
MINIMUM SITE ASSESSMENT LEONARD'S CONOCO 603 PARKER SANTA ROSA, NEW MEXICO

Prepared by:

Monteverde Inc. 6501 Americas Parkway NE Suite 200 Albuquerque, New Mexico 87110

Monteverde Inc. Environmental Services and Technologies

I hereby certify that the work described in this report was performed under my direct supervision, and that I am personally familiar with the nature of the work, the results of the investigation and the contents of this report. I further certify that I am familiar with all documents attached to the text of this report and referred to in the text, including all tables, figures and appendices listed on the proceeding pages.

Vanessa Price Project Manager

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION 2.1 LOCATION 2.2 BACKGROUND 2.3 PHYSIOGRAPHIC AND HYDROGEOLOGIC SETTING 2.4 LOCAL GROUNDWATER USE 2.5 SURFACE WATER 2.6 UTILITIES	2 2 2
3.0 METHODS	4
3.3 CHAIN-OF-CUSTODY	6
5.0 DISCUSSION AND SUMMARY	9

1.0 EXECUTIVE SUMMARY

On June 26, 1991, three 4000 gallon gasoline and one 560 gallon waste oil tanks were removed from Leonard's Conoco, 603 Parker, Santa Rosa, New Mexico. At that time soil contamination was detected. The contaminated soils were removed, the pits allowed to air and 13 loads of clean fill were brought in to replaced the contaminated soil. On December 1, 1994, the New Mexico Environment Department - Underground Storage Tank Bureau (NMED/USTB) wrote Mr. Gonzales (owner of Leonard's Conoco) and requested a Minimum Site Assessment (MSA) be performed. Monteverde Inc. was retained by Mr. Gonzales on February 25, 1995 to perform the MSA at the above mentioned site. This investigation included eight (8) boreholes with soil sampling occurring every five feet. Of the eight boreholes, four (4) were completed as monitor wells with groundwater sampling. The results of the investigation indicate:

- 1. The direction of groundwater flow in the site area is south-southwest at a gradient of 0.05;
- 2. Groundwater lies at depths of 17 to 27 feet in the site area and is hosted by fine grained sand, silt, clay, gravel and cliche;
- 3. The soils have been impacted in the areas of both the gasoline and waste oil tank pits. It appears reported clean fill has been recontaminated. The clay lens, downgradient, has been impacted with what appears to be aged gasoline;
- 4. The groundwater has been impacted in both tank pit areas and downgradient; and
- 5. The southern boundary of contamination appears to be migrating under Parker Street and the northern boundary may be migrating onto Southern Pacific Railroad property.

2.0 INTRODUCTION

This MSA describes the work performed by Monteverde Inc., Environmental Services and Technologies (Monteverde) for Mr. Leonard Gonzales, owner of the property once doing business as Leonard's Conoco, 603 Parker, Santa Rosa, New Mexico. The investigation was performed to fulfill the requirements of §1205-1206 of the New Mexico Underground Storage Tank Regulations (NMUSTR's).

2.1 LOCATION

Leonard's Conoco is located at 603 Parker, Santa Rosa, New Mexico. Santa Rosa lies in Guadalupe County. The site elevation is approximately 4595 feet above sea level. It is bordered on the north side by railroad property under the control of Southern Pacific Railway. It is bordered on the south by Parker Street, the east by a closed gas station and on the west by the Club Cafe.

2.2 BACKGROUND

Leonard's Conoco stopped doing business as Leonard's Conoco in June of 1991. At that time four (4) tanks were removed from the site - three (3) 4000 gallon gasoline tanks and one (1) 560 gallon waste oil tank. The pits were allowed to air for two weeks and were backfilled with clean fill. The site consists of one building with a double bay for car repair and an overhang where the pumps used to be. Currently the site is being leased and used as a car repair business.

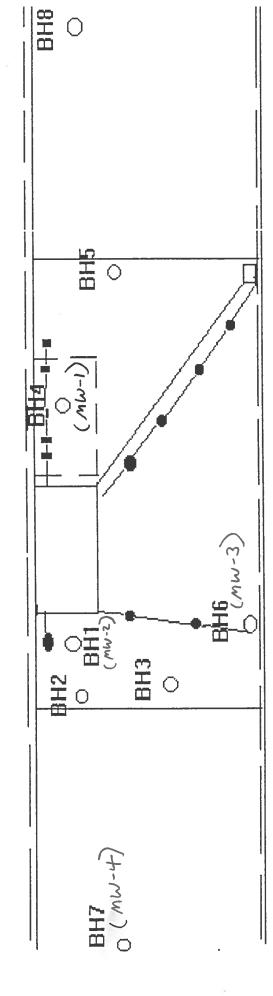
2.3 PHYSIOGRAPHIC AND HTDROGEOLOGIC SETTING

The site lies in the Pecos River Valley and consists of hills, toes slopes and terraces of the Pecos River. It is 4/10 of a mile from the Pecos River. It is not located on the 100 year flood plain. Subsurface soils are composed of sands, gravel loam and clay. The parent materials are derived from redbed shale and sandstone. The topography is moderately steep hills.

Groundwater occurs at depths of 17 to 27 feet. Subsurface material is moderately permeable until the clay lens at approximately 10 feet. Groundwater flows to the south-southwest in the site area (Figure 2-1).

2.4 LOCAL GROUNDWATER USE

According to the City of Santa Rosa Water Department there are no city wells within a 1000 foot radius of the site. Businesses and residences in the area are served by the City's public water supply.


2.5 SURFACE WATER

The Pecos River lies approximately 4/10 of a mile west of the site. No impacts to this or any other body of surface water from the release have been reported of observed.

2.6 UTILITIES

A map showing the location of structures and utilities is enclosed as Figure 2-2. Underground utility corridors were investigated and were not apparently affected by the release.

R R Property

Parker Street

FIGURE 2-2

Utility Location Map

----- Above ground utility lines

Buried Sewer

Water line

---- Buried electric

☐ Water meter

— Propane tank

3.0 METHODS

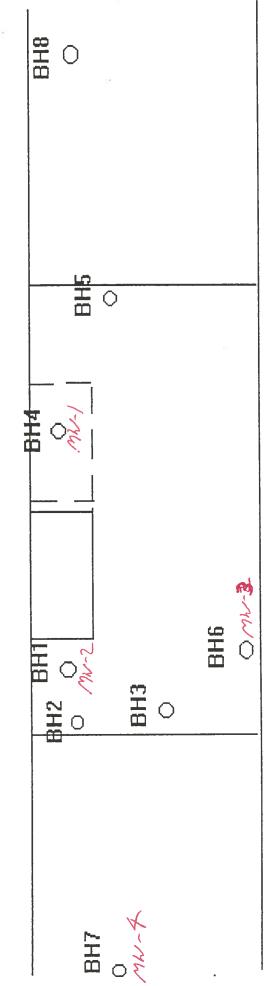
The MSA was performed by drilling and sampling eight (8) boreholes and completing four (4) of the boreholes as monitor wells. Borehole locations were selected to determine the horizontal and vertical extent of hydrocarbon impacts to soils and to provide monitor well locations that would assist in determining hydrocarbon impacts to groundwater.

Monitor well locations and elevations were surveyed by Monteverde staff, and a site map was prepared showing the locations of soil borings (Figure 3-1) and monitor well locations (Figure 3-2). The project manager supervised the drilling, monitor well installation and soil and groundwater sampling. Logs of soil borings and monitor well completion diagrams are included as Appendix I.

3.1 SOIL SAMPLING AND ANALYSES

Soil borings and sampling was performed using a CME 75 hollow stem auger drill rig equipped with a split-spoon sampling device. Drilling and sampling equipment were steam cleaned prior to drilling each borehole. Sampling equipment was decontaminated between each collected soil sample by washing with detergent, water and rinsing three times with distilled water.

Soil borings were advanced to a total depth of 20 to 30 feet, and soil samples were collected for field headspace analysis in accordance with Chapter XII, Appendix C of the NMUSTRs, using an Environmental Instruments OVM-580B. Field headspace was conducted at approximately five (5) foot intervals.

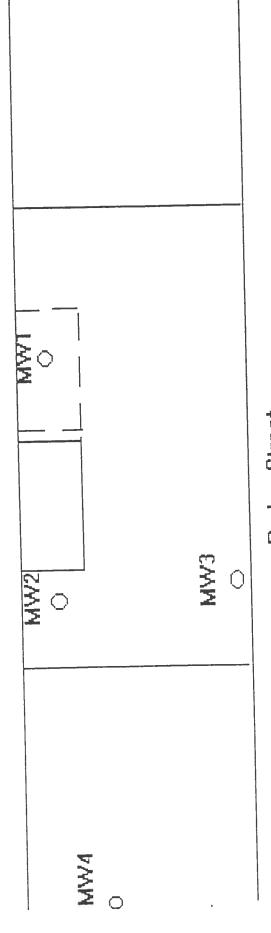

Additional soil samples were collected for laboratory analysis from the eight (8) boreholes. These samples were collected from the interval showing the highest level of contamination on the OVM. All soil samples were analyzed for BTEX/MTBE by USEPA method 8020. Soil samples from Boreholes 1 and 4 were also analyzed for TPH using USEPA method 8015 Modified. The soil sample from borehole 4 was also analyzed for TCLP by USEPA method 1311 for metals and 8270 for semivolatile organic compounds. The laboratory soil samples were collected in accordance with Chapter XII, Appendix C of the NMUSTRs. Laboratory results are included as Appendix II.

3.2 MONITOR WELL INSTALLATION AND GROUNDWATER SAMPLING

Boreholes 4, 1, 6 and 7 were completed as monitor wells 1, 2, 3 and 4 respectively. Monitor wells were constructed of 2 inch flush joint polyvinyl chloride (PVC) casing. Monitor wells 2 and 3 have 15 feet of screen and monitor wells 1 and 4 have 10 feet of screen. Each monitor well was filter packed with 10-20 Colorado Silica Sand to a level approximately 2 feet above the screened interval. A bentonite seal was placed

R R Property

Parker Street


FIGURE 3-1

Borehole Location Map

R R Property

à

Parker Street

FIGURE 3-2

Monitor Well Location Map

above the screened interval and the wells were backfilled to within 2 feet of the surface. Wells heads were completed in concrete with steel meter boxes and secured with locking caps (see Appendix I for well specific diagrams).

Following monitor well completion, wells were developed by bailing until free of excess silt and sand. Groundwater samples were collected and analyzed for BTEX/MTBE by USEPA method 602. Groundwater elevations were measured in each monitor well to determine groundwater flow and gradient. Laboratory results are included as Appendix III.

Well Elevations

MW1	MW2	MW3	MW4
4595.44	4595.68	4594.06	4590.18

3.3 CHAIN-OF-CUSTODY

After each soil and groundwater sample was collected, they were preserved (as required), packed on ice and maintained at 4° Celsius until delivery to Hall Environmental Laboratory, Albuquerque, New Mexico under strict chain-of-custody.

4.0 RESULTS

4.1 SOIL ANALYSES

Results from the field analyses of soil samples indicates soil contamination above UST Standards of 100 ppm. Contamination is present from five (5) feet to 20 feet with the highest concentrations being 10 to 15 feet. The exceptions to this are BH3 where contamination begins at five (5) feet and BH5 where contamination extended into the groundwater table.

FIELD HEADSPACE ANALYSIS

	BH1	BH2	внз	BH4	BH5	BH6	BH7	BH8
5 ft.	35	28	201	5.4	0.7	56	2.0	5.2
10 ft.	308	16	275	220	0.0	115	1.1	0.7
15 ft.	220	320	185	315	313	10.5	6.3	0.0
20 ft.	10		42	16.5	244	24		0.5
25 ft.						31.7		

All reading are in parts per million (ppm)

Laboratory soil analyses does not indicate heavy contaminant levels, however TPH analyses in the two tank pit areas and BH5 shows above standard levels for gasoline, kerosene and motor oil. There is some indication for diesel in BH5. The current owner has indicated that he never sold either diesel or kerosene.

SOIL ANALYSIS - BTEX/MTBE/TPH

Borehole	Benzene	Toluene	Ethyl- benzene	Xylene	МТВЕ	TPH
BH1	1.6	4.4	5.0	5.0	<0.4	1,100-G <20-D 4,400-M
BH2	< 0.1	1.2	1.4	0.6	< 0.2	
внз	0.57	< 0.05	0.62	< 0.05	< 0.1	
BH4	2.6	1.5	6.3	3.1	<0.5	790-G <20-D <100-M 520-K
вн5	<5.0	<5.0	5.1	<5.0	<10	<100- D 2,400-K <500-M
вн6	< 0.05	< 0.05	< 0.05	< 0.05	< 0.1	
ВН7	< 0.05	< 0.05	<0.05	< 0.05	< 0.1	
вн8	< 0.05	< 0.05	< 0.05	<0.05	<0.1	

All analyses are in parts per million (MG/KG)

G - gasoline

D - diesel

K - kerosene

M - motor oil

SOIL ANALYSIS - TCLP

All analyses for TCLP were non-detect (ND) expect for naphthalene which was 91 ppb. This is consistent with gasoline contamination.

4.2 GROUNDWATER RESULTS

Groundwater analyses shows contamination levels above NMWQCC Standards for benzene in MW1, MW2 and MW3. MTBE is above Standards in MW1.

GROUNDWATER ANALYSIS - BTEX/MTBE

Well #	Benzene	Toluene	Ethyl- benzene	Xylene	МТВЕ
MW1	440	25	400	81	320
MW2	420	6.4	540	86	4.5
MW3	39	8.2	6.3	15	< 2.5
MW4	< 0.5	3.0	< 0.5	2.9	< 2.5
NMWQCC	10	750	750	(620 100

All analyses are in parts per billion (μ g/L)

5.0 DISCUSSION AND SUMMARY

Three (3) 4000 gallon gasoline tanks and one (1) 560 waste oil tank were removed in 1991. The two pits were allowed to air for two weeks before being backfilled with clean fill dirt. The contamination present, at that time, appeared to be caused from overfill since the tanks did not appear to be damaged. Contamination from this overfill had probably already migrated underneath the building and the concrete pad where the pumps were located. When the clean fill was added, it was recontaminated from the migrating plume.

The downgradient soils have the appearance of an aged plume (blue/gray coloration). The OVM readings are above soil standards for contamination (100 ppm) but laboratory analyses show nominal amounts of BTEX/MTBE. A substantial amount of contaminated soils are clay. Soil TPH are in excess of Standards for gasoline, motor oil and kerosene.

Groundwater at this site flows beneath a contaminated clay lens and appeared to be under pressure. As a result the gradient, 0.05 may be in error. When groundwater levels were measured in the PVC casing, they were many feet above original groundwater levels. This will probably correct itself as groundwater pressure normalizes. Groundwater flows south-southwest and has been impacted by the spill.

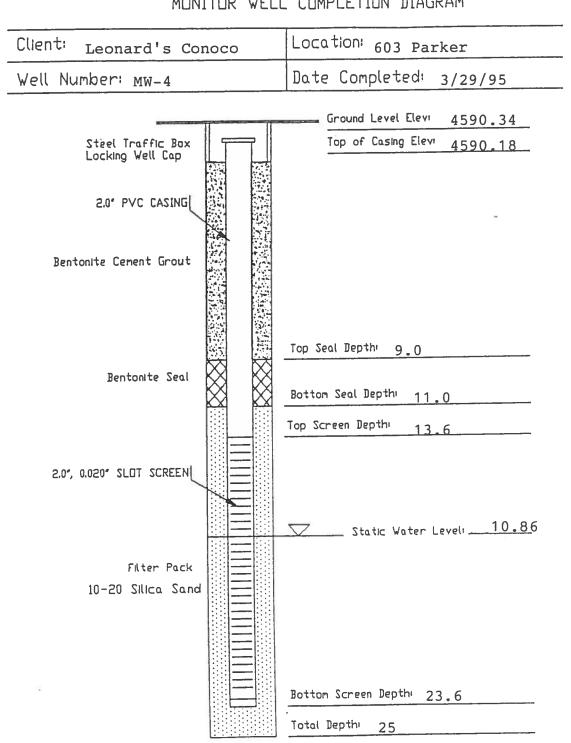
APPENDIX I

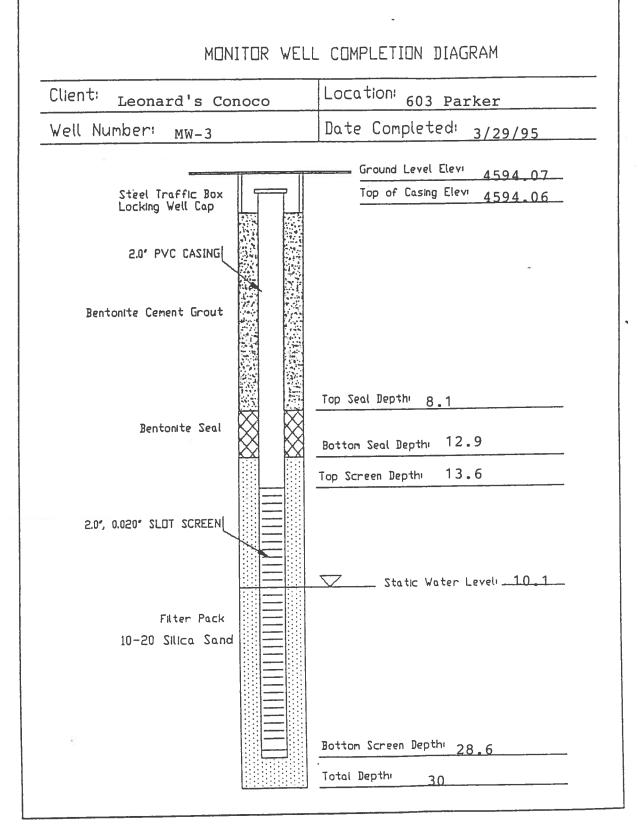
Project #:U	ST01	2	Clien	t: Le	onard's Conoco		Borehole # 1 Well # _2
Site 603 Pa	rker	, Sa	nta R	osa,	New Mexico		Page 1 of 1
1/4 1 Cty.	./4		4, Se Sta		T. R.	I	Location Map
MVEC Rep.	V. P	rice			Date 3/28/95		
Contractor	SHI	В					
Driller D.	Bric	k					
Method hol	low	stem	auge	r Eqr	ot. 3½ inch		
Elevation:	Land	sur	f. 49	95	TOC		
Depth Lith (ft)	Run #	Rec %	From (ft)	To (ft)	Descri and D	ption of I rilling Co	Cithology onditions
1 —	8 e		1	5	-fill dirt		4
5 —	ň				5 ft. OVM = 3	5 ppm	9
			5	9	fill dirt		
			9	10	clay - heavy o		
10 —			10	15			clay - heavy odor
15					15 ft OVM	220ppm	
15			15	17.5	light gravel/s	and mixed	with clay
			17 5		17.5 ft OVM	Торрш	
20 —							
25							
30 —							
35 —							

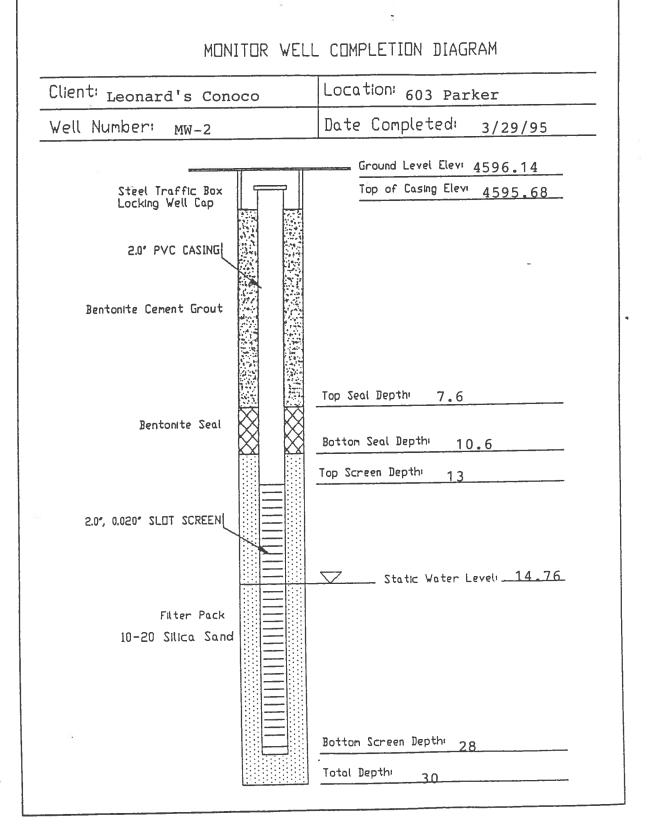
Project #: USTO12 Client: Leonard's Conoco Borehole # 2	Droject #:			Clien	+ •		Borehole # 2		
1/4	<u> </u>								
Cty. State MVEC Rep. v. Price Date 3/28/95 Contractor SHIB Driller D. Brick Method hollow stem auger Eqpt. 3½ inch Elevation: Land surf. 4595 TOC Depth Lith Run Rec From To (ft) (ft) Description of Lithology and Drilling Conditions 1 4 gravel and red/brown sand 4 5 sand/clay 5 10 sand/silt/clay mix 10 15 silty clay 15 16 silty clay 20 15 16 silty clay 20 16 groundwater	Site 603 Pa	rker	, Sa	nta R	osa,	New Mexico		_	
Contractor SHIB Driller D. Brick Method hollow stem auger Eqpt. 3\frac{1}{4} inch Elevation: Land surf. 4595 TOC Depth Lith Run Rec From (ft) Description of Lithology and Drilling Conditions 1		./4			Location Map				
Driller D. Brick Method hollow stem auger Eqpt. 3¼ inch Elevation: Land surf. 4595 TOC Depth Lith Run Rec (ft) (ft) (ft) Description of Lithology and Drilling Conditions 1	MVEC Rep. $$	7. Pr	ice			Date 3/28/95			
Method hollow stem auger Eqpt. 3\frac{1}{4} inch Elevation: Land surf. 4595 TOC Depth Lith Run Rec From (ft) To and Drilling Conditions 1	Contractor	SHI	В						
Depth Lith Run Rec From To Check Run Rec From To Check Run Run Rec From To Check Run R	Driller D.	Bri	ck						
Depth Lith Run Rec (ft) (ft) Description of Lithology and Drilling Conditions 1	Method holl	ow s	tem	auger	Eqp	ot. 31 inch		25 (1)	
(ft) # % (ft) (ft) and Drilling Conditions 1 4 gravel and red/brown sand 5 3 sand/clay 5 ft OVM 28ppm 5 10 sand/silt/clay mix 10 10 ft OVM 16ppm 15 15 ft. lab sample OVM 320 ppm 15 16 silty clay groundwater 20 16 groundwater 30 30	Elevation:	Land	sur	f. 45	95	TOC			
10						Descri and D	ption of Lithology rilling Conditions		
5 4 5 sand/clay 5 ft OVM 28ppm	1 -	itati.		1	4	gravel and red	/brown sand		
5 10		28 78.0		4	5	sand/clay 5 ft OVM 2	8ppm		
15 10 15 silty clay 15 15 16 silty clay 16 qroundwater 20				5	10	sand/silt/clay	mix		
15 15 16 silty clay	10					10 ft, - OVM 16ppm			
15 16 silty clay 16 groundwater 25 — 30 —				10	15	silty clay			
15 16 silty clay 16 groundwater 25	15					15 ft. lab sam	ple OVM 320 ppm		
25 - 30				15	16	silty clay			
25				16		groundwater			
30	20 —								
30									
	25								
35	30								
35									
	35								

Project	#:	USTO)12	Clien	t: Le	eonard's Conoco	Borehole # _3				
Site 603	Pa	rker	c, Sa	anta R	losa,	New Mexico	Page 1 of 1				
1/4 Cty.	1	/4	1/	4, Se Sta		T. R.	Location Map				
MVEC Rep	• 7	7. Pr	cice	4		Date 3/28/95					
Contract	or	S	SHIB								
Driller	Ι). Br	rick		· • • •						
Method h	noll	.ow s	stem	auger	Eqp	ot. 3½ inch					
Elevatio						TOC					
Depth Li (ft)	th	Run #	Rec %	From (ft)	To (ft)	Descript and Dri	ion of Lithology lling Conditions				
1 —				1	5	medium brown gra	evel/sand				
				3.5		odor					
5 🚽						5 ft. OVM 201 ppm					
5 —				5	10	silty clay meta	blue/grey in color				
10						10 ft. OVM 275p	om				
-				10	15	silty clay - meta	al blue/grey color				
_						15 ft. lab sample	e OVM 185 ppm				
1						15 It. Iab Sampi	= OVM 105 ppm				
15 —				15	20	silty clay					
				15	20	Sifty Clay					
20 —						20 ft. OVM 42 p	OM				
				20	23	clay/caliche mi	X				
				23		wet caliche					
25			-								
20 -											
30 —											
35											

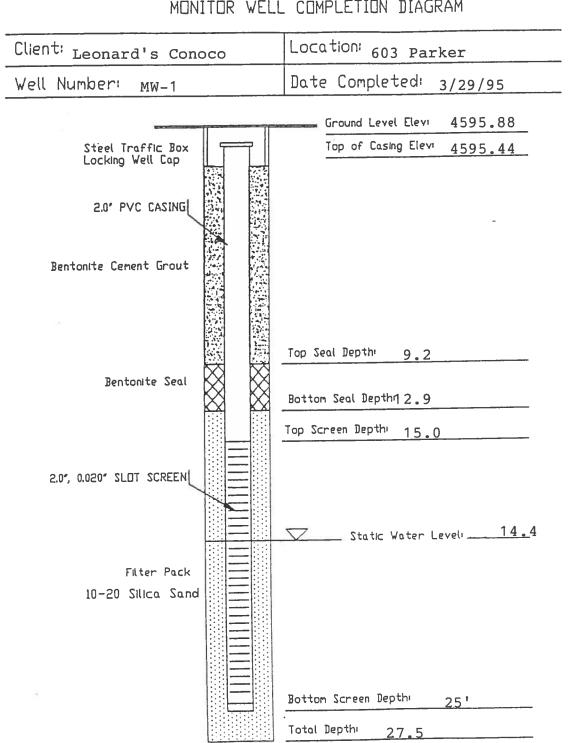
	Proj	ec	t #:	UST (012	Clien	t: L	eonard's Conoco		Borehole # 4 Well # 1		
	Site	60)3 Pa:	rker	, Sar	nta Ro	osa, 1	New Mexico		Page 1 of 1		
	cty.		1	_/4	1/	4, Se Sta		T. R.	I	ocation Map		
	MVEC	R	ep.	V.]	Price	e						
	Cont	ra	ctor	SH	IB							
	Dril	le	r	D. Bi	rick							
	Meth	od	hol	low s	stem	augei	Eqt	ot. $3\frac{1}{4}$ inch				
	Elev	rat	ion:	Land	sur	f. 45	595	TOC				
	Dept (ft		Lith	Run #	Rec %	From (ft)	To (ft)		ption of I rilling Co			
	1					* 1	5	fill dirt				
				• •								
	. =	-	g U	-				5 ft. OVM 5.4	mqq -			
	5					5	10	fill dirt				
					91	8	10	black colored	fill dirt			
		\dashv						10 ft. OVM 220 ppm				
	10					4.0	4.2					
		_				10	13	fill dirt - bla	ick colored	1		
_						13	15	sand/clay mix -		Lored - oily rivulet 315 ppm		
	15											
						15	20	silty clay mois	st and met	al blue/grey color		
	20											
		_				20	23	silty clay - h	Lue grev c	olored		
								silty clay - bi 23 ft. OVM 16	.5 ppm ¹			
	25					23		groundwater				
	رے											
	30											
		_										
		_										
	35	_										
	1		l	I	l		1	1				


	77		200			
Project #:	USTO	12	Clien	t: Le	onard's Conoco	Borehole # 5
Site 603 1	Parke	er, S	Santa	Rosa,	New Mexico	Page 1 of <u>1</u>
1/4 1 Cty.	L/4	1/	4, Se Sta		T. R.	Location Map
MVEC Rep. v	V. Pr	ice			Date 3/29/95	
Contractor	SH	IIB				
Driller I	D. Br	ick				K St
Method hol	low s	tem	auger	Eqp	ot. 3 ¹ / ₄ inch	ii
Elevation:	Land	sur	f. 45	95	TOC	
Depth Lith (ft)	Run #	Rec %	From (ft)	To (ft)		ption of Lithology Prilling Conditions
1 -			1	4	gravel/sand	
5 —			4 5	5	silty clay 5 ft. OVM 0.7 silty clay	ppm
10 =			10	15	10 ft. OVM 0	opm lue grey color
15				13	strong odor	emple OVM 313 ppm
15			15	16		lue grey in color
20 =			16 19		groundwater 19 ft OVM on	sludge sample 244 ppm
25 —						
30 —						
35 —						


Project #:	Ust0	12	Clien	t: Le	onard's Conoco	Borehole # _6 Well # _3 Page 1 of 1
Site 603 P	arke	r, S	anta 1	Rosa,	New Mexico	Page 1 of 1
1/4 1 Cty.	./4	1/	4, Se Sta	T. R.	Location Map	
MVEC Rep.	٧.	Pric	е	Date 3/29/95		
Contractor	S	HIB				
Driller D.	Bri	ck				
Method holl	ow s	tem	auger	Eq	ot. 3 ¹ / ₄ inch	
Elevation:	Land	lsur	f. 4	595	TOC	
Depth Lith (ft)	Run #	Rec %	From (ft)	To (ft)		ption of Lithology Filling Conditions
1 —	=		1	5	_asphalt/ silt	y clay
					5 ft. OVM 56	nom
5			5	10	silty clay	
10					10 ft OVM 11	5 mag 5
			10	13	silty clay	
			13	15	clay/caliche m	ix 0.5 ppm lab sample
15 —			15	20	clay/caliche m	
					20.51	
20 —			20	25	20 ft. OVM 24	
\exists					caliche/clay m	1X
25					25 ft. OVM 31	.7 ppm
\exists			25	30	caliche	
30					30 ft. wet OV	M 9.3 ppm
35 —						
-						


Project #:	JST01	2	Clien	t:Leo	nard's Conoco		Borehole # _7
Site 60:	3 Par	ker,	Sant	a Ros	a, New Mexico		Page 1 of 1
1/4 1 Cty.	L/4	1/	4, Se Sta		T. R.	I	Location Map
MVEC Rep. ,	V. Pr	cice			Date 3/29/95		
Contractor		SHIE	3				
Driller D.	Brio	ck					
Method ho	llow	stem	auge	r Eqp	t. $3\frac{1}{4}$ inch		
Elevation:	Land	i sur	f. 4	590	TOC		
Depth Lith (ft)	Run #	Rec %	From (ft)	To (ft)	Descri and D	ption of I rilling Co	Lithology onditions
1 —	1 1230		1	5	medium brown s	and/grave	
5 —	(2)				5 ft. OVM 2.0	maga (
			5	10	silty clay		
10					10 ft. OVM 1	I.1 ppm	
			10	12	silty clay		
			12		12 ft. lab sa groundwater	ample OVM	6.3 ppm
15 —							
20 —							
25 —							
30 —							
35							
35 —							

Projec			-			onard's Conoco	Borehole # _ 8
Site 603 Parker, Santa Rosa, New Mexico Page 1 of							
· (c.	T. R.	Location Map
MVEC F	Rep. v	. Pr	ice	-		Date 3/29/95	
Contra	ctor	SH	IB				
Drille	Driller D. Brick						
Method	holl	ow s	tem	auger	Eqr	ot. 3½ inch	ts W
Elevat	ion:	Land	lsur	f. 4	595	TOC	
Depth (ft)	Lith	Run #	Rec %	From (ft)	To (ft)		ption of Lithology Prilling Conditions
1 -		1 9-1		1	5	-f ill dirt	99/
_		04.15 22.1					
5 —						5 ft. OVM 5.2	mqq
			17.	5	10	fill dirt	
10 -						10 ft. OVM 0	.7 ppm
]			10	15	silty clay	
15 —						15 ft. OVM 0	ppm
	1			15	20	silty clay	
				19		groundwater	mple OVM 0.5 ppm
20 —						20 ft. lab sa	mple OVM 0.5 ppm
-							
	}						
25 —							
30 -							
	1						
]	+						
35 —							
' -	-						


MONITOR WELL COMPLETION DIAGRAM

MONITOR WELL COMPLETION DIAGRAM

Results for sample: BH-1W01

Date collected: 3/28/95
Date extracted: 3/31/95
Date analyzed: 4/1/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

Project Manager: Vanessa Price

Matrix: Non-Aqueous

HEAL#: 9503078-6

Sampled by: J. Lubbering

Test: EPA 8020

Compound	Amount	<u>Units</u>
MTBE	<0.4	PPM (MG/KG)
Benzene	1.6	PPM (MG/KG)
Toluene	4.4	PPM (MG/KG)
Ethylbenzene	5.0	PPM (MG/KG)
Total Xylenes	6.5	PPM (MG/KG)

BFB (Surrogate) Recovery = 106 %

Dilution Factor = 4

Dilution Factor = 50

Test: EPA 8015 Modified

Compound	Amount	<u>Units</u>
Gasoline	1,100	PPM (MG/KG)
BFB (Surrogate) Recovery = 108 %		

^{**} Surrogate not recoverable due to matrix interference.

Results for sample: BH-1W01

Date collected: 3/28/95
Date extracted: 4/3/95
Date analyzed: 4/5/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

Project Manager: Vanessa Price

Matrix: Non-Aqueous

HEAL#: 9503078-6

Sampled by: J. Lubbering

Test: EPA 8015 Modified

Compound	Amount	<u>Units</u>
Diesel	<20	PPM (MG/KG)
Motor Oil Range Hydrocarbons	4,400	PPM (MG/KG)
DNOP (Surrogate) Recovery = **	%	

^{**} Surrogate not recoverable due to matrix interference.

Results for sample: BH-2

Date collected: 3/28/95
Date extracted: 3/31/95

Date received: 3/30/95 Date analyzed: 4/1/95

Client: Monteverde, Inc.

Conoco HEAL #: 9503078-7

Project Name: Leonard's Conoco Project Manager: Vanessa Price

Sampled by: J. Lubbering

Matrix: Non-Aqueous

Test: EPA 8020

Compound	Amount	<u>Units</u>
MTBE	<0.2	PPM (MG/KG)
Benzene	<0.1	PPM (MG/KG)
Toluene	1.2	PPM (MG/KG)
Ethylbenzene	1.4	PPM (MG/KG)
Total Xylenes	0.6	PPM (MG/KG)

BFB (Surrogate) Recovery = ** %

 $[\]ensuremath{^{**}}$ Surrogate non-recoverable due to matrix interference.

Results for sample: BH-31

Date collected: 3/28/95
Date extracted: 3/31/95
Date analyzed: 4/1/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

Project Manager: Vanessa Price

Matrix: Non-Aqueous

HEAL#: 9503078-8

Sampled by: J. Lubbering

Test: EPA 8020

Compound	Amount	<u>Units</u>
MTBE	<0.1	PPM (MG/KG)
Benzene	0.57	PPM (MG/KG)
Toluene	<0.05	PPM (MG/KG)
Ethylbenzene	0.62	PPM (MG/KG)
Total Xylenes	< 0.05	PPM (MG/KG)

BFB (Surrogate) Recovery = 98 %

Results for sample: BH-4

Date collected: 3/28/95
Date extracted: 3/31/95
Date analyzed: 4/1/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

Project Manager: Vanessa Price

Matrix: Non-Aqueous

HEAL#: 9503078-9

Sampled by: J. Lubbering

Test: EPA 8020

Compound	Amount	<u>Units</u>
MTBE	<0.5	PPM (MG/KG)
Benzene	2.6	PPM (MG/KG)
Toluene	1.5	PPM (MG/KG)
Ethylbenzene	6.3	PPM (MG/KG)
Total Xylenes	3.1	PPM (MG/KG)
BFB (Surrogate) Recovery = ** %		

BFB (Surrogate) Recovery = ** %

Dilution Factor = 5

Test: EPA 8015 Modified

Compound	Amount	<u>Units</u>
Gasoline	790	PPM (MG/KG)

BFB (Surrogate) Recovery = ** %

^{**}Surrogate non-recoverable due to matrix interference.

Date collected: 3/28/95 Date received: 3/30/95 Date extracted: 4/3/95 Date analyzed: 4/5/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

Project Manager: Vanessa Price

Matrix: Non-Aqueous

HEAL#: 9503078-9

Sampled by: J. Lubbering

Test: EPA 8015 Modified

Compound	Amount	<u>Units</u>
Diesel	<20	PPM (MG/KG)
Kerosene	520	PPM (MG/KG)
Motor Oil	<100	PPM (MG/KG)

DNOP (Surrogate) Recovery = 89 %

Date collected: 3/29/95

Date received: 3/30/95

Date extracted: 3/31/95

Date analyzed: 3/31/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco HEAL #: 9503078-10
Project Manager: Vanessa Price Sampled by: J. Lubbering

Matrix: Non-Aqueous

Test: EPA 8020

Compound	Amount	<u>Units</u>
MTBE	<10	PPM (MG/KG)
Benzene	<5.0	PPM (MG/KG)
Toluene	<5.0	PPM (MG/KG)
Ethylbenzene	5.1	PPM (MG/KG)
Total Xylenes	<5.0	PPM (MG/KG)

BFB (Surrogate) Recovery = ** %

^{**} Surrogate indeterminate due to dilution and matrix interference.

Date collected: 3/29/95
Date extracted: 4/3/95

Date received: 3/30/95 Date analyzed: 4/5/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco Project Manager: Vanessa Price

HEAL#: 9503078-10 Sampled by: J. Lubbering

Matrix: Non-Aqueous

Test: EPA 8015 Modified

Compound	Amount	<u>Units</u>
Diesel	<100	PPM (MG/KG)
Kerosene	2,400	PPM (MG/KG
Motor Oil	<500	PPM (MG/KG)

DNOP (Surrogate) Recovery = 63 %

Date collected: 3/29/95
Date extracted: 3/31/95

Date received: 3/30/95 Date analyzed: 4/1/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco Project Manager: Vanessa Price HEAL #: 9503078-11 Sampled by: J. Lubbering

Matrix: Non-Aqueous

Test: EPA 8020

Compound	Amount	<u>Units</u>
MTBE	<0.1	PPM (MG/KG)
Benzene	< 0.05	PPM (MG/KG)
Toluene	< 0.05	PPM (MG/KG)
Ethylbenzene	< 0.05	PPM (MG/KG)
Total Xylenes	< 0.05	PPM (MG/KG)

BFB (Surrogate) Recovery = 93 %

Date collected: 3/29/95 Date extracted: 3/31/95 Date received: 3/30/95 Date analyzed: 4/1/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco Project Manager: Vanessa Price

HEAL#: 9503078-12

Matrix: Non-Aqueous

Sampled by: J. Lubbering

Test: EPA 8020

Compound	Amount	<u>Units</u>
MTBE	<0.1	PPM (MG/KG)
Benzene	< 0.05	PPM (MG/KG)
Toluene	< 0.05	PPM (MG/KG)
Ethylbenzene	< 0.05	PPM (MG/KG)
Total Xylenes	< 0.05	PPM (MG/KG)

BFB (Surrogate) Recovery = 91 %

Date collected: 3/29/95
Date extracted: 3/31/95

Date received: 3/30/95 Date analyzed: 4/1/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco Project Manager: Vanessa Price

HEAL#: 9503078-13 Sampled by: J. Lubbering

Matrix: Non-Aqueous

Test: EPA 8020

Compound	Amount	<u>Units</u>
MTBE	<0.1	PPM (MG/KG)
Benzene	<0.05	PPM (MG/KG)
Toluene	<0.05	PPM (MG/KG)
Ethylbenzene	<0.05	PPM (MG/KG)
Total Xylenes	< 0.05	PPM (MG/KG)

BFB (Surrogate) Recovery = 84 %

Date extracted: NA

Date analyzed: 3/30/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

HEAL#: RB 3/30

Project Manager: Vanessa Price

Matrix: Aqueous

Test: EPA 602

Compound	Amount	<u>Units</u>
MTBE	<2.5	PPB (UG/L)
Benzene	<0.5	PPB (UG/L)
Toluene	<0.5	PPB (UG/L)
Ethylbenzene	<0.5	PPB (UG/L)
Total Xylenes	< 0.5	PPB (UG/L)

BFB (Surrogate) Recovery = 89 %

Date extracted: 3/31/95

Date analyzed: 3/31/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

HEAL#: RB 3/31

Project Manager: Vanessa Price

Matrix: Aqueous

Test: EPA 8020

Compound	Amount	<u>Units</u>
MTBE	<0.1	PPM (MG/KG)
Benzene	< 0.05	PPM (MG/KG)
Toluene	< 0.05	PPM (MG/KG)
Ethylbenzene	< 0.05	PPM (MG/KG)
Total Xylenes	< 0.05	PPM (MG/KG)

BFB (Surrogate) Recovery = 104 %

Dilution Factor = 1

Test: EPA 8015 Modified

Compound	<u>Amount</u>	<u>Units</u>

Gasoline <5.0 PPM (MG/KG)

BFB (Surrogate) Recovery = 114 %

Dilution Factor = 1

Test: EPA 8015 Modified

Compound	$\underline{\mathbf{Amount}}$	$\underline{\text{Units}}$	

Diesel <5.0 PPM (MG/KG)

DNOP (Surrogate) Recovery = 98 %

Date extracted: 4/3/95

Date analyzed: 4/5/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

HEAL#: RB 4/3

Project Manager: Vanessa Price

Matrix: Aqueous

Test: EPA 8015 Modified

<u>Compound</u> <u>Amount</u> <u>Units</u>

Diesel <5.0 PPM (MG/KG)

DNOP (Surrogate) Recovery = 98 %

Date extracted: 4/11/95

Date analyzed: 4/11/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

HEAL#: RB 4/11

Project Manager: Vanessa Price

Matrix: Aqueous

Test: EPA 8015 Modified

Compound Amount Units

Diesel <5.0 PPM (MG/KG)

DNOP (Surrogate) Recovery = 121 %

Results for QC: Matrix Spike / Matrix Spike Dup

Date extracted: NA

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

Project Manager: Vanessa Price

Matrix: Aqueous

Date analyzed: 3/31/95

HEAL#: 9503077-2 MS/MSD

Units: PPB (UG/L)

Test: EPA 602

Compound	Sample Result	Amount Added	Matrix <u>Spike</u>	MS %	MS <u>Dup</u>	MSD %	RPD
MTBE	<2.5	40.0	34.5	86	32.0	80	8
Benzene	< 0.5	20.0	20.9	105	20.5	103	2
Toluene	< 0.5	20.0	20.6	103	20.2	101	2
Ethylbenzene	e <0.5	20.0	20.2	101	20.1	101	0
Total Xylenes	s <0.5	60.0	59.8	100	59.9	100	0

Results for QC: Blank Spike / Blank Spike Dup

Date extracted: 3/31,4/3/95 Date analyzed: 3/31,4/3/95

Client: Monteverde, Inc.


Project Name: Leonard's Conoco HEAL#: BS/BSD 3/31,4/3

Project Manager: Vanessa Price

Matrix: Non-Aqueous Units: PPM (MG/KG)

Test: EPA 8020

Compound	Sample <u>Result</u>	Amount Added	Blank Spike	<u>BS %</u>	BS <u>Dup</u>	BSD %	RPD
MTBE	< 0.1	2.00	1.87	93	1.83	92	2
Benzene	< 0.05	1.00	0.98	98	0.97	97	1
Toluene	< 0.05	1.00	0.96	96	0.96	96	0
Ethylbenzen	e <0.05	1.00	0.96	96	0.96	96	0
Total Xylene	es <0.05	3.00	2.92	97	2.88	96	1
Test: EPA	8 015 Mod	lified					
Compound	Sample <u>Result</u>	Amount Added	Blank Spike	<u>BS %</u>	BS <u>Dup</u>	BSD %	RPD
Gasoline	<5.0	50	43	86	44	88	2
Test: EPA	Test: EPA 8015 Modified						
Compound	Sample <u>Result</u>	Amount Added	Blank <u>Spike</u>	<u>BS %</u>	BS <u>Dup</u>	BSD %	RPD
Diesel	< 5.0	54	60	111	57	106	5

Results for sample: BH-4/ $m\omega$ /

Date collected: 3/29/95 Date extracted: NA Date received: 3/30/95 Date analyzed: 3/31/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

HEAL #: 9503078-3 Sampled by: J. Lubbering

Project Manager: Vanessa Price

Matrix: Aqueous

Test: EPA 602

Compound	Amount	<u>Units</u>
MTBE	320	PPB (UG/L)
Benzene	440	PPB (UG/L)
Toluene	25	PPB (UG/L)
Ethylbenzene	400	PPB (UG/L)
Total Xylenes	81	PPB (UG/L)

BFB (Surrogate) Recovery = 92 %

Results for sample: BH-1 /MWZ

Date collected: 3/29/95
Date extracted: NA

Client: Monteverde, Inc.

Project Name: Leonard's Conoco

Project Manager: Vanessa Price

Matrix: Aqueous

Date received: 3/30/95 Date analyzed: 3/31/95

HEAL#: 9503078-1

Sampled by: J. Lubbering

Test: EPA 602

Compound	Amount	<u>Units</u>
MTBE	4.5	PPB (UG/L)
Benzene	420	PPB (UG/L)
Toluene	6.4	PPB (UG/L)
Ethylbenzene	540	PPB (UG/L)
Total Xylenes	86	PPB (UG/L)

BFB (Surrogate) Recovery = 99 %

Dilution Factor = 2

2

Results for sample: BH-6/ $M\omega$ 3

Date collected: 3/29/95
Date extracted: NA

NA

Client: Monteverde, Inc.

Project Name: Leonard's Conoco Project Manager: Vanessa Price

Matrix: Aqueous

Date received: 3/30/95 Date analyzed: 3/30/95

HEAL#: 9503078-2

Sampled by: J. Lubbering

Test: EPA 602

Compound	\underline{Amount}	<u>Units</u>
MTBE	<2.5	PPB (UG/L)
Benzene	39	PPB (UG/L)
Toluene	8.2	PPB (UG/L)
Ethylbenzene	6.3	PPB (UG/L)
Total Xylenes	15	PPB (UG/L)

BFB (Surrogate) Recovery = 94 %

Results for sample: BH-7/ $m\omega 4$

Date collected: 3/29/95

Date extracted: NA

Client: Monteverde, Inc.

Project Name: Leonard's Conoco Project Manager: Vanessa Price

Matrix: Aqueous

Date received: 3/30/95 Date analyzed: 3/31/95

HEAL#: 9503078-4

Sampled by: J. Lubbering

Test: EPA 602

Compound	$\underline{\mathbf{Amount}}$	<u>Units</u>
MTBE	<2.5	PPB (UG/L)
Benzene	<0.5	PPB (UG/L)
Toluene	3.0	PPB (UG/L)
Ethylbenzene	<0.5	PPB (UG/L)
Total Xylenes	2.9	PPB (UG/L)

BFB (Surrogate) Recovery = 97 %

Results for sample: Trip Blank

Date collected: NA Date received: 3/30/95
Date extracted: NA Date analyzed: 3/30/95

Client: Monteverde, Inc.

Project Name: Leonard's Conoco HEAL #: 9503078-5
Project Manager: Vanessa Price Sampled by: NA

Matrix: Aqueous

Test: EPA 602

Compound	\underline{Amount}	<u>Units</u>
MTBE	<2.5	PPB (UG/L)
Benzene	< 0.5	PPB (UG/L)
Toluene	< 0.5	PPB (UG/L)
Ethylbenzene	<0.5	PPB (UG/L)
Total Xylenes	< 0.5	PPB (UG/L)

BFB (Surrogate) Recovery = 91 %