 μg/L), W-11 (52 μg/L), and W-19 (130 μg/L).
- Total naphthalene concentrations (total of reported naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene concentrations) exceeded the NMWQCC standard of 30 μg/L standard in samples collected from W-8 (594 μg/L) and W-9 (43 μg/L).
- The detection limit for ethylene dibromide (EDB) concentrations exceeded NMWQCC standard (0.1 μg/L) for all wells and no sample exceeded the detection limit for any of the wells tested.

2.3 Statement Verifying Containment of Release

The Lovington 66 dissolved phase plume has migrated southeast across the intersection of Avenue D and Main Street to Avenue E southeast of the site. The NAPL plume appears to have migrated beneath the intersection of Avenue D and Main Street with NAPL noted in Allsup's network well MW-3, and as of this monitoring period, well W-14. The downgradient extent of the dissolved phase plume appears to be upgradient of wells W-20 and W-21. Cumulative NAPL data, as well as dissolved VOC data from downgradient wells W-9 and W-19 indicate that the dissolved phase plume is mobile to the southeast.

3.0 SUMMARY AND CONCLUSIONS

This section summarizes the results of the first semi-annual monitoring event and includes a brief discussion of water level and contaminant concentration trends at the Lovington 66 site. Additionally, recommendations for future site activities are provided.

3.1 Discussion of any Trends or Changes Noted in Analytical Results or Site Conditions

The groundwater gauging results from the first semiannual groundwater monitoring event conducted in September 2017 indicate that there is a general southeasterly groundwater flow component at the Lovington 66 site. The groundwater flow directions observed in September 2017 are consistent with the flow directions observed during the previous monitoring event in January 2017. The hydraulic gradient in September 2017 is approximately 0.004 foot per foot (**Figure 2**).

Depth to shallow groundwater at the site is approximately 58 to 65 feet below ground surface. Groundwater and NAPL level measurements made during the September 11 and 12 site visits, as well as cumulative groundwater gauging data for the period of record at the site, are included in **Table 2**. The water levels within the individual monitoring wells generally fell by about 0.50 feet between January 2017 and September 2017. These measurements were used to prepare hydrographs and NAPL thickness histories for selected wells which are included in **Appendix B**.

The distribution of dissolved phase organic contaminants determined from analytical data from samples collected on September 12, 2017 and the estimated distribution of NAPL are shown on the map in **Figure 3**. NAPL was present in Lovington wells W-1, W-2, W-3, MPE-1 and for the first time in the monitoring period of record, well W-14. NAPL was also detected in Allsup's site well MW-3. NAPL has historically been detected in W-1, W-2, and W-3 (**Table 2**), but NAPL observations south of the site were first recorded in mid-2016 (MW-3) indicating more recent migration. NAPL thickness measurements in September 2017 were relatively unchanged from the January 2017 monitoring event, except for Allsup's well MW-3. Allsup's well MW-3 thickness decreased by about 5 feet since the previous event. However, the Allsup's site is monitored by NMED-PSTB as a separate facility and may have had NAPL removal recently. The history of NAPL thicknesses in wells W-1, W-2 and W-3 are shown on the hydrographs in **Appendix B**.

The distribution of benzene in the groundwater observed in September 2017 is shown on **Figure 4**. The dissolved phase benzene concentrations in well W-8 was approximately 4 orders of magnitude greater than the NMWQCC standard of 10 μ g/L. The benzene concentration in well W-9 sample was anomalously low (10 μ g/L) during the previous monitoring event in January 2017. The benzene concentration in Well W-9 was 2,500 μ g/L in September 2017, which is more consistent with historical concentrations (3,800 to 8,000 μ g/L since 2005). The shape and magnitude of the dissolved benzene plume is generally unchanged since the previous monitoring event in January 2017.

Dissolved concentration historical trends are shown in the plots included in **Appendix E**. A significant spike in the concentration of benzene was detected in samples collected from side-gradient well W-16 between August 2006 and January 2009. A similarly-timed spike in MTBE concentration was noted in samples collected from side-gradient well W-11. These spikes may be associated with mobilization of adsorbed contaminants occurring during the period when groundwater levels rose and peaked during approximately the same time frame. MTBE concentrations declined in MW-8 and rose significantly in MW-9 since the January 2014 monitoring.

Field measurements of the ORP of groundwater samples from each of the nine sampled wells were used to prepare the projection of groundwater ORP shown on the map in **Figure 7**. This map indicates that reducing groundwater conditions, indicating continuing organic loading into groundwater, are distributed more than 800 feet downgradient and 800 feet laterally to gradient direction, across an area of approximately 13.5 acres to the southeast of fuel contaminants at the Walstad site.

3.2 Recommendations

Based on the results of the first semi-annual groundwater monitoring event, we conclude that the geometry of the dissolved phase fuel contaminant plume at the site has not changed significantly since the site was placed into regulatory enforcement in 1991. Separate phase fuel, however, appears to be mobile downgradient and to the southeast. NAPL was observed in monitoring well W-14 for the first time in the period of record. The estimated NAPL plume is now projected slightly larger to the south to include W-14.

The results of MPE pilot testing performed at the site in 2015 indicate that hydraulic conductance of sediments in the adsorbed fuel plume is limited. Vapor flow rates were found to be modest; however, NAPL recovery rates were noted to be significant. During the combined 16.6 hours of MPE operations performed during pilot testing, a total of 141 gallons of NAPL were recovered from the three tested wells, and the equivalent of an additional 89 gallons of fuel was recovered as vapor. Therefore, we recommend that NAPL recovery and/or MPE be implemented at the site.

Until active remediation is implemented, we recommend that semi-annual groundwater monitoring continue and that more frequent and aggressive NAPL recovery be performed using total fluids recovery from existing site wells and produced fluid be disposed at a permitted facility.

9

Table 1: Summary of NAPL Gauging and Recovery Lovington 66, Lovington, New Mexico

		Prior to Bailing				Post Bailin	ng	TaralMADI		
Monitor Well	Date Recovered	Depth To NAPL (feet)	Depth to Water (feet)	NAPL Thickness (feet)	Depth to NAPL (feet)	Depth to Water (feet)	NAPL Thickness (feet)	Total NAPL Recovered (gallons)	Sources of Data, Comments	
	3-Sep-08	54.69	58.52	3.83	-	57.22	0.00	6.00	1, NAPL Bailing Event	
	27-Jan-09	54.69	58.22	3.53	-	56.25	0.00	6.00	1, NAPL Bailing Event	
	12-May-09	54.85	57.78	2.93	-	56.62	0.00	1.90	1, NAPL Bailing Event	
	10-Jul-09	55.33	56.99	1.66	-	56.69	0.00	1.08	1, NAPL Bailing Event	
	12-Feb-14	57.30	60.08	2.78	-	57.88	0.00	8.50	1, NAPL Bailing Event	
	9-Jun-14	57.72	64.31	6.59	-	59.85	0.00	4.18	1, NAPL Bailing Event	
W-1	15-Oct-14	57.91	64.55	6.64	-	60.20	0.00	20.05	1, NAPL Bailing Event	
VV-1	2-Jun-15	58.11	64.89	6.78	60.41	60.51	0.10	5.75	1, NAPL Bail-Down Recovery Test	
	13-Jul-15	57.12	63.96	6.84	NM	NM	NM	47.61	2, MPE Pilot Test	
	15-Jun-16	58.18	64.18	6.00	61.30	61.31	0.01	4.24	1, NAPL Bailing Event	
	8-Nov-16	58.38	64.68	6.30	60.70	60.75	0.05	12.80	1, NAPL Bailing Event	
	21-Dec-16	58.26	64.42	6.16	61.27	61.28	0.01	6.88	1, NAPL Bailing Event	
	18-Apr-17	58.17	64.02	5.85	-	59.91	0.00	7.08	1, NAPL Bailing Event	
	11-Sep-17	58.65	65.02	6.37	-	61.63	0.00	4.14	1, NAPL Bailing Event	
	3-Sep-08	54.50	54.94	0.44	-	55.52	0.00	0.25	1, NAPL Bailing Event	
	27-Jan-09	54.48	54.81	0.33	-	55.55	0.00	0.25	1, NAPL Bailing Event	
	12-May-09	54.50	54.83	0.33	-	55.64	0.00	0.21	1, NAPL Bailing Event	
	10-Jul-09	54.68	54.96	0.28	-	55.50	0.00	0.18	1, NAPL Bailing Event	
	12-Feb-14	56.25	63.26	7.01	-	58.60	0.00	9.75	1, NAPL Bailing Event	
	9-Jun-14	56.67	63.64	6.97	-	58.87	0.00	9.15	1, NAPL Bailing Event	
W-2	15-Oct-14	56.87	63.85	6.98	-	59.42	0.00	15.85	1, NAPL Bailing Event	
V V -Z	2-Jun-15	57.07	64.26	7.19	59.30	59.32	0.02	6.20	1, NAPL Bail-Down Recovery Test	
	13-Jul-15	58.13	64.67	6.54	NM	NM	NM	25.92	2, MPE Pilot Test	
	15-Jun-16	57.11	63.60	6.49	59.81	59.82	0.01	5.88	1, NAPL Bailing Event	
	8-Nov-16	57.32	64.01	6.69	59.93	59.95	0.02	8.27	1, NAPL Bailing Event	
	21-Dec-16	57.22	63.75	6.53	60.17	60.18	0.01	6.48	1, NAPL Bailing Event	
	18-Apr-17	57.13	63.28	6.15	-	59.63	0.00	5.08	1, NAPL Bailing Event	
	11-Sep-17	57.61	64.33	6.72	-	60.65	0.00	4.36	1, NAPL Bailing Event	

Table 1: Summary of NAPL Gauging and Recovery Lovington 66, Lovington, New Mexico

		Pri	ior to Bailir	ıg		Post Bailir	ng	T-4-LNIADI	
Monitor Well	Date Recovered	Depth To NAPL (feet)	Depth to Water (feet)	NAPL Thickness (feet)	Depth to NAPL (feet)	Depth to Water (feet)	NAPL Thickness (feet)	Total NAPL Recovered (gallons)	Sources of Data, Comments
	3-Sep-08	54.60	54.81	0.21	-	55.57	0.00	0.25	1, NAPL Bailing Event
	27-Jan-09	54.56	54.69	0.13	-	55.52	0.00	0.25	1, NAPL Bailing Event
	12-May-09	54.58	54.68	0.10	-	55.54	0.00	0.07	1, NAPL Bailing Event
	10-Jul-09	54.78	54.85	0.07	-	55.64	0.00	0.05	1, NAPL Bailing Event
	12-Feb-14	56.36	63.03	6.67	-	58.05	0.00	9.75	1, NAPL Bailing Event
	9-Jun-14	56.78	63.43	6.65	-	59.07	0.00	9.30	1, NAPL Bailing Event
W-3	15-Oct-14	56.96	63.70	6.74	-	60.02	0.00	21.10	1, NAPL Bailing Event
	2-Jun-15	57.17	64.10	6.93	59.80	59.95	0.15	7.00	1, NAPL Bail-Down Recovery Test
	15-Jun-16	57.21	63.53	6.32	NM	NM	NM	8.88	1, NAPL Bailing Event
	8-Nov-16	57.42	63.90	6.48	60.12	60.17	0.05	12.00	1, NAPL Bailing Event
	21-Dec-16	57.32	63.68	6.36	-	60.58	0.00	7.60	1, NAPL Bailing Event
	18-Apr-17	57.22	63.28	6.06	-	60.06	0.00	6.88	1, NAPL Bailing Event
	11-Sep-17	57.75	64.16	6.41	-	60.91	0.00	4.16	1, NAPL Bailing Event
	12-Jul-15	57.40	64.08	6.68	61.61	61.65	0.04	67.10	2, MPE Pilot Test
	15-Jun-16	57.43	63.75	6.32		NAI	PL not bailed		1, NAPL Bailing Event
MPE-1	8-Nov-16	57.62	64.19	6.57	60.03	60.07	0.04	8.28	1, NAPL Bailing Event
IVIFE-1	21-Dec-16	57.51	63.95	6.44	60.22	60.23	0.01	6.88	1, NAPL Bailing Event
	18-Apr-17	57.44	63.58	6.14	-	59.85	0.00	9.28	1, NAPL Bailing Event
	11-Sep-17	57.90	64.55	6.65	-	67.30	0.00	4.37	1, NAPL Bailing Event
V-1	3-Sep-08	53.92	58.45	4.53	-	55.20	0.00	1.00	1
V-1				Well	Plugged & /	Abandoned			
Notes							Cita (mallama)	440.00	

Notes:

Cumulative Total NAPL Recovered at the Site (gallons)

418.23

NAPL - Non Aqueous Phase Liquid NAPL and water disposed of at Gandy-Marley

NM - not measured

Sources of Data

- 1: Clayton M Barnhill, Roswell NM
- 2: AcuVac Remediation, Inc. Houston, TX

Table 2: Summary of Fluid Gauging Data Lovington 66, Lovington, New Mexico

Monitor Well	Date Measured	Northing ¹	Easting ¹	Casing Elevation ²	Depth to Product ³	Product Thickness ⁴	Depth to Water ³	Groundwater Elevation ²	
Allsup's # 10	9								
	6-Aug-2005				-	-	55.07	3854.67	
	8-Aug-2006				-	-	54.36	3855.38	
	7-Nov-2007				-	-	53.93	3855.81	
	12-May-2008				-	=	54.36	3855.38	
	7-Aug-2008				-	-	54.86	3854.88	
MW-1	28-Jan-2009	700000 70	0.40.407.40	2000 74	-	-	54.91	3854.83	
IVI VV - 1	10-Jul-2009	708392.73	843467.49	3909.74	-	-	55.12	3854.62	
	12-Feb-2014				-	-	58.47	3851.27	
	7-Oct-2014			ı	-	-	58.86	3850.88	
	23-Jun-2016				-	-	59.19	3850.55	
	2-Jan-2017				No acces	s - vault bolts gro	ound off and	filled with epoxy	
	12-Sep-2017				1	No access - well	vault cemen	ted shut	
	6-Aug-2005		843584.18	3910.05	-	-	55.74	3854.31	
	8-Aug-2006				-	=	55.04	3855.01	
	7-Nov-2007	708398.53			-	=	54.58	3855.47	
MW-2	12-May-2008				-	-	55.05	3855.00	
IVI VV-Z	7-Aug-2008				-	-	55.54	3854.51	
	28-Jan-2009				-	-	55.56	3854.49	
	10-Jul-2009				-	-	55.79	3854.26	
	12-Feb-2014		We	II Destroyed	covered by new cement (parking lot)				
	6-Aug-2005				-	-	55.33	3854.81	
	8-Aug-2006				-	-	54.65	3855.49	
	7-Nov-2007				-	=	54.22	3855.92	
	13-May-2008				-	=	54.76	3855.38	
	7-Aug-2008				-	-	55.15	3854.99	
MW-3	28-Jan-2009	708484.61	843518.13	3910.14	-	=	55.16	3854.98	
	10-Jul-2009				-	-	55.42	3854.72	
	12-Feb-2014					Bolts on vault are	e cemented i	in place	
	23-Jun-2016				58.28	5.14	63.42	3850.58	
	2-Jan-2017				58.36	5.11	63.47	3850.50	
	12-Sep-2017				60.16	0.51	60.67	3849.85	

Table 2: Summary of Fluid Gauging Data Lovington 66, Lovington, New Mexico

	5.4			Casimu	Donth to	Duadrest	Don'th to	Crown devetor		
Monitor Well	Date Measured	Northing ¹	Easting ¹	Casing Elevation ²	Depth to Product ³	Product Thickness ⁴	Depth to Water ³	Groundwater Elevation ²		
	Measurea			Lievation	Troduct	HIICKIICSS	Water	Lievation		
Walstad 66	29-Aug-1992						56.68	42.69		
	25-May-1993			99.37	-	-	56.74	42.63		
	8-Aug-2006				53.32	4.59	57.91	3852.76		
	7-Nov-2007	708614.74	843348.54		53.01	4.58	57.59	3853.08		
V-1	13-Feb-2008		0 100 10.0 1	3910.67	53.01	4.57	57.58	3853.09		
	13-May-2008	1		0010.07	53.41	4.57	57.98	3852.69		
	7-Aug-2008			ŀ	53.75	4.55	58.30	3852.37		
	7 7 tag 2000			Well	Plugged & /		00.00	0002.01		
	15-Jun-2016				57.43	6.32	63.75	Not Surveyed		
	8-Nov-2016	1			57.62	6.57	64.19	Not Surveyed		
MPE-1	2-Jan-2017		Not Surveyed	İ	57.51	6.44	63.95	Not Surveyed		
	11-Sep-2017				57.9	6.65	64.55	Not Surveyed		
	12-Feb-1992				57.9		VAPL Preser	,		
	8-Jun-1992						APL Present			
		1					APL Present			
	24-Jun-1992			3911.33				L		
	24-May-1993					NAPL Present NAPL Present				
	28-Aug-1993				54.23	3.15	57.38	3856.31		
W -1	8-Aug-2006 7-Nov-2007				53.91	3.13	57.02	3856.64		
	13-Feb-2008				53.89	3.16	57.05	3856.65		
	13-May-2008	708649.18	843347.81		54.25	3.37	57.62	3856.24		
	7-Aug-2008	700049.10	043347.01		54.96	3.31	58.27	3855.54		
	28-Jan-2009	1			55.39	0.31	55.70	3855.86		
	10-Jul-2009				55.69	0.09	55.78	3855.62		
	21-Jan-2014				57.30	2.78	60.08	3853.34		
	7-Oct-2014				57.91	6.64	64.55	3851.76		
	15-Jun-2016				58.18	6.00	64.18	3851.65		
	2-Jan-2017				58.26	6.16	64.42	3851.53		
	11-Sep-2017				58.65	6.37	65.02	3851.09		
	13-Mar-1992				30.03					
	8-Jun-1992				0.125" of NAPL Present >30" of NAPL Present					
	24-Jun-1992	1			>30" of NAPL Present					
	28-Aug-1992	1					Present			
	24-May-1993						Present			
	8-Aug-2006				53.21	5.34	58.55	3855.65		
	7-Nov-2007				52.88	3.32	56.20	3856.48		
	13-Feb-2008				53.57	0.31	53.88	3856.54		
W-2	13-May-2008	708625.02	843381.13	3910.19	53.98	0.38	54.36	3856.12		
	7-Aug-2008	. 00020.02	3 10001.10	0010.10	54.34	0.44	54.78	3855.74		
	28-Jan-2009				54.44	0.03	54.47	3855.74		
	10-Jul-2009				54.69	0.11	54.8	3855.47		
	21-Jan-2014				56.23	7.00	63.23	3852.21		
	7-Oct-2014				56.87	6.98	63.85	3851.58		
	15-Jun-2016				57.11	6.49	63.60	3851.46		
	2-Jan-2017				57.22	6.53	63.75	3851.34		
	11-Sep-2017	1			57.61	6.72	64.33	3850.90		

Table 2: Summary of Fluid Gauging Data Lovington 66, Lovington, New Mexico

Monitor	Date			Casing	Depth to	Product	Depth to	Groundwater	
Well	Measured	Northing ¹	Easting ¹	Elevation ²	Product ³	Thickness ⁴	Water ³	Elevation ²	
	13-Mar-1992						NAPL Preser	nt	
	8-Jun-1992				>30" of NAPL Present				
	24-Jun-1992				>30" of NAPL Present				
	28-Aug-1992				NAPL Present				
	24-May-1993						Present		
	8-Aug-2006				53.30	3.20	56.50	3856.19	
	7-Nov-2007				53.01	3.03	56.04	3856.52	
	13-Feb-2008	708597.90			53.65	0.13	53.78	3856.61	
W-3	13-May-2008		843348.60	3910.29	54.44	0.21	54.65	3855.80	
	7-Aug-2008				54.08	0.18	54.26	3856.17	
	28-Jan-2009				54.50	0.06	54.56	3855.78	
	10-Jul-2009				54.75	0.02	54.77	3855.54	
	21-Jan-2014				56.36	6.66	63.02	3852.27	
	7-Oct-2014				56.96	6.74	63.70	3851.65	
	15-Jun-2016				57.21	6.32	63.53	3851.50	
	2-Jan-2017				57.32	6.36	63.68	3851.38	
	11-Sep-2017				57.75	6.41	64.16	3850.94	
	24-Jun-1992			99.62	-	-	57.04	42.58	
W-4	28-Aug-1992	-	-		-	-	56.69	42.93	
***	25-May-1993				-	<u>-</u>	56.48	43.14	
	8-Aug-2006				Well Destr	oyed			
	24-Jun-1992			100.41	-	-	57.59	3854.12	
	28-Aug-1992				-	-	57.24	3854.47	
	26-May-1993				-	-	57.02	3854.69	
	8-Aug-2006				-	-	54.88	3856.83	
	7-Nov-2007				-	-	54.61	3857.10	
	13-Feb-2008				-	-	54.63	3857.08	
\.	12-May-2008	700750 70	0.40050.00		-	<u>-</u>	54.87	3856.84	
W-5	7-Aug-2008 28-Jan-2009	708759.72	843252.39		-	-	55.36 55.36	3856.35 3856.35	
	9-Jul-2009			3911.71	-	<u>-</u>	55.54	3856.17	
	9-Jul-2009 21-Jan-2014				-	<u>-</u>	58.51	3853.20	
	7-Oct-2014				-	<u>-</u>	59.24	3852.47	
	23-Jun-2016				-	-	59.24	3852.47	
					-	-			
	2-Jan-2017				-	-	59.38	3852.33	
	12-Sep-2017				-	-	59.88	3851.83	
	24-Jun-1992			00.40	-	-	56.97	42.51	
W-6	28-Aug-1992	-	-	99.48	-	<u>-</u>	56.64	42.84	
	26-May-1993				- Well Destr	- oved	56.49	42.99	
	8-Aug-2006				AA GII DESII	oy c u			

Table 2: Summary of Fluid Gauging Data Lovington 66, Lovington, New Mexico

Monitor Well	Date Measured	Northing ¹	Easting ¹	Casing Elevation ²	Depth to Product ³	Product Thickness ⁴	Depth to Water ³	Groundwater Elevation ²
	28-Aug-1992			Licvation	Troduct	-	56.29	3854.59
	25-May-1993			100.07			55.96	3854.92
	8-Aug-2006	708911.67	843120.56		_		53.74	3857.14
	7-Nov-2007	1		3911.35	_		53.48	3857.40
	12-Feb-2008				_	_	53.33	3857.55
	12-May-2008	1			_	_	53.55	3857.33
	6-Aug-2008	1			_	-	53.97	3856.91
W-7	28-Jan-2009				_	-	54.11	3856.77
	9-Jul-2009				_	-	54.23	3856.65
	21-Jan-2014	708910.73	843120.52	3910.88	-	-	57.05	3853.83
	7-Oct-2014				_	_	57.92	3852.96
	23-Jun-2016	1			Well occl	uded by roots ab		er level (57.73 ft)
	2-Jan-2017	1				•		er level (57.72 ft)
	12-Sep-2017				-	-	58.48	3852.40
	28-Aug-1992				-	-	57.24	3852.68
	25-Aug-1992 25-May-1993			98.69	<u>-</u>	<u> </u>	57.24	3852.72
	8-Aug-2006		843640.62		<u>-</u>		55.11	3854.81
	7-Nov-2007			3909.92			54.65	3855.27
	13-Feb-2008	1			_		54.79	3855.13
	12-May-2008	1			_		55.14	3854.78
	7-Aug-2008	1			_	_	55.64	3854.28
W-8	28-Jan-2009	708389.76			_	_	55.67	3854.25
	9-Jul-2009				_	-	55.82	3854.10
	21-Jan-2014				_	_	59.33	3850.59
	7-Oct-2014				_	_	59.84	3850.08
	23-Jun-2016				_		60.05	3849.87
	2-Jan-2017						60.07	3849.85
	12-Sep-2017				-	-	60.57	3849.35
						-	56.76	3851.96
	28-Aug-1992 25-May-1993			97.47	-	<u> </u>	56.74	3851.98
	8-Aug-2006	1			-		54.66	3854.06
	7-Nov-2007				-	<u>-</u>	54.12	3854.60
	13-Feb-2008				-	<u> </u>	54.12	3854.41
	12-May-2008	1			_	<u>-</u>	54.68	3854.04
	7-Aug-2008	1			-	_	55.18	3853.54
W-9	28-Jan-2009	708267.18	843790.26		-	<u>-</u>	55.19	3853.53
	9-Jul-2009			3908.72	-	-	55.35	3853.37
	21-Jan-2014				-	-	59.01	3849.71
	7-Oct-2014				-	-	59.50	3849.22
	23-Jun-2016				-	<u> </u>	59.64	3849.08
	2-Jan-2017	1			-	<u>-</u>	59.67	3849.05
					-			
	12-Sep-2017				-	-	60.21	3848.51

Table 2: Summary of Fluid Gauging Data Lovington 66, Lovington, New Mexico

Monitor	Date	Northing ¹	Easting ¹	Casing	Depth to	Product	Depth to	Groundwater				
Well	Measured			Elevation ²	Product ³	Thickness ⁴	Water ³	Elevation ²				
	28-Aug-1992	708254.54		97.85	-	-	56.18	41.67				
	26-May-1993		843452.92		-	-	55.80	42.05				
	8-Aug-2006			3908.89	-	-	53.79	3855.10				
	13-Feb-2008				-	to traffic constrai						
W-10	12-May-2008					to traffic constrai						
	7-Aug-2008					to traffic constrai						
	28-Jan-2009				-	to traffic constrai						
	9-Jul-2009					to traffic constrai	nts					
	21-Jan-2014	No access to well, well vault broken										
	7-Oct-2014			No acces	ss to well, we	ell vault broken						
	28-Aug-1992			98.66	-	-	56.82	3853.14				
	26-May-1993			00.00	-	-	56.85	3853.11				
	8-Aug-2006				-	-	54.70	3855.26				
	7-Nov-2007				-	-	54.26	3855.70				
	13-Feb-2008		843650.96		-	-	54.41	3855.55				
	12-May-2008				-	=	54.71	3855.25				
W-11	6-Aug-2008	708600.95			-	-	55.14	3854.82				
VV-11	28-Jan-2009	700000.93		3909.96	-	-	55.26	3854.70				
	9-Jul-2009				-	-	55.46	3854.50				
	21-Jan-2014				-	-	58.80	3851.16				
	7-Oct-2014				-	-	59.41	3850.55				
	23-Jun-2016				-	-	59.53	3850.43				
	2-Jan-2017				-	-	59.54	3850.42				
	12-Sep-2017				-	-	60.05	3849.91				
	29-Aug-1992			99.34	-	-	56.28	3854.31				
	26-May-1993			99.34	-	-	55.96	3854.63				
	8-Aug-2006				-	-	53.55	3857.04				
	7-Nov-2007				-	-	53.72	3856.87				
	12-Feb-2008				-	-	53.29	3857.30				
	12-May-2008				-	-	54.05	3856.54				
W-12	6-Aug-2008	708435.38	843045.85		-	-	54.50	3856.09				
VV-1∠	28-Jan-2009	100435.38	043040.85	3910.59	-	-	54.09	3856.50				
	9-Jul-2009			3810.38	-	-	54.23	3856.36				
	21-Jan-2014				-	-	57.81	3852.78				
	7-Oct-2014				-	-	58.07	3852.52				
	23-Jun-2016				-	-	58.69	3851.90				
	2-Jan-2017				-	-	58.75	3851.84				
	12-Sep-2017				-	-	59.13	3851.46				

Table 2: Summary of Fluid Gauging Data Lovington 66, Lovington, New Mexico

Monitor	Date	4	4	Casing	Depth to	Product	Depth to	Groundwater
Well	Measured	Northing ¹	Easting ¹	Elevation ²	Product ³	Thickness⁴	Water ³	Elevation ²
	29-Aug-1992			00.07	-	-	56.36	3854.00
	26-May-1993			99.07	-	-	56.25	3854.11
	8-Aug-2006				-	-	54.01	3856.35
	7-Nov-2007				-	=	53.70	3856.66
	12-Feb-2008				-	-	53.80	3856.56
	12-May-2008				-	-	54.08	3856.28
W 40	6-Aug-2008		0.40505.07		-	-	54.50	3855.86
W-13	28-Jan-2009	708915.13	843525.37	0040.00	-	-	54.66	3855.70
	9-Jul-2009			3910.36	-	=	54.74	3855.62
	21-Jan-2014				-	-	57.87	3852.49
	7-Oct-2014				-	-	58.67	3851.69
	23-Jun-2016				-	-	58.69	3851.67
	2-Jan-2017				-	-	58.76	3851.60
	12-Sep-2017				-	-	59.24	3851.12
	26-May-1993		843463.76	98.54	-	-	56.26	3853.47
	8-Aug-2006			3909.73	-	-	54.15	3855.58
	7-Nov-2007				-	-	53.72	3856.01
	13-Feb-2008				-	-	53.80	3855.93
	13-May-2008				-	-	54.24	3855.49
	7-Aug-2008	708504.99			-	-	54.65	3855.08
W-14	28-Jan-2009				-	=	54.67	3855.06
	10-Jul-2009				-	=	54.90	3854.83
	21-Jan-2014				-	=	58.15	3851.58
	7-Oct-2014				-	-	58.65	3851.08
	23-Jun-2016				-	-	58.93	3850.80
	2-Jan-2017				-	-	58.98	3850.75
	12-Sep-2017				59.27	0.74	60.01	3850.28
	26-May-1993			00.40	-	-	55.40	3854.00
	8-Aug-2006	708195.85	843053.51	98.49	-	-	53.41	3855.99
	7-Nov-2007			3909.71	-	-	53.11	3856.29
	12-Feb-2008				-	-	53.02	3856.38
	12-May-2008				-	-	53.27	3856.13
	6-Aug-2008				-	=	53.71	3855.69
W-15	28-Jan-2009				-	=	53.82	3855.58
	9-Jul-2009	708221.99	042020 05	2000 40	-	-	53.91	3855.49
	21-Jan-2014		843030.65	3909.40	-	-	57.09	3852.31
	7-Oct-2014				-	-	56.53	3852.87
	23-Jun-2016				-	-	57.98	3851.42
	2-Jan-2017				-	-	58.02	3851.38
	12-Sep-2017				-	-	58.39	3851.01

Table 2: Summary of Fluid Gauging Data Lovington 66, Lovington, New Mexico

Monitor	Date	N at 1	- 1	Casing	Depth to	Product	Depth to	Groundwater
Well	Measured	Northing ¹	Easting ¹	Elevation ²	Product ³	Thickness ⁴	Water ³	Elevation ²
	26-May-1993			97.44	-	-	55.52	3853.15
	8-Aug-2006	1			-	-	53.49	3855.18
	7-Nov-2007	1			-	-	53.06	3855.61
	13-Feb-2008	1			-	-	53.20	3855.47
	12-May-2008	1			-	-	53.52	3855.15
	7-Aug-2008	1			-	-	54.03	3854.64
W-16	28-Jan-2009	708153.28	843364.45		-	-	53.52	3855.15
	9-Jul-2009	1		3908.67	-	-	54.23	3854.44
	21-Jan-2014	1			-	-	57.61	3851.06
	7-Oct-2014	1			-	-	57.84	3850.83
	23-Jun-2016	1			-	-	58.40	3850.27
	2-Jan-2017				-	-	58.42	3850.25
	12-Sep-2017	1			-	-	58.86	3849.81
W-17	26-May-1993	-	-	96.94	-	-	56.86	40.08
VV-17	8-Aug-2006				Well Destr	oyed		
	26-May-1993	708698.11	843818.96	98.26	-	-	56.79	3852.59
	8-Aug-2006				-	-	54.60	3854.78
	7-Nov-2007			3909.50	-	-	54.19	3855.19
	12-Feb-2008			3909.38	-	-	54.13	3855.25
	12-May-2008				-	-	54.65	3854.73
	6-Aug-2008	708697.21			-	-	54.90	3854.48
W-18	28-Jan-2009				-	-	55.04	3854.34
	9-Jul-2009		843818.98		-	-	55.14	3854.24
	21-Jan-2014				-	-	58.60	3850.78
	7-Oct-2014				-	-	59.26	3850.12
	23-Jun-2016				-	=	59.33	3850.05
	2-Jan-2017				-	-	59.36	3850.02
	12-Sep-2017				-	-	59.88	3849.50
	7-Nov-2007				-	-	54.23	3854.13
	13-Feb-2008				-	-	54.51	3853.85
	12-May-2008				-	-	54.88	3853.48
	6-Aug-2008				-	-	55.31	3853.05
	28-Jan-2009				-	-	55.36	3853.00
W-19	9-Jul-2009	708148.94	843934.18	3908.36	-	=	55.48	3852.88
	21-Jan-2014				-	=	59.27	3849.09
	7-Oct-2014				-	-	59.78	3848.58
	23-Jun-2016				-	-	59.94	3848.42
	2-Jan-2017	1			-	-	59.89	3848.47
	12-Sep-2017				-	-	60.45	3847.91

Table 2: Summary of Fluid Gauging Data Lovington 66, Lovington, New Mexico

Monitor Well	Date Measured	Northing ¹	Easting ¹	Casing Elevation ²	Depth to Product ³	Product Thickness ⁴	Depth to Water ³	Groundwater Elevation ²
	7-Nov-2007				-	-	54.29	3853.16
	13-Feb-2008				-	=	54.69	3852.76
	12-May-2008				-	-	55.09	3852.36
	6-Aug-2008				-	-	55.53	3851.92
	28-Jan-2009				-	-	55.54	3851.91
W-20	9-Jul-2009	707780.85	844187.25	3907.45	-	-	55.60	3851.85
	21-Jan-2014				-	-	59.80	3847.65
	7-Oct-2014				-	=	60.32	3847.13
	23-Jun-2016				-	-	60.68	3846.77
	2-Jan-2017				-	-	60.37	3847.08
	12-Sep-2017				-	-	61.05	3846.40
	7-Nov-2007				-	-	54.19	3854.30
	13-Feb-2008				-	-	54.45	3854.04
	12-May-2008				-	-	54.81	3853.68
	6-Aug-2008				-	-	55.23	3853.26
	28-Jan-2009				-	-	55.32	3853.17
W-21	9-Jul-2009	707988.79	843841.61	3908.49	-	-	55.39	3853.10
	21-Jan-2014				-	-	59.22	3849.27
	7-Oct-2014				-	-	59.74	3848.75
	23-Jun-2016				-	-	59.88	3848.61
	2-Jan-2017				-	-	59.92	3848.57
	12-Sep-2017				-	-	60.45	3848.04

Notes

¹ Horizontal control to NM State Plane Coordinates Central NAD83 Grid Coordinates (in feet)

² Vertical Control to NAVD88 Datum in feet above mean sea level

³ Measured in feet below the top of casing at survey point on north side of well

⁴ Measured in feet

September 2017 1782919

Table 3: Summary of Groundwater
Purging Field Parameter Data
Lovington 66, Lovington, New Mexico

Monitor Well	Date Sampled	Temp. (°C)	Conductance (μs/cm)	рН	Dissolved Oxygen (mg/L)	Oxidation Reduction Potential (millivolts)	Total Purge Volume (gallons)	Comments
W-5	9/12/2017	20.91	1,431	6.41	2.03	90.0	2.50	Turbid, fine silt, strong hydrocarbon odor
W-8	9/12/2017	20.31	1,275	6.48	0.63	-190.0	2.25	Gray-black turbid, strong hydrocarbon odor
W-9	9/12/2017	20.68	1,369	6.48	2.50	-169.0	2.50	Clear to grey-black, strong hydrocarbon odor
W-11	9/12/2017	22.18	1,357	6.44	1.01	-111.3	2.50	Clear, strong hydrocarbon odor
W-14	9/12/2017	20.31	1,518	6.74	1.26	-173.0	2.75	Black-grey turbid, strong hydrocarbon odor
W-16	9/12/2017	21.18	1,598	6.44	1.13	-13.1	3.00	Turbid, fine silt
W-19	9/12/2017	21.76	1,130	6.45	2.51	-102.2	2.50	Clear to slightly turbid, strong odor
W-20	9/12/2017	20.35	1,034	6.33	5.42	14.0	2.50	Turbid, fine silt
W-21	9/12/2017	21.98	1,066	6.62	5.04	2.8	2.50	Turbid, fine silt

Notes:

Purge parameters as finals (end of purging)

Table 4: Summary of Groundwater Sample Results
Volatile Organic Compounds
Lovington 66, Lovington, New Mexico

Monitoring	Date	Concentrations in Groundwater (µg/L)										
Well	Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	EDB	EDC	Total Naphthalenes			
NMWQCC	Standards	10	750	750	620	100	0.10	10	30			
W-2	13-Mar-92	29,878	28,953	3,874	13,109	5,921	NA	NA	NA			
W-3	13-Mar-92	10,493	8,961	1,253	5,320	5,150	NA	NA	NA			
	24-Jun-92	200	53	21	40	<5.0	NA	NA	NA			
W-4	28-Aug-92	1,400	430	95	300	<2.5	NA	NA	NA			
	25-May-93	2,500	980	310	470	<63	NA	NA	NA			
	24-Jun-92	470	250	41	290	<10	NA	NA	NA			
	28-Aug-92	850	400	58	450	3.3	NA	NA	NA			
	9-Aug-06	2.0	<1.0	3.7	<3.0	22	<1.0	<1.0	<2.0			
	7-Nov-07	45	8.5	29	15	170	<1.0	<1.0	4.9			
	13-Feb-08	26	1.1	24	<1.5	140	<1.0	<1.0	4.5			
	12-May-08	16	<1.0	7.6	<1.5	65	<1.0	<1.0	<2.0			
\\\ F	7-Aug-08	5.2	<1.0	3.7	<1.5	39	<1.0	<1.0	<2.0			
W-5	28-Jan-09	<1.0	<1.0	<1.0	<1.5	18	<1.0	<1.0	<2.0			
	9-Jul-09	<1.0	<1.0	<1.0	<1.5	21	<1.0	<1.0	<2.0			
	21-Jan-14	8.5	1.0	2.7	2.5	3.8	<1.0	<1.0	<2.0			
	7-Oct-14	8.5	<2.0	<2.0	<3.0	2.5	<2.0	<2.0	<4.0			
	23-Jun-16	17.0	<1.0	7.5	7.0	2.1	<1.0	<1.0	<2.0			
	2-Jan-17	37.0	1.9	9.6	12.0	12.0	<1.0	<1.0	<2.0			
	12-Sep-17	42.0	<2.0	5.6	10.0	3.2	<1.0	<1.0	<8.0			
W-6	24-Jun-92	1,400	1,200	48	500	<25	NA	NA	NA			
VV-6	28-Aug-92	3,000	2,700	93	860	<2.5	NA	NA	NA			
	28-Aug-92	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA			
W-7	25-May-93	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA			
VV-7	8-Aug-06	<1.0	<1.0	<1.0	<3.0	<1.5	<1.0	<1.0	<2.0			
	7-Nov-07	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	28-Aug-92	8,000	9,500	690	5,200	<2.5	NA	NA	NA			
	25-May-93	12,000	8,300	1,500	8,800	<250	NA	NA	NA			
	4-Aug-05	27,000	35,000	3,800	18,000	3,700	1,100	4,300	622			
	9-Aug-06	21,000	29,000	2,600	13,000	6,300	<500	3,700	1,100			
	7-Nov-07	20,000	27,000	3,200	15,000	5,900	440	4,100	770			
	13-Feb-08	27,000	39,000	4,800	16,000	8,600	670	4,000	1,350			
	12-May-08	19,000	22,000	1,800	8,000	4,900	250	2,100	400			
W-8	7-Aug-08	20,000	24,000	2,400	11,000	8,600	270	2,900	670			
	28-Jan-09	19,000	26,000	2,500	11,000	9,800	290	3,000	570			
	9-Jul-09	18,000	26,000	2,400	11,000	13,000	230	2,300	500			
	21-Jan-14	14,000	8,800	2,300	7,900	25,000	<100	610	610			
	7-Oct-14	14,000	7,000	2,400	7,600	28,000	<100	440	590			
	23-Jun-16	16,000	7,300	2,100	6,000	16,000	<200	320	540			
	2-Jan-17	15,000	7,200	2,100	5,700	16,000	<200	350	430			
	12-Sep-17	15,000	6,100	2,100	4,900	14,000	<200	260	594			

Table 4: Summary of Groundwater Sample Results
Volatile Organic Compounds
Lovington 66, Lovington, New Mexico

Monitoring	Date	Concentrations in Groundwater (µg/L)										
Well	Sampled	Benzene	Toluene	Ethyl-	Xylenes	MTBE	EDB	EDC	Total			
NMWQCC	Standards	10	750	benzene 750	620	100	0.10	10	Naphthalenes 30			
	28-Aug-92	130	8.2	16	140	<2.5	NA	NA	NA			
	25-May-93	100	6.3	2.5	170	<5.0	NA	NA	NA NA			
	4-Aug-05	4,300	180	850	830	<1.0	<0.01	320	28.5			
	9-Aug-06	6,700	560	1,200	1,400	<150	<100	650	250			
	7-Nov-07	6,500	120	620	450	<10	<10	360	51			
	13-Feb-08	7,500	130	910	590	<10	<10	450	129			
	12-May-08	3,000	63	800	360	<10	<10	480	228			
W-9	7-Aug-08	5,100	<100	830	300	<100	<100	520	<200			
	28-Jan-09	4,800	<10	370	380	<10	<10	580	120			
	9-Jul-09	6,400	<5	1,100	460	<5	<5	570	139			
	21-Jan-14	7,500	<10	1,200	250	100	<10	910	180			
	7-Oct-14	8,000	<50	1,200	210	150	<50	960	180			
	23-Jun-16	3,800	<50	290	<75	300	<50	410	<100			
	2-Jan-17	10	<1	1.5	<1.5	51	<1	60	<2			
	12-Sep-17	2,500	<1	110	61	420	<1	510	43			
	28-Aug-92	1,100	11.0	120	440	<2.5	NA	NA NA	NA			
W-10*	4-Aug-05	940	2.6	930	140	2,400	0.11	48	27.1			
VV-10	9-Aug-05	420	<1.0	31	<3.0	2,400	<1.0	12	121			
	28-Aug-92	770	13	13	280	<2.5	NA	NA	NA			
	9-Aug-06	5.0	<1.0	62	44	88	<1.0	33	<2.0			
	7-Nov-07	18	<1.0	38	13	540	<1.0	35	<2.0			
	13-Feb-08	3.2	<1.0	41	5.1	540	<1.0	37	<2.0			
	12-May-08	3.0	<1.0	31	3.7	740	<1.0	36	<2.0			
	6-Aug-08	3.2	<1.0	28	2.5	610	<1.0	38	<2.0			
W-11	28-Jan-09	<1.0	<1.0	40	5.7	160	<1.0	44	<2.0			
VV-11	9-Jul-09	<1.0	<1.0	34	7.2	160	<1.0	44	<2.0			
	21-Jan-14	5.4	<1.0	25	1.8	44	<1.0	51	<2.0			
	7-Oct-14	90	<5.0	150	<7.5	11	<5.0	57	<10			
	23-Jun-16	1.7	<1.0	47	<1.5	34	<1.0	63	<2.0			
	2-Jan-17	2.2	<1.0	27	4.2	46	<1.0	58	2.2			
	12-Sep-17	5.1	<1.0	24	<1.5	35	<1.0	52	3.9			
W-12	29-Aug-92	87	6.1	2.6	180	<2.5	NA 4.0	NA 4.0	NA 0.0			
	8-Aug-06	<1.0	<1.0	<1.0	<3.0	<1.5	<1.0	<1.0	<2.0			
W-13	29-Aug-92	<0.5	<0.5	<0.5	<0.5	<2.5	NA 11.0	NA 1.0	NA 12.0			
	8-Aug-06	<1.0	<1.0	<1.0	<3.0	<1.5	<1.0	<1.0	<2.0			
	26-May-93 5-Aug-05	6,600	4,300	1,200	4,000	<125	NA 2.2	NA 120	NA 442			
		27,000	26,000	4,900	9,500	7,600 4,700	3.3	120	413			
	9-Aug-06	25,000	23,000	4,000	9,500	,	<500	<500	1,200			
	13-Feb-08	30,000	23,000	4,900	13,000	4,400	<50	210	1,270			
	13-May-08	14,000	6,500	2,800	6,300	2,400	<10	170	1,001			
10/ 44	7-Aug-08	26,000	20,000	4,400	11,000	3,700	<100	160	840			
W-14	28-Jan-09	24,000	19,000	2,200	8,700	3,200	<100	150	640			
	10-Jul-09	26,000	24,000	4,000	11,000	2,600	<50	160	590			
	21-Jan-14	28,000	27,000	4,000	12,000	1,700	<100	120	730			
	7-Oct-14	31,000	31,000	4,200	11,000	1,600	<200	<200	700			
	23-Jun-16	32,000	35,000	4,000	13,000	1,400	<200	<200	760			
	2-Jan-17	28,000	31,000	3,800	12,000	1,900	<200	<200	620			
	12-Sep-17	NA	NA	NA	NA	NA	NA	NA	NA			

Table 4: Summary of Groundwater Sample Results
Volatile Organic Compounds
Lovington 66, Lovington, New Mexico

Monitoring	Date	Concentrations in Groundwater (µg/L)										
Well	Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	EDB	EDC	Total Naphthalenes			
NMWQCC	Standards	10	750	750	620	100	0.10	10	30			
W-15	26-May-93	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA			
VV-13	8-Aug-06	<1.0	<1.0	<1.0	<3.0	<1.5	<1.0	<1.0	<2.0			
	26-May-93	52	<0.5	7.9	15	<2.5	NA	NA	NA			
	8-Aug-06	1.3	14	2.9	<3	<1.5	<1.0	<1.0	<2.0			
	7-Nov-07	640	<1.0	22	12	55	<1.0	23	363			
	13-Feb-08	630	<1.0	12	8.6	47	<1.0	17	342			
	12-May-08	690	<1.0	12	3.6	60	<1.0	21	327			
	7-Aug-08	790	<1.0	5.4	<1.5	59	<1.0	17	352			
W-16	28-Jan-09	170	<1.0	<1.0	<1.5	39	<1.0	13	120			
	9-Jul-09	35	<1.0	1.3	<1.5	11	<1.0	3.8	14.5			
	21-Jan-14	<1.0	<1.0	<1.0	<1.5	4.3	<1.0	<1.0	<2.0			
	7-Oct-14	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	23-Jun-16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	2-Jan-17	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	12-Sep-17	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<4.0			
W-17	26-May-93	<0.5	<0.5	<0.5	<0.5	<2.5	NA	NA	NA			
W-18	26-May-93	1.6	1.8	<0.5	2.0	<2.5	NA	NA	NA			
VV-10	8-Aug-06	<1.0	<1.0	<1.0	<3.0	<1.5	<1.0	<1.0	<2.0			
	8-Nov-07	4.3	<1.0	<1.0	<1.5	<1.5	<1.0	23	<2.0			
	13-Feb-08	2.4	<1.0	<1.0	<1.5	<1.5	<1.0	10	<2.0			
	12-May-08	1.6	<1.0	<1.0	<1.5	<1.0	<1.0	9.2	<2.0			
	6-Aug-08	2.4	<1.0	<1.0	<1.5	<1.0	<1.0	19	<2.0			
	28-Jan-09	3.8	<1.0	<1.0	<1.5	<1.0	<1.0	37	<2.0			
W-19	9-Jul-09	3.4	<1.0	<1.0	<1.5	<1.0	<1.0	37	<2.0			
	21-Jan-14	4.9	<1.0	<1.0	<1.5	<1.0	<1.0	59	<2.0			
	7-Oct-14	6.9	<2.0	<2.0	<3.0	<2.0	<2.0	100	<4.0			
	23-Jun-16	4.5	<1.0	<1.0	<1.5	<1.0	<1.0	79	<2.0			
	2-Jan-17	4.2	<1.0	<1.0	<1.5	<1.0	<1.0	97	<2.0			
	12-Sep-17	3.1	1.3	<1.0	<1.5	<1.0	<1.0	130	<4.0			
	8-Nov-07	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	13-Feb-08	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	12-May-08	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	6-Aug-08	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	28-Jan-09	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
W-20	9-Jul-09	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	21-Jan-14	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	7-Oct-14	<2.0	<2.0	<2.0	<3.0	<2.0	<2.0	<2.0	<4.0			
	23-Jun-16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	2-Jan-17	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0			
	12-Sep-17	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<4.0			

Table 4: Summary of Groundwater Sample Results
Volatile Organic Compounds
Lovington 66, Lovington, New Mexico

Monitoring	onitoring Date Well Sampled			Conc	entrations	in Groundv	vater (µg/L)		
		Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	EDB	EDC	Total Naphthalenes
NMWQCC Standards		10	750	750	620	100	0.10	10	30
	8-Nov-07	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0
	12-Feb-08	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0
	12-May-08	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0
	6-Aug-08	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0
	28-Jan-09	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0
W-21	9-Jul-09	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0
	21-Jan-14	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0
	7-Oct-14	<2.0	<2.0	<2.0	<3.0	<2.0	<2.0	<2.0	<4.0
	23-Jun-16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0
	2-Jan-17	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<2.0
	12-Sep-17	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<4.0
V-1	29-Aug-92	250	680	240	810	<2.5	NA	NA	NA
V-1	25-May-93	5,000	14,000	3,000	10,000	600	NA	NA	NA

Notes:

All concentrations in micrograms per liter (parts per billion)

Groundwater samples analyzed by EPA Method 8260

Bold font indicates analyte above NMWQCC or NMED standard

NMWQCC = Standard - New Mexico Water Quality Control Commission

μg/L = micrograms per liter

MTBE = Methyl tertiary butyl ether

EDC = Ethylene Dichloride (1,2-Dichloroethane)

EDB = Ethylene Dibromide (1, 2-Dibromoethane)

PAHs = total naphthalene plus 1-methylnaphthalene and 2-methylnaphthalene per NMAC 20.6.2

-- = well was not sampled due to presence of free product

NA = Not Analyzed

APPENDIX A
NAPL DISPOSAL MANIFEST

Gandy Marley, Inc.

N.M.E.D. — DP-1041	P.O. BOX 1658 • ROSWELL, NM 88202	LOAD INSPECTION FORM
Date of Receipt:	Time of Receipt AM PM Cell Placement:	UST-8
Quantity 72 fallows	T/CY: Description: MM House	150 Golder Wastad 0:100.
	Lovington	2. NM Ayor # 165/353
Name/Address of Generator:	older Associates The 5200	President Ave, N.E. Site C
Origin of Materials (if differe	nt) Alburocrose, NM 87113	305.821.3043
Transporter Name:	no Environmental	SCC ID No.
Name of Laboratory Performi	ing Sample Analysis HFA L ON-FI	(5)
TCLP (EPA Method 1311)	BTEX MTBE TPH	Non-Hazardous Exempt
	Verification of No Free Liquids Paint Filte	r Liquids Test Performed
Verification of Property Comp	pleted Manifest Generator Manifest N	umber
shipped herewith is exempt fr	om the Resource Conservation and Recovery Act of 1976, as amended fr 001, et seq., and regulations related thereto, OR has been characterized a	Inspection Form, Generator represents and warrants that the waste material from time to time, 40 U.S.C. Section 6901, et seq., The New Mexico Health is non-hazardous material by virtue of appropriate laboratory analysis done
Further, as a condition to Gar the material delivered by Gen	ndy Marley, Inc.'s acceptance of the materials shipped as represented on erator to Transporter is now delivered by Transporter to Gandy Marley,	this Load Inspection Form, Transporter represents and warrants that only Inc.'s facility for disposal.
THIS WILL CERTIFY that to the above described Generator	he above Transporter loaded the material as represented on this Load In r. THIS WILL CERTIFY that no additional materials were added to this	spection Form at the above described location, and that it was tendered by s load, and that the material was delivered without incident.
Transporter:	Print Name	Signature
CMI Francisco	Thurson ?	Train The
GMI Employee:	Print Name	Signature

APPENDIX B HYDROGRAPHS

Appendix B: Monitoring Well Hydrographs
Lovington 66, Lovington, New Mexico

Appendix B: Monitoring Well Hydrographs
Lovington 66, Lovington, New Mexico

Appendix B: Monitoring Well Hydrographs
Lovington 66, Lovington, New Mexico

APPENDIX C FIELD FORMS

		WELE BATAT OTTO
Type Well	Type of Data	Well No. W-5
☐ Production	☐ Development Sampling	Sheet 1 of , Sheets
□ Other	☐ Pump Test	oi / Sileets
	Other Walstab	
1. Project # 165/353 Galder	2. Project Location Lovington 66 Site	3. Date
Walstad Oil G.	410 5. Main Street	09/12/17
4. Technician	J. 11 5. //(a/// 81 /ee)	04/12///
Cm Burnhill, PG	Lovinston, NM 88260	0
7. Method	8.Manufacturer's Designation of Rig	9. Location of Well (Site, Description)
Pumping Surging Air Lift Bailing Other	DSK-2115	Monitor Well W-5
	Water Levels	
Initial	Final	Final + 24 Hours
Date / Time: /0:/0	Date: /12/17 Time: 10:25	Date: Time:
10. Total Depth of Well (from TOC)	15. Total Depth of Well (from TOC)	20. Total Depth of Well (from TOC)
64.75	/ / / / / / / / / / / / / / / / / / / /	20. Total Deptil of Well (IIOIII 100)
11. Water Level (from TOC)	16. Water Level (from TOC)	21. Water Level (from TOC)
59.88	60.01	21. Water Level (IIOIII 100)
12. Water Column Height N	lom x = gal/ft 17.3 Well Volumes	22 Size and Type of
4.87' D		22. Size and Type of Pump or Bailer
		4 1 10 11 2
13. Well Diameter 2"Sewyopvc mw 6"	0.65 0.5972 18.5 Well Volumes 3.89 G	11/045 Disposible Boiler, Tip
14. Weil Volume (gal)	1.47 1.3540	Disposible Bailer, Tip
(s) w.e. height) 0.779	2.61 2.3720 19. Purge Volume 50	60/1025 Twine
	Final Field Analysis	
23. Total Amount of Water 24. Was Removed Pumped	20.	Was the Groundwater Sampled Yes No
		es, what was the sample number & Date: opling Personnel? W-5, 09/12/17
2.50 Gallous Yes		
27. Final Parameters	(C)	MB @ 10:22 3 x YIAC YON'S /Holle / Photo Roll #,
Time Temp C Conduct	IVITY PH NTUS WL Remo	ved Flow Rate Observations
10:21 20.91 1.43	3/ 6.4/ TUREN 60.01 2.5	Fallons TUKEMW
IF PETROLEUI	M IS IN THE WELL, DO NOT TAKE PH AND CONDUC	TIVITY PARAMETERS
28. Physical Appearance and Remarks	TURBID FINE SITT - 8	at it is
29. Purgewater disposal method:	ON GROUND Surthe	e
	Sampling / Development Parameters	
m S/cm	WL Volum	e Dissolved Flow Rate
Time Temp C Conductivity	pH NTUs (from TOC) (gallon	
10:15 22:05 1.467	6.8 Strangthe 27.88 para	che 4.58 0.50 -3.9/13
10:11 21.04 1.458	6.53 Teles	<u>2.56</u> 0,50 7.2/117
10-19 20.60 1.447	6.49 TULBID - 2	2.09 0.50 9.6/98.
10:2/ 20.9/ 1.431	6.41 Tuesion 60.01 2.5	2.03 0.50 11.4 190
,	transite -	
(1) Note volume and physical character of se	diments removed.	
NTU = Nephelometric turbidity units WL = Water Level from Top of PVC Casing		
Checked By	11/1/2011 00	Date
/	MITHIMINING PF	- 09/12/17

	EGGIOAL GETTVICES, INC.	WELE BY WITH OTHER		
Type Well	Type of Data ☐ Development	Well No. Sheet 1 W-8		
☐ Production		of Sheets		
□ Other	□ Pump Test	'		
# 1/21252	Other			
1. Project # 165 1353 601 der	2. Project Location W4/5/72 0il 6.	3. Date		
Welstar Oil Co.	410 5. Main street	09/12/17		
4. Technician	410 5. Min street	/ / / /		
(MBarahill, PF	Lovington, NM 88260			
	8.Manufacturer's Designation of Rig	9. Location of Well (Site, Description)		
Pumping Surging Air Lift Bailing Other	PSR-2015	Monitor Well W-8		
	Water Levels	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Initial	Final	Final + 24 Hours		
D. / T	Data: /	Date: Time:		
Date: 9/12/17 Time: 12:05	Date: /2//7 Time: /2:20	Date: Time:		
10. Total Depth of Well (from TOC)	15. Total Depth of Well (from TOC)	20. Total Depth of Well (from TOC)		
65.25				
11. Water Level (from TOC)	16. Water Level (from TOC)	21. Water Level (from TOC)		
60.57	61.05			
12. Water Column Height , Nom	x = gal/ft 17.3 Well Volumes	22. Size and Type of		
4.68 Dia	Sch 40) Sch 80 2.24 60	Pump or Bailer		
13. Well Diameter				
13. Well Diameter 2" SCH40 PVC MW 6"	0.65 0.5972 3.74 64/1	ons Dispisable Bailer		
	1.47 1.3540 19. Purge Volume	Dispissore Bailer		
14. Well Volume (gal) 0.75 8"	2.256	allis Tip, Twine		
CO. Tatal Assessment of Water Local Was Market	Final Field Analysis	as the Groundwater Sampled No		
23. Total Amount of Water 24. Was We Removed Pumped Dry		what was the sample number & Date:		
	If yes, source: Samplin	ng Personnel? W-8, 09/12/17		
2.25 Gallons Yes Che	Cmb	212:173×40 ML VON'S/H3Ch/82, Photo Roll #,		
27. Final Parameters		Photo Roll #,		
Time Temp C Conductivit		AFIX DIA		
(2:16 20.3/ 1.275	VIO JUNDIP VIUS	001 0.50GPM Strong HE MAN		
	S IN THE WELL, DO NOT TAKE PH AND CONDUCTIV	VITY PARAMETERS		
28. Physical Appearance and Remarks	SRAY Black TURBIN HZD	- Strong HC		
	1	0 401		
29. Purgewater disposal method:	ON GROUND Surface			
	Sampling / Development Parameters			
Time Temp C Conductivity	WL Volume pH NTUs (from TOC) (gallons)	Dissolved Flow Rate Oxygen (gpm) pHmv/QRP		
Time Temp C Conductivity	167 Clean, 60 51 Initio	L. 1 18 1 1 7 2 / 134 B		
12:10 22:00 1:217	1 100 Black Truen - PHAMILE	112 45 011 122		
12:12 20.85 1.281	6.49 Strong HU	1.13 1.30 8.4/-139.3		
12:14 20.83 1.275	6.46 Ban - 1,5	0.1/ 1.57 9.6/-139.2		
12:15 20.81 1.273	6.46 11111 _ 2.0	1.35 0.50 9.2 / 166.		
12:16 20.31 1.275	6.48 1111 6/05 2.25	0.63 0.50 8.7/-190.0		
		7		
(1) Note volume and physical character of sedir	ments removed			
NTU = Nephelometric turbidity units WL = Water Level from Top of PVC Casing	()/			
Checked By	What College of	Date		
1	UNINO/NAST // 86	09/12/17		

Type Well MW □ Production □ Other	Type of Data ☐ Development Sampling ☐ Pump Test ☐ Other	Well No. W-9 Sheet 1 of , Sheets
1. Project # 165 1353 Golder Walstat Oil Go.	Lovington, 66 Site	3. Date 09/12/17
4. Technician CM Barnh: 11, Pf	410 Smain Street Lovington, NA 88260	
7. Method Pumping Surging Air Life Bailing Other	8.Manufacturer's Designation of Rig DSR - 2015	9. Location of Well (Site, Description) Monitor Well W-9
	Water Levels	
Initial	Final	Final + 24 Hours
Date: 12:35	Date: 09/12/17 Time: 12:48	Date: Time:
10. Total Depth of Well (from TOC)	15. Total Depth of Well (from TOC)	20. Total Depth of Well (from TOC)
11. Water Level (from TOC)	16. Water Level (from TOC)	21. Water Level (from TOC)
12. Water Column Height ND	2.2204/	
13. Well Diameter	3.// _//	lons Dispisable Boiler T.P. Tuine
14. Weil Volume (gal) 0.74 8'	2.61 2.3720 19. Purge Volume	T.P. Tuine
23. Total Amount of Water 24. Was	Final Field Analysis Well 25 Was water added to well? 26. Was	as the Groundwater Sampled (Yes) No
Removed Pumped	Dry? No Yes If yes,	what was the sample number & Date:
27. Final Parameters	Come	B @ 12:45 3x40AL VIA'S/HA 42/ Photo Roll #,
Time Temp C Conduct	ivity ph NTOS WL hemoved	o Flow Hate Observations
12:44 20.68 1.36		ONI 0.516PM odre
28. Physical Appearance and Remarks	M IS IN THE WELL, DO NOT TAKE PH AND CONDUCTIV	ack Strong HL odia
29. Purgewater disposal method:	ON GROUND Sur	
	Sampling / Development Parameters	,
Time Temp C Conductivity 12:38 20-67 1-318	pH NTUs (from TOC) (gallons) 6.56 straggeta (00,21) paramet	- Del ATA Fel ver
12:40 20.36 1.320	6.51 11 11 1 - 1 6.50 Clear - 2	1.97 0.50 7.4/-186,
12:44 20.68 1.369	6.48 14 11 60.48 2.50	2.50 0.50 9.0/-169.
(1) Note volume and physical character of se	diments removed.	
WL = Water Level from Top of PVC Casing Checked By	Monnisse	Date 09/12/17

Type Well MW Production Other	Type of Data Development Sampling Pump Test Other	Well No. Sheet 1 of Sheets		
1. Project # 165/353 Golde	2. Project Location Walstad 66 Lovington	3. Date		
Walstad Oil Co.	410 S. Main Street	09/12/2017		
4. Technician MBarnhill PF	Lovington, NM 88260			
7. Method	8.Manufacturer's Designation of Rig	9. Location of Well (Site, Description)		
Pumping Surging Air Lift Bailing Other	DSR-2015	Monitor Well W-11		
	Water Levels			
Initial	Final	Final + 24 Hours		
Date: 09/12/n Time: 10:53	Date: /// Time: //:05	Date: Time:		
10. Total Depth of Well (from TOC) 65.17	15. Total Depth of Well (from TOC)	20. Total Depth of Well (from TOC)		
11. Water Level (from TOC)	16. Water Level (from TOC)	21. Water Level (from TOC)		
	om $x = gal/ft$ 17. 3 Well Volumes in Sch 40 Sch 80 2. 457 64	22. Size and Type of Pump or Bailer		
		1.5"x 3.0' Poly		
13. Well Diameter 2 th 3cH 40 ' 66		1601 Disposible Bailer,		
14. Well Volume (gal) 0.8/9 8' (s) w.e. height)	2.61 2.3720 19. Purge Volume	11005 Tip, Twine		
(o) W.S. Holghy	Final Field Analysis			
23. Total Amount of Water Removed 2.50 fallows 24. Was Pumped Yes	Dry? No Yes If yes, source: If yes,	what was the sample number & Date: ng Personnel? W-//, 09/12/17		
27. Final Parameters Time Temp C Conduct	CMB	2 11: 03 3 x VOAL VOAS/Hack 8 Photo Roll #,		
		1-11 DED Clear		
11.0	M IS IN THE WELL, DO NOT TAKE PH AND CONDUCTIV	00/000		
28. Physical Appearance and Remarks	Clear the with Strong A			
29. Purgewater disposal method:	ON GROUND Sur	tue		
	Sampling / Development Parameters			
Time Temp C Conductivity	pH NTUs (from TOC) (gallons)	Dissolved Flow Rate Oxygen (gpm) pHmv/ORP		
11:00 2146 1.200	141 Cleany	1.18 0.50 11.3/- 8/		
11:02 21.79 1.26	1000 Danie	0.73 0.50 11.2/		
11:03 22.18 1.357	6.44 Chan 60.92 2.5	1.01 0.50 10.4/-1		
(1) Note volume and physical character of so	ediments removed.			
WL = Water Level from Top of PVC Casing Checked By	Mittell Bell PL	Date 09/12/17		

Type Well AWW Production Other	Type of Data ☐ Development ☐ Sampling ☐ Pump Test ☐ Other	Well No. Sheet 1 of / Sheets
1. Project # 1651353 50/de Walstad 0, / Company	2. Project Location W4/5/6d 66 Lovington Site 4/0 5. Main Street	3. Date 0 9/12/17
4. Technician (MBarnh://, P6	Lovinston, NH 88260	
7. Method Pumping Surging Air Lift Bailing Other	8.Manufacturer's Designation of Rig DSR - 2015	9. Location of Well (Site, Description) Mon, for Well W-16
	Water Levels	
Initial	Final	Final + 24 Hours
Date: 17:40	Date: 12/17 Time: 13 14:55	Date: Time:
10. Total Depth of Well (from TOC)	15. Total Depth of Well (from TOC)	20. Total Depth of Well (from TOC)
11. Water Level (from TOC)	16. Water Level (from TOC) 59,12	21. Water Level (from TOC)
12. Water Column Height	Nom x = gal/ft 17. 3 Well Volumes Dia Sch 40 Sch 80 2.89 64/18	22. Size and Type of Pump or Bailer
13. Well Diameter 2" SCH 40 PVC MW 14. Weil Volume (gal) 246	0.16 0.1534 18.5 Well Volumes	11.5"×3.0' foly Dispisable Boiler
(s) w.e. height)	Final Field Analysis	7,000
23. Total Amount of Water Removed 24. Was Pumped Yes 27. Final Parameters Time Temp C Conduction	I Dry? No Yes If yes, Sampli Civity pH NTUs WL Remove	what was the sample number & Date: ng Personnel? Bay 14.5 3 x 40 mc von/5/H4/2/8 Photo Roll #, Observations OSD TUCKID FIRE
11.00	JM IS IN THE WELL, DO NOT TAKE PH AND CONDUCTIV	7,1
	TORBID Fine Silt	
29. Purgewater disposal method:	ON GROUND Surface	
- 1	Sampling / Development Parameters	
Time Temp C Conductivity 14:45 22.06 1.643 1.678	pH NTUS (from TOC) (gallons) 6.68 From 58.86 France	4. 379 151 25/2 L
14:49 20.87 1.610 14:63 21.18 1.598	6.43 FINESIH _ 2 6.44 FINESIH 59.12 3	1.13 0.50 10.5/-13
(1) Note volume and physical character of s NTU = Nephelometric turbidity units WL = Water Level from Top of PVC Casing Checked By		Date //
/	Minor Marll- PL	Date 09/12/17

Tuna Wall	T (5)	
Type Well	Type of Data □ Development	Well No. Sheet 1 W-19
☐ Production	Sampling	of , Sheets
☐ Other	□ Pump Test	
1611E12 F2 ()	□ Other	
	22-Project Location Walstad 66 Loving To	73. Date
Walstad Oil. Co.	410 S. Main St. 311E	09/12/17
4. Technician	Lovinston, NM 88260	
CMBarnhill, PG		
7. Method Pumping Surging Air Lift Bailing Other	8.Manufacturer's Designation of Rig	9. Location of Well (Site, Description)
Fullpling Surging All Life Balling Other	DSR-2015	Monitor Well W-19
	Water Levels	
Initial	Final	Final + 24 Hours
Date: 13:25	Date: 13:39 15. Total Depth of Well (from TOC)	Date: Time:
10. Total Depth of Well (from TOC)	15. Total Depth of Well (from TOC)	20. Total Depth of Well (from TOC)
65.45		
11. Water Level (from TOC)	16. Water Level (from TOC)	21. Water Level (from TOC)
60.45	60.60	
12. Water Column Height No		22. Size and Type of
5.0 Dia	Sch 40 Sch 80 2. 40 Gallo	Pump or Bailer
13. Well Diameter	0.1534 18. 5 Well Volumes	
2"SCH 40 PVC 4"	0.65 0.5972 1.47 1.3540 4 6a/long	D. 23.0 VOIG
14. Well Volume (gal) 0 C1 8"	2.61 2.3720 19. Purge Volume	Dispisable Bailer
(s) w.e. height)		Tip, hume
23. Total Amount of Water 24. Was V	Final Field Analysis /ell 25. Was water added to well? 26. Was	the Groundwater Sampled Yes No
Removed Pumped D	ry? No Yes If yes, w	hat was the sample number & Date:
2,90	If yes, source: Sampling	g Personnel? W-19, 09/12/17
64/1645	Cmp	3 @ 13:36.3 x 40 mk VIA'S/Hally/8 Photo Roll#,
27. Final Parameters Time Temp C Conductiv	ity pH NTUs WL Removed	Photo Roll#, 78 Flow Rate Observations
13:35 2176 1.13		ol. 0.506en Slight
	IS IN THE WELL, DO NOT TAKE PH AND CONDUCTIVI	
28. Physical Appearance and Remarks	a lear to stightly Two	
29. Purgewater disposal method:	ON GROUND Surtace	
"5/c"	Sampling / Development Parameters WL Volume	Dissolved Flow Rate
Time Temp C Conductivity 13:30 21:14 1.086	pH ONTUS (from TOC) (gallons)	Oxygen (gpm) pHmv/ORP
12:1	6.14 Strag oder 60.45 paramete	vs 3.51 0.50 1.7/-127.
13:32 21.03 1.084	652 1111	2,68 0.50 7.2/-113.9
13:34 20.48 1.126	6.47 11 11 - 2	2.70 0.50 9.5/-110.2
13:35 21.76 1.130	6.45 TO 5/15H 60.60 2.50	2.51 0.50 10.3/-102
<u> </u>	Tubo	
	Dane	
7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -		
(4) N		
(1) Note volume and physical character of sed NTU = Nephelometric turbidity units	ments removed	1
WL = Water Level from Top of PVC Casing	ldd + 1	
Checked By	1 1 hollander	Date /

Type Well MW Production Other	Type of Data ☐ Development ✓ Sampling ☐ Pump Test ☐ Other	Well No. W-20 Sheet 1 Sheets	
1. Project# 165 1353 Golfen Walstaf Oil Cp.	2. Project Location Walstad 66 Lavinston	3. Date 09/12/17	
4. Technician M. Barnhill, PG	Lovinston, NM 88260		
7. Method Pumping Surging Air Lift Bailing Other	8.Manufacturer's Designation of Rig D5R-2015	9. Location of Well (Site, Description) Monton Well W-20	
	Water Levels	The state of the s	
Initial	Final	Final + 24 Hours	
Date: /2/17 Time: 13:52	Date: 14:05	Date: Time:	
10. Total Depth of Well (from TOC) 65.20	15. Total Depth of Well (from TOC)	20. Total Depth of Well (from TOC)	
11. Water Level (from TOC)	16. Water Level (from TOC)	21. Water Level (from TOC)	
12. Water Column Height Non Dia	$\begin{array}{ccc} x = \text{gal/ft} & 17.3 \text{ Well Volumes} \\ \text{Sch } 40 & \text{Sch } 80 & 1.99 & 64/1. \end{array}$	22. Size and Type of Pump or Bailer	
13. Well Diameter 2"SCH 40 PVL MW 6" 14. Well Volume (gal) 0.66 4 (s) w.e. height)	0.16 0.1534 18. 5 Well Volumes 0.65 0.5972 1.47 1.3540 2.61 2.3720 19. Purge Volume	32601. Dispisable Briler Tip, Twine	
	Final Field Analysis		
23. Total Amount of Water Removed 24. Was W Pumped Dr Yes	y? Yes If yes	Was the Groundwater Sampled (4s) No es, what was the sample number & Date: pling Personnel? W-20, 09/12/17 MB 2 4:03 3x 40 AL VONS/HOLA	
27. Final Parameters Time Temp C Conductivi 14:02 20:35 1:033 IF PETROLEUM 28. Physical Appearance and Remarks	ph NTUs WL Remo 4 6.33 TOXBIP 6/.10 2.5 IS IN THE WELL, DO NOT TAKE PH AND CONDUC	ved Flow Rate Observations 5061 0.50 cm TVVB p	
	TURBID Fine Silf		
29. Purgewater disposal method:	ON GROUND Sur	true	
- 1	Sampling / Development Parameters		
Time Temp C Conductivity 13:55 20.85 0.929 13:57 19.92 1.015 14:00 19.22 1.630 14:02 20.35 1.034	pH NTUs (from TOC) (gallon 6.76 Hz) 6/.05 phrase 6/.05 phrase 6/.05 phrase 6.77 11.11 - 2 6.33 Tunesty 61.10 2.5		
(1) Note volume and physical character of sedi NTU = Nephelometric turbidity units WL = Water Level from Top of PVC Casing Checked By	ments removed.	Date	

Production Other	Sampling Dest		of / Sheets		
	☐ Other	to the transfer			
Project # 165/353 Golder	2. Project Location Walst		3. Date 0 9/12/17		
Walstad Oil Company	410 S. Main	Sirce	3 1/1-/1/		
Technician IMBarnhill 18F	Lovington, N	M 88260			
Method	8.Manufacturer's Designatio	Name and a second of the last	9. Location of Well (Site, Description)		
umping Surging Air Lift Bailing Other	DSR-	2015	Monitor Well W-2/		
	Water	Levels			
Initial	Final		Final + 24 Hours		
ate: 14:15	Date: Time: 09/12/17 15. Total Depth of Well (f	14:28	Date: Time:		
D. Total Depth of Well (from TOC)	15. Total Depth of Well (f	rom TOC)	20. Total Depth of Well (from TOC)		
1 M And Level (from TOC)	16. Water Level (from TO	C)	21. Water Level (from TOC)		
1. Water Level (Iroll 100)	60.8		an Circumst Type of		
2. Water Column Height No. Di	om x = gal/ft a Sch 40 Sch 80	17.3 Well Volumes 2.376 64	22. Size and Type of Pump or Bailer		
3. Well Diameter	0.16 0.1534	18. 5 Well Volumes	1.5"×3.0' Yoly		
2" SCH 40 PVC MW 6"	0.65 0.5972 1.47 1.3540	3.96 Gal	Moss Disposible Bailer		
4. Weil Volume (gal)		19. Purge Volume	ns Tip, Twine		
s) w.e. height)		d Analysis			
23. Total Amount of Water 24. Was		ed to well? 26. Wa	as the Groundwater Sampled Yes No what was the sample number & Date:		
Removed Pumped Yes	If yes, source:	Samplin	ng Personnel? W-2/, 09/12/17		
2.50 Gollons		CMB	9 0 14:26 3×40 mc vars/Hg/h /8 Photo Roll #,		
27. Final Parameters Time Temp C Conduct	ivity pH NTU	le WI Removed	d Flow Rate Observations		
Time Temp C Conduct 14:15 21.48 1.06	6 6.62 Tox	sip 6085 2.50	661. 0.516PM TURBID		
IF PETROLEU	M IS IN THE WELL, DO NOT	TAKE PH AND CONDUCTIV	VITY PARAMETERS		
28. Physical Appearance and Remarks		Tine Sitt-			
29. Purgewater disposal method:	ON 6	ROUND Surta	ce		
		opment Parameters			
Time Temp C Conductivity	pH NTUs	WL Volume (from TOC) (gallons)	(man) nUmu/ODD		
Time Temp C Conductivity 14:20 20.59 1.054	6.74 dea	60.45 Davane	ten 4.96 0.50 -1.6/-10.		
14:22 19.95 1.058	6.65 TURBID		4.93 0.50 1.9/-6.		
14:24 20:16 1.060	6.60 1111 4		4.75 0.50 3.2/-		
14:2 21.98 1.066	6.62 "11"	60.85 2.50	5.0K 0.50 2.8/2.		
11.3					
(1) Note volume and physical character of	sediments removed.				
NTU = Nephelometric turbidity units WL = Water Level from Top of PVC Casing	(1)		I Date		
Checked By	Minher	Whole PL	Date 09/12/17		
			- // //		

APPENDIX D
ANALYTICAL LABORATORY REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 21, 2017

Emily Clark
Golder Associates
5200 Pasadena, NE Suite C
Albuquerque, NM 87113

TEL: (505) 821-3043 FAX (505) 821-5273

RE: Walstad Oil Co Lovington 66 Site OrderNo.: 1709834

Dear Emily Clark:

Hall Environmental Analysis Laboratory received 9 sample(s) on 9/14/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-5

Project:Walstad Oil Co Lovington 66 SiteCollection Date: 9/12/2017 10:22:00 AMLab ID:1709834-001Matrix: AQUEOUSReceived Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
Benzene	42	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Toluene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Ethylbenzene	5.6	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Methyl tert-butyl ether (MTBE)	3.2	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,2,4-Trimethylbenzene	4.4	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,3,5-Trimethylbenzene	2.4	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,2-Dichloroethane (EDC)	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,2-Dibromoethane (EDB)	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Naphthalene	ND	4.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1-Methylnaphthalene	ND	8.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
2-Methylnaphthalene	ND	8.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Acetone	ND	20	μg/L	2	9/20/2017 3:18:00 AM	A45748
Bromobenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Bromodichloromethane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Bromoform	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Bromomethane	ND	6.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
2-Butanone	ND	20	μg/L	2	9/20/2017 3:18:00 AM	A45748
Carbon disulfide	ND	20	μg/L	2	9/20/2017 3:18:00 AM	A45748
Carbon Tetrachloride	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Chlorobenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Chloroethane	ND	4.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Chloroform	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Chloromethane	ND	6.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
2-Chlorotoluene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
4-Chlorotoluene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
cis-1,2-DCE	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Dibromochloromethane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Dibromomethane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,2-Dichlorobenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,3-Dichlorobenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,4-Dichlorobenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Dichlorodifluoromethane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,1-Dichloroethane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,1-Dichloroethene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,2-Dichloropropane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,3-Dichloropropane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
2,2-Dichloropropane	ND	4.0	μg/L	2	9/20/2017 3:18:00 AM	A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 24
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc. Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-5

 Project:
 Walstad Oil Co Lovington 66 Site
 Collection Date: 9/12/2017 10:22:00 AM

 Lab ID:
 1709834-001
 Matrix: AQUEOUS
 Received Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Hexachlorobutadiene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
2-Hexanone	ND	20	μg/L	2	9/20/2017 3:18:00 AM	A45748
Isopropylbenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
4-Isopropyltoluene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
4-Methyl-2-pentanone	ND	20	μg/L	2	9/20/2017 3:18:00 AM	A45748
Methylene Chloride	ND	6.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
n-Butylbenzene	ND	6.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
n-Propylbenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
sec-Butylbenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Styrene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
tert-Butylbenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,1,2,2-Tetrachloroethane	ND	4.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Tetrachloroethene (PCE)	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
trans-1,2-DCE	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,1,1-Trichloroethane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,1,2-Trichloroethane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Trichloroethene (TCE)	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Trichlorofluoromethane	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
1,2,3-Trichloropropane	ND	4.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Vinyl chloride	ND	2.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Xylenes, Total	10	3.0	μg/L	2	9/20/2017 3:18:00 AM	A45748
Surr: 1,2-Dichloroethane-d4	92.8	70-130	%Rec	2	9/20/2017 3:18:00 AM	A45748
Surr: 4-Bromofluorobenzene	96.1	70-130	%Rec	2	9/20/2017 3:18:00 AM	A45748
Surr: Dibromofluoromethane	97.9	70-130	%Rec	2	9/20/2017 3:18:00 AM	A45748
Surr: Toluene-d8	87.9	70-130	%Rec	2	9/20/2017 3:18:00 AM	A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 24
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-8

Project:Walstad Oil Co Lovington 66 SiteCollection Date: 9/12/2017 12:17:00 PMLab ID:1709834-002Matrix: AQUEOUSReceived Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analys	st: RAA
Benzene	15000	500	μg/L	500 9/20/2017 4:48:00 PM	1 R45765
Toluene	6100	500	μg/L	500 9/20/2017 4:48:00 PM	1 R45765
Ethylbenzene	2100	500	μg/L	500 9/20/2017 4:48:00 PM	1 R45765
Methyl tert-butyl ether (MTBE)	14000	500	μg/L	500 9/20/2017 4:48:00 PM	1 R45765
1,2,4-Trimethylbenzene	1600	500	μg/L	500 9/20/2017 4:48:00 PM	1 R45765
1,3,5-Trimethylbenzene	430	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,2-Dichloroethane (EDC)	260	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Naphthalene	470	10	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1-Methylnaphthalene	44	20	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
2-Methylnaphthalene	80	20	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Acetone	ND	50	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Bromobenzene	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Bromodichloromethane	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Bromoform	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Bromomethane	ND	15	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
2-Butanone	ND	50	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Carbon disulfide	ND	50	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Carbon Tetrachloride	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Chlorobenzene	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Chloroethane	ND	10	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Chloroform	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Chloromethane	ND	15	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
2-Chlorotoluene	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
4-Chlorotoluene	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
cis-1,2-DCE	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
cis-1,3-Dichloropropene	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,2-Dibromo-3-chloropropane	ND	10	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Dibromochloromethane	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Dibromomethane	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,2-Dichlorobenzene	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,3-Dichlorobenzene	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,4-Dichlorobenzene	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
Dichlorodifluoromethane	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,1-Dichloroethane	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,1-Dichloroethene	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,2-Dichloropropane	39	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
1,3-Dichloropropane	ND	5.0	μg/L	5 9/20/2017 3:42:00 AM	1 A45748
2,2-Dichloropropane	ND	10	μg/L	5 9/20/2017 3:42:00 AN	1 A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 24
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc. Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-8

Project:Walstad Oil Co Lovington 66 SiteCollection Date: 9/12/2017 12:17:00 PMLab ID:1709834-002Matrix: AQUEOUSReceived Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
Hexachlorobutadiene	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
2-Hexanone	ND	50	μg/L	5	9/20/2017 3:42:00 AM	A45748
Isopropylbenzene	68	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
4-Isopropyltoluene	5.3	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
4-Methyl-2-pentanone	ND	50	μg/L	5	9/20/2017 3:42:00 AM	A45748
Methylene Chloride	ND	15	μg/L	5	9/20/2017 3:42:00 AM	A45748
n-Butylbenzene	19	15	μg/L	5	9/20/2017 3:42:00 AM	A45748
n-Propylbenzene	200	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
sec-Butylbenzene	7.6	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
Styrene	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
tert-Butylbenzene	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
1,1,2,2-Tetrachloroethane	ND	10	μg/L	5	9/20/2017 3:42:00 AM	A45748
Tetrachloroethene (PCE)	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
trans-1,2-DCE	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
trans-1,3-Dichloropropene	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
1,2,3-Trichlorobenzene	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
1,1,1-Trichloroethane	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
1,1,2-Trichloroethane	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
Trichloroethene (TCE)	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
Trichlorofluoromethane	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
1,2,3-Trichloropropane	ND	10	μg/L	5	9/20/2017 3:42:00 AM	A45748
Vinyl chloride	ND	5.0	μg/L	5	9/20/2017 3:42:00 AM	A45748
Xylenes, Total	4900	750	μg/L	500	9/20/2017 4:48:00 PM	R45765
Surr: 1,2-Dichloroethane-d4	94.3	70-130	%Rec	5	9/20/2017 3:42:00 AM	A45748
Surr: 4-Bromofluorobenzene	95.2	70-130	%Rec	5	9/20/2017 3:42:00 AM	A45748
Surr: Dibromofluoromethane	95.5	70-130	%Rec	5	9/20/2017 3:42:00 AM	A45748
Surr: Toluene-d8	88.0	70-130	%Rec	5	9/20/2017 3:42:00 AM	A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 24
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-9

Project:Walstad Oil Co Lovington 66 SiteCollection Date: 9/12/2017 12:45:00 PMLab ID:1709834-003Matrix: AQUEOUSReceived Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
Benzene	2500	50	μg/L	50	9/20/2017 5:12:00 PM	R45765
Toluene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Ethylbenzene	110	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Methyl tert-butyl ether (MTBE)	420	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,2,4-Trimethylbenzene	190	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,3,5-Trimethylbenzene	35	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,2-Dichloroethane (EDC)	510	50	μg/L	50	9/20/2017 5:12:00 PM	R45765
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Naphthalene	43	10	μg/L	5	9/20/2017 5:36:00 PM	R45765
1-Methylnaphthalene	ND	20	μg/L	5	9/20/2017 5:36:00 PM	R45765
2-Methylnaphthalene	ND	20	μg/L	5	9/20/2017 5:36:00 PM	R45765
Acetone	ND	50	μg/L	5	9/20/2017 5:36:00 PM	R45765
Bromobenzene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Bromodichloromethane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Bromoform	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Bromomethane	ND	15	μg/L	5	9/20/2017 5:36:00 PM	R45765
2-Butanone	ND	50	μg/L	5	9/20/2017 5:36:00 PM	R45765
Carbon disulfide	ND	50	μg/L	5	9/20/2017 5:36:00 PM	R45765
Carbon Tetrachloride	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Chlorobenzene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Chloroethane	ND	10	μg/L	5	9/20/2017 5:36:00 PM	R45765
Chloroform	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Chloromethane	ND	15	μg/L	5	9/20/2017 5:36:00 PM	R45765
2-Chlorotoluene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
4-Chlorotoluene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
cis-1,2-DCE	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
cis-1,3-Dichloropropene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,2-Dibromo-3-chloropropane	ND	10	μg/L	5	9/20/2017 5:36:00 PM	R45765
Dibromochloromethane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Dibromomethane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,2-Dichlorobenzene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,3-Dichlorobenzene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,4-Dichlorobenzene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Dichlorodifluoromethane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,1-Dichloroethane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,1-Dichloroethene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,2-Dichloropropane	18	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
1,3-Dichloropropane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
2,2-Dichloropropane	ND	10	μg/L	5	9/20/2017 5:36:00 PM	R45765

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 24
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-9

Project:Walstad Oil Co Lovington 66 SiteCollection Date: 9/12/2017 12:45:00 PMLab ID:1709834-003Matrix: AQUEOUSReceived Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R45765
Hexachlorobutadiene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
2-Hexanone	ND	50	μg/L	5	9/20/2017 5:36:00 PM	R4576
Isopropylbenzene	6.2	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
4-Isopropyltoluene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
4-Methyl-2-pentanone	ND	50	μg/L	5	9/20/2017 5:36:00 PM	R4576
Methylene Chloride	ND	15	μg/L	5	9/20/2017 5:36:00 PM	R4576
n-Butylbenzene	ND	15	μg/L	5	9/20/2017 5:36:00 PM	R4576
n-Propylbenzene	6.6	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
sec-Butylbenzene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
Styrene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
tert-Butylbenzene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
1,1,2,2-Tetrachloroethane	ND	10	μg/L	5	9/20/2017 5:36:00 PM	R4576
Tetrachloroethene (PCE)	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
trans-1,2-DCE	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
trans-1,3-Dichloropropene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
1,2,3-Trichlorobenzene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
1,1,1-Trichloroethane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
1,1,2-Trichloroethane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
Trichloroethene (TCE)	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
Trichlorofluoromethane	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
1,2,3-Trichloropropane	ND	10	μg/L	5	9/20/2017 5:36:00 PM	R4576
Vinyl chloride	ND	5.0	μg/L	5	9/20/2017 5:36:00 PM	R4576
Xylenes, Total	61	7.5	μg/L	5	9/20/2017 5:36:00 PM	R4576
Surr: 1,2-Dichloroethane-d4	92.7	70-130	%Rec	5	9/20/2017 5:36:00 PM	R4576
Surr: 4-Bromofluorobenzene	96.2	70-130	%Rec	5	9/20/2017 5:36:00 PM	R4576
Surr: Dibromofluoromethane	96.4	70-130	%Rec	5	9/20/2017 5:36:00 PM	R45765
Surr: Toluene-d8	86.8	70-130	%Rec	5	9/20/2017 5:36:00 PM	R45765

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 24
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-11

Project:Walstad Oil Co Lovington 66 SiteCollection Date: 9/12/2017 11:03:00 AMLab ID:1709834-004Matrix: AQUEOUSReceived Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qua	al Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Ana	lyst: RAA
Benzene	5.1	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Toluene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Ethylbenzene	24	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Methyl tert-butyl ether (MTBE)	35	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,2,4-Trimethylbenzene	1.7	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,3,5-Trimethylbenzene	1.2	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,2-Dichloroethane (EDC)	52	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Naphthalene	3.9	2.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 7:12:00	PM R45765
2-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Acetone	ND	10	μg/L	1 9/20/2017 7:12:00	PM R45765
Bromobenzene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Bromodichloromethane	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Bromoform	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Bromomethane	ND	3.0	μg/L	1 9/20/2017 7:12:00	PM R45765
2-Butanone	ND	10	μg/L	1 9/20/2017 7:12:00	PM R45765
Carbon disulfide	ND	10	μg/L	1 9/20/2017 7:12:00	PM R45765
Carbon Tetrachloride	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Chlorobenzene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Chloroethane	ND	2.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Chloroform	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Chloromethane	ND	3.0	μg/L	1 9/20/2017 7:12:00	PM R45765
2-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
4-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
cis-1,2-DCE	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
cis-1,3-Dichloropropene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Dibromochloromethane	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Dibromomethane	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,2-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,3-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,4-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
Dichlorodifluoromethane	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,1-Dichloroethane	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,1-Dichloroethene	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,2-Dichloropropane	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
1,3-Dichloropropane	ND	1.0	μg/L	1 9/20/2017 7:12:00	PM R45765
2,2-Dichloropropane	ND	2.0	μg/L	1 9/20/2017 7:12:00	PM R45765

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 7 of 24
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-11

Project:Walstad Oil Co Lovington 66 SiteCollection Date: 9/12/2017 11:03:00 AMLab ID:1709834-004Matrix: AQUEOUSReceived Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
2-Hexanone	ND	10	μg/L	1	9/20/2017 7:12:00 PM	R45765
Isopropylbenzene	14	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2017 7:12:00 PM	R45765
Methylene Chloride	ND	3.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
n-Propylbenzene	4.2	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
sec-Butylbenzene	7.4	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
Styrene	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
Vinyl chloride	ND	1.0	μg/L	1	9/20/2017 7:12:00 PM	R45765
Xylenes, Total	ND	1.5	μg/L	1	9/20/2017 7:12:00 PM	R45765
Surr: 1,2-Dichloroethane-d4	91.4	70-130	%Rec	1	9/20/2017 7:12:00 PM	R45765
Surr: 4-Bromofluorobenzene	97.0	70-130	%Rec	1	9/20/2017 7:12:00 PM	R45765
Surr: Dibromofluoromethane	95.4	70-130	%Rec	1	9/20/2017 7:12:00 PM	R45765
Surr: Toluene-d8	87.6	70-130	%Rec	1	9/20/2017 7:12:00 PM	R45765

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 8 of 24
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-16

Project:Walstad Oil Co Lovington 66 SiteCollection Date: 9/12/2017 2:54:00 PMLab ID:1709834-005Matrix: AQUEOUSReceived Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
Benzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Toluene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Ethylbenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Naphthalene	ND	2.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1-Methylnaphthalene	ND	4.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
2-Methylnaphthalene	ND	4.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Acetone	ND	10	μg/L	1	9/20/2017 5:41:00 AM	A45748
Bromobenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Bromodichloromethane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Bromoform	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Bromomethane	ND	3.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
2-Butanone	ND	10	μg/L	1	9/20/2017 5:41:00 AM	A45748
Carbon disulfide	ND	10	μg/L	1	9/20/2017 5:41:00 AM	A45748
Carbon Tetrachloride	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Chlorobenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Chloroethane	ND	2.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Chloroform	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Chloromethane	ND	3.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
2-Chlorotoluene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
4-Chlorotoluene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
cis-1,2-DCE	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Dibromochloromethane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Dibromomethane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,2-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,3-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,4-Dichlorobenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Dichlorodifluoromethane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,1-Dichloroethane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,1-Dichloroethene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,2-Dichloropropane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,3-Dichloropropane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
2,2-Dichloropropane	ND	2.0	μg/L	1	9/20/2017 5:41:00 AM	A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 9 of 24
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-16

Project: Walstad Oil Co Lovington 66 Site **Collection Date:** 9/12/2017 2:54:00 PM Lab ID: 1709834-005 Matrix: AQUEOUS Received Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
2-Hexanone	ND	10	μg/L	1	9/20/2017 5:41:00 AM	A45748
Isopropylbenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2017 5:41:00 AM	A45748
Methylene Chloride	ND	3.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
n-Propylbenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
sec-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Styrene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Vinyl chloride	ND	1.0	μg/L	1	9/20/2017 5:41:00 AM	A45748
Xylenes, Total	ND	1.5	μg/L	1	9/20/2017 5:41:00 AM	A45748
Surr: 1,2-Dichloroethane-d4	91.2	70-130	%Rec	1	9/20/2017 5:41:00 AM	A45748
Surr: 4-Bromofluorobenzene	94.8	70-130	%Rec	1	9/20/2017 5:41:00 AM	A45748
Surr: Dibromofluoromethane	96.6	70-130	%Rec	1	9/20/2017 5:41:00 AM	A45748
Surr: Toluene-d8	87.2	70-130	%Rec	1	9/20/2017 5:41:00 AM	A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 10 of 24 J
- P Sample pH Not In Range
- RLReporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-19

Project: Walstad Oil Co Lovington 66 Site **Collection Date:** 9/12/2017 1:36:00 PM Lab ID: 1709834-006 Matrix: AQUEOUS **Received Date:** 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF Date Analyzed Ba	atch
EPA METHOD 8260B: VOLATILES				Analyst: R	AA
Benzene	3.1	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Toluene	1.3	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Ethylbenzene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,2-Dichloroethane (EDC)	130	10	μg/L	10 9/20/2017 7:36:00 PM R	R45765
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Naphthalene	ND	2.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
2-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Acetone	ND	10	μg/L	1 9/20/2017 6:05:00 AM A	45748
Bromobenzene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Bromodichloromethane	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Bromoform	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Bromomethane	ND	3.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
2-Butanone	ND	10	μg/L	1 9/20/2017 6:05:00 AM A	45748
Carbon disulfide	ND	10	μg/L	1 9/20/2017 6:05:00 AM A	45748
Carbon Tetrachloride	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Chlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Chloroethane	ND	2.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Chloroform	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Chloromethane	ND	3.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
2-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
4-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
cis-1,2-DCE	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
cis-1,3-Dichloropropene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Dibromochloromethane	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Dibromomethane	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,2-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,3-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,4-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
Dichlorodifluoromethane	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,1-Dichloroethane	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,1-Dichloroethene	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,2-Dichloropropane	8.6	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
1,3-Dichloropropane	ND	1.0	μg/L	1 9/20/2017 6:05:00 AM A	45748
2,2-Dichloropropane	ND	2.0	μg/L	1 9/20/2017 6:05:00 AM A	45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 11 of 24 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-19

Project: Walstad Oil Co Lovington 66 Site **Collection Date:** 9/12/2017 1:36:00 PM Lab ID: 1709834-006 Matrix: AQUEOUS Received Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
2-Hexanone	ND	10	μg/L	1	9/20/2017 6:05:00 AM	A45748
Isopropylbenzene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2017 6:05:00 AM	A45748
Methylene Chloride	ND	3.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
n-Propylbenzene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
sec-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
Styrene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
Vinyl chloride	ND	1.0	μg/L	1	9/20/2017 6:05:00 AM	A45748
Xylenes, Total	ND	1.5	μg/L	1	9/20/2017 6:05:00 AM	A45748
Surr: 1,2-Dichloroethane-d4	91.1	70-130	%Rec	1	9/20/2017 6:05:00 AM	A45748
Surr: 4-Bromofluorobenzene	96.7	70-130	%Rec	1	9/20/2017 6:05:00 AM	A45748
Surr: Dibromofluoromethane	95.5	70-130	%Rec	1	9/20/2017 6:05:00 AM	A45748
Surr: Toluene-d8	88.0	70-130	%Rec	1	9/20/2017 6:05:00 AM	A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 12 of 24 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-20

Project: Walstad Oil Co Lovington 66 Site **Collection Date:** 9/12/2017 2:03:00 PM Lab ID: 1709834-007 Matrix: AQUEOUS **Received Date:** 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qua	al Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analys	t: RAA
Benzene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Toluene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Ethylbenzene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Naphthalene	ND	2.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
2-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Acetone	ND	10	μg/L	1 9/20/2017 6:28:00 AM	A45748
Bromobenzene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Bromodichloromethane	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Bromoform	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Bromomethane	ND	3.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
2-Butanone	ND	10	μg/L	1 9/20/2017 6:28:00 AM	A45748
Carbon disulfide	ND	10	μg/L	1 9/20/2017 6:28:00 AM	A45748
Carbon Tetrachloride	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Chlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Chloroethane	ND	2.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Chloroform	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Chloromethane	ND	3.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
2-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
4-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
cis-1,2-DCE	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
cis-1,3-Dichloropropene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Dibromochloromethane	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Dibromomethane	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,2-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,3-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,4-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
Dichlorodifluoromethane	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,1-Dichloroethane	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,1-Dichloroethene	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,2-Dichloropropane	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
1,3-Dichloropropane	ND	1.0	μg/L	1 9/20/2017 6:28:00 AM	A45748
2,2-Dichloropropane	ND	2.0	μg/L	1 9/20/2017 6:28:00 AM	A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 13 of 24 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-20

Project: Walstad Oil Co Lovington 66 Site **Collection Date:** 9/12/2017 2:03:00 PM Lab ID: 1709834-007 Matrix: AQUEOUS Received Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: RAA
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
2-Hexanone	ND	10	μg/L	1	9/20/2017 6:28:00 AM	A45748
Isopropylbenzene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2017 6:28:00 AM	A45748
Methylene Chloride	ND	3.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
n-Propylbenzene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
sec-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
Styrene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
Vinyl chloride	ND	1.0	μg/L	1	9/20/2017 6:28:00 AM	A45748
Xylenes, Total	ND	1.5	μg/L	1	9/20/2017 6:28:00 AM	A45748
Surr: 1,2-Dichloroethane-d4	90.6	70-130	%Rec	1	9/20/2017 6:28:00 AM	A45748
Surr: 4-Bromofluorobenzene	95.6	70-130	%Rec	1	9/20/2017 6:28:00 AM	A45748
Surr: Dibromofluoromethane	97.8	70-130	%Rec	1	9/20/2017 6:28:00 AM	A45748
Surr: Toluene-d8	88.1	70-130	%Rec	1	9/20/2017 6:28:00 AM	A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 14 of 24 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-21

Project: Walstad Oil Co Lovington 66 Site **Collection Date:** 9/12/2017 2:26:00 PM Lab ID: 1709834-008 Matrix: AQUEOUS **Received Date:** 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qua	al Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Anal	yst: RAA
Benzene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Toluene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Ethylbenzene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Naphthalene	ND	2.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
2-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Acetone	ND	10	μg/L	1 9/20/2017 6:52:00 A	M A45748
Bromobenzene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Bromodichloromethane	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Bromoform	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Bromomethane	ND	3.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
2-Butanone	ND	10	μg/L	1 9/20/2017 6:52:00 A	M A45748
Carbon disulfide	ND	10	μg/L	1 9/20/2017 6:52:00 A	M A45748
Carbon Tetrachloride	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Chlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Chloroethane	ND	2.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Chloroform	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Chloromethane	ND	3.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
2-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
4-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
cis-1,2-DCE	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
cis-1,3-Dichloropropene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Dibromochloromethane	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Dibromomethane	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,2-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,3-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,4-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
Dichlorodifluoromethane	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,1-Dichloroethane	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,1-Dichloroethene	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,2-Dichloropropane	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
1,3-Dichloropropane	ND	1.0	μg/L	1 9/20/2017 6:52:00 A	M A45748
2,2-Dichloropropane	ND	2.0	μg/L	1 9/20/2017 6:52:00 A	M A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 15 of 24 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates Client Sample ID: W-21

Project: Walstad Oil Co Lovington 66 Site **Collection Date:** 9/12/2017 2:26:00 PM Lab ID: 1709834-008 Matrix: AQUEOUS Received Date: 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					t: RAA	
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
2-Hexanone	ND	10	μg/L	1	9/20/2017 6:52:00 AM	A45748
Isopropylbenzene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2017 6:52:00 AM	A45748
Methylene Chloride	ND	3.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
n-Propylbenzene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
sec-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
Styrene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
Vinyl chloride	ND	1.0	μg/L	1	9/20/2017 6:52:00 AM	A45748
Xylenes, Total	ND	1.5	μg/L	1	9/20/2017 6:52:00 AM	A45748
Surr: 1,2-Dichloroethane-d4	93.3	70-130	%Rec	1	9/20/2017 6:52:00 AM	A45748
Surr: 4-Bromofluorobenzene	95.9	70-130	%Rec	1	9/20/2017 6:52:00 AM	A45748
Surr: Dibromofluoromethane	98.0	70-130	%Rec	1	9/20/2017 6:52:00 AM	A45748
Surr: Toluene-d8	88.7	70-130	%Rec	1	9/20/2017 6:52:00 AM	A45748

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 16 of 24 J
- P Sample pH Not In Range
- RLReporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates **Client Sample ID:** TRIP BLANK

Project: Walstad Oil Co Lovington 66 Site **Collection Date:**

Lab ID: 1709834-009 Matrix: TRIP BLANK **Received Date:** 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qua	al Units	DF Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES			Analyst: RAA			
Benzene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Toluene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Ethylbenzene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Naphthalene	ND	2.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
2-Methylnaphthalene	ND	4.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Acetone	ND	10	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Bromobenzene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Bromodichloromethane	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Bromoform	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Bromomethane	ND	3.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
2-Butanone	ND	10	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Carbon disulfide	ND	10	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Carbon Tetrachloride	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Chlorobenzene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Chloroethane	ND	2.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Chloroform	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Chloromethane	ND	3.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
2-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
4-Chlorotoluene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
cis-1,2-DCE	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
cis-1,3-Dichloropropene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Dibromochloromethane	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Dibromomethane	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,2-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,3-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,4-Dichlorobenzene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
Dichlorodifluoromethane	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,1-Dichloroethane	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,1-Dichloroethene	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,2-Dichloropropane	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
1,3-Dichloropropane	ND	1.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	
2,2-Dichloropropane	ND	2.0	μg/L	1 9/20/2017 7:16:00 AM	A45748	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 17 of 24 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/21/2017

CLIENT: Golder Associates **Client Sample ID:** TRIP BLANK

Project: Walstad Oil Co Lovington 66 Site **Collection Date:**

Lab ID: 1709834-009 Matrix: TRIP BLANK **Received Date:** 9/14/2017 9:40:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES					Analyst		
1,1-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Hexachlorobutadiene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
2-Hexanone	ND	10	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Isopropylbenzene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
4-Isopropyltoluene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
4-Methyl-2-pentanone	ND	10	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Methylene Chloride	ND	3.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
n-Butylbenzene	ND	3.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
n-Propylbenzene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
sec-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Styrene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
tert-Butylbenzene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
trans-1,2-DCE	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
1,1,1-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
1,1,2-Trichloroethane	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Trichloroethene (TCE)	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Trichlorofluoromethane	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
1,2,3-Trichloropropane	ND	2.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Vinyl chloride	ND	1.0	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Xylenes, Total	ND	1.5	μg/L	1	9/20/2017 7:16:00 AM	A45748	
Surr: 1,2-Dichloroethane-d4	92.5	70-130	%Rec	1	9/20/2017 7:16:00 AM	A45748	
Surr: 4-Bromofluorobenzene	95.2	70-130	%Rec	1	9/20/2017 7:16:00 AM	A45748	
Surr: Dibromofluoromethane	95.7	70-130	%Rec	1	9/20/2017 7:16:00 AM	A45748	
Surr: Toluene-d8	89.2	70-130	%Rec	1	9/20/2017 7:16:00 AM	A45748	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 18 of 24 J
- P Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1709834**

21-Sep-17

Client: Golder Associates

Sample ID rb2

Project: Walstad Oil Co Lovington 66 Site

Sample ID 100ng lcs2	SampType: LCS TestCode: EPA Method 8260B: VOLATILES									
Client ID: LCSW	Batch	n ID: A4	5748	F	RunNo: 4	5748				
Prep Date:	Analysis D	oate: 9/	20/2017	9	SeqNo: 1	452828	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	110	70	130			
Toluene	20	1.0	20.00	0	98.6	70	130			
Chlorobenzene	20	1.0	20.00	0	99.3	70	130			
1,1-Dichloroethene	23	1.0	20.00	0	115	70	130			
Trichloroethene (TCE)	21	1.0	20.00	0	106	70	130			
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.6	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		95.5	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.0	70	130			

TestCode: EPA Method 8260B: VOLATILES

Client ID: PBW	Batch ID: A45748		F	RunNo: 4	5748					
Prep Date:	Analysis D	ate: 9/	20/2017	S	SeqNo: 1	452829	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 19 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **1709834**

21-Sep-17

Client: Golder Associates

Project: Walstad Oil Co Lovington 66 Site

Sample ID rb2	SampT	ype: MI	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: A 4	5748	F	RunNo: 4	5748				
Prep Date:	Analysis D	ate: 9/	20/2017	5	SeqNo: 1	452829	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
.,2,5 monoropropuno	112									

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 20 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **1709834**

21-Sep-17

Client: Golder Associates

Project: Walstad Oil Co Lovington 66 Site

Sample ID rb2	SampT	уре: МЕ	BLK	Tes	tCode: E					
Client ID: PBW	Batch	n ID: A4	5748	F	RunNo: 4	5748				
Prep Date:	Analysis D	oate: 9/	20/2017	5	SeqNo: 1	452829	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.7	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.8	70	130			
Surr: Dibromofluoromethane	9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		88.6	70	130			

Sample ID 100ng Ics	Samp	Type: LC	S	Tes	tCode: E l	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batc	n ID: R4	5765	F	RunNo: 4	5765				
Prep Date:	Analysis [Date: 9/	20/2017	S	SeqNo: 1	453589	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Toluene	19	1.0	20.00	0	96.6	70	130			
Chlorobenzene	19	1.0	20.00	0	96.2	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	111	70	130			
Trichloroethene (TCE)	21	1.0	20.00	0	104	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	9.5		10.00		95.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.0	70	130			

Sample ID rb	SampType: MBLK		Tes	tCode: El	PA Method	8260B: VOL	ATILES			
Client ID: PBW	Batch	ID: R4	5765	R	tunNo: 4	5765				
Prep Date:	Analysis D	ate: 9/	20/2017	S	eqNo: 1	453590	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 21 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **1709834**

21-Sep-17

Client: Golder Associates

Project: Walstad Oil Co Lovington 66 Site

Sample ID rb	SampT	уре: МІ	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ı ID: R4	5765	F	RunNo: 4	5765				
Prep Date:	Analysis D	ate: 9/	/20/2017	S	SeqNo: 1	453590	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
	ND	3.0								
n-Butylbenzene n-Propylbenzene	ND ND	1.0								
		1.0								
sec-Butylbenzene	ND ND									
Styrene		1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 22 of 24

Hall Environmental Analysis Laboratory, Inc.

WO#: **1709834**

21-Sep-17

Client: Golder Associates

Project: Walstad Oil Co Lovington 66 Site

Sample ID rb	SampType: MBLK Tes				tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R4	5765	F	RunNo: 4	5765				
Prep Date:	Analysis D	ate: 9/	20/2017	S	SeqNo: 1	453590	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.9	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		95.6	70	130			
Surr: Dibromofluoromethane	9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		89.3	70	130			

Sample ID 1709834-003ams	SampT	SampType: MS TestCode: EPA Method 8260B: VOLATILES								
Client ID: W-9	Batch	1D: A4	5748	R	RunNo: 4	5765				
Prep Date:	Analysis D	ate: 9/	20/2017	S	SeqNo: 1	454006	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	2500	5.0	100.0	2423	67.5	70	130			ES
Toluene	99	5.0	100.0	1.700	97.3	70	130			
Chlorobenzene	98	5.0	100.0	0	98.0	70	130			
1,1-Dichloroethene	110	5.0	100.0	0	114	70	130			
Trichloroethene (TCE)	110	5.0	100.0	0	107	70	130			
Surr: 1,2-Dichloroethane-d4	45		50.00		90.6	70	130			
Surr: 4-Bromofluorobenzene	48		50.00		96.9	70	130			
Surr: Dibromofluoromethane	48		50.00		96.9	70	130			
Surr: Toluene-d8	44		50.00		88.1	70	130			

Sample ID	1709834-003amsd	SampT	уре: М S	SD	Test	tCode: El	ATILES				
Client ID:	W-9	Batch	ID: A4	5748	R	tunNo: 4	5765				
Prep Date:		Analysis D	ate: 9/	20/2017	S	SeqNo: 1	454007	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		2400	5.0	100.0	2423	-20.6	70	130	3.60	20	ES
Toluene		95	5.0	100.0	1.700	93.0	70	130	4.41	20	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

tion limits Page 23 of 24

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1709834**

21-Sep-17

Client: Golder Associates

Project: Walstad Oil Co Lovington 66 Site

Sample ID 1709834-003amsc	J SampT	SampType: MSD TestCode: EPA Method 8260B: VOLATILES								
Client ID: W-9	Batch	ID: A4	5748	R	RunNo: 4	5765				
Prep Date:	Analysis D	ate: 9/	20/2017	S	SeqNo: 14	454007	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chlorobenzene	94	5.0	100.0	0	93.7	70	130	4.49	20	
1,1-Dichloroethene	110	5.0	100.0	0	109	70	130	3.80	20	
Trichloroethene (TCE)	100	5.0	100.0	0	103	70	130	3.26	20	
Surr: 1,2-Dichloroethane-d4	46		50.00		91.8	70	130	0	0	
Surr: 4-Bromofluorobenzene	48		50.00		95.1	70	130	0	0	
Surr: Dibromofluoromethane	47		50.00		94.4	70	130	0	0	
Surr: Toluene-d8	44		50.00		88.4	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 24 of 24

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	Golder Assoc	Work Order N	lumber: 1709834		RcptNo:	1
Received By:	Isaiah Ortiz	9/14/2017 9:40	:00 AM	ICH	_	
Completed By:	Ashley Gallego	s 9/15/2017 9:35	:22 AM	ICA		
Reviewed By:	ENM	9/18/17		. (
Chain of Cus	stody					
1. Custody sea	als intact on sample	e bottles?	Yes 🗌	No 🗌	Not Present 🗹	
2. Is Chain of 0	Custody complete?		Yes 🗹	No 🗌	Not Present	
3. How was the	e sample delivered	?	<u>UPS</u>			
<u>Log In</u>						
4. Was an atte	empt made to cool	the samples?	Yes 🗹	No 🗌	na 🗆	
5. Were all sar	mples received at a	temperature of >0° C to 6.0°	C Yes 🗹	No 🗌	NA \square	
6. Sample(s) i	n proper container(s)?	Yes 🗹	No 🗌		
7. Sufficient sa	ample volume for in	dicated test(s)?	Yes 🗹	No 🗆		
8. Are samples	s (except VOA and	ONG) properly preserved?	Yes 🗹	No 🗆		
9. Was presen	vative added to bot	ties?	Yes 🗌	No 🗹	NA □	
10.VOA vials h	ave zero headspac	e?	Yes 🗹	No 🗆	No VOA Vials	
11. Were any s	ample containers r	eceived broken?	Yes 📙	No 🗹	# of preserved	
	work match bottle l		Yes 🗸	No 🗆	bottles checked for pH:	r >12 unless noted)
•	pancies on chain o	or custody) d on Chain of Custody?	Yes 🗸	No 🗀	Adjusted?	1 > 12 dilless floted)
	nat analyses were r		Yes ✓	No 🗆		
15. Were all hol	ding times able to l customer for autho	pe met?	Yes 🗹	No 🗌	Checked by:	
Special Hand	lling (if applica	nble)				
		pancies with this order?	Yes 🗌	No 🗌	na 🗹	
Perso	n Notified:		Date			1
By Wi	nom:	and the second s	via: ☐ eMail ☐	Phone Fax	☐ In Person	
Regar	ding:	A PARA A SANSA MARKANIA A SANSA A SANS				
Client	Instructions:		THE RESERVE THE PROPERTY OF TH	erroren an energen innergen i		
17. Additional r	emarks:					ii
18. <u>Cooler Info</u>				1	ı	
Cooler N	o Temp ℃ C 4.5 Goo	ondition Seal Intact Seal	No Seal Date	Signed By		
L'				***************************************	ı	

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109 345-3975 Fax 505-345-4107 Analysis Request	les / 8082 PCB's (AOA)		×	N	8	N	N	2	2	3			Puctions? Please Call	111.110.000
01 Haw	1 504.1) or 8270 SIMS)	BTEX + MTE TPH (Method PAH's (8310 PAH's (8310										- Domodice	Failury C	5
□ Standard □ Rush □ Standard □ Rush Project Name: Walstaloil G. Lovingfon 66 Site Project#: 1651353 60/dev & Assoc	Park John De	HEAL NO.		-003	-683	48	500-	2000-	-007	800-	600-	amiT ateO	04.40	pate lime
	Project Manager: Em.ly C Sampler: CM BA On Ice: A Ves Sample Temperature:	Container Preservative Type and # Type	SXYOM HACK							>	exum Had.	Received hv	-R	Received by:
Chain-of-Custody Record Client Golder & Associates Inc. ATTN Emily Clark Maying Adress, Av. NE Su.te c Mibu & Verdive, NM 87113 Phone # 505, 821, 3043	21.5273 - Clar/La go/din. Gry	Sample Request ID	N-6	W-8	W-9	W-11	W-16	W-19	W-20	W-2/	TRYP Blank	a company	Malle	ed by:
	email or Fax#506.83 QA/QC Package: Emily— A Standard Accreditation □ NELAP □ Cither	Date Time Matrix	10/1 10:22 H20	14/ 18:17 Has	2/17/2:45/40	11:03 H20	04 45:41 Oh	14/7 13:36 1/20	12/17/4:03 Had	14:14 H20		Date Time Religious	0 0930	Jare: Kerinquigne

APPENDIX E
CONCENTRATION TREND PLOTS

Appendix E: Benzene and MTBE Concentration Trends Lovington 66, Lovington, New Mexico

Appendix E: Benzene and MTBE Concentration Trends Lovington 66, Lovington, New Mexico

Appendix E: Benzene and MTBE Concentration Trends Lovington 66, Lovington, New Mexico

Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.

Africa + 27 11 254 4800
Asia + 852 2562 3658
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Inc. 5200 Pasadena Avenue NE, Suite C Albuquerque, NM 87113 USA

Tel: (505) 821-3043 Fax: (505) 821-5273

