

August 10, 2015

Celestine Ngam **New Mexico Environment Department** Petroleum Storage Tank Bureau 2905 Rodeo Park Drive E., Bldg. 1

Santa Fe, NM 87505

RE: NOTICE OF COMPLETION OF DELIVERABLE ID 17138-3; COMPLETION OF DPE WELL PILOT TEST, LOVINGTON 66, LOVINGTON, NEW MEXICO

FACILITY #: 1489

RELEASE ID#: 1182

WPID#: 17138

Dear Mr. Ngam:

I am transmitting this letter to advise you that Golder has completed the task associated with Deliverable Identification number 17138-3, which included pilot testing a DPE well (DPE-1) at the above referenced site. Proposed equipment and tasks were set forth in our May 7, 2014 workplan.

The pilot well test was completed by AcuVac Remediation, LLC (AcuVac) out of Houston, Texas on July 12 and July 13, 2015. Figure 1 is a map showing the locations of the tested wells and summary results of testing. Attachment A includes photos detailing the specific equipment used and the overall layout of the test. Attachment B includes copies of the raw data and interpretations of the multiphase pilot testing prepared by AcuVac. The tests included an extended (8.6 hour) variable flow rate test of the MPE pilot test well (A-1), an extended constant flow rate test of Well A-1 (6 hours) and short-duration (1 hour) tests of wells W-1 and W-2. Gasoline recovered as LNAPL and vapor mass during the combined testing (16.6 hours, total combined test time) was approximately 229.5 gallons.

The NMED-PSTB agency workplan approval sets forth an approved budget of \$26,069.48 for this task; we anticipate that we will issue a claim for the full amount upon receipt of your acceptance of deliverable for deliverable identification number 17138-3. If you have any questions regarding this transmittal, please do not hesitate to contact us.

Sincerely,

GOLDER ASSOCIATES INC.

Clav Kilmer

Senior Hydrogeologist

Phillip D. Carrillo EIT. Civil Engineer

Figure 1: Site map showing locations of tested wells and summary MPE test results Attachments:

Attachment A: Photographic Log

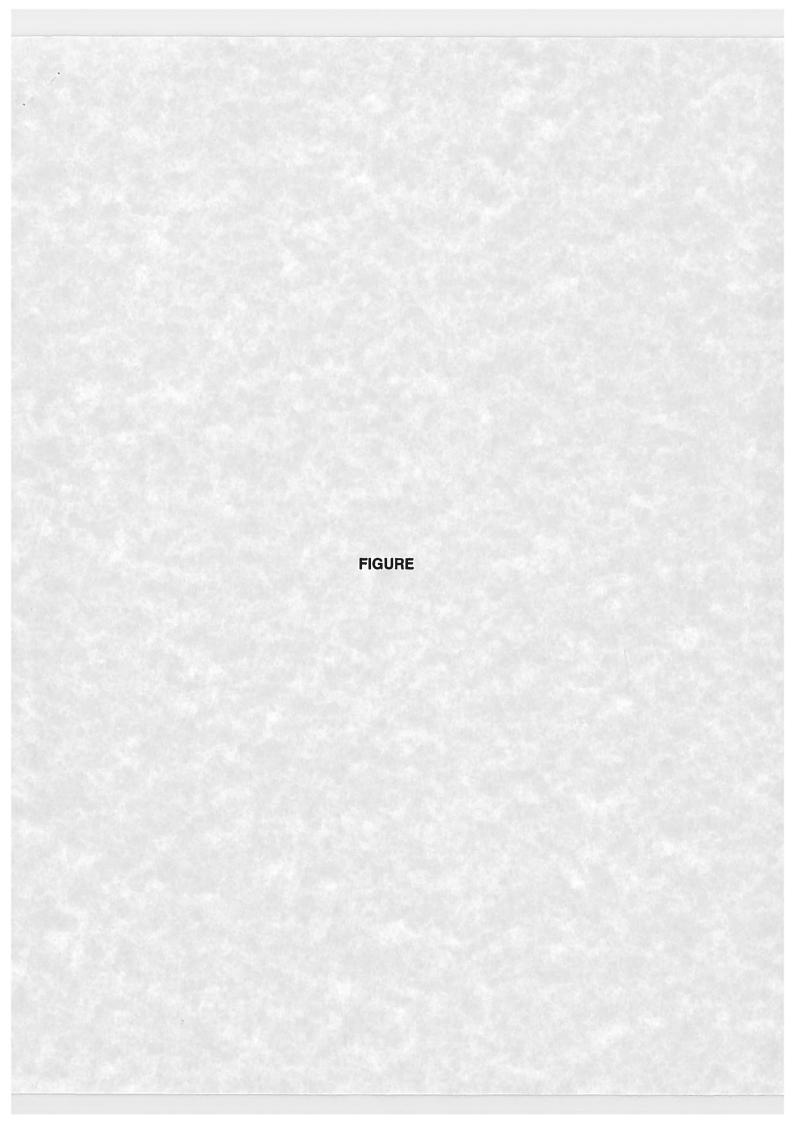
Attachment B: AcuVac Remediation, LLC Report

CK/rj

p.\abq projects\2014 projects\140-4221 walstad pilot testing\deliverables\task 3 - completion and oversight of dpe pilot test and letter report\text\notice of completion - deliverable 17138-3_rev_1 docx

Golder Associates Inc. 5200 Pasadena Avenue N.E., Suite C Albuquerque, NM 87113 USA

Tel: (505) 821-3043 Fax: (505) 821-5273 www.golder.com


TRANSMITTAL

Date:	Aug	ust 11, 2015 NMED	Project No	.: 140-4221.3			
To:	Mr.	Celestine NgameTROLEUM STORAGE TAI	NK BOBFANS	NMED-PSTB			
From: cc: Email: RE:	Mr. 231 Okla (one CKi	/ Kilmer, Sr Hydrogeologist Robert C. Murrell 7 Tuttington Circle, ahoma, OK 73170 copy) mer@golder.com /INGTON 66 STATION, PSTB FACILI	Address:	2905 Rodeo Park Drive E, Bldg. 1 Santa Fe, NM 87505 LIVERABLE ID 17138-3			
UP:	S L	Express (priority, standard <u>, 2-day,</u> 3-da	ay)	U.S. Mail Courier Hand Delivery Other			
Quanti	ty	Item	Description				
1		Notice of Completion of DPE Well Pilot Test	Deliverable ID 17138-3, dated August 10, 2015				
Notes: Please ca	all m	e if you have any questions or concern	s at 505-821-3	3043.			
Thank yo	ou,						
Clay Kilm	ner						
Please a	dvis	e us if enclosures are not as describ	ed.				
ACKNO\	WLE	DGEMENT REQUIRED:					
☐ Yes	3	⊠ No					

Golder Associates Inc. 5200 Pasadena Avenue N.E., Suite C Albuquerque, NM 87113 USA Tel: (505) 821-3043 Fax: (505) 821-5273 www.golder.com

p:\abq projects\2014 projects\140-4221 walstad pilot testing\deliverables\task 3 - completion and oversight of dpe pilot test and letter report\submittaf\transmittal letter

nmed.docx

 $igoplus_{682,\text{FT}}^{W\text{-}2}$ Existing monitoring well with NAPL THICKNESS (FT) # 688.FT DUAL PHASE EXTRACTION WELL WITH NAPL THICKNESS (FT) - EFFECTIVE INDUCED HYDRAULIC GRADIENT EFFECTIVE VACUUM RADIUS OF INFLUENCE EFFECTIVE VACUUM RADIUS OF INFLUENCE AT 1.00% OF INDUCED VACUUM (22.02-FT TO 24.53-FT) FORMER WALSTAD SITE NM 83 AVE D A-1 6.68-FT **⊕** ₹ HYDRAULIC GRADIENT
(31-FT TO 46-FT) NEW MEXICO ENVIRONMENT DEPARTMENT
PETROLEUM STORAGE TANK BUREAU
SANTA FE, NEW MEXICO
CONSULTANT
YYYYYMM DD Golder Associates - EFFECTIVE VACUUM RADIUS OF INFLUENCE AT 0.75% OF INDUCED VACUUM (25.91-FT TO 32.64-FT) PREPARED
REVIEWED **MAIN STREET** 2015-07-22 PDC PDC CLK BN PROJECT
WALSTAD OIL COMPANY
LOVINGTON 66
LOVINGTON, NEW MEXICO
THLE
DPE-1 PILOT TEST PROJECT NO 140-4221 INSURANCE AGENCY (FORMER SERVICE STATION) OR

Attachment A: Photographic Log

PHOTO 1

AcuVac Inc. arrives on set with their rig setup.

2015-07-12

PHOTO 2

The rig from AcuVac for producing the vacuum and oxidizing vapor contamination during the test.

The pilot test was focused on DPE-1.

2015-07-13

PHOTO 4

W-1, W-2, & W-3 were used for monitoring during the test. Pictured is W-1.

PHOTO 5 W-2 is shown. 2015-07-12

PHOTO 6 W-3 is shown.

AcuVac Inc. installing the apparatus for testing.

2015-07-12

PHOTO 8

The testing setup is shown with the vacuum hose and flowmeter attached to DPE-1.

РНОТО 9

The rig was used to create the vacuum for the test and oxidize vapor contamination.

2015-07-12

PHOTO 10

The pump test apparatus provided sight on water quality and a sampling port for collecting lab specimens.

The flow meter read flow rate and total gallons pumped.

2015-07-13

PHOTO 12

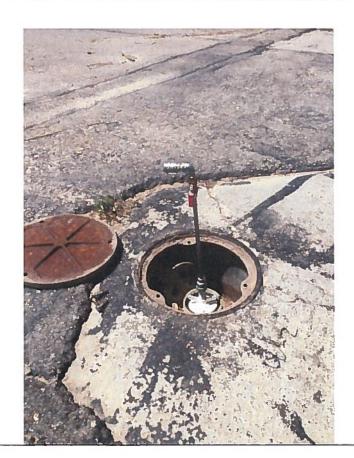
A clear portion of the outlet hose shows the condition of water being pumped.

AcuVac periodically collected water samples to gauge NAPL content.

2015-07-13

PHOTO 14

Bio-fouling material was observed during the pilot test on day two.


The testing apparatus for collecting air monitoring samples as well as the sample submitted for lab testing.

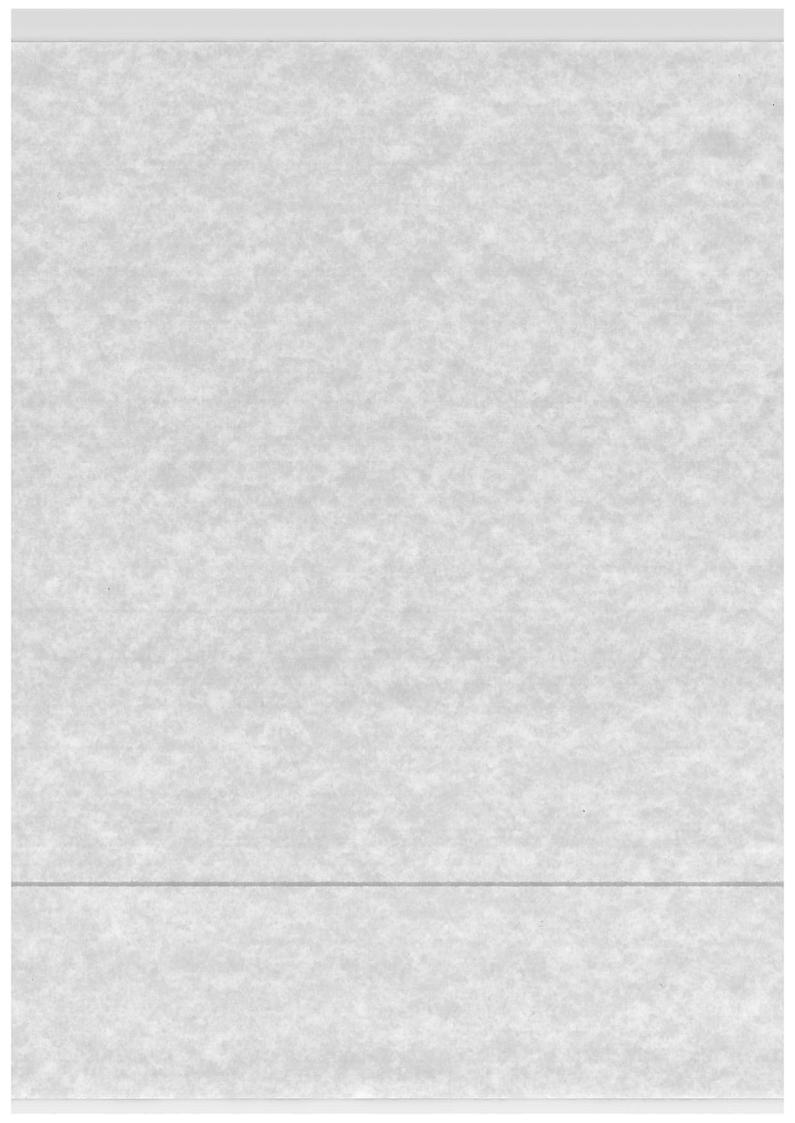
2015-07-12

PHOTO 16

AcuVac checked the vacuum induced in the surrounding wells with a digital manometer. W-1 shown.

AcuVac checked the vacuum induced in the surrounding wells with a digital manometer. W-2 shown.

2015-07-12


PHOTO 18

All produced water was containerized by Gandy in a tanker truck and sent offsite for proper disposal.

ATTACHMENT B
ACUVAC REMEDIATION, LLC REPORT

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

July 15, 2015

Mr. Clay Kilmer: Senior Hydrogeologist Golder Associates, Inc. 5200 Pasadena Avenue N.E. Suite C Albuquerque, NM 87113

Dear Clay:

Re: Walstadd 66, Lovington, NM

At your request, we performed one Mobile Dual Phase (MDP) Pilot Test on July 12, 2015 at the above referenced sites. An Engineer and an Environmental Specialist, with over 14,500 hours of on-site testing, conducted the Pilot Test. The total MDP test time, including static data time, was 8.6 hours. The contaminant was weathered gasoline.

OBJECTIVES

The Objectives of an MDP Pilot Test are to:

- Evaluate the potential for removing liquid and vapor LNAPL and contaminated groundwater (GW) from soils in the subsurface formations.
- Expose the capillary fringe area and below to induced soil vacuum extraction (SVE) in the extraction well (EW).
- With induced vacuums, increase the GW specific yields. Stress the GW System and monitor its response.
- Maintain a near constant GW depression in the EW.
- Create an induced hydraulic gradient (IHG) to gain hydraulic control of the area.
- Record GW depression and pump rates to accomplish the above objectives.

The purpose of the EW induced vacuum variable rate test is to define the pressure/flow characteristics of sub-surface soils around the EW and to estimate potential conditions for an operational Dual Phase System. Starting a test with lower variable rates of vacuum and flow allows the EW and outer wells sufficient time to adjust and stabilize and minimizes the risk of developing preferential paths. This will also assist the development of newly installed extraction wells.

METHODS AND EQUIPMENT

The tests were conducted using AcuVac's I-6 System, with Roots RAI-33 and RAI-22 blowers, various instrumentation, including the HORIBA® Analyzer, Solinst Interface Probes, Lumidor O₂ Meter, vapor flow gauges, liquid volume/flow meter, a sensitive instrument to determine barometric pressure, V-1 vacuum box to capture non-diluted vapor samples, Redi-Flo 2 total fluids (TF) pump and other special equipment. The vacuum extraction portion of the AcuVac System consists of a vacuum pump driven by an internal combustion (IC) engine. The vacuum pump is connected to the extraction well and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the GW to volatilize and flow through a moisture knockout tank, to the vacuum pump and the IC engine where they are burned as part of the normal combustion process. Propane is used as auxiliary fuel to help power the engine if the well vapors do not provide the required BTU.

The GW Extraction is provided by an in-well, Redi-Flo 2 total fluids pump that has the discharge line connected to a total volume meter. The discharge line from the volume meter is then connected to the stand-by tank truck. The electrical power for the GW pump was supplied from a 120v Honda generator. The GW flow rate can be adjusted to maintain a target level. Interface meters are used to measure Depth to Groundwater (DTGW)/Depth to Light Non-Aqueous Petroleum Liquids (DTLNAPL).

The AcuVac IC engine is fully loaded for maximum power that is necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum SVE Radius of Influence (ROI) for Pilot Tests and short term Event remediation. The lower part of the IC engine is encased with a liquid collection pan designed to catch any oil drips or liquid leaks if it should occur.

Emissions from the engine are passed through three catalytic converters to ensure maximum destruction of removed hydrocarbon vapors. The engine's fuel to air ratio can be adjusted to maintain efficient combustion. Because the engine is the power source for all IC engine driven equipment, all systems stop when the engine stops. This eliminates any uncontrolled release of hydrocarbons. Since the AcuVac System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure or overheating.

The design of the AcuVac System enables complete independent control of both the Induced Well Vacuum and the GW pumping functions such that the AcuVac System operator can control the IHG to expose the maximum amount of the formation to SVE. The ability to separate the induced vacuum and liquid flows within the EW improves the LNAPL recovery rates, and enables the test data to be recorded independently. All the systems are properly grounded to eliminate any static electrical charge.

PROJECT SCOPE AND PROCEDURES

- Gauge the DTGW and DTLNAPL in the EW.
- Calculate the Hydro-equivalent in the EW.
- Determine the appropriate placement for the GW pump inlet.

- Calculate the GW depression necessary to gain hydraulic control of the area.
- Record the distances from the selected EW to the outer wells.
- Install the GW pump into the EW (A-1).
- Connect the ground wires for the AcuVac System and Honda generator.
- Set pump and data probe at the selected depth from TOC.
- Connect discharge hoses to liquid volume meter and then connect to the on-site tank truck.
- Connect the AcuVac System to the selected EW manifold and seal the selected outer observation wells with plugs designed to accept magnehelic gauges or digital manometers.
- Record the static well data, DTGW/DTLNAPL, well size, TD, screen intervals and then apply EW induced vacuum. Record the vacuum and well flow, all System data (including fuel flow of propane), temperature and barometric pressure.
- The test procedures are to provide variable rates of induced vacuum and GW pumping rates over the test period.
- Start the GW pump and set at proper flow rate to achieve the selected GW drawdown.
- Monitor the GW pump and adjust the flow to maintain the selected GW drawdown.
- Record pump flow rate and total liquid volume.
- Collect GW/LNAPL samples in a 2,000 ml beaker to determine the percentage of LNAPL in the recovered liquid volume.
- Install and observe the digital manometer on the outer observation wells to determine if the selected EW induced vacuum is in vacuum communication with the outer observation wells.
- Gauge the outer wells to determine the GW drawdown.
- Record the data at a selected interval of time.
- Operate the AcuVac System in such a manner that all well vapors are passed through the engine and catalytic converters, to destruct the contaminants and exhausted, to meet air emission standards. Comply with all security and safety regulations.
- Complete the tests by providing a report consisting of operating and analytical data, projection of SVE radius of influence (ROI), the IHG ROI and the collected volumes of GW and LNAPL.

CONDITIONS AFFECTING PILOT TESTS

- Generally, a decreasing barometric pressure results in increased well pressures (decreased vacuums) on those wells plugged and sealed at the TOC, while an increasing barometric pressure results in increased well vacuums. This is the function of GW levels increasing and decreasing. There are many variables that can affect Pilot Test data, but barometric pressure fluctuations have the most immediate and profound effect. This assumes that SVE short-circuiting is not a factor.
- To offset the induced vacuum/pressure as a result of GW depression or upwelling in the outer monitoring wells, the wells are vented periodically to atmosphere and then re-plugged prior to recording data at select intervals. The potential for increased vacuum or pressure as a result of in/decreasing GW levels will be minimized. GW depression surrounding an outer observation well will result in an induced vacuum not associated with the induced vacuum created in the EW. Likewise, GW mounding will create the opposite effect creating well pressures.

TEST #MDP-1 WALSTADD 66 LOVINGTON, NM JULY 12, 2015

PRE-TEST FUNCTIONS - PILOT TEST #MDP-1

Prior to starting the MDP test with GW Extraction, all systems were checked for normal and safe operation. The DTGW/DTLNAPL, barometric and absolute pressure and ambient air temperature were recorded. The hydro equivalent (HE) was calculated. Based upon the HE, the GW pump inlet was set at 65 ft below the top of the well casing. The pump hose was then connected to the total volume meter. The discharge hose was connected to the on-site 3,000 gal liquid collection tank truck. Each magnehelic gauge was checked and calibrated to zero. The outer monitoring wells were plugged with expandable well plugs designed to accept a digital manometer. Static well data and the atmospheric effect on the outer wells were recorded prior to engaging the AcuVac System. The propane tank fuel level was recorded so that accurate fuel consumption could be estimated for the total test period. All safety checks were performed on the Systems. (See list of Attached Schedules and Figures, Page 11.)

DISCUSSION OF DATA - TEST #MDP-1

Test #MDP-1, with vacuum and GW/LNAPL extraction, was an 8.6 hour MDP test including static well data, conducted from well A-1 as the EW. Immediately prior to starting the test, the selected outer monitoring wells were recording zero vacuums. The general weather conditions were clear and cool. At the start of the MDP test, the EW induced vacuum was set at 40"H₂O, with an initial well vapor flow of 12.19 scfm. The data probe static reading was 7.5 ft, immediately decreasing to 2.0 ft when the GW pump was engaged. Based upon the data probe, it was determined that a constant drawdown creating a GW depression (GWD) of approximately 5.5 ft below HE static level would be appropriate for this test (see Table #1A). The initial GW pump rate was set at 3.5 gpm to achieve the selected GWD and then remained constant for 2.0 hours. The GWD and related GW pump rate are monitored constantly throughout the test and recorded every 30 minutes. Table #1A summarizes the GWD, GW pump rate and the drawdown in the EW and Table #1B summarizes the GWD in the outer observation wells.

During the first 2.0 hours of the test, the EW induced vacuum remained constant at 40"H₂O with a well vapor flow of 12.19 scfm. Outer well W-2, which is located 16.2 ft from the EW, immediately recorded a well vacuum increasing from 0 to 0.07"H₂O and continued on an increasing trend during the test period to 0.88"H₂O. Outer wells W-1 and W-3 which are located 25.8 and 38.3 ft from the EW, recorded a slight increasing vacuum level and then continued on a slight increasing vacuum trend to 0.36 and 0.17"H₂O. The ambient air temperature increased from 72.4 to 79.6°F and the barometric pressure was mostly steady at 30.10"Hg. The GW depression averaged 5.5 ft below static level. The total collected liquid volume was 420 gals and 38.9 gals of liquid LNAPL were observed on the collected GW.

EXTRACTION WELL A-1 OPERATING DATA TEST #MDP-1

Table #1A

Location: Walstadd	66, Lovington, NM			T		
Project Date 07/12	2/2015	A-1 DTGW ft	GWD ft	EW GWR gpm	Total Volume gal	EW Vacuum "H₂O
Well Data					L BELLLASSIN	
TD		75.0	-	-		12
Screen		45.0-75.0	_	-	(=1 <u>_</u> 111	72
Well Size		4.0	-		-	-
DTGW	0715 hrs	64.08	-	- 1 -	140	7(=)
DTGW Hydro Equi	ivalent	59.14	-	-		-
DTLNAPL	0715 hrs	57.40	<u>-</u>			-
LNAPL	0715 hrs	6.68	-		(=()	
Drawdown Data						
Data Probe	0730 hrs Start	7.50	- 75 11	-	-	-
Data Probe	0800 hrs	2.00	-5.50	3.50	105	40
Data Probe	0830 hrs	2.00	-5.50	3.50	210	40
Data Probe	0900 hrs	2.00	-5.50	3.50	315	40
Data Probe	0930 hrs	2.00	-5.50	3.50	420	40
Data Probe	1000 hrs	2.00	-5.50	4.30	549	60
Data Probe	1030 hrs	2.00	-5.50	4.30	678	60
Data Probe	1100 hrs	2.00	-5.50	4.30	807	60
Data Probe	1130 hrs	2.00	-5.50	4.30	936	60
Data Probe	1200 hrs	2.00	-5.50	4.30	1065	60
Data Probe	1230 hrs	2.00	-5.50	4.30	1194	60
Data Probe	1300 hrs	2.00	-5.50	4.30	1323	60
Data Probe	1330 hrs	2.00	-5.50	4.60	1460	75
Data Probe	1400 hrs	2.00	-5.50	4.60	1598	75
Data Probe	1430 hrs	2.00	-5.50	4.60	1736	75
Data Probe	1500 hrs	2.00	-5.50	5.20	1892	90
Data Probe	1530 hrs Stop	2.00	-5.50	5.20	2048	90
Data Probe	1600 hrs Static	7.46	-0.04	0.00		
DTGW	1600 hrs	61.65	-	1 %		
DTGW Hydro Equi		61.64	12	_1 <u>2</u>	147 T-0	- 22
DTLNAPL	1600 hrs	61.61		2	1	-
LNAPL	1600 hrs	0.04	-	-	90	340
Average GW Depre		_	-5.50	- 2	_	(14)

OBSERVATION WELLS INDUCED HYDRAULIC GRADIENT DATA TEST #MDP-1 TABLE #1B

Project Date 07/12/2015			N	/-2	W-1		W-3		
Well Data									
TD		ft	75.0		80.0		75.0		
Screen		ft	50.0	- 70.0	50.0 - 70.0		50.0 - 70.0		
Well Size		in	4	1.0	4.0		4.0		
			DTGW ft	Change in GWD ft	DTGW ft	Change in GWD ft	DTGW ft	Change in GWD ft	GW Pump Rate gpm
Static/Start Data									
DTGW	0730 hrs	ft	63.92		64.62		63.81		3.50
DTGW Hyd	ro Equivalent	ft	58.87	0	59.84	0	58.94	0	
DTLNAPL	0730 hrs	ft	57.10		58.16		57.23		
LNAPL	0730 hrs	ft	6.82		6.46	0	6.58		
Drawdown Data		Jan Ba	WE KEN						
DTGW	1030 hrs	ft	64.13		64.82		63.87	Tightha .	4.30
DTGW Hyd	ro Equivalent	ft	58.99	-0.11	59.91	-0.07	58.97	-0.03	
DTLNAPL	1030 hrs	ft	57.18		58.19		57.25	电影 页图制	
LNAPL	1030 hrs	ft	6.95		6.63		6.62		
Drawdown Data									
DTGW	1330 hrs	ft	64.81		65.28		64.08		4.60
DTGW Hyd	ro Equivalent	ft	59.46	-0.59	60.16	-0.32	59.14	-0.20	
DTLNAPL	1330 hrs	ft	57.58		58.36		57.41	3 Common	
LNAPL	1330 hrs	ft	7.23		6.92		6.67		
Drawdown Data									
DTGW	1530 hrs	ft	64.91		65.38		64.21		5.20
DTGW Hyd	ro Equivalent	ft	59.53	-0.66	60.21	-0.37	59.18	-0.24	
DTLNAPL	1530 hrs	ft	57.64		58.39		57.41	Translate.	
LNAPL	1530 hrs	ft	7.27		6.99	mile wall	6.80		
Maximum Drawo	lown	ft		-0.66		-0.37		-0.24	
Distance From E	w		16.2		25.8	A 15 T	38.3		WHEN I

Specific Gravity .74

HORIBA® analytical data indicated the two influent vapor samples taken from the EW had HC concentrations of 76,990 and 74,020 ppmv, with CO₂ at 4.72 and 5.12%, CO at 3.82 and 3.09%, O₂ at 6.8 and 6.1% and H₂S at 0 ppm. The propane flow to the IC engine averaged 0 cfh, with a well flow of 12.19 scfm. The influent vapors were supplying 100% of the IC engine required fuel. The HC levels were within the mid to high range normally found in soil gas samples collected from an area contaminated with weathered gasoline.

At test hour 2.0, the test continued with the induced vacuum increased to 60"H₂O and a well flow of 19.88 scfm. The test period was 3.5 hours with the EW induced vacuum and well flow remaining steady. Outer well W-2 continued on an increasing vacuum trend to 1.14"H₂O in response to the EW vacuum increase and then developed a slight decreasing trend when the barometric pressure decreased. Outer wells W-1 and W-3 recorded an increased vacuum trend to 0.43 and 0.15"H₂O and then decreased to 0.38 and 0.12"H₂O. The GW pump rate increased to 4.30 gpm and remained steady during this test period. The collected volume was 903 gals which brings the total to 1,323 gals, with a GW depression average of 5.5 ft. The ambient air temperature increased to 91.8°F and the barometric pressure decreased from 30.10 to 30.07"Hg. The influent vapor temperature increased to 71°F. A total LNAPL volume of 14.4 gals was observed on the collected GW.

Additional HORIBA® analytical data indicated the influent vapor samples recorded HC levels of 71,750, 68,490 and 61,890 ppmv, with CO₂ at 4.60, 5.24 and 5.12%, CO at 2.37, 2.55 and 1.88%, O₂ at 5.8, 6.4 and 8.3% and H₂S at 0 ppm. The influent vapors continued to supply 100% of the IC engine's fuel and the TPH levels continued to be within the range of weathered gasoline vapors.

At test hour 5.5, the test continued with the induced vacuum increased to 75"H₂O, and a vapor well flow of 21.34 scfm. The test period was 1.5 hours with the EW vacuum and well flow remaining steady. The outer observation wells, W-2, W-1 and W-3, immediately recorded increased vacuum levels for 1.0 hour, and then developed a decreasing trend as the barometric pressure continued to decrease. This is an excellent example of the effect of barometric pressure oscillations on the vacuum/pressures observed on the outer observation wells. The average GW drawdown in the EW was 5.5 ft. A drawdown of 0.59 ft was recorded in W-2, 0.32 ft in W-1 and 0.2 ft in W-3. The GW pump rate averaged 4.60 gpm with a collected volume 413 gals. The total collected volume increased to 1,736 gals and 7.6 gals of liquid LNAPL was observed on the GW. The ambient air temperature increased from 91.8 to 93.3°F and the barometric pressure decreased from 30.07 to 30.04"Hg.

Additional HORIBA® analytical data indicated the influent vapor samples recorded a HC level of 61,720 ppmv, with CO₂ at 5.20%, CO at 1.75%, O₂ at 8.7% and H₂S at 0 ppmv. The influent vapors continued to supply 100% of the IC engine's fuel. Although the HORIBA® Analyzer has been proven to be reasonably accurate compared to laboratory analysis of influent vapors, projections should be based on analytical results from a Certified Testing Laboratory qualified to conduct tests on air emission samples.

At test hour 7.0, the test continued with the induced vacuum increased to 90"H₂O and a vapor well flow of 27.95 scfm. The test period was 1.0 hour with the EW vacuum and well flow remaining steady. Outer observation well W-2 recorded an increased vacuum level from 1.10 to 1.23"H₂O and continued to increase to 1.54"H₂O during the test period. Outer well W-1 recorded an increasing vacuum ranging from 0.37 to a maximum of 0.60"H₂O and well W-3 recorded an increase from 0.09 to 0.20"H₂O. The average GW drawdown in the EW was 5.5 ft. A maximum drawdown of 0.66 ft was recorded in W-2, 0.37 ft in W-1 and 0.24 ft in W-3. This was the maximum recorded drawdown before any required well vacuum adjustments resulting from the decreasing barometric pressure. The GW pump rate averaged 5.2 gpm with a collected volume of 312 gals. The total collected volume increased to 2,048 gals and 6.2 gals of liquid LNAPL was observed on the GW. The ambient air temperature increased from 95.3 to 96.1°F and the barometric pressure decreased from 30.04 to 30.02"Hg.

Immediately before the conclusion of this test period, the outer observation wells were gauged. The gauging data is included on Table #1B.

RADIUS OF INFLUENCE & INDUCED HYDRAULIC GRADIENT

Figure #1A indicates that the effective vacuum radius of influence from Test #MDP-1 with groundwater extraction (GWE) would be from 25.91 to 32.64 ft, with extraction well flow of 22.0 to 24.0 scfm and extraction well vacuum in the 80 to 85"H₂O range. An approximation of the radius of influence may be obtained by determining the point at which the measured vacuum is 0.50 to 0.70"H₂O. It is assumed that beyond the lower point, the pressure gradient (driving force) is negligible to effectively transport vaporized contaminants to the extraction well. Under continuous operation, vacuum and radius of influence will most likely continue to increase horizontally and vertically.

Figure #1B indicates that the effective vacuum radius of influence from Test #MDP-1 with groundwater extraction (GWE) would be from 22.02 to 24.53 ft, with extraction well flow of 22.0 to 24.0 scfm and extraction well vacuum in the 80 to 85"H₂O range. An approximation of the radius of influence may be obtained by determining the point at which the measured vacuum is 0.75 to 0.85"H₂O or approximately 1.0% of the EW induced vacuum. It is assumed that beyond the lower point, the pressure gradient (driving force) is negligible to effectively transport vaporized contaminants to the extraction well. Under continuous operation, vacuum and radius of influence will most likely continue to increase horizontally and vertically.

Figure #2 indicates that the effective induced hydraulic gradient from Test #MDP-1 with vacuum and groundwater extraction would be greater than approximately 31.0 ft, with a pump rate of 4.0 to 4.3 gpm. An approximation of the radius of influence may be obtained by determining the point at which the measured GW level effect on the outer wells is greater than 0.30 ft. At the point at which the measured GW level effect on the outer wells is greater than 0.20 ft, the effective induced hydraulic gradient with vacuum would be greater than approximately 46 ft. Under continuous operation, the gradient effect of the GW pump rate and depression may cover a larger area.

The effective vacuum radius of influence is based on calculations and equations using a software program of which data was provided from an extensive database collected by AcuVac over a period of years. Each projection is based on the test data and site parameters, and takes into consideration such variables as barometric pressure oscillations and gauge error. Although we cannot provide total assurance of accuracy, past experience and results have proven these projections to be well within the acceptable range of accuracy.

PRODUCT RECOVERY

A total liquid volume of 2,048 gals were recovered during the test of which 3.11% or 63.64 gals was liquid gasoline. A calculated volume of 22.63 gals of gasoline contaminant were removed as part of the influent vapors and were burned as IC engine fuel bringing the total gasoline recovery to 86.27 gals or an average of 10.78 gals/hr.

GROUNDWATER RECOVERY

GW recovery was monitored in well A-1 for 30 minutes after the vacuum had ceased. The GW recovery was recorded with the interface meter. In 30 minutes, the recovery for A-1 was equal to 54.5% based on the hydro equivalent.

EMISSION DATA

During this Pilot Test, HORIBA® data indicated that the influent vapors had an average hydrocarbon level (TPH) of 69,142 ppmv. Laboratory analysis of influent vapor samples from previous pilot tests indicated that those vapor samples had a benzene level of approximately 2.0% of the 69,142 ppmv. Using an average well flow of 18.83 scfm from this extended test, the calculated emissions from one extraction well without vapor treatment were as follows:

HC = 42.5 lbs/day = 17.7 lbs/hr Benzene = 8.5 lbs/day = 0.35 lbs/hr

ADDITIONAL INFORMATION

The HORIBA® analytical instrument is calibrated with Hexane and CO₂. One sample was collected for laboratory analysis.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x $1.58E^{-7}$ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

To calculate MDP well placement, the equation we use is as follows:

L= 2 ROI Cos 30° (L = distance between wells; ROI = radius of influence)

All other data, including the groundwater depth, well placement, extraction well screened intervals, induced vacuum and vapor well flow and liquid recovery rate, must be considered in the final design for a Corrective Action Plan (CAP).

Static (baseline) data, recorded 0.5 hours after the conclusion of the test, indicates that W-1 was recording a pressure of 0.19"H₂O, W-1 was recording a well pressure of 0.15"H₂O and W-3 was recording a well pressure of 0.17"H₂O. The well pressure was the result of the decreasing barometric pressure.

The test provided excellent data to use in the calculation and projection of an SVE vacuum radius of influence and excellent data to project an induced hydraulic gradient.

CONCLUSION

Pilot Tests are conducted to provide information on short term tests that can be projected into long term remedial plans. These feasibility tests indicated that Mobile Dual Phase Extraction (MDP) with groundwater depression should provide an excellent method of remediation for this facility. Although the observed vacuum of the most distant outer monitoring well was moderately low, the duration of the pilot tests was short compared to continuous operation. However, the tests results provided excellent data to project that wells W-2, W-1 and W-3 were in vacuum communication with the selected extraction well. The vacuum radius of influence defines the region within which the vapor in the vadose zone flows to the extraction well under the influence of a vacuum. The radius of influence depends on the soil properties of the vented zone, properties of surrounding soil layers, the depth at which the well is screened, well installation and the presence of any impermeable boundaries such as the water table, clay layers, surface seal, building basements and the presence of such areas as tank pits with backfill and underground utilities. The induced hydraulic gradient (IHG) defines the region within which a selected GW depression is recorded in the outer monitoring wells. The IHG depends on the hydraulic properties of the underlying sub-surface, aquifer characteristics and the effect of the induced vacuum on specific yields.

SUMMARY AND OBSERVATIONS - TEST #MDP-1

- Based on the recorded test data, the sub-surface medium is most likely isotropic.
- Due to the age of the contaminant, the recovered gasoline may contain tetraethyl lead.
- An average induced vacuum of 60.3"H₂O was required to produce an average well vapor flow of 18.83 scfm. The ratio of the average EW induced vacuum to the EW well flow was 3.21:1.
- The average well flow per foot of EW well screen was 0.96 scfm with a maximum of 1.42 scfm.
- The GW pump rate was increased to provide a sufficient GW depression when the EW induced vacuum was increased. The average GW pump rate was 4.22 gpm with a maximum of 5.20 gpm.
- During each increase of the induced vacuum, outer observation wells W-2, W-1 and W-3 recorded increased vacuum levels. Additionally, GW drawdown in the observation wells continued to decrease during the test period.

- The average maximum percent of induced vacuum observed in outer observation wells W-2 at 16.2 ft was 1.74-2.30%, W-1 at 25.8 ft was 0.66-0.95% and W-3 was 0.25-0.50%.
- The HC levels recorded during the test period were within the range normally associated with soil gas samples taken from an area that is highly saturated with weathered gasoline.
- The test provided excellent data for the calculation and projection of a vacuum radius of influence, excellent data for the projection of an induced hydraulic gradient and excellent data to support the collection and removal of liquid and vapor phase gasoline with Dual Phase Recovery.
- SVE without GW extraction would not be an effective remediation option at this site. The higher vacuums would result in GW upwelling in the EW which may cover the well screen and render the SVE ineffective.

ATTACHED SCHEDULES AND FIGURES

Schedule A: Summary of Data

Schedule B: Graphic Summary of Data

Figure #1A: Plot of Observed Vacuum vs Distance at the Facility (ROI) at 0.75% of Induced Vacuum

Figure #1B: Plot of Observed Vacuum vs Distance at the Facility (ROI) at 1.00% of Induced Vacuum

Figure #2: Plot of Recorded GW Induced Hydraulic Gradient vs Distance at the Facility (ROI)

Additional Information (this should be read as part of the report):

- Field Operating Data and Notes Test #MDP-1
- Site Photographs

Once you have reviewed the report, please call me if you have any questions.

Sincerely,

ACUVAC REMEDIATION, LLC

Solly

James E. Sadler,

VP Engineering/Environmental

cc: Paul Faucher

Attachment A

Acronyms and Definitions

A Annulus - the space between the pipes and lines in the extraction well and the outer casing

ACFM Actual Cubic Feet Per Minute

Al (AS) Air Injection (Sparging) the mass transfer of O₂ from air to groundwater

BGL Below Ground Level
BGS Below Ground Surface

BP Barometric Pressure (Atmospheric Pressure)

BTOC Below Top of Casing
CFH Cubic Feet Per Hour

DNAPL Dense Non-Aqueous Petroleum Liquid

DPVE Dual Phase Vacuum Extraction

DTGW Depth to Groundwater

DTPSH Depth to Phase Separated Hydrocarbons/NAPL

DT Drop Tube

EVR Enhanced Vacuum Recovery, also referred to as SVE/GWD

EW Extraction Well
GW Groundwater

GWD Groundwater Depression
GWE Groundwater Extraction
GWUP Groundwater Upwelling

HC Hydrocarbon Concentration (Petroleum-TPH)

"H₂O Inches of Water
"Hg Inches of Mercury

IHG Induced Hydraulic Gradient

IV Induced Vacuum, normally from a vacuum pump connected to the extraction well or

vapor recovery well

LNAPL Light Non-Aqueous Petroleum Liquids

MDP Mobile Dual Phase

NAPL Non-Aqueous Petroleum Liquids

P Pressure, the existence of above atmospheric pressure

ROI Radius of Influence
RPM Revolutions Per Minute

SCFM Standard Cubic Feet Per Minute

SVE Soil Vacuum Extraction

TD Total Depth

QT Quick Test, a short duration SVE Test

V Vacuum, the existence of below atmospheric pressure

VEGE Vacuum Enhanced Groundwater Extraction

VER Vacuum Enhanced Recovery

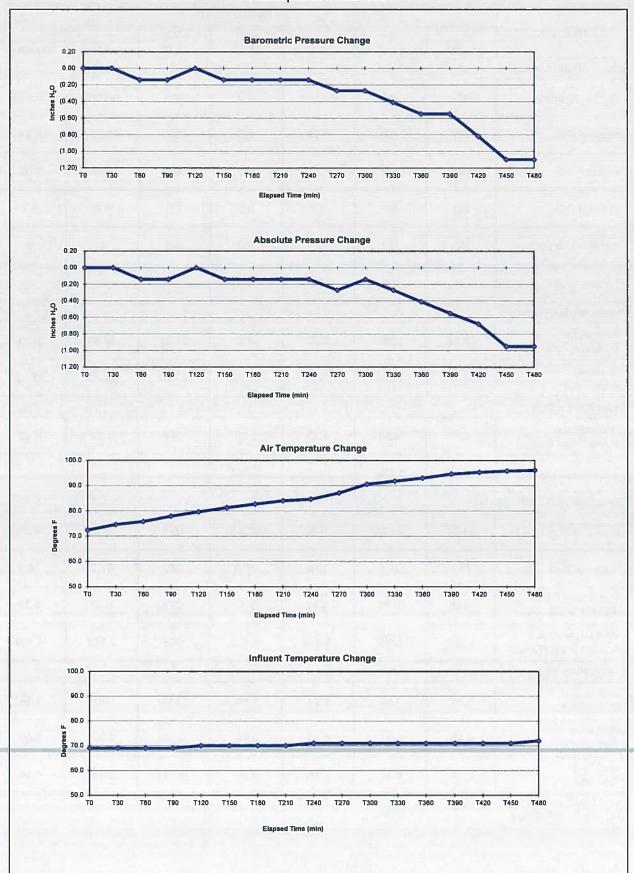
VEW Vapor Extraction Well
VWF Vapor Well Flow
WVF Well Vapor Flow

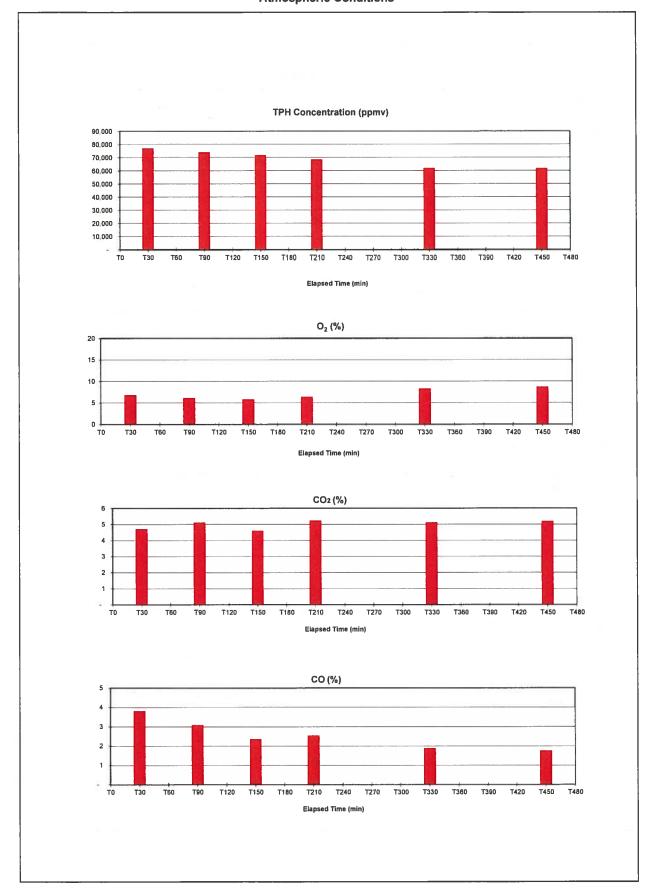
			D	ATA ELEMEN	IT		
7/12/2015	Static 7:25	Start 7:30	8:00	8:30	9:00	9:30	10:00
nfluent Vapor Data		Wild In the second					Verget
Horiba HC ppmv	ND	ND	76,990	ND	74,020	ND	71,750
Horiba CO₂%	ND	ND	4.72	ND	5.12	ND	4.60
Horiba CO%	ND	ND	3.82	ND	3.09	ND	2.37
Lumidor O ₂ %	ND	ND	6.8	ND	6.1	ND	5.8
Lumidor H ₂ S ppm	ND	ND	0	ND	0	ND	0
Influent Vapor Temp °F	OFF	69.0	69.0	69.0	69.0	70.0	70.0
Atmospheric Conditions							
Barometric Pressure "Hg	30.10	30.10	30.10	30.09	30.09	30.10	30.09
Absolute Pressure "Hg	26.09	26.09	26.09	26.08	26.08	26.09	26.08
Groundwater Data							
Groundwater Pump Rate (gpm)	OFF	3.50	3.50	3.50	3.50	3.50	4.30
Total Liquid Vol (gal)	0	0	105	210	315	420	549
Extraction Well Data - We	II A-1						
Flow SCFM	OFF	12.19	12.19	12.19	12.19	12.19	19.88
Vacuum "H ₂ O	OFF	40.0	40.0	40.0	40.0	40.0	60.0
Well Vapor Flow SCFM / "H₂O	OFF	0.30	0.30	0.30	0.30	0.30	0.33
Well Vapor Flow SCFM / ft Well Screen	OFF	0.621	0.621	0.621	0.621	0.621	1.013
Observation Well Data - V	acuum "H₂O						
Well W-2 Dist. 16.2 ft	0.00	0.07	0.86	0.88	0.92	0.88	1.07
Well W-1 Dist. 25.8 ft	0.00	0.05	0.31	0.37	0.38	0.36	0.38
Well W-3 Dist. 38.3 ft	0.00	0.02	0.13	0.17	0.20	0.17	0.14

() Indicates Well Pressure

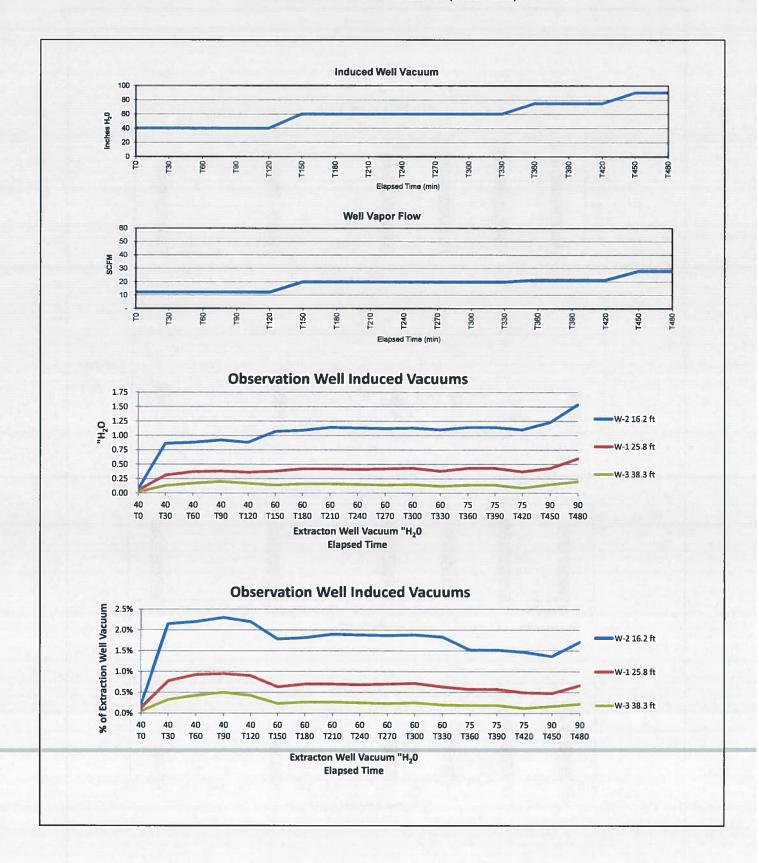
ND - No Recorded Data

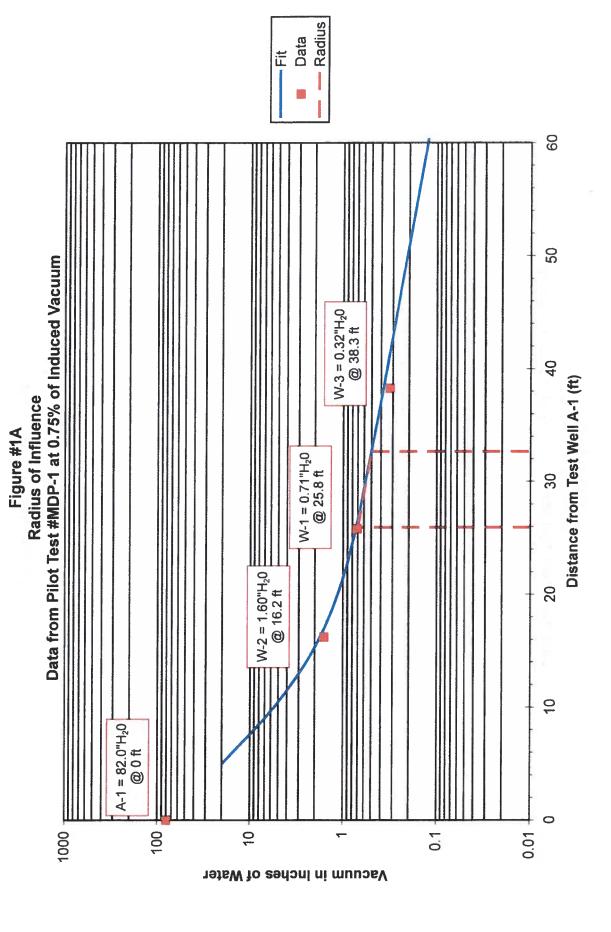
				ATA ELEME	T		
7/12/2015	10:30	11:00	11:30	12:00	12:30	13:00	13:30
nfluent Vapor Data	autorio de la companya de la company		Property.	Black St	Maria	METERS I	
Horiba HC ppmv	ND	68,490	ND	ND	ND	61,880	ND
Horiba CO ₂ %	ND	5.24	ND	ND	ND	5.12	ND
Horiba CO%	ND	2.55	ND	ND	ND	1.88	ND
Lumidor O ₂ %	ND	6.4	ND	ND	ND	8.3	ND
Lumidor H ₂ S ppm	ND	0	ND	ND	ND	0	ND
Influent Vapor Temp °F	70.0	70.0	71.0	71.0	71.0	71.0	71.0
Atmospheric Conditions							
Barometric Pressure "Hg	30.09	30.09	30.09	30.08	30.08	30.07	30.06
Absolute Pressure "Hg	26.08	26.08	26.08	26.07	26.08	26.07	26.06
Groundwater Data			TENNIS I				
Groundwater Pump Rate (gpm)	4.30	4.30	4.30	4.30	4.30	4.30	4.60
Total Liquid Vol (gal)	678	807	936	1,065	1,194	1,323	1,460
Extraction Well Data - Wel	I A-1						
Flow SCFM	19.88	19.88	19.88	19.88	19.88	19.88	21.34
Vacuum "H ₂ O	60.0	60.0	60.0	60.0	60.0	60.0	75.0
Well Vapor Flow SCFM / "H ₂ O	0.33	0.33	0.33	0.33	0.33	0.33	0.28
Well Vapor Flow SCFM / ft Well Screen	1.013	1.013	1.013	1.013	1.013	1.013	1.087
Observation Well Data - Va	acuum "H₂C						YEAR ES
Well W-2 Dist. 16.2 ft	1.09	1.14	1.13	1.12	1.13	1.10	1.14
Well W-1 Dist. 25.8 ft	0.42	0.42	0.41	0.42	0.43	0.38	0.43
Well W-3 Dist. 38.3 ft	0.16	0.16	0.15	0.14	0.15	0.12	0.14

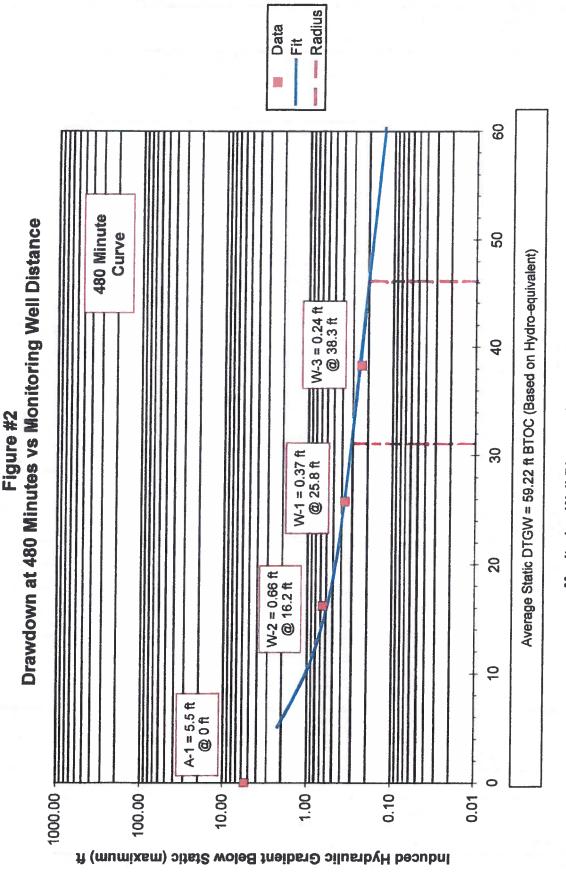

() Indicates Well Pressure ND - No Recorded Data


	DATA ELEMENT								
7/12/2015				End	Static	8	Irs		
	14:00	14:30	15:00	15:30	16:00	Average	Maximum		
Influent Vapor Data		Ng alburi							
Horiba HC ppmv	ND	ND	61,720	ND	ND	69,142	76,990		
Horiba CO₂%	ND	ND	5.20	ND	ND	5.00	5.24		
Horiba CO%	ND	ND	1.75	ND	ND	2.58	3.82		
Lumidor O ₂ %	ND	ND	8.7	ND	ND	7.0	8.7		
Lumidor H₂S ppm	ND	ND	0	ND	ND	0	0		
Influent Vapor Temp °F	71	71	71	72	OFF	70	72		
Atmospheric Conditions									
Barometric Pressure "Hg	30.06	30.04	30.02	30.02	30.02	30.08	30.10		
Absolute Pressure "Hg	26.05	26.04	26.02	26.02	26.02	26.07	26.09		
Groundwater Data		West All Control							
Groundwater Pump Rate (gpm)	4.60	4.60	5.20	5.20	OFF	4.22	5.20		
Total Liquid Vol (gal)	1,598	1,736	1,892	2,048		-	-		
Extraction Well Data - We	ell A-1								
Flow SCFM	21.34	21.34	27.95	27.95	OFF	18.83	27.95		
Vacuum "H₂O	75.0	75.0	90.0	90.0	OFF	60.3	90.0		
Well Vapor Flow SCFM / "H₂O	0.28	0.28	0.31	0.31	OFF	0.31	0.33		
Well Vapor Flow SCFM / ft Well Screen	1.087	1.087	1.423	1.423	OFF	0.960	1.420		
Observation Well Data - \	/acuum "H₂C								
Well W-2 Dist. 16.2 ft	1.14	1.10	1.23	1.54	(0.19)	0.97	1.54		
Well W-1 Dist. 25.8 ft	0.43	0.37	0.43	0.60	(0.15)	0.37	0.60		
Well W-3 Dist. 38.3 ft	0.14	0.09	0.15	0.20	(0.17)	0.14	0.20		

⁽⁾ Indicates Well Pressure


ND - No Recorded Data


SCHEDULE B Summary of TEST # MDP-1 Atmospheric Conditions



SCHEDULE B Summary of ACUVAC TEST # MDP-1 Recorded Well Vacuums and/or (Pressures)

AcuVac Remediation, LLC July 12, 2015

Monitoring Well Distance from A-1 (ft)

OPERATING DATA - PIL

PAGE# 1

ACUVAC MOBILE DUAL PHASE SYSTEM

-	OPERATING DATA	DEUTER III	E31#1	PAGE#		MOBILE DUAL PHASE SYSTEM Project Managers: Sadler/Faucher			
Locatio	n: Walstadd 66, Loving			T	T	Project	Managers: Sac	ner/Faucher	
		Date:	7-12-15	-	-	-	-	-	
Paramet	ters		7ime 0725	730	Time 0800	Time 0830	Time	Time 0430	
			Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	
	Well# A-1		7279.9	7280.0		72810	7281.5	72820	
	R.P.M.		1000	2200	2000	2200	2200	2200	
/ER	Oil Pressure	psi	50	50	50	So	50	50	
row	Water Temp	°F	155	160	160	160	160	160	
ENGINE/BLOWER	Volts		13,5	140	14.0	14.0	14.0	140	
NGII	Intake Vacuum	"Hg	19	18	18	18	18	18	
듄	Gas Flow Fuel/Propane	cfh	100	0	0	٥	0	6	
	GW Pump	ON/OFF	066	010	010	دون	610	00	
E	Extraction Well Flow	scfm	OFF	12.19	12.19	12.19	12.19	12.19	
UMI	Extraction Well Vac.	"H ₂ O	DFF	40	40	40	40	46	
SPHERE/VACUU PUMP/VOLUME	Pump Rate	gals/min	P(A	3.50	350	3.50	3.50	3.50	
LEV.	Total Volume	gals		-	105	210	315	426	
HER JMP	Influent Vapor Temp.	°F		69	69	69	69	70	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Air Temp	°F	72.3	72.4	74.6	75.8	77.9	196	
ATIV	Barometric Pressure	Hg	30.10	30.10	30.10	30.09	30.09	30.10	
	Absolute Pressure	"Hg	26.09	26.09	2609	26,08	26.08	26.09	
	(6.2) W-2	"H ₂ O	٥	,07	86	.88	.42	.88	
	(25.8) W-1	"H ₂ O	D	,05	,31	.37	,38	.36	
ELL VACUUM	(323) W-3	"H ₂ O	۵	.02	.13	.17	.20	.17	
'ACI		"H₂O							
LL.		"H ₂ O							
		"H ₂ O	Ŋ			Hange E.			
TOF		"H ₂ O	PA-EC						
MONITOR W		"H ₂ O	v)						
~		"H ₂ O							
		"H ₂ O							
	NAPL %	Vol			180/189	9.5/10	5.5 5.8	40/42	
	Pete Les /C	Gals							
MANIFOLD	Data Logger / Probe	ft	7.5	20	2.0	2.0	20	2.0	
ANIA	Depth of GW Depression	ft	0	-5.5	-55	-5.5	-5.5	-5,5	
M	Extraction Well	DTNAPL	57.40		-010				
	Extraction Well	DTGW	64.08						
THE RESERVE OF THE PERSON NAMED IN		Mary and a second	THE RESERVE TO THE PERSON NAMED IN	The same of the sa	N. 474		NAC T- AF-	-/1210010	

() Indicates Well Pressure

6.68

7FORMS/TestForms/1210010

OPERATING DATA - MDP PILOT TEST # 1 PAGE # \ MOBILE DUAL PHASE SYSTEM

ACUVAC

Loca	ion:	Walstadd 66 Lov	ington, NM			Projec	t Managers: Sa	dler/Faucher					
	Date	7-12-15	_	-									
	Time		0080	0900									
TEST	Instru	ıment	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA					
TE	Well	No.	A-1	17-1									
Ę	HC	ppmv	76,990	74,020									
VAPOR/INFLUENT	CO ₂	%	4.72	5.12									
SINF	СО	%	3.82	3,09									
4POR	O ₂	%	6.8	6.1									
Λ	H ₂ S	%	0	D									
06	00	Arrived &	location	- Position	rel mop s	ystem nea	n well A-	1 05					
		the extraction well. Mobilized equipment - Opened selected wells-recorded distances equipment wells- Install total fluid pumparel probe in EW. Plugged outer											
						school line							
						· allok-a		1					
07	25				The second secon	ls e outho							
0;]	36	START MOD-1- Initial EW induced occurre = 40 Hro, WVF = 12.19 setu											
		GW promp note: 3.5 gpm. All outer wells receded slight increased uceram levels											
018	00	Recorded data: BP - All outer wells an increasing vacuum trend. GWR											
		= 3.5 ypm · GWO = -5,5 ft - (Heavy LUAPL recovery) Propose @ O of h											
		HOMBA DATA: HC = 76,990ppmv, CO2:4.7290. CO:3.829. Or=6.8%											
08	30	Recorded data: BP & Owher wells continue on a slight increasing front											
		6 w 1 = 3.	Saam LNAI	C recovery	(liquel)@	5.5% = 5	gaals						
290	00	6 W 1- 35 gpm - LNANC recovery (liquid) € 5.5 % = 5.8 gols HORIBA DATA: I+C=74,020 ppmu + Cor= 5.12%+, C0:3.09%+, Ox= 6.1%+											
		Recorded data BP- All outer wells continue on an incressing vocacum											
		trend - a	SW 12 - 3.5 a	pm. Gws =	-5,5f4 - L	iquid LUAF	Le 4%						
09	30							1 UCEUCH1					
		Frend - LNAPLES TO. GWR: 3.5 gpm. Well vocaxum and VWF steady											
		[INCREASED] EW induced = 60"Hro, WVF=19.88 scfm. GWR:											
						maintain							
	\dashv												
ORMS	7 Test Fo	orms/1210007											

OPERATING DATA - PILOT TEST # 1 PAGE # 2

ACUVAC MOBILE DUAL PHASE SYSTEM

Locatio	n: Walstadd 66, Loving			PAGE#		Project	Managers: Sa	dler/Faucher
		Date	7-12-15	-	-	-	-	-
Paramet	ers Well # [A -]		Time 1000 Hr Meter 7282.5	Time 1 030 Hr Meter 72830	Time 1100 Hr Meter 7283.5	Time 1130 Hr Meter 7284.0	Time (200 Hr Meter 7284.5	Time 1230 Hr Meter 7285.5
	R.P.M.		2300	2300	2300	2300	2300	2300
ER	Oil Pressure	psi	50	50	50	50	50	50
OW	Water Temp	°F	165	165	170	170	178	170
E/BI	Volts		14.0	14.0	140	14.0	14.6	14.0
ENGINE/BLOWER	Intake Vacuum	"Hg	17	17	17	17	17	11
<u>ā</u>	Gas Flow Fuel/Propane	cfh	0	0	0	0	0	0
-	GW Pump	ON/OFF	ON	00	ON	ON	00	000
H	Extraction Well Flow	scfm	19.88	19.88	14.88	19.88	19.88	19.88
UMIA	Extraction Well Vac.	"H ₂ O	60	68	60	60	60	60
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate	gals/min	4.30	4.30	4.30	4.30	4.30	430
	Total Volume	gals	549	678	807	936	1065	1194
	Influent Vapor Temp.	°F	70	70	70	71	71	71
	Air Temp	°F	81.3	82.7	84.0	84.6	87.7	90.6
	Barometric Pressure	Hg	30 09	30.09	30.09	30.09	30.08	30.08
	Absolute Pressure	"Hg	26.08	26.08	2608	26.08	26.07	26.08
	W->	"H₂O	1.07	1.09	1.14	1,13	1.12	1.13
	W-1	"H₂O	.38	.42	.42	.41	.42	.43
ELL VACUUM	W-3	"H₂O	.14	.16	.16	.13	.14	.15
VAC		"H₂O						
SLE		"H ₂ O						
		"H ₂ O						
OTI		"H ₂ O						
MONITOR W		"H₂O			I BLUE			
157		"H₂O		Ultra -				
		"H ₂ O						
	NAPL %	Vol Gals	30 3.2	15/20	1.0/13.	1.5/20	115/20	115/19
9	Data Logger Probe	ft	2.0	2.0	2.0	2.0	2.0	2.0
MANIFOLD	Depth of GW Depression	ft	-5.5	-5.5	-5.5	-515	75.5	-5.3
Z	Extraction Well	DTNAPL						
	Extraction Well	DTGW						
_			-	-	A STATE OF		MS/TestForm	

OPERATING DATA - MDP PILOT TEST # 1 PAGE # MOBILE DUAL PHASE SYSTEM

ACUVAC

Loca	tion:	Walstadd 66 Lov	ington, NM			Projec	t Managers: Sa	dler/Faucher			
	Date	7-12-15	_	`							
	Time		1000	1100							
TEST	Instru	ment	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA			
E	Well	No.	A-1	4-1							
5	HC	ppmv	71,750	68,490							
VAPOR/INFLUENT	CO ₂	%	4,60	5.24							
VINF	со	%	2.37	2.55							
APOF	O ₂	%	5.8	6.4							
`\ \	H ₂ S	%	0	0							
100	0	HORIBA DA	TA 4C= 7	1,750 ppmu	CO2=460	7. 1. co:	2.37% -0	3:58% J			
			· ·	Outer well							
				He EW t,	Trees - Charles and Company						
				060 HW							
10	30			s- IHC							
		Rosewdel .	data: BP	- outer a	iells con-	ringe on	an incress	ing			
				Wasteady							
110	20	Recorded data: BP - Outer well w-2, slight incress, the two									
		wells s	fearly - A	DOTE - LNA	re list	% of volu	one				
				8, 490 ppm							
113	0			- Outer 4				pinq q			
		slight a	lecreosing i	Deckum trend	1. Gara . 4.3	Bapon . LAN	ore 16%	,			
170	20			· Outer w							
				Leody e							
19	30			- Outer				slight			
		1 n creoses	-6w2 =	: 4.3 zpon LN	APL=1.5%	COD = 5.	Stt				
											
		The Market									
						10000	****				
	-										

ORMS	/ Test Fo	rms/1210007									

OPERATING DATA - PILOT TEST # 1 PAGE # 3

ACUVAC MOBILE DUAL PHASE SYSTEM

Location	on: Walstadd 66, Loving		EXTINI	PAGE#			Managers: Sa	NAME OF TAXABLE PARTY.	
Locatio	on: Waistaud oo, Loving	Date:	7-12-10	1	Τ.	Project	Project Managers: Sadler/Fau		
Parame	tere		7-12-15 Time	Time	Time	Time	Time	Time	
1 mmile	1013		1300	1330	1400	1430	1500	1530	
			Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	
	Well # A-1		7285.5	7286.0	7186,5	7287.0	7287.5	72886	
	R.P.M.		2300	2400	2400	2400	2400	2400	
WEI	Oil Pressure	psi	50	50	50	50	50	50	
BLO	Water Temp	°F	115	175	175	175	175	175	
INE	Volts		14.0	14.0	14.0	14.0	14.0	14.0	
ENGINE/BLOWER	Intake Vacuum	"Hg	17	17	17	17	17	16	
	Gas Flow Fuel/Propane	cfh	9	0	0	0	0	0	
Was a line	GW Pump	ON/OFF	04	64	000	00	an	000	
AIR	Extraction Well Flow	scfm	19.88	21.34	21.34	21.34	27.95	27.95	
UM/	Extraction Well Vac.	"H ₂ O	60	75	75	75	90	90	
ACU	Pump Rate	gals/min	4.30	4.60	4.60	460	5.20	5.20	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume	gals	1323	1460	1598	1736	1897	2048	
	Influent Vapor Temp.	۰F	71	71	71	71	71	72.	
	Air Temp	°F	91.8	93.0	94.6	95.3	95.8	96.1	
	Barometric Pressure	Hg	30.07	30.06	30.06	30.04	30.02	30.02	
	Absolute Pressure	"Hg	26.07	26.06	26.05	16.04	2602	26.02	
	W-a	"H ₂ O	1.10	1.14	1.14	1.10	1.23	1.54	
	W-l	"H ₂ O	,38	. 43	.43	.37	. 43	.60	
MONITOR WELL VACUUM	W-3	"H ₂ O	.12	.14	.14	.09	.15	,20	
VAC		"H ₂ O							
TIT		"H₂O							
Z WE		"H₂O				- 4			
DI I		"H ₂ O							
NO I		"H ₂ O					Ta Linkby		
		"H ₂ O							
		"H ₂ O							
	NAPL %	Vol Gals	1.5 2.0	1.5/2.1	2.0/27	20/18	20/31	20/31	
OLD	Data Logger	ft	210	20	20	20	2.0	2.0	
MANIFOLD	Depth of GW Depression	ft	-5.5	-5.5	-3.5	-5.5	- 5,5	-5.5	
MA	Extraction Well	DTNAPL						61.61	
	Extraction Well	DTGW						6165	

() Indicates Well Pressure

7FORMS/TestForms/1210010

LUARL = 0.04'

HE = 61.64'

HE=

OPERATING DATA - MDP PILOT TEST # 1 PAGE # 3 MOBILE DUAL PHASE SYSTEM

ACUVAC

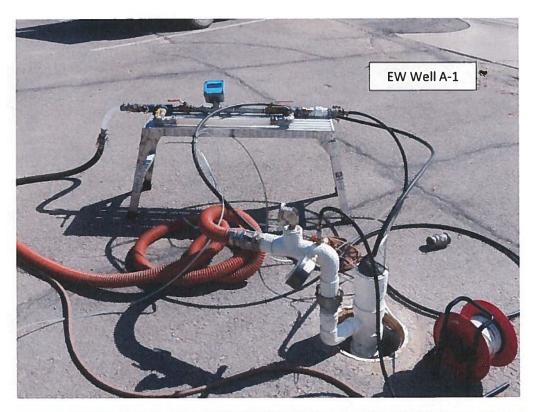
Locat	tion:	Walstadd 66 Lov	vington, NM			Projec	t Managers: Sa	dler/Faucher			
	Date	7-12-15		-							
	Time		1300	1500							
TEST	Instr	ument	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA	HORIBA			
TE	Well	No.	A-1	A-1							
F	HC	ppmv	61,880	61,720							
VAPOR/INFLUENT	CO ₂	%	5.()	5.20							
SINF	СО	%	1.88	1.15							
4 POF	O ₂	%	8.3	8.1							
^	H ₂ S	%	0	0							
130	0	HORIBA D	ATA! HC=	61,8200	my to	5.12%	Co :1,88%	L 01=83			
						necording					
						= 1,5% - 6					
		1				Hao WI					
		The state of the s		- LNAPI							
133	30					ing increa	sed vocac	m levels			
		in response to the EW increase. Glor, a. Ggm. LNADL = 2%									
		Googed outer wells - Note increase in the IHC									
14	00		: 46 gpm. LNAPL steady @ 270 - GWD = 5.554								
		6WR =	46 gpm	LNAPL	- steady	02% -	GWD = 5.5	54			
14	30					recording c					
		Jacuum	Frend d	ue to BF	1 - 6W R	= 4.69p	m - LNAP	L=2%			
14	30	The state of the s				, (1-10' M)	F-27.950	- In			
		GUR=	5.2 gpm	LNAPL=	2.0 %						
15	00					orot, co=1,					
150	80	Rocurded do	to: BP++.	Outer w	ells record	bd increasi	re vacuo	m trea			
						EW 12 = 5.291					
15	30	Recorded d	ata! BP-	All wells	recorded	increased	vocuum	levels			
				e 90 H	10 - GWR	= 5.2 gm Lx	1401 = 20%	, D			
\		Gauged u	vells -				14 11				
133		Discon tin	yed GU	pumping	and ind	need voen	um to all	ou time			
,	Test Fo	for outer 1	ucles to	adjust to	atmosph	réric chang,	:5				

1	M
14	A A
X	A

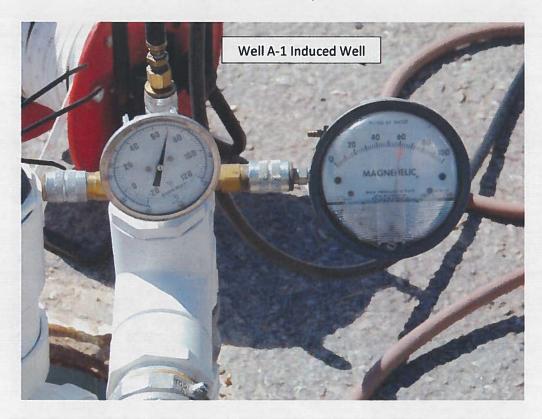
OPERATING DATA - PILOT TEST # 1 PAGE # 4

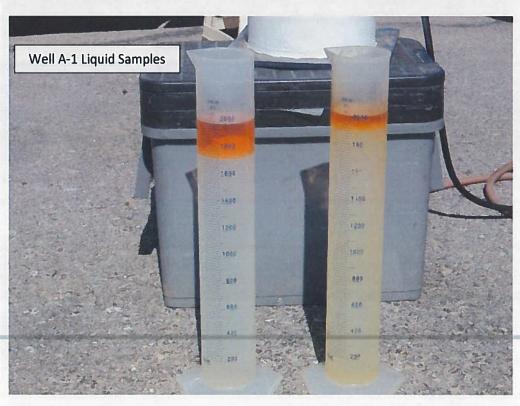
ACUVAC

1	OPERATING DA		ESI#I	PAGE #		MOBILE	DUAL PHAS	E SYSTE
Locat	tion: Walstadd 66, Lo					Project	Managers: Sa	dler/Fauc
		Date:	1					
Param	eters	/600 Time Time				Time	Time	Time
	Well #		Hr Meter 7288,3	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Met
	R.P.M.		1000					
VER	Oil Pressure	psi	50					-
ILO	Water Temp	°F	165					
NEZ	Volts		140					
ENGINE/BLOWER	Intake Vacuum	"Hg	19					
	Gas Flow Fuel/Propan	ne cfh	90					
-	GW Pump	ON/OFF	OFF					
Ĭ	Extraction Well Flow	scfm	OFF					
3 OM	Extraction Well Vac.	"H ₂ O	OFF					
PUMPIVOLUME	Pump Rate	gals/min	OFF					
101	Total Volume		2048					
IMP.	Influent Vapor Temp.	°F	NIA					
PUMP/VOLUME	Air Temp	°F	95.1					
	Barometric Pressure	Нд	30.02					
	Absolute Pressure	"Hg	2602					
	W-2		(19.)					
	1-eu	"H ₂ O	(.15)			1 1	Leave to	
MONITOR WELL VACUUM	w-3		(17)				10000	
VAC		"H ₂ O						
1		"H ₂ O	1 10 11					
		"H₂O						
		"H ₂ O	Į,					
		"H ₂ O	4				-	
		"H ₂ O	00					
		"H ₂ O						
	NAPL %	Vol	-					
1	Duta I	Gals						
	Data Logger	ft _		- A 9 1				
	Depth of GW Depression	ft						
E	Extraction Well	DTNAPL -	-					
E	Extraction Well	DTGW	_					



OPERATING DATA - MDP PILOT TEST # 1 PAGE # 4 MOBILE DUAL PHASE SYSTEM


ime Instrument Well No. HC CO2 CO P2 Record	ppmv % % % % scre &	HORIBA Hatiz data due to	HORIBA C'. DP st	HORIBA	HORIBA Wells	HORIBA HORIBA	HORIBA
Instrument Well No. HC CO2 CO P2 R2S PARCE	% % % Sled s 4	tatic date	c'. DP st	cody - All	wells r	ecordina u	uell
Well No. HC CO2 CO P2 P2S PARCO	% % % Sled s 4	tatic date	c'. DP st	cody - All	wells r	ecordina u	uell
HC CO ₂ CO O ₂ I ₂ S	% % % Sled s 4	tatic data	c'. DP st	cody - All	wells r	ecording u	uell
CO ₂ CO D ₂ I ₂ S O O O O O O O O O O O O O O O O O O O	% % % Sled s 4	tatiz data	c'. DP st	cody - All	wells r	ecording u	uell
20 02 12S	% % % dad s !	tatiz dati	c'. DP st	cody - All	wells r	ecording u	رطا
12S Necon	% % slad s J	totiz dati	c: DP st	cody - All	wells r	ecording u	رطل
12S	% ded s J	totic data	c: DP st	cody - All	wells y	ecording u	رطل
Necon	ded s	totic data	c: DP st	cody - All	wells r	ecording u	uell
Press Tres	ded si	tatic data	c: DP st	cody - All	wells r	ecording u	رطل
pres	sive a	due to	decrosed	bane di	wells y	andthe a	رطل
Pres	st Mo	duc to	decrosed	hama	in America	an the a	
E	ST MC	0 1		vaione 41	pressure		SW
10000		DIJ- Cor	npleted -	NOTE TO	INL Ligard	Volume =	2048gal
5 Sec	ared a	Il wells	- deporter	& site			
	+112.00		-				
-							
			1				-
			11-11-11				
Eggs					Les Salita	Walter Land	
		the France					
	-						
	Sec	Secured a	Second all wells	Secured all wells deported	Secured all wells deported site	Secured all wells deported site	pressure duc to decrosed barone trie pressure an the a Trest MDO-I completed - NOTE- Torra Ligard Volume = Secured all wells deported site



AVR

AcuVac Remediation, LLC

1656-H Townhurst • Houston, Texas 77043 713 468 6688 • acuvac.com

July 15, 2015

Mr. Clay Kilmer Senior Hydrogeologist Golder Associates, Inc. 5200 Pasadena Avenue, N.E. Suite C Albuquerque, NM 87113

Dear Clay:

Re: Walstadd 66, Lovington, NM

At your request, we performed two 1-hour (Wells W-1 and W-2), and one 6.0-hour (Well A-1) Mobile Dual Phase (MDP) Events at the above referenced location on July 13, 2015. Following is the Report and a copy of the Operating Data collected during Event #1 at the above referenced location. Table #1A is the Well Summary Information and Table #1B is the Recovery Summary Information on wells W-2 (Event #1A), W-1 (Event #1B), and Well A-1 (Event #1C). PSH is referred to as LNAPL in this report. GW samples are taken in a 2,000 ml beaker to determine the average LNAPL percentage and volume.

OBJECTIVES

The Objectives of an MDP Event are to:

- Evaluate the potential for removing liquid and vapor phase LNAPL (PSH) from the groundwater (GW) and soils in the subsurface formations.
- Expose the capillary fringe area and below to the Extraction Well (EW) induced vacuums.
- Increase the GW and contaminant specific yields with high induced vacuums.
- Provide an induced hydraulic gradient (IHG) to gain hydraulic control of the area during the Event period.
- Select the GW depression and pump rates to accomplish the above objectives.

METHODS AND EQUIPMENT

The tests were conducted using AcuVac's I-6 System, with Roots RAI-33 and RAI-22 blowers, various instrumentation, including the HORIBA® Analyzer, Solinst Interface Probes, Lumidor O₂ Meter, flow gauges, a sensitive instrument to determine barometric pressure, V-1 vacuum box to capture non-diluted vapor samples, Redi-Flo 2 total fluids pump and other special equipment.

The vacuum extraction portion of the AcuVac System consists of a vacuum pump driven by an internal combustion (IC) engine. The vacuum pump is connected to the extraction well and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the GW to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC Engine where they are burned as part of the normal combustion process. Propane is used as auxiliary fuel to help power the engine if the well vapors do not provide the required BTU.

The AcuVac IC Engine is fully loaded for the maximum power necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum Radius of Influence (ROI) for Pilot Tests and short term Event remediation.

Emissions from the engine are passed through three catalytic converters to ensure maximum destruction of removed hydrocarbon vapors. The engine's fuel to air ratio can be adjusted to maintain efficient combustion. Because the engine is the power source for all equipment, all systems stop when the engine stops. This eliminates any uncontrolled release of hydrocarbons. Since the AcuVac System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure or overheating.

The GW Extraction is provided by an in-well, Redi-Flo 2 total fluids pump that has the discharge line connected to a total volume meter. The discharge line from the volume meter is then connected to the stand-by tank truck. The electrical power for the GW pump was supplied from a 120v Honda generator. The GW flow rate can be adjusted to maintain a target level. Interface meters are used to measure all DTGW/DTLNAPL.

The design of the AcuVac System enables complete independent control of both the Induced Well Vacuum and the GW pumping functions such that the AcuVac team can control the IHG to expose the maximum amount of the formation to SVE. The ability to separate the vacuum and liquid flows within the Extraction Well improves the LNAPL recovery rates, and enables the AcuVac team to record data specific to each.

SUMMARY OF MDP EVENT #1A- WELL W-2

- The total Event time was 1.0 hour. The Event was conducted on July 13, 2015.
 There is no comparative data.
- The total liquid volume recovered was 192 gals, of which 13.50% or 25.92 gals were liquid LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 1.97 gals, for a total liquid and vapor LNAPL recovery of 27.89 gals.
- Average HORIBA[®] Analytical Data from the influent vapor samples was:
 HC = 95,790 ppmv, CO₂ = 3.46%, CO = 7.46%, O₂ = 8.6% and H₂S = 0 ppm.
- The maximum HORIBA® Analytical Data from the influent vapor samples for TPH was 95,790 ppmv.
- The Average Induced Vacuum was 60"H₂O with a maximum vacuum of 60.00"H₂O.
- The average EW well vapor flow was 9.51 scfm with a maximum well vapor flow of 9.51 scfm.
- The GW pump inlet was set at 65.0 ft BTOC. The average GW pump rate was 3.20 gpm, and the maximum GW pump rate was 3.20 gpm.
- The average GW depression, based on the positioning of the GW pump, was 5.50 ft below static level.
- An LNAPL thickness of 6.54 ft was recorded prior to the start of Event #1A and no LNAPL thickness was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 1.0 hour Event #1A, Well W-2, was 27.89 gals.

ADDITIONAL INFORMATION

- The higher percentage of the LNAPL volume, 25.92 gals or 92.94%, was recovered
 as liquid due to the high level of free phase LNAPL at the start of the Event.
- A minimal percentage of the LNAPL, 1.97 gals or 7.06%, was burned as IC engine fuel as a result of the short duration of the Event period.
- The high HC (TPH) levels indicate contaminant in the gasoline range.
- The relatively low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface most likely did not occur.
- Well W-2 was gauged at the conclusion of Event #1C (1445 hrs) and an LNAPL thickness of 4.40 ft was recorded indicating a rebound of 67.28%.

SUMMARY OF MDP EVENT #1B- WELL W-1

- The total Event time was 1.0 hour. The Event was conducted on July 13, 2015.
 There is no comparative data.
- The total liquid volume recovered was 201 gals, of which 23.69% or 47.61 gals were liquid LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 1.84 gals, for a total liquid and vapor LNAPL recovery of 49.45 gals.
- Average HORIBA[®] Analytical Data from the influent vapor samples was:
 HC = 89,750 ppmv, CO₂ = 3.52%, CO = 5.74%, O₂ = 8.6% and H₂S = 0 ppm.
- The maximum HORIBA[®] Analytical Data from the influent vapor samples for TPH was 89,750 ppmv.
- The Average Induced Vacuum was 60"H₂O with a maximum vacuum of 60.00"H₂O.
- The average EW well vapor flow was 9.51 scfm with a maximum well vapor flow of 9.51 scfm.
- The GW pump inlet was set at 65.0 ft BTOC. The average GW pump rate was 3.47 gpm, and the maximum GW pump rate was 3.70 gpm.
- The average GW depression, based on the positioning of the GW pump, was 5.50 ft below static level.
- An LNAPL thickness of 6.84 ft was recorded prior to the start of Event #1B and an LNAPL thickness of 0.04 ft was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 1.0 hour Event #1B, Well W-1, was 49.45 gals.

ADDITIONAL INFORMATION

- The higher percentage of the LNAPL volume of 47.61 gals or 96.27%, was recovered as liquid.
- A minimal amount of LNAPL, 1.84 gals or 3.73%, was burned as IC engine fuel as a result of the short duration of the Event period.

- The high HC (TPH) levels indicate contaminant in the gasoline range.
- The relatively low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface most likely did not occur.
- Well W-1 was gauged at the conclusion of Event #1C (1445 hrs) and an LNAPL thickness of 1.01 ft of was recorded indicating a rebound of 14.77%.
- A thickness of biomass was initially observed on the collected GW/LNAPL sample.

SUMMARY OF MDP EVENT #1C- WELL A-1

- The total Event time was 6.0 hours. The Event was conducted on July 13, 2015. The
 data is compared to Pilot Test #1 conducted on July 12, 2015 which had a total Test
 time of 8.0 hours.
- The total liquid volume recovered was 1,553 gals, of which 2.35% or 36.53 gals were liquid LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 29.36 gals, for a total liquid and vapor LNAPL recovery of 65.88 gals. This equates to an average of 10.98 gals/hr.
- Average HORIBA[®] Analytical Data from the influent vapor samples was:
 HC = 59,027 ppmv, CO₂ = 5.61%, CO = 1.73%, O₂ = 7.1% and H₂S = 0 ppm.
- Compared with MDP Pilot Test #1 data, the average TPH levels decreased 10,115 ppmv, CO₂ increased 0.61%, CO decreased 0.85%, O₂ increased 0.1% and H₂S was steady at 0 ppm.
- The maximum HORIBA[®] Analytical Data from the influent vapor samples for TPH
 was 64,480 ppmv. Compared with MDP Pilot Test #1 data, the maximum TPH levels
 decreased 12,510 ppmv.
- The Average Induced Vacuum was 68.46"H₂O with a maximum vacuum of 70.00"H₂O. Compared with Pilot Test #1 data, the average induced vacuum increased 8.17"H₂O and the maximum induced vacuum decreased 20.00"H₂O.
- The average EW well vapor flow was 23.01 scfm with a maximum well vapor flow of 23.34 scfm. Compared with MDP Pilot Test #1 data, the average EW well vapor flow increased 4.18 scfm, and the maximum well flow decreased 4.61 scfm.
- The GW pump inlet was set at 65.0 ft BTOC. The average GW pump rate was 4.35 gpm, and the maximum GW pump rate was 4.50 gpm.
- The average GW depression, based on the positioning of the GW pump, was 5.50 ft below static level.
- An LNAPL thickness of 5.52 ft was recorded prior to the start of Event #1C and a LNAPL thickness of 0.13 ft was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 6.0 hour Event #1C, Well A-1, was 65.88 gals.

ADDITIONAL INFORMATION

- The higher percentage of the LNAPL volume, 36.53 gals or 55.44%, was recovered as liquid.
- Of the total LNAPL volume recovered, 29.36 gals or 44.56%, was burned as IC engine fuel during the Event period as a result of the high TPH and Well Vapor Flow.
- The high HC (TPH) levels indicate contaminant in the gasoline range.
- The HC (TPH) recorded a decreasing trend throughout the Event period.
- The relatively low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface most likely did not occur.

TOTAL RECOVERY EVENT #1

The total LNAPL removed, including liquid and vapor, during the 8.0 hour Event #1, Wells W-1, W-2, and A-1, was 143.22 gals. This equates to 17.90 gal/hr.

RECOMMENDATION

The Events proved to be an extremely effective method of decreasing the liquid LNAPL thickness in these wells. An Event program should be considered to quickly reduce the LNAPL thickness before considering a CAP which includes an on-site recovery system. In many cases the Event program has initially been more cost effective.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA® Analytical instrument is calibrated with Hexane, CO and CO2.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x $1.58E^{-7}$ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1A Summary Well Data
- Table #1B Summary Recovery Data
- Recorded Data
- Photographs of the MDP System and Wells A-1, W-1 and W-2.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely,

ACUVAC REMEDIATION, LLC

Paul D. Faucher

Vice President, Operations

Summary Well Data Table #1A

Event		1A	1B	1C
WELL NO.		W-2	W-1	A-1
Total Event Hours	V/ HAMESUS	1.0	1.0	6.0
TD	ft	75.0	80.0	75.0
Well Screen	ft	45.0 to 75.0	50 to 70	50 to 70
Well Size	in	4.0	4.0	4.0
Well Data				
DTGW - Static - Start Event	ft	64.67	63.96	63.55
DTLNAPL - Static - Start Event	ft	58.13	57.12	58.03
LNAPL	ft	6.54	6.84	5.52
Hydro-Equivalent- Beginning	ft	59.83	58.90	59.47
DTGW - End Event	ft	57.76	59.21	60.01
DTLNAPL - End Event	ft	0	59.17	59.88
LNAPL	ft	0	0.04	0.13
Hydro-Equivalent - Ending	ft	57.76	59.18	59.91
Extraction Data				
Maximum Extraction Well Vacuum	"H₂O	60.00	60.00	70.00
Average Extraction Well Vacuum	"H₂O	60.00	60.00	68.46
Maximum Extraction Well Vapor Flow	scfm	9.51	9,51	23.34
Average Extraction Well Vapor Flow	scfm	9.51	9.51	23.01
Maximum GW/ LNAPL Pump Rate	gpm	3.20	3.70	4.50
Average GW/ LNAPL Pump Rate	gpm	3.20	3.47	4.35
Influent Data				
Maximum TPH	ppmv	95,790	89,750	64,480
Average TPH	ppmv	95,790	89,750	59,027
Average CO₂	%	3.46	3.52	5.61
Average CO	%	7.46	5.74	1.73
Average O₂	%	8.6	8.6	7.1
Average H₂S	ppm	0	0	0

Summary Recovery Data Table #1B

Event		1A	1B	1C
WELL NO.		W-2	W-1	A-1
Recovery Data- Current Event				
Total Liquid Volume Recovered	gals	192	201	1,553
Total Liquid LNAPL Recovered	gals	25.92	47.61	36.53
Total Liquid LNAPL Recovered / Total Liquid	%	13.50	23.69	2.35
Total Liquid LNAPL Recovered / Total LNAPL	%	92.94	96.27	55.44
Total Vapor LNAPL Recovered	gals	1.97	1.84	29.36
Total Vapor LNAPL Recovered / Total LNAPL	%	7.06	3.73	44.56
Total Vapor and Liquid LNAPL Recovered	gals	27.89	49.45	65.88
Average LNAPL Recovery	gals/hr	27.89	49.45	10.98
Total LNAPL Recovered	lbs	195	346	461
Total Volume of Well Vapors	cu. ft	571	571	8,284
Recovery Data- Cumulative				
Total Liquid Volume Recovered	gals	192	201	3,601
Total Liquid LNAPL Recovered	gals	25.92	47.61	100.16
Total Vapor LNAPL Recovered	gals	1.97	1.84	51.87
Total Vapor and Liquid LNAPL Recovered	gals	27.89	49.45	152.03
Average LNAPL Recovery	gals/hr	27.89	49.45	10.86
Total LNAPL Recovered	ibs	195	346	1,064
Total Volume of Well Vapors	cu. ft	571	571	17,322

OPERATING DATA - EVENT #1 A

PAGE # / ACUVAC MOBILE DUAL PHASE SYSTEM

ocati		the second second second second second	T		Proje	ct Managers: S	adler/Fauc
_	Parameters Date:	7/13/15 Time 06/15	Time OG 75	Time 07/5	Time	Time	Time
	WELL# W.~1	Hr Meter 72-88-5	Hr Meter 7289.0	Hr Meter 7289.5	Hr Meter	Hr Meter	Hr Meter
	R.P.M.	2206	2200	2200			
VER	Oil Pressure psi	50	50	50			
BLO	Water Temp °F	130	140	150			
ENGINE/BLOWER	Volts	14	14	14			
ENG	Intake Vacuum "Hg	19	19	19			
	Gas Flow Fuel/Propane cfh	0	0	6			
	GW Pump ON/OFF	ON	ON	OFF			
AIR	Extraction Well Flow scfm	9.51	9.51	9.51			
AE OF	Extraction Well Vacuum "H ₂ O	60	60	60			
PUMP/VOLUME	Pump Rate gals/min	3.2	3.2	3.2			
4PV	Total Volume gals	-	96	192			
PUN	Influent Vapor Temp. °F	68	68	68			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Air Temperature °F	66.7	69.1	628			
	Barometric Pressure "Hg	30.03	30.02	30.01			
	HC ppmv	30,03	95 190	30.01			
CEN	CO ₂ %	_	3.42				
INFL	CO %	-	7.46				-
VAPOR /INFLUENT	O ₂ %		8.6				
VAI	H ₂ S ppm	-	0	_			
NOIES	ARRIVED ON SIT WELL W-1. (TAN THE IN WELLP WELL VAC SET A SAMPLE INDICATE PANGE. CIQUID SI PRESENT IN THE	GED THE DMP AT 6 F 60" HO I SHIGH CO AMPLE TI ELIQUID.	WELL AND TO STORE SOLUTIONS WEENTHAT. AND VICENTIAN. THEN AS ALL THOUGH IN	D MOBILITY OC. EVENT ON WVF ON OF HAD PAROX 063 IELL VAC B	STANDO STANDO OF 9. 50 SQ ODOCATEDO TO TODICAN DEDUCED AT	AT OGISHA M. TWFLUS S. TWE 9 ES 15 90 OFF 0705 HUS	T. PLATE PLS. AND ENT VAPO S,000 + APC LN APC
	PUMPING STOPPO	A 0715			of AT OTIS		
	LNAPL % Vol	7-	15/14/6	12/11.52			
	Depth of GW Depression ft	-5.5	-5:5	-5.5	1445		
	Extraction Well DTLNAPL ft	58.13		_	59.00		
	Extraction Well DTGW ft	64.67		57.76	63.40	THE ST	
licates	Well Pressure LNAR	6.54	The state of the s	Ø	4.40	7FORMS/Test	Forms/1210017
		59.83				HE 60.14	

OPERATING DATA - EVENT #1 PAGE # ACUVAC MOBILE DUAL PHASE SYSTEM

ocatio	on: Walstadd 66, Lovii	The second secon			Project Managers: Sadler/Fauch			
	Date:	7/13/15			an:			
	Parameters	Time 0730	Time 0800	Time OS30	Time	Time	Time	
	WELL# W-Z	Hr Moter 7289.5	Hr Meter 7290.0	Hr Meter 7290.5	Hr Meter	Hr Meter	Hr Meter	
	R.P.M.	2200	2200	2200				
ENGINE/BLOWER	Oil Pressure psi	50	50	50				
	Water Temp °F	150	150	150				
	Volts	14	14	14				
ENG	Intake Vacuum "Hg	19	19	15				
	Gas Flow Fuel/Propane cfh	0	0	0				
	GW Pump ON/OFF	لمن	0~	OFF				
AIR	Extraction Well Flow scfm	9.51	9.51	9.51				
UUM 1E	Extraction Well Vacuum "H ₂ O	60	60	60				
VAC	Pump Rate gals/min	3.0	3.70	3.70				
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	-	90	201				
	Influent Vapor Temp. °F	68	68	68				
	Air Temperature °F	70.4	7/. 7	72.5				
4,	Barometric Pressure "Hg	30.01	30.01	30.01				
ţ	HC ppmv	_	89.750	_				
LUE	CO ₂ %	_	3.52	Spin-				
/INF	CO %	-	5.74	_				
VAPOR /INFLUENT	O ₂ %	-	8.6	_				
٨٨	H ₂ S ppm	-	0	-				
	RELOCATED THE ACU							
NOTES	A WVF OF 9.50 SCF		STOC. JASTI	7770 00000		20 AZG / 20	230417015 1	
NOTES	A WVF OF 9.50 SCF					CO 7420 700		
	A WVF OF 9.50 SCF		27/21/3 -5.5	21/23.31				
MANIFOLD NOTES	LNAPL % Vol Gals	-/-	27/24.3	21/23.31		1445		

. 04 His 59.18 7FORMS/TestForms/12/10017B

OPERATING DATA - EVENT #1 C PAGE # / ACUVAC MOBILE DUAL PHASE SYSTEM

ocati			-	-	Project	Managers: Sa	adler/Fauch	
	Date:	7/13/15 Time	Time	Time	Time	Time	T:	
	t maneters	0845	Time 0915	Time 0945	1015	1045	Time 1115	
	WELL# A-(Hr Meter 7290.5	Hr Meter 7251.0	Hr Meter 7291.5	Hr Meter 7292-0	Hr Meter 7292.5	Hr Meter 7253.	
	R.P.M.	2200	2200	2300	2300	2300	2300	
ENGINE/BLOWER	Oil Pressure psi	50	50	50	50	50	50	
	Water Temp °F	150	150	150	150	155	160	
	Volts	14	14	14	14	14	14	
	Intake Vacuum "Hg	16	16	16	16	16	16	
	Gas Flow Fuel/Propane cfh	0	0	50	50	50	50	
	GW Pump ON/OFF	ON	ON	001	ON	ON	امم	
/AIR	Extraction Well Flow scfm	23.34	23.34	72.95	22.55	22 95	22.55	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	60	60	70	70	70	70	
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	4.2	4.2	4.4	4.5	4.5	4.5	
MP/V	Total Volume gals	-	126	252	384	519	654	
PUI	Influent Vapor Temp. °F	71	71	71	72	72	72	
ATM	Air Temperature °F	74,3	77.8	84.3	86.7	88.5	89.4	
	Barometric Pressure "Hg	30.01	30.01	30.00	30,00	30.00	29.99	
IN	HC ppmv			64 480				
TUE	CO ₂ %	-	-	5,14		-	-	
/INF	CO %	-		2.09	-	-		
VAPOR /INFLUENT	O ₂ %	-		7.1	-	-	-	
Λ'	H ₂ S ppm			0				
NOTES	AT 0830 MUBILIZED THE ACUVAR EGUIRMENT ON WELL A-1. SET IN-WIR PUMP AT 67 FT BTOC. IN ITHAN WELL VAC SET AT 60"HZD TRESOLTING IN A WYF OF 23.34 SGFM. IN MAN GOW PUMP PATE SET AS 4.2 GPM. AT 0945 INCREASED WELL VAC TO 70"HZD TESULTING IN A WYF OF 22.95 SGFM GW PUMP THATE THEREASED TO .4.4 GPM AND INCREASED AGAIN AT 1015 HRS TO 4.5 GPM TO COMPENSATE FOR HIGHER VACOUM. TOH VARARS REMAIN HIGH IN THE GASOLINE RANGE.							
	LNAPL % Vol Gals	-/-	8/10.08	4/5.04	2/2.64	2/2.7	1.5/2.05	
FOLD	Depth of GW Depression ft	-5.5	-5.5	-5.5	-5.5	-5.5	-5.5	
MANIFOLD	Extraction Well DTLNAPL ft		0836 57.76					

() Indicates Well Pressure LMAPL 5.52 6.11

HE 57.47 57.35

7FORMS/TestForms/1210017B

OPERATING DATA - EVENT #1

PAGE #2 ACUVAC MOBILE DUAL PHASE SYSTEM

Locatio	n: Walstadd 66, Lovi	ngton, NM			Project	Managers: Sa	dler/Faucher			
	Date:	7/13/15								
	Parameters	Time 11:45	Time 1215	1245	Time 1315	Time 1345	Time 1445			
	WELL# A-(Hr Meter 7293.5	Hr Meter 729%.0	Hr Meter 7254.5	Hr Meter 7295.0	Hr Meter 7295.5	Hr Meter 7296.5			
	R.P.M.	23∞	2300	2300	2300	2300	2300			
ENGINE/BLOWER	Oil Pressure psi	50	50	50	50	50	50			
	Water Temp °F	160	160	165	165	165	165			
INE/	Volts	14	14	14	14	14	14			
ENG	Intake Vacuum "Hg	16	16	16	16	16	16			
	Gas Flow Fuel/Propane cfh	50	50	50	50	50	50			
	GW Pump ON/OFF	000	لمن	on	on	on	OF			
AIR	Extraction Well Flow scfm	22.55	2.2.55	22.95	22.95	22.95	2255			
JUM/	Extraction Well Vacuum "H ₂ O	70	70	70	70	76	70			
VACI	Pump Rate gals/min	4.5	4.5	4.5	4.4	4.4	3.5			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	789	924	1059	1194	1326	1553			
PUM	Influent Vapor Temp. °F	71	71	71	71	71	71			
TMC	Air Temperature °F	91.3	95.1	97.6	99.2	99.5	99.8			
	Barometric Pressure "Hg	29.98	29.97	29.96	29.54	29.92	2882			
-	HC ppmv	56,750	_	_	_	55850				
VAPOR /INFLUENT	CO ₂ %	5.74			_	5.96	_			
INF	CO %	1.57	-		_	1.52	-			
POR	O ₂ %	7.0		_	-	7.2	-			
A'	H ₂ S ppm	0	_	_	-	0	_			
	WELL VAZ AM	WELL A	OW STEAD!	DURING 1	P2400.	THE VAR	25			
	MOSTLY STEADY						-0-1			
	AT 1445 EVENT CONCLUDED. ALL WELL GAUGED. WELL W-1 AND									
ES	W-L WORE GANGED TO DETERMINE THE EXTENT OF ANY REBOUND.									
NOTES	ACUVAC EQUIPMENT AND SYSTEM DEMOBILIZED, SITE SECUTION,									
	DAMES SITE.									
	LNAPL % Vol Gals	1.5/2.03	1.5/2.03	1.5/2.03	1.5/2.03	1.5/1.98	1.5/1.98			
NIFOLD										
	Depth of GW Depression ft	-5.5	-5.5	-5.5	-5-5	-5:5	-5.5			
MANIFOLD	Depth of GW Depression ft Extraction Well DTLNAPL ft	-5,5	-5.5	-5.5	-5.5	-2: 5	-5.5 55.38			

() Indicates Well Pressure

PAGE # / ACUVAC MOBILE DUAL PHASE SYSTEM

ocatio			1		Projec	t Managers: S	adler/Fauc
	Parameters Date:	7(13/15 Time 06/15	Time	Time 0775	Time	Time	Time
	WELL# W.~1	Hr Meter 72.88.5	0645 Hr Meter 7289.0	Hr Meter 7289.5	Hr Meter	Hr Meter	Hr Meter
	R.P.M.	2206	2200	2200			
ENGINE/BLOWER	Oil Pressure psi	50	50	50			TET
	Water Temp °F	130	140	150		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
INE	Volts	14	14	14			
ENG	Intake Vacuum "Hg	19	19	19			
	Gas Flow Fuel/Propane cfh	0	0	6			
	GW Pump ON/OFF	ON	ON	OFF			
AIR	Extraction Well Flow scfm	9.51	9.51	9.51			
PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	60	60	60			And I
PUMP/VOLUME	Pump Rate gals/min	3.2	3.2	3.2			
MPV	Total Volume gals	_	96	192			LI DELLE
PU	Influent Vapor Temp. °F	68	68	68			
	Air Temperature °F	66.7	69.1	628			
	Barometric Pressure "Hg	30.03	30.02	30.01			
E	HC ppmv	~	95 190				
E CE	CO ₂ %	-	3.42	-			100000
INF	CO %	-	7.46	1			
VAPOR /INFLUENT	O ₂ %		8.6				
>	H ₂ S ppm	-	0	-			
_	ARRIVED ON SIT WELL W-1. (TAN THE IN WELL PO WELL VAC SET A- SAMPLE INDICATE PANGE. LIQUID SI PRÉSENT IN THE	GOD THE DMP AT 6 F 60"Hzo i SHIGH CO AMPLE TI	WELL AND TO STORESULTING WEENTLATED AS A	D MOBILI'S C. EVENT EN WVF OF HAD FARDY OGS	STANDO STANDO OF 9.50 SQ ODOCATRONS O TODICATO	AT OGISHA AT OGISHA TOFLU TO THE 9	PLACE S. FUD ENT VAP S,000 + APL
	PUMPING STOPPER						
	LNAPL % Vol Gals	7-	15/14.40	12/11.52			
	Depth of GW Depression ft	-5.5	-5:5	-5.5	1445		
	Extraction Well DTLNAPL ft	58.13		_	59.00		
	Extraction Well DTGW ft	64.67		57.76	63.40		
icates 1	Well Pressure	6.54		Ø	4.40	7FORMS/Test	Comm-/1210017

OPERATING DATA - EVENT #1 PAGE # ACUVAC MOBILE DUAL PHASE SYSTEM

LUCATI	on: Walstadd 66, Lovir	gton, NM			Project Managers: Sadler/Fauch								
	Date:	7/13/15											
	Parameters	Time 6730	Time 800	Time OS30	Time	Time	Time						
	WELL# W-Z	Hr Meter 7289.5	Hr Meter 7290.0	Hr Meter 7290.5	Hr Meter	Hr Meter	Hr Meter						
	R.P.M.	2200	2200	2200									
ENGINE/BLOWER	Oil Pressure psi	50	50	50									
	Water Temp °F	150	150	150									
	Volts	14	14	14									
	Intake Vacuum "Hg	19	19	15									
	Gas Flow Fuel/Propane cfh	0	0	0									
	GW Pump ON/OFF	لي	0~	OFF									
AIR	Extraction Well Flow scfm	9.51	9.51	9.51									
JUM IE	Extraction Well Vacuum "H2O	60	60	60									
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	3.0	3.70	3.70									
ERE/ IP/V(Total Volume gals		90	201									
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	68	68	68									
	Air Temperature °F	70.4	7/. 7	72.5									
•	Barometric Pressure "Hg	30.01	30.01	30.01									
1	HC ppmv		89.750	-									
LUEN	CO ₂ %	_	3.52	-									
INF	CO %	_	5.74	_									
VAPOR /INFLUENT	O ₂ %		8.6	-									
VAP		-	0	-									
Α'	H ₂ S ppm			RELOCATED THE ACUVAR SYSTEM NEAR WELL W-L. GAUGED THE WELL PLAND THE									
Λ'		VAZ SYSTE		VELL W-Z	GAUGEDT	HE WELL PL	AND THE						
V	RELOCATED THE AOU		MNEAR										
V,		67.0 FF	MNEAR										
	DELOCATED THE ACU	67.0 FF	MNEAR										
NOTES V/	DELOCATED THE ACU	67.0 FF	MNEAR										
	DELOCATED THE ACU	67.0 FF	MNEAR										
	DELOCATED THE ACU	67.0 FF	MNEAR										
	DELOCATED THE ACU	67.0 FF	MNEAR										
	RELOCATED THE ACU ID WELL PUMP AT	67.0 FF	MNEAR	nAL WELL	VAC SET A								
NOTES	RELOCATED THE ADU ID WELL PUMP AT A WVF OF 9.50 SCA	67.0 FF	EM NEAR O		VAC SET A								
	RELOCATED THE ADU ID WELL PUMP AT A WVF OF 9.50 SCA	67.0 FF 1	27/24.3	21/23.31	VAC SET A	- Co º A20 720							

() Indicates Well Pressure

LMAPL 6.84 HE 58.80

. 04 HE 59.18 7FORMS/TestForms/1210017B

-	0
VA	VX
~	

OPERATING DATA - EVENT #1 C PAGE # / ACUVAC MOBILE DUAL PHASE SYSTEM

Locati	on: Walstadd 66, Lovin	ngton, NM			Project	Managers: Sa	adler/Faucher		
	Date:	7/13/15							
	Parameters	0845	Time 0915	Time 0945	Time 1015	Time 1045	Time ///5		
	WELL# A-(Hr Meter 7290.5	Hr Meter 7291.0	Hr Meter 7291.5	Hr Meter 7292-0	Hr Meter 7292.5	Hr Meter 7253.0		
	R.P.M.	2200	2200	2300	2300	2300	2300		
WER	Oil Pressure psi	50	50	50	50	50	50		
BLO	Water Temp °F	150	150	150	150	155	160		
ENGINE/BLOWER	Volts	14	14	14	14	14	14		
ENC	Intake Vacuum "Hg	16	16	16	16	16	16		
	Gas Flow Fuel/Propane cfh	0	0	50	50	50	50		
	GW Pump ON/OFF	ON	02	001	on	ON	امم		
/AIR	Extraction Well Flow scfm	23.34	23.34	72.55	22.55	22.55	22.55		
ME	Extraction Well Vacuum "H ₂ O	60	60	70	70	70	70		
VAC	Pump Rate gals/min	4.2	4.2	4.4	4.5	45	4.5		
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	-	126	252	384	519	654		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	71	71	71	72	72	72		
ATM	Air Temperature °F	74,3	77.8	84.3	86.7	88.5	89.4		
	Barometric Pressure "Hg	30.01	30.01	30.00	30,00	30.00	29.99		
TN.	HC ppmv	-		64 480					
LUE	CO ₂ %	-	-	5,14					
J.	CO %	-		2.09		-	-		
VAPOR /INFLUENT	O ₂ %		_	7.1	-		-		
>	H ₂ S ppm		-	0	-	_			
NOTES	AT 0830 MUBILIZED THE ACUVAR ESUIPMENT ON WELL A-1. SET IN-WELL PUMP AT 67 FT BTOC. INTIM WELL VAC SET AT 60"HZD THESUITMY IN A WYF OF 23.34 SCFM. IN MAR GW PUMP PATE SET AT 4.2 GPM. AT 0945 INCREASED WELL VAR TO 70"HZD TESULTING IN A WYF OF 22.95 SFM. GW PUMP THE TACTERSED TO 4.4 GPM AND INCREASED AGAIN AT 1015 HAS TO 4.5 GPM TO COMPENSATE FOR HIGHER VACUUM. THE VARIOS TREMAN HIGH IN THE GASOLINE TRANSE								
a	LNAPL % Vol Gals	-/-	8/10.08	4/5.04	2/2.64	2/2.7	1.5/2.03		
MANIFOLD	Depth of GW Depression ft	-5.5	-5.5	-5.5	-5.5	-5.5	-5.5		
MANI	Extraction Well DTLNAPL ft	58.03	57.76						
	Extraction Well DTGW ft	63.55	63.87						
) Indiantas	Well Pressure				The second second		Forms/1210017B		

() Indicates Well Pressure LMAPL 5.52 6.11

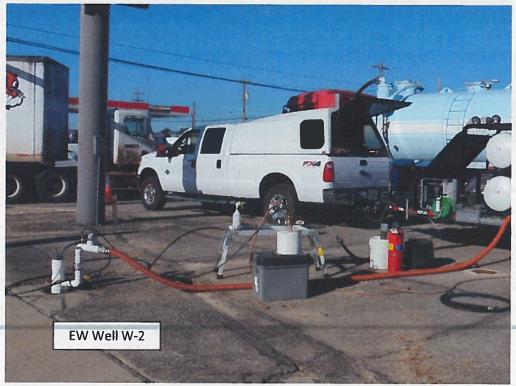
HE 57.47 55.35

7FORMS/TestForms/1210017B

OPERATING DATA - EVENT #1

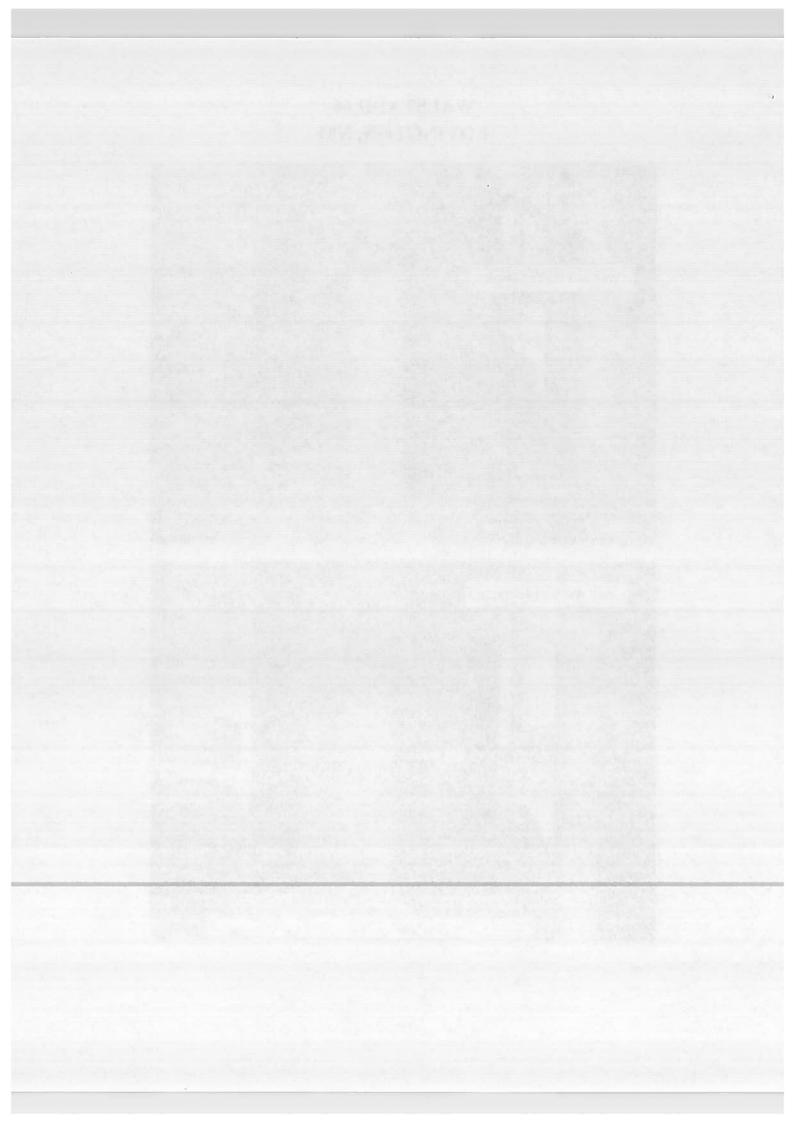
PAGE #2 ACUVAC MOBILE DUAL PHASE SYSTEM

ocatio	on: Walstadd 66, Lovir				Project	Managers: Sa	dier/Fauche			
	Date:	7/13/15	T/	Time	Time	Time	Time			
	Parameters	Time 11.45	Time 1215	Time 1245	Time 7 315	1345	1445			
	WELL# A-(Hr Meter 7293-5	Hr Meter 7294.0	Hr Meter 7294.5	Hr Meter 7295.0	Hr Meter 729 S. 5	Hr Meter 7296.5			
	R.P.M.	23∞	2300	2300	2300	2300	2300			
ENGINE/BLOWER	Oil Pressure psi	50	50	50	50	50	50			
	Water Temp °F	160	160	165	165	165	165			
	Volts	14	14	14	14	14	14			
	Intake Vacuum "Hg	16	16	16	16	16	16			
	Gas Flow Fuel/Propane cfh	50	50	50	50	50	50			
	GW Pump ON/OFF	02	لخ	on	on	ON	of F			
AIR	Extraction Well Flow scfm	2295	2,2.55	22.95	22.95	22.95	2255			
JUM/	Extraction Well Vacuum "H ₂ O	70	70	70	70	76	70			
VACI	Pump Rate gals/min	4,5	4.5	4.5	4.4	4.4	3.5			
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	789	924	1059	1194	1326	1553			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	71	71	71	71	71	71			
TMC	Air Temperature °F	91.3	95.1	97.6	99.2	99.5	99.8			
•	Barometric Pressure "Hg	29.98	29.97	29.96	29.94	29.92	2552			
E	HC ppmv	56,750	-		_	55850				
LUEN	CO ₂ %	5.74	_	-	_	5.96				
AN FE	CO %	1.57			_	1.52	-			
VAPOR /INFLUENT	C ₂ %	7.0		- 1	-	7.2	-			
VA	H ₂ S ppm	0	_	-	_	0	-			
tolineke ke	WELL VAR AM WELL PLOW STOADS DURING PORIOD, THE VARONES									
	MOSTLY STEADY DURING THE 7240D									
	AT 1445 EVENT CONCLUDED. ALL WELL GAUGED. WELL W-I AND									
ES	W-2 WERE GANGED TO DETERMINE THE EXTENT OF ANY REBUND.									
NOTES	ACUVAC EQUIPMENT AND SYSTEM DEMOBILIZED, SITE SECUTION,									
	DEPANYED SITE.									
	1745.00									
	LNAPL % Vol Gals	1.5/2.03	1.5/2.03	1.5/2.03	1.5/2.03	1.5/1.98	1.5/1.98			
MANIFOLD	Depth of GW Depression ft	-5,5	-5.5	-5.5	-5-5	-5.5	-5.5			
MANI	Extraction Well DTLNAPL ft						5538			
			1	1		1				


() Indicates Well Pressure

7FORMS/TestForms/1210017B

CNAPC .13


HE 59.91

