SITE ASSESSMENT REPORT

For

Conoco Mini-Mart 3827 Highway 64 Chama, New Mexico Facility #27498 RID #2316 WPID #3109

August 1, 2006

Prepared For:
New Mexico Environment Department
Petroleum Storage Tank Bureau

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY2
2.0	INTRODUCTION2
3.0	BACKGROUND
4.0	SCOPE OF WORK
5.0	GROUND WATER MONITORING
5.1 5.2 5.3 5.4	GROUND WATER ELEVATION AND GRADIENT
6.0	UST SAMPLING FOR DISPOSAL CHARACTERIZATION
7.0	GEOPHYSICAL SURVEY
8.0	CONCLUSIONS
9.0	RECOMMENDATIONS
FIGUR	RES
	 Site Location Map Site Map Potentiometric Surface Map Total BTEX Concentration Map Benzene Iso-Concentration Map Total Xylenes Iso-Concentration Map Total Naphthalenes Iso-Concentration Map
Tal	bles
	 Summary of Ground Water Elevation Results Summary of Ground Water Analytical Results (Method 8021) Summary of Ground Water Analytical Results (Method 8310)
Ар	pendices A. Site Photographs B. Field Notes C. Laboratory Analytical Results D. Geophysical Survey Report E. Site Health and Safety Plan
	•

SITE ASSESSMENT FOR CONOCO MINI MART

3827 HIGHWAY 64 CHAMA, New Mexico

FACILITY #27498

RID #2316

WPID #3109

August 1, 2006

1.0 EXECUTIVE SUMMARY

On behalf of the New Mexico Environment Department Petroleum Storage Tank Bureau (NMED PSTB), Souder, Miller & Associates (SMA) completed a site assessment at the Conoco Mini Mart release site in Chama, New Mexico. The primary purposes of the event were to gauge the wells for potentiometric surface elevation and non aqueous phase hydrocarbon liquid (NAPL) thickness, to assess the current extent and magnitude of the dissolved phase ground water contaminant plume, collect samples of the liquids in the underground storage tanks (USTs) for disposal characterization, and complete a geophysical survey to search for unidentified USTs.

SMA has made the following conclusions from the results of the investigative event:

- 1. No recoverable NAPL was present in any of the site monitoring wells.
- 2. The west UST contains water and dissolved gasoline; the east UST contains gasoline.
- 3. The geophysical survey revealed a suspected UST in the southeast area of the property.
- 4. Laboratory results suggest that there is a second source of contamination from the southeast area of the property.

SMA recommends the following future work for the site:

- 1. Remove three USTs from the site; including over excavation of contaminated soils.
- 2. Remove associated piping and over excavation around pump islands and pipes.
- 3. Replacing monitoring wells destroyed during tank removal activities and installing additional down gradient monitoring wells in order to delineate the horizontal extent of the contaminant plume.
- 4. Excavate test pit to investigate soils and suspected septic system extending south from the car wash bays as a potential third contaminant source.

2.0 INTRODUCTION

This report details the activities and results of the site assessment event completed on July 10, 2006. SMA has performed this work on behalf of the NMED PSTB. This report is pursuant to a work plan submitted on June 6, 2006, and approved by the NMED PSTB in a letter dated June 26, 2006.

3.0 BACKGROUND

INTERA's *Emergency Response Site Assessment Report* (September 7, 2005) indicated the current owner of the adjoining property to the south of the site had complained of gasoline odors in her basement sometime in the 1970's. A 1989 "Environmental Evaluation" performed by Sergent, Hauskins & Beckwith included groundwater samples collected for laboratory analysis. Summed benzene, toluene, ethyl benzene and xylenes (BTEX) concentrations in the ground water samples

ranged from 71 to 17,500 μ g/L. Methyl-tertiary-butyl-ether (MTBE) was also identified in groundwater. Petroleum hydrocarbon sheen was also noted on purged ground water at two of the ground water sampling locations. Ground water flow was calculated to be in a south-southeasterly direction based upon their research.

The NMED PSTB contracted with INTERA in January 2005 to perform soil boring and monitoring well installation at the site in an attempt to determine the extent of on site contamination and to determine location of the USTs requiring removal.

Analytical results for the subsurface soils located immediately south of the USTs showed levels of volatile organic compounds (VOC) of concern to be above PSTB Tier 1 Soil Concentrations Protective of Groundwater. Eight groundwater monitoring wells were installed. Groundwater analytical results showed levels of VOC contaminants of concern to be above NMWQCC standards in monitoring wells MW-1, MW-2, MW-5, MW-7, and MW-8.

SMA was contracted by the NMED PSTB in January 2006 to complete a site assessment and other necessary work at the Conoco Mini Mart release site. During SMA's July 2006 Site Assessment informal interviews were conducted with Mayor Archie Vigil and Mr. Richard Russum of Russum Trucking. The following site information was disclosed during the interviews:

- 1. Product was recovered in trenches on the property south of the site in the 1980's.
- 2. The previous owner filled the car wash sump drains with concrete for unknown reasons.
- 3. The Village of Chama would like to have the building demolished because it is a safety hazard and eye-sore.
- 4. The current structure is not the original structure. A small gas station was on site in the 1950's and there is no knowledge of the UST's being removed.

4.0 SCOPE OF WORK

During the site assessment, SMA completed the following work:

<u>Site Assessment and Ground Water Monitoring</u>: SMA gauged eight monitoring wells for potentiometric surface elevation and NAPL thickness. SMA collected ground water samples from the eight wells for analyses by EPA Methods 8021 and 8310.

<u>UST Sampling</u>: SMA investigated the liquid contents of two USTs on the northern boundary of the site. SMA collected samples of the contents for analyses by EPA Methods 8260 and 8015 for disposal characterization.

<u>Geophysical Survey</u>: SMA contracted with Sunbelt Geophysics to complete an electro-magnetic survey in order to confirm the location of the two known USTs and locate a suspected third UST.

5.0 GROUND WATER MONITORING

5.1 GROUND WATER ELEVATION AND GRADIENT

Site monitoring wells were gauged for depth to water on July 10, 2006. Current and historical ground water elevation data are summarized in Table 1. Figure 3 is a potentiometric surface map generated from current data.

Ground water was measured at depths ranging from 4.58 to 7.91 feet bgs. The average depth to ground water at the site is 6.02 feet bgs. The ground water elevation has decreased an average of 0.08 feet across the site since the last monitoring event of July 2005. The direction of ground water flow is to the south with southwesterly and southeasterly components of flow. A gradient of 0.03 ft/ft was calculated for the site. The ground water flow direction and gradient are consistent with the results of earlier monitoring events.

5.2 NON AQUEOUS PHASE HYDROCARBON LIQUID (NAPL)

NAPL was not observed in any monitoring well in recoverable amounts. Sheen was observed on the surface of purged water from MW-7.

5.3 GROUND WATER SAMPLING FOR LABORATORY ANALYSIS

SMA collected ground water samples for laboratory analysis from eight monitoring wells on July 10, 2006. Following gauging for depth to water, a minimum of three well bore volumes was purged from each well with a dedicated disposable bailer. Bailers were discarded after use in individual wells. Groundwater quality parameters were unable to be measured in the field due to a failed meter.

Samples for analysis by EPA Method 8021 were collected in 40 ml volatile organic analysis VOA/VOC vials. One liter amber bottles were used to collect samples for analysis per EPA Method 8310. Sample bottles were labeled with the date, time, monitoring well number, and name of the sampler. Bottles were stored on ice for delivery to the analyzing laboratory. Sample shipment was documented using chain of custody procedures. EPA Method 8021 analysis was conducted by iina' ba' Laboratory. EPA Method 8310 analysis was conducted by Test America Analytical Testing Corporation.

5.4 GROUND WATER ANALYTICAL RESULTS

Figure 2 illustrates the location of existing monitoring wells. Current and past analytical results from the last sampling event in July 2005 are summarized in Table 2 and 3. Laboratory analytical reports are included in the appendices. Figure 4 shows the horizontal extent of the dissolved phase contaminant plume.

Volatile organic contaminant concentrations exceed New Mexico Water Quality Control Commission (NMWQCC) standards in wells MW-2, MW-7, and MW-8. The highest concentrations of contaminants appear in the two down gradient monitoring wells. The horizontal extent of the contaminant plume has not been defined to the south and southwest.

Benzene concentrations exceed the NMWQCC standard of 10 micrograms per liter (μ g/L) for MW-2, MW-7, and MW-8. The highest concentration of benzene was recorded in MW-2 at 174.0 μ g/L.

Toluene concentrations were below the NMWQCC standard of 750 μ g/L for all monitoring wells sampled.

Ethyl-benzene concentrations were below the NMWQCC standard of 750 μ g/L for all monitoring wells sampled.

Total xylene concentrations were below the NMWQCC standard of 620 µg/L for all monitoring wells sampled. During the last sampling event in July 2005, total xylene concentrations were above standard in MW-2, MW-5, MW-7, and MW-8.

MTBE concentrations were below 20 NMAC 5 standard of 100 $\mu g/L$ for all monitoring wells sampled.

Total naphthalene concentrations exceed the NMWQCC standard of 30 μ g/L for MW-2, MW-5, MW-7, and MW-8. Monitoring well MW-2 was not analyzed because the 1 L amber bottle was broken during shipment. The highest concentrations of total naphthalene was recorded in MW-7 at 427.6 μ g/L.

Benzo(b)fluoranthene concentrations exceed the NMWQCC standard of 1.2 μ g/L for MW-7 at 12.7 μ g/L. Non detectable concentration levels were reported in the remaining analyzed monitoring wells.

6.0 UST Sampling for Disposal Characterization

SMA used disposable bailers to investigate the contents of two known USTs at the site. A sample was collected from the west UST because it contained water and product. The product was not able to be separated from the water in the bailer because it was in an emulsified state. Laboratory results returned high levels of gasoline range organics.

No sample was collected for laboratory analysis from the east UST because it did not contain water. An oil/water interface probe was used in order to determine the depth of product. A disposable bailer was used to investigate the contents. Visible observation of the liquids in the bailer confirmed that only gasoline was in the UST.

7.0 Geophysical Survey

SMA contracted with Sunbelt Geophysics in order to complete an electro-magnetic subsurface survey of the site. The full report from Sunbelt is included in the appendices of this report. The following conclusions were made by Sunbelt:

- 1. There is a concentration of buried ferrous material immediately off the southeast corner of the building. This feature is likely to be either a heavily corroded/caved UST or steel left in the ground after excavation of a UST.
- 2. There is a septic or seepage system in the southern parking lot. This system is connected by buried lines to the wash bays.
- 3. There are most likely product lines connected to the fuel islands in the front of the facility.

8.0 CONCLUSIONS

SMA makes the following conclusions from the results of the site assessment.

- 1. No recoverable NAPL was present in any of the site monitoring wells.
- 2. The west UST contains water and dissolved gasoline; the east UST contains gasoline.
- 3. The geophysical survey revealed a suspected UST in the southeast area of the property.

4. Laboratory results suggest that there is a second source of contamination from the southeast area of the property.

9.0 RECOMMENDATIONS

SMA recommends the following future work at the site:

- 1. Remove three USTs from the site; including over excavation of contaminated soils.
- 2. Remove associated piping and over excavation around pump islands and pipes.
- 3. Replacing monitoring wells destroyed during tank removal activities and installing additional down gradient monitoring wells in order to delineate the horizontal extent of the contaminant plume.
- 4. Excavate test pit to investigate soils and suspected septic system extending south from the car wash bays as a potential third contaminant source.

APPROVED: RCA	DATE: 8/8/06
DRAWN BY: TROSS	DATE: 8/8/06
REVISIONS BY:	DATE:
PROJECT NO: 3116075	FIGURE: 1

VICINITY MAP

CONOCO MINI MART 3827 HWY 64 CHAMA, NEW MEXICO

Table 1
Summary of Groundwater Elevation Results
Conoco Mini Mart
Chama, New Mexico

(Feet)

Monitoring Well Identification	Date	Total Depth of Well	Top of Casing	Depth to NAPL	Depth to Water	NAPL Thickness	Relative Water Elevation
MW-1	7/8/2005	15.00	7780.17	0.00	5.74	0.00	7774.43
10100-1	7/10/2006	14.71		0.00	5.26	0.00	7774.91
MW-2	7/8/2005	15.00	7779.97	0.00	6.01	0.00	7773.96
10100-2	7/10/2006	15.75		0.00	5.78	0.00	7774.19
MW-3	7/8/2005	15.50	7780.16	0.00	5.76	0.00	7774.40
10104-2	7/10/2006	15.00		0.00	6.21	0.00	7773.95
MW-4	7/8/2005	15.50	7779.55	0.00	4.40	0.00	7775.15
1010 0	7/10/2006	14.94		0.00	4.58	0.00	7774.97
MW-5	7/8/2005	15.00	7779.02	0.00	5.76	0.00	7773.26
10100-0	7/10/2006	14.60		0.00	5.93	0.00	7773.09
MW-6	7/8/2005	12.00	7778.61	0.00	5.63	0.00	7772.98
	7/10/2006	11.30		0.00	5.90	0.00	7772.71
MW-7	7/8/2005	12.50	7779.32	0.00	6.84	0.00	7772.48
IVI V V - I	7/10/2006	11.90		0.00	6.59	0.00	7772.73
MW-8	7/8/2005	15.00	7779.64	0.00	7.76	0.00	7771.88
INIAA-O	7/10/2006	14.85		0.00	7.91	0.00	7771.73

Table 2
Summary of Groundwater Sample Analytical Results
US EPA Method 8021
Conoco Mini Mart
Chama, New Mexico

	Method 8021								
Monitoring Well Identification	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE		
MW-1	7/8/2005	58.0	2.1	160.0	290.0	510.1	<1.0		
10100-1	7/10/2006	5.8	<0.5	17.9	13.2	36.9	<1.0		
NMWQCC and 20 NMAC 5 Standards		10.0	750.0	750.0	620.0		100.0		

	Method 8021							
Monitoring Well Identification	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE	
MW-2	7/8/2005 7/10/2006	290.0 174.0	32.0 9.0	720.0 357.0	1800.0 418.3	2842.0 958.3	<5.0 11.5	
NMWQCC and 20 NMAC 5 Standards		10.0	750.0	750.0	620.0	-	100.0	

	Method 8021								
Monitoring Well Identification	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE		
MW-3	7/8/2005	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		
IVIVV-5	7/10/2006	<0.5	<0.5	<0.5	<1.0	<1.0	<1.0		
NMWQCC and 20 NMAC 5 Standards		10.0	750.0	750.0	620.0		100.0		

	Method 8021							
Monitoring Well Identification	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE	
MW-4	7/8/2005	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
MIV-4	7/10/2006	<0.5	<0.5	<0.5	<1.0	<1.0	<1.0	
NMWQCC and 20 NMAC 5 Standards		10.0	750.0	750.0	620.0		100.0	

Table 2 Summary of Groundwater Sample Analytical Results US EPA Method 8021 Conoco Mini Mart Chama, New Mexico

	Method 8021							
Monitoring Well Identification	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE	
MW-5	7/8/2005	<1.0	4.8	210.0	940.0	1154.8	<1.0	
IVIVV-5	7/10/2006	<0.5	1.9	142.0	255.5	399.4	1.7	
NMWQCC and 20 NMAC 5 Standards		10.0	750.0	750.0	620.0		100.0	

	Method 8021								
Monitoring Well Identification	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE		
MW-6	7/8/2005	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 .		
IVIVV-0	7/10/2006	<0.5	<0.5	<0.5	<1.0	<1.0	<1.0		
NMWQCC and 20 NMAC 5 Standards		10.0	750.0	750.0	620.0		100.0		

	Method 8021									
Monitoring Well Identification	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE			
MW-7	7/8/2005	700.0	86.0	530.0	1300.0	2616.0	<10			
	7/10/2006	50.0	21.7	399.0	1264.0	1734.7	17.5			
NMWQCC and 20 NMAC 5 Standards		10.0	750.0	750.0	620.0		100.0			

	Method 8021								
Monitoring Well Identification	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	MTBE		
MW-8	7/8/2005	49.0	42.0	600.0	1600.0	2291.0	<10		
	7/10/2006	75.8	3.7	425.0	503.0	1007.5	44.3		
NMWQCC and 20 NMAC 5 Standards		10.0	750.0	750.0	620.0		100.0		

Notes:

Data in itilics adopted from INTERA report dated 9/7/2005 (analyzed per Method 8260)
Methods 8021 results in ug/L
MTBE = Methyl Tertiary Butyl Ether
Red indicates concentration exceeds standard

NA = Not Analyzed

Table 3 Summary of Groundwater Analytical Results US EPA Method 8310 Conoco Mini Mart Chama, New Mexico

						01	nama, New Mexico							
							Met	nod 8310						
Monitoring Well Identification	Date	Acenaphthene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Total Naphthalenes	Phenanthrene	Pyrene
MW-1	7/10/2006	<0.943	<0.943	<0.189	<0.0943	<0.0943	<0.132	<0.0943	<0.189	<0.189	<0.472	1.57	<0.472	<0.189
NMWQCC Standard		2200.00	11000.00	1.20	0.70	1.20	1.20	117.00	0.12	1460.00	1460.00	30.00	1100.00	1100.00
	1											TWO IS TO SEE		
Monitoring Well	sell.							nod 8310						
Identification	Date	Acenaphthene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Total Naphthalenes	Phenanthrene	Pyrene
MW-2	7/10/2006											620.00		
NMWQCC Standard		2200.00	11000.00	1.20	0.70	1.20	1.20	117.00	0.12	1460.00	1460.00	30.00	1100.00	1100.00
	1						Met	nod 8310						
Monitoring Well Identification	Date	Acenaphthene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Total Naphthalenes	Phenanthrene	Pyrene
MW-3	7/10/2006	<0.943	<0.943	<0.189	<0.0943	<0.0943	<0.132	<0.0943	<0.189	<0.189	<0.472	< 0.943	<0.472	<0.189
NMWQCC Standard		2200.00	11000.00	1.20	0.70	1.20	1.20	117.00	0.12	1460.00	1460.00	30.00	1100.00	1100.00
Monitoring Well								nod 8310						
Identification	Date	Acenaphthene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Total Naphthalenes	Phenanthrene	Pyrene
MW-4	7/10/2006	<1.0	<1.0	<0.2	<0.1	<0.1	<0.14	<0.1	<0.2	<0.2	<0.5	<1.0	<0.5	<0.2
NMWQCC Standard		2200.00	11000.00	1.20	0.70	1.20	1.20	117.00	0.12	1460.00	1460.00	30.00	1100.00	1100.00
	1			***			B4n4l	and 9240						
Monitoring Well				Denze/e)	Donne (a)	Donne (b)		nod 8310	Dilean-(a.la)					1
Identification	Date	Acenaphthene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Total Naphthalenes	Phenanthrene	Pyrene
MW-5	7/10/2006	<0.952	<0.952	<0.19	<0.0952	<0.0952	<0.133	0.334	<0.19	<0.19	<0.476	96.9	<0.476	<0.19
NMWQCC Standard		2200.00	11000.00	1.20	0.70	1.20	1.20	117.00	0.12	1460.00	1460.00	30.00	1100.00	1100.00
	1						Mad	d 0040						
Monitoring Well				Danna (a)	D (-)	D(t-)		nod 8310	5" (1)				1	
Identification	Date	Acenaphthene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Total Naphthalenes	Phenanthrene	Pyrene
MW-6	7/10/2006	<0.943	<0.943	<0.189	<0.0943	<0.0943	<0.132	<0.0943	<0.189	<0.189	<0.472	<0.943	<0.472	<0.189
NMWQCC Standard		2200.00	11000.00	1.20	0.70	1.20	1.20	117.00	0.12	1460.00	1460.00	30.00	1100.00	1100.00
								10040						
Monitoring Well				Don-s(s)	D(a)	Danner (b)		nod 8310	D21 (. 1.)					
Identification	Date	Acenaphthene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Total Naphthalenes	Phenanthrene	Pyrene
MW-7	7/10/2006	73.00	<0.943	<0.189	<0.0943	12.7	<0.132	<0.0943	<0.189	<0.189	<0.472	427.6	30.6	0.273
NMWQCC Standard		2200.00	11000.00	1.20	0.70	1.20	1.20	117.00	0.12	1460.00	1460.00	30.00	1100.00	1100.00
	1						8.0 41	0040						
Monitoring Well				D. (1)	D ()	5 41		nod 8310	— • • • • • • • • • • • • • • • • • • •					
Identification	Date	Acenaphthene	Anthracene	Benzo(a) anthracene	Benzo(a) pyrene	Benzo(b) fluoranthene	Benzo(k) fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Fluorene	Total Naphthalenes	Phenanthrene	Pyrene
MW-8	7/10/2006	5.73	<0.952	<0.190	<0.0952	<0.0952	<0.133	<0.0952	<0.190	<0.190	<0.476	74.1	24.5	<0.190
NMWQCC Standard		2200.00	11000.00	1.20	0.70	1.20	1.20	117.00	0.12	1460.00	1460.00	30.00	1100.00	1100.00

Notes:

Methods 8310 results in ug/L Red indicates concentration exceeds standard

Conoco Mini Mart Site Investigation July 10, 2006

Photo 1: View of former pump islands and east side of building.

Photo 2: Northern view across east side of property.

Conoco Mini Mart Site Investigation July 10, 2006

Photo 3: North side of property, orange paint indicates UST locations.

Photo 4: Car wash bays on west side of property.

Conoco Mini Mart Site Investigation July 10, 2006

Photo 5: Western view across south side of property.

Photo 6: Sunbelt Construction team loading equipment on south side of property.

	VELL PURGE RECORD	
JOB NAME: CONONCIO MINI Mart	DATE: 7/10/06	TIME: /034
JOB #:	lina ba Representative:	TCR
MONITORING WELL: MW- SAMPLING METHOD: USEPA SW84	46	
DECONTAMINATION METHOD: WASH, TRIPLE DI WATER RINSE	SINGLE USE BAILER, FIE	ELD EQUIPMENT: ALCANOX
Total Depth of well: 14.71 Depth to water before purging	feet 5.26 feet	.*

Height of Water Column in Feet	Well PVC Diameter		1 Volume in Gallons	Minimum Purge Volumes	Volume to Purge in Gallons	
9 116	2-inch	4-inch		3		
1.40	0.163	0.653			5.0	

TIME	VOLUME PURGED	рН	SPECIFIC CONDUCTIVITY	TEMP IN °C	DISOLVED OXYGEN	TURBIDITY	COMMENTS
		METER	0.00			V decision and the second control of the second sec	
1034		PAILED		17.2			
						Park to Thomas profit to the state of	
					internation of the second seco	***************************************	
		- 9.1					al .
						*	
	*						
					*		

	WELL PURGE RECORD
JOB NAME: Conoco Mini Mart	DATE: 7/10/04 TIME: 11:04
JOB #:	lina ba Representative:
MONITORING WELL: MW-2 SAMPLING METHOD: USEPA SW8 FIELD CONDITIONS:	346
DECONTAMINATION METHOD: WASH, TRIPLE DI WATER RINSE	SINGLE USE BAILER, FIELD EQUIPMENT: ALCANOX
Total Depth of well: 15.75 Depth to water before purging	feet 15.78 feet

Height of Water Column in Feet		PVC neter	1 Volume in Gallons	Minimum Purge Volumes	Volume to Purge in Gallons
Q Q7	2-inch	4-inch		3	
1.01	0.163	0.653			5,0

TIME	VOLUME PURGED	pH:-	SPECIFIC CONDUCTIVITY	TEMP IN °C	DISOLVED OXYGEN	TURBIDITY	COMMENTS
1104	NE	MILE		14.8			
, pa-1							J. A. S.
		r					
						,	
						*	

	W	ELL PURGE RECORD	
JOB N	AME: Conoco Mini Mart	DATE: 7/10/010	TIME: //30
			7
JOB #:	2	lina ba Representative:	The state of the s
	MONITORING WELL: MW 3 SAMPLING METHOD: USEPA SW84 FIELD CONDITIONS:	16	
	DECONTAMINATION METHOD: WASH, TRIPLE DI WATER RINSE	SINGLE USE BAILER, FIE	ELD EQUIPMENT: ALCANOX 1
	Total Depth of well: 5.0 Depth to water before purging	feet (a. 2) feet	, s

Height of Water Column in Feet		PVC neter	1 Volume in Gallons	Minimum Purge Volumes	Volume to Purge in Gallons
20	2-inch	4-inch		3	
6-11	0.163	0.653			5.0

TIME	VOLUME PURGED	pH:	SPECIFIC GONDUCTIVITY	TEMP IN	DISOLVED OXYGEN	TURBIDITY	COMMENTS
1130			0	16.5			
		METE					
		M					
10 (10 to 10							
		Angelia analysis and comment		A		hfy. 1. 19712.	
-							
							, i
***	`		*				

W	VELL PURGE RECORD	
JOB NAME: CONOLIDCO Mini Mast	DATE: 7/10/06	TIME: 1200
JOB#:	lina ba Representative:	
MONITORING WELL: \(\sum_{\text{MW}} \text{\frac{1}{2}}\) SAMPLING METHOD: USEPA SW84 FIELD CONDITIONS:	46	
DECONTAMINATION METHOD: WASH, TRIPLE DI WATER RINSE	SINGLE USE BAILER, FIELD EQUIP	MENT: ALCANOX
Total Depth of well: 1494 Depth to water before purging	feet 4.58 feet	\$

Height of Water Column in Feet	Well PVC Diameter		1 Volume in Gallons	Minimum Purge Volumes	Volume to Purge in Gallons	
20	2-inch	4-inch	7.0	3	Canons	
(0.)4	0.163	0.653			5.0	

TIME	VOLUME PURGED	рН	SPECIFIC CONDUCTIVITY:	TEMP IN °C	DISOLVED OXYGEN	TURBIDITY	COMMENTS
1200			0	16.5			
		MEPE	KA				
3		TA	1000				
					trossorio de la	periodente i	- 5° 100 St. (100 St. (100 St.)
	The state of the s	deports - 12000 - 1000 - 1000 - 1000				e	and the second s
							,
				8			
	*						

r-							
WELL PURGE RECORD							
JOB NAME: COLOCO MINI MOST	DATE: 7/10/06 TIME: 14/5						
JOB #:	lina ba Representative:						
MONITORING WELL: MW 5 SAMPLING METHOD: USEPA SWE FIELD CONDITIONS:	/846						
DECONTAMINATION METHOD: WASH, TRIPLE DI WATER RINSE	SINGLE USE BAILER, FIELD EQUIPMENT: ALCANOX	<u> </u>					
Total Depth of well: H. B. B. Depth to water before purging	feet ng 5,93 feet	Ţ.					

Height of Water Column in Feet	Well PVC Diameter		1 Volume in Gallons	Minimum Purge Volumes	Volume to Purge in Gallons	
010	2-inch	4-inch		3	1 0	
D.10	0.163	0.653			5.0	

TIME	VOLUME PURGED	рН	SPECIFIC CONDUCTIVITY	TEMP IN °C	DISOLVED OXYGEN	TURBIDITY	COMMENTS
1415				17.2			
		NE	ALED .				
			XIV.				
							The state of the s
7					P. Carlotte Comment of the Comment o	£	
			6		et .		i)
4		-					
	*		,		¥		
					,		
			-10				

v	VELL PURGE RECORD	
JOB NAME: CONOCO MINI MORT	DATE: 1/10/06	TIME: 1515
JOB #:	lina ba Representative:	TL.
MONITORING WELL: MW/W SAMPLING METHOD: USEPA SW8 FIELD CONDITIONS:	46	
DECONTAMINATION METHOD:	SINGLE USE BAILER, FI	ELD EQUIPMENT: ALCANOX
Total Depth of well: Depth to water before purging	feet 5.90	· ·

Height of Water Column in Feet	Well PVC Diameter		1 Volume in Gallons	Minimum Purge Volumes	Volume to Purge in Gallons	
/ 110	2-inch	4-inch		3	775	
5.40	0.163	0.653			Q. D	

TIME	VOLUME PURGED	pH	SPECIFIC GONDUCTIVITY	TEMP IN	DISOLVED OXYGEN	TURBIDITY	COMMENTS
1315			2	16.8			
		ME					
		X	XIV		S 9		
			Ygarenn = main n				
						Private Control of the Control of th	St. Art. over sect. Are: over receptor
			*				
*							
							,
	3			,			

W	VELL PURGE RECORD
JOB NAME: CONOCO MINI MAN	DATE: 41000 TIME: 153Z
JOB #:	lina ba Representative:
MONITORING WELL: MW 7 SAMPLING METHOD: USEPA SW84 FIELD CONDITIONS:	46
DECONTAMINATION METHOD: WASH, TRIPLE DI WATER RINSE	SINGLE USE BAILER, FIELD EQUIPMENT: ALCANOX
Total Depth of well: 1.90 Depth to water before purging	feet (e.S) feet

Height of Water Column in Feet	Well PVC Diameter		1 Volume in Gallons	Minimum Purge Volumes	Volume to Purge in Gallons	
621	2-inch	4-inch		3	0 1-	
フ・ク\	0.163	0.653			2.15	

TIME	VOLUME PURGED	рН	SPECIFIC GONDUCTIVITY	TEMP IN	DISOLVED OXYGEN	TURBIDITY	COMMENTS
1532	ļ	1 1	N -	16.9			HEW
		NEC-					
		SKI			-	Land April 1	
		Б- п а -			Forest Parity of the St. Ale		7 De 1 - CE 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
			,				,
			e x				
	9	-	-				
						. :	
							,

	WELL PURGE RECORD
JOB NAME: COTOCO MINI Mart	DATE: 7/10/06 TIME: 1600
*	
JOB #:	lina ba Representative:
MONITORING WELL: MW-6 SAMPLING METHOD: USEPA SWE FIELD CONDITIONS:	846
DECONTAMINATION METHOD: WASH, TRIPLE DI WATER RINSE	SINGLE USE BAILER, FIELD EQUIPMENT: ALCANOX
Total Depth of well: 14,05 Depth to water before purging	feet g 기 의 feet

Height of Water Column in Feet	Well PVC Diameter		1 Volume in Gallons	Minimum Purge Volumes	Volume to Purge in Gallons	
101	2-inch	4-inch		3	20	
4.19	0.163	0.653			α . \bigcirc	

TIME	VOLUME PURGED	pH	SPECIFIC CONDUCTIVITY	TEMP IN	DISOL VED OXYGEN	TURBIDITY	COMMENTS
160			2	15.8			
		ME					
		\ \frac{1}{\partial}	hu,				
						ly. Boleston i	
				•		Park and the second sec	
	<u> </u>		14			<i>y</i>	,
			9	·			

612 E. Murray Drive Farmington, NM 87401

Off: (505) 327-1072 Fax: (505) 327-1496

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

July 24, 2006

Tami Ross Souder, Miller & Associates 612 E. Murray Dr Farmington, NM 87401

TEL: 505-325-5667 FAX 505-327-1496

RE: Conoco Mini Mart/3116075

Dear Tami Ross:

Order No.: 0607014

iiná bá received 9 samples on 7/11/2006 12:14:00 PM for the analyses presented in the following report.

This certificate of analysis includes the Analytical Report(s) for the sample(s) received by the laboratory. A Quality Control Summary Report, the Sample Receipt Checklist and an executed Chain of Custody are included as an addendum to this report.

Should you have any questions regarding this certificate of analysis, please contact the laboratory at your convenience.

Report Approved By: Jeffrey Longol

Jeffrey Engels Laboratory Director

Edwina Aspaas Quality Assurance Officer

This certificate of analysis and respective material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the person responsible for delivering this to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify the laboratory immediately at 505-327-1072.

612 E. Murray Drive Farmington, NM 87499

Off: (505) 327-1072 FAX: (505) 327-1496

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

iiná bá

Date: 24-Jul-06

CLIENT:

Souder, Miller & Associates

Project:

Conoco Mini Mart/3116075

Lab Order:

0607014

CASE NARRATIVE

Samples were analyzed using the methods outlined in one or more of the following references:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition.

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, March 1983.

Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992.

Methods for the Determination of Metals in Environmental Samples, Supplement I, EPA-600/R-94/111.

May 1994.

Any quality control and/or data qualifiers associated with this laboratory order will be flagged in the analytical result page(s), the quality control summary report(s) or the sample receipt checklist.

Hall Environmental analyzed for volatiles by EPA Method 8260. Their report is attached.

Test America analyzed for Polynuclear Aromatic Hydrocarbons by EPA Method 8310. Their report is attached.

Sample 0607014-002A for PAHs was broken in shipment.

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

ANALYTICAL REPORT

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

Lab ID:

0607014-001

.....

Date: 24-Jul-06

Client Sample Info:

Client Sample ID: MW-1

Collection Date: 7/10/2006 10:34:00 AM

Matrix: AQUEOUS

Parameter	Result	PQL Qua	Units	DF	Date Analyzed	
AROMATIC VOLATILES BY GC/PID	SW8021B				Analyst: jem	
Benzene	5.8	0.5	μg/L	1	7/12/2006	
Ethylbenzene	17.9	0.5	μg/L	1	7/12/2006	
m,p-Xylene	12.1	1.0	μg/L	1	7/12/2006	
Methyl tert-Butyl Ether	ND	1.0	μg/L	1	7/12/2006	
o-Xylene	1.1	0.5	μg/L	1	7/12/2006	
Toluene	ND	0.5	μg/L	1	7/12/2006	
Surr: 1,4-Difluorobenzene	95.5	90-122	%REC	.1	7/12/2006	
Surr: 4-Bromochlorobenzene	108	90-140	%REC	1	7/12/2006	
Surr: Fluorobenzene	93.5	88-124	%REC	1	7/12/2006	

Page 1 of 9

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted precision limits

E - Value above Upper Quantitation Limit - UQL

iiná bá

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

ANALYTICAL REPORT

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

Lab ID:

0607014-002

Client Sample Info:

Client Sample ID: MW-2

Collection Date: 7/10/2006 11:04:00 AM

Matrix: AQUEOUS

Date: 24-Jul-06

Parameter	Result	PQL Qual	Units	DF	Date Analyzed
AROMATIC VOLATILES BY GC/PID		SW8021B			Analyst: jem
Benzene	174	0.5	μg/L	1	7/12/2006
Ethylbenzene	357	5.0	μg/L	10	7/12/2006
m,p-Xylene	386	1.0	µg/L	1	7/12/2006
Methyl tert-Butyl Ether	11.5	1.0	μg/L	1	7/12/2006
o-Xylene	32.3	0.5	μg/L	1	7/12/2006
Toluene	9.0	0.5	μg/L	1	7/12/2006
Surr: 1,4-Difluorobenzene	97.7	90-122	%REC	10	7/12/2006
Surr: 1,4-Difluorobenzene	114	90-122	%REC	1	7/12/2006
Surr: 4-Bromochlorobenzene	109	90-140	%REC	10	7/12/2006
Surr: 4-Bromochlorobenzene	104	90-140	%REC	1	7/12/2006
Surr: Fluorobenzene	94.1	88-124	%REC	10	7/12/2006
Surr: Fluorobenzene	93.1	88-124	%REC	1	7/12/2006

Page 2 of 9

J - Analyte detected below Practical Quantitation Limit

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted precision limits

E - Value above Upper Quantitation Limit - UQL

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

ANALYTICAL REPORT

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

Lab ID:

0607014-003

Client Sample Info:

Client Sample ID: MW-3

Collection Date: 7/10/2006 11:30:00 AM

Date: 24-Jul-06

Matrix: AQUEOUS

Parameter	Result	PQL Qu	al Units	DF	Date Analyzed
AROMATIC VOLATILES BY GC/PID	SW8021B				Analyst: jem
Benzene	ND	0.5	μg/L	1	7/12/2006
Ethylbenzene	ND	0.5	μg/L	1	7/12/2006
m,p-Xylene	ND	1.0	μg/L	1	7/12/2006
Methyl tert-Butyl Ether	ND	1.0	μg/L	1	7/12/2006
o-Xylene	ND	0.5	μg/L	1	7/12/2006
Toluene	ND	0.5	μg/L	1	7/12/2006
Surr: 1,4-Difluorobenzene	96.5	90-122	%REC	1	7/12/2006
Surr: 4-Bromochlorobenzene	109	90-140	%REC	1	7/12/2006
Surr: Fluorobenzene	95.1	88-124	%REC	1	7/12/2006

Page 3 of 9

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted precision limits

E - Value above Upper Quantitation Limit - UQL

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

ANALYTICAL REPORT

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

Lab ID:

0607014-004

Client Sample Info:

Client Sample ID: MW-4

Collection Date: 7/10/2006 12:00:00 PM

Matrix: AQUEOUS

Date: 24-Jul-06

Parameter	Result	PQL Qı	ıal Units	DF	Date Analyzed	
AROMATIC VOLATILES BY GC/PID	SW8021B				Analyst: jen	
Benzene	ND	0.5	μg/L	1	7/12/2006	
Ethylbenzene	ND	0.5	μg/L	1	7/12/2006	
m,p-Xylene	ND	1.0	μg/L	1	7/12/2006	
Methyl tert-Butyl Ether	ND	1.0	μg/L	1	7/12/2006	
o-Xylene	ND	0.5	μg/L	1	7/12/2006	
Toluene	ND	0.5	μg/L	1	7/12/2006	
Surr: 1,4-Difluorobenzene	96.7	90-122	%REC	1	7/12/2006	
Surr: 4-Bromochlorobenzene	108	90-140	%REC	1	7/12/2006	
Surr: Fluorobenzene	94.7	88-124	%REC	1	7/12/2006	

Qualifiers:

ND - Not Detected at the Practical Quantitation Limit (PQL)

J - Analyte detected below Practical Quantitation Limit

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted precision limits

E - Value above Upper Quantitation Limit - UQL

Page 4 of 9

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

ANALYTICAL REPORT

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

Lab ID:

0607014-005

Client Sample Info:

Client Sample ID: MW-5

Collection Date: 7/10/2006 2:15:00 PM

Date: 24-Jul-06

Matrix: AQUEOUS

Parameter	Result	PQL Qu	al Units	DF	Date Analyzed
AROMATIC VOLATILES BY GC/PID		SW8021	В		Analyst: jem
Benzene	ND	0.5	μg/L	1	7/12/2006
Ethylbenzene	142	0.5	µg/L	1	7/12/2006
m,p-Xylene	239	1.0	μg/L	1	7/12/2006
Methyl tert-Butyl Ether	1.7	1.0	μg/L	1	7/12/2006
o-Xylene	16.5	0.5	μg/L	1	7/12/2006
Toluene	1.9	0.5	µg/L	1	7/12/2006
Surr: 1,4-Difluorobenzene	106	90-122	%REC	1	7/12/2006
Surr: 4-Bromochlorobenzene	116	90-140	%REC	1	7/12/2006
Surr: Fluorobenzene	98.1	88-124	%REC	1	7/12/2006

Page 5 of 9

J - Analyte detected below Practical Quantitation Limit

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted precision limits

E - Value above Upper Quantitation Limit - UQL

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

ANALYTICAL REPORT

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

Lab ID:

0607014-006

Client Sample Info:

Client Sample ID: MW-6

Collection Date: 7/10/2006 3:15:00 PM

Date: 24-Jul-06

Matrix: AQUEOUS

Parameter	Result	PQL Qua	al Units	DF	Date Analyzed
AROMATIC VOLATILES BY GC/PID		SW8021E	3		Analyst: jem
Benzene	ND	0.5	μg/L	1	7/12/2006
Ethylbenzene	ND	0.5	μg/L	1	7/12/2006
m,p-Xylene	ND	1.0	μg/L	1	7/12/2006
Methyl tert-Butyl Ether	ND	1.0	μg/L	1	7/12/2006
o-Xylene	ND	0.5	μg/L	1	7/12/2006
Toluene	ND	0.5	μg/L	1	7/12/2006
Surr: 1,4-Difluorobenzene	96.8	90-122	%REC	1	7/12/2006
Surr: 4-Bromochlorobenzene	112	90-140	%REC	1	7/12/2006
Surr: Fluorobenzene	94.8	88-124	%REC	1	7/12/2006

- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted precision limits
- E Value above Upper Quantitation Limit UQL

Page 6 of 9

B - Analyte detected in the associated Method Blank

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

ANALYTICAL REPORT

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

Lab ID:

0607014-007

Client Sample Info:

Client Sample ID: MW-7

Collection Date: 7/10/2006 3:32:00 PM

Date: 24-Jul-06

Matrix: AQUEOUS

Parameter	Result	PQL Qua	l Units	DF	Date Analyzed
AROMATIC VOLATILES BY GC/PID		SW8021B			Analyst: jem
Benzene	50.0	0.5	μg/L	1	7/12/2006
Ethylbenzene	399	5.0	μg/L	10	7/12/2006
m,p-Xylene	1160	10	μg/L	10	7/12/2006
Methyl tert-Butyl Ether	17.5	1.0	μg/L	1	7/12/2006
o-Xylene	104	0.5	μg/L	1.	7/12/2006
Toluene	21.7	0.5	μg/L	1	7/12/2006
Surr: 1,4-Difluorobenzene	103	90-122	%REC	10	7/12/2006
Surr: 1,4-Difluorobenzene	152	90-122 S	%REC	1	7/12/2006
Surr: 4-Bromochlorobenzene	113	90-140	%REC	10	7/12/2006
Surr: 4-Bromochlorobenzene	121	90-140	%REC	1	7/12/2006
Surr: Fluorobenzene	96.7	88-124	%REC	10	7/12/2006
Surr: Fluorobenzene	120	88-124	%REC	1	7/12/2006

Qualifiers:

ND - Not Detected at the Practical Quantitation Limit (PQL)

J - Analyte detected below Practical Quantitation Limit

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted precision limits

E - Value above Upper Quantitation Limit - UQL

Page 7 of 9

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

ANALYTICAL REPORT

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

Lab ID:

0607014-008

Client Sample Info:

Client Sample ID: MW-8

ment Sample ID: MW-6

Collection Date: 7/10/2006 4:00:00 PM

Date: 24-Jul-06

Matrix: AQUEOUS

Parameter	Result	PQL Qual	Units	DF	Date Analyzed
AROMATIC VOLATILES BY GC/PID		SW8021B	17		Analyst: jem
Benzene	75.8	0.5	μg/L	1	7/12/2006
Ethylbenzene	425	5.0	μg/L	10	7/12/2006
m,p-Xylene	503	10	μg/L	10	7/12/2006
Methyl tert-Butyl Ether	44.3	1.0	μg/L	1	7/12/2006
o-Xylene	ND	0.5	μg/L	1	7/12/2006
Toluene	3.7	0.5	μg/L	1	7/12/2006
Surr: 1,4-Difluorobenzene	108	90-122	%REC	10	7/12/2006
Surr: 1,4-Difluorobenzene	167	90-122 S	%REC	1	7/12/2006
Surr: 4-Bromochlorobenzene	115	90-140	%REC	10	7/12/2006
Surr: 4-Bromochlorobenzene	108	90-140	%REC	1	7/12/2006
Surr: Fluorobenzene	101	88-124	%REC	10	7/12/2006
Surr: Fluorobenzene	113	88-124	%REC	1	7/12/2006

Qualifiers:

ND - Not Detected at the Practical Quantitation Limit (PQL)

J - Analyte detected below Practical Quantitation Limit

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted precision limits

E - Value above Upper Quantitation Limit - UQL

Page 8 of 9

612 E. Murray Drive Farmington, NM 87499

Off: (505) 327-1072 FAX: (505) 327-1496

P.O. Box 3788 Shiprock, NM 87420

Off: (505) 368-4065

ANALYTICAL REPORT

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

Lab ID:

0607014-009

Client Sample Info:

Client Sample ID: W Tank

Collection Date: 7/10/2006 12:41:00 PM

Matrix: AQUEOUS

Date: 24-Jul-06

Parameter	Result	PQL Qual	Units	DF	Date Analyzed
DIESEL RANGE ORGANICS		SW8015B	(SW35	10B)	Analyst: jem
T/R Hydrocarbons: C10-C28	24.5	0.24	mg/L	1	7/14/2006
Surr: o-Terphenyl	95.4	50.5-128	%REC	1	7/14/2006
GASOLINE RANGE ORGANICS		SW8015B			Analyst: jem
T/R Hydrocarbons: C6-C10	376000	5000	μg/L	100	7/19/2006
Surr: Trifluorotoluene	78.9	70-130	%REC	100	7/19/2006

Page 9 of 9

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted precision limits

E - Value above Upper Quantitation Limit - UQL

iiná bá

Date: 24-Jul-06

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project: Conoco Mini Mart/3116075

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015DRO_W

Sample ID MB_1308 Client ID: ZZZZZ	SampType: MBLK Batch ID: 1308	TestCode: 8015DRO TestNo: SW8015B	_		Prep Date Analysis Date			Run ID: GC SeqNo: 116		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
T/R Hydrocarbons: C10-C28 Surr: o-Terphenyl	0.1223 0.219	0.250 0 0.22	0	99.6	50.5	128	0	0		J
Sample ID LCS_1308	SampType: LCS	TestCode: 8015DRO	_W Units: mg/L		Prep Date	e: 7/13/20	006	Run ID: GC	-2_060714A	
Client ID: ZZZZZ	Batch ID: 1308	TestNo: SW8015B	(SW3510B)		Analysis Date	e: 7/14/2 0	006	SeqNo: 116	6082	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
T/R Hydrocarbons: C10-C28	4.452	0.250 5.02	0.1223	86.3	80	120	0	0		
Surr: o-Terphenyl	0.2363	0 0.22	0	107	50.5	128	0	0		
Sample ID LCSD_1308	SampType: LCSD	TestCode: 8015DRO	_W Units: mg/L		Prep Date	e: 7/13/20	006	Run ID: GC	-2_060714A	
Client ID: ZZZZZ	Batch ID: 1308	TestNo: SW8015B	(SW3510B)		Analysis Date	e: 7/14/2 0	006	SeqNo: 116	6083	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
T/R Hydrocarbons: C10-C28	4.563	0.250 5.02	0.1223	88.5	80	120	4.452	2.46	20	
Surr: o-Terphenyl	0.2388	0 0.22	0	109	50.5	128	0	0	0	

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project: Conoco Mini Mart/3116075

ANALYTICAL QC SUMMARY REPORT

TestCode: 8015GRO_W

Sample ID MBLK_060719	SampType: MBLK	TestCode: 8015GR	D_W Units: µg/L	-	Prep Da	te:		Run ID: GC	-1B_060719	Α
Client ID: ZZZZZ	Batch ID: R8309	TestNo: SW8015	В		Analysis Da	te: 7/19/2	006	SeqNo: 110	5252	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
T/R Hydrocarbons: C6-C10	10.55	50.0			_					J
Surr: Trifluorotoluene	80.11	0 100	0	80.1	70	130	0	0		
Sample ID LCS_060719	SampType: LCS	TestCode: 8015GR	D_W Units: µg/L		Prep Da	te:		Run ID: GC	-1B_060719	A
Client ID: ZZZZZ	Batch ID: R8309	TestNo: SW8015	В		Analysis Da	te: 7/19/20	006	SeqNo: 110	S257	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
T/R Hydrocarbons: C6-C10	1099	50.0 1000	10.55	109	80	120	0	0		
Surr: Trifluorotoluene	98.39	0 100	0	98.4	70	130	0	0		
Sample ID 0607020-010BMS	SampType: MS	TestCode: 8015GR	D_W Units: μg/L		Prep Da	te:		Run ID: GC	-1B_060719	Α
•	SampType: MS Batch ID: R8309	TestCode: 8015GR0 TestNo: SW8015			Prep Da Analysis Da		006	Run ID: GC SeqNo: 110		A
Sample ID 0607020-010BMS Client ID: ZZZZZ Analyte		TestNo: SW8015		%REC	Analysis Da	ite: 7/19/2	006 RPD Ref Val			A Qual
Client ID: ZZZZZ Analyte	Batch ID: R8309	TestNo: SW8015	SPK Ref Val		Analysis Da	ite: 7/19/2		SeqNo: 110	6274	
Client ID: ZZZZZ Analyte	Batch ID: R8309 Result	TestNo: SW8015	SPK Ref Val	%REC	Analysis Da	te: 7/19/20	RPD Ref Val	SeqNo: 110	6274	
Client ID: ZZZZZ Analyte T/R Hydrocarbons: C6-C10	Batch ID: R8309 Result 5453	TestNo: SW8015 PQL SPK value 250 5000	SPK Ref Val 200.2 0	%REC	Analysis Da	HighLimit 130	RPD Ref Val	SeqNo: 110 %RPD 0 0	6274	Qual
Client ID: ZZZZZ Analyte T/R Hydrocarbons: C6-C10 Surr: Trifluorotoluene Sample ID 0607020-010BMSD	Batch ID: R8309 Result 5453 445.6	TestNo: SW8015 PQL SPK value 250 5000 0 500	SPK Ref Val 200.2 0 D_W Units: µg/L	%REC 105 89.1	Analysis Da LowLimit 70 70	HighLimit 130 130	RPD Ref Val 0 0	SeqNo: 110 %RPD 0 0	RPDLimit -1B_060719	Qual
Client ID: ZZZZZ Analyte T/R Hydrocarbons: C6-C10 Surr: Trifluorotoluene	Result 5453 445.6 SampType: MSD	TestNo: SW8015 PQL SPK value 250 5000 0 5000 TestCode: 8015GR0 TestNo: SW8015	SPK Ref Val 200.2 0 D_W Units: µg/L	%REC 105 89.1	Analysis Da LowLimit 70 70 Prep Da Analysis Da	HighLimit 130 130 te: 7/19/20	RPD Ref Val 0 0	SeqNo: 110 %RPD 0 0 Run ID: GC	RPDLimit -1B_060719	Qual
Client ID: ZZZZZ Analyte T/R Hydrocarbons: C6-C10 Surr: Trifluorotoluene Sample ID 0607020-010BMSD Client ID: ZZZZZ	Result 5453 445.6 SampType: MSD Batch ID: R8309	TestNo: SW8015 PQL SPK value 250 5000 0 5000 TestCode: 8015GR0 TestNo: SW8015	SPK Ref Val 200.2 0 D_W Units: µg/L SPK Ref Val	%REC 105 89.1	Analysis Da LowLimit 70 70 Prep Da Analysis Da	HighLimit 130 130 te: 7/19/20	RPD Ref Val 0 0	SeqNo: 110 %RPD 0 0 Run ID: GC SeqNo: 110	RPDLimit	Qual

B - Analyte detected in the associated Method Blank

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project:

Conoco Mini Mart/3116075

ANALYTICAL QC SUMMARY REPORT

TestCode: BTEX_W

Sample ID MB_060712	SampType: MBLK		de: BTEX_W	Units: µg/L		Prep Da				-1_060712A	
Client ID: ZZZZZ	Batch ID: R8295	TestN	No: SW8021B			Analysis Da	te: 7/12/20	006	SeqNo: 110	6114	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.1213	0.500			-						J
Ethylbenzene	0.091	0.500									J
m,p-Xylene	ND	1.00									
Methyl tert-Butyl Ether	ND	1.00									
o-Xylene	ND	0.500									
Toluene	0.1487	0.500									J
Surr: 1,4-Difluorobenzene	96.52	0	100	0	96.5	90	122	0	0		
Surr: 4-Bromochlorobenzene	109.2	0	100	0	109	90	140	0	0		
Surr: Fluorobenzene	94.77	0	100	0	94.8	88	124	0	0		
Sample ID LCS_060712	SampType: LCS	TestCod	de: BTEX_W	Units: µg/L		Prep Da	te:	<u> </u>	Run ID: GC	-1_060712A	
Client ID: ZZZZZ	Batch ID: R8295	TestN	lo: SW8021B			Analysis Da	te: 7/12/2 0	06	SeqNo: 116		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	35.33	0.500	40	0.1213	88	80	109	0	0		
Ethylbenzene	36.68	0.500	40	0.091	91.5	81	111	0	0		
m,p-Xylene	72.06	1.00	80	0	90.1	82	111	0	0		
Methyl tert-Butyl Ether	37.2	1.00	40	0	93	83	115	0	0		
o-Xylene	36.89	0.500	40	0	92.2	85	112	0	0		
Toluene	36.42	0.500	40	0.1487	90.7	80	113	0	0		
Surr: 1,4-Difluorobenzene	95.21	0	100	0	95.2	90	122	0	0		
Surr: 4-Bromochlorobenzene	105.6	0	100	0	106	90	140	0	0		
Surr: Fluorobenzene	93.25	0	100	0	93.2	88	124	0	0		
Sample ID 0607014-008BMS	SampType: MS	TestCod	de: BTEX_W	Units: µg/L		Prep Dat	te:		Run ID: GC	-1_060712A	
Client ID: MW-8	Batch ID: R8295	TestN	lo: SW8021B			Analysis Da	te: 7/12/20	06	SeqNo: 116	112	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	254.3	5.00	200	113.8	70.2	71	112	0	0		s
Ethylbenzene	572.7	5.00	200	425.2	73.8	73	111	0	0		•
-								9	•		

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits

CLIENT:

Souder, Miller & Associates

Work Order:

0607014

Project: Conoco Mini Mart/3116075

ANALYTICAL QC SUMMARY REPORT

TestCode: BTEX_W

Sample ID 0607014-008BMS	SampType: MS	TestCo	de: BTEX_W	Units: µg/L		Prep Da	te:		Run ID: GO	-1_060712A	\
Client ID: MW-8	Batch ID: R8295	Testi	No: SW8021B	ŀ		Analysis Da	te: 7/12/20	006	SeqNo: 11	6112	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methyl tert-Butyl Ether	256.3	10.0	200	56.99	99.7	72	121	0	0		
o-Xylene	213.9	5.00	200	61.41	76.2	76	113	0	0		
Toluene	204.2	5.00	200	57.86	73.2	70	117	0	0		
Surr: 1,4-Difluorobenzene	1049	0	1000	0	105	90	122	0	0		
Surr: 4-Bromochlorobenzene	1114	0	1000	0	111	80	140	0	0		
Surr: Fluorobenzene	956.6	0	1000	0	95.7	88	124	0	0		
Sample ID 0607014-008BMSD	SampType: MSD	TestCo	de: BTEX_W	Units: µg/L		Prep Da	te:		Run ID: GC	-1_060712A	
Client ID: MW-8	Batch ID: R8295	Test	lo: SW8021B			Analysis Da	te: 7/12/2 0	006	SeqNo: 110	6113	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	249.6	5.00	200	113.8	67.9	71	112	254.3	1.85	7.2	s
Ethylbenzene	566.4	5.00	200	425.2	70.6	73	111	572.7	1.10	6.6	s
m,p-Xylene	796.3	10.0	400	503	73.3	74	113	804.1	0.973	6.6	s
Methyl tert-Butyl Ether	248.3	10.0	200	56.99	95.7	72	121	256.3	3.18	6.6	
o-Xylene	213.2	5.00	200	61.41	75.9	76	113	213.9	0.308	6.3	s
Toluene	198.2	5.00	200	57.86	70.2	70	117	204.2	3.00	11	
Surr: 1.4-Difluorobenzene	1043	0	1000	0	104	90	122	0	0	0	
				_			440	•	•	_	
Surr: 4-Bromochlorobenzene	1132	0	1000	0	113	80	140	0	0	0	

iiná bá

Sample Receipt Checklist

Client Name: SMA1005			Date and Tim	ne Received:	7/11/2006 12:14:00 PM
Work Order Number: 0607014			Received by:	jem	
Checklist completed by: Signature	Z 7/11/2	06	Reviewed by:	J. J	7/12/06 Date
Matrix:	Carrier name:	Tami Ross		·	
Shipping container/cooler in good condition	?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on shippping container	/cooler?	Yes 🗌	No 🗆	Not Present	$ \mathbf{Z} $
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present	$ \mathbf{V} $
Chain of custody present?		Yes 🗹	No 🗆		
Chain of custody signed when relinquished a	and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels	?	Yes 🗹	No 🗆		
Samples in proper container/bottle?		Yes 🗹	No 🗆		
Sample containers intact?		Yes 🗹	No 🗆		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗆		
All samples received within holding time?		Yes 🗹	No 🗆	. 4	
Container/Temp Blank temperature in compl	liance?	Yes 🗹	No□ 2	·5°C	
Water - VOA vials have zero headspace?	No VOA vials subm	itted	Yes 🗹	No 🗌	
Water - pH acceptable upon receipt?		Yes 🗹	No 🗌		
	Adjusted?	c	hecked by:		
Any No and/or NA (not applicable) response	must be detailed in the co	omments section	on below.	====	=======
Client contacted:	Date contacted:		Perso	n contacted:	•
Contacted by:	Regarding:				
Comments:					
Corrective Action:					

COVER LETTER

Wednesday, July 19, 2006

Judy Moore iina ba, Ltd 612 E. Murray Drive Farmington, NM 87401 TEL: (505) 327-1072

FAX (505) 327-1072

RE: 0607014

Dear Judy Moore:

Order No.: 0607150

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 7/13/2006 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent.

Reporting limits are determined by EPA methodology. No determination of compounds below these (denoted by the ND or < sign) has been made.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Business Manager

Nancy McDuffie, Laboratory Manager

AZ license # AZ0682

ORELAP Lab # NM100001

Hall Environmental Analysis Laboratory, Inc.

Date: 19-Jul-06

CLIENT:

iina ba, Ltd

Lab Order: Project:

0607150

Client Sample ID: 0607014-009A

Collection Date: 7/10/2006 12:41:00 PM Date Received: 7/13/2006

Project:	0607014				Date Received:	7/13/2	006		
Lab ID:	0607150-01				Matrix:			W Tank	OV 1
Analyses	NAA	Result	PQL	Qual	Units	DF	Date A	W Tank	1/24/06
EPA METHOD 826	0B: VOLATILES					1		Analyst: LMM	. \
Benzene		48000	1000		μg/L	1000	7/18/200		
Toluene		66000	1000		µg/L	1000	7/18/200		
Ethylbenzene		4600	100		μg/L	100	7/15/200	6	
Methyl tert-butyl eth	er (MTBE)	150	150		μg/L	100	7/15/200		
1,2,4-Trimethylbenz	ene	2200	100		μg/L	100	7/15/200		
1,3,5-Trimelhylbenz	ene	750	100		µg/L	100	7/15/200		
1,2-Dichloroethane	(EDC)	ND	100		µg/L	100	7/15/200	6	
1,2-Dibromoethane	(EDB)	ND	100		μg/L	100	7/15/200		
Naphthalene		480	200		μg/L	100	7/15/200		
1-Methylnaphthalen	е	ND	400		µg/L	100	7/15/200		
2-Methylnaphthalen		ND	400		μg/L	100	7/15/200		
Acetone		ND	1000		μg/L	100	7/15/200		
Bromobenzene		ND	100		µg/L	100	7/15/200		
Bromochloromethan	ie	ND	100		µg/L	100	7/15/200		
Bromodichlorometh	ane	ND	100		µg/L	100	7/15/200		
Bromoform		ND	100		µg/L	100	7/15/200		
Bromomethane		ND	200		µg/L	100	7/15/200		
2-Butanone		ND	1000		μg/L	100	7/15/200		
Carbon disulfide		ND	1000		μg/L	100	7/15/200	200	
Carbon Tetrachlorid	e	ND	200		µg/L	100	7/15/200		
Chlorobenzene	-	ND	100		μg/L	100	7/15/200		
Chloroethane		ND	200		µg/L	100	7/15/200		
Chloroform		ND	100		µg/L	100	7/15/200		
Chloromethane		ND	100		μg/L	100	7/15/200		
2-Chlorotoluene		ND	100			100			
4-Chlorotoluene		ND	100		μg/L	100	7/15/200		
cis-1,2-DCE		ND	100		μg/L		7/15/200		
cis-1,3-Dichloroprop	ene	ND	100		μg/L	100	7/15/2000		
1,2-Dibromo-3-chlor		ND	200		μg/L	100	7/15/200		
Dibromochlorometh:	5 55	ND	100		μg/L	100	7/15/2006		
Dibromomethane	arte	ND	200		μg/L	100	7/15/2000		
1,2-Dichlorobenzene					μg/L	100	7/15/2000		
55. LUK LK		ND	100		µg/L	100	7/15/2000	20	
1,3-Dichlorobenzene		ND	100		µg/L	100	7/15/2006		
1,4-Dichlorobenzene Dichlorodifluorometh		ND	100		μg/L	100	7/15/2006		
1.1-Dichloroethane	Idiic	ND	100		μg/L	100	7/15/2006		
1,1-Dichloroethene		ND	200		μg/L	100	7/15/2006		
10 Page 1 (10 No. 10 No		ND	100		μg/L	100	7/15/2006		
1,2-Dichloropropane		ND	100		μg/L	100	7/15/2006		
1,3-Dichloropropane		ND	100		µg/L	100	7/15/2006		
2,2-Dichloropropane	:	ND	200		μg/L	100	7/15/2006	Ď	

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- Analyte detected below quantitation limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date: 19-Jul-06

CLIENT:

iina ba, Ltd

Client Sample ID: 0607014-009A

Lab Order:

0607150

Project:

Collection Date: 7/10/2006 12:41:00 PM

0607014

Date Received: 7/13/2006

Lab ID:

0607150-01

Matrix: AQUEOUS

Analyses	Result	PQL	Qual U	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: LMN
1,1-Dichloropropene	ND	100	μ	ıg/L	100	7/15/2006
Hexachlorobutadiene	ND	200		ıg/L	100	7/15/2006
2-Hexanone	ND	1000		ig/L -	100	7/15/2006
Isopropylbenzene	100	100	Ц	ıg/L	100	7/15/2006
4-Isopropyitoluene	ND	100	μ	ig/L	100	7/15/2006
4-Methyl-2-pentanone	ND	1000	μ	ıg/L	100	7/15/2006
Methylene Chloride	ND	300	μ	ıg/L	100	7/15/2006
n-Butylbenzene	ND	100	μ	ıg/L	100	7/15/2006
n-Propylbenzene	270	100	μ	ıg/L	100	7/15/2006
sec-Butylbenzene	ND	200	μ	ıg/L	100	7/15/2006
Styrene	ND	150		ıg/L	100	7/15/2006
tert-Butylbenzene	ND	100	μ	ıg/L	100	7/15/2006
1,1,1,2-Tetrachloroethane	ND	100	μ	ıg/L	100	7/15/2006
1,1,2,2-Tetrachloroethane	ND	100	ji	ıg/L	100	7/15/2006
Tetrachloroethene (PCE)	ND	100	μ	ıg/L	100	7/15/2006
trans-1,2-DCE	ND	100	μ	ıg/L	100	7/15/2006
trans-1,3-Dichloropropene	ND	100	μ	ıg/L	100	7/15/2006
1,2,3-Trichlorobenzene	ND	100	μ	ıg/L	100	7/15/2006
1,2,4-Trichlorobenzene	ND	100	μ	ıg/L	100	7/15/2006
1,1,1-Trichloroethane	ND	100	μ	ıg/L	100	7/15/2006
1,1,2-Trichloroethane	ND	100	μ	ıg/L	100	7/15/2006
Trichlaroethene (TCE)	ND	100	μ	ıg/L	100	7/15/2006
Trichlorofluoromethane	ND	100	μ	ig/L	100	7/15/2008
1,2,3-Trichloropropane	ND	200	Į.	ıg/L	100	7/15/2006
Vinyl chloride	ND	100	μ	ig/L	100	7/15/2006
Xylenes, Total	33000	1500	μ	ıg <i>i</i> L .	50 0	7/17/2006
Surr: 1,2-Dichloroethane-d4	95.4	69.9-130	9	%REC	100	7/15/2006
Surr: 4-Bromofluorobenzene	112	75-139	9	%REC	100	7/15/2006
Surr: Dibromofluoromethane	101	57.3-135	9	%REC	100	7/15/2006
Surr: Toluene-d8	96.9	81.9-122	9	%REC	500	7/17/2006

Qualifiers:

Value exceeds Maximum Contaminant Level

Value above quantitation range

Analyte detected below quantitation limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Date: 19-Jul-06

QA/QC SUMMARY REPORT

Client: Project: iina ba, Ltd 0607014

Work Order:

0607150

Analyte	Result	Units	PQL	%Rec	LowLimit	Hiç	ghLimit	%RPD	RPDLimit	Qual
Method: SW8260B										
Sample ID: 5mL rb		MBLK			Batch	ID:	R19915	Analysis (Date:	7/14/200
Benzene	ND	μg/L	1.0							
Toluene	ND	μg/L	1.0							
Ethylbenzene	ND	μg/L	1.0							
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.5							
1,2,4-Trimethylbenzene	ND	μg/L	1.0							
1,3,5-Trimethylbenzene	ND	μg/L	1.0							
1,2-Dichloroethane (EDC)	ND	μg/Ľ	1.0	-						
1,2-Dibromoethane (EDB)	ND	µg/L	1.0							
Naphthalene	ND	µg/L	2.0							
1-Methylnaphthalene	ND	µg/L	4.0							
2-Methylnaphthalene	ND	μg/L	4.0							
Acetone	ND	µg/L	10							
Bromobenzene	ND	μg/L	1.0							
Bromochloromethane	ND	μg/L	1.0							
Bromodichloromethane	ND	µg/L	1.0							
Bromoform	ND	μg/L	1.0							
Bromomethane	ND .	μg/L	2.0							
2-Butanone	ND	μg/L	10							
Carbon disulfide	ND	µg/L	10							
Carbon Tetrachloride	ND	μg/L	2.0							
Chlorobenzene	ND	μg/L	1.0							
Chloroethane	ND	μg/L	2.0							
Chloroform .	ND	μg/L	1.0							
Chloromethane	ND	μg/L	1.0							
2-Chlorotoluene	ND	μg/L	1.0							
4-Chlorotoluene	ND	μg/L	1.0							
ds-1,2-DCE	ND	μg/L	1.0							
cis-1,3-Dichloropropene	ND	μg/L	1.0							
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0							
Dibromochloromethane	ND	μg/L	1.0					•		
Dibromomethane	ND	µg/L	2.0							
1,2-Dichlorobenzene	ND	μg/L	1.0							
1.3-Dichlorobenzene	ND	μg/L	1.0							
1,4-Dichlorobenzene	ND	μg/L	1.0							
Dichlorodifluoromethane	ND	μg/L	1.0							
1,1-Dichloroethane	ND	μg/L	2.0							
1,1-Dichloroelhene	ND	µg/L	1.0							
1,2-Dichleropropane	ND	µg/L	1.0							
1,3-Dichloropropane	ND	μg/L	1.0							
2,2-Dichloropropane	ND	µg/L	2.0							
1,1-Dichloropropene	ND	μg/L	1.0							
Hexachlorobutadiene	ND	μg/L	2.0							
2-Hexanone	ND	μg/L	10							
Isopropyibenzene	ND	μg/L	1.0							

Qualifiers:

- E Value above quantitation range
- Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits 3 / 8

Page 1

Date: 19-Jul-06

QA/QC SUMMARY REPORT

Client:

iina ba, Ltd

Project:

0607014

Work Order:

0607150

Anaiyte	Result	Units	PQL	%Rec	LowLimit Hig	jhLimit 	%RPD	RPDLImit	Qual
Method: SW8260B									
Sample ID: 5mL rb		MBLK :			Batch ID:	R19915	Analysis i	Date:	7/14/200
4-Isopropylloluene	ND	μg/L	1.0						
4-Methyl-2-pentanone	ND	μg/L	10						
Melhylene Chloride	ND	μg/L	3.0						
n-Butylbenzene	ND	μg/L	1.0						
n-Propylbenzene	ND	μg/L	1.0						
sec-Butyibenzene	ND	µg/L	2.0						
Styrene	ND	µg/L	1.5				•		
tert-Butylbenzene	ND	μg/L	1.0						
1,1,1,2-Tetrachloroethane	ND	μg/L	1.0						
1,1,2,2-Tetrachloroethane	ND	µg/L	1.0						
Tetrachlorcethene (PCE)	ND	µg/L	1.0						
trans-1,2-DCE	ND	µg/L	1.0						
trans-1,3-Dichloropropene	ND	µg/L	1.0						
1,2,3-Trichlorobenzene	ND	µg/L	1.0						
1,2,4-Trichlorobenzene	ND	µg/L	1.0						
1,1,1-Trichloroethane	ND	µg/L	1.0						
1,1,2-Trichloroethane	ND	µg/L	1.0						
Trichloroelhene (TCE)	ND	µg/L	1.0						
Trichlorofluoromethane	ND	µg/L	1.0						
1,2,3-Trichloropropane	ND	µg/L	2.0						
Vinyl chloride	ND	µg/L	1.0						
Xylenes, Total	. ND	µg/L	3.0						
Sample ID: 5mL rb		MBLK			Batch ID:	R19931	Analysis I	Date:	7/17/20
Benzene	ND	μg/L	1.0						
Toluene	ND	μg/L	1.0						
Ethylbenzene	ND	μg/L	1.0						
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.5						
1,2,4-Trimethylbenzene	ND	μg/L	1.0						
1,3,5-Trimethylbenzene	ND	μg/L	1.0						
1,2-Dichloroethane (EDC)	ND	μg/L	1.0						
1,2-Dibromoethane (EDB)	ND	μg/L	1.0						
Naphthalene	ND	μg/L	2.0						
1-Methylnaphthalene	ND	μg/L	4.0						
2-Methylnaphthalene	ND	μg/L	4.0						
Acetone	ND	μg/L	10						
Bromobenzene	ND	μg/L	1.0						
Bromochloromethane	ND	μ g/L	1.0						
Bromodichloromethane	ND	μg/L	1.0						
Bromoform	ND	μg/L	1.0						
Bromomethane	ND	μg/L	2.0						
2-Butanone	ND	μg/L	10						
Carbon disulfide	ND	μg/L	10						
Carbon Tetrachloride	ND	μg/L	2.0						
Chlorobenzene	ND	μg/L	1.0						

E Value above quantitation range

Page 2

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

iina ba, Ltd

Project:

0607014

Work Order:

Date: 19-Jul-06

0607150

Analyte	Result	Units	PQL	%Rec	LowLimit HighLimit	%RPD RPDLim	it Qual
Method: SW8260B							
Sample ID: 5mL rb		MBLK			Batch ID: R19931	Analysis Date:	7/17/200
Chloroethane	ND	µg/L	2.0				
Chloroform	ND	μg/L	1.0				
Chloromelhane	ND	μg/L	1.0				
2-Chlorotoluene	ND	µg/L	1.0				
4-Chlorotoluene	ND	μg/L	1.0				
cis-1,2-DCE	ND	μg/L	1.0				
cis-1,3-Dichloropropene	ND	μg/L	1.0				
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0				
Dibromochloromethane	ND	μg/L	1.0				
Dibromomelhane	ND	μg/L	2.0				
1,2-Dichlorobenzene	ND	μg/L	1.0				
1,3-Dichlorobenzene	ND	μg/L	1.0				
1,4-Dichlorobenzene	ND	μg/L	1.0				
Dichlorodifluoromethane	ND	μg/L	1.0				
1,1-Dichlorcethane	ND	μg/L	2.0				
1,1-Dichlorcethene	ND	µg/L	1.0		•		
1,2-Dichloropropane	ND	μg/L	1.0				
1,3-Dichloropropane	ND	μg/L	1.0				
2,2-Dichloropropane	ND	μg/L	2.0				
1,1-Dichloropropene	ND	μg/L	1.0				
Hexachlorobutadiene	ND	μg/L	2.0				
2-Hexanone	ND	μg/L	10				
Isopropylbenzene	ND	μg/L	1.0		•		
4-Isopropyltoluene	ND	μg/L	1.0				
4-Methyl-2-pentanone	ND	μg/L	10				
Methylene Chloride	ND	μg/L	3.0				
n-Butylbenzene	ND	μg/L	1.0			•	
n-Propylbenzene	ND	μg/L	1.0				
sec-Butylbenzene	ND	µg/L	. 2.0				
Styrene	ŃD	µg/L	1.5		•		
tert-Butylbenzene	ND	µg/L	1.0				
1,1,1,2-Tetrachloroethane	ND	μg/L	1.0				
1,1,2,2-Tetrachloroethane	ND	µg/L	1.0				•
Tetrachloroethene (PCE)	ND	μg/L	1.0				
trans-1,2-DCE	ND	μg/L	1.0				
trans-1,3-Dichloropropene	ND	µg/L	1.0				
1,2,3-Trichlorobenzene	ND	μg/L	1.0				
1,2,4-Trichlorobenzene	ND	μg/L	1.0				
1,1,1-Trichloroethane	ND	µg/L	1.0				
1,1,2-Trichicroethane	ND	µg/L	1.0				
Trichloroelhene (TCE)	ND	μg/L	1.0				
Trichloroflucromethane	ND	µg/L	1.0				
1,2,3-Trichloropropane	ND	µg/L	2.0				
Vinyl chloride	ND	µg/L	1.0				

Qualifiers:

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits 5/8

Date: 19-Jul-06

QA/QC SUMMARY REPORT

Client:

iina ba, Ltd

Project: 0607014

Work Order:

0607150

Analyte	Result	Units	PQL	%Rec	LowLimit	Hig 	hLimit	%RPD	RPDLimit	Qual	
Method: SW8260B			···								
Sample ID: 5mL rb		MBLK			Batch	ID:	R19931	Analysis D	Date:	7.	/17/200
Xylenes, Tolal	ND	μg/L	3.0								
Sample ID: 5mL rb		MBLK	- -		Batch	ID:	R19949	Analysis D	Date:	7,	/18/200
Benzene	ND	μg/L	1.0					•			
Toluene	ND	ha\racksquare	1.0								
Ethylbenzene	ND	μg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.5								
1,2,4-Trimethylbenzene	ND	μg/L	1.0		•			•			
1,3,5-Trimethylbenzene	ND	μg/L	1.0								
1,2-Dichloroethane (EDC)	ND	μg/L	1.0								
1,2-Dibromoethane (EDB)	ND	µg/L	1.0								
Naphthalene	ND	µg/L	2.0								
1-Methylnaphthalene	ND	µg/L	4.0								
2-Methylnaphthalene	ND	µg/L	4.0							•	
Acetone	ND	µg/L	10								
Bromobenzene	ND	µg/L	1.0								
Bromochloromethane	ND	µg/L	1.0								
Bromodichloromethane	ND	μg/L	1.0								
Bromoform	ND	μg/L	1.0								
Bromomethane	ND	μg/L	2.0								
2-Butanone	ND	μg/L	10								
Carbon disulfide	ND	µg/L	10								
Carbon Tetrachloride	ND	µg/L	2.0								
Chlorobenzene	ND	μg/L	1.0								
Chloroethane	ND	μg/L	2.0								
Chloroform	ND	µg/L	1.0								
Chloromeihane	ND	μg/L	1.0								
2-Chicrotoluene	ND	μg/L	1.0								
4-Chicrotoluene	ND	μg/L	1.0								
cis-1,2-DCE	ND	. h8/F	1.0								
cis-1,3-Dichloropropene	ND	μg/L	1.0								
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0								
Dibromochloromethane	ND	µg/L	1.0								
Dibromomethane	ND	μg/L	2.0								
1,2-Dichlorobenzene	ND	μg/L	1.0								
1,3-Dichlorobenzene	ND	μg/L	1.0								
1,4-Dichlorobenzene	ND	μg/L	1.0								
Dichlorodifluoromethane	ND	μg/L	. 1.0								
1,1-Dichloroethane	ND	μg/L	2.0								
1,1-Dichloroethene	ND	μg/L	1.0								
1,2-Dichloropropane	ND	μg/L	1.0								
1,3-Dichloropropane	ND	μg/L	1.0								
2,2-Dichloropropane	ND	μg/L	2.0								
1,1-Dichloropropene	ND	μg/L	1.0								
Hexachlorobutadlene	ND	μg/L	2.0					•			

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits

Page 4

Date: 19-Jul-06

QA/QC SUMMARY REPORT

Client: Project: iina ba, Ltd

0607014

Work Order: 0607150

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Method: SW8260B									
Sample ID: 5mL rb		MBLK			Batch	ID: R19949	Analysis D	ate:	7/18/200
2-Hexanone	ND	μg/L	10						
Isopropylbenzene	ND	µg/∟	1.0						
4-Isopropyltoluene	ND	μg/L	1.0						
4-Methyl-2-pentanone	ND	μg/L	10						
Melhylene Chloride	ND	μg/L	3.0						
n-Butylbenzene	. ND	µg/L	1.0						
n-Propylbenzene	ND	μg/L	1.0						
sec-Butylbenzene	ND	µg/L	2.0						
Styrene	ND	μg/L	1.5						
tert-Butylbenzene	ND	μg/L	1.0						
1,1,1,2-Tetrachloroethane	ND	µg/L	1.0						
1,1,2,2-Tetrachloroethane	ND	µg/L	1.0						
Tetrachloroethene (PCE)	ND	μg/L	1.0						
trans-1,2-DCE	ND	µg/L_	1.0						
trans-1,3-Dichloropropene	ND	µg/L	1.0						
1,2,3-Trichlorobenzene	ND	μg/L	1.0						
1,2,4-Trichlorobenzene	ND	µg/L	1.0						
1,1,1-Trichioroethane	ND	μg/L	1.0						
1,1,2-Trichloroethane	ND	μg/L	1.0						
Trichloroethene (TCE)	ND	μg/L	1.0						
Trichlorofluoromethane	ND	μg/L	1.0						
1,2,3-Trichloropropane	ND	μg/L	2.0						
Vinyl chloride	ND	μg/L	1.0					•	
Xylenes, Total	ND	μg/L	3.0						
Sample ID: 100ng lcs		LCS	0.0		Batch	ID: R19915	Analysis D	ate:	7/14/200
Benzene	17.31	μg/L	1.0	86.6	71	124	7a.ya.a o	-,-,	
Toluene	17.27	μ g/L	1.0	86.4	81.5	118			
Chlorobenzene	18.45	pg/L	1.0	92.2	81.2	132			
1,1-Dichloroethene	17.74	µg/L	1.0	88.7	65.5	134			
Trichloroethene (TCE)	17.60	μg/L	1.0	88.0	69.5	119			
Sample ID: 100ng Ics	17.00	LCS	1.0	40.0	8atch		Analusia D	ento.	7/17/20
_	40.00						Analysis D	ate:	11 (1120)
Benzene 	19.25	μg/L	1.0	96.2	71	124			
Toluene	20.15	μg/L 	1.0	101	81.5	118			
Chlorobenzene	19.64	μg/L 	1.0	98.2	81.2	132			
1,1-Dichloroethene	18.61	μg/L	1.0	93.0	65.5	134			
Trichloroethene (TCE)	19.02	μg/L	1.0	95.1	69.5	119			
Sample ID: 100ng lcs		LCS			Batch	ID: R19949	Analysis D	ate:	7/18/20
3enzene	18.84	µg/∟	1.0	94.2	71	124			
Toluene	19.97	μg/L	1.0	99.8	81.5	118			
Chlorobenzene	18.51	μg/L	1.0	92.6	81.2	132			
1,1-Dichloroethene	19.02	μg/L	1.0	95.1	65.5	134			
Trichloroethene (TCE)	20.63	μg/L	1.0	103	69.5	119			

Qualifiers:

Page 5

Value above quantitation range

Analyte detected below quantitation limits

RPD outside accepted recovery limits R

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits

San	nple Receipt Ci	hecklist		
Client Name IINA	•	Date and Tim	e Received:	7/13/2
Wark Order Number 0607150		Received by	y GLS	
Checklist completed by Signature	Dale	7-13-06	<u> </u>	
Matrix Carrier na	ime <u>Greyhound</u>			
Shipping container/cooler in good condition?	Yes 🗹	No 🗆	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗹	No 🗆	Not Present.	Not Shipped
Custody seals intact on sample bottles?	Yes 🗌	No 🗆	N/A	☑
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗀		
Chain of custody agrees with sample labels?	Yes 🗸	No 🗆		
Samples in proper container/bottle?	Yes 🗹	No 🗀		
Sample containers intact?	Yes 🗹	No 🗆		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗆		
All samples received within holding time?	Yes 🗹	No 🗆		
Water - VOA vials have zero headspace? No VOA vials	submitted	Yes 🗹	No 🗆	
Water - pH acceptable upon receipt?	Yes 🗌	No 🗆	N/A 🗹	
Container/Temp Blank temperature?	4º	4° C ± 2 Accept		
COMMENTS:		lf given sufficier	it time to coci.	
Client contacted Date contacted:		Per	son contacted	
Contacted by: Regarding				
Comments:				
				OR, COMMANDE IV.
				•

iiná bá

CHAIN-OF-GUSTODY RECORD

Page 1 of 1

612 E. Murray Drive Farmington, NM 87401 (505) 327-1072

Subcontractor:

Hall Environmental Analysis Laboratory

4901 Hawkins NE Suite D Albuquerque, NM 87109 TEL:

(505) 345-3975

FAX: (505) 345-4107

Acct #:

11-Jul-06

					Requested Tests	Healt
Sample ID	Matrix	Collection Date	Bottle Type	SW8260B		
						0607150
0607014-009A	Aqueous	7/10/2006 12:41:00 PM	VOAHCL	1		-

4

Comments:

Please analyze 1 (one) aqueous sample for SW8260 Standard Full List. Thank you.

<u> </u>	Date/Time			Date/Time
Relinquished by:	7/13/06 1/10	Received by:	Elchlose	7-13-060
Relinquished by:		Received by:	7/311	

July 24, 2006

Client:

lina Ba, LTD (3130)

612 E. Murray Drive

Farmington, NM 87401

Attn:

Jeff Engel

Work Order:

NPG1474

Project Name:

Iina Ba, LTD

Project Nbr:

0607014

P/O Nbr:

Date Received:

07/13/06

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
0607014-001A	NPG1474-01	07/10/06 10:34
0607014-003A	NPG1474-02	07/10/06 11:30
0607014-004A	NPG1474-03	07/10/06 12:00
0607014-005A	NPG1474-04	07/10/06 12:15
0607014-006A	NPG1474-05	07/10/06 15:15
0607014-007A	NPG1474-06	07/10/06 15:32
0607014-008A	NPG1474-07	07/10/06 16:00

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

Report Approved By:

Roxanne Connor

Senior Project Manager

Roxanne L. Connor

Client Iina Ba, LTD (3130)

612 E. Murray Drive

Farmington, NM 87401

Attn

Jeff Engel

Work Order:

NPG1474

Project Name:

Iina Ba, LTD 0607014

Project Number: Received:

07/13/06 08:00

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPG1474-01 (0607	7014-001A - Water	r) Sampled:	07/10/06 10:34	M W-1		X 7/24/06	•	
Polynuclear Aromatic Compounds	by EPA Method 83	10		101 00 - 1	6	12.1		
1-Methylnaphthalene	ND		ug/L	0.943	1	07/14/06 16:19	SW846 8310	6072259
2-Methylnaphthalene	ND		ug/L	0.943	1	07/14/06 16:19	SW846 8310	6072259
Acenaphthene	ND		ug/L	0.943	1	07/14/06 16:19	SW846 8310	6072259
Acenaphthylene	ND		ug/L	0.943	1	07/14/06 16:19	SW846 8310	6072259
Anthracene	ND		ug/L	0.943	1	07/14/06 16:19	SW846 8310	6072259
Benzo (a) anthracene	ND		ug/L	0.189	1	07/14/06 16:19	SW846 8310	6072259
Benzo (a) pyrene	ND		ug/L	0.0943	1	07/14/06 16:19	SW846 8310	6072259
Benzo (b) fluoranthene	ND		ug/L	0.0943	1	07/14/06 16:19	SW846 8310	6072259
Benzo (g,h,i) perylene	ND		ug/L	0.189	1	07/14/06 16:19	SW846 8310	6072259
Benzo (k) fluoranthene	ND		ug/L	0.132	1	07/14/06 16:19	SW846 8310	6072259
Chrysene	ND		ug/L	0.0943	1	07/14/06 16:19	SW846 8310	6072259
Dibenz (a,h) anthracene	ND		ug/L	0.189	1	07/14/06 16:19	SW846 8310	6072259
Fluoranthene	ND		ug/L	0.189	1	07/14/06 16:19	SW846 8310	6072259
Fluorene	ND		ug/L	0.472	1	07/14/06 16:19	SW846 8310	6072259
Indeno (1,2,3-cd) pyrene	ND		ug/L	0.189	1	07/14/06 16:19	SW846 8310	6072259
Naphthalene	1.57		ug/L	0.943	1	07/14/06 16:19	SW846 8310	6072259
Phenanthrene	ND		ug/L	0.472	1	07/14/06 16:19	SW846 8310	6072259
Pyrene	ND		ug/L	0.189	1	07/14/06 16:19	SW846 8310	6072259
Surr: p-Terphenyl (55-122%)	85 %					07/14/06 16:19	SW846 8310	6072259
Sample ID: NPG1474-02 (0607	014-003A - Water	r) Sampled:	07/10/06 11:30	MW-3	OV	1/24/06		
Polynuclear Aromatic Compounds	by EPA Method 83	10		Many 1507	91	1000		
1-Methylnaphthalene	ND		ug/L	0.943	1	07/14/06 16:44	SW846 8310	6072259
2-Methylnaphthalene	ND		ug/L	0.943	1	07/14/06 16:44	SW846 8310	6072259
Acenaphthene	ND		ug/L	0.943	1	07/14/06 16:44	SW846 8310	6072259
Acenaphthylene	ND		ug/L	0.943	1	07/14/06 16:44	SW846 8310	6072259
Anthracene	ND		ug/L	0.943	1	07/14/06 16:44	SW846 8310	6072259
Benzo (a) anthracene	ND		ug/L	0.189	1	07/14/06 16:44	SW846 8310	6072259
Benzo (a) pyrene	ND		ug/L	0.0943	1	07/14/06 16:44	SW846 8310	6072259
Benzo (b) fluoranthene	ND		ug/L	0.0943	1	07/14/06 16:44	SW846 8310	6072259
Benzo (g,h,i) perylene	ND		ug/L	0.189	1	07/14/06 16:44	SW846 8310	6072259
Benzo (k) fluoranthene	ND		ug/L	0.132	1	07/14/06 16:44	SW846 8310	6072259
Chrysene	ND		ug/L	0.0943	1	07/14/06 16:44	SW846 8310	6072259
Dibenz (a,h) anthracene	ND		ug/L	0.189	1	07/14/06 16:44	SW846 8310	6072259
Fluoranthene	ND		ug/L	0.189	1	07/14/06 16:44	SW846 8310	6072259
Fluorene	ND		ug/L	0.472	1	07/14/06 16:44	SW846 8310	6072259
Indeno (1,2,3-cd) pyrene	ND		ug/L	0.189	1	07/14/06 16:44	SW846 8310	6072259
Naphthalene	ND		ug/L	0.943	1	07/14/06 16:44	SW846 8310	6072259
Phenanthrene	ND		ug/L	0.472	1	07/14/06 16:44	SW846 8310	6072259
Pyrene	ND		ug/L	0.189	1	07/14/06 16:44	SW846 8310	6072259
Surr: p-Terphenyl (55-122%)	76 %		and Controller			07/14/06 16:44	SW846 8310	6072259

Client Iina Ba, LTD (3130)

612 E. Murray Drive Farmington, NM 87401

Attn Jeff Engel

Work Order:

NPG1474

Project Name: Project Number: Iina Ba, LTD 0607014

Received:

07/13/06 08:00

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NPG1474-03 (0607	014-004A - Wate	r) Sampled:	07/10/06 12:00	MW-4		gre 7 pulce		
Polynuclear Aromatic Compounds	by EPA Method 83	10			F.1.	10		
1-Methylnaphthalene	ND		ug/L	1.00	1	07/14/06 17:10	SW846 8310	6072259
2-Methylnaphthalene	ND		ug/L	1.00	1	07/14/06 17:10	SW846 8310	6072259
Acenaphthene	ND		ug/L	1.00	1	07/14/06 17:10	SW846 8310	6072259
Acenaphthylene	ND		ug/L	1.00	1	07/14/06 17:10	SW846 8310	6072259
Anthracene	ND		ug/L	1.00	1	07/14/06 17:10	SW846 8310	6072259
Benzo (a) anthracene	ND		ug/L	0.200	1	07/14/06 17:10	SW846 8310	6072259
Benzo (a) pyrene	ND		ug/L	0.100	1	07/14/06 17:10	SW846 8310	6072259
Benzo (b) fluoranthene	ND		ug/L	0.100	1	07/14/06 17:10	SW846 8310	6072259
Benzo (g,h,i) perylene	ND		ug/L	0.200	1	07/14/06 17:10	SW846 8310	6072259
Benzo (k) fluoranthene	ND		ug/L	0.140	1	07/14/06 17:10	SW846 8310	6072259
Chrysene	ND		ug/L	0.100	I	07/14/06 17:10	SW846 8310	6072259
Dibenz (a,h) anthracene	ND		ug/L	0.200	1	07/14/06 17:10	SW846 8310	6072259
Fluoranthene	ND		ug/L	0.200	1	07/14/06 17:10	SW846 8310	6072259
Fluorene	ND		ug/L	0.500	1	07/14/06 17:10	SW846 8310	6072259
Indeno (1,2,3-cd) pyrene	ND		ug/L	0.200	1	07/14/06 17:10	SW846 8310	6072259
Naphthalene	ND		ug/L	1.00	1	07/14/06 17:10	SW846 8310	6072259
Phenanthrene	ND		ug/L	0.500	1	07/14/06 17:10	SW846 8310	6072259
Pyrene	ND		ug/L	0.200	1	07/14/06 17:10	SW846 8310	6072259
Surr: p-Terphenyl (55-122%)	87 %					07/14/06 17:10	SW846 8310	6072259
					E	1 1.		
Sample ID: NPG1474-04RE1 (0 Polynuclear Aromatic Compounds			oled: 07/10/06 12:15	, MW	-3	8/ 7/201/or		
1-Methylnaphthalene	18.7	R1	ug/L	4.76	5	07/15/06 14:44	SW846 8310	6072259
2-Methylnaphthalene	42.3	KI	ug/L	4.76	5	07/15/06 14:44	SW846 8310	6072259
Acenaphthene	ND		ug/L	0.952	1	07/14/06 17:36	SW846 8310	6072259
Acenaphthylene	1.50		ug/L	0.952	1	07/14/06 17:36	SW846 8310	6072259
Anthracene	ND		ug/L	0.952	1	07/14/06 17:36	SW846 8310	6072259
Benzo (a) anthracene	ND		ug/L	0.190	1	07/14/06 17:36	SW846 8310	6072259
Benzo (a) pyrene	ND		ug/L	0.0952	1	07/14/06 17:36	SW846 8310	6072259
-convenience contract of the state of the st	1412		ug/L	0.0932		07/14/00 17.30	5 W 640 6510	0012233
	ND		ng/I	0.0052	1	07/14/06 17:36	SW846 8310	6072259
Benzo (b) fluoranthene	ND ND		ug/L	0.0952	1	07/14/06 17:36	SW846 8310	6072259
Benzo (g,h,i) perylene	ND		ug/L	0.190	1	07/14/06 17:36	SW846 8310	6072259
Benzo (g,h,i) perylene Benzo (k) fluoranthene	ND ND	R1	ug/L ug/L	0.190 0.133	1 1	07/14/06 17:36 07/14/06 17:36	SW846 8310 SW846 8310	6072259 6072259
Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene	ND ND 0.334	R1	ug/L ug/L ug/L	0.190 0.133 0.0952	1 1 1	07/14/06 17:36 07/14/06 17:36 07/14/06 17:36	SW846 8310 SW846 8310 SW846 8310	6072259 6072259 6072259
Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene	ND ND 0.334 ND	RI	ug/L ug/L ug/L ug/L	0.190 0.133 0.0952 0.190	1 1 1 1	07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36	SW846 8310 SW846 8310 SW846 8310 SW846 8310	6072259 6072259 6072259 6072259
Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene	ND ND 0.334 ND ND	RI	ug/L ug/L ug/L ug/L ug/L	0.190 0.133 0.0952 0.190 0.190	1 1 1 1	07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36	SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310	6072259 6072259 6072259 6072259 6072259
Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene	ND ND 0.334 ND ND	R1	ug/L ug/L ug/L ug/L ug/L ug/L	0.190 0.133 0.0952 0.190 0.190 0.476	1 1 1 1 1	07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36	SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310	6072259 6072259 6072259 6072259 6072259
Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene	ND ND 0.334 ND ND ND ND	R1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.190 0.133 0.0952 0.190 0.190 0.476 0.190	1 1 1 1 1 1	07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36	SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310	6072259 6072259 6072259 6072259 6072259 6072259
Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene Naphthalene	ND ND 0.334 ND ND ND ND ND	R1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.190 0.133 0.0952 0.190 0.190 0.476 0.190 4.76	1 1 1 1 1 1 1 5	07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/15/06 14:44	SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310	6072259 6072259 6072259 6072259 6072259 6072259 6072259
Benzo (g,h,i) perylene Benzo (k) fluoranthene Chrysene Dibenz (a,h) anthracene Fluoranthene Fluorene Indeno (1,2,3-cd) pyrene	ND ND 0.334 ND ND ND ND	RI	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.190 0.133 0.0952 0.190 0.190 0.476 0.190	1 1 1 1 1 1	07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36 07/14/06 17:36	SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310 SW846 8310	6072259 6072259 6072259 6072259 6072259 6072259

Client Iina Ba, LTD (3130)

612 E. Murray Drive

Farmington, NM 87401

Attn Jeff Engel

Work Order:

NPG1474

Project Name: Project Number: Iina Ba, LTD 0607014

Received:

07/13/06 08:00

Dilution

Analysis

Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NPG1474-05 (0607014	4-006A - Water) Sampled:	: 07/10/06 15:15	MW-6	3	94 1/24/06		
Polynuclear Aromatic Compounds by						14 1/21/2		
1-Methylnaphthalene	ND		ug/L	0.943	1	07/14/06 18:01	SW846 8310	6072259
2-Methylnaphthalene	ND		ug/L	0.943	1	07/14/06 18:01	SW846 8310	6072259
Acenaphthene	ND		ug/L	0.943	1	07/14/06 18:01	SW846 8310	6072259
Acenaphthylene	ND		ug/L	0.943	1	07/14/06 18:01	SW846 8310	6072259
Anthracene	ND		ug/L	0.943	1	07/14/06 18:01	SW846 8310	6072259
Benzo (a) anthracene	ND		ug/L	0.189	1	07/14/06 18:01	SW846 8310	6072259
Benzo (a) pyrene	ND		ug/L	0.0943	1	07/14/06 18:01	SW846 8310	6072259
Benzo (b) fluoranthene	ND		ug/L	0.0943	1	07/14/06 18:01	SW846 8310	6072259
Benzo (g,h,i) perylene	ND		ug/L	0.189	1	07/14/06 18:01	SW846 8310	6072259
Benzo (k) fluoranthene	ND		ug/L	0.132	1	07/14/06 18:01	SW846 8310	6072259
Chrysene	ND		ug/L	0.0943	1	07/14/06 18:01	SW846 8310	6072259
Dibenz (a,h) anthracene	ND		ug/L	0.189	1	07/14/06 18:01	SW846 8310	6072259
Fluoranthene	ND		ug/L	0.189	1	07/14/06 18:01	SW846 8310	6072259
Fluorene	ND		ug/L	0.472	1	07/14/06 18:01	SW846 8310	6072259
Indeno (1,2,3-cd) pyrene	ND		ug/L	0.189	1	07/14/06 18:01	SW846 8310	6072259
Naphthalene	ND		ug/L	0.943	1	07/14/06 18:01	SW846 8310	6072259
Phenanthrene	ND		ug/L	0.472	1	07/14/06 18:01	SW846 8310	6072259
Pyrene	ND		ug/L	0.189	1	07/14/06 18:01	SW846 8310	6072259
Surr: p-Terphenyl (55-122%)	62 %					07/14/06 18:01	SW846 8310	6072259
Sample ID: NPG1474-06RE1 (060	07014-007A - V	Vater) Sam	nled: 07/10/06 15:3	32 MW-7	,	gr 1/24/04		
Polynuclear Aromatic Compounds by			picu. 07/10/00 15.5	32 IVI VV — 7		grall !!		
1-Methylnaphthalene	80.6	R1	ug/L	4.72	5	07/15/06 15:10	SW846 8310	6072259
2-Methylnaphthalene	176	KI	ug/L	9.43	10	07/15/06 15:36	SW846 8310	6072259
Acenaphthene	73.0	R1	ug/L	4.72	5	07/15/06 15:10	SW846 8310	6072259
Acenaphthylene	17.2	101	ug/L	0.943	1	07/14/06 18:27	SW846 8310	6072259
Anthracene	ND		ug/L	0.943	1	07/14/06 18:27	SW846 8310	6072259
Benzo (a) anthracene	ND		ug/L	0.189	1	07/14/06 18:27	SW846 8310	6072259
Benzo (a) pyrene	ND		ug/L	0.0943	. 1	07/14/06 18:27	SW846 8310	6072259
Benzo (b) fluoranthene	12.7	R1	ug/L	0.0943	1	07/14/06 18:27	SW846 8310	6072259
Benzo (g,h,i) perylene	ND	141	ug/L	0.189	1	07/14/06 18:27	SW846 8310	6072259
Benzo (k) fluoranthene	ND		ug/L	0.132	1	07/14/06 18:27	SW846 8310	6072259
Chrysene	ND		ug/L	0.0943	1	07/14/06 18:27	SW846 8310	6072259
Dibenz (a,h) anthracene	ND		ug/L	0.189	1	07/14/06 18:27	SW846 8310	6072259
Fluoranthene	ND		ug/L	0.189	1	07/14/06 18:27	SW846 8310	6072259
Fluorene	ND		ug/L	0.472	1	07/14/06 18:27	SW846 8310	6072259
Indeno (1,2,3-cd) pyrene	ND		ug/L	0.189	1	07/14/06 18:27	SW846 8310	6072259
Naphthalene	171		ug/L	9.43	10	07/15/06 15:36	SW846 8310	6072259
Phenanthrene	30.6	R1	ug/L	2.36	5	07/15/06 15:10	SW846 8310	6072259
Pyrene	0.273	3000	ug/L	0.189	1	07/14/06 18:27	SW846 8310	6072259
Surr: p-Terphenyl (55-122%)	75 %					07/14/06 18:27	SW846 8310	6072259
K K A								

Client Iina Ba, LTD (3130)

612 E. Murray Drive

Farmington, NM 87401

Attn Jeff Engel

Work Order:

NPG1474

Project Name:

Iina Ba, LTD 0607014

Project Number: Received:

07/13/06 08:00

Analyte	Result	Flag	Units	1	MRL	Dilution	Analysis Date/Time	Method	Batch
Sample ID: NPG1474-07RE1	(0607014-008A - W	/ater) Sam	pled: 07/10/06	16:00	MW-	-8	OK 7/24/02		
Polynuclear Aromatic Compounds	s by EPA Method 83	10					10 0		
1-Methylnaphthalene	26,1		ug/L		1.90	2	07/15/06 16:01	SW846 8310	6072259
2-Methylnaphthalene	21.8		ug/L		1.90	2	07/15/06 16:01	SW846 8310	6072259
Acenaphthene	5.73	R1	ug/L		0.952	1	07/14/06 18:52	SW846 8310	6072259
Acenaphthylene	6.67		ug/L		0.952	1	07/14/06 18:52	SW846 8310	6072259
Anthracene	ND		ug/L		0.952	1	07/14/06 18:52	SW846 8310	6072259
Benzo (a) anthracene	ND		ug/L		0.190	1	07/14/06 18:52	SW846 8310	6072259
Benzo (a) pyrene	ND		ug/L		0.0952	1	07/14/06 18:52	SW846 8310	6072259
Benzo (b) fluoranthene	ND		ug/L		0.0952	1	07/14/06 18:52	SW846 8310	6072259
Benzo (g,h,i) perylene	ND		ug/L		0.190	1	07/14/06 18:52	SW846 8310	6072259
Benzo (k) fluoranthene	ND		ug/L		0.133	1	07/14/06 18:52	SW846 8310	6072259
Chrysene	ND		ug/L		0.0952	1	07/14/06 18:52	SW846 8310	6072259
Dibenz (a,h) anthracene	ND		ug/L		0.190	1	07/14/06 18:52	SW846 8310	6072259
Fluoranthene	ND		ug/L		0.190	1	07/14/06 18:52	SW846 8310	6072259
Fluorene	ND		ug/L		0.476	1	07/14/06 18:52	SW846 8310	6072259
Indeno (1,2,3-cd) pyrene	ND		ug/L		0.190	1	07/14/06 18:52	SW846 8310	6072259
Naphthalene	26.2		ug/L		1.90	2	07/15/06 16:01	SW846 8310	6072259
Phenanthrene	24.5	R1	ug/L		0.952	2	07/15/06 16:01	SW846 8310	6072259
Pyrene	ND		ug/L		0.190	1	07/14/06 18:52	SW846 8310	6072259
Surr: p-Terphenyl (55-122%)	87 %						07/14/06 18:52	SW846 8310	6072259

Client Iina Ba, LTD (3130)

612 E. Murray Drive Farmington, NM 87401

Attn Jeff Engel

Work Order:

NPG1474

Project Name:

Iina Ba, LTD 0607014

Project Number: Received:

07/13/06 08:00

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Polynuclear Aromatic Compounds	by EPA Method 8310	0			. , , , , , , , ,		
SW846 8310	6072259	NPG1474-01	1060.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-02	1060.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-03	1000.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-04	1050.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-04RE1	1050.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-05	1060.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-06	1060.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-06RE1	1060.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-06RE2	1060.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-07	1050.00	1.00	07/13/06 19:45	LRW	EPA 3510C
SW846 8310	6072259	NPG1474-07RE1	1050.00	1.00	07/13/06 19:45	LRW	EPA 3510C

Client Iina Ba, LTD (3130)

612 E. Murray Drive Farmington, NM 87401

Attn Jeff Engel

1

Work Order:

NPG1474

Project Name: Project Number:

Iina Ba, LTD 0607014

Received:

07/13/06 08:00

PROJECT QUALITY CONTROL DATA Blank

nalyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
olynuclear Aromatic Compo	unds by EPA Method 83	10			-	
072259-BLK1						
I-Methylnaphthalene	<0.240		ug/L	6072259	6072259-BLK1	07/14/06 11:51
-Methylnaphthalene	<0.540		ug/L	6072259	6072259-BLK1	07/14/06 11:51
Acenaphthene	<0.420		ug/L	6072259	6072259-BLK1	07/14/06 11:51
Acenaphthylene	<0.210		ug/L	6072259	6072259-BLK1	07/14/06 11:51
Anthracene	<0.100		ug/L	6072259	6072259-BLK1	07/14/06 11:51
Benzo (a) anthracene	<0.0800		ug/L	6072259	6072259-BLK1	07/14/06 11:51
enzo (a) pyrene	0.0660		ug/L	6072259	6072259-BLK1	07/14/06 11:51
enzo (b) fluoranthene	<0.0600		ug/L	6072259	6072259-BLK1	07/14/06 11:51
enzo (g,h,i) perylene	0.0880		ug/L	6072259	6072259-BLK1	07/14/06 11:51
enzo (k) fluoranthene	0.0640		ug/L	6072259	6072259-BLK1	07/14/06 11:51
rysene	<0.0900		ug/L	6072259	6072259-BLK1	07/14/06 11:51
benz (a,h) anthracene	<0.160		ug/L	6072259	6072259-BLK1	07/14/06 11:51
uoranthene	<0.120		ug/L	6072259	6072259-BLK1	07/14/06 11:51
uorene	<0.140		ug/L	6072259	6072259-BLK1	07/14/06 11:51
deno (1,2,3-cd) pyrene	<0.100		ug/L	6072259	6072259-BLK1	07/14/06 11:51
aphthalene	<0.390		ug/L	6072259	6072259-BLK1	07/14/06 11:51
enanthrene	<0.0900		ug/L	6072259	6072259-BLK1	07/14/06 11:51
rene	<0.110		ug/L	6072259	6072259-BLK1	07/14/06 11:51
rogate: p-Terphenyl	83%			6072259	6072259-BLK1	07/14/06 11:51

Client Iina Ba, LTD (3130)

612 E. Murray Drive

Farmington, NM 87401

Attn Jeff Engel

Work Order:

NPG1474

Project Name:

Iina Ba, LTD 0607014

Project Number: Received:

07/13/06 08:00

PROJECT QUALITY CONTROL DATA LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Polynuclear Aromatic Compou	nds by EPA Method 8310			• • • • • •				
6072259-BS1								
I-Methylnaphthalene	2.00	1.58		ug/L	79%	38 - 116	6072259	07/14/06 12:17
2-Methylnaphthalene	2.00	1.10		ug/L	55%	33 - 114	6072259	07/14/06 12:17
Acenaphthene	2.00	1.31		ug/L	66%	37 - 118	6072259	07/14/06 12:17
Acenaphthylene	10.0	6.15		ug/L	62%	35 - 132	6072259	07/14/06 12:17
Anthracene	2.00	1.78		ug/L	89%	48 - 119	6072259	07/14/06 12:17
Benzo (a) anthracene	2.00	1.86		ug/L	93%	56 - 120	6072259	07/14/06 12:17
Benzo (a) pyrene	2.00	1.84		ug/L	92%	33 - 133	6072259	07/14/06 12:17
Benzo (b) fluoranthene	2.00	1.90		ug/L	95%	55 - 120	6072259	07/14/06 12:17
Benzo (g,h,i) perylene	2.00	1.82		ug/L	91%	39 - 135	6072259	07/14/06 12:17
Benzo (k) fluoranthene	2.00	1.88		ug/L	94%	57 - 121	6072259	07/14/06 12:17
Chrysene	2.00	1.88		ug/L	94%	55 - 122	6072259	07/14/06 12:17
Dibenz (a,h) anthracene	2.00	1.84		ug/L	92%	13 - 150	6072259	07/14/06 12:17
Fluoranthene	2.00	1.76		ug/L	88%	48 - 117	6072259	07/14/06 12:17
Fluorene	2.00	1.51		ug/L	76%	51 - 111	6072259	07/14/06 12:17
Indeno (1,2,3-cd) pyrene	2.00	1.80		ug/L	90%	47 - 122	6072259	07/14/06 12:17
Naphthalene	2.00	1.36		ug/L	68%	34 - 111	6072259	07/14/06 12:17
Phenanthrene	2.00	1.68		ug/L	84%	53 - 123	6072259	07/14/06 12:17
Pyrene	2.00	1.74		ug/L	87%	53 - 117	6072259	07/14/06 12:17
Surrogate: p-Terphenyl	1.00	0.871			87%	55 - 122	6072259	07/14/06 12:17

Client Iina Ba, LTD (3130)

Attn

R1

612 E. Murray Drive

Farmington, NM 87401 Jeff Engel Work Order:

NPG1474

Project Name: Project Number: Iina Ba, LTD 0607014

Received:

07/13/06 08:00

DATA QUALIFIERS AND DEFINITIONS

The RPD between the primary and confirmatory analysis exceeded 40%. Per method 8000B, the higher value was reported.

METHOD MODIFICATION NOTES

BC#

NPG1474

Cooler Received/Opened On July 13, 2006 @ 0800 1. Indicate the Airbill Tracking Number (last 4 digits for Fedex only) and Name of Courier below:
Fedex UPS Velocity DHL Route Off-street Misc.
2. Temperature of representative sample or temperature blank when opened: 2,5 Degrees Celsius
NA A00466 A00750 A01124 100190 101282 Raynger ST
3. Were custody seals on outside of cooler?
a. If yes, how many and where: (Frank) 4. Were the seals intect signed and days.
4. Were the seals intact, signed, and dated correctly?
I certify that I opened the cooler and answered questions 1-5 (intial)
o. Were custody seals on containers:
were these signed, and dated correctly?
7. What kind of packing material used? Buhhlewran
Plastic bag Paper Other
8. Cooling process: Ice Ice-pack Ice (direct contact)
9. Did all containers arrive in good and
10. Were all container labels complete (# data signed
11. Did all container labels and tags agree with custody papers?
12. a. Were VOA vials received?
b. Was there any observable head space present in any VOA vial?
1 Certify that I unloaded the cooler and answered questions 6-12 (intial)
b. Did the bestle levels in No(NA)
The bottle labels indicate that the correct preservatives were used
If preservation in-house was needed, record standard ID of preservative used here
4. Was residual chlorine present?
5. Were custody papers properly filled out (ink, signed, etc)?
6. Did you sign the custody papers in the appropriate place?
7. Were correct containers used for the analysis requested?
B. Was sufficient amount of sample sent in each container?
certify that I entered this project into LIMS and answered questions 15-18 (intial)
certify that I attached a label with the unique LIMS number to each container (intial)
9. Were there Non-Conformance issues at login YES NO Was a PIPE generated YES NO # IS = Broken in shipment coler Receipt Form
OUTET Receipt Form LF-1 Particul 2006

End of Form

Revised 3/9/06

iiná bá

NPG1474

612 E. Murray Drive Farmington, NM 87401 (505) 327-1072

07/24/06 23:59

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

Subcontractor:

Test America, Inc.

2960 Foster Creighton Drive Nashville, TN 372040566

TEL: FAX: (800) 765-0980 (615) 726-3404

Acct #: 3130SP

Sample ID	Matrix	Collection Date	Bowle T.				Poots 17			11-J
			Bottle Type	SW8310			Requested Te	sts		
0607014-001A	Aqueous	7/10/2006 40 04 00					<u> </u>			T
0607014-002A	Aqueous	7/10/2006 10:34:00 AM	1LAMGU	1	1 41 100 11:					
607014-003A	Aqueous	7/10/2006 11:04:00 AM	1LAMGU		NPC-1	174-01		T		
607014-004A	Aqueous	7/10/2006 11:30:00 AM	1LAMGU	 		37442			· 	
607014-005A	Aqueous	7/10/2006 12:00:00 PM	1LAMGU	1-1-			or	-		
607014-006A	Aqueous	7/10/2006 2:15:00 PM	1LAMGU			1 4	3			
07014-007A	Aqueous	7/10/2006 3:15:00 PM	1LAMGU			15	ч	 		 .
07014-008A	Aqueous	7/10/2006 3:32:00 PM	1LAMGU			15	5	 		
		7/10/2006 4:00:00 PM	1LAMGU				h		-j	
				<u>-</u>			7	 		<u> </u>
					7				_ 	

Comments:

Please analyze 7 (seven) aqueous samples for PAH (8310). Thank You.

Relinquished by:

Relinquished by:

Received by:

Received by:

Received by:

	iiná_bá CHAIN OF CUSTODY RECORD 5375																
	(for life's sake) 612 E. Murray Dr. • P.O. Box Phone: (505) 327-1072 • Fa	2606 • F x: (505) 3	armington 27-1496	, NM 87	499 [Date	7/11	66					Page)	of _		
	Report to: TAMI ROSS						PON	lo.:		- T.		Jo	b No.:	31	160	75	
RESULTS TO:	Company: SMA				9	OP	Name	e:						1300			
PO	Address:					SEND INVOICE TO:	Com	oany:	SI	MA				172			
RES	City:					S	Addre	ess:									
	Phone: Fax:	Е	mail:				City:										
1 24-4	Sample Integrity Intact 8 hours (100%) 3-5 days (50%) On Ice	5°C	Yes	contract				E-B	The state of the s		Analy	sis Re	queste	∍d			
Sampl	ling Location: moco Mini Mart		No			NUMBER OF CONTAINERS:		WWY !		A/C	12076						
	Sample Identification	Date	ample e Time	Matrix	Pres.	NON	189	Bu	826	SOL					Li	ab ID	
1	MM-1	7/10/0	16/034	H20		4	/	/		E					0607	014-00	0
. 1	MW-Z	7/10/0	1011pt	H20	1	4	V	1								-00)
10	MW-3	1100	6/130	H20	- 5	4	V	/								-00	3
	MW-Y	7/10/0	16/200	H20		4	V	/								-00	
	MW-5	71,1	6/4/5	H20		1	1	~		-						-00	
	NAIA 7	7/10/0	1000	H20	- 3	4	V			The state of the s						-00	14
E	MINI - B	7/10/0	110	1420		4	1/	/		-	7.				7	-00	X
M	TAIL	1/10/0	10.11	40		M			1/	1		1				1 -00	-
		11010	610011	1.70	21.9	1				V					Y		1
						1		133				79				11223	
								0									
Reline	quished by: amu told	Date/	/Time: 7/	11/06	DKI	Receiv	ed by:	19	no	ore			Date	e/Time:	7/11/0	16 12	1
Relin	quished by:	: Date/Time:				Receiv	Received by: Date/Time:										
Relin	quished by:	Date/	/Time:	*		Receiv	ed by:						Dat	e/Time:	:		
Comr	ments:	1000						No.		-	- Land	1.59					

Geophysical Survey for Abandoned USTs Abandoned Conoco Mini-Mart Chama, New Mexico

Prepared for:

Souder, Miller & Associates P.O. Box 2606 Farmington, NM 87401-2606

David A. Hyndman

July 2006

Introduction

A geophysical survey has been conducted at the abandoned Conoco Mini-Mart in Chama, New Mexico. The objective of this survey was to locate abandoned underground storage tanks (USTs), associated buried lines, and other subsurface features remaining from previous land use.

The survey was conducted on July 10, 2006. Labor, instrumentation, and technical expertise for the survey were provided by Sunbelt Geophysics of Albuquerque. Guidance and coordination were provided by SMA of Farmington.

Methodology

A spatial control and data acquisition grid was established utilizing a transit and tape. The grid was positioned to cover the parking area to the south of the building and across the face of the building, enclosing a fueling island. The grid provided parallel north-south and east-west traverses and was marked by small dots of spray paint.

An initial survey was conducted using a Geonics EM-61 metal locator. The EM-61 is a time domain electromagnetic instrument capable of detecting concentrations of buried metal to a depth of approximately 10 ft with the 1-meter antenna set. EM-61 data were acquired every 0.65 ft along parallel north-south traverses separated by 5 ft. A portion of the site was resurveyed along east-west traverses.

Follow-on surveying was conducted with the EM-61 using the 15-cm antenna set to gain greater resolution of the buried lines. These data were acquired every 0.33 ft along traverses separated by 2.5 ft. The EM-61 data were transferred to a computer for analysis and mapping. The DAT61 program (Geonics Ltd.) and Oasis montaj were used for processing and image preparation.

The EM-61 survey was supported by screening with a Noggin 250 Mhz ground penetrating radar (GPR) system and a Schonstedt magnetic locator over the areas with reinforced concrete pavement.

Results

The results of the 1-meter EM-61 survey oriented to north-south are presented in Figure 1. The positions of the building with wash bays, fueling island, reinforced concrete pavement, and monitoring wells (MW) are annotated.

There is a high EM-61 response (red to pink) in the immediate area of the fueling island, much of this generated by reinforcing steel in the concrete and metal posts. There are buried lines running from the fueling island to the north and northwest and along the highway.

There is a significant feature (marked "?") just off the southeast corner of the building. This has the aerial extent of a UST but a rather low EM-61 response, with a UST expected to generate several hundred mV (red to pink).

There is a broad but low response immediately south of the wash bays, with the suggestion of buried lines leading from the bays. This is consistent with a septic/seepage system for water disposal.

The results of the 15-cm EM-61 oriented to north-south are presented in Figure 2. This image provides greater resolution of the buried lines running from the fueling island, with enough response to indicate that the products lines remain in place. This higher resolution image shows a buried line connecting the fueling island to the feature off the southeast corner of the building. This buried metallic feature is shown to span a distance over 10 feet. This is consistent with either an old, highly corroded and possibly caved UST or where a UST has been excavated with the relic piping/valves having been thrown back into the hole.

The east-west EM-61 response with both the 1-meter and the 15-cm antenna are shown in Figure 3. The response in the south confirms drain lines running from the wash bays and delineates a natural gas line that was marked on site. The response of the relic fixtures off the southeast corner of the building is again large in aerial extent but low in response. Product lines are interpreted to run from the fueling island to the northwest.

Screening with the GPR and the magnetic locator over the reinforced concrete pavement to the north of the building revealed no features consistent with a UST other than the two USTs previously identified by filler ports.

Conclusions

The geophysical survey of the abandoned Conoco Mini-Mart in Chama has revealed three subsurface features of possible environmental consequence:

- 1. There is a concentration of buried material immediately off the southeast corner of the building. This feature is likely to be either a heavily corroded/caved UST or material left in the ground after excavation of a UST.
- 2. There is a septic or seepage system in the southern parking lot. This system is connected by buried lines to the wash bays.
- 3. There are most likely product lines connected to the fueling island in the front of the facility.

Further investigation of these features will require intrusive methods.

SITE HEALTH AND SAFETY PLAN

Location:

Conoco Mini Mart Chama, New Mexico

PREPARED FOR:

New Mexico Environment Department
Petroleum Storage Tank Bureau
Ms. Lorena Goerger
2044 Galisteo Street
Santa Fe, New Mexico 87505

PREPARED BY:
Souder, Miller & Associates
612 East Murray Drive
Farmington, New Mexico
(505) 325-5667

DATE: July 10, 2006

TABLE OF CONTENTS

I. I	INTRODUCTION:	3
II.	SITE DESCRIPTION	3
III.	ENTRY OBJECTIVES	3
A.	TASK 1 1 ST QUARTERLY GROUNDWATER SAMPLING	3
IV.	ON-SITE ORGANIZATION & COORDINATION	3
v.	ON-SITE CONTROL	3
VI.	HAZARDS EVALUATION	4
VII.	PERSONAL PROTECTIVE EQUIPMENT	5
A.	AIR MONITORING:	
B.	PERSONAL PROTECTIVE EQUIPMENT MATRIX:	5
VIII.	PROTOCOL	5
A.	WATER SAMPLES:	5
B.	SOIL SAMPLES FOR ASSESSMENT/VERIFICATION:	5
C.	CHEMICAL FIELD SCREENING:	5
IX.	SITE WORK PLAN	5
x.	COMMUNICATION PROCEDURES	6
XI.	DECONTAMINATION PROCEDURES	6
A.	PERSONAL DECONTAMINATION:	6
B.	EXCAVATION/EXPLORATORY EQUIPMENT:	6
C.	SAMPLING EQUIPMENT:	6
XII.	CONTINGENCIES	6
A.	FIRST AID MEASURES/MEDICAL EMERGENCIES	6
B.	PETROLEUM PRODUCTS / IRRITATING LIQUIDS:	7
1.	Eye contact:	
2.	Skin contact:	
3.	Inhalation:	7 ت
4.	Ingestion: PHONE LIST:	, ד
C. D.	ENVIRONMENTAL MONITORING	
Б. Е.	EMERGENCY PROCEDURES (TO BE MODIFIED AS REQUIRED FOR INCIDENT)	
<i>I</i> .	Personal Injury in the Exclusion Zone:	
2.	Personal Injury in the Support Zone:	8
<i>3</i> .	Fire / Explosion:	8
4.	Personal Protective Equipment Failure:	
<i>5</i> .	Other Equipment Failure:	
XIII.	CLOSURES AND SIGNATURES	8

I. Introduction:

The health and safety of Souder, Miller & Associates (SMA) employees and the general public is of primary importance. The inherent danger involved in the handling of hazardous materials, and danger associated with any job site requires that all participants of this project become familiar with the contents of this Health and Safety plan.

II. SITE DESCRIPTION

Date: July 10, 2006 **Location:** 3827 Hwy 64

Chama, New Mexico

Hazards: Potential hazards in the area include; heavy equipment, heavy traffic, exposure to petroleum hydrocarbons, overhead hazards, and falling tripping hazard.

Area affected: Entire property surrounding gas station. **Surrounding population:** Commercial and Residential

III. ENTRY OBJECTIVES

A. Task 1 Site Assessment

IV. ON-SITE ORGANIZATION & COORDINATION

The following personnel are designated to carry out the stated job functions on site. (Note: one person may carry out more than one job function.)

On Site Technologies/Souder Miller & Associates :

PROJECT TEAM LEADER/ON-SITE COORDINATOR: Tami Ross/SMA

FIELD TEAM LEADER: Tami Ross/SMA

ALTERNATES: Walter Gage/SMA

OWNER: Village of Chama

STATE or TRIBAL AGENCIES: Lorena Goerger/NMED-PSTB

V. ON-SITE CONTROL

The occupancy of the area will be minimal. Only key personnel will be in attendance. Representatives of may include the following: SMA, Village of Chama, and NMED PSTB.

Control boundaries will be established and prior to Task 2, and the Exclusion Zone (the contaminated area), Contamination Reduction (decontamination) Zone, and Support Zone (clean area) will be identified as noted.

All personnel involved in the project will be required to adhere to all boundaries and rules regarding the project. All personnel will be required to show proof of 40 Hour HAZWOPPER and other applicable training.

Boundaries to be marked:

Containment: orange temp fencing & yellow caution tape.

Traffic/Hotline: Orange Cones

Decontamination: Orange Cones & White Tape.

Support/Staging area: Vehicles & As needed.

VI. HAZARDS EVALUATION

Table 1 and 2 list several potential hazards that might be associated with execution of this project. This list is by no means all inclusive and other unforeseen hazards may exist contingent upon conditions.

Table 1
Possible Chemicals

Substances Involved	Concentration	Fire	Eyes	Skin	Respiratory
Anti-Freeze	Ethylene Glycol Variable	T	SIt.	SIt.	
Used Oil	Petroleum Hydrocarbons Variable		Stl.	Stl.	
Gasoline	Variable		Hi.	Hi.	Hi.
Diesel	Variable		Mod.	Mod.	Mod.
Grease	Variable				
Solvent/Cleaners pH Approximate Range 3.5 To 11 (Irritating Liquids)	Variable				
Off-Spec Paint (Liquid/Solid)	Lead And Chromium Variable 8% - 15%				
Tar & MC 250 & MC-70	Variable				
Polychlorinated Biphenyl (PCB)	Variable, Halogens				
Organic Solvents	Variable				
Acids	Variable				
Bases	Variable				
Organic Peroxides	Variable				
Pesticides/Herbicides	Varible				

Legend:

Sit. Slight Mod Moderate . Hi. High

IDLH Immediately Dangerous to Life and Health

NA Not Applicable

Table 2Potential Health and Safety Hazards

Hazard	Task 1:
Inhalation Hazard	Sit.
Contaminated Soil/Liquid Contact	Mod.
Noise	Mod.
Heat/Cold Stress	Mod.
Electrical (Transformer And Buried Powerlines)	
Potential Fire/Explosion	
High Pressure Petroleum	
Collapsing Of Sidewalls	
Confined Spaces	
Physical Injury	
Overhead Powerlines	
Buried Piping/Tanks	
Skin Hazards	Sit.
Ventilation Problems	
Vandalism	
Heavy Equipment/	Slt.
Trucking	
Level Of Protection	
Air Monitoring	
Buried Line Detection	

VII. PERSONAL PROTECTIVE EQUIPMENT

A. Air Monitoring:

No Air Monitoring will be performed.

B. Personal Protective Equipment Matrix:

	COVERALL	HARDHAT	GLOVES	SAFETY BOOTS	NOMEX	HEARING PROTECTION	SAFETY GLASSES W/SIDE SHIELDS	LEVELC	LEVEL B	LEVELA	Отнек
DAILY ROUTINE		I	X	X							
DRILLING (NON-OIL FIELD)											
SAMPLING (NON-OIL FIELD)			Х	X							
EXCAVATION (OIL FIELD)											
EXCAVATION (NON OIL FIELD)											
FACILITY INVENTORY											
CHEMICAL INVENTORY											
EMERGENCY RESPONSE											
UNDERGROUND STORAGE TANK REMOVAL											

[.] Minimum required will be determined by Client's current policy

VIII. PROTOCOL

The following briefly describes the protocol to be followed for any soil, water, or chemical samples to be taken at a site. A working knowledge of applicable EPA SW-846, sampling and analytical procedures and proper use of field testing equipment is necessary.

A. Water samples:

Volatile Organic Analysis (VOA)- Use of a 40 mL VOA glass vial with Teflon closure, leaves no airspace present, and preserve. Keep cool with ice in cooler, use chain-of-custody sampling procedures, and transport to laboratory.

B. Soil samples for assessment/verification:

Field vapor headspace - 475 mL wide mouth glass container, fill 1/2 full, seal with aluminum foil, or use heavy zip-locking plastic bags.

Laboratory analysis for hydrocarbons - Use laboratory supplied sterile glass container, with Teflon closure. Fill complete, keep cool with ice in cooler, use chain-of custody sampling procedures, transport to Laboratory.

C. Chemical field screening:

Unknown chemical will be field screened using Dexsil ® field screening kits for chlorinated solvent in soils and oils or the HazCat chemical identification kit.

IX. SITE WORK PLAN

This project will be completed in the Tasks outlined in Section B. The following outlines the key personnel and their responsibilities:

Project Team Leader:

Tami C. Ross

Souder Miller & Associates Farmington, NM (505) 325-5667

Alternates:

Walter Gage

MSDS will be consulted to determine proper Personal Protective Equipment.

The Project Team Leader will function as the Project Manager and Site Health & Safety Officer. The Field Team Leader will function as the Site Supervisor and sampler for this Project.

Tailgate safety meetings will be held and all personnel will be briefed on the contents of this plan prior to initiating any efforts. Tailgates will also cover any safety and/or health issues not anticipated or addressed in this plan. The Project Manager will be responsible for briefing and record keeping.

X. COMMUNICATION PROCEDURES

Radio communication is not anticipated to be essential for this project. Personnel in the Exclusion Zone should be in visual contact of the Project Team Leader.

The following standard hand signals will be used:

Hand gripping throat

Grip partner's wrist or both hands around waist

Hands on top of head

Thumbs up

Out of air, can't breathe

Leave area immediately

Need assistance

OK, I'm all right, I understand

Thumbs down NO, Negative

Others as needed while handling, moving, or loading materials, are acceptable provided that all personnel involved agree to their meaning.

Telephone communication will be available in the Staging Area by mobile phone.

XI. DECONTAMINATION PROCEDURES

The following are a brief summary of decontamination procedures. Common sense should be used at all times.

A. Personal Decontamination:

The following procedure assumes level "D" Personal Protective Equipment (PPE). Prior to entering a vehicle and leaving the site, coveralls are to be doffed and placed in appropriate laundry/duffel bags in the reduction zone, and hands and face are to be washed.

For all other levels of PPE, PPE are to be doffed in the reduction zone, Tyvek and other disposables will be placed with the waste for off-site disposal, and all other reusable PPE will be washed with brushes or soapy rags and rinsed by hand sprayers. All exposed skin to be washed in reduction zone also.

B. Excavation/Exploratory Equipment:

All equipment will be decontaminated by high pressure wash, and/or steam cleaned as necessary, initially in the exclusion zone and final rinsed in the reduction zone. Rinse and wash media to be disposed of with contaminated soil/groundwater.

C. Sampling Equipment:

Reusable sampling equipment to be triple rinsed with alconox soap, tap water and deionized water. Disposable sampling equipment is to be consolidated with waste for off-site disposal.

XII. CONTINGENCIES

A. FIRST AID MEASURES/MEDICAL EMERGENCIES

The nearest hospital is located 1.0 miles from the site at San Juan Regional Medical Center.

In the event that personnel exposure symptoms occur, the following procedures will be used:

Prior to removing victim from hot zone or administering first aid decontamination procedures will be done.

B. PETROLEUM PRODUCTS / IRRITATING LIQUIDS:

1. Eye contact:

Flush eve immediately with copious amounts of water and repeat until irritation is If prolonged irritation occurs for more than 15 minutes, seek medical attention.

Skin contact:

Wash exposed area with soap and water. If dermatitis or severe reddening occurs, seek medical attention.

3. Inhalation:

Remove person into fresh air. If symptom occurs for more than 15 minutes, seek medical attention.

Ingestion: 4.

Do not induce vomiting, seek medical attention.

PHONE LIST: C.

POLICE, FIRE & RESCUE

911 **AMBULANCE** 911

STATE POLICE 911

POISON CONTROL 1-800-362-0101

CHEMTREC 1-800-424-8802

First aid and emergency fire equipment will be available in company vehicles.

ENVIRONMENTAL MONITORING D.

The following environmental monitoring instruments will be used on site:

The following instruments will be used continuously to monitor air quality.

Combustible gas Indicator: Trigger level will be 10%. The alarm will be audible or vibratory in the event of extreme noise levels.

FID/OVA: Will measure in the parts per million. It will indicate organic volatile.

pH meter: The pH meter will be used to indicate the pH of each separate sample.

Gas detection meter: To detect O₂ and H₂S levels.

EMERGENCY PROCEDURES (to be modified as required for E. incident)

The following standard emergency procedures will be used by on site personnel. The Site Safety Officer shall be notified of any on site emergencies and be responsible for ensuring that the appropriate procedures are followed.

Personal Injury in the Exclusion Zone:

Upon notification of an injury in the Exclusion Zone, all site personnel shall assemble in the Reduction Zone. The rescue team will enter the Exclusion Zone (if required) to remove the injured person to the hotline. Rescue team and victim will be decontaminated prior to entering the exclusion zone. The Site Safety Officer and Project Team Leader

Date: July 10, 2006

Project No. 3116075

shall evaluate the nature of the injury, prior to movement to the Support Zone. Appropriate first aid will be initiated, and contact should be made for an ambulance and with the designated medical facility (if required). No persons shall reenter the Exclusion Zone until the cause of the injury or symptoms are determined.

2. Personal Injury in the Support Zone:

Upon notification of an injury in the Support Zone, the Project Team Leader and Site Safety Officer will assess the nature of the injury. If the cause of the injury or loss of the injured person does not affect the performance of remaining personnel, operations may continue. If the injury increases the risk to others, the designated emergency signal horn shall be sounded and all site personnel shall move to the Reduction Zone for further instructions.

In any case, the appropriate first aid will be initiated and necessary follow-up as stated above.

3. Fire / Explosion:

Upon notification of a fire or explosion on site, the designated emergency signal horn shall be sounded and all site personnel assembled at the Reduction Zone. The fire department shall be alerted and all personnel moved to a safe distance from the involved area. Fire extinguishers shall be used with discretion to minimize the risk of fire and explosion that would result in injuries.

4. Personal Protective Equipment Failure:

If any worker experiences a failure or alteration of protective equipment that affects the protection factor, the affected person and his/her buddy shall immediately leave the Exclusive Zone. Reentry shall not be permitted until the equipment has been repaired or replaced.

5. Other Equipment Failure:

If any other equipment fails to operate properly, the Project Team Leader and Safety Officer shall be notified and then determine the effect of this failure on continuing operations on site. If the failure affects the safety of personnel or prevents completion of the Work Plan tasks, all personnel shall leave the Exclusion Zone until the situation is evaluated and appropriate actions taken.

In all situations, when an on site emergency results in evacuation of the Exclusion Zone, personnel shall not reenter until:

- 1. The hazards have been reassessed.
- 2. The conditions resulting in the emergency have been corrected.
- 3. The Safety Plan has been reviewed, and personnel have been briefed on any changes in the Safety Plan.

XIII. CLOSURES AND SIGNATURES

This plan has been reviewed and has the full approval of the following Management.

Owner:

NAME: Village of Chama

TITLE:

DATE: July 10, 2006

Consultant Se

Souder Miller & Associates

NAME: Reid Allan

TITLE: Vice President/Principal Scientist

DATE: July 10, 2006

All site personnel have read the above plan and are familiar with its provisions.

Date: July 10, 2006

Project No. 3116075

	Print Name	Signature
Safety Officer		
Project Team Leader		
Other Personnel		