GROUNDWATER MONITORING and WELL PLUGGING & ABANDONMENT REPORT

Fairview Station PST Site 1626 North Riverside Española, New Mexico Facility #28779 RID #4657

October 27, 2025

COVER PAGE

GROUNDWATER MONITORING and WELL PLUGGING & ABANDONMENT REPORT

1. Site Name:

Fairview Station

2. Responsible party:

NMED PSTB State Lead Program

3. Responsible party mailing address (list contact person if different):

2905 Rodeo Park Drive, Building 1 Santa Fe, New Mexico 87505

4. Facility Number:

Facility #28779, Release ID #4657

5. Address/legal description:

1626 North Riverside Drive Española, New Mexico 87532

6. Author/consulting company:

Scott A. McKitrick, P.G., Souder, Miller & Associates

7. Date of report:

October 27, 2025

8. Date of confirmation of release or date USTB was notified of release:

A release from the UST system at the Fairview Station was first suspected during the removal of the underground storage tanks in July 2012. Following tank removal and receipt of analytical data, a release from the site was confirmed in a letter to Fairview Station dated August 6, 2012.

STATEMENT OF FAMILIARITY

I, the undersigned, am personally familiar with the information submitted in this report and the attached documents and attest that to the best of my knowledge it is true and complete.

Signature:

Name:

Scott A. McKitrick, P.G.

Affiliation:

Souder, Miller & Associates

Title:

Principal Geoscientist

Date:

October 27, 2025

1.0 Introduction

1.1 Scope of Work

This report is submitted pursuant to the August 11, 2025 work plan and cost schedule, approved by the New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau (PSTB) on September 3, 2025 (WPID #4427-1).

1.2 Monitoring Event Highlights

Fluid level gauging was conducted on 26 monitoring wells at the site. In general, groundwater elevations have increased an average of 0.28 feet since the previous gauging event in March 2019. The potentiometric surface generated using all gauged wells that did not contain measurable NAPL generally slopes towards the southwest at 0.008 feet/foot, although there does appear to be a mound of higher elevation groundwater in the area south of Dairy Queen.

During the September 2025 monitoring event, six monitoring wells contained non-aqueous phase petroleum liquid (NAPL), and 13 monitoring wells were sampled and analyzed for dissolved phase petroleum hydrocarbons. Of the 13 monitoring wells sampled, four wells contained contaminants of concern (COC) above the New Mexico Water Quality Control Commission Regulations (20.6.2.3103 NMAC) standards in groundwater. Nine monitoring wells sampled had concentrations of COCs below NMWQCCR standards and/or below laboratory practical quantitation limits (PQL). Five wells could not be gauged and two wells (MW-13, MW-20) could not be sampled per the approved work plan due to a casing obstruction and stuck lid. MW-7 was inadvertently not sampled.

Site monitoring wells MW-13, MW-22 and MW-23, located on the property to the south of the Fairview Station property were plugged and abandoned in order to allow development of the property.

2.0 Site Background

The Fairview Station State Lead site consists of comingled releases from two petroleum storage tank (PST) sites. These PST sites include the Fairview Station site located at 1626 North Riverside Drive and a former gas station (currently a Dairy Queen) located north of Fairview Station at 1702 North Riverside Drive in Española, New Mexico. The site is located within the City of Española and on Ohkay Owingeh Pueblo lands. The release at the Fairview Station was confirmed during the Minimum Site Assessment investigation in 2013 by Terracon Consultants Inc. (Terracon). The release at the Dairy Queen was discovered in 2013 and 2014 during investigations to define the extent of contamination from Fairview Station. EA Engineering, Science, & Technology, Inc. (EA) conducted additional investigations, groundwater monitoring and NAPL recovery in 2015 and 2016. Contaminated soil, groundwater and NAPL are present on both sites.

The Fairview Station was developed in the 1970s. It initially had two underground storage tanks (UST) which were replaced with three USTs in 1989. These USTs were removed in July 2012 with notable soil contamination. PSTB confirmed a release on August 9, 2012. Aerial photographs

taken by New Mexico Department of Transportation (NMDOT) indicate the former gas station on the Dairy Queen property was present in the 1960s. Two dispensers and a likely aboveground storage tank (AST) are visible in these photographs. Figure 1 illustrates the site and surrounding area.

A total of approximately 273 gallons of NAPL have been recovered since 2016 (cumulative NAPL recovery not reported prior to 2016).

A summary of recent corrective action activities conducted at the site include:

- July 2012, UST system removed from Fairview Station property;
- August 6, 2012, confirmed release letter issued;
- March 12, 2013, Terracon submitted Minimum Site Assessment (MSA) report to NMED;
- December 23, 2013, Terracon submitted Addendum MSA Report to NMED;
- October 13, 2014, Terracon submitted a second Addendum MSA Report to NMED;
- January 19, 2015, Terracon submitted Groundwater Monitoring Report to NMED;
- April 28, 2015, NMED designated the site State Lead Status;
- January 2016, EA conducted groundwater monitoring and NAPL recovery at the site;
- July 2016, EA installed seven additional monitoring wells, conducted groundwater monitoring and NAPL recovery;
- September 2017, EA conducted groundwater monitoring and NAPL recovery at the site.
- March 2019, SMA installed eight monitoring wells and advanced three soil borings
- March 2019, SMA conducted groundwater monitoring of site wells
- May 2019, SMA completed slug testing of select monitoring wells
- November 2019 April 2020, SMA completed six monthly NAPL monitoring and recovery events
- January 2020, SMA installed two groundwater monitoring wells to define the down-gradient extent of dissolved-phase contamination
- January 2021-April 2022, SMA completed the Final Remediation Plan for the site

3.0 Completed Tasks

3.0.1 Description of remediation system and date installed.

Not applicable, no remediation system has been installed.

3.0.2 Description of activities performed to keep system operating properly including: inspections, maintenance procedures and modifications, if any.

Not applicable

3.1 Volatile Organic Groundwater Monitoring

Groundwater samples were collected from two site monitoring wells on September 18, 2025 and 11 site monitoring wells on September 24, 2025. Field parameters, including pH, conductivity and temperature, were collected from each well after purging three well casing volumes. Figure 1 illustrates the location of site monitoring wells, Figure 4a illustrates dissolved-phase benzene contaminant concentrations, and Figure 4b illustrates dissolved-phase total naphthalenes contaminant concentrations. Recent and historical groundwater analytical results are provided in Table 4a, and field parameter measurements are summarized in Table 4b. Procedures for sampling the monitoring wells are described in Appendix 1. Field notes are included in Appendix 2. Laboratory results are included in Appendix 3.

Monitoring well MW-4, located east of the Fairview Station former tank pit area, contained 3.1 micrograms per liter (µg/L) methyl tert butyl ether (MTBE) which is below the WQCCR standard of 100 µg/L. Concentrations of MTBE have decreased relative to concentrations measured in MW-4 during the March 2019 monitoring event.

Monitoring well MW-5, located south of the former dispensers on the Fairview Station site, contained 1,200 μg/L benzene, 26 μg/L toluene, 22 μg/L ethylbenzene, 24 μg/L total xylenes, 220 μg/L MTBE, 7.0 μg/L 1,2-dichloroethane (EDC), and <20 μg/L total naphthalenes. Benzene, MTBE, and EDC exceed their respective NMWQCCR standards. Dissolved phase contaminant concentrations have decreased in MW-5 since the previous sampling event in March 2019.

Monitoring well MW-7, located immediately west of the former dispenser islands on Fairview Station, was inadvertently not sampled.

Monitoring well MW-12, located west across Riverside Drive on the northeast corner of the Murphy Oil Station, contained MTBE at 23 µg/L which is below the NMWQCCR standard of 100 µg/L. Concentrations of MTBE have not exceeded the standard since the December 2014 monitoring event.

Monitoring well MW-13, located south of the Fairview Station former dispensers on the adjacent property to the south, was not accessible due to an obstruction in the well.

Monitoring well MW-16, located south of the Fairview Station former tank basin and southeast of the former dispensers, contained 460 μg/L benzene, 150 μg/L toluene, 130 μg/L ethylbenzene, 230 μg/L total xylenes, 23 μg/L MTBE and 25 μg/L total naphthalenes. Benzene exceed their respective NMWQCCR standard. The dissolved phase contaminant concentrations generally decreased in monitoring well MW-16 compared to the previous sampling event in March 2019.

The sample collected from monitoring well MW-17, located in the southeast corner of the Dairy Queen property, contained benzene at 1.6 μ g/L, total xylenes at 89 μ g/L, and total naphthalenes at 52 μ g/L. Only the total naphthalene concentration exceeded the applicable standard. This is the first monitoring event where COCs have been detected above the laboratory PQL in this well.

Monitoring well MW-19, located up-gradient of the site and on the property north of Dairy Queen, contained 2.3 μ g/L benzene which does not exceed the applicable standard of 5 μ g/L. The dissolved phase contaminant concentrations decreased in monitoring well MW-19 compared to the previous sampling event in March 2019.

Monitoring well MW-20, located west of the Dairy Queen property and Riverside Drive, could not be sampled due to a stuck well vault lid.

The sample collected from monitoring well MW-21, located west of the Dairy Queen property and Riverside Drive, did not contain any contaminants of concern (COC) above laboratory practical quantitation limits (PQL). COCs have not been detected in monitoring well MW-21 during recent monitoring events.

Monitoring well MW-22, located south of Fairview Station on the adjacent property to the south, did not exceed laboratory PQL for any analyzed COCs.

The sample collected from monitoring well MW-23, located south of Fairview Station on the adjacent property to the south, did not contain any COC above laboratory PQL.

Monitoring well MW-24, located southwest of Fairview Station on the Wendy's property on the west side of Riverside Drive contained MTBE at 2 μ g/L. No other COCs exceeded the laboratory PQL.

Monitoring well MW-25, located southwest of Fairview Station on the Wendy's property on the west side of Riverside Drive south of MW-24, did not exceed laboratory PQL for any analyzed COCs.

The sample collected from monitoring well MW-26, located in the northeast corner of the Dairy Queen property, did not contain any COC above laboratory PQL.

Monitoring well MW-27, located south of the Dairy Queen building and northeast of the presumed location of the former AST, contained 9.1 μ g/L benzene, while no other COC exceeded laboratory PQL. Benzene exceeded its NMWQCCR standard. Dissolved phase contaminant concentrations in this well have decreased relative to the March 2019 monitoring event.

3.2 NAPL Measurements

NAPL was detected in six site monitoring wells during the September 2025 monitoring event. NAPL apparent thickness is tabulated in Table 1, while tabulations of historic NAPL recovery efforts are provided as Table 3. Figure 4 shows the contoured apparent NAPL thickness. Apparent NAPL thickness has increased in the northern margin of the plume, and decreased near Calle Ranchitos. Numerous wells were not accessible.

3.3 Groundwater Measurements

Depth to NAPL and groundwater measurements were collected on September 18, 2025 from all located site monitoring wells except monitoring wells MW-1 (submerged in standing water), MW-3 (submerged in standing water, then unable to be located by digging or metal detector), MW-20 (vault stuck), and MW-30 (vault stuck). A potentiometric surface map is included in Figure 2. Historical and recent water level measurements at the site are summarized in Table 1.

The average groundwater elevation at the site has increased by 0.28 feet relative to measurements collected during the March 2019 monitoring event. The calculated groundwater flow direction is generally to the southwest at a gradient of 0.008 feet per foot (ft/ft), although there does appear to be a higher elevation "mound" located south of the Dairy Queen building. The groundwater gradient is generally consistent with that determined previously at the site, although the gradient appears to be slightly steeper. The potentiometric surface presented as Figure 2 is based on data from monitoring well that do not contain NAPL and also excludes MW-25 as the groundwater elevation in this well appears to be anomalous from that measured in several surrounding wells.

Hydrographs for MW-4 (Figure 5) and MW-6 (Figure 6) indicate groundwater elevation through time for select wells.

3.4 Monitoring Well Plugging & Abandonment

In accordance with the approved work plan, three site monitoring wells (MW-13, MW-22 and MW-23), located on the property to the south of the Fairview Station property were plugged and abandoned on September 24, 2025, in order to allow development of the property. All work was conducted in a manner consistent with the attached New Mexico Office of the State Engineer's (NMOSE) Well Plugging Plan of Operations and as documented by the Plugging Record (both included in Appendix 4).

The well abandonment was performed by Enviro-Drill, under the direct supervision of an SMA Staff Geoscientist. Prior to beginning work at the site, a health and safety plan (HASP) was prepared by SMA and all personnel working at the site were required to review and sign the plan. A copy of the HASP is included in Appendix 5.

Monitoring well abandonment was performed by filling each 2" PVC well with a neat Portland cement mixture delivered via a tremie hose starting near the total depth of each well and being slowly withdrawn as the wells were filled with the grout mixture. Following the placement of grout, concrete well pads were decommissioned using a jackhammer, all broken concrete debris was removed from the site. Following well pad removal, the tops of each well were removed to a depth approximately 1-2 feet below ground surface and clean surrounding backfill was used to fill the annulus flush with the existing ground surface. A copy of the abandonment field notes is included in Appendix 6.

A photographic log of activities performed at the site during monitoring well abandonment is included in Appendix 7.

8

4.0 Summary and Conclusions

4.1 Summary of completed tasks and discussion of trends/contamination

Fluid level gauging was conducted on 26 monitoring wells at the site. In general, groundwater elevations have increased an average of 0.28 feet since the previous gauging event in March 2019. The potentiometric surface generated using all gauged wells that did not contain measurable NAPL slopes towards the southwest at 0.008 feet/foot.

During the September 2025 monitoring event, six monitoring wells contained non-aqueous phase petroleum liquid (NAPL), and 13 monitoring wells were sampled and analyzed for dissolved phase petroleum hydrocarbons. Of the 13 monitoring wells sampled, three wells contained contaminants of concern (COC) above the New Mexico Water Quality Control Commission Regulations (20.6.2.3103 NMAC) standards in groundwater. Ten monitoring wells sampled had concentrations of COCs below NMWQCCR standards and/or below laboratory practical quantitation limits (PQL). Five wells could not be gauged and two wells (MW-13, MW-20) could not be sampled per the approved work plan due to a casing obstruction and stuck lid. MW-7 was inadvertently not sampled.

In general, dissolved phase contaminant concentrations have decreased at the site since the March 2019 sampling event. NAPL thicknesses increased slightly in several wells, and decreased in several wells.

4.2 Ongoing assessment of remediation system

Not applicable – no remediation system is active at the site.

4.3 Recommendations

SMA recommends the following at the Fairview Station site:

- Search for monitoring wells MW-1 and MW-3, followed by extension of well casings, replacement of manways, and regrading of the ground surface to promote drainage and allow the wells to be sampled during wet seasons.
- Repair of the wellheads for monitoring wells MW-4 (cut down casing to allow j-plug to fit under cover, remove obstructive grass), MW-7 (cut down casing, replace displaced well vault), MW-15 (remove cover or replace vault), MW-20 (remove cover or replace vault), MW-29 (replace well vault), MW-30 (remove cover or replace vault).
- 3. Re-survey of all repaired wellheads.
- 4. Perform one year of quarterly NAPL removal and groundwater monitoring.
- 5. Submittal of a work plan to construct the remediation system as per the approved FRP.

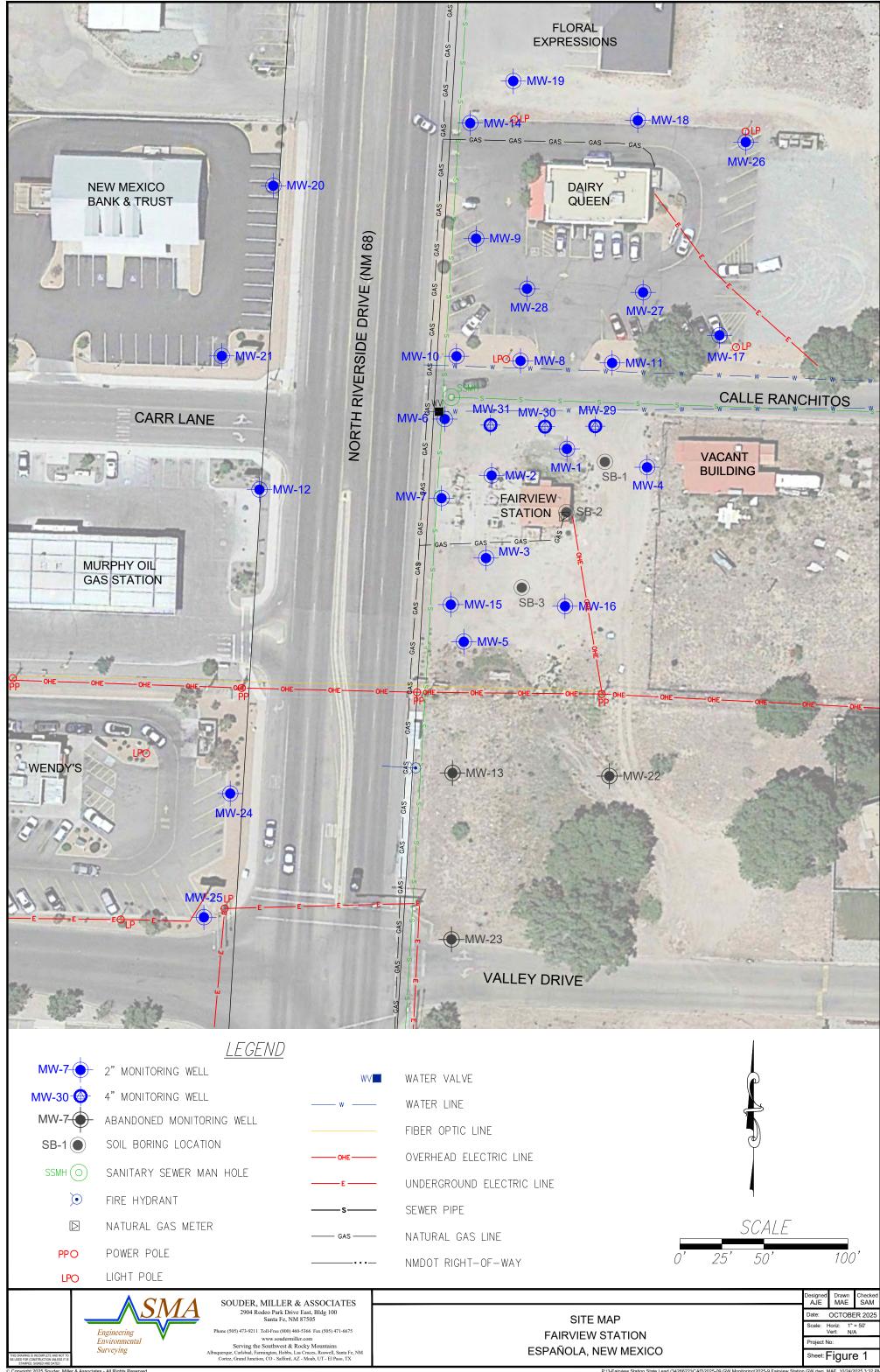
<u>MA</u> _____

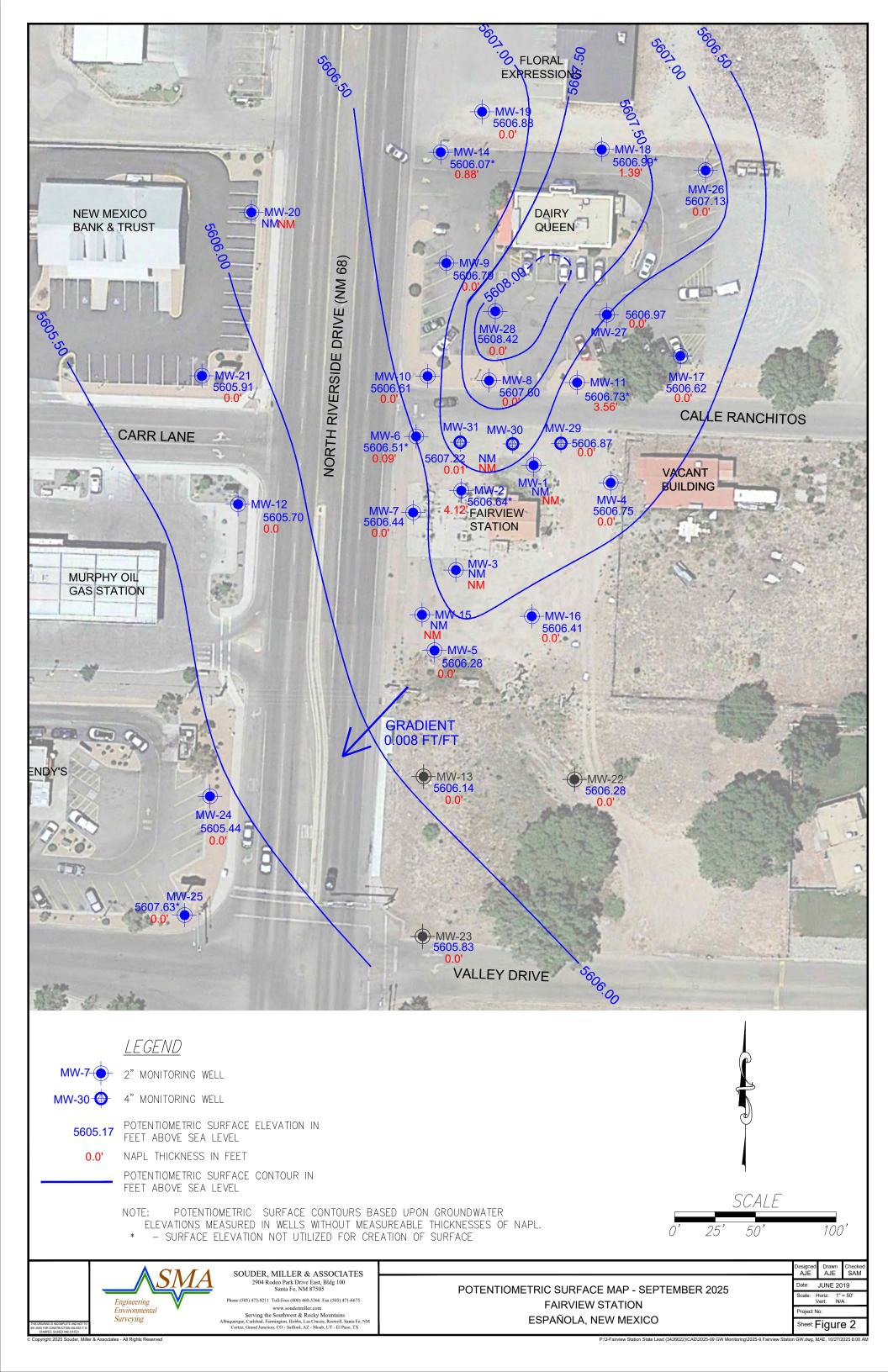
Figures

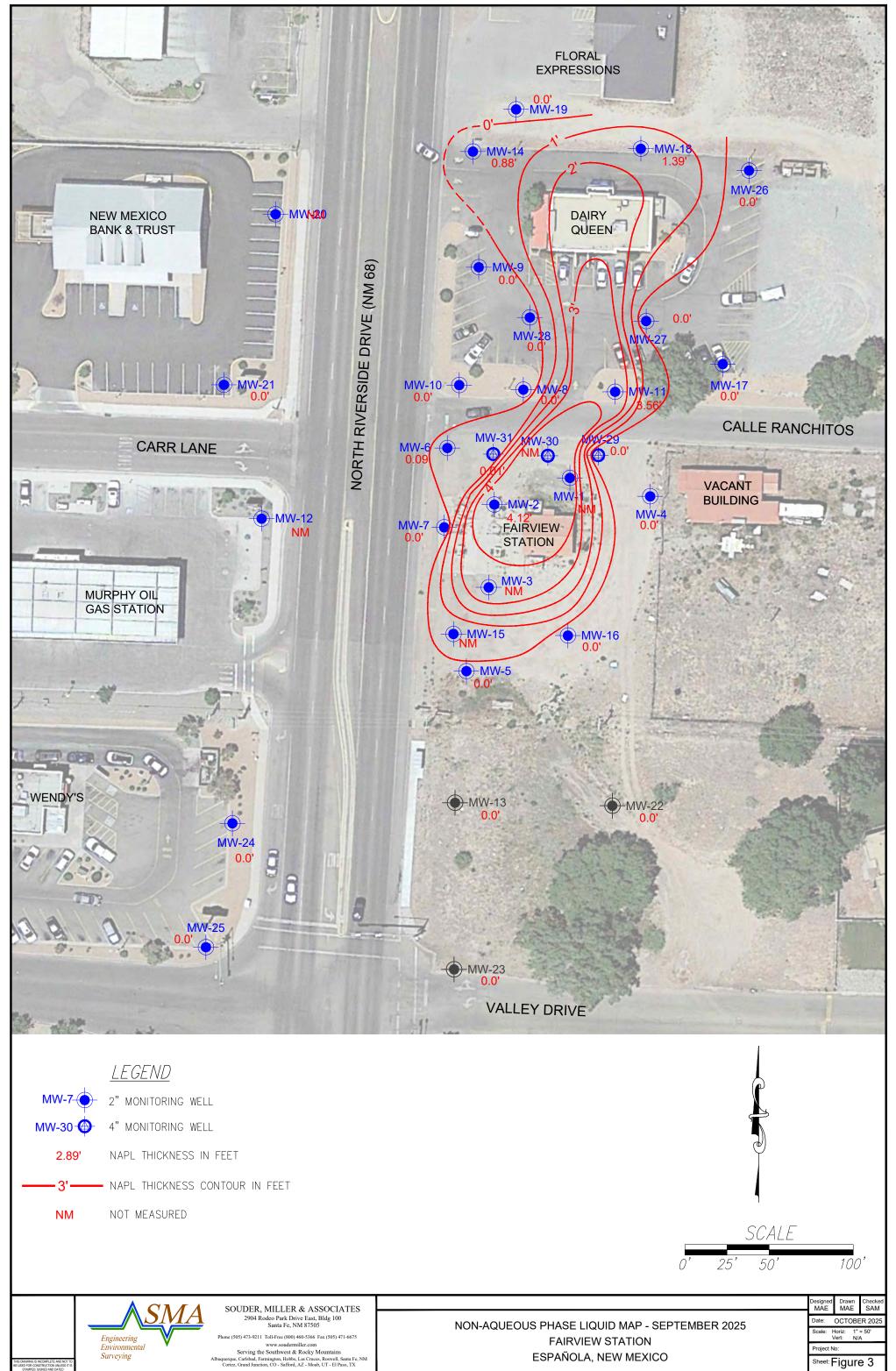
- 1. Site Map
- 2. Potentiometric Surface Map September 2025
- 3. NAPL Thickness Map September 2025
- 4a. Dissolved Phase Benzene Concentration Map September 2025
- 4b. Dissolved Phase Total Naphthalenes Concentration Map September 2025
- 5. MW-4 Hydrograph
- 6. MW-6 Hydrograph

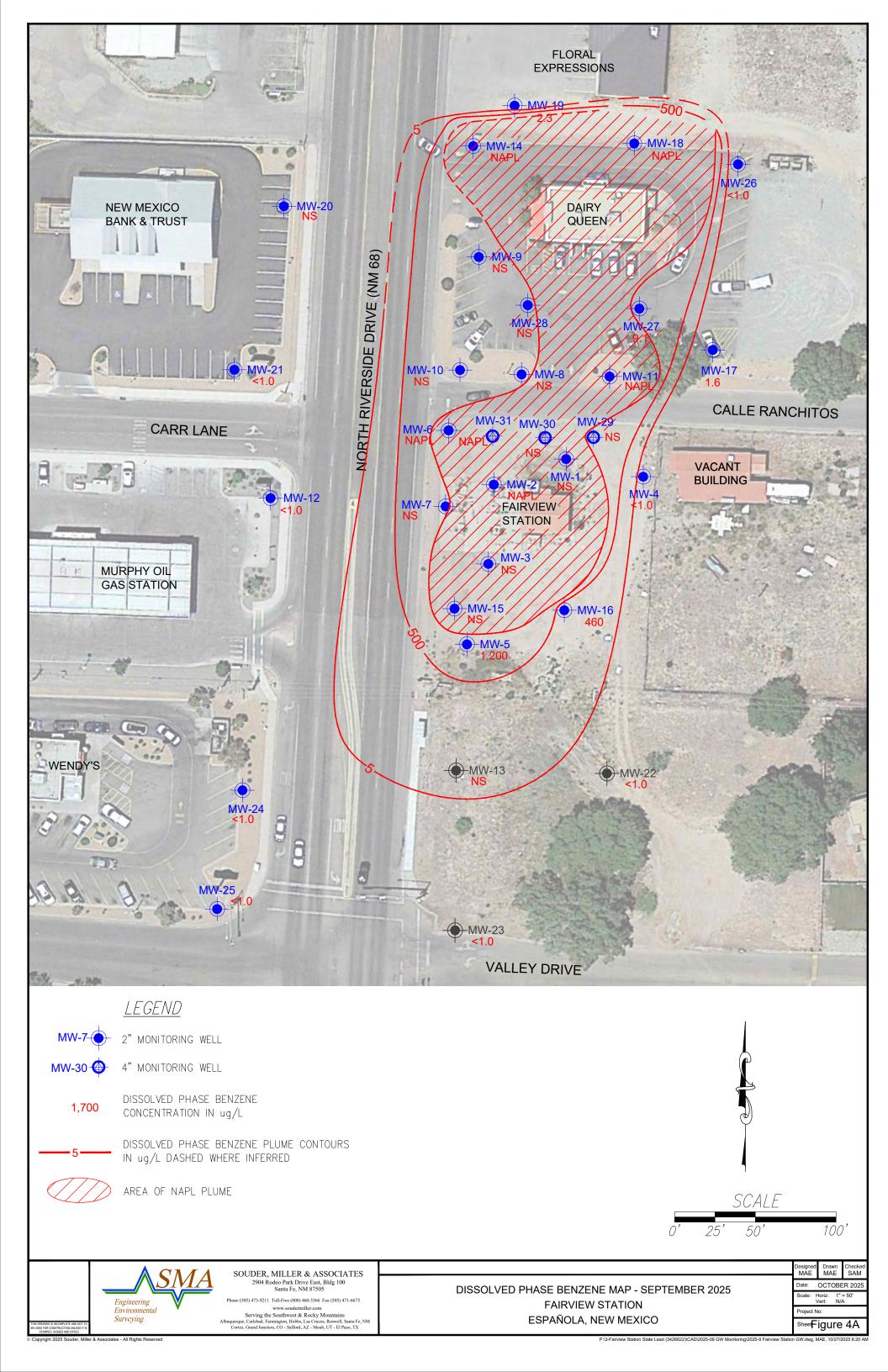
Tables

- 1. Summary of Fluid Gauging Data
- 2. Summary of NAPL Recovery
- 4a. Summary of Groundwater Sample Analytical Results
- 4b. Summary of Groundwater Sample Field Measurements


Appendices


- 1. Sampling Protocol
- 2. Field Notes
- 3. Laboratory Analytical Reports
- 4. NMOSE Well Plugging Plan of Operations and Plugging Records
- 5. Health and Safety Plan
- 6. Well P&A Field Notes
- 7. Well P&A Photo Log




Figures

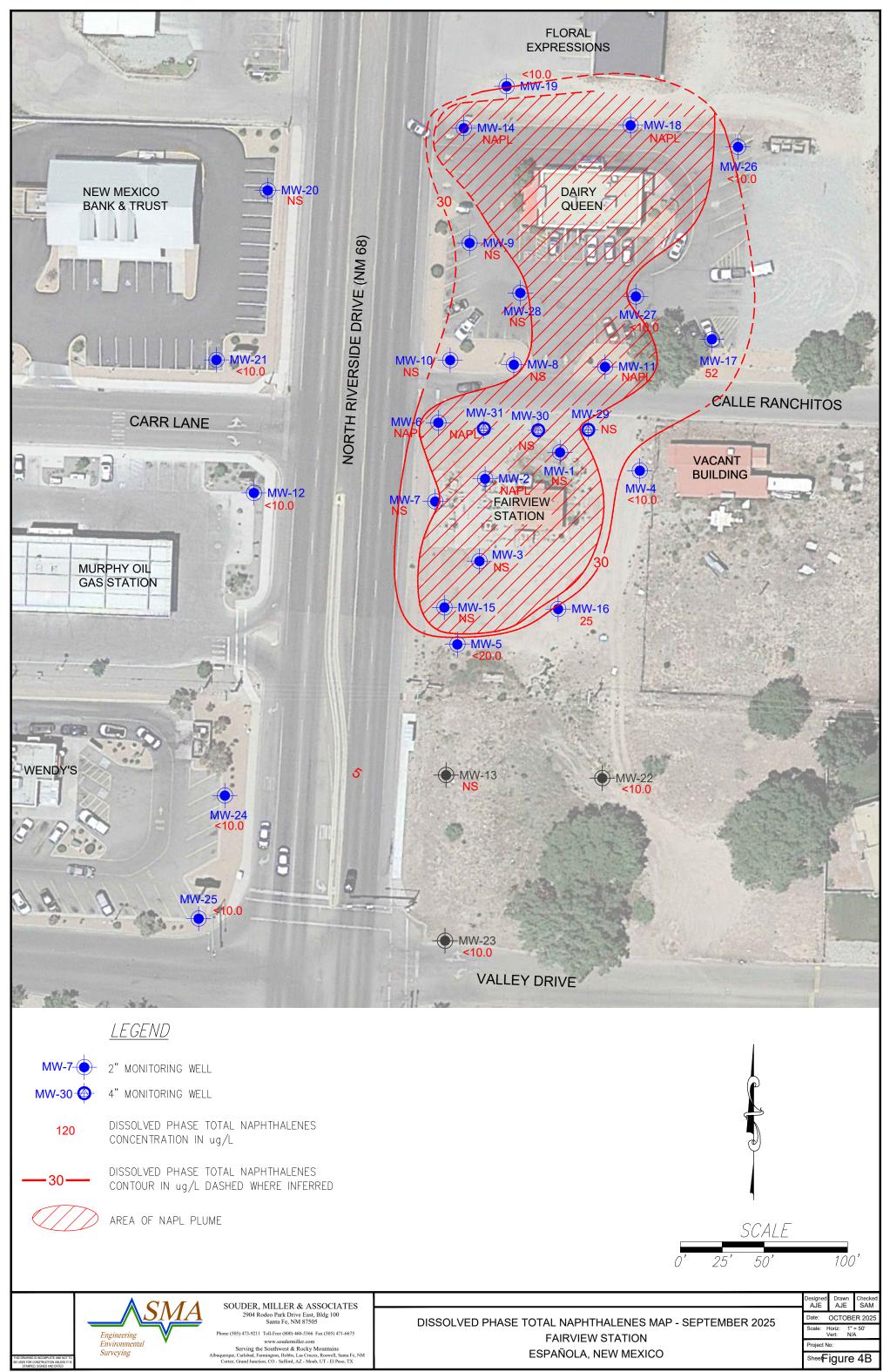


Figure 5 - MW-4 Hydrograph

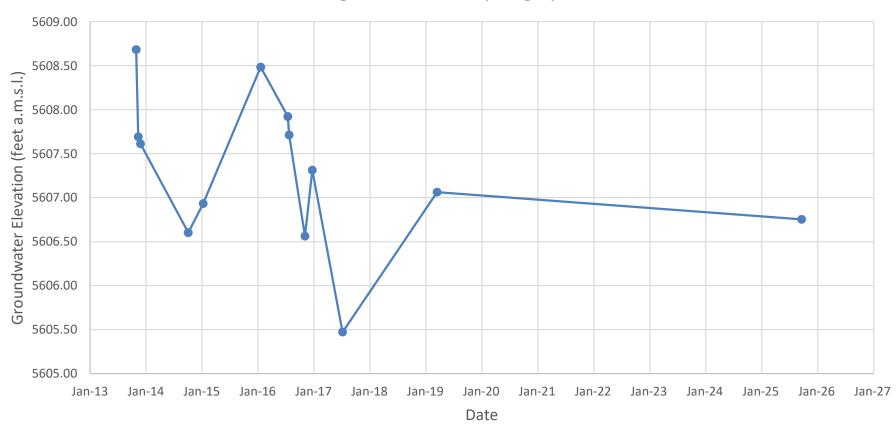
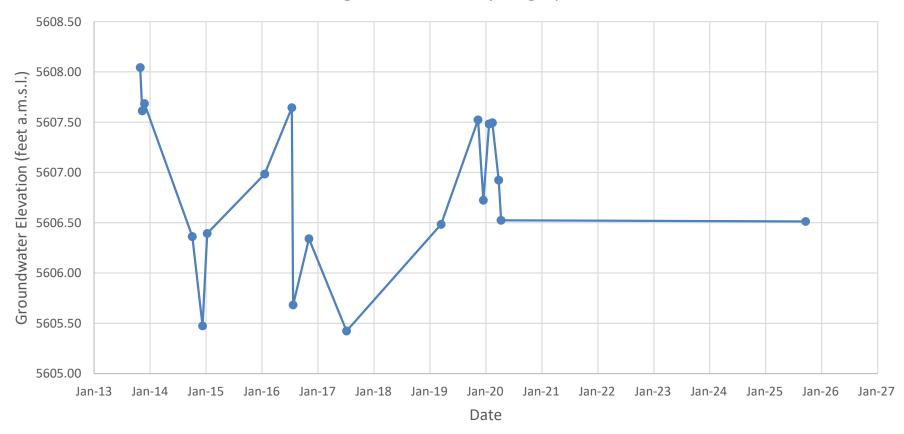



Figure 6 - MW-6 Hydrograph

Tables

				NAPL	Depth to	
Monitoring		Casing	Depth to	Thickness	Water	Groundwater
Well	Date	Elevation	NAPL (feet)	(feet)	(feet)	Elevation (feet)
MW-1	02/27/13	5621.88	14.06	0.34	14.40	5607.74
	06/03/13		13.92	0.28	14.20	5607.89
	06/27/13		14.43	0.37	14.80	5607.36
	07/10/13		14.21	0.24	14.45	5607.61
	10/29/13		13.36	1.89	15.25	5608.05
	11/12/13		15.37	0.46	15.83	5606.40
	11/26/13		13.82	1.08	14.90	5607.79
	10/03/14		14.81	0.04	14.85	5607.06
	12/10/14		15.51	3.20	18.71	5605.57
	01/09/15		14.20	3.49	17.69	5606.81
	01/19/16		13.84	3.93	17.77	5607.06
	07/14/16		14.45	4.70	19.15	5606.26
	07/22/16		15.61	2.45	18.06	5605.66
	11/03/16		14.83	2.40	17.23	5606.45
	07/06/17		15.22	4.07	19.29	5605.64
	03/15/19		W	ell not found	- possibly des	stroyed
	09/18/25			Well Inac	cessible - NN	1
MW-2	02/27/13	5622.248	13.11	5.45	18.56	5607.78
	06/03/13		13.42	3.97	17.39	5607.84
	06/27/13		13.98	4.22	18.20	5607.21
	07/10/13		13.67	3.83	17.50	5607.62
	10/29/13		12.66	6.02	18.68	5608.08
	11/12/13		14.34	5.06	19.40	5606.64
	11/26/13		12.95	5.61	18.56	5607.90
	04/02/14		13.12	4.82	17.94	5607.92
	10/03/14		14.97	0.08	15.05	5607.26
	12/10/14		15.77	2.87	18.64	5605.76
	01/09/15		14.99	3.74	18.73	5606.32
	01/19/16		14.45	3.60	18.05	5606.90
	07/14/16		15.23	3.88	19.11	5606.05
	07/22/16		14.91	3.57	18.48	5606.45
	11/03/16		15.23	2.52	17.75	5606.39
	07/06/17		16.21	2.85	19.06	5605.33
	03/15/19		15.83	3.46	19.29	5605.55
	03/19/19		14.55	4.60	19.15	5606.55
	11/11/19		13.61	5.22	18.83	5607.33
	12/16/19		14.60	4.14	18.74	5606.61
	01/22/20		13.44	5.10	18.54	5607.53
	02/13/20		13.43	5.17	18.60	5607.53
	03/25/20		14.24	4.16	18.40	5606.97
	04/10/20		14.99	3.69	18.68	5606.34
	09/18/25		14.58	4.12	18.70	5606.64

				NAPL	Depth to	
Monitoring		Casing	Depth to	Thickness	Water	Groundwater
Well	Date	Elevation	NAPL (feet)	(feet)	(feet)	Elevation (feet)
MW-3	02/27/13	5622.241	18.60	-1.91	16.69	5604.12
	06/03/13		13.46	4.11	17.57	5607.75
	06/27/13		13.88	4.45	18.33	5607.25
	07/10/13		13.70	3.98	17.68	5607.55
	10/29/13		12.50	6.96	19.46	5608.00
	11/12/13		13.19	7.43	20.62	5607.19
	11/26/13		13.02	6.00	19.02	5607.72
	04/02/14		13.12	5.08	18.20	5607.85
	10/03/14		13.96	2.95	16.91	5607.54
	12/10/14		14.75	7.51	22.26	5605.61
	01/09/15		13.72	6.90	20.62	5606.80
	01/19/16		12.69	5.91	18.60	5608.07
	07/14/16		14.23	7.95	22.18	5606.02
	07/22/16		14.60	6.48	21.08	5606.02
	11/03/16		16.29	0.49	16.78	5605.83
	07/06/17		15.70	3.23	18.93	5605.73
	03/15/19		15.70	5.03	20.73	5605.28
	03/19/19		15.55	5.18	20.73	5605.40
	11/11/19		13.54	5.11	18.65	5607.42
	12/16/19			Well i	naccessible	
	01/22/20			Well i	naccessible	
	02/13/20		14.18	3.93	18.11	5607.08
	03/25/20		14.78	3.62	18.40	5606.56
	04/10/20		15.29	3.66	18.95	5606.04
	09/18/25			Well Inac	cessible - NN	1
MW-4	10/29/13	5622.812	-	-	14.13	5608.68
	11/12/13		-	•	15.12	5607.69
	11/26/13		-	-	15.20	5607.61
	10/03/14		-	-	16.21	5606.60
	01/09/15		-	-	15.88	5606.93
	01/19/16		-		14.33	5608.48
	07/14/16		_	-	14.89	5607.92
	07/22/16		_	-	15.10	5607.71
	11/03/16		-	-	16.25	5606.56
	12/21/16		_	-	15.50	5607.31
	07/06/17		-	-	17.34	5605.47
	03/15/19		-	-	15.75	5607.06
	09/18/25		-	-	16.06	5606.75

				NAPL	Depth to	
Monitoring		Casing	Depth to	Thickness	Water	Groundwater
Well	Date	Elevation	NAPL (feet)	(feet)	(feet)	Elevation (feet)
MW-5	10/29/13	5621.609	-	-	13.77	5607.84
	11/12/13		-	-	13.93	5607.68
	11/26/13		-	-	14.07	5607.54
	10/03/14		-	-	14.48	5607.13
	01/09/15		-	-	14.40	5607.21
	01/19/16		-	-	13.62	5607.99
	07/14/16		-	-	14.17	5607.44
	07/22/16		-	-	14.87	5606.74
	11/03/16		-	ı	14.86	5606.75
	12/21/16		-	-	14.93	5606.68
	07/06/17		-	1	16.38	5605.23
	03/15/19		-	-	15.12	5606.49
	11/11/19		-	-	14.10	5607.51
	12/16/19		-	•	14.58	5607.03
	01/22/20		-	-	14.29	5607.32
	02/13/20		-	-	14.21	5607.40
	03/25/20		-	-	15.02	5606.59
	04/10/20		-	-	15.03	5606.58
	09/18/25		-	-	15.33	5606.28
MW-6	10/29/13	5622.01	-	-	13.97	5608.04
	11/12/13		14.39	0.01	14.40	5607.61
	11/26/13		14.31	0.02	14.33	5607.68
	10/03/14		15.60	0.05	15.65	5606.36
	12/10/14		16.20	0.34	16.54	5605.47
	01/09/15		15.58	0.04	15.62	5606.39
	01/19/16		14.99	0.04	15.03	5606.98
	07/14/16		14.34	0.03	14.37	5607.64
	07/22/16		-	-	16.33	5605.68
	11/03/16		15.67	0.01	15.68	5606.34
	07/06/17		-	1	16.59	5605.42
	03/15/19		-	1	15.53	5606.48
	11/11/19		-	-	14.49	5607.52
	12/16/19		-	-	15.29	5606.72
	01/22/20		-	-	14.53	5607.48
	02/13/20		-	-	14.52	5607.49
	03/25/20		-	-	15.09	5606.92
	04/10/20		-	-	15.49	5606.52
	09/18/25		15.41	0.09	15.50	5606.51

				NAPL	Depth to	
Monitoring		Casing	Depth to	Thickness	Water	Groundwater
Well	Date	Elevation	NAPL (feet)	(feet)	(feet)	Elevation (feet)
MW-7	10/29/13	5622.09	-	-	14.17	5607.92
	11/12/13		-	-	14.62	5607.47
	11/26/13		-	-	14.50	5607.59
	10/03/14		-	-	15.84	5606.25
	01/09/15		-	-	15.25	5606.84
	01/19/16		-	-	14.00	5608.09
	07/14/16		-	-	14.52	5607.57
	07/22/16		-	-	16.09	5606.00
	11/03/16		-	-	15.77	5606.32
	12/21/16		-	-	15.13	5606.96
	07/06/17		-	-	17.03	5605.06
	03/15/19		-	-	15.78	5606.31
	11/11/19		-	-	14.81	5607.28
	12/16/19		-	-	15.75	5606.34
	01/22/20		-	-	14.65	5607.44
	02/13/20		-	-	14.68	5607.41
	03/25/20		-	-	15.21	5606.88
	04/10/20		-	-	15.85	5606.24
	09/18/25		-	-	15.65	5606.44
MW-8	10/29/13	5623.10	13.80	3.55	17.35	5608.42
	11/12/13		14.49	6.54	21.03	5606.98
	11/26/13		14.05	4.25	18.30	5607.99
	04/02/14		14.50	2.42	16.92	5608.00
	10/03/14		14.95	2.57	17.52	5607.51
	12/10/14		15.27	6.51	21.78	5606.21
	01/09/15		15.00	6.45	21.45	5606.49
	01/19/16		14.34	4.44	18.78	5607.65
	07/14/16		15.15	6.31	21.46	5606.38
	07/22/16		15.98	6.72	22.70	5605.44
	11/03/16		15.33	5.21	20.54	5606.47
	07/06/17		16.79	4.52	21.31	5605.18
	03/15/19		16.29	3.98	20.27	5605.82
	03/19/19		16.30	4.45	20.75	5605.69
	11/11/19		14.95	3.10	18.05	5607.38
	12/16/19		15.26	4.74	20.00	5606.66
	01/22/20		-	-	14.88	5608.22
	02/13/20		14.95	2.51	17.46	5607.53
	03/25/20		15.35	3.20	18.55	5606.95
	04/10/20		15.48	3.43	18.91	5606.77
	09/18/25		-	-	15.50	5607.60

Monitoring Well	Date	Casing Elevation	Depth to NAPL (feet)	NAPL Thickness	Depth to Water	Groundwater
			NAPL (leet)	(feet)	(feet)	Elevation (feet)
MW-9	10/03/14	5623.105	-	-	16.69	5606.42
	12/10/14		-	-	17.15	5605.96
	01/09/15		-	-	16.46	5606.65
	01/19/16		14.65	0.63	15.28	5608.30
	07/14/16		15.13	0.63	15.76	5607.82
	07/22/16		16.92	0.52	17.44	5606.06
	11/03/16		16.09	0.01	16.10	5607.01
	07/06/17		17.78	0.33	18.11	5605.24
	03/15/19		17.23	0.13	17.36	5605.84
	11/11/19		-	ı	15.65	5607.46
	12/16/19		-	ı	15.96	5607.15
	01/22/20		-	-	15.39	5607.72
	02/13/20		-	-	14.48	5608.63
	03/25/20		-	-	16.08	5607.03
	04/10/20		-	-	16.28	5606.83
	09/18/25		-	-	16.32	5606.79
MW-10	10/03/14	5623.073	-	-	16.78	5606.29
	01/09/15		-	-	16.28	5606.79
	01/19/16		Sheen	-	14.89	5608.18
	07/14/16		15.37	0.01	15.38	5607.69
	07/22/16		-	-	17.22	5605.85
	11/03/16		16.23	0.01	16.24	5606.84
	07/06/17		17.93	0.01	17.94	5605.14
	03/15/19		-	-	17.34	5605.73
	05/09/19		-	-	16.73	5606.34
	11/11/19		-	-	15.72	5607.35
	12/16/19		_	-	16.11	5606.96
	01/22/20		-	-	15.47	5607.60
	02/13/20		-	-	15.58	5607.49
	03/25/20		-	-	16.14	5606.93
	04/10/20		-	-	16.57	5606.50
	09/18/25		-	-	16.46	5606.61

				NAPL	Depth to	
Monitoring		Casing	Depth to	Thickness	Water	Groundwater
Well	Date	Elevation	NAPL (feet)	(feet)	(feet)	Elevation (feet)
MW-11	10/03/14	5623.36	15.55	0.16	15.71	5607.77
I	12/10/14		16.52	3.63	20.15	5605.94
I	01/09/15		15.89	3.36	19.25	5606.63
	01/19/16		15.47	3.66	19.13	5606.98
	07/14/16		16.01	3.09	19.10	5606.58
	07/22/16		17.20	1.50	18.70	5605.79
	11/03/16		16.85	1.21	18.06	5606.21
	07/06/17		17.47	2.35	19.82	5605.31
	03/15/19		17.15	1.93	19.08	5605.73
	03/19/19		17.11	1.77	18.88	5605.81
	11/11/19		15.35	1.74	17.09	5607.58
	12/16/19		16.50	0.91	17.41	5606.64
	01/22/20		15.49	0.33	15.82	5607.79
	02/13/20		-	-	15.51	5607.85
	03/25/20		15.80	1.65	17.45	5607.15
	04/10/20		-	-	16.28	5607.08
	09/18/25		15.74	3.56	19.30	5606.73
MW-12	10/03/14	5622.05	-	-	15.52	5606.53
Ī	12/09/14		-	-	15.94	5606.11
	01/09/15		-	-	15.21	5606.84
	01/19/16		-	-	NM	NM
	07/14/16		-	-	NM	NM
	07/22/16		-	-	NM	NM
	11/03/16		-	-	NM	NM
	12/21/16		-	-	NM	NM
	07/06/17		-	-	NM	NM
	03/15/19		-	-	NM	NM
	09/18/25		-	-	16.35	5605.70
MW-13	10/03/14	5621.52	-	-	14.81	5606.71
	01/09/15		-	-	14.76	5606.76
Γ	01/19/16		-	-	NM	NM
	07/14/16		-	-	14.24	5607.28
l [07/22/16		-	-	14.46	5607.06
ſ	11/03/16		_	-	14.57	5606.95
l [12/21/16		-	-	14.87	5606.65
[07/06/17		-	-	16.61	5604.91
	03/15/19		-	-	15.13	5606.39
	09/18/25		-	-	15.38	5606.14

Monitoring Well	Date	Casing Elevation	Depth to NAPL (feet)	NAPL Thickness (feet)	Depth to Water (feet)	Groundwater Elevation (feet)
MW-14	10/03/14	5622.97	15.76	0.29	16.05	5607.13
	12/10/14		16.38	2.19	18.57	5606.04
	01/09/15		15.96	0.49	16.45	5606.88
	01/19/16		14.40	0.79	15.19	5608.37
	07/14/16		15.23	0.47	15.70	5607.62
	07/22/16		16.68	0.38	17.06	5606.19
	11/03/16		15.90	0.10	16.00	5607.04
	07/06/17		17.46	0.67	18.13	5605.34
	03/15/19		16.68	0.96	17.64	5606.05
	11/11/19		-	1	15.45	5607.52
	12/16/19		-	-	15.95	5607.02
	01/22/20		-	-	15.38	5607.59
	02/13/20		-	-	15.45	5607.52
	03/25/20		16.04	0.02	16.06	5606.91
	04/10/20		16.02	0.20	16.22	5606.75
	09/18/25		16.02	0.88	16.90	5606.07
MW-15	07/14/16	5622.104	14.35	1.59	15.94	5607.36
	07/22/16		15.11	3.44	18.55	5606.13
	11/03/16		15.64	0.01	15.65	5606.46
	07/06/17		16.10	1.21	17.31	5605.70
	03/15/19		15.49	5.14	20.63	5605.33
	03/19/19		15.88	1.61	17.49	5605.82
	11/11/19		13.50	2.94	16.44	5607.87
	12/16/19		15.09	0.65	15.74	5606.85
	01/22/20		14.69	0.43	15.12	5607.31
	02/13/20		14.75	0.01	14.76	5607.35
	03/25/20		15.40	1.02	16.42	5606.45
	04/10/20		15.89	0.61	16.50	5606.06
	09/18/25			Well Inac	ccessible - NN	1
MW-16	07/14/16	5622.15	-	ı	14.54	5607.61
	07/22/16		-	ı	15.36	5606.79
	11/03/16		-	-	15.35	5606.80
	12/21/16		-	-	15.17	5606.98
	07/06/17		-	-	16.98	5605.17
	03/15/19		-	-	15.40	5606.75
	09/18/25		-	-	15.74	5606.41

				NAPL	Depth to	
Monitoring		Casing	Depth to	Thickness	Water	Groundwater
Well	Date	Elevation	NAPL (feet)	(feet)	(feet)	Elevation (feet)
MW-17	07/14/16	5623.46	-	-	15.20	5608.26
	07/22/16		-	1	16.58	5606.88
	11/03/16		-	ı	16.37	5607.09
	12/21/16		-	ı	15.84	5607.62
	07/06/17		-	ı	17.69	5605.77
	03/15/19		-	ı	16.04	5607.42
	05/09/19		-	ı	16.38	5607.08
	09/24/25		-	-	16.84	5606.62
MW-18	07/14/16	5623.49	-	-	15.36	5608.13
	07/22/16		16.58	0.01	16.59	5606.90
	11/03/16		16.10	0.01	16.11	5607.38
	07/06/17		18.05	0.19	18.24	5605.39
	03/15/19		16.50	2.70	19.20	5606.31
	11/11/19		15.46	1.06	16.52	5607.76
	12/16/19			Well i	naccessible	
	01/22/20		-	ı	15.28	5608.21
	02/13/20		15.36	0.93	16.29	5607.89
	03/25/20		-	1	15.99	5607.50
	04/10/20		15.80	1.15	16.95	5607.40
	09/18/25		16.15	1.39	17.54	5606.99
MW-19	07/14/16	5623.58	-	-	15.80	5607.78
	07/22/16		-	-	16.84	5606.74
	11/03/16		-	-	15.94	5607.64
	12/21/16		-	-	16.17	5607.41
	07/06/17		-	-	17.92	5605.66
	03/15/19		-	-	16.34	5607.24
	05/09/19		-	-	15.07	5608.51
	09/18/25		-	-	16.70	5606.88
MW-20	07/14/16	5623.18	-	-	15.29	5607.89
	07/22/16		-	-	15.31	5607.87
	11/03/16		-	-	15.00	5608.18
	12/21/16		-	-	15.56	5607.62
	07/06/17		-	-	16.38	5606.80
	03/15/19		-	-	16.67	5606.51
	09/18/25			Well Inac	cessible - NN	1

				NAPL	Depth to	
Monitoring		Casing	Depth to	Thickness	Water	Groundwater
Well	Date	Elevation	NAPL (feet)	(feet)	(feet)	Elevation (feet)
MW-21	07/14/16	5622.16	-	-	15.47	5606.69
	07/22/16		-		15.36	5606.80
	11/03/16		-	1	15.59	5606.57
	12/21/16		-	-	15.68	5606.48
	07/06/17		-	-	16.88	5605.28
	03/15/19		-	-	15.66	5606.50
	09/18/25		-	-	16.25	5605.91
MW-22	03/15/19	5622.00	-	-	15.46	5606.54
	09/18/25		-	-	15.72	5606.28
MW-23	03/15/19	5622.19	-	-	15.93	5606.26
	09/18/25		-	-	16.36	5605.83
MW-24	01/10/20	5621.34	-	-	14.82	5606.52
	09/18/25		-	-	15.90	5605.44
MW-25	01/29/20	5620.63	-	-	14.95	5605.68
	09/18/25		-	-	13.00	5607.63
MW-26	03/15/19	5623.98	-	-	16.42	5607.56
	09/18/25		-	-	16.85	5607.13
MW-27	03/15/19	5622.82	-	-	16.39	5606.43
	05/09/19		-	-	15.07	5607.75
	11/11/19		-	-	15.12	5607.70
	12/16/19		-	1	15.39	5607.43
	01/22/20		-	•	14.89	5607.93
	02/13/20		-	-	15.01	5607.81
	03/25/20		-	-	15.67	5607.15
	04/10/20		-	-	14.43	5608.39
	09/18/25		-	-	15.85	5606.97
MW-28	03/15/19	5622.75	15.43	3.91	19.34	5606.34
	11/11/19		14.62	2.34	16.96	5607.55
	12/16/19		14.82	3.06	17.88	5607.17
	01/22/20		14.53	0.02	14.55	5608.22
	02/13/20		14.60	1.88	16.48	5607.68
	03/25/20		14.98	3.02	18.00	5607.02
	04/10/20		14.96	3.34	18.30	5606.96
	09/18/25		-	-	14.33	5608.42

				NAPL	Depth to	
Monitoring		Casing	Depth to	Thickness	Water	Groundwater
Well	Date	Elevation	NAPL (feet)	(feet)	(feet)	Elevation (feet)
MW-29	03/22/19	5622.37	15.15	0.09	15.24	5607.20
	05/09/19		15.30	1.71	17.01	5606.64
	11/11/19		14.40	1.95	16.35	5607.48
	12/16/19		15.56	0.73	16.29	5606.63
	01/22/20		14.56	0.39	14.95	5607.71
	02/13/20		-	ı	14.69	5607.68
	03/20/20		15.18	0.06	15.24	5607.18
	09/18/25		-	-	15.50	5606.87
MW-30	03/22/19	5621.87	13.73	4.88	18.61	5606.92
	11/11/19		13.26	2.74	16.00	5607.93
	12/16/19			Well i	naccessible	
	01/22/20			Well ii	naccessible	
	02/13/20			Well i	naccessible	
	03/20/20		13.75	4.06	17.81	5607.11
	04/10/20		14.46	3.95	18.41	5606.42
	09/18/25			Well Inac	cessible - NN	1
MW-31	03/22/19	5621.95	-	-	15.27	5606.68
	05/09/19		15.53	3.24	18.77	5605.61
	11/11/19		13.63	3.17	16.80	5607.53
	12/16/19		14.94	2.28	17.22	5606.44
	01/22/20		14.02	1.63	15.65	5607.52
	02/13/20		-	-	14.23	5607.72
	03/20/20		14.67	1.41	16.08	5606.93
	04/10/20		-	-	15.27	5606.68
	09/18/25		14.73	0.01	14.74	5607.22

NOTES:

Data collected before 2018 (in italics) collected by previous consultants.

RED = Indicates measurement taken after skimmer or sock removed; measurement not representative

NAPL = Nonaquious phase liquid

NA = Not applicable

NM = Not measured

		NAPL Thickness Prior	NAPL Thickness After	Total NAPL				
Monitor Well	Date Recovered	to Bailing ¹	Bailing ¹	Recovered ²	Comments			
MW-1	02/01/13	NM	NM	0.00				
	02/04/13	NM	NM	0.00				
	02/27/13	0.34	NM	0.00				
	06/03/13	0.28	NM	0.50				
	06/27/13	0.37	NM	0.10				
	07/10/13	0.24	NM	0.00				
	10/29/13	1.89	NM	1.50				
	11/12/13	0.46	NM	0.30				
	11/26/13	1.08	NM	0.30				
	10/03/14	0.04	NM	0.00				
	12/10/14	3.20	NM	NM				
	01/09/15	3.49	NM	NM				
	01/19/16	3.93	1.21	4.50				
	07/14/16	4.70	0.01	3.25	set skimmer			
	07/22/16	2.45	1.55	3.25	skimmer 1/2 full			
	07/28/16	4.55	0.16	3.00	skimmer 1/2 full			
	08/04/16	4.87	0.94	5.00	skimmer 1/2 full			
	08/11/16	4.75	0.80	4.00	skimmer 1/2 full			
	08/18/16	4.80	0.75	3.50	skimmer 1/2 full			
	08/31/16	4.48	0.05	3.00	skimmer 1/2 full			
	09/15/16	3.68	0.01	1.50	skimmer 1/2 full			
	09/22/16	0.83	0.11	0.75	skimmer 1/2 full			
	10/06/16	2.34	0.01	1.25	skimmer 1/2 full			
	10/21/16	1.12	0.27	0.75	skimmer 1/2 full			
	11/03/16	2.40	0.10	1.50	skimmer 1/2 full			
	07/06/17	4.07	2.31	7.50	skimmer 3/4 full; ~3 inches water			
	03/15/19	Well not found - presumed destroyed						

		NAPL Thickness Prior	NAPL Thickness After	Total NAPL	
Monitor Well	Date Recovered	to Bailing ¹	Bailing ¹	Recovered ²	Comments
MW-2	02/01/13	NM	NM	4.50	
	02/04/13	NM	NM	5.00	
	02/27/13	5.45	NM	0.00	
	06/03/13	3.97	NM	4.50	
	06/27/13	4.22	NM	3.00	
	07/10/13	3.83	NM	2.50	
	10/29/13	6.02	NM	3.50	
	11/12/13	5.06	NM	2.80	
	11/26/13	5.61	NM	3.00	
	04/02/14	4.82	0.05	4.00	
	10/03/14	0.08	NM	0.00	
	12/10/14	2.87	NM	NM	
	01/09/15	3.74	NM	NM	
	01/19/16	3.60	0.85	3.75	
	07/14/16	3.88	0.01	2.75	set skimmer
	07/22/16	3.57	0.06	2.50	skimmer full
	07/28/16	3.59	0.18	2.25	skimmer full
	08/04/16	3.00	0.36	3.00	skimmer full
	08/11/16	3.41	0.27	3.00	skimmer full
	08/18/16	3.07	0.38	3.00	skimmer full
	08/31/16	5.36	0.26	2.50	skimmer full
	09/15/16	5.30	0.24	3.00	skimmer full
	09/22/16	3.88	0.26	2.25	skimmer full
	10/06/16	4.30	0.20	2.50	skimmer full
	10/21/16	2.94	0.01	2.25	skimmer 1/2 full
	11/03/16	2.52	0.15	2.00	skimmer full
	07/06/17	2.85	0.35	2.00	SKIMMER JUII, 1/4 NAPL, 3/4 Water,
	03/15/19	3.46	0.88	5.25	skimmer full; 1/5 NAPL, 4/5 water
	03/19/19	4.60	0.70	5.5	skimmer full
	11/11/19	5.22	0.77	3.1	skimmer nearly full, poor interface
	12/16/19	4.19	0.97	3.75	skimmer full
	01/22/20	5.10	2.29	3.33	skimmer full
	02/13/20	5.17	1.00	5.25	skimmer full
	03/25/20	4.16	0.00	4.75	skimmer full
	04/10/20	3.69	0.66	2.75	skimmer full

		NAPL Thickness Prior	NAPL Thickness After	Total NAPL		
Monitor Well	Date Recovered	to Bailing ¹	Bailing ¹	Recovered ²	Comments	
MW-3	02/01/13	NM	NM	0.50		
	02/04/13	NM	NM	2.00		
	02/27/13	2.89	NM	0.00		
	06/03/13	4.11	NM	4.50		
	06/27/13	4.45	NM	3.50		
	07/10/13	3.98	NM	3.00		
	10/29/13	6.96	NM	7.00		
	11/12/13	7.43	NM	5.00		
	11/26/13	6.00	NM	4.30		
	04/02/14	5.08	0.01	5.00		
	10/03/14	2.95	NM	0.00		
	12/10/14	7.51	NM	NM		
	01/09/15	6.90	NM	NM		
	01/19/16	5.91	1.10	5.00		
	07/14/16	7.95	0.01	5.50	set skimmer	
	07/22/16	6.48	0.15	5.50	skimmer full of water only	
	07/28/16	6.41	0.17	3.00	skimmer full of water only; soaked filter in NAPL	
	08/04/16	3.57	0.47	3.00	skimmer juli oj water only, replacea	
	08/11/16	3.10	0.28	3.00	skimmer full	
	08/18/16	2.78	0.20	2.50	skimmer full	
	08/31/16	3.12	0.13	2.25	skimmer full	
	09/15/16	3.82	0.24	2.50	skimmer full	
	09/22/16	1.81	0.07	1.25	skimmer full	
	10/06/16	1.49	0.11	1.00	skimmer full	
	10/21/16	0.70	0.01	0.50	skimmer 1/3 full	
	11/03/16	0.49	0.10	0.25	skimmer 1/2 full	
	07/06/17	3.23	0.01	1.50	skimmer full	
	03/15/19	5.03	0.08	2.75	skimmer full	
	03/19/19	5.18	0.17	2.0	skimmer full	
	11/11/19	5.11	0.34	2.15	skimmer full, bailed	
	12/16/19	Well inaccssible - NAPL not recovered				
	01/22/20	Well inaccssible - NAPL not recovered				
	02/13/20	3.93	0.04	4.25	skimmer full	
	03/25/20	3.62	0.00	2.75	skimmer full	
	04/10/20	3.66	0.00	2.25	skimmer full	

Monitor Well	Date Recovered	NAPL Thickness Prior to Bailing ¹	NAPL Thickness After Bailing ¹	Total NAPL Recovered ²	Comments
MW-6	10/29/13	-	-	0.00	
	11/12/13	0.01	NM	0.00	
	11/26/13	0.02	NM	0.00	
	10/03/14	0.05	NM	0.00	
	12/10/14	0.34	NM	0.00	
	01/09/15	0.04	NM	0.00	
	01/19/16	0.04	0.00	negligible	
	07/14/16	0.03	0.00	negligible	set new sock
	07/22/16	0.00	-	0.01	2 inches of staining; set new sock
	07/28/16	0.00	-	0.00	no staining; reset same sock
	08/04/16	0.00	-	0.08	16 inches of staining; set new sock
	08/11/16	0.00	-	0.08	16 inches of staining; set new sock
	08/18/16	0.01	-	0.08	16 inches of staining; set new sock
	08/31/16	0.01	-	0.07	14 inches of staining; set new sock
	09/15/16	0.00	-	0.06	11 inches of staining; set new sock
	09/22/16	0.01	-	0.00	no staining; reset same sock
	10/06/16	0.01	-	0.04	8 inches of staining; set new sock
	10/21/16	0.00	-	0.01	1 inch of staining; set new sock
	11/03/16	0.01	-	0.06	12 inchs of staining; set new sock
	07/06/17	-	-	0.1	20 inchs of staining; set new sock
	03/15/19	0.00	-	0.0	removed sock
	12/16/19	0.00	-	0.0	
	01/22/20	0.00	-	0.0	
	02/13/20	0.00	-	0.0	
	03/25/20	0.00	-	0.0	
	04/10/20	0.00	-	0.0	

		NAPL Thickness Prior NAPL Thickness After Total NAPL					
Monitor Well	Date Recovered	to Bailing ¹	Bailing ¹	Recovered ²	Comments		
MW-8	10/29/13	3.55	NM	2.50			
	11/12/13	6.54	NM	3.00			
	11/26/13	4.25	NM	3.50			
	04/02/14	2.42	0.05	2.50			
	10/03/14	2.57	NM	0.00			
	12/10/14	6.51	NM	NM			
	01/09/15	6.45	NM	NM			
	01/19/16	4.44	0.55	3.25			
	07/14/16	6.31	0.01	3.00	set skimmer		
	07/22/16	6.72	0.10	3.00	skimmer 3/4 full		
	07/28/16	6.88	0.13	1.75	skimmer full		
	08/04/16	3.72	0.17	3.00	skimmer full		
	08/11/16	6.05	0.06	3.00	skimmer full		
	08/18/16	6.41	0.04	3.00	skimmer full		
	08/31/16	3.86	0.30	2.50	skimmer 1/3 full of NAPL, 2/3 full water; soaked filter in NAPL		
	09/15/16	4.36	0.15	2.50	SKIMMET 1/2 JUII OJ INAPL, 1/2 JUII		
	09/22/16	5.91	0.05	2.25	THE PART TO BE CHISTON OF		
	10/06/16	6.57	0.20	2.25			
	10/21/16	6.09	0.05	2.00			
	11/03/16	5.21	0.07	2.00			
	07/06/17	4.52	0.24	1.00			
	03/15/19	3.98	0.08	1.75			
	03/19/19	4.45	0.35	1.5			
	11/11/19	3.10	0.01	2.0			
	12/16/19	4.74	0.01	2.0			
	01/22/20	0.00	-	0.0			
	02/13/20	2.51	0.33	1.5			
	03/25/20	3.20	0.00	1.5			
	04/10/20	3.43	0.00	2.0			
MW-9	10/03/14	-	-	0.00			
	12/10/14	-	-	0.00			
	01/09/15	-	-	0.00			
	01/19/16	0.63	0.01	negligible			
	07/14/16	0.63	0.01	0.25	set new sock		
	07/22/16	0.52	0.11	0.31	1 foot of staining; set new sock		
	07/28/16	0.01	-	0.12	2 feet of staining; set new sock		
	08/04/16	0.01	-	0.08	16 inches of staining; set new sock		
	08/11/16	0.00	-	0.00	no staining; reset same sock		
	08/18/16	0.00	-	0.07	13 inches of staining; set new sock		
	08/31/16	0.01	-	0.06	11 inches of staining; set new sock		
	09/15/16	0.00	-	0.00	no staining; reset same sock		
	09/22/16	0.00	-	0.00	no staining; reset same sock		
	10/06/16	0.00	-	0.03	6 inches of staining; set new sock		
	10/21/16	0.01	-	0.01	2 inches of staining; set new sock		
	11/03/16	0.01	-	0.05	9 inches of staining; set new sock		
	07/06/17	0.33	0.01	0.09	17 inches of staining; set new sock		
	03/15/19	0.13	0.01	negligible	removed sock		
	11/11/19	0.00	-	0.0			
	12/16/19	0.00	-	0.0			
	01/22/20	0.00	-	0.0			
	02/13/20	0.00	-	0.0			
	03/25/20	0.00	-	0.0			
	04/10/20	0.00	-	0.0			

		NAPL Thickness Prior	NAPL Thickness After	Total NAPL	
Monitor Well	Date Recovered	to Bailing ¹	Bailing ¹	Recovered ²	Comments
MW-10	10/03/14	-	-	0.00	
10	12/09/14	Lost Data		0.00	
	01/09/15	-	-	0.00	
	01/19/16	Sheen		0.00	
	07/14/16	0.01	-	0.00	set new sock
	07/22/16	0.00	-	0.07	14 inches of staining; set new sock
	07/28/16	0.00	-	0.06	1 foot of staining; set new sock
	08/04/16	0.00	-	0.00	no staining; reset same sock
	08/11/16	0.00	_	0.06	1 foot of staining; set new sock
	08/18/16	0.00	_	0.06	11 inches of staining; set new sock
	08/31/16	0.00	_	0.06	11 inches of staining; set new sock
	09/15/16	0.00	_	0.02	4.5 inches of staining; set new sock
	09/22/16	0.00	_	0.00	no staining; reset same sock
	10/06/16	0.00	_	0.03	5 inches of staining; set new sock
	10/21/16	0.00	_	0.00	no staining; reset same sock
	11/03/16	0.01	_	0.03	6 inches of staining; set new sock
	07/06/17	0.01	<u>-</u>	0.07	13 inches of staining; set new sock
	03/15/19	0.00	_	0.07	removed sock
	11/11/19	0.00	_	0.0	Temoved sock
	12/16/19	0.00	-	0.0	
	01/22/20	0.00	-	0.0	
	02/13/20	1	-	0.0	
		0.00	-	0.0	
	03/25/20	0.00	-	0.0	
NAVA / 11	04/10/20	0.00	- 1		
MW-11	10/03/14	0.16	NM	0.00	
	12/10/14	3.63	NM	NM	
	01/09/15	3.36	NM	NM	
	01/19/16	3.66	0.62	2.75	<u> </u>
	07/14/16	3.09	0.01	2.00	set skimmer
	07/22/16	1.50	0.16	1.25	skimmer full
	07/28/16	0.25	0.01	0.10	skimmer 1/2 full
	08/04/16	0.18	0.01	0.25	skimmer 1/2 Juli, removed skimmer;
	08/11/16	0.26	0.01	0.06	1 foot of staining; set new sock
	08/18/16	0.36	0.01	0.08	15 inches of staining; set new sock
	08/31/16	0.20	0.01	0.09	18 inches of staining; set new sock
	09/15/16	0.52	0.01	0.06	11 inches of staining; set new sock
	09/22/16	0.85	0.05	0.29	7 inches of staining; set new sock
	10/06/16	1.88	0.09	0.79	8 inches of staining; set new sock
	10/21/16	1.74	0.05	0.77	3 inches of staining; set new sock
	11/03/16	1.21	0.01	0.29	7 inches of staining; set new sock
	07/06/17	2.35	1.43	5.02	3.5 inches of staining; set new sock
	03/15/19	1.93	0.50	2.0	sock removed
	03/19/19	1.77	0.40	1.5	
	11/11/19	1.74	0.27	1.2	
	12/16/19	0.91	0.20	0.5	
	01/22/20	0.33	0.00	0.05	
	02/13/20	0.00	-	0.00	
	03/25/20	1.65	0.10	1.50	
	04/10/20	0.00	-	0.00	+

		NAPL Thickness Prior	NAPL Thickness After	Total NAPL	
Monitor Well	Date Recovered	to Bailing ¹	Bailing ¹	Recovered ²	Comments
MW-14	10/03/14	0.29	NM	0.00	
	12/10/14	2.19	NM	NM	
	01/09/15	0.49	NM	NM	
	01/19/16	0.79	0.01	0.25	
	07/14/16	0.47	0.01	0.10	set new sock
	07/22/16	0.38	0.19	0.33	16 inches of staining; set new sock
	07/28/16	0.12	0.01	0.10	19 inches of staining; set new sock
	08/04/16	0.01	-	0.01	2 inches of staining; set new sock
	08/11/16	0.00	-	0.02	3 inches of staining; set new sock
	08/18/16	0.01	-	0.07	14 inches of staining; set new sock
	08/31/16	0.00	-	0.06	11 inches of staining; set new sock
	09/15/16	0.01	-	0.02	4 inches of staining; set new sock
	09/22/16	0.01	-	0.02	4 inches of staining; set new sock
	10/06/16	0.05	0.00	0.03	6 inches of staining; set new sock
	10/21/16	0.12	0.01	0.01	2 inches of staining; set new sock
	11/03/16	0.10	0.01	0.07	13 inches of staining; set new sock
	07/06/17	0.67	0.01	0.05	10 inches of staining; set new sock
	03/15/19	0.96	0.1	0.5	sock removed
	11/11/19	0.00	-	0.0	
	12/16/19	0.00	-	0.0	
	01/22/20	0.00	-	0.0	
	02/13/20	0.00	-	0.0	
	03/25/20	0.00	-	0.0	
	04/10/20	0.20	-	0.0	
MW-15	07/14/16	1.59	0.01	1.50	
	07/22/16	3.44	0.87	2.50	
	07/28/16	0.73	0.01	0.25	set new sock
	08/04/16	0.60	0.03	0.93	3 feet of staining; set new sock
	08/11/16	0.32	0.04	0.00	no staining; reset same sock
	08/18/16	1.05	0.01	0.15	30 inches of staining; set new sock
	08/31/16	0.06	0.00	0.15	29 inches of staining; set new sock
	09/15/16	0.13	0.01	0.10	19 inches of staining; set new sock
	09/22/16	0.08	0.01	0.08	16 inches of staining; set new sock
	10/06/16	0.20	0.01	0.08	16 inches of staining; set new sock
	10/21/16	0.27	0.01	0.04	8.5 inches of staining; set new sock
	11/03/16	0.01	-	0.03	5 inches of staining; set new sock
	07/06/17	1.21	-	0.54	7 inches of staining; set new sock
	03/15/19	5.14	0.21	4.25	removed sock
	03/19/19	1.61	0.24	0.75	
	11/11/19	2.94	0.03	1.0	Bailed
	12/16/19	0.65	0.31	0.5	
	01/22/20	0.43	0.28	0.2	Bailed
	02/13/20	0.01	0.00	0.0	
	03/25/20	1.02	0.00	0.5	Bailed
	04/10/20	0.61	0.00	0.25	Bailed

TABLE 2. SUMMARY OF NAPL RECOVERY FAIRVIEW STATION, ESPANOLA, NEW MEXICO

Monitor Well	Date Recovered	NAPL Thickness Prior to Bailing ¹	Bailing ¹	Total NAPL Recovered ²	Comments
	1		Builing		
MW-18	07/22/16	0.01	-	0.00	set new sock
	07/28/16	0.00	-		15 inches of staining; set new soc
	08/04/16	0.00	-	0.00	no staining; reset same sock
	08/11/16	0.00	-	0.09	18 inches of staining; set new soc
	08/18/16	0.00	-	0.11	21 inches of staining; set new soc
	08/31/16	0.00	-	0.09	18 inches of staining; set new soc
	09/15/16	0.00	-	0.09	17 inches of staining; set new soci
	09/22/16	0.00	-	0.00	no staining; reset same sock
	10/06/16	0.01	-	0.03	6 inches of staining; set new sock
	10/21/16	0.00	-	0.02	3 inches of staining; set new sock
	11/03/16	0.01	-	0.09	18 inches of staining; set new soc
	07/06/17	0.19	0.01	0.04	8 inches of staining; set new sock
	03/15/19	2.70	0.02	0.75	removed sock
	11/11/19	1.06	0.11	1.3	1
	12/16/19		l l	essible - NAPL not re	ecovered T
	01/22/20	0.00	-	0.0	
	02/13/20	0.93	0.0	0.5	
	03/25/20	0.00	-	0.0	
	04/10/20	1.15	0.15	0.5	
MW-28	03/15/19	3.91	0.5	2.5	
	11/11/19	2.34	0.0	2.0	
	12/16/19	3.06	0.0	1.5	
	01/22/20	0.02	0.0	0.0	
	02/13/20	1.88	0.0	2.0	
	03/25/20	3.02	0.26	2.5	
	04/10/20	3.34	0.0	1.25	
MW-29	03/22/19	0.09		0.0	
	11/11/19	1.95	0.42	2.9	
	12/16/19	0.73	0.30	0.75	
	01/22/20	0.39	0.04	0.66	
	02/13/20	0.00	-	0.00	
	03/20/20	0.06	-	0.00	
	04/10/20	0.00	-	0.00	
MW-30	03/22/19	4.88		0.00	
	11/11/19	2.74	2.04	3.75	Poor interface signal
	12/16/19			essible - NAPL not re	
	01/22/20		Well inacco	essible - NAPL not r	ecovered
	02/13/20		Well inacco	essible - NAPL not r	ecovered
	03/20/20	4.06	0.64	6.0	
	04/10/20	3.95	0.00	3.5	
MW-31	11/11/19	3.17	1.61	4.7	Poor interface signal
	12/16/19	2.28	0.67	2.5	
	01/22/20	1.63	0.00	2.33	
	02/13/20	0.00	-	0.00	
	03/20/20	1.41	0.46	3.00	
	04/10/20	0.00	<u>-</u>	0.00	
NAPL Recovered A	pril 2020			12.50	
lative Total NAPL	•			378.14	

NOTES:

NAPL - Non Aqueous Phase Liquid

Absorbent sock capacity = 0.005 gallons per inch

 $\label{eq:local_problem} \textbf{All NAPL } \textbf{recovered is placed in a drum located at the Fairview Station Site in Espanola, NM.}$

¹ Measured in feet.

² Measured in gallons.

Monitoring									Total					
Well	Date	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	EDB	EDC	Naphthalenes*					
NMAC 20.	=	5	1000	750	620	100	0.05	5	30					
NMPSTR S														
MW-1	02/04/13	16,000	21,000	3,700	14,000		<10	64	1,170					
	12/09/14					Sylene								
	01/19/16													
	07/14/16													
	11/03/16													
	03/15/19													
	09/24/25			Not Acc			per WP							
MW-2	02/04/13		ı	<u> </u>		· ·	ı		ı					
	12/10/14	24,000	23,000	2,600	12,000		0.2	<500	<2,000					
	01/19/16					•								
	07/14/16													
	11/03/16													
	03/15/19													
	09/24/25	<u> </u>												
MW-3	02/04/13													
	12/09/14													
	01/19/16													
	07/14/16													
	11/03/16													
	03/15/19	NAPL - Not Sampled												
	09/24/25	Not Accessible - Not Sampled per WP												
MW-4	10/29/13	<1.0	<1.0	<1.0										
	12/09/14	<1.0	<1.0	<1.0										
	01/19/16	<1.0	<1.0	<1.0										
	07/13/16	4.8	<1.0	<1.0										
	11/03/16	3.4	<1.0	<1.0										
	07/06/17	<1.0	<1.0	<1.0										
	03/22/19	<1.0	<1.0	<1.0										
N 4) A / F	09/24/25	<1.0	<1.0	<1.0	 		<u> </u>							
MW-5	10/29/13	4,300	1,100	740										
	12/09/14	8,900	940	1,200										
	01/19/16	16,000	470	1,200		-								
	07/14/16	13,000 12,000	930 540	1,200										
	11/03/16			1,200										
	07/06/17	13,000 980 1,100				<20 <0.0093	<i>69</i> 25	190 83						
	03/26/19	7,900 1,200	660 26	540 22	24	1,700 220	<2.0	7.0	<20.0					
MW-6			23.000											
IVI VV-O	10/29/13	10,000	-,	3,100	13,000	110 -500	<0.01	<50	712					
	12/10/14	5,500	29,000	5,100	28,000	<500	<0.01	<500	1,100					
	01/19/16				NAPL - No:	•								
	07/14/16				NAPL - No:									
	11/03/16	600	2 000	2 200	NAPL - No:	· ·	∠E0	∠E0	070					
	07/06/17	690	3,900	2,300	13,000	53	<50	<50	870					
	03/22/19 09/24/25			NA	- NAPL - No									
	09/24/25	l			NAPL - NO	ı sampied								

Monitoring									Total				
Well	Date	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	EDB	EDC	Naphthalenes*				
NMAC 20.	6.2.3103 /	5	1000	750	620	100	0.05	5	30				
NMPSTR S	Standards	,	1000	730	020	100	0.03	3	30				
MW-7	10/29/13	7,700	7,400	1,700	8,900	3,500	<0.01	<50	638				
	12/09/14	4,000	420	510	1,100	1,500	<0.01	<50	130				
	01/19/16	3,300	640	460	1,000	1,500	<0.010	5.7	219				
	07/14/16	4,800	500	360	590	2,500	<1.0	<1.0	233				
	11/03/16	7,000	1,600	630	1,500	3,400	<20	28	220				
	07/06/17	8,200	840	710	1,000	3,400	<10	22	120				
	03/22/19	7,300	1,300	460	890	4,500	<0.0099	<5.0	132				
	09/24/25				Not Sa	mpled							
MW-8	10/29/13	NAPL - Not Sampled											
	12/09/14				NAPL - No	t Sampled							
	01/19/16				NAPL - No	t Sampled							
	07/14/16	NAPL - Not Sampled											
	11/03/16				NAPL - No								
	03/15/19		NAPL - Not Sampled Not Sampled per WP										
	09/24/25		Not Sampled per WP										
MW-9	07/21/14	2,000	1,100	1,800	6,600	<100	<0.01	<100	640				
	12/09/14	2,300	2,600	2,600	12,000	<100	<0.01	<100	1,170				
	01/19/16				NAPL - No								
	07/14/16				NAPL - No								
	11/03/16				NAPL - No								
	03/15/19	NAPL - Not Sampled Not Sampled per WP											
NAVA 10	09/24/25	4 200	5.000	2.700			ı	-100	040				
MW-10	07/22/14	4,200	5,900	2,700	10,000	170	<0.01	<100	940				
	12/09/14 01/19/16	3,900	2,000	2,000	6,100 NAPL - No	<100	<0.01	<100	410				
	07/14/16				NAPL - No								
	11/03/16				NAPL - No								
	03/26/19	6,600	850	1,200	2,300	76	<0.0093	51	600				
	09/24/25	0,000	000	_,	Not Sampl								
MW-11	07/22/14	10,000	16,000	2,600	11,000	330	<0.01	<100	1,090				
	12/09/14			_,,,,,,	NAPL - No				_,				
	01/19/16				NAPL - No								
	07/14/16				NAPL - No								
	11/03/16				NAPL - No	•							
	03/15/19				NAPL - No	t Sampled							
	09/24/25				NAPL - No	t Sampled							
MW-12	08/21/14	1,800	110	340	810	230	<0.01	<10	71				
	12/09/14	1,900	310	470	710	100	<0.01	<50	<200				
	01/19/16			N	o Access - I	Not Sampl							
	07/14/16	7/14/16 No Access - Not Sampled											
	11/03/16												
	07/06/17 No Access - Not Sampled												
	10/16/17	280	NA	140	69	36	NA	NA	69				
	03/22/19			N	No Access - Not Sampled								
	09/24/25	<1.0	<1.0	<1.0	<1.5	23	<1.0	<1.0	<10.0				

Monitoring									Total				
Well	Date	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	EDB	EDC	Naphthalenes*				
NMAC 20.	·	5	1000	750	620	100	0.05	5	30				
NMPSTR S													
MW-13	07/06/17	1,900	11	190	<15	<10	<10	<10	36				
	07/18/14	130	<10	35	24	<10	<0.01	<10	65				
	12/09/14	420	5.0	78	90	<5.0	<0.01	<5.0	24				
	01/19/16			N	o Access - N	Not Sampl	ed						
	07/14/16	1,900	13	280	71	9.5	<1.0	<1.0	66				
	11/03/16	1,900	18	220	73	10	<10	<10	59				
	03/26/19	220	<2.0	21	<3.0	<2.0	<0.0095	<2.0	<20				
	09/18/25			Ok	structed -	Not Samp	led						
MW-14	08/21/14	480	210	65	160	<10	2.3	84	25				
	12/09/14	780	1,700	290	1,700	<100	15	170	200				
	01/19/16				NAPL - No	t Sampled							
	07/14/16				NAPL - No	t Sampled							
	11/03/16				NAPL - No	t Sampled							
	03/15/19				NAPL - No	t Sampled							
	09/24/25				NAPL - No	t Sampled							
MW-15	07/14/16				NAPL - No	t Sampled							
	11/03/16				NAPL - No	t Sampled							
	03/15/19	NAPL - Not Sampled											
	09/24/25	Unable to open - Not Sampled per WP											
MW-16	07/14/16	67	78	150	290	<1.0	<1.0	<1.0	107				
	11/03/16	73	23	80	110	3.4	<1.0	<1.0	69				
	07/06/17	1,700	490	450	500	29	<1.0	<1.0	199				
	03/26/19	440	290	390	510	15	<0.0095	<10	72				
	09/24/25	460	150	130	230	23	<1.0	1.7	25				
MW-17	07/14/16	<1.0	<1.0	<1.0	<1.5	со	<1.0	<1.0	<4.0				
	11/03/16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<4.0				
	07/06/17	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<4.0				
	03/22/19	<1.0	<1.0	<1.0	<1.5	<1.0	<0.0095	<1.0	<10.0				
	09/24/25	1.6	<1.0	<1.0	89	<1.0	<1.0	<1.0	52				
MW-18	07/14/16	1,800	610	1,500	4,300	<1.0	<1.0	<1.0	676				
	11/03/16				NAPL - No								
	03/15/19				NAPL - No								
101/46	09/24/25	7.5	100	45	NAPL - No		_	2.2	22				
MW-19	07/14/16	75	160 2.3	45	110 5.7	<1.0	<1.0	3.2	33 <4.0				
	11/03/16	20 27	2.3 1.7	<1.0 <1.0	5.7	<1.0 <1.0	<1.0 <1.0	2.2	2.2				
	07/06/17												
	03/22/19 09/24/25	5.7 2.3	<1.0 <1.0	<1.0 <1.0	<1.0 <1.5	<1.0 <1.0	<0.0094 <1.0	<1.0 <1.0	<10.0 <10.0				
MW-20	07/14/16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<4.0				
14144-70	11/03/16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<4.0				
	07/06/17	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<4.0				
	03/22/19	<1.0	<1.0	<1.0	<1.5	<1.0	<0.0093	<1.0	<10.0				
	09/24/25	1.0	11.0		ble to open			11.0	120.0				

Monitoring Well	Date	Benzene	Toluene	Ethylbenzene	Xylene	MTBE	EDB	EDC	Total Naphthalenes*
NMAC 20. NMPSTR S	6.2.3103 / Standards	5	1000	750	620	100	0.05	5	30
MW-21	07/14/16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	1.1	<4.0
	11/03/16	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<4.0	
	07/06/17	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<4.0
	03/22/19	<1.0	<1.0	<1.0	<1.5	<1.0	<0.0095	<1.0	<10.0
	09/24/25	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10.0
MW-22	03/22/19	<1.0	<1.0	11	<1.5	<1.0	<0.0095	<1.0	<10.0
	09/18/25	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10.0
MW-23	03/22/19	<1.0	<1.0	<1.0	<1.5	<1.0	<0.0095	<1.0	<10.0
	09/18/25	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10.0
MW-24	01/10/20	<1.0	<1.0	<1.0	<1.5	11	<0.0094	<1.0	<10.0
	09/24/25	<1.0	<1.0	<1.0	<1.5	2	<1.0	<1.0	<10.0
MW-25	01/29/20	<1.0	<1.0	<1.0	<1.5	<1.0	<0.0095	<1.0	<10.0
	09/24/25	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10.0
MW-26	03/22/19	<2.0	<2.0	<2.0	<3.0	<2.0	<0.0095	<2.0	<20.0
	09/24/25	<1.0	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10.0
MW-27	03/26/19	150	30	2.3	100	<1.0	<0.0094	<1.0	132
	09/24/25	9.1	<1.0	<1.0	<1.5	<1.0	<1.0	<1.0	<10.0
MW-28	03/15/19				NAPL - No	t Sampled			
	09/24/25				Not Sample	ed per WF)		
MW-29	03/26/19				NAPL - No	t Sampled			
	09/24/25				Not Sample	ed per WF			
MW-30	03/26/19				NAPL - No	t Sampled			
	09/24/25				Not Sample	ed per WF			
MW-31	03/15/19			NA NA	NPL Sheen -	Not Samp	oled		·
	09/24/25				NAPL - No	t Sampled			

NOTES:

Data in italics collected by previous consultants (Terracon, EA, GES)

All concentrations in micrograms per liter (ug/L) which is equivalent to parts per billion (ppb)

All samples analyzed for volatile organic compounds by EPA method 8260B

EDB = Ethylene dibromide; Sample was analyzed for EDB using EPA method 504.1

EDC = Ethylene dichloride

MTBE = Methyl tertiary butyl ether

NA = Not analyzed

^{*} Standard for Total Naphthalenes = sum of Naphthalenes, 1-Methylnapthalenes, and 2-Methylnaphthalenes

¹ = Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were analized by EPA method 8270C prior to December 2014

Well	Date		SpC		DO							
Number	Sampled	рН	(uS/cm)	Temp (°C)	(mg/L)							
MW-1	1/19/16		NAPL - Not	Measured								
	7/14/16		NAPL - Not	Measured								
	11/3/16		NAPL - Not	Measured								
	7/6/17		NAPL - Not	Measured								
	3/22/19		Well No	t Found								
	9/24/25	W	ell Inaccessible	- Not Measure	d							
MW-2	1/19/16		NAPL - Not	: Measured								
	7/14/16		NAPL - Not Measured									
	11/3/16		NAPL - Not	: Measured								
	7/6/17		NAPL - Not	Measured								
	3/22/19		NAPL - Not	t Measured								
	9/24/25		NAPL - Not Measured									
MW-3	1/19/16		NAPL - Not	Measured								
	7/14/16		NAPL - Not	Measured								
	11/3/16		NAPL - Not	Measured								
	7/6/17		NAPL - Not	Measured								
	3/22/19		NAPL - Not	t Measured								
	9/24/25		NAPL - Not	t Measured								
MW-4	1/19/16	6.74	706	16.0	NM							
	7/13/16	7.10	1,624	15.9	NM							
	11/3/16	7.14	1,375	16.1	2.32							
	7/6/17	7.24	1,312	16.4	1.12							
	3/22/19	7.99	1,081	17.2	NM							
	9/24/25	6.69	1,330	17.6	NM							
MW-5	1/19/16	7.18	1,808	15.8	NM							
	7/14/16	7.14	1,600	15.6	NM							
	11/3/16	7.26	2,110	17.1	1.90							
	7/6/17	7.27	2,070	18.8	0.98							
	3/26/19	7.39	1,908	11.3	NM							
	9/24/25	7.10	1,840	17.4	NM							
MW-6	1/19/16		NAPL - Not	Measured								
	7/14/16		NAPL - Not	Measured								
	11/3/16		NAPL - Not	Measured								
	7/6/17	7.13	2,600	18.4	1.07							
	3/22/19		NAPL sheen -	Not Measured								
	9/24/25		NAPL - Not	t Measured								

Well	Date		SpC	_ (0.5)	DO
Number	Sampled	рН	(uS/cm)	Temp (°C)	(mg/L)
MW-7	1/19/16	7.17	1,069	16.6	NM
	7/14/16	7.10	1,088	16.0	NM
	11/3/16	7.18	1,259	17.5	1.66
	7/6/17	7.71	1,295	16.9	1.07
	3/22/19	7.29	1,188	15.4	NM
	9/24/25	W	ell Inaccessible	- Not Measure	d
MW-8	1/19/16		NAPL - Not	: Measured	
	7/14/16		NAPL - Not	Measured	
	11/3/16		NAPL - Not	Measured	
	7/6/17		NAPL - Not	Measured	
	3/22/19		NAPL - Not	Measured	
	9/24/25		Not Me	easured	
MW-9	1/19/16		NAPL - Not	Measured	
	7/14/16		NAPL - Not	Measured	
	11/3/16		NAPL - Not	Measured	
	7/6/17		NAPL - Not	Measured	
	3/22/19		NAPL - Not	Measured	
	9/24/25		Not Me	easured	
MW-10	1/19/16	6.86	1,642	16.2	NM
	7/14/16		NAPL - Not	Measured	
	11/3/16		NAPL - Not	Measured	
	7/6/17		NAPL - Not	Measured	
	3/26/19	7.21	1719	16.5	NM
	9/24/25		Not Me	easured	
MW-11	1/19/16		NAPL - Not	: Measured	
	7/14/16		NAPL - Not	Measured	
	11/3/16		NAPL - Not	Measured	
	7/6/17		NAPL - Not	Measured	
	3/22/19		NAPL - Not	Measured	
	9/24/25		NAPL - Not	Measured	
MW-12	1/19/16		No A	ccess	
	7/14/16		No A	ccess	
	11/3/16		No A	ccess	
	7/6/17		No A	ccess	
	3/22/19		No A	ccess	
	9/24/25	7.26	3310	18.6	NM

Well	Date		SpC	(%6)	DO
Number	Sampled	рН	(uS/cm)	Temp (°C)	(mg/L)
MW-13	11/3/16	7.26	1,830	15.3	4.17
	7/14/16	7.24	1,584	14.8	NM
	1/19/16		No A	ccess	
	7/6/17	7.37	2,280	15.9	1.03
	3/26/19	7.85	1335	14.0	NM
	9/24/25	W	ell Inaccessible	- Not Measured	<u> </u>
MW-14	1/19/16		NAPL - Not	Measured	
	7/14/16		NAPL - Not	Measured	
	7/14/16		NAPL - Not	Measured	
	7/6/17		NAPL - Not	Measured	
	3/22/19		NAPL - Not	Measured	
	9/24/25			Measured	
MW-15	7/14/16	7.80	790	17.9	NM
	11/3/16			Measured	
	7/6/17			Measured	
	3/22/19			Measured	
	9/24/25	W	ell Inaccessible	- Not Measured	<u></u>
MW-16	7/6/17	7.88	1,878	16.8	1.39
	7/14/16	7.75	770	16.3	NM
	11/3/16	7.45	1,278	16.7	2.19
	7/6/17	7.88	1,878	16.8	1.39
	3/26/19	7.49	1,146	14.5	NM
	9/24/25	7.26	1,410	17.9	NM
MW-17	7/14/16	7.65	682	16.8	NM
	11/3/16	7.34	895.5	16.7	5.22
	7/6/17	6.98	1,176	16.1	4.31
	3/22/19	7.99	869.0	17.7	NM
	9/24/25	7.32	1,000.0	18.7	NM
MW-18	7/14/16	7.81	951	16.4	NM
	11/3/16			Measured	
	7/6/17		NAPL - Not		
	3/22/19			Measured	
NAVA / 10	9/24/25	7.70		Measured	010.4
MW-19	7/14/16	7.70	1,758	16.8	NM
	11/3/16	7.16	4,050 5,070	16.6	2.16
	7/6/17 3/22/19	7.17	5,970	16.6	0.98
	9/24/25	7.71 6.93	3,385	16.6 18.0	NM NM
MW-20	7/14/16	7.71	4,650 5,380	17.7	NM
10100-20	11/3/16	6.98	7,850	17.7	1.78
	7/6/17	7.04	7,030	16.9	1.78
	3/22/19	6.47	>3,999	15.3	1.94 NM
	9/24/25			- Not Measure	
	3/ 44/ 43	l vi	ren maccessible	- NOT MEdsufe	<i>1</i>

Well	Date		SpC	_ (0.0)	DO						
Number	Sampled	рН	(uS/cm)	Temp (°C)	(mg/L)						
MW-21	7/14/16	7.71	966	18.3	NM						
	11/3/16	7.07	6,230	17.1	2.05						
	7/6/17	6.93	5,390	17.1	2.23						
	3/22/19	6.45	>3,999	14.8	NM						
	9/24/25	6.85	7,100	18.4	NM						
MW-22	3/22/19	7.53	2,476	15.2	NM						
	9/18/25	7.06	2,730	18.4	NM						
MW-23	3/22/19	7.61	1,772	15.5	NM						
	9/18/25	7.17	2,590	19.5	NM						
MW-24	1/10/20	7.77	1,573	9.6	NM						
	9/24/25	7.13	5,090	17.5	NM						
MW-25	1/29/20	7.89	1,175	16.5	NM						
	9/24/25	6.93	6,690	17.7	NM						
MW-26	3/22/19	7.71	901	15.5	NM						
	9/24/25	7.38	950	16.5	NM						
MW-27	3/26/19	7.77	900	14.1	NM						
	9/24/25	7.52	1,080	18.8	NM						
MW-28	3/22/19		NAPL - Not	Measured							
	9/24/25		Not Measu	red per WP							
MW-29	3/22/19		NAPL - Not	Measured							
	9/24/25		Not Measu	red per WP							
MW-30	3/22/19		NAPL - Not	Measured							
	9/24/25	Not Measured per WP									
MW-31	3/26/19	NAPL sheen - Not Measured									
	9/24/25		NAPL - No	t Measured							

NOTES:

Data in italics collected by previous consultant (EA)

DO = Dissolved oxygen

mg/L = Milligrams per liter

NAPL = Non-aqueous phase liquid

SpC = Specific conductance

uS/cm = Microsiemens per centimeter

Appendix 1 Sampling Protocol

Groundwater Sampling Protocol

Groundwater samples were collected as established in the New Mexico Underground

Storage Tank Bureau Guidelines for Corrective Action promulgated March 2000.

Water levels were measured prior to sample collection using a clean water level probe beginning with least contaminated, or clean monitoring wells to the most contaminated monitoring wells. Water levels of each monitoring well were recorded on a field form or in the field notebook. The water level probe was rinsed with distilled water prior to measuring the water level in each monitoring well. A cleaned oil/water interface probe was used to measure fluid levels in wells suspected to have NAPL.

Prior to collection of samples, monitoring wells were purged of three well bore volumes using a new disposable high-density polyethylene (HDPE) bailer. The purged water was disposed of on concrete surfaces within the boundaries of the property and allowed to evaporate.

After purging, field parameters were then measured in each monitoring well using a calibrated YSI meter. Measured parameters included:

- pH
- eC (specific conductance)
- temperature

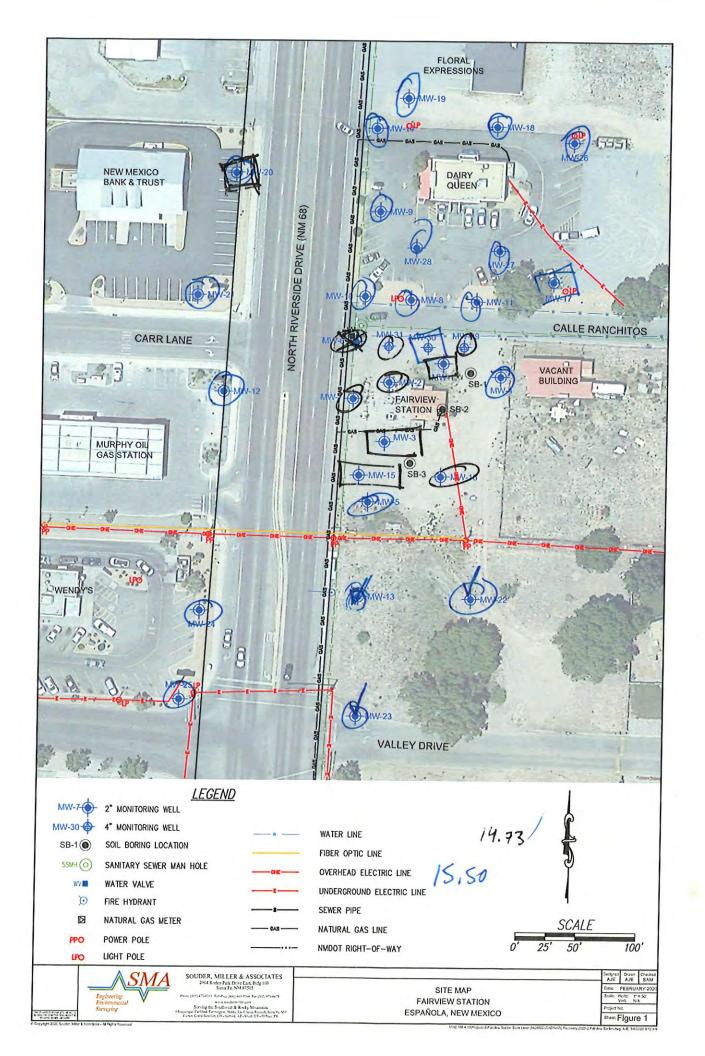
Following collection of field parameters, groundwater samples were collected into the following laboratory-provided containers with appropriate preservatives for the following analyses, as approved:

- EPA Method 8260B Samples were collected in three-40-ml VOAs preserved with mercuric chloride. All VOAs were checked to ensure no headspace was present prior to labeling and securing the bottles.
- **EPA Method 504.1** Samples were collected in two-40-ml VOAs preserved with sodium thiosulfate. All VOAs were checked to ensure no headspace was present prior to labeling and securing the bottles.
- **EPA Method 8310** Samples were collected in one 1-Liter glass amber bottle.

Following collection, all samples were labeled with the date, time, site and sample identification, the initials of the sampler, and the desired laboratory analysis. The samples were then stored on ice in a cooler for hand-delivery to the analytical laboratory.

Sample ID were recorded on chain of custody forms prior to delivery to Hall Environmental Analysis Laboratory.

Appendix 2 Field Notes



Fairview Station State Lead

Job # 3426622

Date: 9/18/25	Time On-site:	Time Off-site: 1600	Sampled by: C. Perler	
Weather conditions:	Clear, -80:5			

							ring Well D				
MW ID		Sam. Orde	DTP	DTW		llons	Sampling Time	Cond.	·C	nU.	Remarks
MW-1	Бери	Order	DIP	NW4/18	to purge	purged	Time	Conu.	Temp	pH	Subroged in poddle
MW-2			14.58	H3:30							Strong oder
MW-3				NM 9/18							subverged in public
MW-4	27.1	9	_	16.06							Gress grovey invant. PVC: too tell Gor JPlug Niggray bolds + Jplug
MW-5	22:15	15	_	15.33							
MW-6	23.9	16	15.41	15.50	_	_	-			_	NAPL 0.09" No solds Lid toesn'd sid fled
MW-7	24.7		7	15.65							L'id toes of sid fled
MW-8			-	15.50							Very story oder
MW-9			_	16.32							Two threads snapped I stripped Vould in good coulden
MW-10	24.2		-	16.46							Vould in good cardilan
MW-11			15.74	19.38							
MW-12	26.20	12	-	16.35	25102						Voul in good condition
MW-13	23.2	11	J	15.38	_		_			-	thick: PVC. Com not more beilter or
MW-14	18.1		15.92	16.90	-						NAPL
MW-15	23.9			NH 1/18							Japaned Shed
MW-16	23.4	14		15.74							Voult Decent
MW-17	24.9	5									Unagle to locale over
MW-18			16.15	754						-	
MW-19	25.6	10	-	16.70							Vaul in good condition
MW-20	25.1	7	j	_							Vould jamed Third toll the threaded incorrectly . Could't les Vould's good condition
MW-21	26.82	- 6	1	16.25	5.28						
MW-22	27.0	4	_	15.72	5.59	5.44	1151	2.73	18.4	7.06	cloudy Brown. Silly, No od
MW-23	27.35	3	1	16.36	5.43	5.16	1121	2.59	19.5	FI.F	Clarky Brown . Oragines Floats : Saler. No odet
MW-24	23.5	1)	1590	3.44						Vall good condition
MW-25	34.0	2	-	13.00	5.14						Vould good condition
MW-26	25.6	8	-	16.85							
MW-27	25.9	13	-	15.85							
MW-28			_	14.33							
MW-29			-	15.50							Clad Robert Shall
MW-30				BM 4/18							· · · · · · · · · · · · · · · · · · ·
MW-31			14.73	14.74							avichly travellous to

	0																			
Date:	Mintro								Date	□ EDC	□ NELAC	Accreditation:	□ Standard	QA/QC	email c	Phone #:		Mailing		Client:
Time:	0844						11:1	15-	Time	EDD (Type)	AC	itation:	ndard	QA/QC Package:	email or Fax#:	#:		Mailing Address:		f.
Refinquished by:	Relinquished by:						-		Matrix		□ Other	□ Az Cc				2		ARC		7
led "by:	led by:						= 2	Film TC	Sample Name			□ Az Compliance	☐ Level 4 (Full Validation)			45 OUES				
Received by:	Received by:						te-	. N	Cooler Temp(Including CF): Container Preserva Type and # Type	# of Coolers	On Ice:	Sampler:	L LTC 3C		Project Manager:		Project #:	Y Y	Project Name:	Standard
Via:	Via:					V.	ź	A	Preservative	S:	∰ Yes				hader:			-2	ne:	d 🗆 Rush
Date Time	9.19.75 845		the contract of the contract o						-0.7 = 3.9°C	Moldo	□ No			- 10 5				(1)		
	Rer								BTEX / MT	BE	/ T	MB'	s (8	021)					
	Remarks:								TPH:8015D	(GF	RO/	DR	0/1	/IRC))		ا	490		Se carollis
	99								8081 Pestic	ide	s/80	82	PCB	's			Tel 505-345-3975	4901 Hawkins NE		
									EDB (Metho			-					5-34	awki		
									PAHs by 82	_		3				9	5-30	ns N	*	
									RCRA 8 Me		_	2	DO.	00		An	775	Ē .	halle	=
							7	×	CI, F, Br, N		, 140	J ₂ ,	PO ₄	, 50	4	alys	п	Albu	povir	
									8260 (VOA) 8270 (Semi-)Δ)					is R	у Л	aup		En
									Total Colifor	_		sen	t/Ab	sent	1)	Analysis Request	2-3 07-3	rque	ental	
										22.20	•					st	Eav 505-375-7107	Albuquerque, NM 87109	www.hallenvironmental.com	Alk Environment Testi
																107	107	8710		n.
																		9		Alb
																				0

eurofins

Chain-of-Custody Record

Turn-Around Time:

Albuquerque

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

							Fairvie	w Station S	itate Lea	ď		
						Tim		lob # 34266				
Date:							te:	Tim Off-si	e te:		Sampled	by:
Weather c	onditio	ons:									·	
Equipmen	t Used	:										
MW	Monitoring Well Data MW Total Sam. Gallons Sampling											
ID	- 1	pth O		DTP	DTW	to pur	Gallons ge purge	Sampli ed Time		d. Tem	n n	
MW-1							0-1 Par8	1	2 COIII	u, ten	ip. ph	Remarks
MW-2												
MW-3												Could not locate
MW-4	14.5 22	75	9	16.6	16.00	6 5.44	1 500%	m 1318	1,3	3 h.	6 6.96	Brown / Si Jul Na odas
MW-5	22	. 7 5 1	15	15-54	15.3	\$ 3.71	2.00	1529	1.84			least groung in column
MW-6	23	.9 1	.6	15.41	15,50	-	`	7)	(, 0 (1 47	(1,10	NAPL. Not sampled
MW-7	24.	.7										1 1 - 3
MW-8				-								
MW-9												
MW-10	24.	2		** ;								
MW-11												
MW-12	14.2	1 اه	2		16.35	4.72	5.00	1433	3.31	18.6	7.24	Classy Brank (5114)
MW-13	23.2	2 1:	1	<u> </u>	15:38					10.0	17.26	Obstruction, make to
MW-14	18.1	1							1			seneme wave. No semple
MW-15	23.9)										unell to open
MW-16	23.4	1 4	ı		15.74	3.86	2.0%	1514	1,41	17.9	7.26	couly/stong it oder
MW-17	24.9	5			16.84	4.03		12:39	100	10 3	3 12	Month of Stiglid Header
MW-18					-	1			''-	10.,	11,3	
MW-19	25.6	10		_	OF. 31	4.45	4.66	1337	4.65	120	193	clear/No oder
MW-20	25.1	7										Unable to open
MW-21		6	1	_	16.25	5.18	533.	1402	7,10	18.4	૮, 8≤	
MW-22	27:0	4			15.72	5.59		H		,,,,,	0,00	Sample collected 9/18
MW-23	27.3	5 3		_	16.36	5,49					-	Sende collected 9/18
MW-24	23.5	1	1.		15.90	3.44	2.34pm	1122	5. 6 9	17.S	20	Clear No oder
MW-25	24.0	2				5,14	1.00/19	1134		17.3	7,13 (97	Wash Not reclarage Check No aler. Parally
MW-26	25.6	8				4.37	4.(1	1255	295	11 <	7 (3	Prouvisily/No aler
MW-27	25.9	13		- 1			- 4			8.8	7 <1	Chat Workinge Cleans. No Blas
M/M/ 20		33.31						7 10 1			4. 3-	Cleats. No 6 Let

Unable to open

MW-28 MW-29

MW-30 MW-31

Notes:

8260B

= NAPL likely

* hm-4

Astempted to remove grass bod unable to remove all not allawy boiler to sale

Appendix 3 Laboratory Analytical Report

PREPARED FOR

Attn: Scott McKitrick Souder, Miller & Associates 5454 Venice Ave. NE Suite D Albuquerque, New Mexico 87113

ANALYTICAL REPORT

Generated 9/26/2025 4:32:55 PM

JOB DESCRIPTION

Fairview 9-18

JOB NUMBER

885-33673-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 9/26/2025 4:32:55 PM

Authorized for release by Catherine Upton, Project Manager Catherine.upton@et.eurofinsus.com (505)338-8837

Page 2 of 17 9/26/2025

9

3

4

5

6

6

ŏ

9

Client: Souder, Miller & Associates Project/Site: Fairview 9-18 Laboratory Job ID: 885-33673-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Chain of Custody	16
Receipt Checklists	17

4

<u>۾</u>

9

10

Definitions/Glossary

Client: Souder, Miller & Associates Job ID: 885-33673-1

Project/Site: Fairview 9-18

Glossary

MDA

MDC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

9/26/2025

Case Narrative

Client: Souder, Miller & Associates

Project: Fairview 9-18

Job ID: 885-33673-1 Eurofins Albuquerque

Job Narrative 885-33673-1

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when site-specific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 9/19/2025 8:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.9°C.

C/MS VOA

Method 8260B: The method blank for analytical batch 885-35284 contained Acetone above the reporting limit (RL). None of the samples associated with this method blank contained the target compound; therefore, re-extraction and/or re-analysis of samples were not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

2

Job ID: 885-33673-1

Ė

0

9

Client: Souder, Miller & Associates

Project/Site: Fairview 9-18

Client Sample ID: MW-22

Date Collected: 09/18/25 11:51 Date Received: 09/19/25 08:45 Lab Sample ID: 885-33673-1

Matrix: Water

Job ID: 885-33673-1

_
_

- 1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	1.0	ug/L			09/24/25 06:15	
1,1,1-Trichloroethane	ND	1.0	ug/L			09/24/25 06:15	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L			09/24/25 06:15	
1,1,2-Trichloroethane	ND	1.0	ug/L			09/24/25 06:15	
I,1-Dichloroethane	ND	1.0	ug/L			09/24/25 06:15	
1,1-Dichloroethene	ND	1.0	ug/L			09/24/25 06:15	
1,1-Dichloropropene	ND	1.0	ug/L			09/24/25 06:15	
1,2,3-Trichlorobenzene	ND	1.0	ug/L			09/24/25 06:15	
I,2,3-Trichloropropane	ND	2.0	ug/L			09/24/25 06:15	
1,2,4-Trichlorobenzene	ND	1.0	ug/L			09/24/25 06:15	
1,2,4-Trimethylbenzene	ND	1.0	ug/L			09/24/25 06:15	
I,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			09/24/25 06:15	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			09/24/25 06:15	
I,2-Dichlorobenzene	ND	1.0	ug/L			09/24/25 06:15	
1,2-Dichloroethane (EDC)	ND	1.0	ug/L			09/24/25 06:15	
1,2-Dichloropropane	ND	1.0	ug/L			09/24/25 06:15	
1,3,5-Trimethylbenzene	ND	1.0	ug/L			09/24/25 06:15	
1,3-Dichlorobenzene	ND	1.0	ug/L			09/24/25 06:15	
1,3-Dichloropropane	ND	1.0	ug/L			09/24/25 06:15	
1,4-Dichlorobenzene	ND	1.0	ug/L			09/24/25 06:15	
	ND ND	4.0	_			09/24/25 06:15	
-Methylnaphthalene			ug/L				
2,2-Dichloropropane	ND	2.0	ug/L			09/24/25 06:15	
2-Butanone	ND	10	ug/L			09/24/25 06:15	
2-Chlorotoluene	ND	1.0	ug/L			09/24/25 06:15	
2-Hexanone	ND	10	ug/L			09/24/25 06:15	
2-Methylnaphthalene	ND	4.0	ug/L			09/24/25 06:15	
4-Chlorotoluene	ND	1.0	ug/L			09/24/25 06:15	
4-Isopropyltoluene	ND	1.0	ug/L			09/24/25 06:15	
4-Methyl-2-pentanone	ND	10	ug/L			09/24/25 06:15	
Acetone	ND	10	ug/L			09/24/25 06:15	
Benzene	ND	1.0	ug/L			09/24/25 06:15	
Bromobenzene	ND	1.0	ug/L			09/24/25 06:15	
Bromodichloromethane	ND	1.0	ug/L			09/24/25 06:15	
Dibromochloromethane	ND	1.0	ug/L			09/24/25 06:15	
Bromoform	ND	1.0	ug/L			09/24/25 06:15	
Bromomethane	ND	3.0	ug/L			09/24/25 06:15	
Carbon disulfide	ND	10	ug/L			09/24/25 06:15	
Carbon tetrachloride	ND	1.0	ug/L			09/24/25 06:15	
Chlorobenzene	ND	1.0	ug/L			09/24/25 06:15	
Chloroethane	ND	2.0	ug/L			09/24/25 06:15	
Chloroform	ND	1.0	ug/L			09/24/25 06:15	
Chloromethane	ND	3.0	ug/L			09/24/25 06:15	
cis-1,2-Dichloroethene	ND	1.0	ug/L			09/24/25 06:15	
sis-1,3-Dichloropropene	ND	1.0	ug/L			09/24/25 06:15	
Dibromomethane	ND	1.0	ug/L			09/24/25 06:15	
Dichlorodifluoromethane	ND	1.0	ug/L			09/24/25 06:15	
Ethylbenzene	ND	1.0	ug/L			09/24/25 06:15	
Hexachlorobutadiene	ND	1.0	_			09/24/25 06:15	
Isopropylbenzene	ND	1.0	ug/L ug/L			09/24/25 06:15	

Eurofins Albuquerque

Client: Souder, Miller & Associates

Date Received: 09/19/25 08:45

Project/Site: Fairview 9-18

Dibromofluoromethane (Surr)

Client Sample ID: MW-22 Lab Sample ID: 885-33673-1 Date Collected: 09/18/25 11:51

Job ID: 885-33673-1

Matrix: Water

09/24/25 06:15

Method: SW846 8260B - Volati	le Organic Compo	unds (GC/I	MS) (Continued)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			09/24/25 06:15	1
Methylene Chloride	ND		2.5	ug/L			09/24/25 06:15	1
n-Butylbenzene	ND		3.0	ug/L			09/24/25 06:15	1
N-Propylbenzene	ND		1.0	ug/L			09/24/25 06:15	1
Naphthalene	ND		2.0	ug/L			09/24/25 06:15	1
sec-Butylbenzene	ND		1.0	ug/L			09/24/25 06:15	1
Styrene	ND		1.0	ug/L			09/24/25 06:15	1
tert-Butylbenzene	ND		1.0	ug/L			09/24/25 06:15	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			09/24/25 06:15	1
Toluene	ND		1.0	ug/L			09/24/25 06:15	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			09/24/25 06:15	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			09/24/25 06:15	1
Trichloroethene (TCE)	ND		1.0	ug/L			09/24/25 06:15	1
Trichlorofluoromethane	ND		1.0	ug/L			09/24/25 06:15	1
Vinyl chloride	ND		1.0	ug/L			09/24/25 06:15	1
Xylenes, Total	ND		1.5	ug/L			09/24/25 06:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 130		-		09/24/25 06:15	1
Toluene-d8 (Surr)	107		70 - 130				09/24/25 06:15	1
4-Bromofluorobenzene (Surr)	93		70 - 130				09/24/25 06:15	1

70 - 130

Client: Souder, Miller & Associates

Project/Site: Fairview 9-18

Client Sample ID: MW-23

Date Collected: 09/18/25 11:21 Date Received: 09/19/25 08:45

Job ID: 885-33673-1

Lab Sample ID: 885-33673-2

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		09/24/25 06:42	-
1,1,1-Trichloroethane	ND		1.0	ug/L		09/24/25 06:42	
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L		09/24/25 06:42	
1,1,2-Trichloroethane	ND		1.0	ug/L		09/24/25 06:42	
1,1-Dichloroethane	ND		1.0	ug/L		09/24/25 06:42	
1,1-Dichloroethene	ND		1.0	ug/L		09/24/25 06:42	
1,1-Dichloropropene	ND		1.0	ug/L		09/24/25 06:42	
1,2,3-Trichlorobenzene	ND		1.0	ug/L		09/24/25 06:42	
1,2,3-Trichloropropane	ND		2.0	ug/L		09/24/25 06:42	
1,2,4-Trichlorobenzene	ND		1.0	ug/L		09/24/25 06:42	
1,2,4-Trimethylbenzene	ND		1.0	ug/L		09/24/25 06:42	
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		09/24/25 06:42	
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		09/24/25 06:42	
1,2-Dichlorobenzene	ND		1.0	ug/L		09/24/25 06:42	
1,2-Dichloroethane (EDC)	ND		1.0	ug/L		09/24/25 06:42	
1,2-Dichloropropane	ND		1.0	ug/L		09/24/25 06:42	
1,3,5-Trimethylbenzene	ND		1.0	ug/L		09/24/25 06:42	
1,3-Dichlorobenzene	ND		1.0	ug/L		09/24/25 06:42	
1,3-Dichloropropane	ND		1.0	ug/L		09/24/25 06:42	
1,4-Dichlorobenzene	ND		1.0	ug/L		09/24/25 06:42	
	ND		4.0			09/24/25 06:42	
1-Methylnaphthalene				ug/L			
2,2-Dichloropropane	ND		2.0	ug/L		09/24/25 06:42	
2-Butanone	ND		10	ug/L		09/24/25 06:42	
2-Chlorotoluene	ND		1.0	ug/L		09/24/25 06:42	
2-Hexanone	ND		10	ug/L		09/24/25 06:42	•
2-Methylnaphthalene	ND		4.0	ug/L		09/24/25 06:42	
4-Chlorotoluene	ND		1.0	ug/L		09/24/25 06:42	
4-Isopropyltoluene	ND		1.0	ug/L 		09/24/25 06:42	
4-Methyl-2-pentanone	ND		10	ug/L 		09/24/25 06:42	•
Acetone	ND		10	ug/L		09/24/25 06:42	
Benzene	ND		1.0	ug/L		09/24/25 06:42	•
Bromobenzene	ND		1.0	ug/L		09/24/25 06:42	•
Bromodichloromethane	ND		1.0	ug/L		09/24/25 06:42	
Dibromochloromethane	ND		1.0	ug/L		09/24/25 06:42	•
Bromoform	ND		1.0	ug/L		09/24/25 06:42	•
Bromomethane	ND		3.0	ug/L		09/24/25 06:42	
Carbon disulfide	ND		10	ug/L		09/24/25 06:42	
Carbon tetrachloride	ND		1.0	ug/L		09/24/25 06:42	•
Chlorobenzene	ND		1.0	ug/L		09/24/25 06:42	
Chloroethane	ND		2.0	ug/L		09/24/25 06:42	
Chloroform	ND		1.0	ug/L		09/24/25 06:42	
Chloromethane	ND		3.0	ug/L		09/24/25 06:42	
cis-1,2-Dichloroethene	ND		1.0	ug/L		09/24/25 06:42	
cis-1,3-Dichloropropene	ND		1.0	ug/L		09/24/25 06:42	
Dibromomethane	ND		1.0	ug/L		09/24/25 06:42	
Dichlorodifluoromethane	ND		1.0	ug/L		09/24/25 06:42	
Ethylbenzene	ND		1.0	ug/L		09/24/25 06:42	
- Hexachlorobutadiene	ND		1.0	ug/L		09/24/25 06:42	
Isopropylbenzene	ND		1.0	ug/L		09/24/25 06:42	

Eurofins Albuquerque

Page 8 of 17

Client: Souder, Miller & Associates

Project/Site: Fairview 9-18

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: MW-23 Date Collected: 09/18/25 11:21

Date Received: 09/19/25 08:45

Lab Sample ID: 885-33673-2

Matrix: Water

09/24/25 06:42

09/24/25 06:42

09/24/25 06:42

Job ID: 885-33673-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			09/24/25 06:42	1
Methylene Chloride	ND		2.5	ug/L			09/24/25 06:42	1
n-Butylbenzene	ND		3.0	ug/L			09/24/25 06:42	1
N-Propylbenzene	ND		1.0	ug/L			09/24/25 06:42	1
Naphthalene	ND		2.0	ug/L			09/24/25 06:42	1
sec-Butylbenzene	ND		1.0	ug/L			09/24/25 06:42	1
Styrene	ND		1.0	ug/L			09/24/25 06:42	1
tert-Butylbenzene	ND		1.0	ug/L			09/24/25 06:42	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			09/24/25 06:42	1
Toluene	ND		1.0	ug/L			09/24/25 06:42	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			09/24/25 06:42	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			09/24/25 06:42	1
Trichloroethene (TCE)	ND		1.0	ug/L			09/24/25 06:42	1
Trichlorofluoromethane	ND		1.0	ug/L			09/24/25 06:42	1
Vinyl chloride	ND		1.0	ug/L			09/24/25 06:42	1
Xylenes, Total	ND		1.5	ug/L			09/24/25 06:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		70 - 130				09/24/25 06:42	1

70 - 130

70 - 130

70 - 130

110

92

QC Sample Results

Client: Souder, Miller & Associates Job ID: 885-33673-1

Project/Site: Fairview 9-18

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-35284/4

Matrix: Water

Analysis Batch: 35284

Client Sample ID: Method Blank	
Prep Type: Total/NA	

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND Qualifor	1.0	ug/L			09/24/25 00:16	1
1,1,1-Trichloroethane	ND	1.0	ug/L			09/24/25 00:16	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L			09/24/25 00:16	1
1,1,2-Trichloroethane	ND	1.0	ug/L			09/24/25 00:16	1
1,1-Dichloroethane	ND	1.0	ug/L			09/24/25 00:16	1
1,1-Dichloroethene	ND	1.0	ug/L			09/24/25 00:16	1
1,1-Dichloropropene	ND	1.0	ug/L			09/24/25 00:16	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			09/24/25 00:16	1
1,2,3-Trichloropropane	ND	2.0	ug/L			09/24/25 00:16	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			09/24/25 00:16	· · · · · · · · · · · · · · · · · · ·
1,2,4-Trimethylbenzene	ND	1.0	ug/L			09/24/25 00:16	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			09/24/25 00:16	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			09/24/25 00:16	· · · · · · · · · · · · · · · · · · ·
1,2-Dichlorobenzene	ND	1.0	ug/L			09/24/25 00:16	
1,2-Dichloroethane (EDC)	ND	1.0	ug/L			09/24/25 00:16	
1,2-Dichloropropane	ND	1.0	ug/L			09/24/25 00:16	
1,3,5-Trimethylbenzene	ND	1.0	ug/L			09/24/25 00:16	
1,3-Dichlorobenzene	ND	1.0	ug/L			09/24/25 00:16	1
1,3-Dichloropropane	ND	1.0	ug/L			09/24/25 00:16	· · · · · · · · · · · · · · · · · · ·
1,4-Dichlorobenzene	ND	1.0	ug/L			09/24/25 00:16	
1-Methylnaphthalene	ND	4.0	ug/L			09/24/25 00:16	1
2,2-Dichloropropane	ND	2.0	ug/L			09/24/25 00:16	
2-Butanone	ND	10	ug/L			09/24/25 00:16	
2-Chlorotoluene	ND	1.0	ug/L			09/24/25 00:16	
2-Hexanone	ND	10	ug/L			09/24/25 00:16	
2-Methylnaphthalene	ND	4.0	ug/L			09/24/25 00:16	
4-Chlorotoluene	ND	1.0	ug/L			09/24/25 00:16	. 1
4-Isopropyltoluene	ND	1.0	ug/L			09/24/25 00:16	
4-Methyl-2-pentanone	ND	10	ug/L			09/24/25 00:16	1
Acetone	10.0	10	ug/L			09/24/25 00:16	1
Benzene	ND	1.0	ug/L			09/24/25 00:16	
Bromobenzene	ND	1.0	ug/L			09/24/25 00:16	1
Bromodichloromethane	ND	1.0				09/24/25 00:16	1
Dibromochloromethane	ND	1.0	ug/L			09/24/25 00:16	· · · · · · · · · · · · · · · · · · ·
Bromoform	ND ND	1.0	ug/L ug/L			09/24/25 00:16	1
Bromomethane	ND ND	3.0	ug/L			09/24/25 00:16	1
Carbon disulfide	ND	3.0	.			09/24/25 00:16	
			ug/L				1
Carbon tetrachloride	ND	1.0	ug/L			09/24/25 00:16	1
Chlorobenzene Chloroethane	ND	1.0	ug/L			09/24/25 00:16 09/24/25 00:16	
	ND ND	2.0	ug/L				1
Chloromothana	ND ND	1.0	ug/L			09/24/25 00:16	-
Chloromethane		3.0	ug/L			09/24/25 00:16	
cis-1,2-Dichloroethene	ND ND	1.0	ug/L			09/24/25 00:16	1
cis-1,3-Dichloropropene		1.0	ug/L			09/24/25 00:16	1
Dibromomethane	ND ND	1.0	ug/L			09/24/25 00:16	1
Dichlorodifluoromethane Ethylbonzono	ND ND	1.0	ug/L			09/24/25 00:16	1
Ethylbenzene	ND	1.0	ug/L			09/24/25 00:16	1

Eurofins Albuquerque

Job ID: 885-33673-1

Client: Souder, Miller & Associates

Project/Site: Fairview 9-18

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-35284/4

Matrix: Water

Analysis Batch: 35284

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB					
Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.0	ug/L		09/24/25 00:16	1
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L		09/24/25 00:16	1
Methylene Chloride	ND		2.5	ug/L		09/24/25 00:16	1
n-Butylbenzene	ND		3.0	ug/L		09/24/25 00:16	1
N-Propylbenzene	ND		1.0	ug/L		09/24/25 00:16	1
Naphthalene	ND		2.0	ug/L		09/24/25 00:16	1
sec-Butylbenzene	ND		1.0	ug/L		09/24/25 00:16	1
Styrene	ND		1.0	ug/L		09/24/25 00:16	1
tert-Butylbenzene	ND		1.0	ug/L		09/24/25 00:16	1
Tetrachloroethene (PCE)	ND		1.0	ug/L		09/24/25 00:16	1
Toluene	ND		1.0	ug/L		09/24/25 00:16	1
trans-1,2-Dichloroethene	ND		1.0	ug/L		09/24/25 00:16	1
trans-1,3-Dichloropropene	ND		1.0	ug/L		09/24/25 00:16	1
Trichloroethene (TCE)	ND		1.0	ug/L		09/24/25 00:16	1
Trichlorofluoromethane	ND		1.0	ug/L		09/24/25 00:16	1
Vinyl chloride	ND		1.0	ug/L		09/24/25 00:16	1
Xylenes, Total	ND		1.5	ug/L		09/24/25 00:16	1

MB MB

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	92		70 - 130	_		09/24/25 00:16	1	
Toluene-d8 (Surr)	110		70 - 130			09/24/25 00:16	1	
4-Bromofluorobenzene (Surr)	93		70 - 130			09/24/25 00:16	1	
Dibromofluoromethane (Surr)	102		70 - 130			09/24/25 00:16	1	

Lab Sample ID: LCS 885-35284/3

Matrix: Water

Analysis Batch: 35284

Client Sample ID: Lab Control Sample Prep Type: Total/NA

ke LCS	LCS			%Rec
ed Result	Qualifier U	nit D	%Rec	Limits
0.0 17.1	u	g/L	86	70 - 130
0.0 19.6	uç	g/L	98	70 - 130
0.0 21.4	uç	g/L	107	70 - 130
0.0 21.1	uç	g/L	105	70 - 130
0.0 17.4	uç	g/L	87	70 - 130
	led Result 0.0 17.1 0.0 19.6 0.0 21.4	Ied Result Qualifier U 0.0 17.1 u 0.0 19.6 u 0.0 21.4 u 0.0 21.1 u	Red Result Qualifier Unit D 0.0 17.1 ug/L 0.0 19.6 ug/L 0.0 21.4 ug/L 0.0 21.1 ug/L	Ied Result Qualifier Unit D %Rec 0.0 17.1 ug/L 86 0.0 19.6 ug/L 98 0.0 21.4 ug/L 107 0.0 21.1 ug/L 105

LCS	LCS
LUS	LUS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Toluene-d8 (Surr)	105		70 - 130
4-Bromofluorobenzene (Surr)	91		70 - 130
Dibromofluoromethane (Surr)	102		70 - 130

Eurofins Albuquerque

9/26/2025

QC Association Summary

Client: Souder, Miller & Associates Job ID: 885-33673-1

Project/Site: Fairview 9-18

GC/MS VOA

Analysis Batch: 35284

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33673-1	MW-22	Total/NA	Water	8260B	
885-33673-2	MW-23	Total/NA	Water	8260B	
MB 885-35284/4	Method Blank	Total/NA	Water	8260B	
LCS 885-35284/3	Lab Control Sample	Total/NA	Water	8260B	

4

5

7

8

10

Lab Chronicle

Client: Souder, Miller & Associates

Project/Site: Fairview 9-18

Client Sample ID: MW-22 Lab Sample ID: 885-33673-1

Job ID: 885-33673-1

Date Collected: 09/18/25 11:51 **Matrix: Water** Date Received: 09/19/25 08:45

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor **Number Analyst** Lab or Analyzed Total/NA 8260B 35284 JP EET ALB 09/24/25 06:15 Analysis

Client Sample ID: MW-23 Lab Sample ID: 885-33673-2

Date Collected: 09/18/25 11:21 **Matrix: Water**

Date Received: 09/19/25 08:45

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number Analyst or Analyzed Lab Total/NA 8260B 35284 JP EET ALB 09/24/25 06:42 Analysis

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Souder, Miller & Associates Job ID: 885-33673-1

Project/Site: Fairview 9-18

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progr	am	Identification Number	Expiration Date
ew Mexico	State		NM9425, NM0901	02-27-26
The following analytes:	are included in this report hi	it the laboratory is not certif	ied by the governing authority. This lis	t may include analyt
	pes not offer certification.	at the laboratory is not certif	led by the governing authority. This ha	t may molade analyt
Analysis Method	Prep Method	Matrix	Analyte	
8260B		Water	1,1,1,2-Tetrachloroethane	
8260B		Water	1,1,1-Trichloroethane	
8260B		Water	1,1,2,2-Tetrachloroethane	
8260B		Water	1,1,2-Trichloroethane	
8260B		Water	1,1-Dichloroethane	
8260B		Water	1,1-Dichloroethene	
8260B		Water	1,1-Dichloropropene	
8260B		Water	1,2,3-Trichlorobenzene	
8260B		Water	1,2,3-Trichloropropane	
8260B		Water	1,2,4-Trichlorobenzene	
8260B		Water	1,2,4-Trimethylbenzene	
8260B		Water	1,2-Dibromo-3-Chloroprop	ane
8260B		Water	1,2-Dibromoethane (EDB)	
8260B		Water	1,2-Dichlorobenzene	
8260B		Water	1,2-Dichloroethane (EDC)	
8260B		Water	1,2-Dichloropropane	
8260B		Water	1,3,5-Trimethylbenzene	
8260B		Water	1,3-Dichlorobenzene	
8260B		Water	1,3-Dichloropropane	
8260B		Water	1,4-Dichlorobenzene	
8260B		Water	1-Methylnaphthalene	
8260B		Water	2,2-Dichloropropane	
8260B		Water	2-Butanone	
8260B		Water	2-Chlorotoluene	
8260B		Water	2-Hexanone	
8260B		Water	2-Methylnaphthalene	
8260B		Water	4-Chlorotoluene	
8260B		Water	4-Isopropyltoluene	
8260B		Water	4-Methyl-2-pentanone	
8260B		Water	Acetone	
8260B		Water	Benzene	
8260B		Water	Bromobenzene	
8260B		Water	Bromodichloromethane	
8260B		Water	Bromoform	
8260B		Water	Bromomethane	
8260B		Water	Carbon disulfide	
8260B		Water	Carbon tetrachloride	
8260B		Water	Chlorobenzene	
8260B		Water	Chloroethane	
8260B		Water	Chloroform	
8260B		Water	Chloromethane	
8260B		Water	cis-1,2-Dichloroethene	
8260B		Water	cis-1,3-Dichloropropene	
8260B		Water	Dibromochloromethane	
8260B		Water	Dibromomethane	

_

Accreditation/Certification Summary

Client: Souder, Miller & Associates

Job ID: 885-33673-1 Project/Site: Fairview 9-18

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

nority	Progra	am	Identification Number	Expiration Date
The following analytes	are included in this report, bu	t the laboratory is not certif	ed by the governing authority. This li	st may include analyte
for which the agency d	oes not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
8260B		Water	Dichlorodifluoromethane	
8260B		Water	Ethylbenzene	
8260B		Water	Hexachlorobutadiene	
8260B		Water	Isopropylbenzene	
8260B		Water	Methylene Chloride	
8260B		Water	Methyl-tert-butyl Ether (M	TBE)
8260B		Water	Naphthalene	
8260B		Water	n-Butylbenzene	
8260B		Water	N-Propylbenzene	
8260B		Water	sec-Butylbenzene	
8260B		Water	Styrene	
8260B		Water	tert-Butylbenzene	
8260B		Water	Tetrachloroethene (PCE)	
8260B		Water	Toluene	
8260B		Water	trans-1,2-Dichloroethene	
8260B		Water	trans-1,3-Dichloropropen	е
8260B		Water	Trichloroethene (TCE)	
8260B		Water	Trichlorofluoromethane	
8260B		Water	Vinyl chloride	
8260B		Water	Xylenes, Total	
gon	NELA	-	NM100001	02-26-26

9/26/2025

10

9/26/2025

Login Sample Receipt Checklist

Client: Souder, Miller & Associates Job Number: 885-33673-1

Login Number: 33673 List Source: Eurofins Albuquerque

List Number: 1

Creator: Alderette, Joseph

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

. .

PREPARED FOR

Attn: Scott McKitrick Souder, Miller & Associates 5454 Venice Ave. NE Suite D Albuquerque, New Mexico 87113

ANALYTICAL REPORT

Generated 10/7/2025 10:48:18 AM

JOB DESCRIPTION

Fairview

JOB NUMBER

885-34174-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM <u>87109</u>

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 10/7/2025 10:48:18 AM

Authorized for release by Catherine Upton, Project Manager Catherine.upton@et.eurofinsus.com (505)338-8837

Page 2 of 41 10/7/2025

2

A

5

7

8

9

Client: Souder, Miller & Associates Project/Site: Fairview

Laboratory Job ID: 885-34174-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	30
QC Association Summary	35
Lab Chronicle	36
Certification Summary	38
Chain of Custody	40
Receipt Checklists	41

4

5

9

Definitions/Glossary

Client: Souder, Miller & Associates Job ID: 885-34174-1

Project/Site: Fairview

Glossary

ML

MPN

MQL

NC

ND

NEG

POS

PQL

QC RER

RL

RPD TEF

TEQ

TNTC

PRES

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive **Quality Control**

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\\	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

10/7/2025

Case Narrative

Client: Souder, Miller & Associates

Job ID: 885-34174-1 Project: Fairview

Job ID: 885-34174-1

Eurofins Albuquerque

Job Narrative 885-34174-1

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when sitespecific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 9/25/2025 10:02 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-4

Date Collected: 09/24/25 13:18 Date Received: 09/25/25 10:02 Job ID: 885-34174-1

Lab Sample ID: 885-34174-1

Matrix: Water

_	

Method: SW846 8260B - Volatile Organic	Cor	np	our	nds	(GC/MS)	į
	_		_			

Analyte	Result	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		10/02/25 18:01	-
1,1,1-Trichloroethane	ND		1.0	ug/L		10/02/25 18:01	
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L		10/02/25 18:01	
1,1,2-Trichloroethane	ND		1.0	ug/L		10/02/25 18:01	
1,1-Dichloroethane	ND		1.0	ug/L		10/02/25 18:01	
1,1-Dichloroethene	ND		1.0	ug/L		10/02/25 18:01	
1,1-Dichloropropene	ND		1.0	ug/L		10/02/25 18:01	
1,2,3-Trichlorobenzene	ND		1.0	ug/L		10/02/25 18:01	
1,2,3-Trichloropropane	ND		2.0	ug/L		10/02/25 18:01	
1,2,4-Trichlorobenzene	ND		1.0	ug/L		10/02/25 18:01	
1,2,4-Trimethylbenzene	ND		1.0	ug/L		10/02/25 18:01	
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		10/02/25 18:01	
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		10/02/25 18:01	
1,2-Dichlorobenzene	ND		1.0	ug/L		10/02/25 18:01	
1,2-Dichloroethane (EDC)	ND		1.0	ug/L		10/02/25 18:01	
1,2-Dichloropropane	ND		1.0	ug/L		10/02/25 18:01	
1,3,5-Trimethylbenzene	ND		1.0	ug/L		10/02/25 18:01	
1,3-Dichlorobenzene	ND		1.0	ug/L		10/02/25 18:01	
	ND		1.0			10/02/25 18:01	
1,3-Dichloropropane	ND ND		1.0	ug/L		10/02/25 18:01	
1,4-Dichlorobenzene				ug/L			
1-Methylnaphthalene	ND		4.0	ug/L		10/02/25 18:01	
2,2-Dichloropropane	ND		2.0	ug/L		10/02/25 18:01	
2-Butanone	ND		10	ug/L		10/02/25 18:01	
2-Chlorotoluene	ND		1.0	ug/L		10/02/25 18:01	
2-Hexanone	ND		10	ug/L 		10/02/25 18:01	•
2-Methylnaphthalene	ND		4.0	ug/L		10/02/25 18:01	
4-Chlorotoluene	ND		1.0	ug/L		10/02/25 18:01	
4-Isopropyltoluene	ND		1.0	ug/L		10/02/25 18:01	•
4-Methyl-2-pentanone	ND		10	ug/L		10/02/25 18:01	
Acetone	ND		10	ug/L		10/02/25 18:01	
Benzene	ND		1.0	ug/L		10/02/25 18:01	•
Bromobenzene	ND		1.0	ug/L		10/02/25 18:01	•
Bromodichloromethane	ND		1.0	ug/L		10/02/25 18:01	
Dibromochloromethane	ND		1.0	ug/L		10/02/25 18:01	•
Bromoform	ND		1.0	ug/L		10/02/25 18:01	•
Bromomethane	ND		3.0	ug/L		10/02/25 18:01	
Carbon disulfide	ND		10	ug/L		10/02/25 18:01	•
Carbon tetrachloride	ND		1.0	ug/L		10/02/25 18:01	
Chlorobenzene	ND		1.0	ug/L		10/02/25 18:01	
Chloroethane	ND		2.0	ug/L		10/02/25 18:01	
Chloroform	ND		1.0	ug/L		10/02/25 18:01	
Chloromethane	ND		3.0	ug/L		10/02/25 18:01	
cis-1,2-Dichloroethene	ND		1.0	ug/L		10/02/25 18:01	
cis-1,3-Dichloropropene	ND		1.0	ug/L		10/02/25 18:01	
Dibromomethane	ND		1.0	ug/L		10/02/25 18:01	
Dichlorodifluoromethane	ND		1.0	ug/L		10/02/25 18:01	
Ethylbenzene	ND		1.0	ug/L		10/02/25 18:01	
Hexachlorobutadiene	ND		1.0	ug/L		10/02/25 18:01	
Isopropylbenzene	ND		1.0	ug/L		10/02/25 18:01	

Eurofins Albuquerque

Page 6 of 41

10/7/2025

Client: Souder, Miller & Associates

Date Received: 09/25/25 10:02

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Project/Site: Fairview

Client Sample ID: MW-4 Lab Sample ID: 885-34174-1 Date Collected: 09/24/25 13:18

99

87

10/02/25 18:01

10/02/25 18:01

Job ID: 885-34174-1

Matrix: Water

Method: SW846 8260B - Volatile	Organic Comp	ounds (GC/	MS) (Continued)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	3.1		1.0	ug/L			10/02/25 18:01	1
Methylene Chloride	ND		2.5	ug/L			10/02/25 18:01	1
n-Butylbenzene	ND		3.0	ug/L			10/02/25 18:01	1
N-Propylbenzene	ND		1.0	ug/L			10/02/25 18:01	1
Naphthalene	ND		2.0	ug/L			10/02/25 18:01	1
sec-Butylbenzene	ND		1.0	ug/L			10/02/25 18:01	1
Styrene	ND		1.0	ug/L			10/02/25 18:01	1
tert-Butylbenzene	ND		1.0	ug/L			10/02/25 18:01	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			10/02/25 18:01	1
Toluene	ND		1.0	ug/L			10/02/25 18:01	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/02/25 18:01	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/02/25 18:01	1
Trichloroethene (TCE)	ND		1.0	ug/L			10/02/25 18:01	1
Trichlorofluoromethane	ND		1.0	ug/L			10/02/25 18:01	1
Vinyl chloride	ND		1.0	ug/L			10/02/25 18:01	1
Xylenes, Total	ND		1.5	ug/L			10/02/25 18:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		70 - 130		_		10/02/25 18:01	1
Toluene-d8 (Surr)	101		70 - 130				10/02/25 18:01	1

70 - 130

70 - 130

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-5

Date Collected: 09/24/25 15:27 Date Received: 09/25/25 10:02 Lab Sample ID: 885-34174-2

Matrix: Water

Job ID: 885-34174-1

Prepared	Analyzed	Dil Fac	
	10/02/25 18:29	2	
	10/02/25 18:29	2	
	10/02/25 18:29	2	
	10/02/25 18:29	2	
	10/02/25 18:29	2	
	10/02/25 18:29	2	
	10/02/25 18:29	2	
	10/02/25 18:29	2	
	10/02/25 18:29	2	
	10/02/25 18:29	2	

Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
ND	2.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	4.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	4.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
21	2.0	ug/L		10/02/25 18:29	2
ND	4.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	2.0	=		10/02/25 18:29	2
7.0	2.0	=		10/02/25 18:29	2
					2
		=			2
		=			2
					2
		=			2
		=			2
					2
		=			2
		=			2
					2
		=			2
		=			2
		=			2
		=			2
		=			20
		=			2
					2
					2
		ug/L			2
		ug/L			2
ND	2.0	=		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	4.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	6.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
22	2.0	ug/L		10/02/25 18:29	2
ND	2.0	ug/L		10/02/25 18:29	2
	ND N	ND	ND	ND	ND 2.0 ug/L 10/02/25 18:29 ND 2.0 ug/L 10/02/25 18:29 ND 4.0 ug/L 10/02/25 18:29 ND 2.0 ug/L 10/02/25 18:29 ND 4.0 ug/L 10/02/25 18:29 ND 2.0 ug/L 10/02/25

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-5

Date Collected: 09/24/25 15:27 Date Received: 09/25/25 10:02 Lab Sample ID: 885-34174-2

Matrix: Water

Job ID: 885-34174-1

-	

Method: SW846 8260B - Volatile C	Result Qualifier	, ,	11	D	Duamanad	Amalumad	Dil Fac
Analyte		RL	Unit		Prepared	Analyzed	
Methyl-tert-butyl Ether (MTBE)	220	2.0	ug/L			10/02/25 18:29	2
Methylene Chloride	ND	5.0	ug/L			10/02/25 18:29	2
n-Butylbenzene	ND	6.0	ug/L			10/02/25 18:29	2
N-Propylbenzene	2.6	2.0	ug/L			10/02/25 18:29	2
Naphthalene	ND	4.0	ug/L			10/02/25 18:29	2
sec-Butylbenzene	ND	2.0	ug/L			10/02/25 18:29	2
Styrene	ND	2.0	ug/L			10/02/25 18:29	2
tert-Butylbenzene	ND	2.0	ug/L			10/02/25 18:29	2
Tetrachloroethene (PCE)	ND	2.0	ug/L			10/02/25 18:29	2
Toluene	26	2.0	ug/L			10/02/25 18:29	2
trans-1,2-Dichloroethene	ND	2.0	ug/L			10/02/25 18:29	2
trans-1,3-Dichloropropene	ND	2.0	ug/L			10/02/25 18:29	2
Trichloroethene (TCE)	ND	2.0	ug/L			10/02/25 18:29	2
Trichlorofluoromethane	ND	2.0	ug/L			10/02/25 18:29	2
Vinyl chloride	ND	2.0	ug/L			10/02/25 18:29	2
Xylenes, Total	24	3.0	ug/L			10/02/25 18:29	2

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	70 - 130		10/02/25 18:29	2
1,2-Dichloroethane-d4 (Surr)	94	70 - 130		10/06/25 15:01	20
Toluene-d8 (Surr)	104	70 - 130		10/02/25 18:29	2
4-Bromofluorobenzene (Surr)	99	70 - 130		10/02/25 18:29	2
Dibromofluoromethane (Surr)	87	70 - 130		10/02/25 18:29	2
Dibromofluoromethane (Surr)	96	70 - 130		10/06/25 15:01	20

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-12

Date Collected: 09/24/25 14:33 Date Received: 09/25/25 10:02

Method: SW846 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: 885-34174-3

Matrix: Water

Job ID: 885-34174-1

5

6

8

10

4 4

Analyte	Result	Qualifier	RL	Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			10/06/25 13:09	1
1,1,1-Trichloroethane	ND		1.0	ug/L			10/06/25 13:09	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			10/06/25 13:09	1
1,1,2-Trichloroethane	ND		1.0	ug/L			10/06/25 13:09	1
1,1-Dichloroethane	ND		1.0	ug/L			10/06/25 13:09	1
1,1-Dichloroethene	ND		1.0	ug/L			10/06/25 13:09	1
1,1-Dichloropropene	ND		1.0	ug/L			10/06/25 13:09	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			10/06/25 13:09	1
1,2,3-Trichloropropane	ND		2.0	ug/L			10/06/25 13:09	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			10/06/25 13:09	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			10/06/25 13:09	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			10/06/25 13:09	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			10/06/25 13:09	1
1,2-Dichlorobenzene	ND		1.0	ug/L			10/06/25 13:09	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			10/06/25 13:09	1
1,2-Dichloropropane	ND		1.0	ug/L			10/06/25 13:09	
1,3,5-Trimethylbenzene	ND		1.0	ug/L			10/06/25 13:09	1
1,3-Dichlorobenzene	ND		1.0	ug/L			10/06/25 13:09	1
	ND		1.0				10/06/25 13:09	
1,3-Dichloropropane				ug/L				
1,4-Dichlorobenzene	ND		1.0	ug/L			10/06/25 13:09	1
1-Methylnaphthalene	ND		4.0	ug/L			10/06/25 13:09	1
2,2-Dichloropropane	ND		2.0	ug/L			10/06/25 13:09	1
2-Butanone	ND		10	ug/L 			10/06/25 13:09	1
2-Chlorotoluene	ND		1.0	ug/L			10/06/25 13:09	
2-Hexanone	ND		10	ug/L			10/06/25 13:09	1
2-Methylnaphthalene	ND		4.0	ug/L			10/06/25 13:09	1
4-Chlorotoluene	ND		1.0	ug/L			10/06/25 13:09	1
1-Isopropyltoluene	ND		1.0	ug/L			10/06/25 13:09	1
4-Methyl-2-pentanone	ND		10	ug/L			10/06/25 13:09	1
Acetone	ND		10	ug/L			10/06/25 13:09	1
Benzene	ND		1.0	ug/L			10/06/25 13:09	1
Bromobenzene	ND		1.0	ug/L			10/06/25 13:09	1
Bromodichloromethane	ND		1.0	ug/L			10/06/25 13:09	1
Dibromochloromethane	ND		1.0	ug/L			10/06/25 13:09	1
Bromoform	ND		1.0	ug/L			10/06/25 13:09	1
Bromomethane	ND		3.0	ug/L			10/06/25 13:09	1
Carbon disulfide	ND		10	ug/L			10/06/25 13:09	1
Carbon tetrachloride	ND		1.0	ug/L			10/06/25 13:09	1
Chlorobenzene	ND		1.0	ug/L			10/06/25 13:09	1
Chloroethane	ND		2.0	ug/L			10/06/25 13:09	1
Chloroform	ND		1.0	ug/L			10/06/25 13:09	1
Chloromethane	ND		3.0	ug/L			10/06/25 13:09	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			10/06/25 13:09	
cis-1,3-Dichloropropene	ND		1.0	ug/L			10/06/25 13:09	1
Dibromomethane	ND		1.0	ug/L			10/06/25 13:09	. 1
Dichlorodifluoromethane	ND		1.0	ug/L			10/06/25 13:09	· · · · · · · · · · · · · · · · · · ·
Ethylbenzene	ND		1.0	ug/L			10/06/25 13:09	1
Hexachlorobutadiene	ND		1.0	ug/L			10/06/25 13:09	1
Isopropylbenzene	ND		1.0	ug/L ug/L			10/06/25 13:09	

Client: Souder, Miller & Associates

Date Received: 09/25/25 10:02

Project/Site: Fairview

Lab Sample ID: 885-34174-3 **Client Sample ID: MW-12** Date Collected: 09/24/25 14:33

Matrix: Water

Job ID: 885-34174-1

Method: SW846 8260B - Volatile	Organic Comp	ounds (GC/I	MS) (Continued)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	23		1.0	ug/L			10/06/25 13:09	1
Methylene Chloride	ND		2.5	ug/L			10/06/25 13:09	1
n-Butylbenzene	ND		3.0	ug/L			10/06/25 13:09	1
N-Propylbenzene	ND		1.0	ug/L			10/06/25 13:09	1
Naphthalene	ND		2.0	ug/L			10/06/25 13:09	1
sec-Butylbenzene	ND		1.0	ug/L			10/06/25 13:09	1
Styrene	ND		1.0	ug/L			10/06/25 13:09	1
tert-Butylbenzene	ND		1.0	ug/L			10/06/25 13:09	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			10/06/25 13:09	1
Toluene	ND		1.0	ug/L			10/06/25 13:09	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/06/25 13:09	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/06/25 13:09	1
Trichloroethene (TCE)	ND		1.0	ug/L			10/06/25 13:09	1
Trichlorofluoromethane	ND		1.0	ug/L			10/06/25 13:09	1
Vinyl chloride	ND		1.0	ug/L			10/06/25 13:09	1
Xylenes, Total	ND		1.5	ug/L			10/06/25 13:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 130		-		10/06/25 13:09	1
Toluene-d8 (Surr)	102		70 - 130				10/06/25 13:09	1
4-Bromofluorobenzene (Surr)	97		70 - 130				10/06/25 13:09	1
Dibromofluoromethane (Surr)	90		70 - 130				10/06/25 13:09	1

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-16

Date Collected: 09/24/25 15:14 Date Received: 09/25/25 10:02 Lab Sample ID: 885-34174-4

Matrix: Water

Job ID: 885-34174-1

Analyzed	Dil Fac	5
10/00/05 10:05		

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	1.0	ug/L		10/02/25 19:25	1
1,1,1-Trichloroethane	ND	1.0	ug/L		10/02/25 19:25	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		10/02/25 19:25	1
1,1,2-Trichloroethane	ND	1.0	ug/L		10/02/25 19:25	1
1,1-Dichloroethane	ND	1.0	ug/L		10/02/25 19:25	1
1,1-Dichloroethene	ND	1.0	ug/L		10/02/25 19:25	
1,1-Dichloropropene	ND	1.0	ug/L		10/02/25 19:25	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		10/02/25 19:25	1
1,2,3-Trichloropropane	ND	2.0	ug/L		10/02/25 19:25	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		10/02/25 19:25	
1,2,4-Trimethylbenzene	86	10	ug/L		10/06/25 15:57	10
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		10/02/25 19:25	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		10/02/25 19:25	
1,2-Dichlorobenzene	ND	1.0	ug/L		10/02/25 19:25	1
1,2-Dichloroethane (EDC)	1.7	1.0	ug/L		10/02/25 19:25	1
1,2-Dichloropropane	ND	1.0	ug/L		10/02/25 19:25	1
1,3,5-Trimethylbenzene	12	1.0	ug/L		10/02/25 19:25	1
1,3-Dichlorobenzene	ND	1.0	ug/L		10/02/25 19:25	
1,3-Dichloropropane	ND	1.0	ug/L		10/02/25 19:25	,
1,4-Dichlorobenzene	ND	1.0	ug/L		10/02/25 19:25	
1-Methylnaphthalene	9.2	4.0	ug/L		10/02/25 19:25	
2,2-Dichloropropane	ND	2.0	ug/L		10/02/25 19:25	,
2-Butanone	ND	10	ug/L		10/02/25 19:25	1
2-Chlorotoluene	ND	1.0	ug/L		10/02/25 19:25	1
2-Hexanone	ND	10	ug/L		10/02/25 19:25	1
2-Methylnaphthalene	ND	4.0	ug/L		10/02/25 19:25	
4-Chlorotoluene	ND	1.0	ug/L		10/02/25 19:25	
4-Isopropyltoluene	ND	1.0	ug/L		10/02/25 19:25	
4-Methyl-2-pentanone	ND	10	ug/L		10/02/25 19:25	
Acetone	ND	10	ug/L		10/02/25 19:25	
Benzene	460	10	ug/L		10/06/25 15:57	10
Bromobenzene	ND	1.0	ug/L		10/02/25 19:25	1
Bromodichloromethane	ND	1.0	ug/L		10/02/25 19:25	1
Dibromochloromethane	ND	1.0	ug/L		10/02/25 19:25	1
Bromoform	ND	1.0	ug/L		10/02/25 19:25	
Bromomethane	ND	3.0	ug/L		10/02/25 19:25	1
Carbon disulfide	ND	10	ug/L		10/02/25 19:25	1
Carbon tetrachloride	ND	1.0	ug/L		10/02/25 19:25	1
Chlorobenzene	ND	1.0	ug/L		10/02/25 19:25	1
Chloroethane	ND	2.0	ug/L		10/02/25 19:25	,
Chloroform	ND	1.0	ug/L		10/02/25 19:25	,
Chloromethane	ND	3.0	ug/L		10/02/25 19:25	
cis-1,2-Dichloroethene	ND	1.0	ug/L		10/02/25 19:25	,
cis-1,3-Dichloropropene	ND	1.0	ug/L		10/02/25 19:25	,
Dibromomethane	ND	1.0	ug/L		10/02/25 19:25	
Dichlorodifluoromethane	ND	1.0	ug/L		10/02/25 19:25	
Ethylbenzene	130	1.0	ug/L ug/L		10/06/25 15:57	10
Hexachlorobutadiene	ND	1.0			10/02/25 19:25	10
Isopropylbenzene	7.1	1.0	ug/L ug/L		10/02/25 19:25	1

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-16

Date Collected: 09/24/25 15:14
Date Received: 09/25/25 10:02

Lab Sample ID: 885-34174-4

Matrix: Water

Job ID: 885-34174-1

Method: SW846 8260B - Volatile C	•						
Analyte	Result Qualifier	RL	Unit	<u>D</u> _	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	36	1.0	ug/L			10/02/25 19:25	1
Methylene Chloride	ND	2.5	ug/L			10/02/25 19:25	1
n-Butylbenzene	ND	3.0	ug/L			10/02/25 19:25	1
N-Propylbenzene	17	1.0	ug/L			10/02/25 19:25	1
Naphthalene	16	2.0	ug/L			10/02/25 19:25	1
sec-Butylbenzene	1.3	1.0	ug/L			10/02/25 19:25	1
Styrene	ND	1.0	ug/L			10/02/25 19:25	1
tert-Butylbenzene	ND	1.0	ug/L			10/02/25 19:25	1
Tetrachloroethene (PCE)	ND	1.0	ug/L			10/02/25 19:25	1
Toluene	150	10	ug/L			10/06/25 15:57	10
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/02/25 19:25	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/02/25 19:25	1
Trichloroethene (TCE)	ND	1.0	ug/L			10/02/25 19:25	1
Trichlorofluoromethane	ND	1.0	ug/L			10/02/25 19:25	1
Vinyl chloride	ND	1.0	ug/L			10/02/25 19:25	1
Xvlenes, Total	230	1.5	ug/L			10/02/25 19:25	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 130		10/02/25 19:25	1
1,2-Dichloroethane-d4 (Surr)	94		70 - 130		10/06/25 15:57	10
Toluene-d8 (Surr)	103		70 - 130		10/02/25 19:25	1
Toluene-d8 (Surr)	102		70 - 130		10/06/25 15:57	10
4-Bromofluorobenzene (Surr)	100		70 - 130		10/02/25 19:25	1
4-Bromofluorobenzene (Surr)	98		70 - 130		10/06/25 15:57	10
Dibromofluoromethane (Surr)	85		70 - 130		10/02/25 19:25	1
Dibromofluoromethane (Surr)	94		70 - 130		10/06/25 15:57	10

RL

1.0

1.0

Unit

ug/L

ug/L

D

Client: Souder, Miller & Associates

Project/Site: Fairview

1,1,1,2-Tetrachloroethane

1,1,1-Trichloroethane

Carbon tetrachloride

Chlorobenzene

Chloromethane

Dibromomethane

Ethylbenzene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Hexachlorobutadiene

Isopropylbenzene

Chloroethane

Chloroform

Client Sample ID: MW-17

Date Collected: 09/24/25 12:35 Date Received: 09/25/25 10:02

Method: SW846 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

2.8

Lab Sample ID: 885-34174-5

Matrix: Water

Job ID: 885-34174-1

	_	

Prepared	Analyzed	Dil Fac

10/06/25 14:05

10/06/25 14:05

1,1,1 111011101001111110	110	1.0	ug/L	10/00/20 11:00
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	10/06/25 14:05
1,1,2-Trichloroethane	ND	1.0	ug/L	10/06/25 14:05
1,1-Dichloroethane	ND	1.0	ug/L	10/06/25 14:05
1,1-Dichloroethene	ND	1.0	ug/L	10/06/25 14:05
1,1-Dichloropropene	ND	1.0	ug/L	10/06/25 14:05
1,2,3-Trichlorobenzene	ND	1.0	ug/L	10/06/25 14:05
1,2,3-Trichloropropane	ND	2.0	ug/L	10/06/25 14:05
1,2,4-Trichlorobenzene	ND	1.0	ug/L	10/06/25 14:05
1,2,4-Trimethylbenzene	98	1.0	ug/L	10/06/25 14:05
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L	10/06/25 14:05
1,2-Dibromoethane (EDB)	ND	1.0	ug/L	10/06/25 14:05
1,2-Dichlorobenzene	ND	1.0	ug/L	10/06/25 14:05
1,2-Dichloroethane (EDC)	ND	1.0	ug/L	10/06/25 14:05
1,2-Dichloropropane	ND	1.0	ug/L	10/06/25 14:05
1,3,5-Trimethylbenzene	34	1.0	ug/L	10/06/25 14:05
1,3-Dichlorobenzene	ND	1.0	ug/L	10/06/25 14:05
1,3-Dichloropropane	ND	1.0	ug/L	10/06/25 14:05
1,4-Dichlorobenzene	ND	1.0	ug/L	10/06/25 14:05
1-Methylnaphthalene	12	4.0	ug/L	10/06/25 14:05
2,2-Dichloropropane	ND	2.0	ug/L	10/06/25 14:05
2-Butanone	ND	10	ug/L	10/06/25 14:05
2-Chlorotoluene	ND	1.0	ug/L	10/06/25 14:05
2-Hexanone	ND	10	ug/L	10/06/25 14:05
2-Methylnaphthalene	24	4.0	ug/L	10/06/25 14:05
4-Chlorotoluene	ND	1.0	ug/L	10/06/25 14:05
4-Isopropyltoluene	1.9	1.0	ug/L	10/06/25 14:05
4-Methyl-2-pentanone	ND	10	ug/L	10/06/25 14:05
Acetone	ND	10	ug/L	10/06/25 14:05
Benzene	1.6	1.0	ug/L	10/06/25 14:05
Bromobenzene	ND	1.0	ug/L	10/06/25 14:05
Bromodichloromethane	ND	1.0	ug/L	10/06/25 14:05
Dibromochloromethane	ND	1.0	ug/L	10/06/25 14:05
Bromoform	ND	1.0	ug/L	10/06/25 14:05
Bromomethane	ND	3.0	ug/L	10/06/25 14:05
Carbon disulfide	ND	10	ug/L	10/06/25 14:05

Eurofins Albuquerque

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

10/06/25 14:05

1.0

1.0

2.0

1.0

3.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

ug/L

Client: Souder, Miller & Associates

Project/Site: Fairview

Lab Sample ID: 885-34174-5 **Client Sample ID: MW-17**

Date Collected: 09/24/25 12:35 Matrix: Water Date Received: 09/25/25 10:02

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			10/06/25 14:05	1
Methylene Chloride	ND		2.5	ug/L			10/06/25 14:05	1
n-Butylbenzene	4.1		3.0	ug/L			10/06/25 14:05	1
N-Propylbenzene	5.1		1.0	ug/L			10/06/25 14:05	1
Naphthalene	16		2.0	ug/L			10/06/25 14:05	1
sec-Butylbenzene	1.9		1.0	ug/L			10/06/25 14:05	1
Styrene	ND		1.0	ug/L			10/06/25 14:05	1
tert-Butylbenzene	ND		1.0	ug/L			10/06/25 14:05	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			10/06/25 14:05	1
Toluene	ND		1.0	ug/L			10/06/25 14:05	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/06/25 14:05	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/06/25 14:05	1
Trichloroethene (TCE)	ND		1.0	ug/L			10/06/25 14:05	1
Trichlorofluoromethane	ND		1.0	ug/L			10/06/25 14:05	1
Vinyl chloride	ND		1.0	ug/L			10/06/25 14:05	1
Xylenes, Total	89		1.5	ug/L			10/06/25 14:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 130				10/06/25 14:05	1
Toluene-d8 (Surr)	102		70 - 130				10/06/25 14:05	1
4-Bromofluorobenzene (Surr)	99		70 - 130				10/06/25 14:05	1
Dibromofluoromethane (Surr)	91		70 - 130				10/06/25 14:05	1

Job ID: 885-34174-1

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-19

Date Collected: 09/24/25 13:37 Date Received: 09/25/25 10:02 Lab Sample ID: 885-34174-6

Matrix: Water

Job ID: 885-34174-1

ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	2.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	2.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	2.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	=		10/06/25 13:37	
ND	1.0	=		10/06/25 13:37	
ND	1.0				
		=			
		=			
		=			
		=			
		=			
		=			
		=			
		=			
		=			
		=			
		=		10/06/25 13:37	
	1.0				
	2.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	3.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
ND	1.0	ug/L		10/06/25 13:37	
	ND N	ND 1.0 ND 2.0 ND 1.0 ND 1.0 <td< td=""><td> ND</td><td> ND</td><td>ND 1.0 ug/L 10/06/25 13.37 ND 2.0 ug/L 10/06/25 13.37 ND 1.0 ug/L 10/06/25</td></td<>	ND	ND	ND 1.0 ug/L 10/06/25 13.37 ND 2.0 ug/L 10/06/25 13.37 ND 1.0 ug/L 10/06/25

Client: Souder, Miller & Associates

Date Received: 09/25/25 10:02

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Project/Site: Fairview

Client Sample ID: MW-19 Lab Sample ID: 885-34174-6 Date Collected: 09/24/25 13:37

Matrix: Water

10/06/25 13:37

10/06/25 13:37

Job ID: 885-34174-1

Method: SW846 8260B - Volati	le Organic Compounds	(GC/MS) (Continue	d)				
Analyte	Result Qualifie	r RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND ND	1.0	ug/L			10/06/25 13:37	1
Methylene Chloride	ND	2.5	ug/L			10/06/25 13:37	1
n-Butylbenzene	ND	3.0	ug/L			10/06/25 13:37	1
N-Propylbenzene	ND	1.0	ug/L			10/06/25 13:37	1
Naphthalene	ND	2.0	ug/L			10/06/25 13:37	1
sec-Butylbenzene	ND	1.0	ug/L			10/06/25 13:37	1
Styrene	ND	1.0	ug/L			10/06/25 13:37	1
tert-Butylbenzene	ND	1.0	ug/L			10/06/25 13:37	1
Tetrachloroethene (PCE)	ND	1.0	ug/L			10/06/25 13:37	1
Toluene	ND	1.0	ug/L			10/06/25 13:37	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/06/25 13:37	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/06/25 13:37	1
Trichloroethene (TCE)	ND	1.0	ug/L			10/06/25 13:37	1
Trichlorofluoromethane	ND	1.0	ug/L			10/06/25 13:37	1
Vinyl chloride	ND	1.0	ug/L			10/06/25 13:37	1
Xylenes, Total	ND	1.5	ug/L			10/06/25 13:37	1
Surrogate	%Recovery Qualifie	er Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91	70 - 130		_		10/06/25 13:37	1
Toluene-d8 (Surr)	102	70 - 130				10/06/25 13:37	1

70 - 130

70 - 130

97

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-21

Date Collected: 09/24/25 14:02 Date Received: 09/25/25 10:02 Lab Sample ID: 885-34174-7

Matrix: Water

Job ID: 885-34174-1

_	L.

4

5

7

0

10

44

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	1.0	ug/L		10/02/25 20:49	
1,1,1-Trichloroethane	ND	1.0	ug/L		10/02/25 20:49	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		10/02/25 20:49	
1,1,2-Trichloroethane	ND	1.0	ug/L		10/02/25 20:49	
1,1-Dichloroethane	ND	1.0	ug/L		10/02/25 20:49	
1,1-Dichloroethene	ND	1.0	ug/L		10/02/25 20:49	
1,1-Dichloropropene	ND	1.0	ug/L		10/02/25 20:49	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		10/02/25 20:49	
1,2,3-Trichloropropane	ND	2.0	ug/L		10/02/25 20:49	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		10/02/25 20:49	
1,2,4-Trimethylbenzene	ND	1.0	ug/L		10/02/25 20:49	
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		10/02/25 20:49	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		10/02/25 20:49	
1,2-Dichlorobenzene	ND	1.0	ug/L		10/02/25 20:49	
1,2-Dichloroethane (EDC)	ND	1.0	ug/L		10/02/25 20:49	
1,2-Dichloropropane	ND	1.0	ug/L		10/02/25 20:49	
1,3,5-Trimethylbenzene	ND	1.0	ug/L		10/02/25 20:49	
1,3-Dichlorobenzene	ND	1.0	ug/L		10/02/25 20:49	
1,3-Dichloropropane	ND	1.0	ug/L		10/02/25 20:49	
1,4-Dichlorobenzene	ND	1.0	ug/L		10/02/25 20:49	
1-Methylnaphthalene	ND	4.0	ug/L		10/02/25 20:49	
2,2-Dichloropropane	ND ND	2.0	ug/L ug/L		10/02/25 20:49	
2-Butanone	ND	10			10/02/25 20:49	
2-Chlorotoluene	ND ND	1.0	ug/L		10/02/25 20:49	
2-Chiorotoluerie 2-Hexanone	ND ND	10	ug/L		10/02/25 20:49	
	ND		ug/L			
2-Methylnaphthalene		4.0	ug/L		10/02/25 20:49	
4-Chlorotoluene	ND	1.0	ug/L		10/02/25 20:49	
1-Isopropyltoluene	ND	1.0	ug/L		10/02/25 20:49	
4-Methyl-2-pentanone	ND	10	ug/L		10/02/25 20:49	
Acetone	ND	10	ug/L		10/02/25 20:49	
Benzene -	ND	1.0	ug/L		10/02/25 20:49	
Bromobenzene	ND	1.0	ug/L		10/02/25 20:49	
Bromodichloromethane	ND	1.0	ug/L		10/02/25 20:49	
Dibromochloromethane	ND	1.0	ug/L 		10/02/25 20:49	
Bromoform	ND	1.0	ug/L		10/02/25 20:49	
Bromomethane	ND	3.0	ug/L		10/02/25 20:49	
Carbon disulfide	ND	10	ug/L		10/02/25 20:49	
Carbon tetrachloride	ND	1.0	ug/L		10/02/25 20:49	
Chlorobenzene	ND	1.0	ug/L		10/02/25 20:49	
Chloroethane	ND	2.0	ug/L		10/02/25 20:49	
Chloroform	ND	1.0	ug/L		10/02/25 20:49	
Chloromethane	ND	3.0	ug/L		10/02/25 20:49	
cis-1,2-Dichloroethene	ND	1.0	ug/L		10/02/25 20:49	
cis-1,3-Dichloropropene	ND	1.0	ug/L		10/02/25 20:49	
Dibromomethane	ND	1.0	ug/L		10/02/25 20:49	
Dichlorodifluoromethane	ND	1.0	ug/L		10/02/25 20:49	
Ethylbenzene	ND	1.0	ug/L		10/02/25 20:49	
Hexachlorobutadiene	ND	1.0	ug/L		10/02/25 20:49	
Isopropylbenzene	ND	1.0	ug/L		10/02/25 20:49	

Client: Souder, Miller & Associates

Project/Site: Fairview

Lab Sample ID: 885-34174-7 **Client Sample ID: MW-21** Matrix: Water

Date Collected: 09/24/25 14:02 Date Received: 09/25/25 10:02

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			10/02/25 20:49	1
Methylene Chloride	ND		2.5	ug/L			10/02/25 20:49	1
n-Butylbenzene	ND		3.0	ug/L			10/02/25 20:49	1
N-Propylbenzene	ND		1.0	ug/L			10/02/25 20:49	1
Naphthalene	ND		2.0	ug/L			10/02/25 20:49	1
sec-Butylbenzene	ND		1.0	ug/L			10/02/25 20:49	1
Styrene	ND		1.0	ug/L			10/02/25 20:49	1
tert-Butylbenzene	ND		1.0	ug/L			10/02/25 20:49	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			10/02/25 20:49	1
Toluene	ND		1.0	ug/L			10/02/25 20:49	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/02/25 20:49	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/02/25 20:49	1
Trichloroethene (TCE)	ND		1.0	ug/L			10/02/25 20:49	1
Trichlorofluoromethane	ND		1.0	ug/L			10/02/25 20:49	1
Vinyl chloride	ND		1.0	ug/L			10/02/25 20:49	1
Xylenes, Total	ND		1.5	ug/L			10/02/25 20:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 130		•		10/02/25 20:49	1
Toluene-d8 (Surr)	102		70 - 130				10/02/25 20:49	1
4-Bromofluorobenzene (Surr)	101		70 - 130				10/02/25 20:49	1
Dibromofluoromethane (Surr)	89		70 - 130				10/02/25 20:49	1

10/7/2025

Eurofins Albuquerque

Job ID: 885-34174-1

Client: Souder, Miller & Associates

Project/Site: Fairview

Isopropylbenzene

Client Sample ID: MW-24

Date Collected: 09/24/25 11:22 Date Received: 09/25/25 10:02 Job ID: 885-34174-1

Lab Sample ID: 885-34174-8

Matrix: Water

Analyte	Result Qualifier	RL	Unit	D _	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			10/02/25 21:17	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/02/25 21:17	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L			10/02/25 21:17	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/02/25 21:17	1
1,1-Dichloroethane	ND	1.0	ug/L			10/02/25 21:17	1
1,1-Dichloroethene	ND	1.0	ug/L			10/02/25 21:17	1
1,1-Dichloropropene	ND	1.0	ug/L			10/02/25 21:17	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			10/02/25 21:17	1
1,2,3-Trichloropropane	ND	2.0	ug/L			10/02/25 21:17	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/02/25 21:17	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L			10/02/25 21:17	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/02/25 21:17	1
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			10/02/25 21:17	1
1,2-Dichlorobenzene	ND	1.0	ug/L			10/02/25 21:17	1
1,2-Dichloroethane (EDC)	ND	1.0	ug/L			10/02/25 21:17	1
1,2-Dichloropropane	ND	1.0	ug/L			10/02/25 21:17	1
1,3,5-Trimethylbenzene	ND	1.0	ug/L			10/02/25 21:17	1
1,3-Dichlorobenzene	ND	1.0	ug/L			10/02/25 21:17	1
1,3-Dichloropropane	ND	1.0	ug/L			10/02/25 21:17	1
1,4-Dichlorobenzene	ND	1.0	ug/L			10/02/25 21:17	1
1-Methylnaphthalene	ND	4.0	ug/L			10/02/25 21:17	1
2,2-Dichloropropane	ND	2.0	ug/L			10/02/25 21:17	· · · · · · · · · · · · · · · · · · ·
2-Butanone	ND	10	ug/L			10/02/25 21:17	1
2-Chlorotoluene	ND	1.0	ug/L			10/02/25 21:17	1
2-Hexanone	ND	1.0	ug/L			10/02/25 21:17	
	ND	4.0	ug/L			10/02/25 21:17	1
2-Methylnaphthalene	ND	1.0	ug/L ug/L			10/02/25 21:17	1
4-Chlorotoluene							
4-Isopropyltoluene	ND	1.0	ug/L			10/02/25 21:17	1
4-Methyl-2-pentanone	ND	10	ug/L			10/02/25 21:17	1
Acetone	ND	10	ug/L			10/02/25 21:17	
Benzene	ND	1.0	ug/L			10/02/25 21:17	1
Bromobenzene	ND	1.0	ug/L			10/02/25 21:17	1
Bromodichloromethane	ND	1.0	ug/L			10/02/25 21:17	1
Dibromochloromethane	ND	1.0	ug/L			10/02/25 21:17	1
Bromoform	ND	1.0	ug/L			10/02/25 21:17	1
Bromomethane	ND	3.0	ug/L			10/02/25 21:17	1
Carbon disulfide	ND	10	ug/L			10/02/25 21:17	1
Carbon tetrachloride	ND	1.0	ug/L			10/02/25 21:17	1
Chlorobenzene	ND	1.0	ug/L			10/02/25 21:17	1
Chloroethane	ND	2.0	ug/L			10/02/25 21:17	1
Chloroform	ND	1.0	ug/L			10/02/25 21:17	1
Chloromethane	ND	3.0	ug/L			10/02/25 21:17	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/02/25 21:17	1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/02/25 21:17	1
Dibromomethane	ND	1.0	ug/L			10/02/25 21:17	1
Dichlorodifluoromethane	ND	1.0	ug/L			10/02/25 21:17	1
Ethylbenzene	ND	1.0	ug/L			10/02/25 21:17	1
Hexachlorobutadiene	ND	1.0	ug/L			10/02/25 21:17	1
	NID.	4.0				40/00/05 04:47	

Eurofins Albuquerque

10/02/25 21:17

ug/L

ND

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-24 Lab Sample ID: 885-34174-8

Date Collected: 09/24/25 11:22

Date Received: 09/25/25 10:02

Matrix: Water

Method: SW846 8260B - Volatile Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	2.0		1.0	ug/L		•	10/02/25 21:17	1
Methylene Chloride	ND		2.5	ug/L			10/02/25 21:17	1
n-Butylbenzene	ND		3.0	ug/L			10/02/25 21:17	1
N-Propylbenzene	ND		1.0	ug/L			10/02/25 21:17	1
Naphthalene	ND		2.0	ug/L			10/02/25 21:17	1
sec-Butylbenzene	ND		1.0	ug/L			10/02/25 21:17	1
Styrene	ND		1.0	ug/L			10/02/25 21:17	1
tert-Butylbenzene	ND		1.0	ug/L			10/02/25 21:17	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			10/02/25 21:17	1
Toluene	ND		1.0	ug/L			10/02/25 21:17	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/02/25 21:17	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/02/25 21:17	1
Trichloroethene (TCE)	ND		1.0	ug/L			10/02/25 21:17	1
Trichlorofluoromethane	ND		1.0	ug/L			10/02/25 21:17	1
Vinyl chloride	ND		1.0	ug/L			10/02/25 21:17	1
Xylenes, Total	ND		1.5	ug/L			10/02/25 21:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		70 - 130		•		10/02/25 21:17	1
Toluene-d8 (Surr)	100		70 - 130				10/02/25 21:17	1
4-Bromofluorobenzene (Surr)	100		70 - 130				10/02/25 21:17	1
Dibromofluoromethane (Surr)	88		70 - 130				10/02/25 21:17	1

Job ID: 885-34174-1

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-25

Date Collected: 09/24/25 11:34 Date Received: 09/25/25 10:02 Lab Sample ID: 885-34174-9

Job ID: 885-34174-1

aD	Sample	יטו.	000-34	1/4-9
			Matrix:	Water

Analyte	Result Q	Qualifier RL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	1.0	ug/L			10/02/25 21:45	
1,1,1-Trichloroethane	ND	1.0	ug/L			10/02/25 21:45	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L			10/02/25 21:45	
1,1,2-Trichloroethane	ND	1.0	ug/L			10/02/25 21:45	
1,1-Dichloroethane	ND	1.0	ug/L			10/02/25 21:45	
1,1-Dichloroethene	ND	1.0	ug/L			10/02/25 21:45	
1,1-Dichloropropene	ND	1.0	ug/L			10/02/25 21:45	
1,2,3-Trichlorobenzene	ND	1.0	ug/L			10/02/25 21:45	
1,2,3-Trichloropropane	ND	2.0	ug/L			10/02/25 21:45	
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/02/25 21:45	
1,2,4-Trimethylbenzene	ND	1.0	ug/L			10/02/25 21:45	
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/02/25 21:45	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			10/02/25 21:45	
1,2-Dichlorobenzene	ND	1.0	ug/L			10/02/25 21:45	
1,2-Dichloroethane (EDC)	ND	1.0	ug/L			10/02/25 21:45	
I,2-Dichloropropane	ND	1.0	ug/L			10/02/25 21:45	
1,3,5-Trimethylbenzene	ND	1.0	ug/L			10/02/25 21:45	
1,3-Dichlorobenzene	ND	1.0	ug/L			10/02/25 21:45	
1,3-Dichloropropane	ND	1.0	ug/L			10/02/25 21:45	
1,4-Dichlorobenzene	ND	1.0	ug/L			10/02/25 21:45	
1-Methylnaphthalene	ND	4.0	ug/L			10/02/25 21:45	
2,2-Dichloropropane	ND	2.0	ug/L			10/02/25 21:45	
2-Butanone	ND	10	ug/L			10/02/25 21:45	
2-Chlorotoluene	ND	1.0	ug/L			10/02/25 21:45	
2-Hexanone	ND	1.0	ug/L			10/02/25 21:45	
2-Methylnaphthalene	ND	4.0	ug/L			10/02/25 21:45	
1-Chlorotoluene	ND	1.0	ug/L			10/02/25 21:45	
4-Isopropyltoluene	ND	1.0	.			10/02/25 21:45	
• • •	ND ND	1.0	ug/L			10/02/25 21:45	
4-Methyl-2-pentanone Acetone	ND ND	10	ug/L ug/L			10/02/25 21:45	
	ND ND					10/02/25 21:45	
Benzene Bromobenzene	ND ND	1.0	ug/L				
		1.0	ug/L			10/02/25 21:45	
Bromodichloromethane	ND	1.0	ug/L			10/02/25 21:45	
Dibromochloromethane	ND	1.0	ug/L			10/02/25 21:45	
Bromoform	ND	1.0	ug/L			10/02/25 21:45	
Bromomethane	ND	3.0	ug/L			10/02/25 21:45	
Carbon disulfide	ND	10	ug/L			10/02/25 21:45	
Carbon tetrachloride	ND	1.0	ug/L			10/02/25 21:45	
Chlorobenzene	ND	1.0	ug/L			10/02/25 21:45	
Chloroethane	ND	2.0	ug/L			10/02/25 21:45	
Chloroform	ND	1.0	ug/L			10/02/25 21:45	
Chloromethane	ND	3.0	ug/L			10/02/25 21:45	
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/02/25 21:45	
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/02/25 21:45	
Dibromomethane	ND	1.0	ug/L			10/02/25 21:45	
Dichlorodifluoromethane	ND	1.0	ug/L			10/02/25 21:45	
Ethylbenzene	ND	1.0	ug/L			10/02/25 21:45	
Hexachlorobutadiene	ND	1.0	ug/L			10/02/25 21:45	
Isopropylbenzene	ND	1.0	ug/L			10/02/25 21:45	

Eurofins Albuquerque

10/7/2025

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-25 Date Collected: 09/24/25 11:34

Date Received: 09/25/25 10:02

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 885-34174-9

Matrix: Water

Job ID: 885-34174-1

10/02/25 21:45 10/02/25 21:45 vvater

Method: SW846 8260B - Volati	le Organic Compounds	(GC/MS) (Continued	l)				
Analyte	Result Qualifie	r RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND ND	1.0	ug/L			10/02/25 21:45	1
Methylene Chloride	ND	2.5	ug/L			10/02/25 21:45	1
n-Butylbenzene	ND	3.0	ug/L			10/02/25 21:45	1
N-Propylbenzene	ND	1.0	ug/L			10/02/25 21:45	1
Naphthalene	ND	2.0	ug/L			10/02/25 21:45	1
sec-Butylbenzene	ND	1.0	ug/L			10/02/25 21:45	1
Styrene	ND	1.0	ug/L			10/02/25 21:45	1
tert-Butylbenzene	ND	1.0	ug/L			10/02/25 21:45	1
Tetrachloroethene (PCE)	ND	1.0	ug/L			10/02/25 21:45	1
Toluene	ND	1.0	ug/L			10/02/25 21:45	1
trans-1,2-Dichloroethene	ND	1.0	ug/L			10/02/25 21:45	1
trans-1,3-Dichloropropene	ND	1.0	ug/L			10/02/25 21:45	1
Trichloroethene (TCE)	ND	1.0	ug/L			10/02/25 21:45	1
Trichlorofluoromethane	ND	1.0	ug/L			10/02/25 21:45	1
Vinyl chloride	ND	1.0	ug/L			10/02/25 21:45	1
Xylenes, Total	ND	1.5	ug/L			10/02/25 21:45	1
Surrogate	%Recovery Qualifie	r Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91	70 - 130		-		10/02/25 21:45	1
Toluene-d8 (Surr)	101	70 - 130				10/02/25 21:45	1

70 - 130

70 - 130

101

90

8

3

10

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-26 Lab Sample ID: 885-34174-10

Date Collected: 09/24/25 12:55 Matrix: Water

Date Received: 09/25/25 10:02

Analyte	Result Qualifier	RL	Unit	<u>D</u> _	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			10/02/25 22:13	
1,1,1-Trichloroethane	ND	1.0	ug/L			10/02/25 22:13	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L			10/02/25 22:13	
1,1,2-Trichloroethane	ND	1.0	ug/L			10/02/25 22:13	
1,1-Dichloroethane	ND	1.0	ug/L			10/02/25 22:13	
1,1-Dichloroethene	ND	1.0	ug/L			10/02/25 22:13	
1,1-Dichloropropene	ND	1.0	ug/L			10/02/25 22:13	
1,2,3-Trichlorobenzene	ND	1.0	ug/L			10/02/25 22:13	
1,2,3-Trichloropropane	ND	2.0	ug/L			10/02/25 22:13	
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/02/25 22:13	
1,2,4-Trimethylbenzene	ND	1.0	ug/L			10/02/25 22:13	
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/02/25 22:13	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			10/02/25 22:13	
1,2-Dichlorobenzene	ND	1.0	ug/L			10/02/25 22:13	
1,2-Dichloroethane (EDC)	ND	1.0	ug/L			10/02/25 22:13	
1,2-Dichloropropane	ND	1.0	ug/L			10/02/25 22:13	
1,3,5-Trimethylbenzene	ND	1.0	ug/L			10/02/25 22:13	
1,3-Dichlorobenzene	ND	1.0	ug/L			10/02/25 22:13	
1,3-Dichloropropane	ND	1.0	ug/L ug/L			10/02/25 22:13	
1,4-Dichlorobenzene	ND	1.0	ug/L			10/02/25 22:13	
	ND	4.0	-			10/02/25 22:13	
1-Methylnaphthalene			ug/L				
2,2-Dichloropropane	ND	2.0	ug/L			10/02/25 22:13	
2-Butanone	ND	10	ug/L			10/02/25 22:13	
2-Chlorotoluene	ND	1.0	ug/L			10/02/25 22:13	
2-Hexanone	ND	10	ug/L			10/02/25 22:13	
2-Methylnaphthalene	ND	4.0	ug/L			10/02/25 22:13	
4-Chlorotoluene	ND	1.0	ug/L			10/02/25 22:13	
4-Isopropyltoluene	ND	1.0	ug/L			10/02/25 22:13	
4-Methyl-2-pentanone	ND	10	ug/L			10/02/25 22:13	
Acetone	ND	10	ug/L			10/02/25 22:13	
Benzene	ND	1.0	ug/L			10/02/25 22:13	
Bromobenzene	ND	1.0	ug/L			10/02/25 22:13	
Bromodichloromethane	ND	1.0	ug/L			10/02/25 22:13	
Dibromochloromethane	ND	1.0	ug/L			10/02/25 22:13	
Bromoform	ND	1.0	ug/L			10/02/25 22:13	
Bromomethane	ND	3.0	ug/L			10/02/25 22:13	
Carbon disulfide	ND	10	ug/L			10/02/25 22:13	
Carbon tetrachloride	ND	1.0	ug/L			10/02/25 22:13	
Chlorobenzene	ND	1.0	ug/L			10/02/25 22:13	
Chloroethane	ND	2.0	ug/L			10/02/25 22:13	
Chloroform	ND	1.0	ug/L			10/02/25 22:13	
Chloromethane	ND	3.0	ug/L			10/02/25 22:13	
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/02/25 22:13	
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/02/25 22:13	
Dibromomethane	ND	1.0	ug/L			10/02/25 22:13	
Dichlorodifluoromethane	ND	1.0	ug/L			10/02/25 22:13	
Ethylbenzene	ND	1.0	ug/L			10/02/25 22:13	
Hexachlorobutadiene	ND	1.0	ug/L			10/02/25 22:13	
Isopropylbenzene	ND	1.0	ug/L ug/L			10/02/25 22:13	

Eurofins Albuquerque

10/7/2025

Job ID: 885-34174-1

2

4

_

8

10

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-26 Lab Sample ID: 885-34174-10

Date Collected: 09/24/25 12:55 Matrix: Water Date Received: 09/25/25 10:02

Method: SW846 8260B - Volati	le Organic Compo	unds (GC/	MS) (Continued)					
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND ND		1.0	ug/L			10/02/25 22:13	1
Methylene Chloride	ND		2.5	ug/L			10/02/25 22:13	1
n-Butylbenzene	ND		3.0	ug/L			10/02/25 22:13	1
N-Propylbenzene	ND		1.0	ug/L			10/02/25 22:13	1
Naphthalene	ND		2.0	ug/L			10/02/25 22:13	1
sec-Butylbenzene	ND		1.0	ug/L			10/02/25 22:13	1
Styrene	ND		1.0	ug/L			10/02/25 22:13	1
tert-Butylbenzene	ND		1.0	ug/L			10/02/25 22:13	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			10/02/25 22:13	1
Toluene	ND		1.0	ug/L			10/02/25 22:13	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/02/25 22:13	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/02/25 22:13	1
Trichloroethene (TCE)	ND		1.0	ug/L			10/02/25 22:13	1
Trichlorofluoromethane	ND		1.0	ug/L			10/02/25 22:13	1
Vinyl chloride	ND		1.0	ug/L			10/02/25 22:13	1
Xylenes, Total	ND		1.5	ug/L			10/02/25 22:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		70 - 130		-		10/02/25 22:13	1
Toluene-d8 (Surr)	102		70 - 130				10/02/25 22:13	1
4-Bromofluorobenzene (Surr)	99		70 - 130				10/02/25 22:13	1
Dibromofluoromethane (Surr)	89		70 - 130				10/02/25 22:13	1

Job ID: 885-34174-1

Client: Souder, Miller & Associates

Project/Site: Fairview

Hexachlorobutadiene

Isopropylbenzene

Client Sample ID: MW-27

Date Collected: 09/24/25 14:57 Date Received: 09/25/25 10:02 Lab Sample ID: 885-34174-11

Analyzed

Matrix: Water

Dil Fac

Job ID: 885-34174-1

Method: SW846 8260B - Volatile O	rganic Comp	ounds (GC/	MS)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	1
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			10/

Allalyte	Result Qualifier	RL	Onit	D ггера	reu Analyzeu	DII Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L		10/02/25 22:41	1
1,1,1-Trichloroethane	ND	1.0	ug/L		10/02/25 22:41	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		10/02/25 22:41	1
1,1,2-Trichloroethane	ND	1.0	ug/L		10/02/25 22:41	1
1,1-Dichloroethane	ND	1.0	ug/L		10/02/25 22:41	1
1,1-Dichloroethene	ND	1.0	ug/L		10/02/25 22:41	1
1,1-Dichloropropene	ND	1.0	ug/L		10/02/25 22:41	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		10/02/25 22:41	1
1,2,3-Trichloropropane	ND	2.0	ug/L		10/02/25 22:41	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		10/02/25 22:41	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L		10/02/25 22:41	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		10/02/25 22:41	1
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		10/02/25 22:41	1
1,2-Dichlorobenzene	ND	1.0	ug/L		10/02/25 22:41	1
1,2-Dichloroethane (EDC)	ND	1.0	ug/L		10/02/25 22:41	1
1,2-Dichloropropane	ND	1.0	ug/L		10/02/25 22:41	1
1,3,5-Trimethylbenzene	ND	1.0	ug/L		10/02/25 22:41	1
1,3-Dichlorobenzene	ND	1.0	ug/L		10/02/25 22:41	1
1,3-Dichloropropane	ND	1.0			10/02/25 22:41	
	ND	1.0	ug/L		10/02/25 22:41	1
1,4-Dichlorobenzene			ug/L			
1-Methylnaphthalene	ND	4.0	ug/L		10/02/25 22:41	1
2,2-Dichloropropane	ND	2.0	ug/L		10/02/25 22:41	1
2-Butanone	ND	10	ug/L		10/02/25 22:41	1
2-Chlorotoluene	ND	1.0	ug/L		10/02/25 22:41	1
2-Hexanone	ND	10	ug/L		10/02/25 22:41	1
2-Methylnaphthalene	ND	4.0	ug/L		10/02/25 22:41	1
4-Chlorotoluene	ND	1.0	ug/L		10/02/25 22:41	
4-Isopropyltoluene	ND	1.0	ug/L		10/02/25 22:41	1
4-Methyl-2-pentanone	ND	10	ug/L		10/02/25 22:41	1
Acetone	ND	10	ug/L		10/02/25 22:41	1
Benzene	9.1	1.0	ug/L		10/02/25 22:41	1
Bromobenzene	ND	1.0	ug/L		10/02/25 22:41	1
Bromodichloromethane	ND	1.0	ug/L		10/02/25 22:41	1
Dibromochloromethane	ND	1.0	ug/L		10/02/25 22:41	1
Bromoform	ND	1.0	ug/L		10/02/25 22:41	1
Bromomethane	ND	3.0	ug/L		10/02/25 22:41	1
Carbon disulfide	ND	10	ug/L		10/02/25 22:41	1
Carbon tetrachloride	ND	1.0	ug/L		10/02/25 22:41	1
Chlorobenzene	ND	1.0	ug/L		10/02/25 22:41	1
Chloroethane	ND	2.0	ug/L		10/02/25 22:41	1
Chloroform	ND	1.0	ug/L		10/02/25 22:41	1
Chloromethane	ND	3.0	ug/L		10/02/25 22:41	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		10/02/25 22:41	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		10/02/25 22:41	1
Dibromomethane	ND	1.0	ug/L		10/02/25 22:41	1
Dichlorodifluoromethane	ND	1.0	ug/L		10/02/25 22:41	1
Ethylbenzene	ND	1.0	ug/L		10/02/25 22:41	1
Harrada and research	115	4.0				

Eurofins Albuquerque

10/02/25 22:41

10/02/25 22:41

1.0

1.0

ug/L

ug/L

ND

ND

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: MW-27 Lab Sample ID: 885-34174-11

Date Collected: 09/24/25 14:57

Matrix: Water

Date Received: 09/25/25 10:02

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			10/02/25 22:41	1
Methylene Chloride	ND		2.5	ug/L			10/02/25 22:41	1
n-Butylbenzene	ND		3.0	ug/L			10/02/25 22:41	1
N-Propylbenzene	ND		1.0	ug/L			10/02/25 22:41	1
Naphthalene	ND		2.0	ug/L			10/02/25 22:41	1
sec-Butylbenzene	ND		1.0	ug/L			10/02/25 22:41	1
Styrene	ND		1.0	ug/L			10/02/25 22:41	1
tert-Butylbenzene	ND		1.0	ug/L			10/02/25 22:41	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			10/02/25 22:41	1
Toluene	ND		1.0	ug/L			10/02/25 22:41	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/02/25 22:41	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/02/25 22:41	1
Trichloroethene (TCE)	ND		1.0	ug/L			10/02/25 22:41	1
Trichlorofluoromethane	ND		1.0	ug/L			10/02/25 22:41	1
Vinyl chloride	ND		1.0	ug/L			10/02/25 22:41	1
Xylenes, Total	ND		1.5	ug/L			10/02/25 22:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 130		-		10/02/25 22:41	1
Toluene-d8 (Surr)	102		70 - 130				10/02/25 22:41	1
4-Bromofluorobenzene (Surr)	100		70 - 130				10/02/25 22:41	1
Dibromofluoromethane (Surr)	88		70 - 130				10/02/25 22:41	1

Job ID: 885-34174-1

Λ

<u>ح</u>

8

Client: Souder, Miller & Associates

Project/Site: Fairview

Client Sample ID: Trip Blank

Date Received: 09/25/25 10:02

Date Collected: 09/24/25 00:00

Lab Sample ID: 885-34174-12

Matrix: Water

Job ID: 885-34174-1

^	

5

7

Ō

10

44

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	1.0	ug/L		10/02/25 23:09	
1,1,1-Trichloroethane	ND	1.0	ug/L		10/02/25 23:09	
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		10/02/25 23:09	
1,1,2-Trichloroethane	ND	1.0	ug/L		10/02/25 23:09	
1,1-Dichloroethane	ND	1.0	ug/L		10/02/25 23:09	
1,1-Dichloroethene	ND	1.0	ug/L		10/02/25 23:09	
1,1-Dichloropropene	ND	1.0	ug/L		10/02/25 23:09	
1,2,3-Trichlorobenzene	ND	1.0	ug/L		10/02/25 23:09	
1,2,3-Trichloropropane	ND	2.0	ug/L		10/02/25 23:09	
1,2,4-Trichlorobenzene	ND	1.0	ug/L		10/02/25 23:09	
1,2,4-Trimethylbenzene	ND	1.0	ug/L		10/02/25 23:09	
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		10/02/25 23:09	
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		10/02/25 23:09	
1,2-Dichlorobenzene	ND	1.0	ug/L		10/02/25 23:09	
1,2-Dichloroethane (EDC)	ND	1.0	ug/L		10/02/25 23:09	
1,2-Dichloropropane	ND	1.0	ug/L		10/02/25 23:09	
1,3,5-Trimethylbenzene	ND	1.0	ug/L		10/02/25 23:09	
1,3-Dichlorobenzene	ND	1.0	ug/L		10/02/25 23:09	
1,3-Dichloropropane	ND	1.0	ug/L		10/02/25 23:09	
1,4-Dichlorobenzene	ND	1.0	ug/L		10/02/25 23:09	
1-Methylnaphthalene	ND	4.0	ug/L		10/02/25 23:09	
2,2-Dichloropropane	ND	2.0	ug/L		10/02/25 23:09	
2-Butanone	ND	10	ug/L		10/02/25 23:09	
2-Chlorotoluene	ND	1.0	ug/L		10/02/25 23:09	
2-Hexanone	ND	10	ug/L		10/02/25 23:09	
2-Methylnaphthalene	ND	4.0	ug/L		10/02/25 23:09	
4-Chlorotoluene	ND	1.0	ug/L		10/02/25 23:09	
4-Isopropyltoluene	ND	1.0	ug/L		10/02/25 23:09	
4-Methyl-2-pentanone	ND	10	ug/L		10/02/25 23:09	
Acetone	ND	10	ug/L		10/02/25 23:09	
Benzene	ND	1.0			10/02/25 23:09	
Benzene Bromobenzene	ND ND	1.0	ug/L		10/02/25 23:09	
Bromodichloromethane	ND ND	1.0	ug/L		10/02/25 23:09	
Dibromochloromethane	ND		ug/L		10/02/25 23:09	
Bromoform	ND ND	1.0 1.0	ug/L		10/02/25 23:09	
			ug/L			
Bromomethane	ND	3.0	ug/L		10/02/25 23:09	
Carbon disulfide Carbon tetrachloride	ND	10	ug/L		10/02/25 23:09	
	ND	1.0	ug/L		10/02/25 23:09	
Chlorobenzene	ND	1.0	ug/L		10/02/25 23:09	
Chloroethane	ND	2.0	ug/L		10/02/25 23:09	
Chloroform	ND	1.0	ug/L		10/02/25 23:09	
Chloromethane	ND	3.0	ug/L		10/02/25 23:09	
cis-1,2-Dichloroethene	ND	1.0	ug/L		10/02/25 23:09	
cis-1,3-Dichloropropene	ND	1.0	ug/L		10/02/25 23:09	
Dibromomethane	ND	1.0	ug/L		10/02/25 23:09	
Dichlorodifluoromethane	ND	1.0	ug/L		10/02/25 23:09	
Ethylbenzene	ND	1.0	ug/L		10/02/25 23:09	
Hexachlorobutadiene	ND	1.0	ug/L		10/02/25 23:09	
Isopropylbenzene	ND	1.0	ug/L		10/02/25 23:09	

Client: Souder, Miller & Associates

Project/Site: Fairview

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Trip Blank

Date Collected: 09/24/25 00:00 Date Received: 09/25/25 10:02 Lab Sample ID: 885-34174-12

10/02/25 23:09

10/02/25 23:09

10/02/25 23:09

Matrix: Water

Job ID: 885-34174-1

Method: SW846 8260B - Volati	le Organic Compo	unds (GC/	MS) (Continued)					
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			10/02/25 23:09	1
Methylene Chloride	ND		2.5	ug/L			10/02/25 23:09	1
n-Butylbenzene	ND		3.0	ug/L			10/02/25 23:09	1
N-Propylbenzene	ND		1.0	ug/L			10/02/25 23:09	1
Naphthalene	ND		2.0	ug/L			10/02/25 23:09	1
sec-Butylbenzene	ND		1.0	ug/L			10/02/25 23:09	1
Styrene	ND		1.0	ug/L			10/02/25 23:09	1
tert-Butylbenzene	ND		1.0	ug/L			10/02/25 23:09	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			10/02/25 23:09	1
Toluene	ND		1.0	ug/L			10/02/25 23:09	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			10/02/25 23:09	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			10/02/25 23:09	1
Trichloroethene (TCE)	ND		1.0	ug/L			10/02/25 23:09	1
Trichlorofluoromethane	ND		1.0	ug/L			10/02/25 23:09	1
Vinyl chloride	ND		1.0	ug/L			10/02/25 23:09	1
Xylenes, Total	ND		1.5	ug/L			10/02/25 23:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 130				10/02/25 23:09	1

70 - 130

70 - 130

70 - 130

101

97

88

6

8

9

10

QC Sample Results

Client: Souder, Miller & Associates Job ID: 885-34174-1

Project/Site: Fairview

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-35909/8

Matrix: Water

Analysis Batch: 35909

Client Sample ID: Method Blank

Prep	Type:	Total/NA

6

Analyte	Result Q	ualifier RL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND -	1.0	ug/L		10/02/25 15:45	1
1,1,1-Trichloroethane	ND	1.0	ug/L		10/02/25 15:45	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		10/02/25 15:45	1
1,1,2-Trichloroethane	ND	1.0	ug/L		10/02/25 15:45	1
1,1-Dichloroethane	ND	1.0	ug/L		10/02/25 15:45	1
1,1-Dichloroethene	ND	1.0	ug/L		10/02/25 15:45	1
1,1-Dichloropropene	ND	1.0	ug/L		10/02/25 15:45	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		10/02/25 15:45	1
1,2,3-Trichloropropane	ND	2.0	ug/L		10/02/25 15:45	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		10/02/25 15:45	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L		10/02/25 15:45	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		10/02/25 15:45	1
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		10/02/25 15:45	
1,2-Dichlorobenzene	ND	1.0	ug/L		10/02/25 15:45	1
1,2-Dichloroethane (EDC)	ND	1.0	ug/L		10/02/25 15:45	1
1,2-Dichloropropane	ND	1.0	ug/L		10/02/25 15:45	
1,3,5-Trimethylbenzene	ND ND	1.0	ug/L		10/02/25 15:45	1
1,3-Dichlorobenzene	ND ND	1.0	-		10/02/25 15:45	1
			ug/L			
1,3-Dichloropropane	ND ND	1.0	ug/L		10/02/25 15:45	1
1,4-Dichlorobenzene		1.0	ug/L		10/02/25 15:45	•
1-Methylnaphthalene	ND	4.0	ug/L		10/02/25 15:45	
2,2-Dichloropropane	ND	2.0	ug/L		10/02/25 15:45	1
2-Butanone	ND	10	ug/L 		10/02/25 15:45	1
2-Chlorotoluene	ND	1.0	ug/L		10/02/25 15:45	
2-Hexanone	ND	10	ug/L		10/02/25 15:45	1
2-Methylnaphthalene	ND	4.0	ug/L		10/02/25 15:45	1
4-Chlorotoluene	ND	1.0	ug/L		10/02/25 15:45	1
1-Isopropyltoluene	ND	1.0	ug/L		10/02/25 15:45	1
1-Methyl-2-pentanone	ND	10	ug/L		10/02/25 15:45	1
Acetone	ND	10	ug/L		10/02/25 15:45	1
Benzene	ND	1.0	ug/L		10/02/25 15:45	1
Bromobenzene	ND	1.0	ug/L		10/02/25 15:45	1
Bromodichloromethane	ND	1.0	ug/L		10/02/25 15:45	1
Dibromochloromethane	ND	1.0	ug/L		10/02/25 15:45	1
Bromoform	ND	1.0	ug/L		10/02/25 15:45	1
Bromomethane	ND	3.0	ug/L		10/02/25 15:45	1
Carbon disulfide	ND	10	ug/L		10/02/25 15:45	1
Carbon tetrachloride	ND	1.0	ug/L		10/02/25 15:45	1
Chlorobenzene	ND	1.0	ug/L		10/02/25 15:45	1
Chloroethane	ND	2.0	ug/L		10/02/25 15:45	1
Chloroform	ND	1.0	ug/L		10/02/25 15:45	1
Chloromethane	ND	3.0	ug/L		10/02/25 15:45	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		10/02/25 15:45	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		10/02/25 15:45	1
Dibromomethane	ND	1.0	ug/L		10/02/25 15:45	1
Dichlorodifluoromethane	ND	1.0	ug/L		10/02/25 15:45	1
Ethylbenzene	ND	1.0	ug/L		10/02/25 15:45	1
Hexachlorobutadiene	ND	1.0	ug/L		10/02/25 15:45	1

Job ID: 885-34174-1

Client: Souder, Miller & Associates

Project/Site: Fairview

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-35909/8

Matrix: Water

Analysis Batch: 35909

Client	Sample	ID:	Metho	d Bl	ank
	Dr	on I	Mno:	Total	/NIA

	MB MB					
Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND ND	1.0	ug/L	 _	10/02/25 15:45	1
Isopropylbenzene	ND	1.0	ug/L		10/02/25 15:45	1
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/L		10/02/25 15:45	1
Methylene Chloride	ND	2.5	ug/L		10/02/25 15:45	1
n-Butylbenzene	ND	3.0	ug/L		10/02/25 15:45	1
N-Propylbenzene	ND	1.0	ug/L		10/02/25 15:45	1
Naphthalene	ND	2.0	ug/L		10/02/25 15:45	1
sec-Butylbenzene	ND	1.0	ug/L		10/02/25 15:45	1
Styrene	ND	1.0	ug/L		10/02/25 15:45	1
tert-Butylbenzene	ND	1.0	ug/L		10/02/25 15:45	1
Tetrachloroethene (PCE)	ND	1.0	ug/L		10/02/25 15:45	1
Toluene	ND	1.0	ug/L		10/02/25 15:45	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		10/02/25 15:45	1
trans-1,3-Dichloropropene	ND	1.0	ug/L		10/02/25 15:45	1
Trichloroethene (TCE)	ND	1.0	ug/L		10/02/25 15:45	1
Trichlorofluoromethane	ND	1.0	ug/L		10/02/25 15:45	1
Vinyl chloride	ND	1.0	ug/L		10/02/25 15:45	1
Xylenes, Total	ND	1.5	ug/L		10/02/25 15:45	1

MB MB

Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	70 - 130		10/02/25 15:45	1
Toluene-d8 (Surr)	103	70 - 130		10/02/25 15:45	1
4-Bromofluorobenzene (Surr)	100	70 - 130		10/02/25 15:45	1
Dibromofluoromethane (Surr)	89	70 - 130		10/02/25 15:45	1

Lab Sample ID: LCS 885-35909/6

Matrix: Water

Analysis Batch: 35909

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	17.2		ug/L		86	70 - 130	
Benzene	20.0	17.7		ug/L		89	70 - 130	
Chlorobenzene	20.0	19.6		ug/L		98	70 - 130	
Toluene	20.0	19.7		ug/L		98	70 - 130	
Trichloroethene (TCE)	20.0	16.3		ug/L		82	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		70 - 130
Toluene-d8 (Surr)	102		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	90		70 - 130

Lab Sample ID: 885-34174-1 MS

Matrix: Water									Prep	Type: Total/NA
Analysis Batch: 35909										
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	ND		20.0	16.9		ug/L		84	70 - 130	

Eurofins Albuquerque

Client Sample ID: MW-4

Page 31 of 41

10/7/2025

Job ID: 885-34174-1

Project/Site: Fairview

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 885-34174-1 MS

Client: Souder, Miller & Associates

Matrix: Water

Analysis Batch: 35909

Client Sample ID: MW-4 **Prep Type: Total/NA**

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		20.0	18.5		ug/L		88	70 - 130	
Chlorobenzene	ND		20.0	20.3		ug/L		102	70 - 130	
Toluene	ND		20.0	20.1		ug/L		99	70 - 130	
Trichloroethene (TCE)	ND		20.0	16.9		ug/L		85	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Toluene-d8 (Surr)	103		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	88		70 - 130

Lab Sample ID: 885-34174-1 MSD

Matrix: Water

Analysis Batch: 35909

Client Sample ID: MW-4 Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND		20.0	17.4		ug/L		87	70 - 130	3	20
Benzene	ND		20.0	18.7		ug/L		89	70 - 130	1	20
Chlorobenzene	ND		20.0	21.1		ug/L		106	70 - 130	4	20
Toluene	ND		20.0	21.1		ug/L		103	70 - 130	5	20
Trichloroethene (TCE)	ND		20.0	17.2		ug/L		86	70 - 130	1	20

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Toluene-d8 (Surr)	104		70 - 130
4-Bromofluorobenzene (Surr)	102		70 - 130
Dibromofluoromethane (Surr)	89		70 - 130

Lab Sample ID: MB 885-36152/5

Matrix: Water

Analysis Batch: 36152

Prep Type: Total/NA

_							
	MB MB						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	1.0	ug/L			10/06/25 12:41	1
1,1,1-Trichloroethane	ND	1.0	ug/L			10/06/25 12:41	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L			10/06/25 12:41	1
1,1,2-Trichloroethane	ND	1.0	ug/L			10/06/25 12:41	1
1,1-Dichloroethane	ND	1.0	ug/L			10/06/25 12:41	1
1,1-Dichloroethene	ND	1.0	ug/L			10/06/25 12:41	1
1,1-Dichloropropene	ND	1.0	ug/L			10/06/25 12:41	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			10/06/25 12:41	1
1,2,3-Trichloropropane	ND	2.0	ug/L			10/06/25 12:41	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			10/06/25 12:41	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L			10/06/25 12:41	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			10/06/25 12:41	1
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			10/06/25 12:41	1
1,2-Dichlorobenzene	ND	1.0	ug/L			10/06/25 12:41	1
1,2-Dichloroethane (EDC)	ND	1.0	ug/L			10/06/25 12:41	1

Eurofins Albuquerque

10/7/2025

Page 32 of 41

Client Sample ID: Method Blank

QC Sample Results

Client: Souder, Miller & Associates

Project/Site: Fairview

Job ID: 885-34174-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-36152/5

Matrix: Water

Analysis Batch: 36152

Client Sample ID: Method Blank

Prep Type: Total/NA

		5
nalvzad	Dil Fac	
nalyzed	DII Fac	

Analyte	MB M Result Q		. Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	ND Result Q	1.0		- -	riepaieu	10/06/25 12:41	1
1,2-Dichloropropane	ND	1.0	-			10/06/25 12:41	<mark>'</mark>
1,3,5-Trimethylbenzene	ND	1.0	_			10/06/25 12:41	1
1,3-Dichlorobenzene	ND	1.0	· ·			10/06/25 12:41	1
1,3-Dichloropropane	ND	1.0				10/06/25 12:41	
1,4-Dichlorobenzene	ND ND	1.0				10/06/25 12:41	1
•	ND ND	4.0	· ·			10/06/25 12:41	1
1-Methylnaphthalene 2,2-Dichloropropane	ND ND					10/06/25 12:41	' 1
2,2-Dichioropropane 2-Butanone	ND ND	2.0 10	· ·			10/06/25 12:41	1
2-Butanone 2-Chlorotoluene	ND ND		· ·				
2-Uniorotoluerie		1.0				10/06/25 12:41	1
	ND	10	· ·			10/06/25 12:41	1
2-Methylnaphthalene	ND	4.0	· ·			10/06/25 12:41	1
4-Chlorotoluene	ND	1.0				10/06/25 12:41	
4-Isopropyltoluene	ND	1.0	· ·			10/06/25 12:41	1
4-Methyl-2-pentanone	ND	10	· ·			10/06/25 12:41	1
Acetone	ND	10	-			10/06/25 12:41	1
Benzene	ND	1.0	· ·			10/06/25 12:41	1
Bromobenzene	ND	1.0	J			10/06/25 12:41	1
Bromodichloromethane	ND	1.0				10/06/25 12:41	1
Dibromochloromethane	ND	1.0	· ·			10/06/25 12:41	1
Bromoform	ND	1.0	ug/L			10/06/25 12:41	1
Bromomethane	ND	3.0	ug/L			10/06/25 12:41	1
Carbon disulfide	ND	10	ug/L			10/06/25 12:41	1
Carbon tetrachloride	ND	1.0	ug/L			10/06/25 12:41	1
Chlorobenzene	ND	1.0	ug/L			10/06/25 12:41	1
Chloroethane	ND	2.0	ug/L			10/06/25 12:41	1
Chloroform	ND	1.0	ug/L			10/06/25 12:41	1
Chloromethane	ND	3.0	ug/L			10/06/25 12:41	1
cis-1,2-Dichloroethene	ND	1.0	ug/L			10/06/25 12:41	1
cis-1,3-Dichloropropene	ND	1.0	ug/L			10/06/25 12:41	1
Dibromomethane	ND	1.0	ug/L			10/06/25 12:41	1
Dichlorodifluoromethane	ND	1.0	ug/L			10/06/25 12:41	1
Ethylbenzene	ND	1.0	ug/L			10/06/25 12:41	1
Hexachlorobutadiene	ND	1.0	ug/L			10/06/25 12:41	1
Isopropylbenzene	ND	1.0	ug/L			10/06/25 12:41	1
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/L			10/06/25 12:41	1
Methylene Chloride	ND	2.5	ug/L			10/06/25 12:41	1
n-Butylbenzene	ND	3.0	ug/L			10/06/25 12:41	1
N-Propylbenzene	ND	1.0	ug/L			10/06/25 12:41	1
Naphthalene	ND	2.0	ug/L			10/06/25 12:41	1
sec-Butylbenzene	ND	1.0				10/06/25 12:41	1
Styrene	ND	1.0				10/06/25 12:41	1
tert-Butylbenzene	ND	1.0	_			10/06/25 12:41	1
Tetrachloroethene (PCE)	ND	1.0	-			10/06/25 12:41	1
Toluene	ND	1.0	-			10/06/25 12:41	1
trans-1,2-Dichloroethene	ND	1.0	_			10/06/25 12:41	1
trans-1,3-Dichloropropene	ND	1.0				10/06/25 12:41	1
Trichloroethene (TCE)	ND	1.0	-			10/06/25 12:41	. 1
Trichlorofluoromethane	ND	1.0	-			10/06/25 12:41	. 1

QC Sample Results

Client: Souder, Miller & Associates

Lab Sample ID: MB 885-36152/5

Project/Site: Fairview

Job ID: 885-34174-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water Analysis Batch: 36152

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		1.0	ug/L			10/06/25 12:41	1
Vinyl chloride	ND		1.0	ug/L			10/06/25 12:41	1
Xylenes, Total	ND		1.5	ug/L			10/06/25 12:41	1
	МВ	MB						

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 130		10/06/25 12:41	1
Toluene-d8 (Surr)	101		70 - 130		10/06/25 12:41	1
4-Bromofluorobenzene (Surr)	100		70 - 130		10/06/25 12:41	1
Dibromofluoromethane (Surr)	93		70 - 130		10/06/25 12:41	1

Lab Sample ID: LCS 885-36152/3 Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 36152

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	17.1		ug/L		86	70 - 130	
Benzene	20.0	18.2		ug/L		91	70 - 130	
Chlorobenzene	20.0	20.5		ug/L		103	70 - 130	
Toluene	20.0	20.5		ug/L		102	70 - 130	
Trichloroethene (TCE)	20.0	17.1		ug/L		86	70 - 130	

LCS LCS

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		70 - 130
Toluene-d8 (Surr)	103		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	91		70 - 130

QC Association Summary

Client: Souder, Miller & Associates Job ID: 885-34174-1

Project/Site: Fairview

GC/MS VOA

Analysis Batch: 35909

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-34174-1	MW-4	Total/NA	Water	8260B	
885-34174-2	MW-5	Total/NA	Water	8260B	
885-34174-4	MW-16	Total/NA	Water	8260B	
885-34174-7	MW-21	Total/NA	Water	8260B	
885-34174-8	MW-24	Total/NA	Water	8260B	
885-34174-9	MW-25	Total/NA	Water	8260B	
885-34174-10	MW-26	Total/NA	Water	8260B	
885-34174-11	MW-27	Total/NA	Water	8260B	
885-34174-12	Trip Blank	Total/NA	Water	8260B	
MB 885-35909/8	Method Blank	Total/NA	Water	8260B	
LCS 885-35909/6	Lab Control Sample	Total/NA	Water	8260B	
885-34174-1 MS	MW-4	Total/NA	Water	8260B	
885-34174-1 MSD	MW-4	Total/NA	Water	8260B	

Analysis Batch: 36152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-34174-2	MW-5	Total/NA	Water	8260B	
885-34174-3	MW-12	Total/NA	Water	8260B	
885-34174-4	MW-16	Total/NA	Water	8260B	
885-34174-5	MW-17	Total/NA	Water	8260B	
885-34174-6	MW-19	Total/NA	Water	8260B	
MB 885-36152/5	Method Blank	Total/NA	Water	8260B	
LCS 885-36152/3	Lab Control Sample	Total/NA	Water	8260B	

3

4

__

9

46

10

Client Sample ID: MW-4

Date Collected: 09/24/25 13:18 Date Received: 09/25/25 10:02 Lab Sample ID: 885-34174-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	35909	RA	EET ALB	10/02/25 18:01

Client Sample ID: MW-5 Lab Sample ID: 885-34174-2

Matrix: Water

Date Collected: 09/24/25 15:27 Date Received: 09/25/25 10:02

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		2	35909	RA	EET ALB	10/02/25 18:29
Total/NA	Analysis	8260B		20	36152	RA	EET ALB	10/06/25 15:01

Client Sample ID: MW-12 Lab Sample ID: 885-34174-3

Date Collected: 09/24/25 14:33 Matrix: Water

Date Received: 09/25/25 10:02

Date Collected: 09/24/25 15:14

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Туре	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	36152 RA	EET ALB	10/06/25 13:09

Client Sample ID: MW-16 Lab Sample ID: 885-34174-4

Date Received: 09/25/25 10:02

Matrix: Water

Matrix: Water

Batch Batch Dilution Batch Prepared Method **Prep Type** Туре Run Factor Number Analyst Lab or Analyzed Total/NA 8260B 35909 RA EET ALB 10/02/25 19:25 Analysis Total/NA Analysis 8260B 10 **EET ALB** 10/06/25 15:57 36152 RA

Client Sample ID: MW-17 Lab Sample ID: 885-34174-5

Date Collected: 09/24/25 12:35 Date Received: 09/25/25 10:02

Batch Batch Dilution Batch Prepared
Prep Type Type Method Run Factor Number Analyst Lab or Analyzed

 Prep Type
 Type
 Method
 Run
 Factor
 Number
 Analyst
 Lab
 or Analyzed

 Total/NA
 Analysis
 8260B
 1
 36152
 RA
 EET ALB
 10/06/25 14:05

Client Sample ID: MW-19 Lab Sample ID: 885-34174-6

Date Collected: 09/24/25 13:37

Date Received: 09/25/25 10:02

Matrix: Water

Batch Batch Dilution Batch Prepared Method Number Analyst Prep Type or Analyzed Type Run Factor Lab 8260B 36152 RA EET ALB 10/06/25 13:37 Total/NA Analysis

Client Sample ID: MW-21 Lab Sample ID: 885-34174-7

Date Collected: 09/24/25 14:02 Matrix: Water

Date Received: 09/25/25 10:02

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B			35909	RA	EET ALB	10/02/25 20:49

Job ID: 885-34174-1

Project/Site: Fairview

Client Sample ID: MW-24

Client: Souder, Miller & Associates

Lab Sample ID: 885-34174-8

Matrix: Water

Date Collected: 09/24/25 11:22 Date Received: 09/25/25 10:02

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	35909	RA	EET ALB	10/02/25 21:17

Client Sample ID: MW-25

Lab Sample ID: 885-34174-9

Matrix: Water

Date Collected: 09/24/25 11:34 Date Received: 09/25/25 10:02

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	35909	RA	EET ALB	10/02/25 21:45

Client Sample ID: MW-26

Lab Sample ID: 885-34174-10 Date Collected: 09/24/25 12:55

Matrix: Water

Date Received: 09/25/25 10:02

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Type Method Run Factor Number Analyst Lab 10/02/25 22:13 Total/NA 8260B 35909 RA EET ALB Analysis

Lab Sample ID: 885-34174-11 Client Sample ID: MW-27

Date Collected: 09/24/25 14:57 **Matrix: Water**

Date Received: 09/25/25 10:02

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260B			35909	RA	EET ALB	10/02/25 22:41	

Client Sample ID: Trip Blank Lab Sample ID: 885-34174-12

Date Collected: 09/24/25 00:00 **Matrix: Water**

Date Received: 09/25/25 10:02

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	35909	RA	EET ALB	10/02/25 23:09

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Souder, Miller & Associates

Job ID: 885-34174-1 Project/Site: Fairview

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority	Prog	ram	Identification Number	Expiration Date
w Mexico	State		NM9425, NM0901	02-27-26
The following analytes	are included in this report b	ut the leberatory is not conti	ind buthe governing outherity. This lie	t may include analyte
	are included in this report, b ses not offer certification.	ut the laboratory is not certil	ied by the governing authority. This lis	t may include analyte
Analysis Method	Prep Method	Matrix	Analyte	
8260B	1 Top Metriou	Water	1,1,1,2-Tetrachloroethane	
8260B		Water	1,1,1-Trichloroethane	
8260B		Water	1,1,2,2-Tetrachloroethane	
8260B		Water	1,1,2-Trichloroethane	
8260B		Water	1,1-Dichloroethane	
8260B		Water	1,1-Dichloroethene	
8260B		Water	1,1-Dichloropropene	
8260B		Water	1,2,3-Trichlorobenzene	
8260B		Water	1,2,3-Trichloropropane	
8260B		Water	1,2,4-Trichlorobenzene	
8260B		Water	1,2,4-Trimethylbenzene	
8260B		Water	1,2-Dibromo-3-Chloroprop	ane
8260B		Water	1,2-Dibromoethane (EDB)	
8260B		Water	1,2-Dichlorobenzene	
8260B		Water	1,2-Dichloroethane (EDC)	
8260B		Water	1,2-Dichloropropane	
8260B		Water	1,3,5-Trimethylbenzene	
8260B		Water	1,3-Dichlorobenzene	
8260B		Water		
8260B		Water	1,3-Dichloropropane	
8260B		Water	1,4-Dichlorobenzene	
			1-Methylnaphthalene	
8260B		Water	2,2-Dichloropropane	
8260B		Water	2-Butanone	
8260B		Water	2-Chlorotoluene	
8260B		Water	2-Hexanone	
8260B		Water	2-Methylnaphthalene	
8260B		Water	4-Chlorotoluene	
8260B		Water	4-Isopropyltoluene	
8260B		Water	4-Methyl-2-pentanone	
8260B		Water	Acetone	
8260B		Water	Benzene	
8260B		Water	Bromobenzene	
8260B		Water	Bromodichloromethane	
8260B		Water	Bromoform	
8260B		Water	Bromomethane	
8260B		Water	Carbon disulfide	
8260B		Water	Carbon tetrachloride	
8260B		Water	Chlorobenzene	
8260B		Water	Chloroethane	
8260B		Water	Chloroform	
8260B		Water	Chloromethane	
8260B		Water	cis-1,2-Dichloroethene	
8260B		Water	cis-1,3-Dichloropropene	
8260B		Water	Dibromochloromethane	
8260B		Water	Dibromomethane	

Eurofins Albuquerque

Page 38 of 41 10/7/2025

Accreditation/Certification Summary

Client: Souder, Miller & Associates

Job ID: 885-34174-1 Project/Site: Fairview

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority	Progra	am	Identification Number	Expiration Date
The following analytes a	are included in this report, bu	t the laboratory is not certif	ied by the governing authority. This li	st may include analyte
for which the agency do	es not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
8260B		Water	Dichlorodifluoromethane	
8260B		Water	Ethylbenzene	
8260B		Water	Hexachlorobutadiene	
8260B		Water	Isopropylbenzene	
8260B		Water	Methylene Chloride	
8260B		Water	Methyl-tert-butyl Ether (M	ITBE)
8260B		Water	Naphthalene	
8260B		Water	n-Butylbenzene	
8260B		Water	N-Propylbenzene	
8260B		Water	sec-Butylbenzene	
8260B		Water	Styrene	
8260B		Water	tert-Butylbenzene	
8260B		Water	Tetrachloroethene (PCE)	
8260B		Water	Toluene	
8260B		Water	trans-1,2-Dichloroethene	
8260B		Water	trans-1,3-Dichloropropen	e
8260B		Water	Trichloroethene (TCE)	
8260B		Water	Trichlorofluoromethane	
8260B		Water	Vinyl chloride	
8260B		Water	Xylenes, Total	
gon	NELAI	0	NM100001	02-26-26

10

Login Sample Receipt Checklist

Client: Souder, Miller & Associates Job Number: 885-34174-1

Login Number: 34174 List Source: Eurofins Albuquerque

List Number: 1

Creator: Casarrubias, Tracy

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
here are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
here is sufficient vol. for all requested analyses, incl. any requested //S/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	

Page 41 of 41 10/7/2025

Appendix 4 NMOSE Well Plugging Plan of Operations and Plugging Records

STATE OF NEW MEXICO

OFFICE OF THE STATE ENGINEER DISTRICT VI - SANTA FE

Elizabeth K. Anderson, P.E. State Engineer

BATAAN MEMORIAL BUILDING POST OFFICE BOX 25102 SANTA FE, NEW MEXICO 87504-5102 (505) 827-6120 FAX: (505) 827-6682

September 16, 2025

Souder, Miller & Associates for NMED-PSTB Attn: Mariah Kelly 5454 Venice Ave. NE Albuquerque, NM 87113

Re: Plugging Plan of Operations RG-93769-POD13, RG-97819-POD1, and RG-97819-POD2

Greetings:

The Office of the Engineer is returning a favorable approval with specific plugging conditions and has accepted the Well Plugging Plan of Operations submitted September 10, 2025, for filing for the following wells:

- RG-93769-POD13 (AKA MW-13)
- RG-97819-POD1 (AKA MW-22)
- RG-97819-POD2 (AKA MW-23)

Please return a completed Well Plugging Report that itemizes the actual abandonment process, materials used and total volume of material used within 30 days after completion of well plugging. Please do not hesitate to contact our office with any questions regarding these plans.

Sincerely,

Lorraine A. Garcia

Littaian

Office of State Engineer Water Rights Division District VI

Enclosure cc: WATERS

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Elizabeth K. Anderson., P.E. District 6 Office, Santa Fe, NM

Well Plugging Plan of Operations Conditions of Approval for RG-93769-POD13, RG-97819-POD1, and RG-97819-POD2

The New Mexico Environment Department (NMED) Petroleum Storage Tank Bureau and their contractor Souder, Miller & Associates have identified 3 wells that require plugging. The Well Plugging Plan of Operations, received September 10, 2025, indicates that the monitoring wells need to be plugged due to construction scheduled on the property. The applicants state that static water level for these wells ranges from 15.5 feet below ground surface (bgs) to 16 feet bgs and the well depths range from 23 bgs to 27 feet bgs (see Attachment in submitted WD-08 form). Existing active wells that are in close proximity to the wells that are to be abandoned could possibly have communication during cementing operations. To reduce the likelihood of this scenario, the water to cement ratio can be reduced to 5.2 gallons of water per 94 pound sack of Portland cement, not including the additive of bentonite.

Location: Rio Arriba, New Mexico.

Approximate well coordinates: See tabulated data (LAT/LONG WGS84)

OSE File No.	<u>Inside</u> <u>diameter</u> (inches)	Static Water Level	Total depth (feet)	Latitude	Longitude
RG-93769- POD13	2	15.5	23	36°00'58.23"	106°03'51.11"
RG-97819- POD1	2	15.5	27	36°00'58.39"	106°03'49.99"
RG-97819- POD2	2	16	27	36°00'57.29"	106°03'51.15"

Specific Plugging Conditions of Approval for 3 Monitoring Wells for NMED within Rio Arriba County, New Mexico

1. Water well drilling and well drilling activities, including well plugging, are regulated under 19.27.4 NMAC, which requires any person engaged in the business of well drilling within New Mexico to obtain a Well Driller License issued by the New Mexico Office of the State Engineer (NMOSE). Therefore, the firm of a New Mexico licensed Well Driller shall perform the well plugging.

2. Theoretical volume of sealant required for abandonment of each well, as well as, total theoretical volume to fill all wells is tabulated below. All cement mixture will contain no more than 6 gallons of water per 94 pound sack of cement. Bentonite chips shall be properly placed and hydrated according to manufacturer specifications. Total minimum amount of required sealant will be based on the sounding depth inside casing.

OSE File No.	Well Name	Diameter (inches)	<u>Total</u> <u>Depth</u> (feet)	Volume (cubic ft.)	Volume (gallons)
RG- 93769- POD13	MW-13	2	15.5	0.33	2,52
RG- 97819- POD1	MW-22	2	15.5	0.33	2.52
RG- 97819- POD2	MW-23	2	16	0.35	2.61
Total:				1.01	7.65

3. The use of up to 6% pure bentonite powder ("90 barrel yield") as an additive in cement is allowed under NMOSE/AWWA guidelines. Neither granular bentonite nor extended yield bentonite shall be mixed with cement.

When supplementing a cement slurry with bentonite powder, as requested, water demand for the mix increases at the rate of 0.65 gallons of water for each 1% increment of bentonite bdwc (by dry weight cement) above fundamental water demand of 5.2 gallons water per 94-lb. sack of cement. A 5% bentonite/cement slurry may therefore contain up to 8.5 gallons of water total per 94-lb. sack of cement; approximate 5-lb. bentonite increment, provided appropriate mixing order is maintained. The bentonite shall be properly hydrated separately with its require increment of water, prior to being added into the cement mixture. If water is otherwide added to the combination of dry ingredients of the dry bentonite blended into wet cement, the hardness and alkalinity imparted to the mix water by the cement will restrict the ability of the bentonite powder to yield as expected, resulting in excess free water in the slurry and enhanced cement shrinkage upon curing.

- 4. Sealant shall be kept up inside the augers during placement. The augers shall be pulled out of the hole in such a manner that allows the sealant to remain inside the auger at all times, thus providing displacement to prevent borehole collapse. The augers may not be pulled out of the hole prior to the sealant being placed.
- 5. All surface completions (vaults) will be removed, if applicable. The tops will be terminated ~3-feet bgs and the remaining hole shall be backfilled with concrete to surface.

- 6. Should the NMED, or another regulatory agency sharing jurisdiction of the project authorize, or by regulation require a more stringent well plugging procedure than herein acknowledged, the more-stringent procedure should be followed. This, in part, includes provisions regarding pre-authorization to precede, contaminant remediation, inspection, pulling/perforating of casing, or prohibition of free discharge of any fluid from the borehole during or related to the plugging process.
- 7. NMOSE witnessing of the plugging will not be required, but shall be facilitated if a NMOSE observer is onsite. NMOSE witnessing may be requested during normal work hours by calling the District 6 NMOSE Office at 505-827-6120, at least 48-hours in advance. NMOSE inspection will occur dependant on personnel availability.
- 8. A Well Plugging Record (available at: http://www.ose.state.nm.us/STST/Forms/WD-11.pdf) itemizing actual abandonment process and materials used shall be filed with the State Engineer (NMOSE, P.O. Box 25102 407 Galisteo Street Room 102, Santa Fe, NM 87504-5102), within 30 days after completion of well plugging.

The NMOSE Well Plugging Plan of Operation, dated September 10, 2025, is hereby approved with the aforesaid conditions applied, when signed by an authorized designee of the State Engineer:

Witness my hand and seal this 10 day of September , 2025

Elizabeth K. Anderson, P.E. NEW MEXICO STATE ENGINEER

By: Littoricia

Lorraine A. Garcia Deputy District Manager NMOSE District VI- Santa Fe

Depth of the well: _

6)

feet

WELL PLUGGING PLAN OF OPERATIONS

NOTE: A Well Plugging Plan of Operations shall be filed with and accepted by the Office of the State Engineer prior to plugging. This form may be used to plug a single well, or if you are plugging multiple monitoring wells on the same site using the same plugging methodology.

Alert! Your well may be eligible to participate in the Aquifer Mapping Program (AMP)-NM Bureau of Geology geoinfo.nmt.edu/resources/water/cgmn/ if within an area of interest and meets the minimum construction requirements, such as there is still water in your well, and the well construction reflected in a well record and log is not compromised, contact AMP at 575-835-5038 or -6951, or by email nmbg-waterlevels@nmt.edu, prior to completing this prior form. Showing proof to the OSE that your well was accepted in this program, may delay the plugging of your well until a later date.

, FILI	NG FEE: There is no fi	ling fee for this form.				
I. GE	NERAL / WELL OWN	ERSHIP: Chec	k here if proposing one	plan for multiple monitoring we	lls on the same site	and attaching WD
	g Office of the State En			for well to be plugged: _		
/ailing	address: 5454 Venice	Ave. NE				
					Zip cod	<u>8</u> 7113
hone n	number: 505.289.1056		E-mail:	mariah.kelly@soudermille	er.com	
	ELL DRILLER INFOR					Na in
	riller contracted to provid	e plugging services:	Enviro-Drill, Inc.	T.YAN		9-
ew M	exico Well Driller Licens	e No.: WD-1848		Expiration Date:	03/01/2026	25.50
						O CANA
/. W	ELL INFORMATION:	supplemental form	WD-08m and skip to	for plugging multiple monitori #2 in this section.	ng wens on the san	Site and attach
ote: A	A copy of the existing We			hould be attached to this p		2
						in in
	GPS Well Location:	Latitude:	deg, deg.	min, min,	sec. NAD 83	7
		2018				
	Reason(s) for plugging	well(s):				
	The property three mon- construction/developme construction begins.	toring wells associate nt. SMA is working to	d with the Fairview expedite the plugg	ν PST site are located on ρ jing and abandonment of t	property schedul he three wells b	ed for efore
1	what hydrogeologic pa	rameters were monitor	ored. If the well	If yes, please use section was used to monitor coment may be required prior	ntaminated or p	rm to detail poor quality
	Does the well tap brack including analytical resu			ater? No If ye	es, provide addit	ional detail,
				et above land surface (cir	rcle one)	
	Static water level	iccidelov	, mild surface, ice	t acove land surface (ch	one)	

7)	Inside diameter of innermost casing:inches.						
8)	Casing material: PVC						
9)	The well was constructed with: an open-hole production interval, state the open interval: a well screen or perforated pipe, state the screened interval(s): a well screen or perforated pipe, state the screened interval(s):						
10)	What annular interval surrounding the artesian casing of this well is cement-grouted? 23 to surface						
11)	Was the well built with surface casing?NoIf yes, is the annulus surrounding the surface casing grouted or otherwise sealed?If yes, please describe:						
12)	Has all pumping equipment and associated piping been removed from the well? Yes If not, describe remaining equipment and intentions to remove prior to plugging in Section VII of this form.						
V. DE	SCRIPTION OF PLANNED WELL PLUGGING: If plugging method differs between multiple wells on same site, a separate						
diagram	f this plan proposes to plug an artesian well in a way other than with cement grout, placed bottom to top with a tremie pipe, a detailed of the well showing proposed final plugged configuration shall be attached, as well as any additional technical information, such sysical logs, that are necessary to adequately describe the proposal. Attach a copy of any signed OSE variance to this plugging plan.						
	his planned plugging plan requires a variance to 19.27.4 NMAC, attach a detailed variance request signed by the applicant.						
1)	Describe the method by which cement grout shall be placed in the well, or describe requested plugging methodology						
	Progressive Cavity Pump (250 psi) w/1" tremie pipe lowered to TD. Pump NMOSE approved grout from TD to surface withdrawing tremie while pumping.						
2)	Will well head be cut-off below land surface after plugging? Yes - 2 to 3 feet bgs						
<u>VI. PI</u>	LUGGING AND SEALING MATERIALS:						
Note: T	he plugging of a well that taps poor quality water may require the use of a specialty cement or specialty scalant. Attach a copy of the batch mix recip cement company and/or product description for specialty cement mixes or any scalant that deviates from the list of OSE approved scalants.						
1)	For plugging intervals that employ cement grout, complete and attach Table A.						
2)	For plugging intervals that will employ approved non-cement based sealant(s), complete and attach Table B.						
3)	Theoretical volume of grout required to plug the well to land surface: 4.16 gallons (based on 0.16 gal/ft)						
4)	Type of Cement proposed: Neat Cement - Portland Type I/II						
5)	Proposed cement grout mix: 5.2 gallons of water per 94 pound sack of Portland cement.						
6)	Will the grout be:batch-mixed and delivered to the site mixed on site						

7)	Grout additives requested, and per	cent by dry weight rela	tive to cement:	
8)	Additional notes and calculations:			
VII.	ADDITIONAL INFORMATION:	List additional informat	ion below, or on separate sheet(s)	•
* ****	CICNIATINE			
	SIGNATURE: iah Kelly	age that I be	are associate and the foregoing V	Iall Divaging Dian of
1,	tions and any attachments, which are	, say that I ha a part hereof; that I am	ive carefully read the foregoing W familiar with the rules and regula	tions of the State
Engine	eer pertaining to the plugging of wells	and will comply with	them, and that each and all of the	statements in the Well
Pluggi	ng Plan of Operations and attachment	s are true to the best of	my knowledge and belief.	155
		Mariah Kelly	Digitally signed by Mariah Kelly Date: 2025.09.08 11:46:23 -06:00'	9/8/2025
		Sign	nature of Applicant	Date
		Sigi	made of Applicant	NG/NAN
T	OWION OF THE OTITE ENGINE	ED.	A RIE	STATE
IX. A	CTION OF THE STATE ENGINE	EK:		
This W	Vell Plugging Plan of Operations is:			SISI
			19/3	
	Approved subject to the a Not approved for the reas		ached letter	10,720
	Not approved for the reas	ons provided on the att	actica tener.	IS SEE
	Witness my hand and official seal t	his 16 da	ay of September	, 2025
	·			
		Eliza houlh	Andoren New M	Mexico State Engineer
		Little Control	Anderson, New M	Tonico otto Diignicol
		By: ALC	Societa	

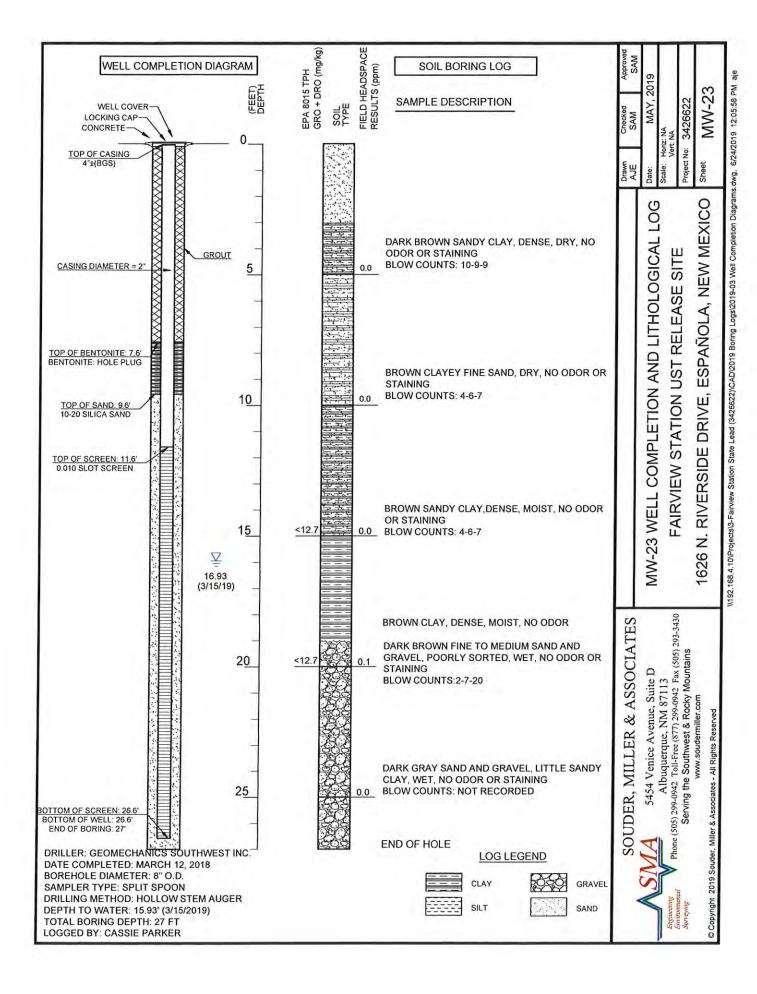
TABLE A - For plugging intervals that employ cement grout. Start with deepest interval.

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow		
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.		
Top of proposed interval of grout placement (ft bgl)					
Bottom of proposed interval of grout placement (ft bgl)					
Theoretical volume of grout required per interval (gallons)					
Proposed cement grout mix gallons of water per 94-lb. sack of Portland cement					
Mixed on-site or batch- mixed and delivered?					
Grout additive 1 requested			8 60 10		
Additive 1 percent by dry weight relative to cement			C) (
Grout additive 2 requested					
Additive 2 percent by dry weight relative to cement					

TABLE B - For plugging intervals that will employ approved non-cement based scalant(s). Start with deepest interval.

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of sealant placement (ft bgl)			
Bottom of proposed sealant of grout placement (ft bgl)			
Theoretical volume of sealant required per interval (gallons)			
Proposed abandonment sealant (manufacturer and trade name)			F-3 F-3 F-3 F-3 F-3 F-3 F-3 F-3 F-3 F-3

NEW MEXICO OFFICE OF THE STATE ENGINEER



ATTACHMENT to WD-08 Plan of Plugging MULTIPLE MONITORING WELL DESCRIPTIONS

This Attachment is to be completed if more than one (1) monitoring well is to be plugged using the same method.

Location (Red	quired):								
NM State Pl (Feet) NM Wes NM Cen	st Zone tral Zone	UTM (NADA	3N	Lat/Long (WG (1/10 th of second)	descrip PL Hy Lo	otions - see a SS (quarters	only for move application for a section, tow survey, Map & bdivision	m for forma nship, rang	
OSE POD Number:	Other Well ID:	X or Longitude (ddmmss):	Y or Latitude (ddmmss):	Other Location Info (PLSS):	Casing ID- (inches):	Depth to Water- (ft bgs):	Total well Depth- (ft bgs):	Grout Volume:	Surface Casing (Y or N):
RG-93769-POD 13	MW-13	106° 3'51.11"	36° 0'58.23	" S35, T21N, R8E	2	15.5	23	3.8 gal	N
RG-97819-POD 1	MW-22	106° 3'49.99"	36° 0'58.39	" S35, T21N, R8E	2	15.5	27	4.3 gal	Ν
RG-97819-POD 2	MW-23	106° 3'51.15"	36° 0'57.29	" S35, T21N, R8E	2	16	27	4.3 gal	N
				NMPM					
								200	
								177	
								0	
								35	
								- I	

FOR OSE INTERNAL USE	Multiple Montioring POD Descriptions, Form wr-08m (Rev 7/31/19)
File Number:	Trn Number:
Trans Description (optional):	

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	l owner: SOUDER MILLER AND AS ling address: 5454 VENICE AVE NE		Phone No.	505 289 1056
City:	AL PLIQUEDOUE	State:	NM	Zip code: 87113
<u>п. у</u> 1)	WELL PLUGGING INFORMATI Name of well drilling company	The second secon	D DRILL	
2)	New Mexico Well Driller Licens	se No.: WD-1848		Expiration Date: 11/31/2026
3)	Well plugging activities were su RODNEY BEGAY			
4)	Date well plugging began: 9/2	4/25 Da	ate well plugging conclu	ded: 9/24/25
5)	GPS Well Location: Latitu	itude: 36 00'57.29 deg, itude: 106 03'51.15 deg,	min	200
6)	Depth of well confirmed at initia by the following manner: TAPE	tion of plugging as: 27		
7)	Static water level measured at ini	itiation of plugging:16	ft bgl	
3)	Date well plugging plan of opera	tions was approved by the	State Engineer:9/16	/25
9)	Were all plugging activities cons differences between the approved	istent with an approved plu I plugging plan and the wel	gging plan? YES I as it was plugged (atta	If not, please describ ch additional pages as needed):

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Depth (ft bgl)	Plugging Material Used (include any additives used)	Volume of Material Placed (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement Method (tremie pipe, other)	Comments ("casing perforated first", "open annular space also plugged", etc.)
	NEAT CEMENT GROUT TYPE I/II PORTLAND CEMENT	(gallons)	(gallons) 4.046	(tremie pipe, other) TREMMIE	("casing perforated first", "open annular space also plugged", etc.)
		MULTIPLY cubic feet x 7. cubic yards x 201.	BY AND OBTAIN 4805 = gallons 97 = gallons		

III. SIGNATURE:

I, JOHN AGUIRRE , say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

10/24/25

Date

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

	owner: SOUDER MILLER AND ASS ng address: 5454 VENICE AVE NE		Phone No.	505 289 1056
City:		State:	NM	Zip code: 87113
II. W	Name of well drilling company that		O DRILL	
2)	New Mexico Well Driller License	No.: WD-1848		Expiration Date: 11/31/2026
3)	Well plugging activities were supe RODNEY BEGAY			
(-)	Date well plugging began: 9/24/	25 Da	ate well plugging conclu	aded: 9/24/25
5)	GPS Well Location: Latitude Longitu	e: 36 00'58.39 deg, deg; 106 03'49.99 deg,	min, min,	sec sec, WGS 84
5)	Depth of well confirmed at initiation by the following manner: TAPE M	on of plugging as: 27		
)	Static water level measured at initia	ation of plugging:15	.5 ft bgl	
)	Date well plugging plan of operation	ons was approved by the	State Engineer: 9/16	6/25
)	Were all plugging activities consist differences between the approved p	tent with an approved plu olugging plan and the wel	gging plan? YES	If not, please describach additional pages as needed):

Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with 10) horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Depth (ft bgl)	Plugging Material Used (include any additives used)	Volume of Material Placed (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement Method (tremie pipe, other)	Comments ("casing perforated first", "open annular space also plugged", etc.)
	NEAT CEMENT GROUT TYPE I/II PORTLAND CEMENT	4.5	4.046	(treme pipe, other) TREMMIE	("casing perforated first", "open annular space also plugged", etc.)
		MULTIPLY cubic feet x 7. cubic yards x 201.	BY AND OBTAIN 4805 = gallons 97 = gallons		

III. SIGNATURE:

I, JOHN AGUIRRE , say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

10/24/25

Date

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

26-93769

Well Maili	owner: SOUDER MILLER AND ASSing address: 5454 VENICE AVE NE	O W T LO T OTT TIME	Phone N	o.: 505 289 1056
City:	ALBUQUERQUE	State:	NM	Zip code: 87113
ony.		State,		Zip code:
II. V	VELL PLUGGING INFORMATIO	N:		
1)	Name of well drilling company that		VIRO DRILL	
2)	New Mexico Well Driller License			Expiration Date: 11/31/2026
3)	Well plugging activities were super RODNEY BEGAY			
4)	Date well plugging began: 9/24/	25	Date well plugging cond	eluded: 9/24/25
5)	GPS Well Location: Latitude Longitude		eg, min, eg, min,	sec sec, WGS 84
6)	Depth of well confirmed at initiation by the following manner: TAPE M	on of plugging as: _ EASURE	23 ft below ground	level (bgl),
7)	Static water level measured at initi	ation of plugging: _	15.5 ft bgl	
3)	Date well plugging plan of operation	ons was approved by	the State Engineer: 9/	16/25
9)	Were all plugging activities consis differences between the approved p	tent with an approve olugging plan and the	d plugging plan? YE well as it was plugged (a	If not, please describ ttach additional pages as needed):

10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

For each interval plugged, describe within the following columns:

Depth (ft bgl)	Plugging Material Used (include any additives used)	Volume of Material Placed (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement Method (tremie pipe, other)	Comments ("casing perforated first", "open annular space also plugged", etc.)
(ft bgl)	(include any additives used) NEAT CEMENT GROUT TYPE I/II PORTLAND CEMENT	(gallons) 4.0	(gallons) 3.754	(tremie pipe, other) TREMMIE	("casing perforated first", "open annular space also plugged", etc.)
-					
		MULTIPLY cubic feet x 7. cubic yards x 201.	BY AND OBTAIN 4805 = gallons 97 = gallons		

III. SIGNATURE:

I, JOHN AGUIRRE , say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Signature of Well Driller

10/24/25

Date

Appendix 5 Health and Safety Plan

SITE 5AFETY AND HEALTH PLAN MINIMUM SITE ASSESSMENT

Location:

Fairview Station State Lead Site 1626 North Riverside Drive Espanola, New Mexico

PREPARED FOR: State of New Mexico Environment Department Petroleum Storage Tank Bureau

PREPARED BY:
SOUDER, MILLER & ASSOCIATES
5454 Venice Avenue NE, Suite D
Albuquerque, NM 87113
505-299-0942
FAX 505-293-3430

DATE: September 22, 2025

TABLE OF CONTENTS III. A. B. C. D. IV. V. ON-SITE CONTROL 4 HAZARDS EVALUATION 6 VI. VII. PERSONAL PROTECTIVE EQUIPMENT8 A. PROTOCOL8 VIII. Water samples: 9 Α. SOIL SAMPLES FOR ASSESSMENT/VERIFICATION: 9 B. C. IX. SITE WORK PLAN.....9 XI. Personal Decontamination: 10 A. В. C. XII. A. FIRST AID MEASURES/MEDICAL EMERGENCIES...... 11 PETROLEUM PRODUCTS / IRRITATING LIQUIDS: 11 В. 1. 2. 3. Inhalation: 11 4. Ingestion: 11 C. ENVIRONMENTAL MONITORING 11 D. Ε. 1. 2. Personal Injury in the Support Zone: 13 3. 4. Personal Protective Equipment Failure:...... 13 5.

I. Introduction:

The health and safety of *Souder, Miller & Associates* employees, subcontractors, and the general public is of the upmost importance, and is our primary concern. The inherent dangers involved in the handling of hazardous materials or waste, and hazards associated with any job site require that all participants in this project become familiar with the contents of this Health and Safety plan.

II. SITE DESCRIPTION

Date:

<u>September 22, 2025</u>

Location:

Fairview Station State Lead 5ite, 1626 North Riverside Drive

(Address)

Espanola, NM

(City, State)

Hazards: Potential hazards may include; heavy equipment, exposure to asbestos, overhead hazards, and falling tripping hazards, underground lines, flammable liquids and vapors

Area affected: Fairview Station

(Site Description)

Surrounding population: The surrounding area will consist of one or more of the following: Rural, Rural Residential, Residential, Commercial, Industrial.

III. ENTRY OBJECTIVES

- A. Task 1 Abandon wells MW-13, MW-22 and MW-23
- B. Task 2
- C. Task 3
- D. Task 4

IV. ON-SITE ORGANIZATION & COORDINATION

The following personnel are designated to carry out the stated job functions on site. (Note: one person may carry out more than one job function.)

PROJECT TEAM LEADER:	Scott McKitrick					
FIELD TEAM LEADER:	Cassie Parker					
ALTERNATES:	Mariah Kelly					
Subcontractors:						
SITE CREW CHIEF:	Enviro-Drill					
Owner:	:					
FEDERAL AGENCIES: EPA						
STATE AGENCIES:	NMED, NMOSE					
Other Agencies:						
	ON-SITE CONTROL					

The occupancy of the area will be minimal. Only key personnel will be in attendance. Representatives of *Souder, Miller & Associates* may include the following: <u>Cassie Parker, Mariah Kelly.</u> EPA or State Agency personnel will be varied with the contact person being <u>Mr. Larry Kemp, NMED PSTB.</u>

Control boundaries will be established and prior to Task 1, and the Exclusion Zone (the contaminated area), Contamination Reduction (decontamination) Zone, and Support Zone (clean area) will be identified as noted.

All personnel involved in the project will be required to adhere to all boundaries and rules regarding the project. All personnel will be required to show proof of 40 Hour HAZWOPER and other applicable training.

Boundaries to be marked:

Containment:

Orange temp fencing & yellow caution tape.

Traffic/Hotline:

Orange Cones.

Decontamination:

Orange Cones & White Tape.

HEALTH & SAFETY PLAN:

Support/Staging area: Vehicles & As needed.

V. HAZARDS EVALUATION

Table 1 and 2 list several potential hazards that might be associated with execution of this project. This list is by no means all inclusive and other unforeseen hazards may be contingent upon conditions.

Table 1
Possible Chemicals

Substances Involved	Concentration	Fire	Eyes	Skin	Respiratory
Anti-Freeze	Ethylene Glycol Variable				
Used Oil	Petroleum Hydrocarbons				
	Variabl e				
Gasoline	Variable				
Diesel	Variable				
Grease	Variable				
Solvent/Cleaners pH	Variable				
Approximate Range 3.5 To 11					
(Irritating Liquids) and					
possible Chorinated					
Hydrocarbons					
Off-Spec Paint (Liquid/Solid)	Lead And Chromium				
	Variable 8% - 15%				
Tar & MC 250 & MC-70	Variable				
Polychlorinated Biphenyl (PCB)	Variable, Halogens				
Organic Solvents	Variable				
Acids	Variable				
Bases	Variable				
Organic Peroxides	Variable				
77-9-10-10-10-10-10-10-10-10-10-10-10-10-10-					

Legend:

Slt. Slight Mod Moderate

Hi. High IDLH Immediately Dangerous to Life and Health

NA Not Applicable

Table 2
Potential Health And Safety Hazards

Hazard	Task 1:	Task 2:	Task 3	Task 4
Inhalation Hazard	Х			
Contaminated	X			
Soil/Liquid Contact				
Noise	Х			
Heat/Cold Stress	Х			
Electrical				
(Transformers And				
Buried Powerlines)				
Potential	X			
Fire/Explosion				
High Pressure Liquids				
Collapsing Of				
Sidewalls				
Confined Spaces				
Physical Injury	Х			
Overhead Powerlines	Х			
Buried Piping/Tanks	Х			
Skin Hazards	Х			
Ventilation Problems				
Vandalism		ļ		
Heavy	Х			
Equipment/Trucking/				
Traffic				
Level Of Protection	D			
Air Monitoring	NA			
Buried Line Detection	One-Call			
	48 hr			
	Notice			

VI. PERSONAL PROTECTIVE EQUIPMENT

Based on the OVM (PID) readings in the breathing zone, the criteria for levels of protection are as follows:

Background-25 (PPM)	Level D	
25-50(PPM)	Level C	
50-100(PPM)	Level B	
>100 (PPM)	Level A	

NOTE: Deviations from these levels will be based on the types of products and constituents. No changes to the specified levels given in table 1 and the above table shall be made without the approval of the site safety officer and the project team leader.

A. Personal Protective Equipment Matrix:

	COVERALL	HARDHAT	GLOVES	SAFETY BOOTS	NOMEX	HEARING	SAFETY GLASSES W/side	LEVEL C	LEVEL B	LEVEL A	Отнек
DAILY ROUTINE		Х	Х	Х		Х	Х				
SAMPLING (OIL FIELD)											1
SAMPLING (NON-OIL FIELD)											
EXCAVATION (OIL FIELD)											1
EXCAVATION (NON OIL FIELD)											
DRILLING (INVESTIGATION)											
FACILITY INVENTORY											
CHEMICAL INVENTORY					•						2
Underground Storage Tank											
Removal				<u> </u>							
EMERGENCY RESPONSE											2

- 1. Minimum required will be determined by Client's current policy
- 2. MSDS will be consulted to determine proper Personal Protective Equipment.

VII. PROTOCOL

The following briefly describes the protocol to be followed for any soil and water samples to be taken at a site. A working knowledge of applicable EPA SW-846, sampling and analytical procedures and proper use of field testing equipment is necessary. <u>New disposable Nitrile gloves shall be worn for all water and soil sampling activities.</u>

A. Water samples:

Volatile Organic Analysis (VOA)- Use of a 40 mL VOA glass vial with Teflon closure, leave no airspace present, and preserve as required; keep cool with ice in cooler, use chain-of-custody sample handling procedures, and transport to Laboratory. For other analyses, see detailed procedures.

B. Soil samples for assessment/verification:

Field vapor headspace - 475 mL wide mouth glass container, fill 1/2 full, seal with aluminum foil, or use heavy zip-locking plastic bags.

Laboratory analysis for hydrocarbons (standard) - Use laboratory supplied sterile glass container, with Teflon closure. Fill completely, keep cool with ice in cooler, use chain-of custody sample handling procedures, transport to Laboratory. For NMED USTB Methanol Extraction, see detailed procedure.

C. Air Monitoring:

Air monitoring for the site will be accomplished with an MHSA approved LEL continuous meter, calibrated to pentane, and with and alarm at 10% LEL. An OVM (PID) calibrated to isobutylene can be substituted to an LEL. All air monitoring for exposure is to be in breathing area. (for frequencies, see Section VI, Table 2).

VIII. SITE WORK PLAN

This project will be completed in the Tasks outlined in Section B. The following outlines the key personnel and their responsibilities:

Project Team Leader:

Cassie Parker

Souder, Miller & Associates

Albuquerque, NM (575) 642-0365

Alternates:

Mariah Kelly

Matt Earthman

The Project Team Leader will function as the Project Manager, Site Health & Safety Officer, Site Supervisor, and sampler for this Project.

Tailgate safety meetings will be held and all personnel will be briefed on the contents of this plan prior to initiating any efforts. Tailgates will also cover any safety and/or health issues not anticipated or addressed in this plan. The Project Manager will be responsible for briefing and record keeping.

IX. COMMUNICATION PROCEDURES

Radio communication is not anticipated to be essential for this project. Personnel in the Exclusion Zone should be in visual contact of the Project Team Leader.

The following standard hand signals will be used:

Hand gripping throat	Out of air, can't breathe
Grip partner's wrist or both hands around waist	Leave area immediately
Hands on top of head	Need assistance
Thumbs up	OK, I'm all right, I understand
Thumbs down	NO, Negative

Others as needed while handling, moving, or loading materials, are acceptable provided that all personnel involved agree to their meaning.

Telephone communication will be available in the Staging Area by mobile phone.

X. DECONTAMINATION PROCEDURES

The following are a brief summary of decontamination procedures. Common sense should be used at all times.

A. Personal Decontamination:

The following procedure assumes level "D" Personal Protective Equipment (PPE). Prior to entering a vehicle and leaving the site, coveralls are to be doffed and placed in appropriate laundry/duffel bags in the reduction zone, and hands and face are to be washed.

For all other levels of PPE, PPE to be doffed in the reduction zone, Tyvek and other disposables will be placed with the waste for off-site disposal, and all other reusable PPE will be washed with brushes or soapy rags and rinsed by hand sprayers. All exposed skin to be washed in reduction zone also.

B. Excavation/Exploratory Equipment:

All equipment will be decontaminated by high pressure wash, and/or steam cleaned as necessary, initially in the exclusion zone and final rinsed in the reduction zone. Rinse and wash media to be disposed of with contaminated soil/groundwater.

C. Sampling Equipment:

Reusable sampling equipment is to be triple rinsed with alconox soap, tap water and deionized water. Disposable sampling equipment is to be consolidated with waste for off-site disposal.

XI. CONTINGENCIES

A. FIRST AID MEASURES/MEDICAL EMERGENCIES

The nearest hospital is located at:

<u>Presbyterian Espanola Hospital</u> 1010 Spruce St. Espanola, NM 87532

In the event that personnel exposure symptoms occur, the following procedures will be used:

B. PETROLEUM PRODUCTS / IRRITATING LIQUIDS:

1. Eye contact:

Flush eye immediately with copious amounts of water and repeat until irritation is eliminated. If prolonged irritation occurs for more than 15 minutes, seek medical attention.

2. Skin contact:

Wash exposed area with soap and water. If dermatitis or severe reddening occurs, seek medical attention.

3. Inhalation:

Remove person into fresh air. If symptom occurs for more than 15 minutes, seek medical attention.

4. Ingestion:

Do not induce vomiting, seek medical attention.

C. PHONE LIST:

AMBULANCE	<u>911</u>
POLICE, FIRE & RESCUE	<u>911</u>
STATE POLICE	505-841-9256
POISON CONTROL	1-800-362-0101
CHEMTREC	1-800-424-8802

First aid and emergency fire equipment will be available in *Souder, Miller & Associates* vehicles.

D. ENVIRONMENTAL MONITORING

The following environmental monitoring instruments will be used on site:

The following instruments will be used continuously to monitor air quality.

Combustible gas Indicator: Trigger level will be 10%. The alarm will be audible or vibratory in the event of extreme noise levels.

FID/OVA: Will measure in the parts per million. It will indicate organic volatiles.

HEALTH & SAFETY PLAN:

 $\,$ pH meter. The pH meter will be used to indicate the pH of each separate sample.

E. EMERGENCY PROCEDURES (to be modified as required for project or incident)

The following standard emergency procedures will be used by on site personnel. The Site Safety Officer shall be notified of any on site emergencies and be responsible for ensuring that the appropriate procedures are followed.

1. Personal Injury in the Exclusion Zone:

Upon notification of an injury in the Exclusion Zone, all site personnel shall assemble in the Reduction Zone. The rescue team will enter the Exclusion Zone (if required) to remove the injured person to the hotline. The Site Safety Officer and Project Team Leader shall evaluate the nature of the injury, prior to movement to the Support Zone. Appropriate first aid will be initiated, and contact should be made for an ambulance and with the designated medical facility (if required). No persons shall reenter the Exclusion Zone until the cause of the injury or symptoms is determined.

2. Personal Injury in the Support Zone:

Upon notification of an injury in the Support Zone, the Project Team Leader and Site Safety Officer will assess the nature of the injury. If the cause of the injury or loss of the injured person does not affect the performance of remaining personnel, operations may continue. If the injury increases the risk to others, the designated emergency signal horn shall be sounded and all site personnel shall move to the Reduction Zone for further instructions.

In any case, the appropriate first aid will be initiated and necessary follow-up as stated above.

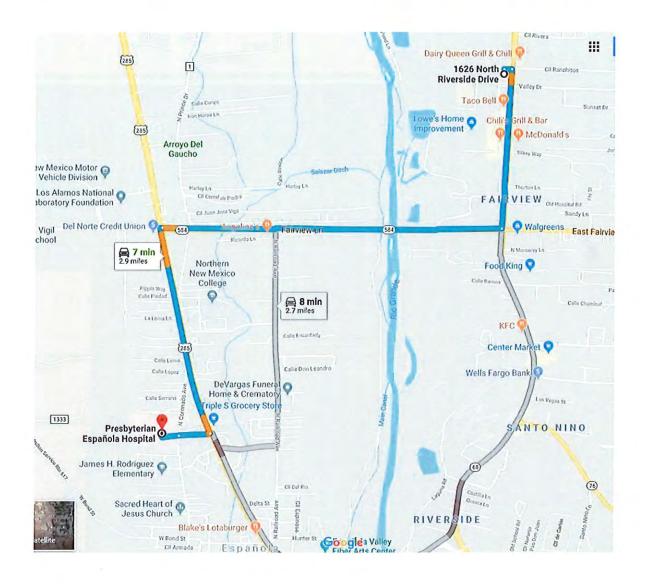
3. Fire / Explosion:

Upon notification of a fire or explosion on site, the designated emergency signal horn shall be sounded and all site personnel assembled at the Reduction Zone . The fire department shall be alerted and all personnel moved to a safe distance from the involved area. Fire extinguishers shall be used with discretion to minimize the risk of fire and explosion that would result in injuries.

4. Personal Protective Equipment Failure:

If any site worker experiences a failure or alteration of protective equipment that affects the protection factor, that person and his/her buddy shall immediately leave the Exclusive Zone. Reentry shall not be permitted until the equipment has been repaired or replaced.

5. Other Equipment Failure:


If any other equipment on site fails to operate properly, the Project Team Leader and Site Safety Officer shall be notified and then determine the effect of this failure on continuing operations on site. If the failure affects the safety of personnel or prevents completion of the Work Plan tasks, all personnel shall leave the Exclusion Zone until the situation is evaluated and appropriate actions taken.

In all situations, when an on site emergency results in evacuation of the Exclusion Zone, personnel shall not reenter until:

- 1. The hazards have been reassessed.
- 2. The conditions resulting in the emergency have been corrected.
- 3. The Site Safety Plan has been reviewed.
 - 3. Site personnel have been briefed on any changes in the Site Safety Plan.

CLOSURES AND SIGNATURES XII. This plan has been reviewed and has the full approval of the following Management. Owner: NAME:_____ TITLE: DATE:_____ Consultant Souder, Miller & Associates. NAME:_____ TITLE:_____ DATE:_____ All site personnel have read the above plan and are familiar with its provisions. **Print Name** Signature Site Safety Officer Project Team Leader Cassing Other Site Personnel Kouns

HEALTH & SAFETY PLAN:

Appendix 6 Well P&A Field Notes

CLIENT

DATE 9/24/25 BY C. Perler

						СН	ECKED		ВУ		
6945		Mees	Eni	ro-D	rill an	ech					
0950	UA	st i	reebre	3							
0955	cc In	ادولر مراه معالم.	MW-1	3 ul	Save	ro-Dr	ll. Cu	unvler	onll a	N. N.	
958	Sed	Ing	9 90	e µ	w-23						
				pw.							
108	Luon	-00114	coup	Cle	@ h	W-23					
020	Sedia	y of	Co .	hoory,	e H	W-13					
ors	Show	long c	ourle d	e in	MW.	-13, -	Tremi;	e he	1 do .	push	
4030	Sect.	Ing.	P @	ph	-22						
035	Grou	day.	ou.pl	le e	Mw-	22					
०५७ ह	Fedde	3 07	0	reneu	e reg	Snow	MW	-23			
				from							
115	Bec	Juni -	9 1	ives .	revove	d fre	m M	N-13			
135 1											
140 B	egin	mig r	res	renov	el Pro	u H	W-2-	2			
205	Rig	ren	ared								
220	Envi	re-D	rill,	deper	-1 31	e					

	DAILY DRILLING REPORT														JOB COMPLETED YES NO					
	Sounts Musta de la companya a 211 a														NO.). JOBS THIS DAY /				
Client SOUDER MILLER + ASSICIATES Date 9-24-25 Start: 6:00 End: 2:31) Project FARR VIEW STATION Job No. 25 (14)																				
Project FARR VIEW STATION Job No. 25 440																				
Loca	ation _/ ?	UZ No.		city Espanola, NM																
Project Type: Contract WT Enviro Geotech Labor Only Other																/				
\Box	CLIENT HOLE NO.						BIT	T	BIT		NO. OF	_		FORMATION						
1	PIVA	4/6/15	10	-		SIZE	OIZE		TYPE RING SPLIT CA BN					DRILLED AND DEPTH						
D	1	10. 100												SILT						
R	MWZ3	0	27	35											CLAY					
1 /	11113	0	23.	2								CALICHE								
L	MUZ	0	16	70			+		-	-		-	_	GRAVEL COBBLES						
L											☐ MEDIUM SOFT									
N															MED	IUM HARE)			
G																REMELY H	ARD			
-						-							-	GROUNDWATER TABLE ENCOUNTE						
	FOOTAGE DRILLED D			ORILL RATE PER HOUF				TOTAL SAMPLES			FS		4 0	, with the b						
FUNC	TION	SERVICE PERF	ORMED		QTY.	RAT	E CH	IARGE	I		RENTAL		PLIES	1 0	NOOND	QTY.	RATE	CHARGE		
262	MAKE READY / DECONTAMINATION -								s	UPPORT VE						7	IIAIL	CHARGE		
212		AFTER JOB / DEMOBILIZE E	-		GENERATOR															
212		+		-	RAILER(S)	CUINE /														
	SAFETY MEETING							CORING MACHINE / SAW CUT BULLET TEETH									-	-		
	DRILL OPERATIONS 4.0							PORTLAND CEMENT									-			
	REAMING HOLE(S) MOVING BETWEEN SITE(S)							PRE-MIX												
	GROUTING, HOURS FEET								ASPHALT VISQUEEN											
	SITE CLEANUP								DRUMS											
212	212 MISCELLANEOUS LABOR INCLUDES: DECONTAMINATION SERVICES								BRASS SLEEVES, SIZE:											
	MOVING DRUMS													K 5 F	-					
	CREW TRAVEL WITHOUT RIG								PVC CASING IN. X SCREEN .O O SLOT IN. X											
	2 LABORER						-	SCREEN .0 O SLOT IN. X												
	WELL INSTALLATION WELL DEVELOPMENT									OP LOCKING										
F-1-1	WELL ABANDONMENT									OTTOM CAR										
	STANDBY & DELAYS (EXPLAIN)									AND-SACKS		NO.:	161							
	CREW OVERTIME						-		-	ELL VAULT,		PAILS:	IN.	-			-			
212		PER DIEM MEAL / MISC. BREAKS (DOT REQUIRED)							В	ENTONITE P										
	CREW BREAK									CK HAMM										
	PERMITS /								A	R COMPRE	SSOR, S									
277	SUPERVISO	DRY TIME																		
REM	ARKS:																			
										EQUIPMEN			STARTING	MIL	DING	TOTAL	RATE	CHARGE		
						• • • • • • • • • • • • • • • • • • • •			RIC	PPORT VEH		1188		-						
MAN-HOUR ALLOCATION OPERATOR OPERATOR									30	TORT VEH	OLE /	121								
	STANT	-7	11/				8	5	RIC	7 TRUCK D	OWN TIM	E, HOU	RS (EXPLAI	IN BE	LOW)			•		
LABO		1-17	1/	-					DA	MAGED OR L	OST EQUI	PMENT:								
	-	SIGNATURE AP	PROVING	WOR	K CONTEN	IT -														
CLIEN	NT SIGNATUR	E: _(///	1	1	1															
P.O./	W.O./ JOB N	0.:																		

White - Invoicing; Yellow - Client Enviro-Drill, Inc.

Appendix 7 Well P&A Photo Log

Photo 1. MW-23 prior P&A, looking southwest

Photo 2. MW-13 prior to P&A, looking west

Photo 3. MW-22 prior to P&A, looking west

Photo 4. Enviro-Drill placing grout in MW-23, looking west

Photo 5. Enviro-Drill placing grout in MW-13, looking northeast

Photo 6. Enviro-Drill placing grout in MW-22, looking west

Photo 7. MW-23 location returned to grade, looking south

Photo 8. MW-13 location returned to grade, looking southwest

Photo 9. Enviro-Drill removing MW-22 surface completion, looking southwest

Photo 10. MW-22 location returned to grade, looking southwest

