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1. Executive Summary

In this uncertain regulatory landscape for federal emission programs, New Mexico has sought more
predictability by recently adopting the Advanced Clean Cars Il (ACC Il), Advanced Clean Trucks
(ACT), and Heavy-Duty Low NOx Omnibus rules, modeled off California’s clean vehicle programs
and collectively referred to as New Mexico’s Motor Vehicle Emission Standards (NMVES). Ongoing
legal challenges to California’s emissions preemption waiver aside, until a final decision is
reached, the NMVES will presumably meet these goals through vehicle electrification; however,
there is a growing interest in alternative fuels to help reach the state’s climate goals, including
biofuels, natural gas, and hydrogen. Like California, Oregon, and Washington, New Mexico is
seeking to adopt a Clean Transportation Fuel Program (CTFP), which would create a credit market
for low-carbon fuels either produced in state or imported for consumption within the state.
Conversely, fossil fuels sold in New Mexico for transportation use would generate deficits that
must be offset by purchasing and retiring credits.

Beyond the credit market, New Mexico’s CTFP is expected to lead to other benefits and costs, such
as avoided health damages from criteria pollutant reductions, improved productivity for alternative
fuel producers, credits for eligible fuel supply equipment (FSE), and added program revenue from
the social cost of carbon and other greenhouse gas (GHG) externalities. These cumulative CTFP
benefits and costs have been summarized in Table 1-1, along with the net benefits of a combined
CTFP and NMVES policy suite. The combined policy suite is anticipated to deliver more than $1.8
billion in net benefits, with over $1.6 billion coming from the CTFP alone.

Table 1-1 Summary of total CTFP and NMVES benefits and costs through 2040 (in 2024 USD)’

NMVES Total $188,043,999 $188,043,999
' Benefits (average) Costs Net

$0 -$959,423,181 -$959,423,181
Direct Fuel Markets -$577,919,646
Indirect and Induced -$381,503,535
Health Effects $15,712,160 $15,712,160

Direct Jobs from FSE
CTFP Total
NMVES + CTFP suite

$2,435,963,386

$2,435,963,386

$161,894,181

$161,894,181

$2,613,569,726

-$959,423,181

$1,654,146,545

$2,801,613,725

-$959,423,181

$1,842,190,544

Eastern Research Group, Inc. (ERG) has been involved in nearly all facets of New Mexico’s CTFP
development, particularly fuel carbon intensities, emission projections, public health effects, and
macroeconomic input-output modeling of the program. This executive summary highlights findings
from ERG’s CTFP analysis among these four focus areas.

'See Table 6-22 for further description and notes on the program’s full benefit-cost analysis.
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1.1 Fuel Carbon Intensities

As with low-carbon fuel programs in other states, the ERG team has built a custom version of
Argonne National Laboratory’s Greenhouse gases, Regulated Emissions and Energy use in
Transportation (GREET) model for New Mexico’s CTFP—referred to as NM-GREET—based on the
best available state data. A menu of fuel pathways in NM-GREET have been tailored to represent
New Mexico-specific carbon intensity (Cl) values in grams of carbon dioxide per megajoule of
energy (g CO2/M)).

Several key assumptions differentiate NM-GREET Cls from default values and those in other states’
programs; namely, indirect land use change (ILUC), use of well-to-refinery emissions from a crude
oil production model called Oil Production Greenhouse gas Emissions Estimator (OPGEE) rather
than GREET, and process credits for biogas from manure. While New Mexico’s ILUC values are in
line with other states’ low-carbon fuel programs, OPGEE assumptions have been parameterized for
Petroleum Administration for Defense District 3 (PADD3) and animal waste pathways yield
additional credit when using biomethane as a process fuel, particularly for natural gas and
hydrogen.

Table 1-2 summarizes all possible CTFP conventional and alternative fuel pathways available in
NM-GREET. Upon development and thorough review, ERG passed NM-GREET Cl values to another
CTFP contractor, Berkeley Research Group (BRG), for credit market forecasting under varying
policy scenarios: CTFP, NMVES, and the federal baseline.

Table 1-2. Carbon intensities for the full list of CTFP pathways prior to the margin-of-safety

adjustments?
(g CO,/M))
NMGASO001 Gasoline, clear Gasoline 96.7
NMETOHO001 | Corn ethanol Ethanol 68.9
NMETOHO002 | Sorghum Ethanol Ethanol 60.2
NMULSDO001 Diesel, clear Diesel 95.0
NMBDO001 B100 soy Biodiesel 56.6
NMRDO001 R100 soy Renewable diesel 59.0
NMRNO0O01 Naphtha Virgin Plant Oil | Naphtha 59.0
NMBDO002 B100 Waste Oil Diesel 19.9
NMRDO002 R100 Waste Oil Diesel 18.3
NMRNO002 Naphtha Waste Oil Naphtha 18.3
NMLPGO001 LPG Liquefied petroleum gas 78.4
NMCNGO001 CNG fossil Compressed natural gas 74.3
NMRCNGO001 | CNG AW Compressed natural gas 62.7
NMRCNGO002 | CNG AW Compressed natural gas -27.4
NMRCNGO003 | CNG LF Compressed natural gas 21.4
NMLNGO001 LNG fossil Liquified natural gas 87.1
NMRLNGO001 | LNG AW Liquified natural gas 721

2In the interest of time, ERG did not attempt to rerun the CTFP analysis from an NMVES baseline using the
following Cl corrections made since docketing for the September 2" Notice of Intent.
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NMRLNGO002 | LNG AW, alt. Liquified natural gas -18.5
NMLNGO003 LNG LF Liquified natural gas 31.0
NMELECO001 Elec. net-zero Electricity 0.0
NMHYGO001 C.H, fossil Gaseous compressed hydrogen | 94.4
NMHYGO002 C.H, AW Gaseous compressed hydrogen | 88.3
NMHYGO003 C.H, AW, alt. Gaseous compressed hydrogen | -1.8
NMHYG004 C.H;LF Gaseous compressed hydrogen | 46.1
NMHYGO005 C.H; avg.-grid Gaseous compressed hydrogen | 217.8
NMHYGO006 C.H; net-zero Gaseous compressed hydrogen | 14.3
NMHYLO001 L.H, fossil Liquid hydrogen 135.7
NMHYL002 L.H, AW Liquid hydrogen 127.0
NMHYL003 L.H2 AW, alt. Liquid hydrogen 37
NMHYL004 L.H; LF Liquid hydrogen 89.8
NMHYL005 L.H, avg.-grid Liquid hydrogen 266.7
NMHYL006 L.H, net-zero Liquid hydrogen 46.9

For more information on Cl development, please review Chapter 3, which provides detailed
descriptions of each pathway, as well as further discussion of how NM-GREET differs from the
default model and how New Mexico’s Cl values differ from those of other states.

1.2 Projected Emission Reductions from Fuel Changes

Using fuel volume projections from BRG based on credit market forecasts for the CTFP and NMVES
scenarios, ERG was able to estimate expected emission reductions in tailpipe exhaust. Switching
from fossil fuels to low-carbon alternatives—namely, from diesel to biodiesel (BD) and renewable
diesel (RD) blends—is anticipated to reduce both adverse air quality and climate impacts. While
BRG determined GHG reductions directly from NM-GREET Cl values and fuel volume changes with
a few notable exceptions discussed further in Section 6.4. ERG calculated onroad and nonroad
reductions in criteria air pollutants using New Mexico—specific emission factors derived from the
latest release of the Motor Vehicle Emission Simulator (MOVES5) and BRG’s fuel volume changes
between scenarios.

Most of the emission benefits that reduce nitrogen oxides (NOx), fine particulate matter (PM2.5),
sulfur dioxide (SO2), and volatile organic compounds (VOCs) are a result of increased renewable
diesel (R100) adoption to offset decreased fossil diesel consumption in New Mexico over time, as
shown in Table 1-3. To a lesser degree, increases in biodiesel blends (5 percent biodiesel, or B5, in
this case) also offset fossil diesel and result in emission benefits—though there is a slight NOx
disbenefit for legacy diesel engines running on B5. Emission benefits for the final rule are
somewhat greater than for the draft rule due to dampened electrification curves in the NMVES
scenario, leading to more RD and BD consumption in the CTFP scenario.®

3 New Mexico Environment Department, “Clean Transportation Fuel Program,” accessed July 3, 2025,
https://www.env.nm.gov/climate-change-bureau/clean-fuel-program/.
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Table 1-3. Summary of annual emission reductions through 2050 by pollutant and policy scenario
(negative values equate to reductions in tons)

Year |Combined CTFP-Only Combined CTFP-Only Combined CTFP-Only Combined CTFP-Only
2026 -9.12 -9.12 -38.39 -38.39 -26.76 -26.76 0.09 0.09
2027 -88.30 -22.54 -64.53 -38.56 -27.73 -26.65 -1.97 0.08
2028 -115.16 -37.73 -73.92 -40.01 -28.93 -27.56 -2.34 0.06
2029 -140.75 -52.08 -88.02 -45.30 -35.26 -33.59 -2.75 0.05
2030 -147.49 -47.73 -86.10 -37.70 -31.52 -29.64 -3.02 0.03
2031 -179.24 -41.20 -109.55 -32.55 -27.89 -25.79 -3.71 0.03
2032 -209.47 -34.48 -130.46 -27.32 -24.17 -21.87 -4.34 0.03
2033 -228.22 -16.78 -146.48 -15.95 -15.70 -13.17 -5.01 0.05
2034 -251.79 -4.43 -166.81 -7.54 -9.43 -6.66 -5.72 0.06
2035 -278.77 2.26 -184.36 -2.29 -5.46 -2.51 -6.26 0.08
2036 -294.77 0.00 -211.00 0.00 -2.96 0.00 -6.75 0.00
2037 -308.30 0.00 -239.11 0.00 -2.98 0.00 -7.14 0.00
2038 -321.36 0.00 -265.15 0.00 -2.99 0.00 -7.50 0.00
2039 -333.89 0.00 -288.71 0.00 -2.99 0.00 -7.80 0.00
2040 -345.19 0.00 -306.37 0.00 -2.96 0.00 -7.99 0.00
2041 -348.39 0.00 -319.06 0.00 -2.97 0.00 -8.12 0.00
2042 -351.75 0.00 -332.32 0.00 -3.00 0.00 -8.27 0.00
2043 -355.95 0.00 -349.74 0.00 -3.04 0.00 -8.51 0.00
2044 -360.97 0.00 -371.28 0.00 -3.10 0.00 -8.83 0.00
2045 -366.45 0.00 -395.23 0.00 -3.17 0.00 -9.20 0.00
2046 -372.57 0.00 -422.62 0.00 -3.26 0.00 -9.63 0.00
2047 -378.82 0.00 -450.82 0.00 -3.34 0.00 -10.08 0.00
2048 -384.62 0.00 -476.72 0.00 -3.42 0.00 -10.47 0.00
2049 -388.34 0.00 -491.54 0.00 -3.45 0.00 -10.66 0.00
2050 -392.09 0.00 -506.55 0.00 -3.49 0.00 -10.86 0.00

Chapter 4 has a full discussion of MOVES emissions modeling, fuel effects from recent literature,
and ERG’s projections of criteria pollutant reductions for the combined NMVES and CTFP policies
and the CTFP policy itself.

1.3 Avoided Health Damages

Even though GHG emissions and FSE credits contribute a larger proportion of the benefits in this
rule, improved air quality and health outcomes from emission reductions should be acknowledged.
Based on the projected reductions to criteria air pollutants in tailpipe exhaust from onroad vehicles
and nonroad equipment, ERG was able to model health benefits with the U.S. Environmental
Protection Agency’s (EPA’s) Co-Benefits Risk Assessment (COBRA) tool as avoided health
damages. These damages include acute respiratory symptoms and respiratory disease that lead to
hospitalizations and lost productivity, as shown in Table 1-4.
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Table 1-4. Cumulative avoided incidence for CTFP-only and CTFP and NMVES scenarios

Health Outcome Category

Cumulative Avoided
Incidence for CTFP-Only
Scenario

Cumulative Avoided
Incidence for CTFP and

NMVES Scenario

Total mortality (low estimate) 0.6 2.0
Total mortality (high estimate) 1.2 2.8
Total asthma symptoms 336.7 1,462.8
Total asthma onset 1.9 8.9
Total emergency room visits 0.7 3.0
Total hospital admittance 0.4 0.6
Total onset 12.6 59.4
Minor restricted activity days 353.0 466.4
Work loss days 59.9 79.0
School loss days 58.6 712.9

In addition to these avoided health incidence values, COBRA monetizes damages to calculate
health benefits. As in ERG’s emissions analysis, Table 1-5 compares health benefits over time for
the combined NMVES and CTFP policies and the CTFP alone. In early CTFP years, the CTFP
constitutes a majority of health benefits, but the NMVES contribute more benefits cumulatively to
the combined policies, especially after 2030.

Table 1-5. Annual health benefits by policy scenario through 2040 (in million 2024 USD)

Calendar Year

$ Total CTFP-Only Health Benefits $ Total Combined NMVES + CTFP

Health Benefits
(lower-upper bound)

(lower-upper bound)

2026 $1.1-$2.1 $1.1-$2.1
2027 $1.2-$2.3 $1.7-$2.9
2028 $1.4-$2.5 $2.0-$3.3
2029 $1.8-$3.4 $2.5-$4.2
2030 $1.6-$3.1 $2.5-$4.0
2031 $1.5-$2.7 $2.6-$4.0
2032 $1.3-$2.4 $2.8-$4.0
2033 $0.8-$1.4 $2.6-$3.5
2034 $0.4-$0.7 $2.5-$3.1
2035 $0.1-$0.2 $2.7-$3.1
2036 — $2.7-$3.1
2037 — $2.9-$3.2
2038 — $3.1-$3.4
2039 — $3.2-$3.6
2040 — $3.5-$3.9
Cumulative $11.0-$20.8 $38.2-$51.5
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For further information on health effects, please refer to Chapter 5, which describes ERG’s COBRA
modeling for both policy scenarios in greater detail and elaborates on COBRA’s derivation of health
outcomes and their monetization.
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1.4 Macroeconomic Impacts

Beyond emission reductions and health benefits, New Mexico’s CTFP is expected to impact fuel
markets in the state and regionally. To model the program’s macroeconomic impacts, ERG
employed the Impact Analysis for Planning (IMPLAN) model for input-output (I-O) analysis. Within
this I-O analysis, ERG evaluated two cases: one case assuming 0 percent passthrough, where
industry absorbs any increased cost of fuel production due to the CTFP, and another case
assuming 100 percent passthrough, where consumers bear any fuel price increases related to the
program. These represent edge cases, and they have been averaged to create a 50 percent
passthrough for the final CTFP benefit-cost analysis (BCA).

IMPLAN accounts for various economic effects to fuel producers and adjacent industries: direct,
indirect, and induced. There are a number of direct CTFP effects each year, particularly fuel credits
and deficits generated, FSE credits and renewable energy credit (REC) retirements, banking
impacts of reduced fossil fuel activities, import costs for biofuels (renewable diesel and biodiesel
blends especially), and health and productivity effects. Based on these IMPLAN inputs for direct
program effects, the model can estimate any indirect and induced effects. All aforementioned
model inputs—including jobs stemming from FSE credits—have been supplied through BRG’s
separate market analysis, aside from the health effects as previously discussed.

ERG summarized annual direct, indirect, and induced costs related to credit and deficit generation
in New Mexico’s clean fuels market in Table 1-6 and Table 1-7, respectively.

Table 1-6. Direct and secondary impacts annually for 0 percent passthrough (in 2024 USD)

2026 -$8,993,861 -$5,485,195 $124,823
2027 -$17,326,704 -$9,790,960 -$214,940
2028 -$30,092,303 -$16,500,201 -$682,904
2029 -$71,471,707 -$38,608,656 -$3,274,056
2030 -$155,628,931 -$81,800,091 -$10,969,552
2031 -$112,096,241 -$59,197,574 -$7,112,908
2032 -$76,949,450 -$40,904,457 -$4,104,839
2033 -$53,221,357 -$28,498,766 -$2,215,072
2034 -$45,057,933 -$24,351,255 -$1,206,016
2035 -$38,389,883 -$20,974,485 -$348,094

Table 1-7. Direct and secondary impacts annually for 100 percent passthrough (in 2024 USD)

2026 -$11,585,837 -$4,090,019 -$3,143,083
2027 -$25,335,412 -$10,107,821 -$7,319,490
2028 -$46,187,213 -$19,087,533 -$13,596,993
2029 -$106,126,311 -$41,538,844 -$30,352,982
2030 -$191,666,349 -$73,203,716 -$54,121,634
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2031 -$135,586,427 -$54,802,606 -$39,443,278
2032 -$90,561,617 -$39,631,864 -$27,506,225
2033 -$60,628,172 -$29,092,864 -$19,396,445
2034 -$55,156,721 -$28,054,230 -$18,293,829
2035 -$39,763,688 -$24,453,206 -$14,781,475

Similarly, ERG summarized CTFP benefits modeled through IMPLAN, namely from direct jobs from
FSE credits and improved health outcomes, in Table 1-8 and Table 1-9, respectively.

Table 1-8. Annual CTFP results from job creation through FSE credits (in 2024 USD)

I S

2027 $12,436,042 $2,757,102 $2,587,195
2028 $17,729,622 $3,959,808 $3,702,316
2029 $21,338,555 $4,800,605 $4,472,471
2030 $8,005,849 $1,892,714 $1,721,567
2031 $12,144,437 $2,825,715 $2,589,915
2032 $12,398,228 $2,906,704 $2,654,473
2033 $12,649,566 $2,987,056 $2,718,477
2034 $12,898,514 $3,066,782 $2,781,938
2035 $9,996,850 $2,447,912 $2,189,898
2036-2040 $2,949,311 $902,421 $731,797

Table 1-9. Annual direct and secondary CTFP health impacts (in 2024 USD)

oo oiect | nairect | inducea |

2026 -$16,070 -$4,940 -$4,057
2027 -$19,859 -$6,105 -$5,391
2028 -$24,795 -$7,622 -$7,069
2029 -$33,474 -$10,290 -$9,621
2030 -$30,702 -$9,438 -$8,854
2031 -$27,176 -$8,354 -$7,830
2032 -$23,399 -$7,193 -$6,732
2033 -$13,216 -$4,063 -$3,719
2034 -$5,614 -$1,726 -$1,485
2035 -$1,048 -$322 -$157

Importantly, the only BCA component that ERG did not model explicitly was GHG benefits, which
BRG supplied from its calculation of GHG emissions and the social cost of carbon. Most of the
rule’s net benefits come from these GHG reductions. Please refer to Chapter 5 for a detailed
discussion of IMPLAN I-O modeling and the CTFP’s macroeconomic impacts.
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To better visualize the full delegation of CTFP analysis responsibilities between BRG, ERG, and the
New Mexico Environment Department (NMED), see Figure 1-1 below.

Figure 1-1. Delegation of CTFP analysis responsibilities between BRG, ERG, and NMED

BRG ERG Adelante NMED
eFuel volumes eCarbon intensities eLocal job impacts *New Mexico—
*Market credits and *Emission reductions eOther local specific modeling

deficits eHealth effects environmental inputs
*FSE credits eMacroeconomic impacts eTechnical direction
eDirect job creation impacts and review
*GHG emissions *Net benefits
eSocial cost of
carbon

The first chapter in this report provides the regulatory context for New Mexico’s clean fuels
program, introductions to similar programs in other states, and an overview of ERG’s CTFP
modeling and analysis across the four focus areas highlighted in this executive summary.
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2. Introduction

2.1 Overview of New Mexico’s Clean Transportation Fuel Program

In 2024, the passage of the New Mexico Clean Transportation Fuel Standard (CTFS) codified the
creation of its Clean Transportation Fuel Program (CTFP) under New Mexico Statutes Annotated
(NMSA) 1978, Sections 74-1-3, 7(A)(15), 8(A)(16), and 18.* The CTFP as proposed would curtail
greenhouse gas (GHG) emissions from the transportation sector, which is currently the state’s
second-largest GHG source, behind only the oil and gas industry.® The CTFP will lower the overall
carbon intensity (Cl) of the state’s transportation fuel supply by setting a target Cl each year for
gasoline and gasoline substitutes, diesel and diesel substitutes, and alternative jet fuel. These
annual targets establish the schedule for annually decreasing Cl for transportation fuel produced,
imported, or dispensed in New Mexico, and constitute the CTFS also referred to as “the standard.”
The CTFP establishes rules, measures, and procedures to enforce and achieve the Cl reduction
targets of 20 percent and 30 percent below a 2018 baseline by 2030 and 2040, respectively. These
targets are statutorily mandated under Section 75-1-18(C)(1) NMSA 1978. The CTFP will also
stimulate economic growth, improve health outcomes, create jobs, and promote more fueling
options within the state.®

The CTFP establishes methods to determine the Cl of each transportation fuel on a “well-to-wheel”
(WTW) basis using lifecycle analysis (LCA) methods detailed in Chapter 3. Each transportation
fuel’s “well to wheel” Cl represents emissions produced through the full path of a transportation
fuel, including the production and processing of the fuel and its feedstocks, as well as fuel and
feedstock transportation, storage, and consumption or use. The CTFP objectively determines Cls
for each transportation fuel pathway solely from its lifecycle GHG emissions per energy unit, based
on observable data, with no inherent preference given to one transportation fuel over another. In
this way, New Mexico’s CTFP implementation mechanisms are technologically neutral (i.e., fuel
agnostic), as required under Section 75-1-18(C)NMSA 1978. Under the CTFP, regulated parties that
produce, import, or dispense transportation fuel for use in New Mexico receive credits and deficits
based on each fuel pathway’s Cl compared to the annual standard. Regulated parties will receive
credits or deficits for transportation fuel pathways with Cls that are, respectively, below or above
the standard each year. Regulated parties may buy and sell CTFP credits each year to ensure that
they meet their “compliance obligation” of fully offsetting all deficits with credits each compliance
period.

New Mexico would be the fourth U.S. state to adopt a clean fuels program. Similar policies exist in
three West Coast states: California, Oregon, and Washington. California became the first state to
enact a clean fuel program, approving its Low Carbon Fuel Standard in 2009 and opening its credit

4“New Mexico Statutes Annotated (NMSA) 1978,” § 74-1-3, 7(A)(15), 8(A)(16), 18 (1978),
https://nmonesource.com/nmos/nmsa/en/item/4415/index.do#a1.

5 New Mexico Environment Department, “NMED Releases Draft Rule for Clean Fuel Program,” News Release,
December 19, 2024, https://www.env.nm.gov/wp-content/uploads/2024/12/2024-11-19-COMMS-NMED-
releases-draft-rule-for-clean-fuel-program-FINAL.pdf.

5 New Mexico Environment Department, “Clean Transportation Fuel Program,” accessed July 3, 2025,
https://www.env.nm.gov/climate-change-bureau/clean-fuel-program/.
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marketin 2011.7 Oregon’s legislature also authorized its Clean Transportation Fuel Program in
2009 but did not fully implement its regulation until 2016.8 Most recently, Washington adopted
legislation to create its own Clean Fuel Standard in 2021 and began implementation in 2023.°

In developing the proposed rule, the New Mexico Environment Department (NMED) contracted
Eastern Research Group, Inc. (ERG) to develop Cl values for different fuels and pathways. As
highlighted in Figure 1-1. NMED assisted ERG with state-specific Cl assumptions, as well as
technical direction and review. With guidance and input from NMED, ERG calculated fuel pathway
Clvalues using a custom version of Argonne National Laboratory’s Greenhouse gases, Regulated
Emissions, and Energy use in Technologies (GREET) for research and development (R&D). In model
development, ERG adjusted parameters and methods within the default GREET R&D’s use for
evaluating transportation fuels in New Mexico’s CTFP—this customized model will subsequently
be referred to as NM-GREET. In particular, NM-GREET incorporates fuel parameter adjustments to
better reflect local conditions, and methodological adjustments to align calculations with New
Mexico’s more conservative approach to determining certain fuel pathway Cls relative to defaults.

New Mexico engaged many experts in crafting the CTFP, including its own staff, staff from other
states, and contractors across multiple disciplines: LCA, clean fuels, emissions, and economics.

2.2 Overview of Report Contents

This report discusses how the ERG team developed transportation fuel Cls, emission reductions,
avoided health damages, and macroeconomic impacts for New Mexico’s CTFP. Each CTFP
analysis area is addressed in a subsequent chapter of the report, laying out the ERG team’s
application of the latest research and modeling tools for this rule. An overview of chapters and
analysis methods can be found below.

2.2.1 Fuel Carbon Intensities

To determine the Cl of transportation fuels produced and imported into the state, ERG defined
parameters for a New Mexico-specific version of GREET for the CTFP, which included crude oil
adjustments from the Oil Production Greenhouse gas Emissions Estimator (OPGEE), and
performed a lifecycle analyses. This NM-GREET tool assesses the environmental impacts of New
Mexico transportation fuels on a WTW basis.'® The Cl values from NM-GREET were incorporated
into a key lookup table in the rule.

7 California Air Resources Board, “Low Carbon Fuel Standard 2023 Amendments: Standardized Regulatory
Impact Assessment (SRIA),” September 8, 2023, https://ww2.arb.ca.gov/sites/default/files/2023-
09/lcfs_sria_2023_0.pdf.

8 U.S. Department of Energy, “Clean Transportation Fuel Standards,” Alternative Fuels Data Center,
accessed May 20, 2025, https://afdc.energy.gov/laws/6606.

% Clean Fuels Alliance America, “Washington Clean Fuel Standard Achieves Impressive First Quarter
Results,” October 4, 2023, https://cleanfuels.org/washington-clean-fuel-standard-achieves-impressive-
first-quarter-results/.

0°U.S. Department of Energy, “GREET,” accessed May 20, 2025, https://www.energy.gov/eere/greet.
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2.2.2 Projected Emission Reductions

ERG performed mobile source emission modeling to quantify the CTFP’s impact on harmful criteria
air pollutants from onroad vehicles and nonroad equipment. To estimate onroad and nonroad
emissions, ERG ran the Motor Vehicle Emission Simulator (MOVES), the regulatory emissions
inventory model developed by the U.S. Environmental Protection Agency." Forthe CTFP, ERG
utilized MOVES results to derive New Mexico-specific emission factors (EFs). Both EFs and fuel
volume projections (estimated instead by BRG) were paired to calculate onroad and nonroad
emission reductions for following criteria air pollutants known to contribute to adverse human
health impacts:

e Volatile organic compounds (VOCs)
e Nitrogen oxides (NOy)
e Particulate matter (PM)

e Sulfur dioxide (SO,)

Projected emission reductions from switching to lower-carbon fuels were then employed to
determine avoided health damages and monetized to estimate benefits. Modified versions of the
MOVES outputs helped inform CTFP vehicle population, vehicle miles traveled (VMT), and fuel
economy data being developed by BRG for its fuel projections.

2.2.3 Avoided Health Damages

Avoided health damages modeling was performed to estimate the health outcomes and monetized
benefits associated with criteria air pollutants and precursor emission reductions from New
Mexico’s CTFP. The earlier projected emission reductions were input into the U.S. Environmental
Protection Agency’s (EPA’s) CO-Benefits Risk Assessment (COBRA) screening model to estimate
the change in ambient pollutant concentrations from various fuels on statewide human health
impacts.’> COBRA provides estimations for the monetary value of a wide range of health outcomes.
Some COBRA inputs, such as projected human populations, were tailored to New Mexico.

2.2.4 Macroeconomic Impacts

Both direct and second-order economic effects from New Mexico’s CTFP were calculated using the
Impact Analysis for Planning (IMPLAN) economic analysis platform for input-output (I-O)
modeling." To determine the macroeconomic effects of this program, ERG ran a series of
economic impact analyses (EIAs) in IMPLAN. The credit market and direct job projections from
BRG, along with avoided health damages from COBRA, were used as inputs to the I-O model to
calculate statewide impacts for the benefit-cost analysis of New Mexico’s program.

" U.S. Environmental Protection Agency, “MOVES and Mobile Source Emissions Research,” accessed May
20, 2025, https://www.epa.gov/moves.

2U.S. Environmental Protection Agency, “What Is COBRA?,” accessed May 20, 2025,
https://www.epa.gov/cobra/what-cobra.

3 IMPLAN, “IMPLAN,” accessed May 20, 2025, https://implan.com/.
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3. Fuel Carbon Intensities

This chapter details how the NM-GREET v1.0 model was derived from R&D GREET version
2023-rev1 in order to best reflect the expected characteristics, supply chains, and resulting Cls of
transportation fuels sold in the state of New Mexico.

3.1 Background

The CTFP—much like programs in other jurisdictions—relies on WTW LCA modeling of
transportation fuels to calculate their lifecycle Cls. For each fuel pathway, GHG species emitted
during each stage of the fuel’s lifecycle are normalized to their carbon dioxide equivalent (CO.e)
mass via IPCC AR5 GWP100™ factors, summed together, and then divided by the fuel’s energy
content given in megajoules (MJ)." The fuel’s energy content is defined in two ways: as the lower-
heating-value (LHV) heat of combustion for liquid and gaseous fuel and as the delivered quantity of
energy at a given outlet (charging station, home outlet, etc.) for electricity. A fuel’s Cl is thereby
quantified in the composite units of grams CO.e per megajoule (g CO.e/MJ).

To calculate WTW fuel-pathway Cl scores, the CTFP relies on the Greenhouse gases, Regulated
Emissions and Energy use in Transportation (GREET) model, published by the Systems Assessment
Center of the U.S. Department of Energy’s Argonne National Laboratory (ANL).'® GREET is widely
recognized and applied in regulatory settings for its comprehensiveness and flexibility, as well as
the continual support and refinement it receives from both ANL and its global user base. At New
Mexico’s request, ERG developed NM-GREET v1.0 (i.e., the NM-GREET_v1.0.xlsm workbook) from
the latest available release of R&D GREET as of fall 2024 when the development cycle began: R&D
GREET 2023-rev1."” The “R&D” version of GREET is the main development version from which other
federal and state regulatory versions, like 45V GREET and the California-modified GREET model
(CA-GREET), are typically adapted.

Fuel pathways developed in NM-GREET by ERG and detailed in this report are included in either the
rule’s Lookup Table or Temporary Pathway Table. A pathway in GREET can be defined as a
sequence of material and energy commodities exchanged by unit processes—i.e., extractive
operations, processing facilities, transportation modes, storage structures, dispensing stations,
highway and nonroad vehicle use—and specific technologies therein, all terminating in the
production of one unit of an energy commodity of interest, or in the operation of a vehicle over
some distance or trip with defined cargo (either people or goods).

#1PCC AR5 GWP100 factors are global warming potential values for a 100-year time horizon, taken from the
Intergovernmental Panel on Climate Change’s Fifth Assessment Report.

'S Gunnar Mhyre et al., “Anthropogenic and Natural Radiative Forcing,” in Climate Change 2013: The Physical
Science Basis. Contribution of Working Group | to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, ed. Thomas F. Stocker et al. (Cambridge, United Kingdom and New York, NY, USA:
Cambridge University Press, 2013),
https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf.

6 U.S. Department of Energy, “GREET,” accessed May 20, 2025, https://www.energy.gov/eere/greet.

7 Michael Wang et al., “Development of R&D GREET 2023 Rev1 to Estimate Greenhouse Gas Emissions of
Sustainable Aviation Fuels for 40B Provision of the Inflation Reduction Act” (Argonne National Laboratory,
April 1, 2024), https://doi.org/10.2172/23489383.
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3.2 Modeling Approach

This chapter serves as the technical documentation for the data sources and methods by which
NM-GREET v1.0 was adapted from the GREET1 Excel workbook of the 2023-rev1 release of R&D
GREET. NM-GREET’s development and core components share many similarities with the
approaches leveraged by other jurisdictions in their own adaptations of state-specific GREET
models, derived from CA-GREET and/or R&D GREET. Because GREET generally reflects U.S.
conditions, values for key GREET and external-model parameters were chosen and implemented to
best reflect the typical lifecycle Cls and associated upstream supply chain activities of CTFP fuels
sold in New Mexico (both produced in-state and imported).

This chapter summarizes both global parameter settings (i.e., those that affect all pathways) and
common design patterns used to develop stagewise GHG emissions across pathways. Taken
together, these summaries, the external data sources detailed later in Section 3.2.3, and the
pathway-specific parameters discussed in their respective sections collectively serve as a recipe
for recreating NM-GREET v1.0 from scratch. Wherever possible, ERG prioritized transparency,
readability, and reproducibility. Not only do these principles benefit interested stakeholders during
the initial cycles of model development and public comment: they also help to minimize technical
debt and streamline model updates in the years to come.

From GREET1 2023-rev1’s “release-default” state (i.e., a freshly downloaded copy from ANL),'® the
modifications ERG made to construct NM-GREET fall into two categories: adding new tabs and
parameterization (i.e., altering the contents of cells on release-default GREET1 tabs). ERG stored
the details of each parameter on a new tab named Parameters_NM. Two more new tabs are
present in NM-GREET—Results_NM and Cl_Table—on which formulas to quantify the stagewise
emissions of GHG species by pathway are developed and subsequently aggregated into WTW CI
totals. For each of the lookup and temporary fuel pathways detailed here, any external model
and/or data source used to parameterize NM-GREET and refine its Cl score has been referenced
accordingly.

3.2.1 Parameters

GREET is a parametric LCA model, in which the magnitudes of material and energy flows within and
between unit processes are defined by formulas and input parameters rather than static scalar
estimates. For each parameter, GREET contains a release-default value—typically chosen to best
reflect a U.S.-national-average representation of said parameter. In composing statewide-average
estimates of the typical Cls and upstream supply chain activities of transportation fuels sold in
New Mexico (both produced in state and imported), New Mexico-specific parameters were
included when possible; the national-average default selections were used when New Mexico—
specific parameters were unavailable.

In NM-GREET, parameter alterations can be broken down into three categories based on which
pathways’ Cl values they affect. A parameter affects either (1) every pathway, (2) a subset of
pathways with some shared attribute (e.g., any fuel derived from animal waste [AW] biomethane),
or (3) just a single pathway. A parameter is defined here as “significantly affecting” a pathway if
changing it from GREET1’s release-default value to the NM-GREET value causes the Cl of said
pathway to change by at least +0.1 g CO,e/MJ. To delineate which NM-GREET parameter alterations

'8 Argonne National Laboratory, “GREET1 2023r1,” April 30, 2024, https://greet.anl.gov/files/greet-2023rev1.
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affect which pathways and how, the full table of said alterations on the Parameters_NM tab is
reorganized into many separate tables within this report.

These separated parameters tables are embedded at different hierarchical levels of this chapter’s
sections to reflect which pathway or group thereof is significantly affected by a given parameter. If
a parameter significantly affects only a single pathway, it is described in a parameter table within
that pathway’s subsection. If a parameter significantly affects multiple pathways, it is described in
a table within a parent section containing each of those pathways. If a parameter significantly
affects every pathway (i.e., is a “global” parameter), it is listed below in Table 3-1 or detailed in a
subsection of Section 3.2.3. Putting these rules together, a single-pathway section without a
parameter table is therefore only significantly affected by global parameters and those listed in
tables of its parent section(s), if present.

Table 3-1. NM-GREET parameters affecting all pathways

T
Parameter GREET Label Description
-mm_

Year 2022 2022 TargetYegrfor Per NMED’s Climate
Simulation Change Bureau
Global warming
GWP_of_ AR6/ AR5/ . .
GHG_Ref GWP GWP AR Edition/Type potentlgl(;)fe()BHGs (g
2

All of this report’s parameter tables, like the one above, share formatting and field conventions with
NM-GREET’s Parameters_NM table. The “Parameter” column contains the address—and thereby
also the identity—of a parameter, given as either a <sheet>!<A1-cell> style reference or a named
range identifier (e.g., the “Year” named range sets the GREET model year). The “Default” and “NM”
value columns contain the release-default and altered, New Mexico-specific parameter values.
The “GREET Label” column provides context for how GREET defines the parameter. Lastly, the
“Description” column adds context and/or justification for how the “NM” value was chosen.

Note that in addition to the NM-GREET_v1.0.xlsm workbook, ERG derived a “baseline” version (the
NM-GREET_v1.0_baseline.xlsm workbook) with one difference: the “Year” parameteris setto 2018
instead of 2022. This difference affects GREET’s collections of time-series parameter estimates
(i.e., on tabs named with the _TS suffix), formatted as arrays of both historical and projected values
across 1990-2050. Crucially, GREET’s “Year” (i.e., “Target Year for Simulation”) model-year
parameter indexes the selection of each and every one of its time-series parameters, making it by
far the most influential parameter choice in the entire model. At the request of NMED’s Climate
Change Bureau, ERG kept the “Year” parameter of NM-GREET v1.0 set to GREET1 2023-rev1’s
release-default value of 2022, representing the most current non-projected data in the model. Note
that the majority of tables on GREET’s *_TS tabs contain only base-five year indices, such that
setting “Year” to 2022 causes GREET to round down to the nearest base-five year—2020—when
values are chosen from those tables.

IPCC AR5 100-year global warming potential (GWP) values were chosen via the
“GWP_of_GHG_Ref” parameter to convert masses of emitted GHG into CO,e masses. By default,
GREET assumes carbon monoxide (CO) and VOCs will oxidize into CO, in the atmosphere, which is
why it incorporates the “CO, (w/ C in VOC & CQO)” indicator rather than solely “CO.,” into its
calculation of total GHG emissions. For both CO and VOCs, GREET multiplies the emitted mass of
each species by its carbon mass fraction (i.e., g carbon/g species, labeled as “Carbon ratio of
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[species]”), then divides by the mass of carbon in CO, in order to derive said species’ CO,e GWP
mass:

g COze gc gc :
GW Pspecies g species] = MMCspecies [g species] / Me.co, [g Co, Equation 3-1
GREET repeatedly performs this same calculation within each “CO, (w/ C in VOC & CO)” result cell,
but ERG avoids this redundancy on the Results_NM tab by pre-calculating the resulting GWP
factors for both VOCs—which GREET uniformly approximates as being 85 percent carbon by
mass—and CO. The resulting, composite set of IPCC-sourced and GREET-specific GWP factors is
presented in Table 3-2.

Table 3-2. NM-GREET GWP factors (from AR5)

GWP100 Factors
(g CO.e/g species)

CO; 1
CH, 30
N,O 265
VOCs 3.12
CO 1.57

Finally, while GREET is predominantly an attributional LCA (ALCA) model, it also includes
consequential LCA (CLCA) elements, as outlined in the recent National Academies report on LCA
and low carbon fuel standard programs.' Some CLCA elements can be controlled via GREET’s
parameters, such as whether co-products are accounted for via system expansion (i.e., exporting a
co-product directly to another firm or into a marketplace, leading to an assumed one-to-one
reduction in production elsewhere). Other CLCA elements—namely counterfactual scenario
emissions credits—are not yet controllable via parameters, instead requiring GREET users to
rewrite formulas if they wish to exclude or disaggregate the effect of those elements.

In tailoring R&D GREET into NM-GREET, ERG avoided system expansion wherever possible, since
one-to-one substitution (also known as “displacement” in LCA) is not empirically supported by
economic modeling or data. Instead, market-based allocation—wherein the burdens of a process
are distributed across its co-products according to their relative economic value—is given
preference, in part to stay “consistent with the aims of market-based [public programs] to reducing
emissions” like the CTFP.?° Additionally, GREET’s instances of mass-based allocation often do not
account for significant differences in the composition (e.g., protein content) and utility of co-
products, and its energy-based allocation does not consider the energy commodities’ entropic

% National Academies of Sciences, Engineering, and Medicine, Current Methods for Life-Cycle Analyses of
Low-Carbon Transportation Fuels in the United States (Washington, DC: The National Academies Press,
2022), https://doi.org/10.17226/26402.

20 National Academies of Sciences, Engineering, and Medicine, Current Methods for Life-Cycle Analyses of
Low-Carbon Transportation Fuels in the United States (Washington, DC: The National Academies Press,
2022), https://doi.org/10.17226/26402.
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states (i.e., heat is far less useful than electricity) or their logistical constraints (e.g., transporting
and storing electricity poses different challenges than a liquid fuel does).

3.2.2 Results

The Results_NM tab contains the definitions of NM-GREET pathways and stages of activity therein,
including metadata mappings between GREET1 (i.e., tab, section header, and stage header) and
the New Mexico pathway (i.e., ID, name, stage, stage category) as well as formulas to estimate the
emitted quantities of GHG species within each pathway-stage. In each column of Results_NM, the
set of “Source,” “GREET Tab,” “GREET Section,” and “GREET Stage” fields together serve as a
pointer to the location—within or external to GREET1—on which the subsequent GHG-emissions
formulas primarily rely. For example, column D of Results_NM estimates the GHG emissions from
onroad combustion of clear gasoline. ERG developed these formulas by combining elements from
the per-distance and per-energy “Vehicle Operation” formulas of the Results tab. However, since
both the Results_NM column D and Results vehicle operation formulas both primarily rely on
values from the Vehicles tab, the “GREET Tab” field points to Vehicles rather than Results.

To define the scope of fuel pathways, ERG adhered to GREET’s nomenclature and definitions of
lifecycle stages: “Feedstock” production, “Fuel” processing, and “On-Road” vehicle emissions.
These three core stages are reused across all pathways in NM-GREET and this report, but the
specific supply-chain activities within each stage vary by pathway. Furthermore, pathways with
agricultural crop feedstocks also include a separate “ILUC” stage for indirect land use change, as
detailed below in Section 3.2.3. For all biological-feedstock fuel pathways, ERG disaggregated and
lists “Biogenic CO, Uptake” as a separate stage in this report, but on the Results_NM tab these
emissions are incorporated into the On-Road stage. Finally, once the stagewise Cls defined on
Results_NM are calculated, those results are aggregated on the C/_Table tab into well-to-pump
and pump-to-wheel subtotals and finally a WTW total Cl for each pathway. The well-to-pump
subtotal is defined as the sum of stagewise Cls from feedstock, fuel, and ILUC; pump-to-wheel is
the sum of on-road and, wherever present, biogenic CO, uptake.

Two key patterns are reused across formulas developed on Results_ NM:

e Using loss factors to normalize GHG emissions to the energy content of fuel delivered
to a vehicle. As on GREET1’s Results tab, GHG emissions formulas on Results_ NM
incorporate stagewise loss factors—themselves often calculated as composites of loss
factors for specific activities within a stage. Scaling emissions by these factors ensures that
results can be added across stages. For example, absent this scaling, emissions from fossil
clear gasoline’s Feedstock stage would have units of g CO,e/MJ of crude oil at refinery
rather than MJ of gasoline at pump, and thus could not be aggregated into a WTW CI.

e Accounting for biogenic CO, uptake and reemission via the -1/+1 method. For biogenic
CO, emissions, ERG followed the GREET convention of applying the -1/+1 method, given
that all of NM-GREET’s biofuel pathway feedstock crops have short growth cycles (i.e., no
woody biomass feedstocks are modeled). This method represents CO, sequestration
during plant growth as a negative emission, followed by positive emissions wherever the
biogenic carbon atoms are re-released to the atmosphere as CO,—primarily upon fuel
combustion. However, the sequestered and re-released CO, quantities are not always
identical: the -1/+1 method also considers the different impacts of biogenic carbon
embedded in non-CO, emissions such as CH,. Emissions of biogenic CH, are treated
identically to fossil CH, in GREET.
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Finally, in order to ensure that the Cl scores of temporary pathways (Table 5 in the NM CTFP rule)
represent conservative estimates, other states’ LCFS programs have all adopted a standard
routine for calculating said scores. For each unique category of temporary fuel pathways (e.g.,
compressed biomethane from landfills), find the maximum Cl score among submitted Tier 1 and 2
applications for that pathway. With this maximum CI as an input, multiply it by 105% and round up
to the nearest base-5 integer in order to yield that pathway category’s temporary CI. This routine
can be more succinctly represented via the following formula:

x * 1.05
y = ceiling (T) *5, where y = Cliemporary and x = Clygy Equation 3-2

Since NMED does not yet possess a collection of Tier 1 and 2 pathway applications from which to
sample these pathway-maximum Cl values, ERG instead used NM-GREET to estimate “Total”
pathway Cls as the inputs (x) to this formula. The “Adjusted Total” outputs (y) are then the resulting
Cls embedded in Table 5 of the rule.

3.2.3 KeyAssumptions

Results from select external models are incorporated into NM-GREET in order to best represent the
fuel sold within New Mexico, as well as to mitigate limitations in R&D GREET’s model scope and
data resolution. These results fall into three categories: ILUC, crude oil supplied to Petroleum
Administration for Defense District 3 (PADD3), and national-average manure methane emissions.

3.2.3.1 Indirect Land-Use Change

In order to estimate the GHG emissions resulting from indirect land-use change (ILUC) arising from
additional demand for biological-crop-derived fuels in NM-GREET, NMED and ERG adopt and reuse
the ILUC factors developed by the California Air Resources Board (CARB) for CA-GREET.?’

Table 3-3. ILUC Cls

Fuel Pathway :;lé%ia/:\:l;

Corn ethanol 19.8
Sorghum ethanol 194
Sugarcane ethanol 11.8
Soybean biodiesel or renewable diesel 29.1
Canola biodiesel or renewable diesel 14.5
Palm biodiesel or renewable diesel 71.4

Given the complexity of ILUC modeling, the absence of scientific consensus on model structure
and parameterization, and the still-sizable uncertainty ranges surrounding ILUC factors calculated
by an array of prominent models, NMED and ERG opted to reuse CARB’s 2015 ILUC analysis and
resulting factors. Performing novel ILUC analysis requires significant time and effort in order to
achieve accuracy, and even then, the resulting ILUC factors arrive with substantial quantitative
uncertainty. Given the limited time and resources available to NMED and its supporting contractors
in preparing the proposed rule, NMED opted to adopt ILUC factors used across multiple existing

21 California Air Resources Board, “Detailed Analysis for Indirect Land Use Change,” 2015,
ww?2.arb.ca.gov/sites/default/files/classic/fuels/lcfs/iluc_assessment/iluc_analysis.pdf.
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LCFS programs rather than compose a new NM-specific ILUC analysis (or meta-analysis,
comparing multiple models) and resulting factors. NMED and ERG recognize that CARB’s ILUC
factors are not the most recently published, but nhonetheless chose to use them for the following
reasons:

e CARB’s ILUC assessment was conducted by a regulatory body with (1) extensive expert
review and (2) robust stakeholder input via a transparent, rigorous engagement process.

e The International Council on Clean Transportation (ICCT) recommended reusing CARB’s
ILUC values in their peer review of the WA CFP program’s carbon intensity modeling.?

e Whereas GREET’s CCLUB-based ILUC factors are lower than those from CARB and thereby
suggest that CARB’s factors may overestimate the impact of ILUC, a pair of recent ILUC
model-review and -validation studies—EPA’s 2023 Model Comparison Exercise? and Lark
et al. (2022)**—suggest that CARB’s factors may instead be underestimated.

Thus, despite its age, CARB’s assessment better aligns model inputs and assumptions with reality
as validated by both the scientific data and collective stakeholder experience.

Furthermore, there is no single harmonized ILUC model, and each ensemble of available models
and underlying data have their respective strengths and weaknesses. CARB’s and other ILUC
factors adopted for regulatory application (e.g., those developed for the federal Renewable Fuel
Standard) have typically been calculated via a pairing of models: (1) a macroeconomic model
which estimates the quantity of land-use change induced by a shift in demand for crop-based
biofuels and their feedstocks, and (2) a biophysical land-use-change and land-management-
change GHG emissions model, which produces the emissions factors by which the first model’s
results are multiplied to yield ILUC factors.

To -date, the distinctions and variance among these models has best been summarized by EPA’s
2023 Model Comparison Exercise (MCE) Technical Document, a meta-analysis of ILUC models and
their results.?® The MCE highlights that uncertainty in ILUC factors is a result of both structural
uncertainty originating in the selection of the aforementioned economic and biophysical models,
as well as numeric uncertainty attached to each of said models’ parameters. The economic portion
of models (i.e., how markets respond to the demand for bio-based fuels) was structured differently
between examined models, and this also caused varying sensitivity in the ILUC factors to
parameterization, even with the consensus that new demand would result in land use changes. For
example, the MCE highlights a key limitation of GTAP (i.e., GTAP-BIO, database v10): it lacks robust
modeling of commodity substitutability and competition in the global vegetable oil market.
Whenever soybean oil is diverted to produce fuel, other vegetable oils will replace it to varying

22 International Council on Clean Transportation (ICCT), “Washington Clean Fuels Standard—Carbon
Intensity Model Peer Review,” April 6, 2022, https://ecology.wa.gov/getattachment/3ff97fb5-9ba4-4507-
8741-4be625e4e690/CIModelPeerReview20220406.pdf.

2 U.S. Environmental Protection Agency, “Model Comparison Exercise Technical Document,” 2023,
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1017P9B.txt.

24 Tyler J. Lark et al., “Environmental Outcomes of the US Renewable Fuel Standard,” Proceedings of the
National Academy of Sciences 119, no. 9 (March 2022): 2101084119,
https://doi.org/10.1073/pnas.2101084119.

2 U.S. Environmental Protection Agency, “Model Comparison Exercise Technical Document,” 2023,
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1017P9B.txt.
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degrees; this substitution is a key driver of ILUC and its resulting GHG emissions. Unlike other
models in the MCE—whose results included significant replacement of the soybean oil diverted
from the international food market with palm, canola, and other crop oils—GTAP’s results project
an overall reduction in oil crops consumed as food, with little replacement. This discrepancy
suggests that CARB’s 2015 ILUC factors, obtained from GTAP (i.e., GTAP-BIO and AEZ-EF), may
underestimate the extent of ILUC emissions induced by demand for fuels derived from oil crops.

Similar to the MCE’s findings, ILUC factors used in the federal Renewable Fuel Standard (RFS) have
also been shown to be underestimates. A recent study by Lark et al. (2022) sought to validate an
ILUC factor for corn ethanol from the 2007 RFS program by performing a retrospective analysis of
domestic ILUC driven by the additional production of 5.5 billion gallons of corn ethanol.?® Lark et al.
attribute this additional ethanol as demand induced by the 2007 RFS expansion. To this additional
fuel volume, the authors attribute and calculate a domestic ILUC factor of 29.7 g CO2e / MJ—a
result which far exceeds EPA’s original regulatory impact assessment (RIA) projection of -3.8 g/ MJ
for domestic ILUC emissions by 2022. Furthermore, the authors use this corrected ILUC factor to
calculate a revised Cl for corn ethanol of 115.7 g/MJ (as produced in 2022, or higher in preceding
years)—24% higher than the program’s corresponding baseline gasoline Cl of 91.3 g/MJ. This series
of mismatches demonstrates both the risk of underestimation and its unintended consequences,
as well as the importance of working toward periodic validation routines for ILUC factors with
historic data.

On the other hand, R&D GREET’s default ILUC factors calculated via its CCLUB module are
significantly lower than those from CARB’s 2015 analysis across pathways. Just last year, the
primary authors of GREET’s CCLUB model published their own comparative analysis of ILUC
modeling.?” Unlike EPA’s MCE, Taheripour et al. used only one macroeconomic model, GTAP-BIO,
and instead focused their comparison on two different land-use-change emissions models,
CCLUB and AEZ-EF—the latter of which was used to calculate CARB’s 2015 ILUC factors. For an
array of crop-based jet fuel production pathways and corresponding additional-demand scenarios,
the authors found AEZ-EF’s ILUC factors to be more extreme than those from CCLUB. Wherever
both models yielded positive ILUC factors, AEZ-EF’s exceeded those of CCLUB by 33-62% (using
values from Table 2, with CCLUB’s factors as the denominator); when both negative, AEZ-EF’s were
34-191% lower than CCLUB’s. The authors conclude by noting the difficulty in pinpointing root
causes of these differences—due to variation in underlying data, model assumptions, and system
boundaries—and emphasize the importance of model validation, particularly by way of remote-
sensing technologies.

In summary, the aforementioned ILUC meta-analyses and validation study demonstrate how
scientists in this field continue to grapple with many of the same open questions, disagreements,
and quantitative uncertainty which have persisted since CARB’s 2015 analysis. Given the large
range of uncertainty surrounding these estimates, NMED and ERG consider CARB’s ILUC factors to
be a middle-of-the-road estimate and reuse them throughout the NM-GREET CI calculations and
CTFP rule.

26 Tyler J. Lark et al., “Environmental Outcomes of the US Renewable Fuel Standard,” Proceedings of the
National Academy of Sciences 119, no. 9 (March 2022): 2101084119,
https://doi.org/10.1073/pnas.2101084119.

2’ Farzad Taheripour et al., “Biofuels Induced Land Use Change Emissions: The Role of Implemented Land
Use Emission Factors,” Sustainability 16, no. 7 (January 2024): 2729, https://doi.org/10.3390/su16072729.
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3.2.3.2 OPGEE Well-to-Refinery Crude Oil Modeling

ERG modified NM-GREET to substitute GREET1’s default modeling of crude oil’s well-to-refinery-
gate (WTRG) Cl with an estimate derived from the Oil Production Greenhouse gas Emissions
Estimator (OPGEE) v2.0c model, U.S. Energy Information Administration (U.S. EIA) data, and the
work of Masnadi et al. (2018).%® Unlike R&D GREET, OPGEE allows users to model GHG emissions
from the extraction, processing, and transportation of crude oil by defined-origin mixtures as
consumed within a certain Petroleum Administration for Defense Districts (PADD) region.?® This
improved resolution allowed ERG to model the mixture of crude oil produced domestically within
and imported internationally into PADDS3, the gulf coast region which includes New Mexico, so as
to best characterize the supply chains of petroleum-derived fuels consumed in-state. Many other
regulatory applications of GREET, such as for clean fuel programs akin to CTFP in other states, also
incorporate OPGEE modeling and results into their WTRG crude oil Cl calculations.

In 2018 Masnadi et al. published carbon intensity estimates for 98% of global crude production for
the 2015 production year, which were modeled with field-specific data.*®* ERG combined data and
results from the supplementary material of Masnadi et al.’s work with OPGEE v2.0c and domestic
crude oil production and foreign import data from U.S. EIA,*" as detailed in the Fuel Carbon
Intensities appendix. The resulting weighted-average PADD3 Cls are calculated as

11.83 CO.e/MIJ refinery input for 2018 and 11.46 g/MJ for 2022. Integrating these WTRG Cls into NM-
GREET’s Petroleum tab in both the v1.0 and baseline versions of NM-GREET causes a ~4-5 g/MJ
increase in the pathway Cl scores of crude-oil-derived transport fuels (i.e., gasoline, diesel, and
liquefied petroleum gas) and only modest <0.2 g/MJ increases in other pathways.*

In order to ensure that all fuel pathways incorporate this Feedstock-stage Cl into the petroleum-
derived fuels they consume as process and/or transportation fuels within their supply chains, ERG
increased the Fuel-stage (i.e., WTRG) carbon intensity of unrefined crude oil on the Petroleum tab
such that it matched the above pair of PADD3-specific 2018 and 2022 estimates. Using the 2022
adjustment to illustrate this change, ERG made up the difference between R&D GREET’s release-
default WTRG Cl of 7,911 g COze per million British thermal units (mmBtu) and our calculated 2022
PADD3 value of 12,096 g CO.e/mmBtu (i.e., converted from 11.46 g/MJ) by simply increasing the
Fuel stage CO, emissions (in cell Petroleum!B279) by the difference between the Cl values.
Therefore, ERG added 4,185 g/mmBtu (i.e., 12,096 minus 7,911) of CO, emissions to the WTRG ClI
of unrefined crude oil, which has a release-default value of 5,129 g/mmBtu. Prioritizing the

28 Hassan M. El-Houjeiri et al., “Oil Production Greenhouse Gas Emissions Estimator OPGEE v2.0 User Guide
& Technical Documentation,” 2017,
https://pangea.stanford.edu/departments/ere/dropbox/EAO/OPGEE/OPGEE_documentation_v2.0.pdf;
Mohammad S. Masnadi et al., “Global Carbon Intensity of Crude Oil Production,” Science 361, no. 6405
(August 31, 2018): 851-53, https://doi.org/10.1126/science.aar6859.

2U.S. Energy Information Administration, “Petroleum Administration for Defense Districts,” February 7,
2012, https://www.eia.gov/todayinenergy/detail.php?id=4890.

30 Mohammad S. Masnadi et al., “Global Carbon Intensity of Crude Oil Production,” Science 361, no. 6405
(August 31, 2018): 851-53, https://doi.org/10.1126/science.aar6859.

31 U.S. Energy Information Administration, “Crude Oil Production, Annual,” 2025,
https://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm; U.S. Energy Information Administration,
“PAD District Imports by Country of Origin: Gulf Coast (PADD3), Crude Oil, Annual,” 2025,
https://www.eia.gov/dnav/pet/pet_move_impcp_a2_r30_epcO0_IPO_mbbl_a.htm.

32 petroleum fuels are consumed within the supply chains of all liquid fuel pathways, but marginal increases
in the Cl of petroleum has only a limited impact on the Cl scores of these other pathways.
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transparency and traceability of these calculations, ERG inserted a condensed version of these
calculations as the following formula into the Petroleum-tab WTRG CO, emissions cell, where
“MJ2mmBtu” references GREET’s named range for converting MJ to mmBtu:

= (11.46/M]2mmBtu — 7,911.2) + 5,128.8 Equation 3-3

3.2.3.3 45V Manure Biomethane Counterfactual and Fuel Processing

Avoided methane emissions credits are constructed from pairs of counterfactual scenarios: a
baseline or “status quo” scenario (which is avoided) and a “counterfactual” alternative (which may
be enacted via public policy, private investment, and/or additional decision points). When
considering the diversion of animal manure from some traditional manure management practice to
an anaerobic digester system that produces biomethane for consumption in NM, our status quo
scenario is defined as the national-average array of manure management practices, and our
alternative scenario as the array of available anaerobic digester (AD) technologies.

However, the structure of R&D GREET only allows users to access a single AD technology at a time,
and working around this limitation would thereby require extensive re-writes of the formulas from
the RNG and Waste tabs. Instead, NM-GREET simply relies on 45V-GREET’s generic counterfactual
methodology for avoided GHG emissions for manure-derived biomethane, which has already done
the work of estimating this national-average counterfactual.®® This recent analysis used
production-weighted-national-average statistics and modeling of both (1) manure generation by all
major animal types in U.S. animal agriculture, and (2) emissions from U.S.-average manure
management practices as the “status quo” scenario. Then, the total net difference in GHG
emissions between that status quo and the alternative—diversion into a mixture of the three most
prevalent anaerobic digester technologies (covered lagoon, mixed plug flow, and complete mix)—
is calculated. Together, these elements produced a “generic” avoided methane emissions
potential per unit energy of biomethane, agnostic of the specific manure source, management
practice, or digester system. This agnosticism allows us to apply the resulting avoided emissions
Cl broadly across all relevant temporary pathways’ Cl scores.

Reproducing the calculations outlined in the 45V report’s “Estimated Emissions Per Unit
Biomethane” section yields an avoided emission factor of -90.3 g CO,e/MJ CH, in biomethane, only
slightly higher than GREET’s default factor of -110.3 g CO,e/MJ. In the following formulas, “manure”
denotes manure mass as excreted including moisture, CO.e values are calculated via AR5
GWP100 factors, and the LHV of CH, is obtained from GREET (i.e., at conditions of 32°F and

1 atmosphere):

MT COe
81,696,000 year 1 MT manure 10°g CO,e g CO,e
* * — i .
1460542 191 MT manure 103 kg manure 1MT CO,e kg manure Equation 3-4
e year

33 U.S. Department of Energy, “A Generic Counterfactual Greenhouse Gas Emission Factor for Life-Cycle
Assessment of Manure-Derived Biogas and Renewable Natural Gas,” January 2025,
https://www.energy.gov/sites/default/files/2025-01/generic-counterfactual-greenhouse-gas-emission-
factor-for-life-cycle-assessment-of-manure-derived-biogas-and-renewable-natural-gas_010225.pdf.
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g COe 1 kg manure g COye
55.9 * — =91.7 — Equation 3-5
kg manure 0.61scf CH,in biogas scf CH,in biogas
91.7 g COe . 1 scf CH,in biogas i 1000 Btu _ 90, g COye Equation 3-6
scf CH,in biogas 962.2 Btu (LHV,CH,) 1.05587 MJ] MJ] CH,in biogas

Finally, since these emissions are considered avoided, a negative sign is prepended to the
emission factor. Note that, while the per-MJ value of -90.3 equals the “-90 g CO,e/MJ” value after
rounding on page 11 of the 45V generic counterfactual report, the -91.7 g CO,e/standard cubic foot
(scf) CH,in biogas value differs from the “-90 g CO.e/scf biomethane in biogas” on page 10. Based
on the calculations above and subsequent differences in per-scf and per-MJ emission factors in the
report, ERG concluded that the -90.3 per-MJ value is correct, whereas the per-scf value should

be -91.7.

ERG also integrated the 45V report’s estimates of emissions intensities for both digester (i.e.,
across a “manure-weighted average of the three primary digester technologies”—covered lagoon,
mixed plug flow, and complete mix) and upgrader operations. The former emits 39 g CO.e/MJ by
way of its consumption of grid electricity and natural gas (NG), and the latter emits 19.4 g CO,e/M)
via fugitive biogas plus upstream emissions of consumed grid electricity. For each pathway that
includes AW biomethane as a fuel or feedstock, ERG opted to use the sum of these values, 58.4

g CO,e/MJ, to represent biogas production activities within the Fuel-processing stage.

3.3 Gasoline Pathways

3.3.1 Fossil Clear Gasoline (E0)

The Fossil Clear Gasoline (EQ) pathway approximates a weighted average of crude-oil-derived
gasoline supplied to New Mexico, as delivered in “clear” state before any potential blending with
other fuels, such as ethanol. As detailed in Section 0 of this report, the Feedstock stage is
composed of PADD3-weighted average crude oil extraction activities, followed by transportto a
refinery. The Fuel processing stage includes the refining of crude oil into gasoline followed by
transportation and distribution to refueling stations. Finally, the On-Road stage models gasoline
combustion within a light-duty, passenger internal combustion engine vehicle (ICEV).

The parameter listed in Table 3-4 is altered from GREET’s release-default state to ensure that this
model pathway is representative of fuel commercially available in New Mexico. ERG decreased the
value of “Petro_FRFG_EtOH” from 10 to 0 percent in order to model tailpipe emissions from
combusting clear gasoline (EQ) on the Vehicles tab rather than E10.

Table 3-4. Parameters relevant to the Fossil Clear Gasoline (EO) pathway

Value
Parameter

Default ‘ NM GREET Label Description
Setto 0% so
Results_NM formulas
can reuse calculations
from Vehicles tab for
clear gasoline

Ethanol blending level

Petro_FRFG_EtOH | 10.0% 0.0%
(by volume)
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Table 3-5 below, summarizes the cumulative Cl and the Cl values by stage. Formulas defining this
pathway’s stagewise emissions on Results_NM primarily refer to and derive from GREET1’s
Petroleum sheet Section 5.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-5. Summary of the Fossil Clear Gasoline (EQ)’s stagewise Cls

Stage Total CI*
g (g CO2e/M))

Feedstock 9.9
Fuel 13.7
On-Road 73.1
Total, WTW 96.7

*Values may not always sum to equal the total due to rounding.

3.3.2 Corn Ethanol (E100)

The Corn Ethanol (E100) pathway estimates the typical WTW CI of corn-based ethanol supplied to
New Mexico, as delivered before any potential blending with other fuels. The Feedstock lifecycle
stage is composed of corn farming and transport to an ethanol production plant. The Fuel
processing stage includes an industry-weighted average of ethanol production plant types—using
dry and wet milling, with and without the extraction of a corn oil co-product—followed by
transportation and distribution to refueling stations. The On-Road stage models fuel combustion
within a light-duty passenger ICEV. Finally, the ILUC and Biogenic CO, Uptake stages are
incorporated to account for the effects of feedstock crop growth.

Certain parameters listed in Table 3-6 are altered from GREET’s release-default state to ensure that
this model pathway is representative of fuel commercially available in New Mexico. ERG increased
the value of “Vehicles_EtOHDediVehi_EtOHShare” from 85 percent to 100 percent in order to
model tailpipe emissions from combusting E100 on the Vehicles tab rather than E85. Since CARB
ILUC factors are applied, GREET’s internal estimation of ILUC is disabled via the
“EtOH_CornEtOH_LandChange_Option” parameter. Finally, as described in Section 3.2.1, market-
based allocation is given preference over other available modes; for this reason, ERG altered the
three enumerated allocation-selector parameters from their default values to “3 - Market-Based
Allocation.”

Table 3-6. Parameters relevant to the Corn Ethanol (E100) pathway

Value ' ..

Setto 100% so
Vehicles_ Ethanolin dedicated Results_NM formulas can
EtOHDediVehi_ 85.0% 100.0% vehicle fuel reuse calculations from
EtOHShare Vehicles tab for fuel

ethanol
EtOH_CornEtOH_ Inclusion of GHG Remove GREET's ILUC
LandChange_ 2 0 Emissions from Land value for corn ethanol;
Option Use Change; Corn use CARB value instead
Ethanol_Farming_ Alloc'atlon of corn Preference market

. 1 4 farming energy .
Corn_Allocation . allocation
between corn grain and
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stover

Allocation of Corn

1 3 ethanol w/o corn oil
extraction
Allocation of Corn
Inputs!F503 6 3 ethanolw/ corn oil
extraction

EtOH_CornEtOH_
CoProductMethod

The pathway’s total WTW CI and those of its stages are provided below in Table 3-7.Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s EtOH sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-7. Summary of Corn Ethanol (E100)’s stagewise Cls

Stage Total CI*
(g CO.e/MJ)
Biogenic CO, Uptake -68.9
Feedstock 23.1
Fuel 23.4
On-Road 71.4
ILUC 19.8
Total, WTW 68.9
Total, WTW, adjusted 75.0

*Values may not always sum to equal the total due to rounding.

3.3.3 Sorghum Ethanol (E100)

The Sorghum Ethanol (E100) pathway estimates the typical WTW CI of sorghum-based ethanol
supplied to New Mexico, as delivered before any potential blending with other fuels. The Feedstock
lifecycle stage is composed of grain sorghum farming and transport to an ethanol production plant.
The Fuel processing stage includes an ethanol production followed by transportation and
distribution to refueling stations. The On-Road stage models fuel combustion within a light-duty
passenger ICEV. Finally, the ILUC and Biogenic CO, Uptake stages are incorporated to account for
the effects of feedstock crop growth.

The parameter listed in Table 3-8 is altered from GREET’s release-default state to ensure that this
model pathway is representative of fuel commercially available in New Mexico. ERG increased the
value of “Vehicles_EtOHDediVehi_EtOHShare” from 85 to 100 percent in order to model tailpipe
emissions from combusting E100 on the Vehicles tab rather than E85. Since GREET’s internal
estimation of ILUC for sorghum is disabled by default, no parameter alteration was necessary in
order to avoid double-counting emissions when applying CARB’s ILUC factor. Finally, as described
in Section 3.2.1, market-based allocation is given preference over other available modes; for this
reason, ERG altered the sorghum-ethanol-plant allocation selector from its default value of “1:
Displacement method” to “3: Market value-based method.”
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Table 3-8. Parameters relevant to the Sorghum Ethanol (E100) pathway

Val |

Setto 100% so

Vehicles_ Ethanolin dedicated Results_NM formulas can

EtOHDediVehi_ 85.0% 100.0% . reuse calculations from

EtOHShare vehicle fuel Vehicles tab for fuel
ethanol

Co-products handling
EtOH!C270 1 3 methods of sorghum
ethanol plant

Preference market
allocation

The pathway’s total WTW CI and those of its stages are provided below in Table 3-9. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s EtOH sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-9. Summary of Sorghum Ethanol (E100)’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Biogenic CO, Uptake -68.9
Feedstock 23.7
Fuel 19.4
On-Road 71.4
ILUC 14.5
Total, WTW 60.2
Total, WTW, adjusted 65.0

*Values may not always sum to equal the total due to rounding.

3.4 Diesel Pathways

3.4.1 Fossil Clear Diesel (B0)

The Fossil Clear Diesel (BO) pathway approximates a weighted average of crude-oil-derived diesel
supplied to New Mexico, as delivered in “clear” state before any potential blending with other non-
fossil-diesel fuels. As detailed in Section 0, the Feedstock stage is composed of PADD3-weighted
average crude oil extraction activities, followed by transport to a refinery. The Fuel processing stage
includes the refining of crude oil into diesel followed by transportation and distribution to refueling
stations. Finally, the On-Road stage models diesel combustion within a light-duty passenger
vehicle with a compression-ignition direct-injection (CIDI) engine.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-10. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Petroleum sheet Section 5.1, Vehicles sheet Section 3, and Results tab Section 2.
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Table 3-10. Summary of Fossil Clear Diesel (B0)’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Feedstock 11.5
Fuel 7.9
On-Road 75.6
Total, WTW 95.0

*Values may not always sum to equal the total due to rounding.

3.4.2 Biodiesel (B100)

The Biodiesel (B100) pathways approximate categorical averages of crop- and waste-oil-derived
biodiesel (BD) fuels supplied to New Mexico, as delivered in their pure state before any potential
blending with fossil diesel fuels. For both BD temporary pathways, ERG made the following
parameter alterations from GREET’s release-default state in order to disaggregate overlapping
GREET pathway formulas and ensure that modeled fuels are broadly representative of those sold in
New Mexico:

Table 3-11. Parameters relevant to all Biodiesel (B100) pathways

“Dofaute [ WM | OREETLabel

Vehicles_ Causes Vehicles-tab results
BDCIDI_ 20% 100% | Biodiesel in CIDI fuel to reflect pure BD, on which
BDShare Results_NM formulas depend

3.4.2.1 Virgin Non-Palm Plant Oil

The Virgin Non-Palm Plant Oil pathway estimates the typical WTW CI of soy-derived BD supplied to
New Mexico, as delivered before any potential blending with other diesel fuels. The Feedstock
lifecycle stage is composed of soy farming and transport to a refinery. The Fuel processing stage
includes soy oil extraction, transesterification, and transportation plus distribution to refueling
stations. The On-Road stage models BD100 combustion within a light-duty passenger CIDI vehicle.
Finally, ILUC and Biogenic CO, Uptake stages are incorporated to account for the effects of
feedstock crop growth.

Certain parameters listed in Table 3-12 are altered to GREET’s release-default state to ensure that
this model pathway is representative of fuel commercially available in New Mexico. Since CARB
ILUC factors are applied, GREET’s internal estimation of ILUC is disabled via the
“Soybean_LUC_Selector” parameter. Also, as described in Section 3.2.1, market-based allocation
is given preference over other available modes. For this reason, ERG altered the enumerated
“BD_SoybeanOQilExtraction_Allocation” selector from “4 - Mass-Based Allocation” to “3 - Market-
Based Allocation.”
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Table 3-12. Parameters relevant to the Virgin Non-Palm Plant Oil Biodiesel (B100) pathway

Parameter | a ue GREET Label Description
Default

Soybean_ Inclusion of GHG Exclude GREET estimate;
LUC_ 2 0 Emissions from Induced | replace with CARB estimate
Selector Land Use Change on Results_ NM
BD_Soybean Procesg leyel allocation

, . for all biooil-based Preference market
OilExtraction_ 4 3 . . .

. fuels: Oil Extraction allocation

Allocation

Process for Soybean

The pathway’s total WTW CI and those of its stages are provided below in Table 3-13. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s BioOil sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-13. Summary of Virgin Non-Palm Plant Oil Biodiesel (B100)’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Biogenic CO, Uptake -71.2
Feedstock 13.2
Fuel 9.7
On-Road 75.9
ILUC 29.1
Total, WTW 56.6
Total, WTW, adjusted 60.0

*Values may not always sum to equal the total due to rounding.

3.4.2.2 Waste Animal Fat or Cooking Oil

The Waste Animal Fat or Cooking Oil pathway estimates the typical WTW CI of tallow-derived BD
supplied to New Mexico, as delivered before any potential blending with other diesel fuels. The
estimated WTW CI of tallow BD is sufficiently close to that of BD derived from used cooking oil that
ERG solely relied on the modeling of tallow BD to represent this composite category of temporary
pathways. The Feedstock lifecycle stage is devoid of activity and emissions, since GREET treats
waste animal fat as being obtained burden-free at the point of disposal. The Fuel processing stage
includes rendering fat to tallow, tallow transport to a refinery, transesterification of tallow to BD,
and transportation plus distribution to refueling stations. The On-Road stage models BD100
combustion within a light-duty passenger CIDI vehicle. Finally, a Biogenic CO, Uptake stage is
incorporated to account for the biosphere origin of carbon embedded in the final fuel product.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-14. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s BioOil sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.
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Table 3-14. Summary of Waste Animal Fat or Cooking Qil
Biodiesel (B100)’s stagewise Cls

Stage Total CI*
g (g CO.e/M))

Biogenic CO, Uptake -71.4
Feedstock 0.0
Fuel 15.2
On-Road 76.1
Total, WTW 19.9
Total, WTW, adjusted 25.0

*Values may not always sum to equal the total due to rounding.

3.4.3 Renewable Diesel (R100) and Naphtha

The production of renewable diesel (RD) at biorefineries typically also yields renewable naphtha
(RN) and renewable jet fuel as co-products. In allocating the cumulative GHG emissions from
feedstock origin to exiting the biorefinery across these co-products, GREET relies on the fuels’ LHV
energy contents, such that each Joule of each fuel is attributed the same proportion of the total
emissions. This energy-based allocation plus the near-total negation of combustion emissions by
initial biogenic CO, uptake mean that renewable diesel, naphtha, and jet fuel co-products should
have roughly equivalent WTW Cls—an assumption ERG uses to extend the following RD temporary
pathway Cls as applying to their RN co-product as well.

3.4.3.1 Virgin Non-Palm Plant Oil

The Virgin Non-Palm Plant Oil Renewable Diesel (R100) pathway estimates the typical WTW CI of
soy-derived RD supplied to New Mexico, as delivered before any potential blending with other
fuels. The Feedstock lifecycle stage is composed of soy farming and transport to a refinery. The
Fuel processing stage includes soy oil extraction, RD and naphtha production, and transportation
plus distribution to refueling stations. The On-Road stage models RD100 combustion within a light-
duty passenger CIDI vehicle. Finally, ILUC and Biogenic CO, Uptake stages are incorporated to
account for the effects of feedstock crop growth.

Certain parameters listed in Table 3-15 are altered to GREET’s release-default state to ensure that
this model pathway is representative of fuel commercially available in New Mexico. Since CARB
ILUC factors are applied, GREET’s internal estimation of ILUC is disabled via the
“Soybean_LUC_Selector” parameter. Also, as described in Section 3.2.1, market-based allocation
is given preference over other available modes. For this reason, ERG altered the enumerated
“BD_SoybeanOilExtraction_Allocation” selector from “4 - Mass-Based Allocation” to “3 - Market-
Based Allocation.”
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Table 3-15. Parameters relevant to the Virgin Non-Palm Plant Oil Renewable Diesel (R100) and

Naphtha pathways
Parameter | GREET Label Description
Default
Inclusion of GHG Exclude GREET estimate;
Soybean_ . .
LUC Selector 2 0 Emissions from Induced replace with CARB
- Land Use Change estimate on Results_NM

Process level allocation

BD_Soybean ..
- y . for all biooil-based fuels: Preference market
OilExtraction_ 4 3 . . .
. Oil Extraction Process for | allocation
Allocation

Soybean

The pathway’s total WTW CI and those of its stages are provided below in Table 3-16. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s BioOil sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-16. Summary of Virgin Non-Palm Plant Oil Renewable Diesel (R100) and Naphtha’s
stagewise Cls

Stage Total CI*
g (g CO,e/M)

Biogenic CO, Uptake -72.6
Feedstock 13.3
Fuel 15.9
On-Road 73.3
ILUC 29.1
Total, WTW 59.0
Total, WTW, adjusted 65.0

*Values may not always sum to equal the total due to rounding.

3.4.3.2 Waste Animal Fat or Cooking Oil

The Waste Animal Fat or Cooking Oil Renewable Diesel (R100) and Naphtha pathway estimates the
typical WTW CI of tallow-derived RD supplied to New Mexico, as delivered before any potential
blending with other fossil-diesel fuels. The estimated WTW CI of tallow RD is sufficiently close to
that of RD derived from used cooking oil that ERG solely relies on the modeling of tallow RD to
represent this composite category of temporary pathways. The Feedstock lifecycle stage is devoid
of activity and emissions, since GREET treats waste animal fat as being obtained burden-free at the
point of disposal. The Fuel processing stage includes rendering fat to tallow, tallow transportto a
refinery, RD and naphtha production, and transportation plus distribution to refueling stations. The
On-Road stage models RD100 combustion within a light-duty passenger CIDI vehicle. Finally, a
Biogenic CO, Uptake stage is incorporated to account for the biosphere origin of carbon embedded
in the final fuel product.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-17. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s BioOil sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.
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Table 3-17. Summary of Waste Animal Fat or Cooking Oil Renewable Diesel (R100) and Naphtha’s
stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Biogenic CO, Uptake -72.6
Feedstock 0.0
Fuel 17.6
On-Road 73.3
Total, WTW 18.3
Total, WTW, adjusted 20.0

*Values may not always sum to equal the total due to rounding.

3.5 Propane Pathways

3.5.1 Fossil Liquefied Petroleum Gas

The Fossil Liquefied Petroleum Gas (LPG) pathway estimates the typical WTW CI of LPG supplied to
New Mexico. By default, GREET defines LPG as being produced with national-average production
shares of 86.6% from NG and 13.4% from crude oil. For the fraction of LPG derived from NG, the
Feedstock stage is composed of NG recovery (i.e., extraction of conventional and shale gas),
processing, and pipeline transmission to an LPG plant. The Fuel processing stage includes LPG
production, followed by transportation and distribution to refueling stations. For the fraction of LPG
derived from crude oil, the Feedstock stage is composed of a PADD3-weighted average of crude oil
extraction activities (as detailed in Section 0), followed by transport to a refinery. The Fuel
processing stage includes the refining of crude oil into LPG, followed by transportation and
distribution to refueling stations. Finally, the On-Road stage models fuel combustion within a light-
duty passenger vehicle with a light-duty passenger ICEV.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-18. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Petroleum sheet Section 5.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-18. Summary of Fossil LPG’s stagewise Cls

Stage Total CI*
g (g CO.e/M))

Feedstock 7.1
Fuel -4.2
On-Road 64.8
Total, WTW 67.7

*Values may not always sum to equal the total due to rounding.

3.6 Natural Gas Pathways

3.6.1 Fossil Natural Gas

The Fossil Natural Gas pathways in NM-GREET—including both compressed (CNG) and liquified
(LNG) gases—are composed of national-average mixes of shale and conventional NG produced
domestically. Leaks of NG to the atmosphere are characterized for each activity within the Fuel and
Feedstock stages. Since GREET does not contain parameters to differentiate fugitive emissions
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during NG recovery by basin, regions therein, or consumption mix in a given state, ERG instead
relied on GREET’s release-default national-average WTW estimates of 0.94 percent (i.e.,
Inputs!G136 and Inputs!H136) for both shale and conventional NG. Furthermore, the U.S. NG
pipeline network is heavily interconnected, such that in order to compose a New-Mexico-
consumption-weighted-average fugitive emissions rate for NG ERG would first need high-
resolution data and modeling of NG supply chain activities, fugitive emissions, and inter-state
distribution rates.

3.6.1.1 Fossil CNG

The Fossil CNG pathway estimates the typical WTW ClI of fossil CNG supplied to New Mexico. The
Feedstock lifecycle stage is composed of NG recovery (i.e., extraction of conventional and shale
gas), processing, and pipeline transmission to refueling stations. The Fuel processing stage
includes NG compression. Finally, the On-Road stage models fuel combustion within a light-duty
passenger ICEV.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-19. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s NG sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-19. Summary of Fossil CNG’s stagewise Cls

Stage | TotalCI*
(g CO.e/MJ)
Feedstock 13.7
Fuel 3.0
On-Road 57.6
Total, WTW 74.3

*Values may not always sum to equal the total due to rounding.

3.6.1.2 FossilLNG

The Fossil LNG pathway estimates the typical WTW CI of fossil CNG supplied to New Mexico. The
Feedstock lifecycle stage is composed of NG recovery (i.e., extraction of conventional and shale
gas), processing, and pipeline transmission to a liquefaction plant. The Fuel processing stage
includes liquefaction, truck transportation and distribution to refueling stations, and storage.
Finally, the On-Road stage models fuel combustion within a light-duty passenger ICEV.

The parameter listed in Table 3-20 is altered to GREET’s release-default state to ensure that this
model pathway is representative of fuel commercially available in New Mexico. An in-state
liquefaction efficiency of 80 percent is chosen to reflect local conditions and align with parameter
estimates from similar programs.
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Table 3-20. Parameters relevant to the Fossil LNG pathway

' Val

NG_LNG_ . . Alignment with similar
Lig_Eff_ =AL58 80% Elf,“;i(l:\:gnlz:lquefactlon programs in other
NANG_TS y jurisdictions

The pathway’s total WTW CI and those of its stages are provided below in Table 3-21. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s NG sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-21. Summary of Fossil LNG’s stagewise Cls

Stage Total CI*
(g CO.e/M))
Feedstock 8.6
Fuel 20.9
On-Road 57.6
Total, WTW 87.1

*Values may not always sum to equal the total due to rounding.

3.6.2 AnimalWaste Biomethane

The Animal Waste (AW) Biomethane (a.k.a. renewable natural gas) Temporary Pathway Table
pathways—including both compressed (AW CNG) and liquified (AW LNG) gases—in NM-GREET are
composed of national-average mixes of livestock manure and anaerobic digester technologies
used to convert manure into biomethane. Details on how these feedstock and AD national
averages are defined can be found in Section 3.2.3.3.

3.6.2.1 AW CNG

The AW CNG pathway estimates the typical WTW Cl of AW CNG supplied to New Mexico. The
Feedstock lifecycle stage is devoid of activity and emissions, since GREET treats AW as being
obtained burden-free at the point of generation. The Fuel processing stage includes manure
hauling via truck to a local AD installation, AD and biogas upgrader operation, pipeline
transmission to refueling stations, and compression to CNG. The On-Road stage models fuel
combustion within a light-duty passenger ICEV. Finally, a Biogenic CO, Uptake stage is
incorporated to account for the biosphere origin of carbon embedded in the final fuel product.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-22. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s RNG sheet Section 3, Vehicles sheet Section 3, and Results tab Section 2.
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Table 3-22. Summary of AW CNG’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Biogenic CO, Uptake -56.3
Feedstock 0.0
Fuel 61.4
On-Road 57.6
Total, WTW 62.7
Total, WTW, adjusted 70.0
Total, WTW, with credit -27.4
Total, WTW, with credit, adjusted -25.0

Counterfactual Additionality Credit

As outlined, fuel producers that meet the additionality criteria for AD installations may apply the
counterfactual avoided emissions credit of -90.0 g CO,e/MJ to this Temporary Pathway Table
pathway, bringing its total Cl down to -27.3 g CO,e/MJ.

3.6.2.2 AW LNG

The AW LNG pathway estimates the typical WTW CI of AW LNG supplied to New Mexico. The
Feedstock lifecycle stage is devoid of activity and emissions, since GREET treats AW as being
obtained burden-free at the point of generation. The Fuel processing stage includes manure
hauling via truck to a local AD installation, AD and biogas upgrader operation, pipeline
transmission to a liquefaction plant, liquefaction, transportation and distribution to refueling
stations, and storage. The On-Road stage models fuel combustion within a light-duty passenger
ICEV. Finally, a Biogenic CO, Uptake stage is incorporated to account for the biosphere origin of
carbon embedded in the final fuel product.

The parameter listed in Table 3-23 is altered to GREET’s release-default state to ensure that this
model pathway is representative of fuel commercially available in New Mexico. An in-state
liquefaction efficiency of 80 percent is chosen to reflect local conditions and align with parameter
estimates from similar.

Table 3-23. Parameters relevant to the AW LNG pathway

VEL

NG Small Scale
::::G‘Elf'_fNG‘ 89% 80% Liquefaction Efficiency
a- (powered by RNG)

Alignment with similar
programs in other jurisdictions

The pathway’s total WTW CI and those of its stages are provided below in Table 3-24. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s RNG sheet Section 3, Vehicles sheet Section 3, and Results tab Section 2.
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Table 3-24. Summary of AW LNG’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Biogenic CO, Uptake -56.3
Feedstock 0.0
Fuel 70.9
On-Road 57.6
Total, WTW 72.1
Total, WTW, adjusted 80.0
Total, WTW, with credit -18.5
Total, WTW, with credit, adjusted -15.0

*Values may not always sum to equal the total due to rounding.
Counterfactual Additionality Credit

As outlined, fuel producers that meet the additionality criteria for AD installations may apply the
counterfactual avoided emissions credit of -90.0 g CO,e/MJ to this Temporary Pathway Table
pathway—bringing its total Cl down to -18.2 g CO,e/MJ.

3.6.3 LandfillBiomethane

The Landfill (LF) Biomethane Temporary Pathway Table pathways—including both compressed (LF
CNG) and liquified (LF LNG) gases—in NM-GREET are composed of biomethane derived from
landfill gas (LFG) as is generated by landfills containing a U.S.-average composition of non-
recycled municipal solid waste.

3.6.3.1 LF CNG

The LF CNG pathway estimates the typical WTW CI of LF CNG supplied to New Mexico. The
Feedstock lifecycle stage is devoid of activity and emissions, since GREET treats LFG as being
obtained burden-free at the point of generation. The Fuel processing stage includes LFG upgrading,
pipeline transmission to refueling stations, and compression to CNG. The On-Road stage models
fuel combustion within a light-duty passenger ICEV. Finally, a Biogenic CO, Uptake stage is
incorporated to account for the biosphere origin of carbon embedded in the final fuel product.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-25. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s RNG sheet Section 3, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-25. Summary of LF CNG’s stagewise Cls

Stage Total CI*
(g CO.e/M))
Biogenic CO, Uptake -56.3
Feedstock 0.0
Fuel 21.1
On-Road 57.6
Total, WTW 21.4
Total, WTW, adjusted 25.0

*Values may not always sum to equal the total due to rounding.
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3.6.3.2 LFLNG

The LF LNG pathway estimates the typical WTW CI of LF LNG supplied to New Mexico. The
Feedstock lifecycle stage is devoid of activity and emissions, since GREET treats LFG as being
obtained burden-free at the point of generation. The Fuel processing stage includes LFG upgrading,
pipeline transmission to a liquefaction plant, liquefaction, transportation and distribution to
refueling stations, and storage. The On-Road stage models fuel combustion within a light-duty
passenger ICEV. Finally, a Biogenic CO, Uptake stage is incorporated to account for the biosphere
origin of carbon embedded in the final fuel product.

The parameter listed in Table 3-26 is altered to GREET’s release-default state to ensure that this
model pathway is representative of fuel commercially available in New Mexico. An in-state
liguefaction efficiency of 80 percent is chosen to reflect local conditions and align with parameter
estimates from similar.

Table 3-26. Parameters relevant to the LF LNG pathway

Val

NG Small Scale
::::G‘Elf'_fNG‘ 89% 80% Liquefaction Efficiency
7 a- (powered by RNG)

Alignment with similar
programs in other jurisdictions

The pathway’s total WTW CI and those of its stages are provided below in Table 3-27. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s RNG sheet Section 3, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-27. Summary of LF LNG’s stagewise Cls

Stage Total CI*
& (g CO,e/M)

Biogenic CO, Uptake -56.3
Feedstock 0.0
Fuel 29.8
On-Road 57.6
Total, WTW 31.0
Total, WTW, adjusted 35.0

*Values may not always sum to equal the total due to rounding.
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3.7 Hydrogen Pathways

Of the hydrogen (H,) fuels summarized in this section, six are defined as Lookup Table pathways
and four as Temporary Pathway Table pathways. The compressed gaseous hydrogen (C.H,) and
liquid hydrogen (L.H,) fuels derived from steam methane reforming (SMR) of fossil methane, proton
exchange membrane (PEM) electrolysis of water using certified zero-carbon, and PEM electrolysis
with North-American-average-grid electricity are all Lookup Table pathways. In turn, G.H, and L.H,
produced via SMR of AW or LF biomethane are defined as four Temporary Pathway Table pathways.

Additionally, the AW-biomethane-SMR temporary pathways can also claim a counterfactual
avoided emissions credit by meeting the criteria outlined in Section 3.2.3.3.

Certain parameters, listed in Table 3-28, are altered to GREET’s release-default state in order to
ensure that the modeled fuels are broadly representative of those sold in New Mexico. As
described in Section 3.2.1, market-based allocation is given preference over other available
modes. For this reason, ERG altered the two enumerated allocation-selector parameters from their
default values of “1 -- Displacement method” to “3 -- Market-Based Allocation”. Furthermore, ERG
updated the price of process-heat steam generated via fossil NG from its default value of $0 per
Btu (as embedded in “MeOH_FTD!L59”) to $1.02E-05 per Btu, derived from a recent national-
average NG price of $10 per thousand scf as reported by the U.S. Energy Information
Administration.®*

Table 3-28. Parameters relevant to all Hydrogen pathways

Value A
Central Plant G.H2; NG/RNG;
6.8) Selection of Method for
Inputs! ’ 3 Estimating Credits of Co-
F267 Products for NG Based Fuel
Pathways (Co-products are Preference market
defined in Section 6.7) allocation, as detailed
Central Plant L.H2; NG/RNG; in Section’3.2.1
6.8) Selection of Method for
Inputs! ’ 3 Estimating Credits of Co-
F269 Products for NG Based Fuel
Pathways (Co-products are
defined in Section 6.7)
Use national-average
Hydrogen! =MeOH_ =10/ $/Btu, Steam, NG irlce ($/thousand
K37 FTD!L59 NG_LHV Market value-based allocation scf)™and NG LHV'to
*1073) update GREET’s per-
Btu steam price

34U.S. Energy Information Administration, “Natural Gas Prices,” accessed June 19, 2025,
https://www.eia.gov/dnav/ng/NG_PRI_SUM_A_EPGO0_PCS_DMCF_M.htm.

3 U.S. Energy Information Administration, “Natural Gas Prices,” accessed June 19, 2025,
https://www.eia.gov/dnav/ng/NG_PRI_SUM_A_EPG0_PCS_DMCF_M.htm.
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3.7.1 H2via SMR of Fossil Methane
3.7.1.1 Fossil C.H2

The Fossil C.H, pathway estimates the typical WTW CI of fossil C.H, supplied to New Mexico. The
Feedstock lifecycle stage is composed of the set of activities defined in Section 3.6.1.1’s
Feedstock stage, followed by NG pipeline transmission to a central SMR plant. The Fuel processing
stage includes H, production via SMR, transportation and distribution of gaseous H, to refueling
stations, compression and precooling, and storage and dispensing with associated losses. Finally,
the On-Road stage models fuel consumption within a light-duty passenger fuel cell electric vehicle
(FCEV).

The pathway’s total WTW CI and those of its stages are provided below in Table 3-29. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-29. Summary of Fossil C.H2’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Feedstock 10.2
Fuel 84.2
On-Road 0.0
Total, WTW 94.4
Total, WTW, adjusted 100.0

*Values may not always sum to equal the total due to rounding.

3.7.1.2 Fossil L.H2

The Fossil L.H, pathway estimates the typical WTW CI of L.H, produced by SMR of fossil CNG
supplied to New Mexico. The Feedstock lifecycle stage is composed of the set of activities defined
in Section 3.6.1.1’s Feedstock stage, followed by NG pipeline transmission to a central SMR plant.
The Fuel processing stage includes H, production via SMR, liquefaction and bulk storage,
transportation and distribution to refueling stations, and storage and dispensing with associated
losses. Finally, the On-Road stage models fuel consumption within a light-duty passenger FCEV.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-30. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-30. Summary of Fossil L.H2’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Feedstock 13.3
Fuel 122.4
On-Road 0.0
Total, WTW 135.7
Total, WTW, adjusted 145.0

*Values may not always sum to equal the total due to rounding.
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3.7.2 H,via SMR of AW Biomethane
3.7.2.1 AW C.H2

The AW C.H, pathway estimates the expected WTW CIl of AW C.H, supplied to New Mexico. The
Feedstock lifecycle stage is composed of the set of activities defined in Section 3.6.2.1’s
Feedstock and Fuel stages, except that biomethane is transmitted via pipeline to a central SMR
plant rather than a refueling station and is not initially compressed. The fuel processing stage
includes H, production via SMR with process heat derived from fossil NG (i.e., not biomethane),
transportation and distribution of gaseous H, to refueling stations, compression and precooling,
and storage and dispensing with associated losses. The On-Road stage models fuel combustion
within a light-duty passenger FCEV. Finally, a Biogenic CO, Uptake stage is incorporated to account
for the biosphere origin of the carbon emitted during SMR of biomethane.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-31. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-31. Summary of AW C.H2’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Biogenic CO, Uptake -56.3
Feedstock 30.7
Fuel 27.9
On-Road 0.0
Total, WTW 88.3
Total, WTW, adjusted 95.0
Total, WTW, with credit -1.8
Total, WTW, with credit, adjusted 0.0

*Values may not always sum to equal the total due to rounding.
Counterfactual Additionality Credit

As outlined in Section 3.2.3.3, biomethane producers that meet the additionality criteria for AD
installations may apply a counterfactual avoided emissions credit of -90.0 g CO.e/MJ to the
feedstock AW NG for this AW C.H, Temporary Pathway Table pathway. Once applied, this credit
brings the pathway’s WTW Cl down to -1.8 g CO,e/MJ.

3.7.2.2 AW L.H2

The AW L.H, pathway estimates the expected WTW CI of AW L.H, supplied to New Mexico. The
Feedstock lifecycle stage is composed of the set of activities defined in Section 3.6.2.1°s
Feedstock and Fuel stages, except that biomethane is transmitted via pipeline to a central SMR
plant rather than a refueling station and is not initially compressed. The Fuel processing stage
includes H, production via SMR with process heat derived from fossil NG (i.e., not biomethane),
liquefaction and bulk storage, transportation and distribution to refueling stations, and storage and
dispensing with associated losses. The On-Road stage models fuel combustion within a light-duty
passenger FCEV. Finally, a Biogenic CO, Uptake stage is incorporated to account for the biosphere
origin of the carbon emitted during SMR of biomethane.
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The pathway’s total WTW CI and those of its stages are provided below in Table 3-32. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-32. Summary of AW L.H2’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Biogenic CO, Uptake -56.3
Feedstock 60.9
Fuel 122.4
On-Road 0.0
Total, WTW 127.0
Total, WTW, adjusted 135.0
Total, WTW, with credit 37.0
Total, WTW, with credit, adjusted 40.0

*Values may not always sum to equal the total due to rounding.
Counterfactual Additionality Credit

As outlined in Section 3.2.3.3, biomethane producers that meet the additionality criteria for AD
installations may apply a counterfactual avoided emissions credit of -90.0 g CO,e/MJ to the
feedstock AW NG for this AW L.H, Temporary Pathway Table pathway. Once applied, this credit
brings the pathway’s WTW Cl down to 37.0 g CO.e/MJ.

3.7.3 H2via SMR of LF Biomethane
3.7.3.1 LF C.H2

The LF C.H, pathway estimates the expected WTW CI of LF C.H, supplied to New Mexico. The
Feedstock lifecycle stage is composed of the set of activities defined in Section 3.6.3.1’s
Feedstock and Fuel stages, except that biomethane is transmitted via pipeline to a central SMR
plant rather than a refueling station and is not initially compressed. The Fuel processing stage
includes H, production via SMR with process heat derived from fossil NG (i.e., not biomethane),
transportation and distribution of gaseous H; to refueling stations, compression and precooling,
and storage and dispensing with associated losses. The On-Road stage models fuel combustion
within a light-duty passenger FCEV. Finally, a Biogenic CO, Uptake stage is incorporated to account
for the biosphere origin of the carbon emitted during SMR of biomethane.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-33. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-33. Summary of LF C.H2’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Biogenic CO, Uptake -56.3
Feedstock 18.2
Fuel 84.2
On-Road 0.0
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Total, WTW 46.1
Total, WTW, adjusted 50.0

*Values may not always sum to equal the total due to rounding.

3.7.3.2 LFL.H,

The LF L.H, pathway estimates the expected WTW CI of LF L.H, supplied to New Mexico. The
Feedstock lifecycle stage is composed of the set of activities defined in Section 3.6.3.1’s
Feedstock and Fuel stages, except that biomethane is transmitted via pipeline to a central SMR
plant rather than a refueling station and is not initially compressed. The Fuel processing stage
includes H, production via SMR with process heat derived from fossil NG (i.e., not biomethane),
liquefaction and bulk storage, transportation and distribution to refueling stations, and storage and
dispensing with associated losses. The On-Road stage models fuel combustion within a light-duty
passenger FCEV. Finally, a Biogenic CO, Uptake stage is incorporated to account for the biosphere
origin of the carbon emitted during SMR of biomethane.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-34. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-34. Summary of LF L.H2’s stagewise Cls

Stage Total CI*
& (g CO.e/M))

Biogenic CO, Uptake -56.3
Feedstock 23.7
Fuel 122.4
On-Road 0.0
Total, WTW 89.8
Total, WTW, adjusted 95.0

*Values may not always sum to equal the total due to rounding.

3.7.4 H2via PEM Electrolysis
3.7.4.1 C.H2 from North-American-Average Grid Electricity

The C.H, from North-American-Average Grid Electricity pathway estimates the expected WTW CI of
average-grid C.H, supplied to New Mexico. The Feedstock lifecycle stage is composed of electricity
generation across a national-average collection of electricity generating units, followed by
transmission to an electrolyzer. The Fuel processing stage includes H, production via PEM
electrolysis, transportation and distribution of gaseous H; to refueling stations, and storage and
dispensing with associated losses. Finally, the On-Road stage models fuel consumption within a
light-duty passenger FCEV.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-35. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.
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Table 3-35. Summary of C.H2 from North-American-Average Grid Electricity’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Feedstock 203.5
Fuel 14.3
On-Road 0.0
Total, WTW 217.8
Total, WTW, adjusted 230.0

*Values may not always sum to equal the total due to rounding.

3.7.4.2 L.H2 from North-American-Average Grid Electricity

The L.H, from North-American-Average Grid Electricity pathway estimates the expected WTW CI of
average-grid L.H, supplied to New Mexico. The Feedstock lifecycle stage is composed of electricity
generation across a national-average collection of electricity generating units, followed by
transmission to an electrolyzer. The Fuel processing stage includes H, production via PEM
electrolysis, liquefaction and bulk storage, transportation and distribution to refueling stations,
and storage and dispensing with associated losses. Finally, the On-Road stage models fuel
consumption within a light-duty passenger FCEV.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-36. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-36. Summary of L.H2 from North-American-Average Grid Electricity’s stagewise Cls

Stage | Total CI*
g (g CO.e/MJ)

Feedstock 219.8
Fuel 46.9
On-Road 0.0
Total, WTW 266.7
Total, WTW, adjusted 285.0

*Values may not always sum to equal the total due to rounding.

3.7.4.3 C.H2 from Zero-Carbon Electricity

The C.H, from Zero-Carbon Electricity pathway estimates the expected WTW CI of zero-feedstock-
carbon C.H; supplied to New Mexico. The Feedstock lifecycle stage is composed of zero-carbon
electricity generation, as defined in the Zero-Carbon Electricity pathway, followed by transmission
to an electrolyzer. The Fuel processing stage includes H, production via PEM electrolysis,
transportation and distribution of gaseous H; to refueling stations, and storage and dispensing with
associated losses. Finally, the On-Road stage models fuel consumption within a light-duty
passenger FCEV.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-37. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from
GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.
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Table 3-37. Summary of C.H2 from Zero-Carbon Electricity’s stagewise Cls

Stage Total CI*
g (g CO.e/MJ)

Feedstock 0.0
Fuel 14.3
On-Road 0.0
Total, WTW 14.3
Total, WTW, adjusted 20.0

*Values may not always sum to equal the total due to rounding.

3.7.4.4 L.H2 from Zero-Carbon Electricity

The L.H, from Zero-Carbon Electricity pathway estimates the expected WTW CI of zero-feedstock-
carbon L.H, supplied to New Mexico. The Feedstock lifecycle stage is composed of zero-carbon
electricity generation, as defined in the Zero-Carbon Electricity pathway, followed by transmission
to an electrolyzer. The Fuel processing stage includes H, production via PEM electrolysis,
liguefaction and bulk storage, transportation and distribution to refueling stations, and storage and
dispensing with associated losses. Finally, the On-Road stage models fuel consumption within a
light-duty passenger FCEV.

The pathway’s total WTW CI and those of its stages are provided below in Table 3-38. Formulas
defining this pathway’s stagewise emissions on Results_NM primarily refer to and derive from

GREET1’s Hydrogen sheet Section 4.1, Vehicles sheet Section 3, and Results tab Section 2.

Table 3-38. Summary of L.H2 from Zero-Carbon Electricity’s stagewise Cls

Stage | Total CI*
g (g CO.e/MJ)

Feedstock 0.0
Fuel 46.9
On-Road 0.0
Total, WTW 46.9
Total, WTW, adjusted 50.0

*Values may not always sum to equal the total due to rounding.

3.8 Data Sharing

In the broader CTFP analysis, ERG has supplied iterations of the Cl table to NMED for feedback and
BRG as inputs for their economic optimization model. These New Mexico-specific Cls go on to
inform the rule’s credit and deficit generation over time, as well as statewide fuel projections by
policy scenario.
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4. Projected Emission Reductions

4.1 Background

New Mexico’s program is expected to generate emission reductions from changes to the amount of
transportation fuels produced, imported, or dispensed for use within the state, particularly
switching from fossil diesel to renewable diesel and to a lesser extent biodiesel. To estimate
emissions, ERG has calculated state-specific emission factors for both onroad vehicles and
nonroad equipment and then coupled the EFs with BRG projections of diesel fuel volume deltas by
policy scenario. The product of the EFs and fuel volume deltas yields separate estimates for
onroad and nonroad emission reductions for several key criteria air pollutants and precursors,
namely nitrogen oxides (NOx), primary particulate exhaust (PM2.5), sulfur dioxide (SO2), and
volatile organic compounds (VOC). All EFs have been developed using county-scale runs of EPA’s
latest Motor Vehicle Emission Simulator release (MOVES5) and then aggregated over the state’s 33
counties. The two distinct policy scenarios analyzed are described in detail below.

The first scenario considers the CTFP in combination with New Mexico’s New Motor Vehicle
Emission Standards,*® labeled as “NMVES + CTFP” suite. Under this scenario, ERG considered the
effect of the CTFP both as a standalone policy and combined with the NMVES as a supporting
policy. This scenario provides an upper-bound estimate of the CTFP’s impact on emission
reductions. To make this determination, ERG took the difference of New Mexico transportation
sector emissions with both the NMVES and CTFP in place (Line 3 in Figure 4-1) from those with
neither the NMVES nor the CTFP in place (represented by Line 1 in Figure 4-1). In the latter case, the
assumed effective policy is the latest EPA national standard: the 2024 Multi-Pollutant Rule for light-
duty vehicles (LDVs) and the 2024 Phase 3 Rule for medium and heavy-duty vehicles (MHDVs).*
This scenario provides an upper-bound estimate of the CTFP’s effect because it attributes the
combined emission reductions from the complementary CTFP and NMVES policies under the
umbrella of the current program.

The second scenario is “CTFP-only.” Instead of looking at the policy’s combined effect as a
standalone and supporting policy, this scenario only considers the CTFP as a standalone policy.
The CTFP-only scenario gauges the policy’s impact by subtracting New Mexico transportation
sector emissions with both the NMVES and the CTFP in place (Line 3 in Figure 4-1) from a baseline
that includes the NMVES (Line 2 in Figure 4-1). This provides a lower-bound estimate of the CTFP’s
effect because it considers this program as a standalone policy with no emissions reduction
attributed to its role in supporting the NMVES.

% New Mexico Environment Department, “New Motor Vehicle Emissions Standards (Advanced Clean Cars
Il/Advanced Clean Trucks),” accessed May 29, 2025, https://www.env.nm.gov/climate-change-
bureau/transportation/.

87 U.S. Environmental Protection Agency, “Final Rule: Multi-Pollutant Emissions Standards for Model Years
2027 and Later Light-Duty and Medium-Duty Vehicles,” accessed May 29, 2025,
https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-multi-pollutant-emissions-
standards-model.
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Figure 4-1. lllustrative diagram of the policies and scenarios analyzed for cumulative emissions
over a projection period

 poides

1. Federal baseline Upper-bound CTFP effect
2. NMVES baseline Lower-bound CTFP effect
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1. MOVESS runs with federal Phase-3 Multi-Pollutant Rule
2. MOVESS5 runs with NMVES ZEV requirements
3. Fuel markets model applied to NMVES fleet + VMT

Note: lllustrative depiction, does not represent actual quantities.

The CTFP’s actual effect on New Mexico transportation sector emissions is likely somewhere
between the upper-bound (“CTFP + NMVES”) and lower-bound (“CTFP-only”) scenarios. Itis clear
that the CTFP will play an important role in bolstering NMVES benefits through an initial bank of
credits to build out fueling supply equipment (FSE) for zero-emission vehicles (ZEVs) along with a
more continuous stream of credits to maintain FSE infrastructure. Therefore, the lower-bound
“CTFP-only” estimate thus likely understates the policy’s true effect on transportation emissions.

At the same time, the NMVES would certainly generate New Mexico transportation sector emission
reductions even without the CTFP, so the upper-bound “CTFP + NMVES” estimate likely overstates
the CTFP’s true effect on emission reductions. It is difficult to ascertain exactly where the CTFP’s
effect would lie between these two bookend scenarios, but they both have been analyzed to cover
the greatest range of possible outcomes.

4.1.1 Emissions Analysis

For this analysis, ERG received transportation fuel projections from BRG’s fuel and credit markets
model (FCMM) for both the “CTFP-only” and the “NMVES + CTFP” scenarios described laterin
Section 4.2.3 and detailed in Appendix B of BRG’s BCA Report. In practice, BRG’s fuel projections
for the CTFP scenario only included volumetric changes to certain diesel blends. This report refers
to these as projected fuel volumes, which then serve as inputs to calculate changes to
transportation emissions for each scenario. To calculate the expected CTFP emission reductions,
ERG coupled New Mexico-specific EFs for both onroad vehicles and nonroad equipment with
corresponding fuel volume changes from BRG. The product of the EFs and transportation fuel
volumes yields separate estimates for onroad and nonroad reductions in criteria air pollutant (CAP)
emissions. Criteria pollutants include ozone (O3) precursors like NO, and VOCs, as well as
particulate matter 2.5 micrometers or less in diameter (PM,s) and SO,.
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ERG developed all EFs for the “CTFP-only” and “NMVES + CTFP” scenarios using county-scale runs
of EPA’s latest Motor Vehicle Emission Simulator release (MOVESS5) that ERG then aggregated over
the entire state.®® The MOVES5 model incorporates recent emission research and test results, as
well as any current federal regulations, including EPA’s Multi-Pollutant and Phase 3 Rules
mentioned above for LDVs and MHDVs, respectively. Although MOVES includes emissions data for
the most prevalent fuels, the model does not have data for all the eligible fuels in New Mexico’s
program. This fuel data gap pertains particularly to biomass-based diesels (BBDs), including both
onroad and nonroad use of RD and nonroad use of BD. For BBDs, ERG applied published RD and
BD fuel effects to base MOVES EFs. These fuel effects become important because under the
“CTFP-only” scenario; the incremental impact of the CTFP on CAP emissions results entirely from
increased blending of BBDs into the pool of diesel fuel produced, imported, or dispensed for use in
New Mexico.

For the benchmarking and calibration of transportation fuel volume estimates forecast by BRG,
ERG provided state fuel consumption by transportation mode, including for onroad (highway),
nonroad, aviation, and rail. Ultimately, BRG only incorporated the onroad and nonroad
benchmarks in FCMM transportation fuel projections. The following section details these MOVES-
derived benchmarks.

4.1.2 Benchmarking
4.1.2.1 Nonroad Benchmarks

To inform BRG’s FCMM fuel projections, ERG provided aggregate MOVES5 nonroad energy
consumption by fuel converted into gallons of gasoline equivalent (GGE) for comparability. These
nonroad runs yielded intuitive results that BRG incorporated into the FCMM. Figure 4-2 shows
MOVES nonroad fuel estimates for the years explicitly modeled (2020, 2030, 2035, 2040, and
2050). BRG directly applied these nonroad fuel estimates to the FCMM.

% U.S. Environmental Protection Agency, “MOVES and Mobile Source Emissions Research,” accessed May
20, 2025, https://www.epa.gov/moves.
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Figure 4-2. Estimated MOVES nonroad fuel use over time for New Mexico (LPG, CNG, and gasoline
blends in GGE and diesel blends in DGE)
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4.1.2.2 Onroad Benchmarks

By contrast, BRG did not directly apply MOVESS projected onroad fuel use to its transportation
FCMM. Instead, BRG’s FCMM calculated onroad fuel use with MOVESS5 annual vehicle populations,
VMT, and fuel economy, adjusting their output to more closely align with ZEV adoption with the
NMVES policy in place. ERG has documented initial New Mexico vehicle populations and VMT from
MOVES prior to any adjustment in Section 4.2.2 of this report. BRG further describes their method
for making these adjustments to fleet and VMT estimates in Appendix A of their BCA Report.

4.2 Modeling Approach

4.2.1 Motor Vehicle Emission Simulator (MOVES)

Since its first official public release in 2010, MOVES has served as the regulatory onroad emission
inventory model for highway vehicles, including cars, trucks, and buses. Beginning with
MOVES2014, EPA also incorporated modeling capabilities for nonroad equipment, such as
equipment used in construction and agriculture, based on NONROAD2008, EPA’s predecessor
model.*® In November 2024, EPA released MOVESS5, which accounted for the federal GHG rules
released earlier in the year. All emissions modeling for the CTFP uses MOVES5 with input data
specific to New Mexico and other regulatory programs.

ERG pulled New Mexico county inputs (often called MOVES county databases, or CDBs) from the
most recent 2020 National Emissions Inventory (NEI), which EPA publishes every three years.
These state-specific CDBs were coupled with custom fuel penetrations by vehicle type over time
(referred to as the alternative vehicle fuel and technology, or AVFT, table in MOVES).*° This CTFP

% U.S. Environmental Protection Agency, “MOVES2014 Update Log,” accessed May 29, 2025,
https://www.epa.gov/moves/moves2014-update-log.

40 U.S. Environmental Protection Agency, “Population and Activity of Onroad Vehicles in MOVESS5,”
November 2024, https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P101CUN7.pdf.
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emission analysis required two custom AVFT tables: one to reflect the NMVES (i.e., ACC Il and
ACT), and another to reflect the latest federal programs (i.e., Multi-Pollutant and Phase 3). Full
MOVES run specifications (runspecs) are outlined in Appendix B.

Figure 4-3. Comparison plots of alternative fuel vehicle penetrations under the federal and NMVES
programs for passenger cars (top two) and short-haul single unit trucks (bottom two)
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Importantly, this approach relates MOVES EFs directly to fuel volumes affected by New Mexico’s
CTFP. Any changes to baseline fleet and VMT forecasts should have a negligible impact on the
projected emission reductions. ERG monetized the health impacts from these emission reductions
by pollutant (NO,, VOCs, PM.s, and SO,), as described in Chapter 5.
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4.2.2 Annual Fleet, Activity, and Fuel Economy Estimates

This analysis compiled VMT and vehicle population estimates from county-level projections from
the 2020 NEI, the most recent available at the time of analysis.*’ EPA publishes MOVES CDBs for
each U.S. county as part of the NEI process, drawing vehicle population from state registration
data and VMT from U.S. Department of Transportation (DOT) Federal Highway Administration
(FHWA) data compiled from state transportation departments. ERG converted 2020 NEI CDBs for
New Mexico’s 33 counties to MOVESS5 format with EPA scripts. These CDBs served as the basis for
the other CTFP analysis years (2030, 2035, 2040, 2050). This analysis used FHWA VMT growth
projections to estimate VMT and population for the analysis years and applied growth rates
differently to account for pandemic shutdown effects on 2020 VMT.*?

Although the 2020 CDBs provide county-specific data on vehicle population and activity, this
analysis adjusted 2020 VMT to a pre-pandemic baseline using VMT from the last NEI published
prior to the pandemic: 2017. The 2017 NEI provided a consistent basis for adjustment because, like
the 2020 NEI, it used data on VMT by MOVES source type and county compiled by FHWA from the
New Mexico Department of Transportation (NMDOT).*® Table 4-1 shows the NEI VMT ratios between
2017 and 2020 VMT as factors to adjust 2020 values back to a pre-pandemic baseline. These
adjustments were warranted because 2020 VMT shows marked decreases for passenger vehicles,
as well as for some commercial vehicles (light commercial truck, refuse truck, transit bus), but a
large increase in short-haul truck activity from higher demand for e-commerce deliveries.

Table 4-1. Pre-pandemic VMT adjustment factors by MOVES vehicle source type

2017 NEI 2020 NEI

MOVES Source Type | VMT (million | VMT (million | B25€ Year VMT Adjustment Ratios

(2017/2020)

miles) miles)

Combination long-haul 1,652 1,611 1.03
truck

Combination short-haul 846 1,418 0.60
truck

Intercity bus 44 11 4.05
Light commercial truck 1,404 941 1.49
Motor home 21 42 0.49
Motorcycle 394 258 1.52
Passenger car 9,953 6,946 1.43
Passenger truck 13,032 10,969 1.31
Refuse truck 14 9 1.59
School bus 56 114 0.49
Single unit long-haul 723 254 2.84
truck

41U.S. Environmental Protection Agency, “2020 National Emissions Inventory (NEI) Data,” accessed May 29,
2025, https://www.epa.gov/air-emissions-inventories/2020-national-emissions-inventory-nei-data.

42 Federal Highway Administration, “2024 FHWA Forecasts of Vehicle Miles Traveled (VMT),” June 2024,
https://www.fhwa.dot.gov/policyinformation/tables/vmt/vmt_forecast_sum.cfm.

43 U.S. Environmental Protection Agency, “2017 National Emissions Inventory (NEI) Data,” January 2021,
https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data.
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2017 NEI 2020 NEI . .
MOVES Source Type | VMT (million | VMT (million | S2s€ Year VMT Adjustment Ratios
. . (2017/2020)
miles) miles)
Single unit short-haul 483 1,429 0.34
truck
Transit bus 39 25 1.53

Table 4-2 shows annual VMT growth projections published by FHWA for a baseline case. FHWA
also publishes pessimistic and optimistic growth projections. This analysis chose baseline
projections to reflect VMT moderate growth. FHWA developed these projections from a pre-
pandemic baseline (2019), with one set of growth rates applied for 2040 (also applied to 2030 and
2035) and a lower set of rates applied for 2050.

Table 4-2. Published FHWA VMT growth projections (baseline scenario)

Vehicle Class Annual Gurowth
2019-2040 { 2019-2050
Light-duty vehicles 0.5% 0.4%
Single-unit trucks 2.1% 1.9%
Combination trucks 1.3% 1.1%

Equation 4-1 delineates county-level VMT for a future year y as a projection based on its 2020 CDB
activity, a defined pandemic adjustment factor a from Table 4-1, and an FHWA growth rate g from
Table 4-3. Equation 4-2 describes statewide VMT as simply the summation of all county-level VMT
for each year, such that

VMT, 5. = VMTy0z05c" s (1 — gs)¥ 2019 Equation 4-1
VMT, s = Z VMT, s Equation 4-2
cec

where ¢ € C is each county c in the full set of 33 New Mexico counties C for a chosen future
analysis year y and MOVES source type s.

This analysis projected county-level vehicle populations in the same manner using the FHWA
growth estimates. However, as pandemic effects were attributed only to vehicle activity, this
analysis did not apply the base year adjustment to vehicle population, only to VMT. For the 2020s,
this analysis applied growth rates to 2020 vehicle population. Table 4-3 shows the aggregate VMT
and vehicle population adjustments to 2020 CDBs.
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Table 4-3. Computed VMT and vehicle population growth rates
by MOVES source type from base year 2020

VMT Growth Rates

From 2020 2020-2030 2020-2035 2020-2040 2020-2050
Combination long- 1.18 1.26 1.35 1.44
haul trucks
Combination short- 0.69 0.73 0.78 0.84
haul trucks
Intercity buses 5.08 5.64 6.26 7.25
Light commercial 1.58 1.62 1.66 1.69
trucks
Motor homes 0.62 0.69 0.76 0.89
Motorcycles 1.61 1.65 1.69 1.72
Passenger cars 1.51 1.55 1.59 1.62
Passenger trucks 1.39 1.42 1.46 1.48
Refuse trucks 2.00 2.22 2.46 2.85
School buses 0.61 0.68 0.76 0.88
Single unit long- 3.57 3.96 4.40 5.09
haul trucks
Single unit short- 0.43 0.47 0.52 0.61
haul trucks
Transit buses 1.93 2.14 2.37 2.75
Vehicle Population ' '
Growth Factors 2020-2030 2020-2035 2020-2040 2020-2050
From 2020
Combination long- 1.14 1.21 1.29 1.39
haul trucks
Combination short- 1.14 1.21 1.29 1.39
haul trucks
Intercity buses 1.23 1.37 1.52 1.76
Light commercial 1.05 1.08 1.10 1.13
trucks
Motor homes 1.23 1.37 1.52 1.76
Motorcycles 1.05 1.08 1.10 1.13
Passenger cars 1.05 1.08 1.10 1.13
Refuse trucks 1.23 1.37 1.52 1.76
School buses 1.23 1.37 1.52 1.76
Single-unit long- 1.23 1.37 1.52 1.76
haul trucks
Single unit short- 1.23 1.37 1.52 1.76
haul trucks
Transit buses 1.23 1.37 1.52 1.76
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The resulting MOVES vehicle populations and VMT, particularly for light-duty ZEVs, only offered a
starting point for additional adjustment that would match New Mexico’s current NMVES policy.
BRG documents adjustments to the MOVES fleet and activity in Appendix A of their BCA Report.

4.2.3 Use of BRG-Derived Transportation Fuel Volumes in Emission Calculations

BRG used statewide MOVES estimates for vehicle populations and VMT to project annual onroad
and nonroad transportation fuel use, including electricity. BRG forecasts that most fuel volumes
will not change between New Mexico’s NMVES and CTFP policies—such that differences only arise
in volumes of R100 and a modest biodiesel blend (B5) displacing finished fossil diesel (B0).**
Volumetric changes to these finished diesel blends under the “CTFP-only” scenario produce all
emission reductions from that scenario, as shown for onroad volumes in Figure 4-4 and Table 4-4
and for nonroad volumes in Figure 4-5 and Table 4-5.

Figure 4-4. Annual onroad transportation fuel volume forecast of BO, B5, and R100 under New
Mexico’s CTFP (in gallons of fuel), from BRG
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4 These changes in fuel volumes (via BRG’s FCMM analysis) and any subsequent impacts on emissions,
health, and I-O results have not been adjusted to reflect Cl corrections made since the September 2" NOI.
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Table 4-4. Table of forecast CTFP onroad transportation fuel volumes
by fuel type and year (in gallons of fuel), provided by BRG

Year BO B5 R100
2026 -331,680,946 289,929,989 44,239,988
2027 -322,283,905 262,573,835 62,780,060
2028 -312,498,308 221,839,750 94,750,335
2029 -297,105,218 165,292,344 137,255,726
2030 -286,712,776 111,227,907 182,380,585
2031 -283,725,661 110,069,080 180,480,454
2032 -280,736,989 110,078,586 177,370,611
2033 -277,746,866 166,289,072 116,145,544
2034 -274,754,618 219,626,165 57,889,459
2035 -271,758,873 264,574,361 8,304,150
Cumulative Total | -2,939,004,159 1,921,501,089 @ 1,061,596,912

Figure 4-5. Annual nonroad transportation fuel volume forecast of B0, B5, and R100 under New
Mexico’s CTFP (in gallons of fuel), from BRG
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Table 4-5. Table of forecast CTFP nonroad transportation fuel volumes
by fuel type and year (in gallons of fuel), provided by BRG

Year BO ’ B5 R100
2026 0 0 0
2027 0 0 0
2028 0 0 0
2029 0 0 0
2030 -47,960,303 | 26,682,369 | 22,156,549
2031 -48,178,929 | 18,690,627 | 30,647,052
2032 -48,550,189 | 18,834,654 | 30,883,213
2033 -48,921,449 | 19,182,381 | 30,908,742
2034 -49,292,709 | 29,511,904 | 20,612,756
2035 -49,663,969 | 39,699,085 | 10,463,956
Cumulative Total  -50,035,229 | 48,712,443 1,528,929

For completeness, ERG calculated EFs for all onroad and nonroad fuels produced, imported, or
dispensed for use in New Mexico. However, only changes to finished diesel blends affected criteria
pollutant emission differences under the “CTFP-only” scenario. The following sections discuss
how ERG modeled diesel fuel effects, including blends not available in the default MOVES5

database.

4.2.4 Development of New Mexico-Specific Emission Factors

There are 33 counties in New Mexico, and each county has unique MOVES inputs for onroad
vehicle populations and miles traveled from the state’s 2020 NEI submission. This analysis used
the state’s 2020 NEI submission to create CDBs for four future evaluation years (2030, 2035, 2040,
and 2050) according to the growth rates described above in Section 4.2.2. This analysis did not
explicitly model the uptake of alternative fuels, which came from BRG’s transportation fuel
markets model as detailed in Section 4.2.3. However, this analysis applies policy-specific
alternative fuel vehicle adoption using the MOVES AVFT table for the NMVES (consistent with
California’s clean car and truck programs) and federal baseline policies, described above in

Section 4.2.1.

Other MOVES county-scale inputs from the 2020 NEI, such as vehicle age distributions and fuel

properties, were used but not changed over time or by policy. These inputs equated to 165 annual
MOVES county-scale runs (33 counties over five years) for the NMVES baseline policy and another
165 runs for the federal baseline policy. These 330 total MOVES runs form the basis of the NMVES
EFs developed to estimate statewide CTFP benefits.

ERG developed statewide onroad emission factors EF dependent on MOVES fuel type f, pollutant

p, and year y by aggregating county emission inventories EI per energy consumption estimates ¢
for each calendar year, as laid out in Equation 4-3 below, such that:

EFfpy = ZcecEIf'p'y'C/gf'p'y'c. Equation 4-3

where ¢ € C is each county c across the set of all 33 New Mexico counties C. This analysis then
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pairs these statewide EFs per energy unit with CTFP fuel volume projections and energy density
conversions by fuel, as shown below in Table 4-6. Here, ERG calculated volume-weighted averages
of energy density values from the proposed Table 7 in the draft discussion rule.*®

Table 4-6. Summary of energy densities by fuel blend
(based on published CTFP values)

Energy Densit
Fuel “ (MJg/!:gallon) ¢
BO 134.48
B5 134.06
R100 129.95

For ease of implementation, ERG did not differentiate EFs by MOVES vehicle (regulatory) class.
Rather, ERG summed emission inventories and energy over all classes. This leads to a set of
onroad transportation fuel volumes and EFs to calculate onroad emission reductions and another
set of nonroad transportation fuel volumes and EFs to calculate nonroad reductions.

Although most criteria pollutants can be modeled on a yearly basis to expedite runtime, certain
pollutants must be run on an hourly basis to account for diurnal and seasonal effects. This applies
to VOC evaporative emissions from fuel tank permeation, leaks, and vapor venting as the vehicle
soaks (with its engine off). Evaporative emissions depend more on ambient temperature than on
start or running tailpipe exhaust, so MOVES requires users to specify a month and hour of the day
for modeling evaporative VOC. ERG chose to run representative 24-hour days in January and July to
derive average VOC evaporative EFs by county and then added these to the tailpipe VOC EFs ERG
had formulated from MOVES annual county runs.

In addition to the default exhaust and VOC evaporative runs, ERG performed some other targeted
MOVES runs to derive EFs for non-default blends of gasoline and diesel; namely, E15, BO, and B5.
MOVES contains different fuel regions, and New Mexico’s fuel region (which also covers parts of
Texas, Oklahoma, and some other states in the Central Plains) assumes that the default gasoline
blend contains roughly 10 percent ethanol and the default diesel blend contains 3.75 percent
biofuel, as shown in Figure 4-6 below.

45 See Table 7 of Subsection (G) of Title 20, Chapter 2, Part 92, Section 701 of the New Mexico Administrative
Code (20.2.92.701 NMAC).
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Figure 4-6. MOVES fuel region map for 2024 (screenshot from
EPA’s MOVESS Regional Fuels Report)
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To model E15, BO, and B5 in New Mexico, ERG modified the default blends using the MOVES Fuel
Wizard and ran them in Bernalillo County (Albuquerque and its suburbs, which is the state’s largest
metropolitan area) as a representative county. As with the statewide EFs, ERG computed E15, BO,
and B5 exhaust and evaporative EFs using emission inventories and energy consumption by fuel
and pollutant. In total, ERG performed 330 statewide exhaust runs, along with 330 statewide
evaporative runs and another 30 representative special blend runs for developing New Mexico-
specific onroad EFs.
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ERG developed New Mexico nonroad EFs in much the same fashion, running nonroad emission
inventories according to a 24-hour day for both weekdays and weekends. ERG then found a daily
average for each month and multiplied that by the number of days per month to calculate annual
nonroad emissions. As with onroad EFs, ERG formulated nonroad EFs using county emission
inventories by fuel and pollutant, along with brake-specific fuel consumption (BSFC, in grams) and
MOVES default fuel densities (in grams per gallon of fuel) instead of energy consumption.

As discussed, MOVES does not explicitly model all years. This analysis also needed to provide New
Mexico EFs for interim years between every five-year increment from 2020 to 2050. ERG
accomplished this through linear piecewise interpolations by fuel and pollutant. Since ERG
generated transportation fuel volumes for each year in this period, having explicit annual EFs by
fuel facilitated the calculation of CTFP emission reductions.

46 U.S. Environmental Protection Agency, “Exhaust and Crankcase Emission Factors for Nonroad
Compression-Ignition Engines in MOVES3.0.2,” September 2021,
https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P1013KWQ.pdf.
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Despite a robust database, MOVES does not model certain diesel blends, such as B5 for nonroad
applications and R100 for both onroad and nonroad applications. ERG applied B5 and R100 fuel
effects from external sources, as detailed in Section 4.3.

4.3 Fuel Effects

Fossil diesel (BO, or “clear diesel”) is well studied and available for modeling in MOVES for onroad
and nonroad applications. As discussed in Section 4.2.4, ERG has developed BO EFs for the
previously noted criteria pollutants (NOy, VOCs, PM, s, and SO,) using the MOVES Fuel Wizard for
Bernalillo County. ERG performed a similar onroad analysis of B5, which is one of the most
common BD blends available commercially in the United States today. However, MOVES does not
have any information on nonroad fuel effects for B5, so ERG had to rely on external data sources for
developing nonroad B5 EFs. Likewise, MOVES does not have default data on RD (R100) for onroad
or nonroad applications, so ERG also developed R100 EFs from external sources. This section
describes how ERG derived CAP emissions from onroad and nonroad R100 use, in addition to
nonroad B5 use.

This analysis projects BD and RD volumes for onroad and nonroad applications under the CTFP.
However, because directly applicable MOVES data were not available, this analysis developed
emission adjustments to reflect two recent studies of BD and RD fuel effects on diesel engine
emissions: a meta-analysis of BD effects on modern diesel engines published by the International
Council on Clean Transportation (ICCT),* and a study of RD emissions research and testing
published by the University of California Riverside College of Engineering-Center for Environmental
Research and Technology (UCR CE-CERT).*®

4.3.1 Source of Biodiesel Effects

BD effects for onroad vehicles operating on a B20 blend from MOVES5 were the basis for
adjustments used in the CTFP analysis, as shown in Table 4-7 below. These effects were
aggregated from a meta-analysis of several published studies conducted on legacy onroad engines
without exhaust aftertreatment (pre-2007 model year). In MOVES, modern (2007 or later) engines
are assumed to have equivalent emissions whether they run on BO or B20. A similar meta-analysis
published in 2021 by the ICCT found comparable results.*®

47 Jane O’Malley and Stephanie Searle, “Air Quality Impacts of Biodiesel in the United States” (International
Council on Clean Transportation, March 2021), https://theicct.org/wp-content/uploads/2021/06/US-
biodiesel-impacts-mar2021.pdf.

4 Thomas Durbin et al., “Low Emission Diesel (LED) Study: Biodiesel and Renewable Diesel Emissions in
Legacy and New Technology Diesel Engines,” November 2021,
https://ww2.arb.ca.gov/resources/documents/low-emission-diesel-led-study-biodiesel-and-renewable-
diesel-emissions-legacy.

4 Jane O’Malley and Stephanie Searle, “Air Quality Impacts of Biodiesel in the United States” (International
Council on Clean Transportation, March 2021), https://theicct.org/wp-content/uploads/2021/06/US-
biodiesel-impacts-mar2021.pdf.
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Table 4-7.B20 emission effects from MOVES and ICCT meta-analyses relative to BO (summary
table replicated from ERG’s 2022 white paper for the City of Portland)®

ICCT 2021 MOVESS5
+ +
Pre-2004 Ecz;g(/)gR DIE(I:(/ZCR Pre-2007 Dgg(/ZCR
NOy N2 N4 MN2% |
PM V6% — Not reported V6% No effect |
HC Va9 N7% V14% applied |
co — MNo% N 13% |

Although ERG generated specific B5 onroad emissions using the MOVES built-in Fuel Wizard, ERG
could not make those same fuel adjustments for nonroad modeling. Lacking specific B20 fuel
effects for nonroad use in ERG’s CTFP MOVES runs, ERG scaled the MOVES onroad effects from
Table 4-7 for B5 nonroad emissions in the CTFP. Note the slight NO disbenefit for legacy BD
engines. The same effects, however, do not carry over to modern BD engines with the latest
aftertreatment—namely, selective catalytic reduction (SCR) and diesel particulate filter (DPF).

4.3.2 Source of Renewable Diesel Effects

This analysis synthesized RD effects from the 2021 UCR study, which tested three engines of
different vintages and use cases. The study includes one legacy (EPA Tier 3) nonroad engine, one
modern (EPA Tier 4) nonroad engine, and one recent (model year 2007+) onroad engine for varying
RD and BD blends, as shown in Table 4-8 below. The CTFP analysis focused on R100 fuel effects.

Table 4-8. Renewable diesel emission effects from UCR study relative to BO
(table also replicated from ERG’s 2022 Portland white paper)

Onroad Nonroad
Modern Legacy Modern
(model year 2007+) (Tier 3) (Tier 4)
R100

NOx — V5% —
PM — N 27%-38% —
HC — N 35%-45% —
CcO V5%  14%-220 V249

Without UCR test data for legacy onroad engines, ERG decided to apply legacy R100 effects from
nonroad testing for onroad applications as well. Considering that most legacy effects were
presented as ranges, ERG selected and applied the midpoint effect for each pollutant to the base
MOVES fossil diesel (BO) EFs.

50 American Lung Association, “Who Is Most Affected by Outdoor Air Pollution?,” accessed June 3, 2025,
https://www.lung.org/clean-air/outdoors/who-is-at-risk.
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4.3.3 Simulate B5 Emissions (Nonroad Only)

As noted above, ERG was able to model onroad B5 emissions using built-in MOVESS5 fuel
functionality. For nonroad B5 emissions, ERG needed to apply fuel effects by vehicle vintage
externally. To determine vintage depending on evaluation year (2020, 2030, 2035, 2040, and 2050),
ERG calculated the legacy-modern splits (pre-2007 or 2007+) for Bernalillo County. In practice, this
means that B5 effects will be greater in earlier years. Besides NO, (which modestly increases
legacy engine CAP emissions), all other CAPs have dampening reductions from 2020 to 2050
compared to BO as affected legacy engines leave the fleet, as shown in Table 4-9 below.

Table 4-9. Vintage-weighted CTFP B5 fuel effects from 2020 to 2050

Factor

B5 THC 2020 0.974
B5 THC 2030 0.985
B5 THC 2035 0.0991
BS THC 2040 0.995
B5 THC 2050 0.999
B5 CO 2020 0.974
B5 CO 2030 0.981
B5 CO 2035 0.87

B5 CO 2040 0.992
B5 CO 2050 0.998
B5 NOy 2020 1.003
B5 NO, 2030 1.001
B5 NO, 2035 1.000
B5 NOy 2035 1.000
BS NOy 2040 1.000
B5 NOx 2050 1.000
BS PM;s 2020 0.968
B5 PMs 2030 0.976
B5 PM.s 2035 0.983
B5 PM; s 2040 0.989
B5 PM; 5 2050 0.998
B5 VOC 2020 0.974
B5 VOC 2030 0.985
B5 VOC 2030 0.985
B5 VOC 2035 0.991
B5 VOC 2040 0.995
BS VOC 2050 0.999

4.3.4 Simulate R100 Emissions (Onroad and Nonroad)

Given that it is not possible to model renewable diesel effects in MOVES currently, ERG needed to
apply R100 effects externally for both onroad and nonroad use by vehicle vintage. To apply the
following R100 fuel effects appropriately, ERG used the same Bernalillo legacy-modern splits, as
described in the previous subsection on B5 emissions. Likewise, ERG also saw a similar trend of
R100 effects converging towards fossil diesel (R0) emissions over time for all pollutants except CO,
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which has significantly lower emissions than RO for modern nonroad engines, as shown in Table
4-10. As aresult, RD loses benefits over time due fleet turnover and fossil diesel emission
improvements rather than lost efficacy.

Table 4-10. Vintage-weighted onroad and nonroad CTFP R100 fuel effects from 2020 to 2050

Nonroad Onroad
Pollutant Adjustment Adjustment
Factor Factor
R100 THC 2020 0.701 0.777
R100 THC 2030 0.826 0.925
R100 THC 2035 0.898 0.967
R100 THC 2040 0.948 0.980
R100 THC 2050 0.993 1.000
R100 Cco 2020 0.764 0.904
R100 (6]0) 2030 0.710 0.941
R100 Cco 2035 0.666 0.947
R100 Cco 2040 0.625 0.948
R100 (610 2050 0.572 0.950
R100 NOy 2020 0.972 0.979
R100 NOy 2030 0.990 0.994
R100 NOy 2035 0.995 0.997
R100 NOy 2040 0.998 0.998
R100 NOy 2050 1.000 1.000
R100 PMas 2020 0.741 0.725
R100 PM.s 2030 0.809 0.799
R100 PMas 2035 0.861 0.849
R100 PMas 2040 0.913 0.885
R100 PM,s 2050 0.982 1.000
R100 VOC 2020 0.701 0.777
R100 VOC 2030 0.826 0.925
R100 VOC 2035 0.898 0.967
R100 VOC 2040 0.948 0.980
R100 VOC 2050 0.993 1.000
4-17

NMED Exhibit 139_000072



Regulatory Analysis Report for New Mexico’s CTFP

4.4 Baseline Emission Adjustments

In contrast to the CTFP scenario, the NMVES and federal baseline are not directly tied to changesin
fuel volumes and instead rely on ERG’s initial MOVES modeling. However, BRG has continued to
modify MOVES fleet and activity estimates, as well as fuel projections—particularly for the NMVES
and federal baseline scenarios—over this rulemaking to ensure that New Mexico’s current
electrification and other fuel switching targets can reasonably be achieved. While the CTFP
emission benefits could quickly be recalculated with the latest volumes and corresponding EFs,
this was not the case for two static baseline scenarios.

To account for changes to the NMVES and federal baseline fuel projections and their effects on
emissions, ERG derived separate annual emission adjustments by scenario using the initial
(unmodified) MOVES-based volumes and the BRG-modified volumes for the final rule. In Equation
4-4, ERG summarized an adjusted baseline emission inventory E’ between the NMVES and the
federal baseline as the initial (MOVES) emission inventory E multiplied by the ratio of the final
volume over the initial volume for each fuel f, scenario s, and year y, such that

Ef,s,y’ = Ef,s,y ' (Vf,s,y,final/Vf,s,y,initial)- Equation 4-4

Lacking differential impacts by criteria pollutant, ERG decided to apply the same adjustment ratios
to each pollutant, which still yields to some differences over time. Table 4-11 and Table 4-12 supply
specific emission adjustment ratios for the NMVES and federal baseline scenario, respectively.
Emission results for the final rule include adjustments to both baseline scenarios. As noted before,
emission adjustments to the CTFP scenario were simply recalculated using updated fuel volumes.

Table 4-11. Adjustment ratios for NMVES scenario for BRG-supplied fuel projections, based on
differences between MOVES raw fuel projections and after BRG modification

| Year | Gasoline | Ethanol | Diesel | BD | RD |Etectricity| H, | CNG | RNG | Propane

2025| 1.167 1.167 | 1.041 | 1.041 | 1.000 0.082 0.000 | 1.125 | 1.000 1.000
2026 | 1.172 1.172 | 1.041 | 1.041 | 1.000 0.094 0.000 | 1.137 | 1.000 1.000
2027 1.162 1.162 | 1.037 | 1.037 | 1.000 0.195 0.000 | 1.148 | 1.000 1.000
2028 | 1.143 1.143 | 1.031 | 1.031 | 1.000 0.321 0.000 | 1.158 | 1.000 1.000
2029| 1.121 1.121 | 1.024 | 1.024 | 1.000 0.445 0.000 | 1.168 | 1.000 1.000
2030| 1.097 1.097 | 1.015 | 1.015 | 1.000 0.554 0.000 | 1.176 | 1.000 1.000
2031| 1.115 1.115 | 1.026 | 1.026 | 1.000 0.595 0.282 | 1.184 | 1.000 1.000
2032 1.131 1.131 | 1.039 | 1.039 | 1.000 0.634 0.314 | 1.191 | 1.000 1.000
2033 | 1.144 1.144 | 1.051 | 1.051 | 1.000 0.669 0.328 | 1.199 | 1.000 1.000
2034 | 1.160 1.160 | 1.063 | 1.063 | 1.000 0.691 0.336 | 1.206 | 1.000 1.000
2035| 1.191 1.191 | 1.076 | 1.076 | 1.000 0.693 0.342 | 1.212 | 1.000 1.000
2036 1.199 1.199 | 1.082 | 1.082 | 1.000 0.718 0.363 | 1.205 | 1.000 1.000
2037 1.207 1.207 | 1.088 | 1.088 | 1.000 0.740 0.381 | 1.198 | 1.000 1.000
2038 | 1.218 1.218 | 1.094 | 1.094 | 1.000 0.756 0.397 | 1.191 | 1.000 1.000
2039 | 1.235 1.235 | 1.100 | 1.100 | 1.000 0.766 0.411 | 1.185 | 1.000 1.000
2040 | 1.271 1.271 | 1.105 | 1.105 | 1.000 0.761 0.423 | 1.178 | 1.000 1.000
2041| 1.293 1.293 | 1.099 | 1.099 | 1.000 0.766 0.449 | 1.170 | 1.000 1.000
2042 | 1.307 1.307 | 1.093 | 1.093 | 1.000 0.775 0.473 | 1.163 | 1.000 1.000
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Year | Gasoline | Ethanol | Diesel | BD | RD |Electricity| H, | CNG | RNG |Propane |

2043 | 1.313 1.312 | 1.087 | 1.087 | 1.000 0.790 0.496 | 1.155 | 1.000 1.000
2044 | 1.309 1.309 | 1.081 | 1.081 | 1.000 0.810 0.518 | 1.148 | 1.000 1.000
2045| 1.298 1.298 | 1.074 | 1.074 | 1.000 0.832 0.539 | 1.141 | 1.000 1.000
2046 | 1.280 1.280 | 1.068 | 1.068 | 1.000 0.856 0.559 | 1.135 | 1.000 1.000
2047 | 1.260 1.260 | 1.061 | 1.061 | 1.000 0.878 0.578 | 1.128 | 1.000 1.000
2048 | 1.242 1.242 | 1.055 | 1.055 | 1.000 0.897 0.596 | 1.122 | 1.000 1.000
2049 | 1.242 1.242 | 1.048 | 1.048 | 1.000 0.907 0.614 | 1.116 | 1.000 1.000
2050 | 1.251 1.251 | 1.041 | 1.041 | 1.000 0.913 0.631 | 1.111 | 1.000 1.000

Table 4-12. Adjustment ratios for federal baseline scenario for BRG-supplied fuel projections,
based on differences between MOVES raw fuel projections and after BRG modification

Year | Gasoline | Ethanol | Diesel | BD | RD | Electricity| H, | CNG | RNG [ Propane

2025 | 1.012 1.012 | 1.005 | 0.987 | 1.000 5.663 1.000 | 1.001 | 1.000 | 1.000
2026 | 1.027 1.027 | 1.006 | 0.987 | 1.000 1.508 1.000 | 1.001 | 1.000 | 1.000
2027 | 1.038 1.038 | 1.007 | 0.989 | 1.000 1.263 1.000 | 1.001 | 1.000 | 1.000
2028 | 1.054 1.054 | 1.009 | 0.991 | 1.000 1.045 1.000 | 1.000 | 1.000 | 1.000
2029 | 1.076 1.076 | 0.997 | 0.979 | 1.000 0.889 1.000 | 1.000 | 1.000 | 1.000
2030 | 1.024 1.024 | 1.000 | 0.982 | 1.000 0.743 1.000 | 1.000 | 1.000 | 1.000
2031 | 1.010 1.010 | 1.000 | 0.982 | 1.000 0.856 1.000 | 1.000 | 1.000 | 1.000
2032 | 0.993 0.993 | 1.000 | 0.982 | 1.000 0.955 1.000 | 1.000 | 1.000 | 1.000
2033 | 0.994 0.994 | 1.000 | 0.982 | 1.000 0.948 1.000 | 1.000 | 1.000 | 1.000
2034 | 1.009 1.009 | 1.000 | 0.982 | 1.000 0.901 1.000 | 1.000 | 1.000 | 1.000
2035 | 1.012 1.012 | 1.000 | 0.982 | 1.000 0.900 1.000 | 1.000 | 1.000 | 1.000
2036 | 1.009 1.009 | 1.000 | 0.982 | 1.000 0.916 1.000 | 1.000 | 1.000 | 1.000
2037 | 1.008 1.007 | 1.000 | 0.982 | 1.000 0.925 1.000 | 1.000 | 1.000 | 1.000
2038 | 1.005 1.005 | 1.000 | 0.982 | 1.000 0.933 1.000 | 1.000 | 1.000 | 1.000
2039 | 1.004 1.004 | 1.000 | 0.982 | 1.000 0.935 1.000 | 1.000 | 1.000 | 1.000
2040 | 1.010 1.010 | 1.000 | 0.982 | 1.000 0.924 1.000 | 1.000 | 1.000 | 1.000
2041 | 1.013 1.013 | 1.000 | 0.982 | 1.000 0.921 1.000 | 1.000 | 1.000 | 1.000
2042 | 1.012 1.012 | 1.000 | 0.982 | 1.000 0.923 1.000 | 1.000 | 1.000 | 1.000
2043 | 1.013 1.013 | 1.000 | 0.982 | 1.000 0.922 1.000 | 1.000 | 1.000 | 1.000
2044 | 1.014 1.014 | 1.000 | 0.982 | 1.000 0.923 1.000 | 1.000 | 1.000 | 1.000
2045 | 1.012 1.012 | 1.000 | 0.982 | 1.000 0.926 1.000 | 1.000 | 1.000 | 1.000
2046 | 1.008 1.008 | 1.000 | 0.982 | 1.000 0.931 1.000 | 1.000 | 1.000 | 1.000
2047 | 1.003 1.003 | 1.000 | 0.982 | 1.000 0.937 1.000 | 1.000 | 1.000 | 1.000
2048 | 0.996 0.996 | 1.000 | 0.982 | 1.000 0.943 1.000 | 1.000 | 1.000 | 1.000
2049 | 0.989 0.989 | 1.000 | 0.982 | 1.000 0.949 1.000 | 1.000 | 1.000 | 1.000
2050 | 0.989 0.989 | 1.000 | 0.982 | 1.000 0.948 1.000 | 1.000 | 1.000 | 1.000

Generally, ERG found that these adjustments dampen NMVES emission reductions through less
aggressive electrification curves, while still achieving the state’s GHG targets, which allows for

4-19
NMED Exhibit 139_000074



Regulatory Analysis Report for New Mexico’s CTFP

more reductions to be met via CTFP and other fuels (see Appendix B for more adjustment details).
The next section presents emission results through 2050 for all monetized pollutants considered.

4.5 Results

4.5.1 Annual Emission Reductions by Pollutant

Annual emission reductions by criteria pollutant and analysis year have been calculated as the
summation of three elements: (1) MOVES-generated emission factor EF by fuel f, pollutant p, and
year y, (2) fuel volume delta V between the CTFP and NMVES policies by fuel and year, and (3)
energy density p of the given fuel, as shown in Equation 4-5, such that

epy = 2 EFf,p,y ’ Vf,y " Pf, Equation 4-5
feF

where f € F is the given fuel f within the full set of possible fuels F (namely BO, B5, and R100) for
the specified pollutant p and chosen year y. ERG used specific energy densities by blend, provided
earlier in Table 4-6. Cumulative reductions CR are simply the annual emissions summed over the
span of active CTFP years Y (thatis,y € Y will be 2026 through 2035) as shown in Equation 4-6,
such that

CRy, = Z €p,y- Equation 4-6
YEY

For the final CTFP rule, ERG has prepared annual emission reductions expected for the combined
suite of CTFP and NMVES policies over their entire time horizon (2026 to 2050). Given that BRG has
provided onroad and nonroad CTFP fuel forecasts separately, ERG also presents individual onroad
and nonroad emission results. For more complete context, all CTFP reductions are referenced
against the NMVES policy and all NMVES benefits are referenced against the federal baseline.
Figure 4-7 through Figure 4-10 summarize emission reductions by policy scenario for NO,, VOC,
PM, and SO,, respectively.
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Figure 4-7. Annual NO, reductions for NMVES and CTFP scenarios by mode (in tons)
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Figure 4-8. Annual VOC reductions for NMVES and CTFP scenarios by mode (in tons)
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Figure 4-9. Annual PM, s reductions for NMVES and CTFP scenarios by mode (in tons)
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Figure 4-10. Annual SO, reductions for NMVES and CTFP scenarios by mode (in tons)
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In general, ERG found that emission reductions for most pollutants are driven by the NMVES,
although the CTFP is dominant as a driver of reductions in PM,s, at least for the early years. There
are modest initial CTFP emission increases for SO, (probably from the prevalence of low-sulfur fuel
use in New Mexico); otherwise, emissions appear to decrease monotonically over time.

4.5.2 Emissions Reduced for Combined Program and CTFP-Only Policy

It is often helpful to consider the combined impacts of both the CTFP and the NMVES to

understand the magnitude of benefits from the individual policies. On the following pages, ERG
provides emission results for the suite of policies in two different formats. Table 4-13 is an
aggregation of Table 4-14, which shows annual emission reductions independently for the three
policy scenarios ERG explicitly modeled: (1) NMVES (as compared to the federal baseline), (2) CTFP
onroad, and (3) CTFP nonroad. Table 4-13 presents annual results for the CTFP-only policy (which
adds the CTFP onroad and nonroad results from Table 4-14 for each year together by pollutant),
along with the combined NMVES and CTFP policy suite (which adds all three columns from Table
4-14 together by pollutant) for the best comparability between these two policy scenarios.
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4.6 Data Sharing

These summaries of emission reductions have been shared with ERG’s Economics team for use in
COBRA (health effects) and IMPLAN (macroeconomic) modeling that is documented carefully in
subsequent sections of this report. Emission results have also been thoroughly reviewed and
validated by NMED and BRG prior to inclusion in the CTFP final rule.

Table 4-13. Annual emission reductions through 2050 by pollutant for the combined NMVES and
CTFP policy suite, as well as the CTFP alone (negative values equate to reductions in tons)

[ Vear | Gonbied | GiFvOrty | Goiined | GiF-ony | Gomined | GrF-ory | Gambined | GTro-ony |
2026 -9.12 -9.12 -38.39 -38.39 -26.76 -26.76 0.09 0.09
2027 -88.30 -22.54 -64.53 -38.56 -27.73 -26.65 -1.97 0.08
2028 -115.16 -37.73 -73.92 -40.01 -28.93 -27.56 -2.34 0.06
2029 | -140.75 -52.08 -88.02 -45.30 -35.26 -33.59 -2.75 0.05
2030 -147.49 -47.73 -86.10 -37.70 -31.52 -29.64 -3.02 0.03
2031 -179.24 -41.20 -109.55 -32.55 -27.89 -25.79 -3.71 0.03
2032 | -209.47 -34.48 -130.46 -27.32 -24.17 -21.87 -4.34 0.03
2033 -228.22 -16.78 -146.48 -15.95 -15.70 -13.17 -5.01 0.05
2034 -251.79 -4.43 -166.81 -7.54 -9.43 -6.66 -5.72 0.06
2035 -278.77 2.26 -184.36 -2.29 -5.46 -2.51 -6.26 0.08
2036 | -294.77 0.00 -211.00 0.00 -2.96 0.00 -6.75 0.00
2037 | -308.30 0.00 -239.11 0.00 -2.98 0.00 -7.14 0.00
2038 -321.36 0.00 -265.15 0.00 -2.99 0.00 -7.50 0.00
2039 | -333.89 0.00 -288.71 0.00 -2.99 0.00 -7.80 0.00
2040 -345.19 0.00 -306.37 0.00 -2.96 0.00 -7.99 0.00
2041 -348.39 0.00 -319.06 0.00 -2.97 0.00 -8.12 0.00
2042 | -351.75 0.00 -332.32 0.00 -3.00 0.00 -8.27 0.00
2043 -355.95 0.00 -349.74 0.00 -3.04 0.00 -8.51 0.00
2044 | -360.97 0.00 -371.28 0.00 -3.10 0.00 -8.83 0.00
2045 -366.45 0.00 -395.23 0.00 -3.17 0.00 -9.20 0.00
2046 | -372.57 0.00 -422.62 0.00 -3.26 0.00 -9.63 0.00
2047 | -378.82 0.00 -450.82 0.00 -3.34 0.00 -10.08 0.00
2048 -384.62 0.00 -476.72 0.00 -3.42 0.00 -10.47 0.00
2049 | -388.34 0.00 -491.54 0.00 -3.45 0.00 -10.66 0.00
2050 -392.09 0.00 -506.55 0.00 -3.49 0.00 -10.86 0.00
2200236(; -500.81 -169.21 -350.96 | -199.96 -150.2 | -144.21 -9.99 0.31
2031-

2040 -2751.02 -94.63 | -2048.00 -85.65 -97.51 -69.99 -62.22 0.25
2041-
2050 -3699.95 0.00 | -4115.87 0.00 -32.23 0.00 -94.63 0.00
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Table 4-14. Annual emission reductions for (1) NMVES compared to federal baseline,

(2) CTFP onroad, and (3) CTFP nonroad through 2050

NOx vocC PM:z.s SO,
Year NMVES CTFP CTFP NMVES CTFP CTFP NMVES CTFP CTFP NMVES CTFP CTFP
Onroad Nonroad vs. Fed Onroad Nonroad vs. Fed Onroad Nonroad vs. Fed Onroad Nonroad
2026 -9.120 -38.390 -26.763 0.085
2027 -65.762 -22.537 -25.970 -38.564 -1.079 -26.650 -2.043 0.077
2028 -77.422 -37.734 -33.910 -40.007 -1.366 -27.565 -2.407 0.065
2029 -88.664 -47.054 -5.029 -42.717 -38.726 -6.576 -1.663 -27.102 -6.490 -2.798 0.048 0.000
2030 -99.758 -42.517 -5.217 -48.403 -31.403 -6.294 -1.885 -23.263 -6.372 -3.050 0.032 0.000
2031 -138.046 -36.555 -4.641 -77.000 -26.943 -5.604 -2.102 -20.087 -5.700 -3.742 0.032 0.000
2032 -174.991 -30.460 -4.023 -103.147 -22.442 -4.875 -2.302 -16.879 -4.989 -4.373 0.032 0.000
2033 -211.446 -14.727 -2.051 -130.532 -13.008 -2.937 -2.527 -10.075 -3.094 -5.058 0.049 0.000
2034 -247.362 -3.843 -0.587 -159.271 -6.101 -1.442 -2.766 -5.051 -1.610 -5.784 0.064 0.000
2035 -281.033 1.968 0.291 -182.067 -1.835 -0.460 -2.949 -1.899 -0.608 -6.341 0.077 0.000
2036 -294.771 -210.997 -2.964 -6.748
2037 -308.303 -239.111 -2.979 -7.143
2038 -321.364 -265.149 -2.986 -7.496
2039 -333.887 -288.710 -2.985 -7.803
2040 -345.190 -306.366 -2.959 -7.991
2041 -348.389 -319.056 -2.974 -8.120
2042 -351.748 -332.323 -2.995 -8.268
2043 -355.955 -349.745 -3.038 -8.507
2044 -360.971 -371.278 -3.100 -8.830
2045 -366.448 -395.232 -3.172 -9.199
2046 -372.568 -422.617 -3.256 -9.632
2047 -378.821 -450.818 -3.342 -10.076
2048 -384.620 -476.718 -3.417 -10.473
2049 -388.337 -491.539 -3.452 -10.662
2050 -392.094 -506.546 -3.488 -10.858
Total -6687.950 -242.580 -21.258 -6229.226 -257.421 -28.188 -65.747 -185.333 -28.864 -167.402 -6687.950 -242.580
4-25
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5. Avoided Health Damages

5.1 Background

5.1.1 Adverse Health Effects on Vehicle Emissions

New Mexico’s CTFP, if enacted, will help reduce statewide transportation emissions by lowering
the overall Cl of the transportation fuel supply through a clean fuel credit market. The reduction of
vehicle tailpipe emissions will mitigate CAPs and precursors that exacerbate respiratory
symptoms, thereby improving health outcomes. These improvements include mitigating asthma
onset and aggravation, cardiovascular disease, reduced lung function, and premature death.
Adverse health impacts are especially harmful to vulnerable populations, including older adults,
children, and pregnant individuals.®’

Asthma is one of the most common chronic diseases in New Mexico, with an estimated 9.7 percent
of adults afflicted by the disease.®? Asthma can require hospitalization, routine checkups,
medications, and missed work days, which can be costly to the individual and New Mexico’s
economy.®® Criteria and precursor pollutant reductions can yield health benefits that are
economically quantifiable in monetary (dollar) units. For example, a study in California between
1993 and 2014 found that fine PM and NOy reductions could reduce the risk of incident asthma in
children by up to 20 percent.®*

5.1.2 Monetization of Health Benefits and/or Damages

ERG input emissions changes, as shown in Table 4-13 from Chapter 4, into EPA’s COBRA Health
Impacts Screening and Mapping Tool to assess the CTFP’s statewide health impacts.® Once a
COBRA user inputs potential emission increases or decreases, COBRA conducts multiple
modeling steps to monetize health benefits and/or damages. COBRA uses the Source Receptor (S-
R) Matrix, an air quality model, to estimate changes in total ambient concentrations of air
pollutants that are known to be harmful to human health.*® COBRA uses peer-reviewed
epidemiological literature to estimate how changes in outdoor air quality affect the incidence of
various health outcomes.®” COBRA then multiplies the change in incidence by a monetary value
associated with the health outcome, such as the average cost of an emergency room visit related

5" New Mexico Environmental Public Health Tracking, “Asthma,” accessed June 3, 2025,
https://nmtracking.doh.nm.gov/health/breathing/Asthma.html.

52 New Mexico Environmental Public Health Tracking, “Asthma,” accessed June 3, 2025,
https://nmtracking.doh.nm.gov/health/breathing/Asthma.html.

%3 Health Equity Epidemiology Program, Center for Health Protection, New Mexico Department of Health,
“NM-IBIS Summary Health Indicator Report: Asthma Prevalence Among Adults,” accessed May 23, 2025,
https://ibis.doh.nm.gov/indicator/summary/AsthmaPrevAdult.html.

54 Erika Garcia et al., “Association of Changes in Air Quality With Incident Asthma in Children in California,
1993-2014,” JAMA 321, no. 19 (May 21, 2019): 1906-15, https://doi.org/10.1001/jama.2019.5357.

% U.S. Environmental Protection Agency, “CO-Benefits Risk Assessment Health Impacts Screening and
Mapping Tool (COBRA),” accessed May 21, 2025, https://www.epa.gov/cobra.

% U.S. Environmental Protection Agency, “COBRA Questions and Answers,” accessed May 23, 2025,
https://www.epa.gov/cobra/cobra-questions-and-answers.

57U.S. Environmental Protection Agency, “User’s Manual for the CO-Benefits Risk Assessment (COBRA)
Screening Model,” accessed May 23, 2025, https://www.epa.gov/cobra/users-manual-co-benefits-risk-
assessment-cobra-screening-model.
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to exacerbated asthma symptoms. Detailed descriptions of these monetization processes can be
found in COBRA’s User Manual.®®

5.2 Modeling Approach

5.2.1 COBRA Description

COBRA allows users to better understand how changes in air pollution from clean energy and fuel
programs can impact human health.®® ERG analyzed the potential health impacts of the CTFP on
New Mexico residents under the “CTFP-only” and “NMVES + CTFP” scenarios described in Section
4.1. Under the CTFP-only scenario, health impacts occurred from calendar year 2026 to 2035, the
final year that the CTFP projected to be “binding” on New Mexico transportation fuel markets.® The
second scenario includes combined health impacts under NMVES + CTFP, which accounts for the
CTFP’s impacts as a standalone policy as well as a supporting policy for the NMVES. This analysis
modeled NMVES + CTFP scenario effects from calendar year 2026 to 2040 under the assumption
that CTFP-supported infrastructure and other measures continue to support NMVES fleet and VMT
impacts even after the CTFP ceases to bind on regulated parties after 2035.

ERG ran COBRA for each calendar year with tailored human population projections, as detailed in
Section 5.2.3, and analyzed the following four criteria air pollutants across New Mexico: (1) PMas,
(2) SO, (3) NOy, and (4) VOCs. All results are presented in 2024 U.S. dollars using a discount rate of
2 percent.

ERG input the changes in pollutants and exported COBRA results for the following health outcome
categories:

e Mortality [low and high estimates]

e Asthma
o Symptoms
o Asthma onset

e Emergency room visits
o Respiratory
o Allcardiac outcomes
o Asthma

e Hospital admittance
o Respiratory
o Cardio cerebral and peripheral vascular disease
o Alzheimer’s Disease
o Parkinson’s Disease
o Stroke incidence

%8 U.S. Environmental Protection Agency, “User’s Manual for the CO-Benefits Risk Assessment (COBRA)
Screening Model,” accessed May 23, 2025, https://www.epa.gov/cobra/users-manual-co-benefits-risk-
assessment-cobra-screening-model.

% U.S. Environmental Protection Agency, “What Is COBRA?,” accessed May 20, 2025,
https://www.epa.gov/cobra/what-cobra.

8 For more information on when and why the CTFP “binds,” see Subsection 5.1.3 and Appendix B.7 of the
benefits-cost analysis in BRG’s BCA Report.

5-2
NMED Exhibit 139_000082



Regulatory Analysis Report for New Mexico’s CTFP

o Out-of-hospital cardiac arrest incidence

e Onset
o Hayfever/rhinitis incidence
o Nonfatal heart attacks
o Lungcancerincidence

e Otherimpacts
o Minor restricted activity days
o Workloss days
o Schoolloss days

5.2.2 Model Updates and Enhancements

ERG used COBRA Desktop Edition version 5.1.%" This version includes an updated source-receptor
(SR) matrix and health impacts associated with ozone formation. These improvements allowed for
additional health outcome categories such as school loss days, asthma symptoms, and hospital
admittance for illnesses such as Alzheimer’s Disease and Parkinson’s Disease. These categories
are in addition to those that ERG modeled in its NMVES analysis.®?

5.2.3 Custom Population Data for New Mexico

ERG imported custom population projections into COBRA for each year from 2026 to 2040 to
estimate the health benefits from future emission changes. EPA provides Environmental Benefits
Mapping and Analysis Program (BenMAP) population datasets that ERG formatted for COBRA.%® The
BenMAP data are provided in five-year increments from 2030 to 2050. ERG used the BenMAP data
because COBRA requires granular population data with projections for each age and county.
However, the BenMAP data is national and the estimates for New Mexico were higher than
projections from state-level sources.

ERG tailored the BenMAP data to align with the University of New Mexico’s (UNM) population

projections, which include projections for each county in New Mexico from 2010 to 2050 in five-
year increments.®* UNM’s projections from 2025 to 2040 are displayed in Table 5-1. To estimate
New Mexico’s projected county-level population in years outside of those five-year increments,

61 U.S. Environmental Protection Agency, “COBRA Revision History,” accessed May 23, 2025,
https://www.epa.gov/cobra/cobra-revision-history.

62 Eastern Research Group, Inc., “New Mexico Advanced Clean Cars I, Advanced Clean Trucks and Heavy-
Duty Omnibus Rules: Assessment of Economic, Health and Environmental Impacts” (New Mexico
Environment Department & City of Albuquerque Environmental Health Department, 2023),
https://www.env.nm.gov/opf/wp-content/uploads/sites/13/2023/10/EIB-23-56-NMED-Exhibits-45-pg-14-
48.pdf.

83 U.S. Environmental Protection Agency, “COBRA Future Input Files,” accessed May 23, 2025,
https://www.epa.gov/cobra/cobra-future-input-files.

84 University of New Mexico, “Population Projections,” Geospatial and Population Studies, accessed May 23,
2025, https://gps.unm.edu/pop/population-projections.html. University of New Mexico, “Population
Projections,” Geospatial and Population Studies, accessed May 23, 2025,
https://gps.unm.edu/pop/population-projections.html. University of New Mexico, “Population Projections,”
Geospatial and Population Studies, accessed May 23, 2025, https://gps.unm.edu/pop/population-
projections.html.
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ERG calculated the population each year between 2025 and 2040 using a series of linear
regressions for each five-year increment. ERG adjusted BenMAP’s age-specific population
projections to be proportional to the UNM county-level population estimates for New Mexico.
Although national health benefits were not evaluated, ERG ran COBRA with national estimates for
other states to allow for flexibility if other state impacts were to be assessed.

Table 5-1. UNM population projections for New Mexico for 2025, 2030, 2035, and 2040
County Projected 2025 Projected 2030 Projected 2035 Projected 2040 ‘

Bernalillo 680,584 683,372 684,673 684,461
Catron 3,539 3,454 3,340 3,193
Chaves 64,822 64,303 63,626 62,740
Cibola 27,045 26,917 26,751 26,536
Colfax 11,859 11,156 10,275 9,170
Curry 48,474 48,504 48,524 48,532
De Baca 1,568 1,417 1,233 1,006
Dona Ana 224,218 228,058 230,554 231,449
Eddy 65,964 69,139 70,992 71,376
Grant 27,482 26,599 25,491 24,077
Guadalupe 4,326 4,179 3,996 3,762
Harding 646 624 596 560
Hidalgo 3,826 3,466 3,030 2,497
Lea 78,781 82,337 84,395 84,796
Lincoln 20,255 20,123 19,945 19,716
Los Alamos 19,857 20,439 20,791 20,883
Luna 25,500 25,593 25,658 25,687
McKinley 72,972 72,761 72,486 72,203
Mora 3,933 3,599 3,190 2,684
Otero 68,287 68,736 68,780 68,821
Quay 8,536 8,356 8,128 7,835
Rio Arriba 40,266 40,247 40,217 40,185
Roosevelt 19,095 18,986 18,712 18,421
Sandoval 157,468 164,648 169,117 170,460
San Juan 119,657 117,590 113,548 109,362
San Miguel 26,064 24,902 23,435 21,577
Santa Fe 160,347 164,745 167,424 168,148
Sierra 11,323 11,064 10,735 10,313
Socorro 16,008 15,408 14,713 13,992
Taos 35,367 35,949 36,300 36,391
Torrance 14,575 13,947 13,145 12,126
Union 3,895 3,709 3,444 3,178
Valencia 77,118 77,320 77,536 77,825
State Total 2,143,658 2,161,645 2,164,780 2,153,964
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Table 5-2 presents two examples of New Mexico population data that ERG inputted into COBRA,
after adjusting BenMAP’s data to be proportional to UNM’s total population estimates per county.
While the tailored population data has estimates for each individual age, Table 5-2 provides a more
condensed overview of age distributions. According to UNM, New Mexico’s current population is
aging, and the overall population is expected to start declining by 2035.% From 2026 to 2040, the
largest increases in percentage terms are expected for the 85 and over age group. This is
particularly relevant to health benefits because older adults are more susceptible to respiratory
illness caused by criteria and precursor pollutants.®®

Table 5-2. Customized New Mexico population for 2026 and 2040 for COBRA

Age Group 2026 2040 Percent Change

0 29,419 27,141 -8%
1to4 119,367 109,378 -8%
5to 9 148,969 138,328 -7%
10to 14 147,204 140,769 -4%
15t0 19 118,111 142,373 21%
20 to 24 132,390 137,139 4%
25 to 29 123,627 120,020 -3%
30 to 34 125,769 124,558 -1%
35 to 39 156,191 124,643 -20%
40 to 44 138,569 123,842 -11%
45 to 49 129,708 138,605 7%
50 to 54 107,758 132,058 23%
55 to 59 104,494 122,996 18%
60 to 64 111,706 107,482 -4%
65 to 69 135,993 98,038 -28%
70 to 74 122,938 94,089 -23%
75 to 79 95,055 96,255 1%
80 to 84 67,342 82,585 23%
85 and over 44,530 93,663 110%

5.2.4 Onroad and Nonroad Assumptions

For the CTFP scenario, ERG ran COBRA separately for the onroad and nonroad changes in
emissions to appropriately assign emission categories. ERG used the “Highway Vehicles” category
for the onroad CTFP emissions and for all NMVES emissions. For the nonroad component of the
CTFP emissions, ERG used the “Off-Highway” category. ERG used the highest emission categories
as opposed to more granular categories by fuel type because this program is designed to be fuel
agnostic. Running COBRA separately for onroad and nonroad also allowed ERG to analyze the
onroad and nonroad results independently.

8 University of New Mexico, “Population Projections,” Geospatial and Population Studies, accessed May 23,
2025, https://gps.unm.edu/pop/population-projections.html.

% American Lung Association, “Who Is Most Affected by Outdoor Air Pollution?,” accessed June 3, 2025,
https://www.lung.org/clean-air/outdoors/who-is-at-risk.
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5.3 Results

5.3.1 Quantified Health Outcomes

Emission reductions under the CTFP-only and NMVES + CTFP scenarios reduce the incidence of
respiratory and other conditions compared to the baseline. The cumulative avoided incidence
values from 2026 to 2035 for the CTFP-only scenario and the cumulative avoided incidence values
from 2026 to 2040 for the NMVES + CTFP scenario are shown in Table 5-3 for each health outcome.
These avoided incidences translate to monetary values, as detailed below.

Table 5-3. Avoided incidence for CTFP-only and NMVES + CTFP scenarios (cumulative)

Health Outcome Category Cumulative Avoided Cumulative Avoided

Incidence for CTFP-Only Incidence for NMVES + CTFP

Scenario

Scenario

Total mortality (low estimate) 0.6 2.0
Total mortality (high estimate) 1.2 2.8
Total asthma symptoms 336.7 1,462.8
Total asthma onset 1.9 8.9
Total emergency room visits 0.7 3.0
Total hospital admittance 04 0.6
Total onset* 12.6 59.4
Minor restricted activity days 353.0 466.4
Work loss days 59.9 79.0
School loss days 58.6 712.9

*Includes onset of hay fever/rhinitis, nonfatal heart attacks, and lung cancer.

The total monetized health benefits are presented as a lower- and upper-bound estimates because
COBRA has low and high incidence estimates for mortality. The low estimate is based on an
evaluation of PM,s impacts on mortality by the Harvard T.H. Chan School of Public Health.®” The
high estimate represents PM, s results based on a study from the journal Environmental Health
Perspectives.®® Presenting a low-to-high monetary benefits range is EPA’s standard practice.® All
health outcomes other than those for mortality are calculated as point estimates, but the totalis a
range because it includes the range of mortality incidence values.

The total cumulative monetized health benefits in New Mexico from reduced criteria and precursor
pollutants are displayed in Table 5-4. For the CTFP-only scenario (2026 to 2035), cumulative
benefits range from an estimated $11.0 million to $20.8 million, whereas cumulative benefits of the
combined NMVES + CTFP scenario (2026 to 2040) range from $38.2 million to $51.5 million.

7 Xiao Wu et al., “Evaluating the Impact of Long-Term Exposure to Fine Particulate Matter on Mortality Among
the Elderly,” Science Advances 6, no. 29 (July 2020): eaba5692, https://doi.org/10.1126/sciadv.aba5692.

8 C. Arden Pope lll et al., “Mortality Risk and Fine Particulate Air Pollution in a Large, Representative Cohort
of U.S. Adults,” Environmental Health Perspectives 127, no. 7 (July 24, 2019): 77007,
https://doi.org/10.1289/EHP4438.

8 U.S. Environmental Protection Agency, “COBRA Questions and Answers,” accessed May 23, 2025,
https://www.epa.gov/cobra/cobra-questions-and-answers.
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Table 5-4. Cumulative statewide health benefits from reduced pollutants by scenario (in million

USD, 2024)
Scenario Timeframe Cumulative Net Benefits
(Lower-upper bound)
2026-2030 $7.0-$13.4
CTFP-only 2026-2035 $11.0-$20.8
2026-2030 $9.7-$16.5
NMVES + CTFP 2026-2040 $38.2-$51.5

Includes health benefits from both onroad and nonroad fuel use beginning in 2029.

ERG ran COBRA separately for the onroad and nonroad CTFP cases to identify health benefits
separately. As displayed in Table 5-5, the onroad cumulative health benefits range from $9.3
million to $17.5 million. The nonroad health benefits begin in 2029 due to the inclusion of dyed
fuels under the CTFP pursuant to the proposed rule.”” Cumulative nonroad health benefits range
from $1.7 million to $3.3 million. Onroad contributions account for nearly 85 percent of the total
CTFP benefits, and the remaining 15 percent of total benefits are attributed to nonroad.

Table 5-5. Annual statewide health benefits for the CTFP-only onroad and nonroad scenarios (in
million USD, 2024)

Calendar Year $ Onroad Total Health $ Nonroad Total Health $ Total Health Benefits

Benefits Benefits (lower-upper bound)
(lower-upper bound) (lower-upper bound)
2026 $1.1-$2.1 $1.1-$2.1
2027 $1.2-$2.3 $1.2-$2.3
2028 $1.4-$2.5 $1.4-$2.5
2029 $1.4-$2.6 $0.4-$0.7 $1.8-$3.3
2030 $1.3-$2.3 $0.4-$0.7 $1.6-$3.1
2031 $1.1-$2.1 $0.3-$0.7 $1.5-$2.7
2032 $1-$1.8 $0.3-$0.6 $1.3-$2.4
2033 $0.6-$1 $0.2-$0.4 $0.8-$1.4
2034 $0.3-$0.5 $0.1-$0.2 $0.4-$0.7
2035 $0.1-$0.2 $0-$0.1 $0.1-$0.2
Cumulative $9.3-$17.5 $1.7-$3.3 $11.0-$20.8

Values in the table may not add to cumulative values due to rounding.

The cumulative total health benefits for the NMVES + CTFP scenario range from an estimated $38.2
million to $51.5 million, as shown in Table 5-6. Within an individual year, the annual total health
benefits are highest in 2040 and range from $3.5 million to $3.9 million.

70 See Paragraph 2 of Subsection A of Title 20, Chapter 2, Part 92, Section 102 of the New Mexico
Administrative Code (20.2.92.102 NMAC).
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Table 5-6. Annual statewide health benefits for the NMVES + CTFP scenario (in million USD, 2024)

Calendar Year $ Total Health Benefits (lower-
upper bound)
2026 $1.1-$2.1
2027 $1.7-$2.9
2028 $2.0-$3.3
2029 $2.5-$4.2
2030 $2.5-$4.0
2031 $2.6-$4.0
2032 $2.8-$4.0
2033 $2.6-$3.5
2034 $2.5-$3.1
2035 $2.7-$3.1
2036 $2.7-$3.1
2037 $2.9-$3.2
2038 $3.1-$3.4
2039 $3.2-$3.6
2040 $3.5-$3.9
Cumulative $38.2-$51.5

5.3.2 Direct Health Damage Benefits and Costs

In addition to benefits, Table 5-7 shows marginal costs in 2035 due to increased NO, emissions.
While the CTFP onroad scenario has modest SO, increases for each year (2026 to 2035), these did

not result in costs.

Table 5-7. Annual statewide health benefits and costs for the CTFP-only scenario (in million USD,
2024)

Calendar Year

$ Benefits (lower-

upper bound)

$ Costs

$ Net Benefits
(lower-upper
bound)

2026 $1.057-$2.149 $0 $1.057-$2.149
2027 $1.176-$2.293 $0 $1.176-$2.293
2028 $1.351-$2.538 $0 $1.351-$2.538
2029 $1.800-$3.350 $0 $1.800-$3.350
2030 $1.648-$3.050 $0 $1.648-$3.050
2031 $1.469-$2.714 $0 $1.469-$2.714
2032 $1.274-$2.351 $0 $1.274-$2.351
2033 $0.755-$1.414 $0 $0.755-$1.414
2034 $0.358-$0.696 $0 $0.358-$0.696
2035 $0.109-$0.237 -$0.001 $0.108-$0.236
Cumulative $10.997-$20.794 -$0.001 $10.996-$20.793

As described above, mortality is the only health impact category with lower and upper bounds.
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There were no health damages associated with the mortality category; therefore, the costs are
reported as a point estimate. For the combined NMVES and CTFP scenario, shown in Table 5-8,
there are no costs.

Table 5-8. Annual statewide health benefits and costs for the combined NMVES and CTFP scenario
(in million USD, 2024)

Calendar Year $ Benefits $ Costs $ Net Benefits
(lower-upper bound) (lower-upper bound)
2026 $1.1-$2.1 $0 $1.1-$2.1
2027 $1.7-$2.9 $0 $1.7-$2.9
2028 $2.0-$3.3 $0 $2.0-$3.3
2029 $2.5-$4.2 $0 $2.5-$4.2
2030 $2.5-$4.0 $0 $2.5-$4.0
2031 $2.6-$4.0 $0 $2.6-$4.0
2032 $2.8-$4.0 $0 $2.8-$4.0
2033 $2.6-$3.5 $0 $2.6-$3.5
2034 $2.5-$3.1 $0 $2.5-$3.1
2035 $2.7-$3.1 $0 $2.7-$3.1
2036 $2.7-$3.1 $0 $2.7-$3.1
2037 $2.9-$3.2 $0 $2.9-$3.2
2038 $3.1-$3.4 $0 $3.1-$3.4
2039 $3.2-$3.6 $0 $3.2-$3.6
2040 $3.5-$3.9 $0 $3.5-$3.9
Cumulative $38.2-$51.5 $0 $38.2-$51.5
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6. Macroeconomic Impacts

6.1 Background

The CTFP is a collaborative, market-based program designed to reduce transportation sector GHG
emissions by establishing decreasing statewide annual Cl targets for transportation fuels
produced, imported, or dispensed for use in New Mexico. Each year, regulated parties producing,
importing, or dispensing fuels that have a Cl above the annual target will generate deficits that they
must offset by purchasing credits from regulated parties producing, importing, or dispensing fuels
with a Cl below the annual target. This requirement ensures attainment of statewide annual Cl
targets. This chapter focuses on the following aspects of the CTFP:

1. Impacts of credit revenue and deficit expenditures under the CTFP on New Mexico
transportation fuel users and regulated parties.

2. Employment effects of infrastructure built with revenue supported by FSE credits equaling
up to 10 percent of previous-quarter deficits.”*

3. Health benefits from reduced CAP emissions in response to the CTFP.”2 This analysis finds
that reducing CAP emissions would improve air quality and reduce the adverse effects of
tailpipe exhaust on public health in New Mexico, leading to reduced hospitalizations and
fewer lost workdays.

6.1.1 Discussion of Industry Impacted

This analysis finds that the CTFP affects a wide range of industries. Regulated parties generate
either credits or deficits from producing, importing, or dispensing transportation fuel for use in New
Mexico, depending upon each transportation fuel pathway’s Cl compared to annual Cl targets.
Under this rule, consumers include all entities that purchase transportation fuel (e.g.,
governments, businesses, and households).

The CTFP allows regulated parties to receive a total amount of credits equal to 10 percent of
previous-quarter deficits for installing new FSE capacity.”® Revenue from FSE credits will drive job
growth in areas that support FSE, including the installation, operation, and maintenance of fuel
stations for ZEVs such as hydrogen fuel cell vehicles (HFCVs), battery electric vehicles (BEVs), and
vehicles using CNG.

In addition, hospitals in New Mexico would see decreases in use because of improved health
outcomes as CAP emissions decrease due to the CTFP. The improved health outcomes associated
with air quality improvements under the CTFP will likely result in reduced hospital revenues and
emergency room visits.

7! Because this analysis uses an annual timestep, it assumes that credits equal 10 percent of previous-year
deficits rather than the 10 percent of previous-quarter deficits specified in the CTFP.

72 CAP emissions include Oz precursor pollutants like NO, and VOCs, as well as other harmful pollutants like
PM., s and SO,. This analysis quantifies the health benefits from reducing these CAP emissions.

7% Because this analysis uses an annual timestep, it assumes that credits equal 10 percent of previous-year
deficits rather than the 10 percent of previous-quarter deficits specified in the CTFP.
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6.1.2 Consumer Passthrough Assumptions and Sensitivity Testing

A regulated party may gain credits from selling clean transportation fuel with a Cl below the CTFP’s
annual standard, or it may accrue deficits from selling transportation fuel with a Cl above the
CTFP’s annual standard (e.g., fossil gasoline and diesel). Regulated parties that incur deficits must
purchase and retire credits to offset their deficits and remain in compliance with the CTFP. NMED
testimony for the CTFP includes a passthrough rates (PTR) analysis that considers the degree to
which such program revenues and costs affect regulated party profits, and the degree to which
regulated parties pass on program revenues and costs in retail fuel prices for consumers in New
Mexico. This analysis considers the widest likely array of potential PTR assumptions by modeling
outcomes under two scenarios:

1. A 100 percent PTR scenario, in which all revenue changes from credits and deficits are
reflected in retail fuel prices.

2. AO0percent PTR scenario, in which the industries absorb all revenue changes as a change in
operating costs that, in turn, affects profit margins.

6.2 Modeling Approach

To estimate the macroeconomic impacts of New Mexico’s CTFP, ERG conducted a series of EIAs
using IMPLAN, an I-O model.” Typically, EIAs measure the economic effect of a market shock in a
specified geographic area, such as a new fuel policy in New Mexico. EIAs model three core
components of economic activity, shown in Figure 6-1:

e Direct effects are the change’s immediate impacts on its own sector.

¢ Indirect effects are the change’s impacts on the economic sectors that support the
directly affected sector (for example, if a hydrogen FSE is built, the maintenance sector that
supports hydrogen FSE will see increased revenue).

¢ Induced effects are the additional economic impacts from changes in laborincome due to
direct and indirect effects (for example, the staff who work at a facility that generates
hydrogen and get paid then spend that money within the local economy, which boosts any
industry from which they make purchases, such as grocery, restaurants, and retail).

74 IMPLAN, “IMPLAN,” accessed May 20, 2025, https://implan.com/.
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Figure 6-1. Example components of an EIA for hydrogen production

Direct Effect Indirect Effect Induced Effect

*A hydrogen fuel *The hydrogen producer *Increased revenues at
producer experiences uses more electricity as the hydrogen and
increased revenue from they scale their electric plants lead to
the passage of the CTFP business to increased labor income

accomodate increased for their employees; the

demand employees, in turn,
spend some of that
money on purchases
such as groceries,
restaurants, and retail
goods

IMPLAN estimates direct, indirect, and induced effects of market shocks on four key
macroeconomic metrics:

® Employment refers to the number of individuals hired for a salary or for compensation to
work within a sector. IMPLAN follows job definitions from the Bureau of Economic Analysis
(BEA), which include full-time, part-time, and seasonal positions. Note that IMPLAN jobs
are not full-time equivalent (FTE) positions.

® Laborincome represents the total value of income from employment.

® Value added, or gross domestic product, is the increase in a product or service’s market
value at each stage of production.

® Economic output, or revenue, is the total value of all goods and services produced in an
economy.

6.2.1 IMPLAN Assumptions

ERG modeled the macroeconomic impacts of New Mexico’s CTFP through the IMPLAN platform. To
complete this I-O modeling, ERG conducted a series of EIAs accounting for projected CTFP
economic costs and benefits each year between 2026 and 2040. ERG bound the geographic scope
of this analysis to the state of New Mexico. ERG selected 2023 as the reported dollar and analysis
year; this year is also when the latest state data was published in IMPLAN. Assumptions about
specific industries are documented in the sections below.

6.2.2 Direct Effects of Credit Market Establishments
6.2.2.1 Direct Effects of Credit Market Establishments

As discussed in the BCA and FCMM documentation, BRG makes annual fuel projections that meet
the CTFP annual credit and deficit requirements. These projections serve as inputs to this I-O
model’s calculation of the effects from CTFP credit markets. Table 6-1 shows projected credits
generated across major fuel types under the CTFP. Table 6-2 shows projected deficits across major
fuel types. Credits and deficits are shown through 2035 since the fuel credit price drops to $0 in
2036.
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Table 6-1. CTFP credits generated annually by fuel type

Ethanol Biodiesel Renewable Electricity Hydrogen RNG
Biodiesel
2026 208,386 218,695 288,703 168,897 0 58,896
2027 194,483 200,496 398,166 403,175 0 59,195
2028 169,524 174,513 569,612 732,845 0 58,375
2029 130,147 159,395 860,755 1,085,450 0 128,616
2030 54,498 113,414 915,545 1,116,806 0 113,085
2031 44,005 109,889 882,513 1,602,871 10,523 111,777
2032 34,262 106,737 844,133 2,126,648 21,301 110,449
2033 25,360 119,232 537,521 2,610,150 32,331 109,099
2034 17,403 130,269 260,290 3,051,528 43,611 107,729
2035 10,385 138,435 36,240 3,441,143 55,136 106,337

Table 6-2. CTFP deficits generated annually by fuel type

Year Gasoline Fossil-Derived Propane
Blendstock Diesel

2026 -435,519 -198,586 0
2027 -600,715 -289,323 0
2028 -890,422 -432,350 0
2029 -1,460,609 -745,814 -3,131
2030 -2,420,342 -1,127,625 -12,468
2031 -2,401,698 -1,172,289 -14,051
2032 -2,366,714 -1,219,901 -15,719
2033 -2,318,423 -1,458,032 -17,472
2034 -2,268,366 -1,702,547 -19,309
2035 -2,233,595 -1,931,872 -21,231

6.2.2.2 Fueling Supply Equipment (FSE)

FSE credits are separate from fuel-based credits under the CTFP. FSE in New Mexico receive
credits based on the Cl of the fuel that they provide and their new or expanded capacity to
dispense this fuel. This analysis directly attributes FSE credits to jobs in the study region, as shown
in Table 6-3, and only modeled jobs that would be filled by someone in New Mexico. FSE credits are
further explained in the BCA. This analysis calculated direct jobs from FSE credits on a net basis.

Table 6-3. Direct job categories created from FSE credits

Job |
Fuel station installation

IMPLAN Industry
323 - All other miscellaneous electrical equipment and
component manufacturing
Fuel station maintenance and |55 - Maintenance and repair construction of nonresidential
repair structures
General construction labor 47 - Construction of new power and communication
structures
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Job IMPLAN Industry |
Planning and design 439 - Architectural, engineering, and related services
Administration and legal 437 - Legal services
Fuel station installation 323 - All other miscellaneous electrical equipment and

component manufacturing
Fuel station maintenance and |55 - Maintenance and repair construction of nonresidential

repair structures
General construction labor 47 - Construction of new power and communication
structures

This analysis also modeled FSE credits for facilities serving BEVs, HFCVs, and CNG vehicles. Table
6-4 shows the number of jobs created within each industry.

Table 6-4. Direct jobs created annually from FSE credits

Fuel Station = Fuel Station General Planning and Administration
Installation | Maintenance Construction Design and Legal
and Repair Labor
2026 0.0 0.0 0.0 0.0 0.0
2027 26.8 1.7 8.0 10.7 4.1
2028 37.5 4.2 11.2 14.9 5.8
2029 44.2 7.1 13.2 17.6 6.8
2030 14.3 8.0 4.2 5.7 2.2
2031 22.8 9.5 6.8 9.1 3.5
2032 22.7 10.9 6.8 9.0 3.5
2033 22.6 12.4 6.7 9.0 3.5
2034 22.5 13.9 6.7 9.0 3.5
2035 15.6 14.9 4.7 6.2 2.4
2036-2050 0 14.9 0 0 0
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6.2.2.3 Incremental Renewable Energy Credit (REC) Requirement

In addition to fuel-based and FSE credits, the BCA forecasted credits that regulated parties could
earn from incremental REC retirement. Retiring incremental RECs allows for electric distribution
utilities and other entities to receive more credits per unit of electricity supplied to BEVs and plug-
in hybrid electric vehicles (PHEVs) by lowering the Cl score of the electricity dispensed to these
vehicles. IMPLAN accounts for the cost of these REC retirements as decreased revenue for electric
generators, for which these utilities and other entities receive compensation from CTFP credit
revenue either directly or from another party purchasing the REC. The value of REC retirement is
shown in Table 6-5.

Table 6-5. REC retirement impacts over time

Year Incremental REC REC Cost (2023 USD)
Retirement (MWh)
2026 136,479 -$2,447,551
2027 329,318 -$5,905,818
2028 616,407 -$11,054,335
2029 963,735 -$17,283,145
2030-2040 0 $0

6.2.2.4 Banking Impacts on Fossil Fuel Industries

The BCA’s FCMM additionally accounts for credits that regulated parties bank for either future sale
or retirement.”® The result is that regulated parties generate surplus credits in the early years of the
CTFP that exceed total CTFP deficits. When regulated parties bank CTFP credits, their value
diminishes over time. There is a non-financial “opportunity cost” to regulated parties either not
selling these credits (if banked by a credit-generator) or spending money to purchase but not retire
them (if banked by a deficit-generator). This analysis models this cost as an “impairment cost” that
aregulated party bears from unrealized gains, as they are not using the cash on an interest-earning
activity. Table 6-6 shows the value of these impairment costs by year. ERG’s model considered
these costs and allocated them to regulated parties producing gasoline and diesel fuels.

Table 6-6. Banking costs incurred by the fossil fuel industries (in 2023 USD)

Prior Year Inventory | Prior Year Inventory

Total

Holding Cost Impairment

2027 -$1,519,724 -$4,645,183 -$6,164,907
2028 -$3,139,603 -$2,373,327 -$5,512,930
2029 -$4,972,226 -$13,582,252 -$18,554,477
2030 -$5,415,110 -$15,690,267 -$21,105,377
2031 -$1,485,767 -$5,218,081 -$6,703,848

6.2.2.5 Biodiesel and Renewable Diesel Supply Costs

Under the CTFP, incremental volumes of BBDs like BD and RD help satisfy CTFP annual targets by
generating credits. This is especially the case in earlier program years, when overall Cl targets are

75 Regulated parties that generate CTFP credits may bank them for sale in later years. In addition, regulated
parties that generate CTFP deficits may purchase and bank CTFP credits for retirement in a later year.
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relatively less strict and these fuels are needed to serve as a “drop-in” substitute in combustion
engine vehicles. The portion of New Mexico’s statewide vehicle fleet made up by combustion
vehicles begins its accelerated decline in later years. CTFP credit revenue helps increase the BBD
volumes produced, imported, or dispensed for use in New Mexico by providing regulated parties
with a greater incentive to substitute BBDs for fossil diesel in New Mexico compared to other
states.”® As detailed in the BCA’s FCMM, CTFP credit prices must incentivize this substitution by
covering the incremental cost of bringing BBDs into New Mexico to cover the fossil diesel that they
replace. This incremental cost, detailed in Table 6-7, represents a net program cost that
compensates for the cost of fuel substitution rather than providing an additional revenue source to
regulated parties or New Mexico fuel consumers. This conservatively assumes that no additional
biodiesel or renewable diesel refineries open in New Mexico as a result of the CTFP.

Table 6-7. Biodiesel and renewable diesel import costs (in 2023 USD)

Incremental Biodiesel

Incremental Renewable

Year .
Supply Costs Diesel Supply Costs

2026 -$12,283,574 -$33,966,678
2027 -$9,632,695 -$41,737,322
2028 -$7,868,423 -$60,902,558
2029 -$5,993,079 -$90,184,984
2030 -$3,540,209 -$105,196,240
2031 -$2,971,312 -$88,291,642
2032 -$2,450,123 -$71,543,981
2033 -$3,000,934 -$37,984,092
2034 -$3,082,648 -$19,023,646
2035 -$4,838,232 -$2,751,950

Fuelindustries will see various costs and savings from credits, deficits, REC retirement, banking
costs, and supply costs. Allimpacts for the 0 percent PTR scenario are shown in Figure 6-2.

7 This premium accounts for federal and state revenue sources, fuel sales, and environmental attributes like
the fuel pathway’s Cl considered in the CTFP, as well as the cost of producing and transporting BBDs.
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Figure 6-2. Fuel industry revenue changes by year (in 2023 USD)
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6.2.2.6 Economic Impacts of Health and Productivity Effects

ERG modeled health impacts with EPA’s COBRA, as detailed in the previous chapter. For all health
impacts requiring emergency room visits, ERG modeled the cost of a visit as a change in demand
for hospital services in IMPLAN. Because reduced tailpipe emissions equate to better air quality,
improved health outcomes, and fewer hospital visits, the CTFP is expected to reduce hospital
revenue. This analysis did not include mortality impacts.

ERG also simulated changes in productivity as fewer workdays lost to poor health (specifically,
respiratory distress and disease). COBRA estimates the value of productivity gained from fewer lost
workdays, so ERG modeled this improved productivity in IMPLAN as increased labor income across
the entire state of New Mexico, as shown in Table 6-8.
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Table 6-8. Annual health and labor impacts over time (in 2023 USD)

Hospital Cost
Year Labor Income
Changes

2026 -$23,836 $2,759
2027 -$29,457 $2,819
2028 -$36,778 $2,990
2029 -$49,652 $3,916
2030 -$45,540 $3,544
2031 -$40,309 $3,148
2032 -$34,707 $2,726
2033 -$19,604 $1,671
2034 -$8,327 $857
2035 -$1,554 $349

6.2.3 ConsumerImpacts

As discussed in Section 6.2.2, regulated parties will generate revenue from the sale of credits
under the CTFP and incur expenditures from purchasing these credits. This analysis accounts for
uncertainty in the degree to which transportation fuel retail prices will incorporate credit revenue or
deficit expenditures under the CTFP by modeling EIAs under two PTR scenarios:

1. A100 percent PTR scenario, in which all revenue changes from credits and deficits are
reflected in retail fuel prices.

2. AO0percent PTR scenario, in which the industries absorb all revenue changes as a change in
operating costs that, in turn, affects profit margins. The following section outlines how
these assumptions influenced the modeling approach.

In the 100 percent PTR scenario, fuel dispensers in New Mexico incorporate the full amount of
credit revenue or deficit expenditures per unit of fuel that they dispense to New Mexico consumers.
In such cases, regulated parties would fully account for the revenue and expenditures resulting
from CTFP compliance across all stages of the supply chain, up to and including when retailers
dispense fuel to consumers. Regulated parties would see no change in profit margins, and fuel
consumers would internalize all CTFP fuel market impacts from retail price changes.

By contrast, under the 0 percent PTR scenario, retail transportation fuel prices do not fall in
response to CTFP credit market revenue or rise in response to CTFP credit market expenditures.
Regulated parties do not pass through any CTFP revenue or expenditures to the point of retail. The
analysis assumes that, as a result, regulated parties would fully internalize the CTFP’s fuel market
effects in the form of commensurate changes to profit margins across the transportation fuel value
chain, due to the incremental cost of BBDs as well as incremental REC retirement costs and
impairment costs. In this scenario, New Mexico fuel consumers are unaffected by the CTFP.

Direct impacts from both PTR scenarios can be calculated as the number of credits and deficits
generated, multiplied by the credit unit price by year (deficit prices are equal to negative credit
prices), as shown in Table 6-9.
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Table 6-9. Fuel credit price by year

Year Credit Price
(2023 USD/MT)
2026 $111.93
2027 $96.92
2028 $93.70
2029 $82.47
2030 $71.99
2031 $60.90
2032 $50.08
2033 $40.49
2034 $40.57
2035 $40.80

As mentioned, consumers will see changes in retail fuel prices in the 100 percent PTR scenario.
New Mexico fuel consumers include households, commercial businesses, and government
entities. ERG used data from the CARB Standard Regulatory Impact Assessment (SRIA)”” to assume
the proportion of each fuel that each consumer type purchased, shown in Table 6-10.

Table 6-10. CARB SRIA consumer type spending proportion by fuel type

Gasoline, Electricity, Diesel, Natural
Consumer
Hydrogen Gas, Propane
Household 92.0% 2.0%
Government 1.0% 1.0%
Business 7.0% 97.0%

Changes on the consumer side (100 percent PTR scenario) are modeled in IMPLAN as follows:

e Household spending is modeled through IMPLAN’s institutional spending patterns, where
ERG split costs based on proportions of homes within each income bracket.

e Government spending is also modeled through IMPLAN’s institutional spending patterns,
as a change in state and local government investment.

e Business spending is modeled as changes in revenue to specific industries, based on how
reliant each industry is on gasoline and diesel.

The 0 percent PTR scenario was modeled with the assumption that credits and deficits result in
revenue impacts for fuel industry sectors. These impacts were modeled as changes in the fuel
commodity of each specific industry. Since BBD markets in New Mexico are nascent, ERG chose to
use the refined petroleum product commodity to model these industries, as the supply chains are

77 California Air Resources Board, “Low Carbon Fuel Standard 2023 Amendments: Standardized Regulatory
Impact Assessment (SRIA),” September 8, 2023, https://ww2.arb.ca.gov/sites/default/files/2023-
09/lcfs_sria_2023_0.pdf.
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similar. Table 6-11 shows the IMPLAN industry associated with each credit- and deficit-generating
industry.

Table 6-11. Fuel mapping to IMPLAN commodities

Consumer Gasoline, Electricity, Hydrogen
Electricity 3034 - Electricity generation

Hydrogen 3154 - Other basic inorganic chemicals
CNG, RNG 3043 - Natural gas distribution

6.2.3.1

Gasoline, diesel,
renewable diesel,
biodiesel, ethanol

3146 - Refined petroleum products

Households

Households are a major consumer of fuel, purchasing 92 percent of gasoline, electricity, and

hydrogen (Table 6-10). Table 6-12 shows the fuel cost changes over time for households.

Households are the largest consumer of both gasoline fuel and low-carbon alternatives, primarily

electricity and hydrogen.

Table 6-12. Annual household consumer cost changes (in 2023 USD)

Year Gasoline Diesel Electricity Hydrogen N:::sral Propane Total
2026 -$23,388,409 -$233,720 $15,140,016 $0 $131,840 $0 -$8,350,273
2027 -$40,048,960 -$467,881 $30,514,962 $0 $114,739 $0 -$9,887,141
2028 -$65,559,837 -$827,178 $53,005,652 $0 $109,398 $0 -$13,271,965
2029 -$112,248,020 -$1,596,496 $66,457,347 $0 $212,145 | -$5,164 | -$47,180,188
2030 -$169,932,756 -$2,450,939 | $73,964,717 $0 $162,814 | -$17,950 | -$98,274,114
2031 -$136,231,225 -$2,088,322 $89,798,767 | $589,528 | $136,134 | -$17,113 | -$47,812,231
2032 -$107,453,845 -$1,749,317 | $97,972,682 | $981,314 | $110,615 | -$15,743 | -$10,154,294
2033 -$85,417,444 -$1,468,569 | $97,229,058 | $1,204,350 | $88,348 | -$14,148 | $11,621,595
2034 -$84,020,324 -$1,524,730 | $113,902,538 | $1,627,832 | $87,416 | -$15,668 | $30,057,063
2035 -$83,447,636 -$1,585,629 | $129,162,444 | $2,069,533 | $86,768 | -$17,324 | $46,268,156
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6.2.3.2

Businesses

Businesses are the largest consumers of many transportation fuels, particularly diesel and its
alternatives, including natural gas and propane (Table 6-10). Table 6-13 shows the fuel cost
changes over time for business consumers. The fuel impacts of diesel include deficits generated

from fossil diesel and credits generated from biodiesel and renewable diesel.

Table 6-13. Annual business consumer cost changes (in 2023 USD)

Gasoline Diesel Electricity = Hydrogen | Natural Gas Propane

2026 -$1,779,553 -$11,335,414 | $1,151,958 $0 $6,394,244 $0 -$5,568,765

2027 -$3,047,204 -$22,692,227 | $2,321,791 $0 $5,564,843 $0 -$17,852,797
2028 -$4,988,248 -$40,118,131 | $4,033,039 $0 $5,305,786 $0 -$35,767,555
2029 -$8,540,610 -$77,430,047 | $5,056,537 $0 $10,289,029 | -$250,443 | -$70,875,533
2030 -$12,929,666 | -$118,870,552 | $5,627,750 $0 $7,896,485 | -$870,595 | -$119,146,578
2031 -$10,365,419 | -$101,283,626 | $6,832,515 | $44,855 | $6,602,515 | -$829,971 -$98,999,132
2032 -$8,175,836 -$84,841,893 | $7,454,443 | $74,665 | $5,364,819 | -$763,516 | -$80,887,319
2033 -$6,499,153 -$71,225,606 | $7,397,863 | $91,635 | $4,284,866 | -$686,198 -$66,636,593
2034 -$6,392,851 -$73,949,412 | $8,666,497 | $123,857 | $4,239,667 | -$759,909 | -$68,072,150
2035 -$6,349,277 -$76,903,003 | $9,827,577 | $157,464 | $4,208,245 | -$840,216 | -$69,899,209

6.2.3.3 Government

Government impacts are the results of governments spending and saving money to fuel their fleets.
Government accounts for about 1 percent of total consumer spending across all fuel types (Table
6-10). Table 6-14 shows government impacts by fuel type over time.

Table 6-14. Annual government consumer cost changes (in 2023 USD)

Year Gasoline Diesel Electricity Hydrogen N;::::;al Propane Total
2026 -$254,222 -$116,860 $164,565 $0 $65,920 $0 -$140,596
2027 -$435,315 -$233,940 $331,684 $0 $57,370 $0 -$280,201
2028 -$712,607 -$413,589 $576,148 $0 $54,699 $0 -$495,349
2029 -$1,220,087 -$798,248 $722,362 $0 $106,072 -$2,582 -$1,192,482
2030 -$1,847,095 -$1,225,470 $803,964 $0 $81,407 -$8,975 -$2,196,169
2031 -$1,480,774 -$1,044,161 $976,074 $6,408 $68,067 -$8,556 -$1,482,943
2032 -$1,167,977 -$874,659 $1,064,920 | $10,666 $55,307 -$7,871 -$919,612
2033 -$928,450 -$734,285 $1,056,838 | $13,091 $44,174 -$7,074 -$555,707
2034 -$913,264 -$762,365 $1,238,071 | $17,694 $43,708 -$7,834 -$383,991
2035 -$907,040 -$792,814 $1,403,940 | $22,495 $43,384 -$8,662 -$238,697

Households begin to save significant amounts towards 2035 as they spend more on electricity and

less on gasoline, as shown in Figure 6-3.
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D)

Consumer Spending Changes (Millions US

Figure 6-3. Consumer spending by consumer type, fuel type, and year (in 2023 USD)
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6.3 Results

This section documents the results of the macroeconomic analysis (in 2024 U.S. dollars). ERG
shows total impacts on the fuel market (which includes credits and deficits, REC retirements,
biodiesel and renewable diesel supply costs, and banking costs), FSE credits, and hospitalization
and productivity. The fuel market is the common component between scenarios, since FSE credits
and health impacts are not reliant on consumers.

6.3.1 Economic Impact Analysis Results

In this section, ERG documents the full EIA results, including impacts related to the fuel market,
FSE credits, and hospitalization and productivity. Here, ERG shows the results for both the 0
percent and 100 percent PTR scenarios. The credit and deficit costs are the only components of
this analysis that are subject to the passthrough; therefore, FSE credits and health impacts are
equalin both scenarios. Table 6-15 presents the complete results of the 0 percent PTR scenario.
These results present all impacts, including impacts related to the fuel market (credits and deficits,
REC retirements, biodiesel and renewable diesel supply costs, and bank holding costs), FSE
credits, and health and productivity changes. As stated above, IMPLAN results provide estimates
across key economic indicators. Employment represents the number of full-time and part-time
jobs supported. Labor income includes all wages, salaries, and benefits earned by workers. Value-
added reflects the contribution to gross domestic product (GDP). Economic output represents the
total value of all goods and services produced.

Table 6-15. Annual results for the 0 percent PTR scenario (in 2024 USD)

Labor

Year Employment Income Value Added Output
2026 5.6 $260,575 -$2,276,120 -$14,377,391
2027 77.9 $4,547,444 $2,418,911 -$9,580,665
2028 103.6 $5,811,311 $1,296,657 -$21,918,723
2029 81.3 $2,424,817 -$17,421,742 -$82,789,262
2030 -148.1 -$17,315,596 | -$77,659,252 -$236,820,261
2031 -49.6 -$8,389,496 -$48,207,118 -$160,882,936
2032 8.6 -$2,594,332 | -$26,777,980 -$104,029,960
2033 45.6 $1,088,090 -$12,895,910 -$65,596,984
2034 67.0 $3,130,080 -$6,268,878 -$51,874,927
2035 65.5 $3,640,781 -$2,584,385 -$45,078,981
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Table 6-16 shows the results of the 100 percent PTR scenario.

Table 6-16. Annual results for the 100 percent PTR scenario (in 2024 USD)

Labor
Year Employment Income Value Added Output
2026 -105.3 -$5,952,495 | -$10,629,993 -$18,842,097
2027 -156.3 -$8,934,857 | -$15,772,592 -$25,010,784
2028 -318.3 -$18,680,200 | -$31,793,308 -$53,515,054
2029 -844.2 -$48,896,607 | -$84,601,898 -$147,452,979
2030 -1710.1 -$99,043,848 | -$171,230,034 | -$307,413,387
2031 -1180.4 -$69,631,487 | -$117,451,371 -$212,308,525
2032 -772.7 -$46,931,942 | -$76,077,050 -$139,770,919
2033 -499.1 -$31,471,463 | -$48,441,880 -$90,779,270
2034 -451.9 -$29,257,279 | -$43,341,746 -$82,764,504
2035 -336.8 -$23,723,138 | -$31,182,804 -$64,364,888

6.3.1.1

Credit and Deficit Impacts

This section documents ERG’s results explicitly for the fuel market. This includes credits, deficits,
REC retirements, bank holding costs, and BD and RD supply costs. While more deficits are
generated than credits (since some credits were apportioned to FSE credits), the results are
negative, largely due to REC retirements, banking costs, and BD and RD supply costs. Table 6-17
shows the breakdown of results for the 0 percent PTR scenario, and Table 6-18 shows results of the
100 percent PTR scenario.

Table 6-17. Direct, indirect, and induced effects annually for the 0 percent PTR scenario (in 2024

USD)
Year Direct Indirect Induced
2026 -$8,993,861 -$5,485,195 $124,823
2027 -$17,326,704 | -$9,790,960 -$214,940
2028 -$30,092,303 | -$16,500,201 -$682,904
2029 -$71,471,707 | -$38,608,656 | -$3,274,056
2030 -$155,628,931 | -$81,800,091 | -$10,969,552
2031 -$112,096,241 | -$59,197,574 | -$7,112,908
2032 -$76,949,450 | -$40,904,457 -$4,104,839
2033 -$53,221,357 | -$28,498,766 | -$2,215,072
2034 -$45,057,933 | -$24,351,255 | -$1,206,016
2035 -$38,389,883 | -$20,974,485 -$348,094
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Table 6-18. Direct, indirect, and induced effects annually for the 100 percent PTR scenario (in 2024

uUsD)

Year Direct Indirect Induced

2026 -$11,585,837 -$4,090,019 -$3,143,083
2027 -$25,335,412 | -$10,107,821 -$7,319,490
2028 -$46,187,213 | -$19,087,533 | -$13,596,993
2029 -$106,126,311 | -$41,538,844 | -$30,352,982
2030 -$191,666,349 | -$73,203,716 | -$54,121,634
2031 -$135,586,427 | -$54,802,606 | -$39,443,278
2032 -$90,561,617 | -$39,631,864 | -$27,506,225
2033 -$60,628,172 | -$29,092,864 | -$19,396,445
2034 -$55,156,721 | -$28,054,230 | -$18,293,829
2035 -$39,763,688 | -$24,453,206 | -$14,781,475

6.3.1.2 FSE Credit Impacts

FSE credits create direct jobs in New Mexico. These jobs have direct, indirect, and induced output
impacts, shown in Table 6-19. Direct impacts ranged between $8 million and $22 million until 2035.
Starting in 2036, the only remaining jobs supported by the FSE credits are fuel station maintenance
jobs, which are assumed to be constant until at least 2040.

Table 6-19. Annual output results from job creation through FSE credits (in 2024 USD)

Year Direct Indirect Induced

2027 $12,436,042 $2,757,102 $2,587,195
2028 $17,729,622 $3,959,808 $3,702,316
2029 $21,338,555 $4,800,605 $4,472,471
2030 $8,005,849 $1,892,714 $1,721,567
2031 $12,144,437 $2,825,715 $2,589,915
2032 $12,398,228 $2,906,704 $2,654,473
2033 $12,649,566 $2,987,056 $2,718,477
2034 $12,898,514 $3,066,782 $2,781,938
2035 $9,996,850 $2,447,912 $2,189,898

2036-2040 $2,949,311 $902,421 $731,797

6.3.1.3 Economic Results of Health Impacts

Health impacts from the CTFP include hospitalization and productivity cost changes, shown in
Table 6-20. Negative hospitalization values are a result of improved health outcomes and reduced
hospital use in New Mexico. While these are negative impacts within the economy, they provide a
benefit in the form of improved health that cannot be accurately captured in this analysis but are
discussed in Chapter 5. Productivity cost changes only result in induced impacts from fewer
workdays lost and are not assumed to impact business revenue. Improved productivity only
increases induced impacts, slightly offsetting the negative induced impacts of hospitalization
costs.
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Table 6-20. Direct, indirect, and induced health impact annually (in 2024 USD)

Year

Direct

Indirect

Induced

2026 -$16,070 -$4,940 -$4,057
2027 -$19,859 -$6,105 -$5,391
2028 -$24,795 -$7,622 -$7,069
2029 -$33,474 -$10,290 -$9,621
2030 -$30,702 -$9,438 -$8,854
2031 -$27,176 -$8,354 -$7,830
2032 -$23,399 -$7,193 -$6,732
2033 -$13,216 -$4,063 -$3,719
2034 -$5,614 -$1,726 -$1,485
2035 -$1,048 -$322 -$157

6.4 Data Sharing

The macroeconomic analysis contributed to the BCA results, which are shown through 2030 in
Table 6-21and through 2040 in Table 6-22 (in 2024 U.S. dollars). ERG averaged the 0 percent PTR
scenario and the 100 percent PTR scenario to create a 50 percent PTR scenario, where industries
are expected to pass half of the revenue changes onto consumers with fuel price changes. ERG
used this 50 percent PTR scenario to estimate the macroeconomic impacts and used these

averaged results in the BCA.

It is worth noting that GHG reductions and monetized benefits through the social cost of carbon
were supplied by BRG using a combination of the published NM-GREET Cl values and their fuel
projections, except for hydrogen, electricity, and renewable diesel and biodiesel blends. For
hydrogen, BRG has baked in the assumption of a long-term processing shift from steam methane
reforming of landfill gas to electrolysis after 2030 rather than one of these pathways defined in NM-
GREET. For electricity, BRG applied decreasing Cl values over time to account for the expected
switch to cleaner and renewable sources of electricity generation, which are not specified annually
in NM-GREET. For RD and BD blends, BRG utilized realized feedstock ratios from historical
producer data, so again this did not tie back to a particular feedstock-specific NM-GREET pathway.

The BCA also used the health impacts from Chapter 5. As stated above, this health analysis in the
EIA only considered costs from changes in hospitalization and productivity (since mortality data is
not an appropriate impactin an EIA). In the BCA, ERG used the total avoided costs from the COBRA
analysis, including mortality, as well as the indirect and induced impacts from the IMPLAN ElAs.
Direct health benefits and costs were updated with the three percent discount rate and included
indirect and induced health impacts from the EIA.

ERG also included the FSE credits as direct jobs created within the state. When translating for the
BCA, ERG included direct, indirect, and induced output values from the EIA rather than an explicit
number of jobs. Finally, ERG included NMVES updates to the BCA. Updates to the NMVES analysis

are outlined in Appendix D.2.
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Table 6-21. Summary of total CTFP and NMVES benefits and costs through 2030 (in 2024 USD)

NMVES Total"

-$397,615,611

-$397,615,611

Benefits (average)

Fuel Markets™ -$481,018,805 -$481,018,805
Direct fuel markets -$293,686,741
Indirect and induced -$187,332,064
Health effects™ $10,240,199 $10,240,199
GHG emissions $1,227,826,621 $1,227,826,621
Direct Jobs from FSE $77,218,383 $77,218,383
CTFP TOTAL $1,315,285,202 -$481,018,805 $834,266,397
NMVES + CTFP suite $1,315,285,202 -$878,634,417 $436,650,786

*Accounts for indirect and induced consumer effects and baseline of EPA Multi-Pollutant and Phase 3 Heavy-Duty Rules;

health benefits averaged.

**The fuel market impacts are the 50 percent pass-through scenario that averages the results from the 0 percent and 100
percent passthrough scenarios.
***Represents an average between a lower- and upper-bound estimate of health benefits from criteria pollutant and

ozone precursor reductions.

Table 6-22. Summary of total CTFP and NMVES benefits and costs through 2040 (in 2024 USD)

NMVES Total" $188,043,999 $188,043,999
CTFP Benefits (average)
Fuel Markets™ -$959,423,181 -$959,423,181
Direct fuel markets -$577,919,646
Indirect and induced figun -$381,503,535
Health effects™ $15,712,160 $15,712,160
GHG emissions $2,435,963,386 $2,435,963,386

Direct Jobs from FSE

$161,894,181

$161,894,181

CTFP TOTAL

$2,613,569,726

-$959,423,181

$1,654,146,545

NMVES + CTFP suite

$2,801,613,725

-$959,423,181

$1,842,190,544

*Accounts for indirect and induced consumer effects and baseline of EPA Multi-Pollutant and Phase 3 Heavy-Duty Rules;

health benefits averaged.

**The fuel market impacts are the 50 percent pass-through scenario that averages the results from the 0 percent and 100
percent passthrough scenarios.

***Represents an average between a lower- and upper-bound estimate of health benefits from criteria pollutant and

ozone precursor reductions.
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A. Fuel Carbon Intensities

A.1 Summary

Crude oil Cl was calculated with a well-to-refinery scope using OPGEE v2.0c, [CITE] the work of
Masnadi et al. (2018),[CITE] and crude oil production and foreign import data from the U.S. Energy
Information Administration. [CITE] Table A-1 details the weighted Cls for PADD3 for 2018 and 2022,
which are 11.83 and 11.46 g CO.e/MIJ refinery inputs, respectively. These Cls are for a well-to-
refinery gate boundary and are used in place of GREET’s default crude-oil-extraction Feedstock
stage value across the baseline (2018) and v1.0 default/temporary (2022) versions of NM-GREET.

Table A-1. Cl of PADDS3 crude oil for 2018 and 2022

Summary Result ‘ 2018 Value 2022 Value Units ‘
Total foreign imports 7.31E+12 4.26E+12 MJ
Total PADD3 production | 1.46E+13 1.78E+13 MJ

Import Cl (weighted) 12.88 12.15 g CO,e/MIJ refinery input
PADD3 CI (U.S. average) | 11.30 11.30 g CO,e/MlJ refinery input
Weighted ClI 11.83 11.46 g CO,e/MJ refinery input

A.2 Methods

Country-specific crude oil Cl and crude oil properties (API gravity, energy density) were sourced
from Masnadi et al. (2018); they represent ~98% of crude oil production for the study’s 2015
scope.’”® These values are detailed in Table A-2. Crude oil production and foreign import data for
PADD3 were sourced from the U.S. EIA for 2018 and 2022; please note that only crude oil imports
were considered for Cl weighting (i.e. oil products such as gasoline blending components were not
included).” Imports to PADD3 from other PADDs were not included in the calculation. In 2018,
total PADD3 crude imports were 1,017,321 thousand bbls and crude production was 2,582,134
thousand bbls. For 2022, PADD3’s total imports dropped significantly to just 597,650 thousand
bbls and production rose to 3,145,563 thousand barrels.

Import volumes (in bbl) were converted to MJ of lower heating value (LHV) by way of their average
API gravity. Carbon intensities (in g CO.e / MJ refinery input) were then weighted based on the
import amount, in MJ, from each country. Across PADD3 crude production, it was assumed that
both carbon intensity and crude properties were the same as the U.S. average in Masnadi et al.
(2018). Where needed, crude oil API gravity was converted to specific gravity with the following
formula:

131.5 + API Gravity
141.5

Specific Gravity =

LHV energy density, in MJ/kg crude oil, was calculated using OPGEE’s “Crude Oil Chemical
Composition” table, which is copied in Table A-3. Energy densities for non-integer API gravities

’® Mohammad S. Masnadi et al., “Global Carbon Intensity of Crude Oil Production,” Science 361, no. 6405
(August 31, 2018): 851-53, https://doi.org/10.1126/science.aar6859.

7°U.S. Energy Information Administration, “Crude Oil Production, Annual,” 2025,
https://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_a.htm.
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were linearly interpolated from the nearest values available. For all calculations, the volumetric
conversion factor of 1 m®=6.28981 bbl was used.

Table A-2. Crude oil Cl, 2018 and 2022 import volumes and API gravity by country

Cl 2018 Imports 2022 Imports Average Crude
Country (g CO.e/M)J) (thousand bbl) (thousand bbls) API Gravity
(Masnadi, 2018) (U.S. EIA, 2025) (U.S. EIA, 2025) (Masnadi, 2018)

Angola 7.8 6,967 949 30.33
Argentina 9.4 2,867 - 27.00
Australia 9.4 529 - 47.25
Azerbaijan 6.8 3,833 - 35.00
Barbados 9.5 50 - 33.00
Belize 9.0 198 - 33.00
Bolivia 9.2 318 - 33.00
Brazil 10.5 19,887 3,982 22.94
Canada 17.7 180,246 214,870 19.65
Chad 10.2 3,554 - 33.00
Colombia 8.8 53,880 58,435 26.58
Ecuador 9.5 12,015 - 41.56
Egypt 10.6 2,761 - 33.00
Equatorial Guinea 6.8 1,943 - 33.00
Gabon 13.1 398 - 33.00
Ghana 6.0 3 - 33.00
Guatemala 9.8 2,501 868 33.00
Iran 17.4 - 507 30.70
Iraq 14.0 144,524 19,994 29.90
Italy 6.7 438 - 33.00
Kuwait 7.1 18,377 6,716 24.20
Libya 11.2 598 - 35.05
Mexico 9.9 216,855 194,883 19.69
Niger 11.5 10,465 - 33.00
Nigeria 12.4 10,465 - 34.74
Peru 11.1 - 259 33.00
Russian Federation 9.7 718 - 33.51
Saudi Arabia 5.1 141,071 75,451 31.97
Trinidad and Tobago 14.4 2,155 9,076 33.00
United Kingdom 8.3 12,508 8,623 34.00
Venezuela 19.9 181,614 - 13.92
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Table A-3. Crude Oil API gravity and energy density values from OPGEE v2.0c®°
API

Specific

Lower Heating

API Specific Lower Heating
Gravity Gravity Value (MJ/kg)
4 1.04 39.33
5 1.04 39.52
6 1.03 39.66
7 1.02 39.80
8 1.01 39.94
9 1.01 40.08
10 1.00 40.17
11 0.99 40.26
12 0.99 40.35
13 0.98 40.47
14 0.97 40.56
15 0.97 40.66
16 0.96 40.75
17 0.95 40.82
18 0.95 40.91
19 0.94 41.01
20 0.93 41.08
21 0.93 41.14
22 0.92 41.24
23 0.92 41.31
24 0.91 41.40

Gravity
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Gravity
0.90
0.90
0.89
0.89
0.88
0.88
0.87
0.87
0.86
0.85
0.85
0.84
0.84
0.83
0.83
0.83
0.82
0.82
0.81
0.81
0.80

Values from OPGEE v2.0c ‘Fuel Spec’ table

A.3 OPGEE v2.0c Copyright Statement

Value (MJ/kg)
41.47
41.54
41.61
41.68
41.75
41.82
41.87
41.94
41.98
42.05
42.12
42.17
42.21
42.28
42.33
42.40
42.45
42.52
42.56
42.61
42.66

Copyright © 2012-2017 The Board of Trustees of the Leland Stanford Junior University

Allrights reserved.

The Oil Production Greenhouse Gas Emissions Estimator (OPGEE) Program (Software), source
code, binary files, and operating manuals are being provided free of charge. Software may be
downloaded, modified and redistributed freely under the following terms and conditions:

Redistributions of any of the following: Software's source code, executables, and any other

materials provided must

e retain the above copyright notice

e require that the source and executable with any modifications be made publicly available

under these same terms and conditions and

e be sent to: Adam Brandt, Department of Energy Resources Engineering, Stanford

University, abrandt@stanford.edu

80 Hassan M. El-Houjeiri et al., “Oil Production Greenhouse Gas Emissions Estimator OPGEE v2.0 User Guide

& Technical Documentation,” 2017,

https://pangea.stanford.edu/departments/ere/dropbox/EAO/OPGEE/OPGEE_documentation_v2.0.pdf.
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e include this entire Agreement with any redistribution

Neither the name of Stanford University nor the names of the contributors may be used to endorse
or promote products derived from this Software without specific prior written permission.

Software is being provided “AS IS” and With All Faults. Users acknowledge that Stanford or
contributors will not provide any maintenance or support for Software.

Stanford makes no representations and extends no warranties of any kind, either express or
implied.

Stanford disclaims any express or implied warranty of merchantability, or fitness for a particular
purpose, of non-infringement, or arising out of any course of dealing.

Stanford is not liable for any special, consequential, lost profits, expectation, punitive or other
indirect damages in connection with any claim arising out of or related to the use of Software
whether grounded in tort (including negligence), strict liability, contract, or otherwise; and,

Users will indemnify, hold harmless and defend Stanford against any claim of any kind arising out
of or related to the exercise of any rights in this Agreement.
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B. Projected Emission Reductions

Fuel penetrations over time by vehicle (source use) type are key inputs for modeling the NMVES
and federal baseline scenarios in MOVES. As discussed in Projected Emission Reductions (Chapter
4), these fuel penetrations are summarized through the MOVES AVFT table. ERG used different
AVFT tables for each policy scenario.

Light-duty fuel penetrations (for passenger cars, passenger trucks, and light commercial trucks) in
the NMVES scenario were adopted from New Mexico’s prior rule and should be consistent with
California’s ACC Il Program.?' Heavy-duty fuel penetrations (for all other MOVES source types) in
the NMVES scenario were pulled from EPA’s docketed Phase 3 rulemaking files.®? Luckily, EPA had
already developed a side case with a custom AVFT table for California’s ACT Program when
analyzing the federal GHG Phase 3 Rule for heavy-duty vehicles, so ERG could simply use the ACT
AVFT in any MOVES runs. ERG then incorporated the NMVES LD penetrations into the existing ACT
AVFT to represent the full NMVES scenario for LDVs and HDVs. The MOVESS release includes the
latest federal regulations, particularly Phase 3 and the LD Multi-Pollutant Rule, so ERG could run
default MOVESS fuel penetrations without any further modification for the federal baseline
scenario in New Mexico’s clean fuels program. Figures B-1 through B-12 compare fuel penetrations
for the NMVES and federal baseline scenarios by MOVES source type.

The other key MOVES inputs for the CTFP emissions analysis were New Mexico county databases
from the 2020 NEI, which EPA has conveniently made available through an NElI file transfer protocol
(FTP) site.® These CDBs contain New Mexico-specific information on VMT, vehicle populations, age
distributions, average speeds, fuels, and meteorology. For the NMVES scenario, ERG inserted the
custom NMVES AVFT into every CDB. For the federal baseline scenario, the AVFT was left
unchanged. ERG also grew 2020 VMT and populations for future evaluation years using growth
rates discussed in Section 4.2.2 and created a distinct set of CDBs for each evaluation year and
each of New Mexico’s 31 counties.

In the interest of model runtime, ERG set up two types of MOVES run specifications (often referred
to as runspecs): (1) annual runspecs for all pollutants and processes except evaporative emissions
(see Table B-1 below), and (2) hourly runspecs in January and July for VOC evaporative effects in
particular (see Table B-2). ERG then developed New Mexico-specific emission factors per unit
energy for all pollutants and non-evaporative processes, as well as monthly average VOC
evaporative EFs. To determine full VOC emission factors, ERG simply added the VOC non-
evaporative and evaporative EFs together. The same VOC evaporative effects were used for both
NMVES and federal baseline scenarios. Lastly, ERG did some Bernalillo County runs to model
nondefault fuel blends (namely, B0, B5, and E15) with the MOVES Fuel Wizard by policy scenario to
expedite processing of fuel effects. Using the Fuel Wizard interface is time consuming, so instead

81

New Mexico Environment Department, “New Motor Vehicle Emissions Standards (Advanced Clean Cars
Il/Advanced Clean Trucks),” accessed May 29, 2025, https://www.env.nm.gov/climate-change-
bureau/transportation/.

82U.S. Environmental Protection Agency, “Greenhouse Gas Emissions Standards for Heavy-Duty Engines and
Vehicles-Phase 3,” Docket, accessed June 26, 2025, https://www.regulations.gov/docket/EPA-HQ-OAR-
2022-0985.

83 U.S. Environmental Protection Agency, “2020 National Emissions Inventory Data,” accessed June 26, 2025,
https://gaftp.epa.gov/Air/emismod/2020/2020emissions/.
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of creating custom fuels with the Fuel Wizard for each county, ERG selected Bernalillo as a
representative county for evaluating these fuel effects.

Table B-3 through B-6 show the fuel volumes forecasts for the NMVES and federal baseline
scenarios before and after BRG modifications to New Mexico’s statewide fleet and activity. The
before case estimates volumes from ERG’s initial county-level MOVES runs for each policy
scenario, respectively, prior to BRG’s ZEV fleet and activity adjustments. The after case computes
volumes for the final NMVES and federal rules after BRG’s adjustments. These baseline fuel
volumes were used to calculate the necessary adjustments to the baseline emission inventories
and subsequent benefits, as discussed in Section 0. In either case, baseline volumes assume no
CTFP implementation.
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Appendix B

Fuel @Diesel ®E85 @ Electricity ®Gasoline
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Figure B-1. Passenger car (MOVES sourceTypelD 21) fuel penetrations for (1) current federal standards and (2) NMVES
(based on California’s standards) over time
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Fuel ®@Diesel ®ES5 @ Electricity ®Gasoline
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Figure B-2. Passenger truck (MOVES sourceTypelD 31) fuel penetrations for (1) current federal standards and (2) NMVES
(based on California’s standards) over time
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Fuel ®@Diesel ®ES5 @ Electricity ®Gasoline
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Figure B-3. Light commercial truck (MOVES sourceTypelD 32) fuel penetrations for (1) current federal standards and (2) NMVES
(based on California’s standards) over time
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Fuel ® CNG @Diesel ®Electricity ®Gasoline
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Figure B-4. Other bus (MOVES sourceTypelD 41, not for transit or school applications) fuel penetrations for (1) current federal standards and (2)
NMVES (based on California’s standards) over time
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Fuel ® CNG @ Diesel ®Electricity ®Gasoline
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Figure B-5. Transit bus (MOVES sourceTypelD 42) fuel penetrations for (1) current federal standards and (2) NMVES
(based on California’s standards) over time
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Fuel ®CNG @Diesel ®Electricity @ Gasoline
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Figure B-6. School bus (MOVES sourceTypelD 43) fuel penetrations for (1) current federal standards and (2) NMVES
(based on California’s standards) over time
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Fuel ® CNG @ Diesel @ Electricity ®Gasoline
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Figure B-7. Refuse truck (MOVES sourceTypelD 51) fuel penetrations for (1) current federal standards and (2) NMVES
(based on California’s standards) over time
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Fuel ®CNG @Diesel @ Electricity ®Gasoline
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Figure B-8. Short-haul single unit truck (MOVES sourceTypelD 52) fuel penetrations for (1) current federal standards and (2) NMVES
(based on California’s standards) over time
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Fuel ® CNG @ Diesel @Electricity ®Gasoline
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Figure B-9. Long-haul single unit truck (MOVES sourceTypelD 53) fuel penetrations for (1) current federal standards and (2) NMVES

(based on California’s standards) over time
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Fuel ® CNG @ Diesel ®Electricity ®Gasoline
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Figure B-10. Motor home (MOVES sourceTypelD 53) fuel penetrations for (1) current federal standards and (2) NMVES
(based on California’s standards) over time
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Fuel ®CNG @Diesel @ Electricity ®Gasoline
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Figure B-11. Short-haul combination truck (MOVES sourceTypelD 61) fuel penetrations for (1) current federal standards and (2) NMVES (based on
California’s standards) over time
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Fuel ®CNG @ Diesel @ Electricity
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Figure B-12. Long-haul combination truck (MOVES sourceTypelD 62) fuel penetrations for (1) current federal standards and (2) NMVES (based on
California’s standards) over time
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Appendix B

Table B-1. Onroad New Mexico county runspecs for all pollutants (non-evaporative only)

Category

Description

Scale

Time Spans

Geographic Bounds

Vehicles/Equipment

Pollutants and
Processes (selected)

Variable

Model
Domain/Scale
Calculation Type
Years

Months

Days

Hours

States

Counties (FIPS code)

Onroad Vehicles

Total Gaseous Hydrocarbons
(THC)

Non-Methane Hydrocarbons
(NMHC)

Volatile Organic Compounds
(VOCs)

Methane
(CH,)

Carbon Monoxide
(CO)

Input
“New Mexico CTFP - <xxx> County (20<xx>) -
<NMVES or Federal> Reference”
Onroad
County
Inventory
[2020, 2030, 2035, 2040, 2050]
All Selected
All Selected
All Selected
New Mexico
[Bernalillo (35001), Catron (35003), Chaves
(35005), Cibola (35006), Colfax (35007),
Curry (35009), De Baca (35011), Dona Ana
(35013), Eddy (35015), Grant (35017),
Guadalupe (35019), Harding (35021), Hidalgo
(35023), Lea (35025), Lincoln (35027), Los
Alamos (35028), Luna (35029), McKinley
(35031), Mora (35033), Otero (35035), Quay
(35037), Rio Arriba (35039), Roosevelt
(35041), San Juan (35043), San Miguel
(35045), Sandoval (35047), Santa Fe (35049),
Sierra (35051), Socorro (35053), Taos
(85055), Torrance (35057), Union (35059),
Valencia (35061)]
All Allowable Fuel/Source Type
Combinations Selected
Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust, Refueling Displacement Vapor Loss,
Refueling Spillage Loss
Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust, Refueling Displacement Vapor Loss,
Refueling Spillage Loss
Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust, Refueling Displacement Vapor Loss,
Refueling Spillage Loss
Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust
Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
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(0F:1{-Y-(]3Y

Road Type

General Output

Output Emissions
Details

Create Input
Database
Advanced Features

VETE] )

Nitrogen Oxides
(NOy)

Nitrous Oxide
(N20)

Primary Exhaust PM, s — Total

Primary Exhaust PM, s — Species

Primary PM,s — Brakewear
Particulate

Primary PM.s — Tirewear
Particulate

Sulfur Dioxide
(SOy)

Total Energy Consumption

Atmospheric CO,

CO; Equivalent

Available Road Types
Output Database

Units

Activity

Output Aggregation

For All Vehicle/Equipment
Categories

Onroad

Database

Preaggregation Options

Input
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust
Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust

Running Exhaust, Start Exhaust

Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust

Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust

Brakewear

Tirewear

Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust

Running Exhaust, Start Exhaust, Extended
Idle Exhaust, Other Hotelling Exhaust
Running Exhaust, Start Exhaust, Extended
Idle Exhaust, Other Hotelling Exhaust
Running Exhaust, Crankcase Running
Exhaust, Start Exhaust, Crankcase Start
Exhaust, Extended Idle Exhaust, Crankcase
Extended Idle Exhaust, Other Hotelling
Exhaust

All Selected
“<yyyymmdd>_c350xx_ctfp_nmves_ref_out”
Mass: Grams, Energy: Kilojoules, Distance:
Miles

Distance Traveled, Source Hours Operating,
Population

Year, County

Fuel Type, Emission Process
Source Use Type, Regulatory Class
“c350<xx>y20<xx>_<yyyymmdd>_nmves_ref”

Year, County
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Appendix B

Table B-2. Onroad New Mexico county runspecs for VOC evaporative effects only

Category

Description

Scale

Time Spans

Geographic Bounds

Vehicles/Equipment

Pollutants and
Processes (selected)

Road Type

General Output

Output Emissions
Details

Create Input
Database
Advanced Features

Variable

Model
Domain/Scale
Calculation Type
Years

Months

Days

Hours

States

Counties (FIPS code)

Onroad Vehicles

Volatile Organic Compounds
(VOCs)

Total Energy Consumption

Available Road Types
Output Database

Units

Activity

Output Aggregation

For All Vehicle/Equipment
Categories

Onroad

Database

Preaggregation Options

Input
“New Mexico CTFP - <xxx> County (20<xx>) —
VOC Evap Effects”
Onroad
County
Inventory
[2020, 2030, 2035, 2040, 2050]
January, July
All Selected
All Selected
New Mexico
[Bernalillo (35001), Catron (35003), Chaves
(35005), Cibola (35006), Colfax (35007),
Curry (35009), De Baca (35011), Dona Ana
(35013), Eddy (35015), Grant (35017),
Guadalupe (35019), Harding (35021), Hidalgo
(35023), Lea (35025), Lincoln (35027), Los
Alamos (35028), Luna (35029), McKinley
(85031), Mora (35033), Otero (35035), Quay
(835037), Rio Arriba (35039), Roosevelt
(35041), San Juan (35043), San Miguel
(35045), Sandoval (35047), Santa Fe (35049),
Sierra (35051), Socorro (35053), Taos
(35055), Torrance (35057), Union (35059),
Valencia (35061)]
All Allowable Fuel/Source Type
Combinations Selected
Evap Permeation, Evap Fuel Vapor Venting,
Evap Fuel Leaks
Running Exhaust, Start Exhaust, Extended
Idle Exhaust, Other Hotelling Exhaust
All Selected
“<yyyymmdd>_c350xx_nm_ctfp_voc_out”
Mass: Grams, Energy: Kilojoules, Distance:
Miles
Distance Traveled, Source Hours Operating,
Population
Month, County

Fuel Type, Emission Process
Source Use Type, Regulatory Class
“c350<xx>y20<xx>_<yyyymmdd>_nmves_ref”

Hour, County
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Table B-3. Nonroad New Mexico county runspecs for all pollutants and processes

Category
Description

Scale

Time Spans

Geographic Bounds

Vehicles/Equipment

Pollutants and Processes

(selected)

VENE] G

Model
Domain/Scale
Calculation Type
Years

Months

Days

Hours

States

Counties (FIPS code)

Nonroad Equipment

Total Gaseous
Hydrocarbons
(THC)

Non-Methane
Hydrocarbons
(NMHC)

Volatile Organic
Compounds
(VOCs)

Methane
(CHy)

Carbon Monoxide
(CO)

Nitrogen Oxides
(NO,)

Input

“New Mexico CTFP - 20<xx> - Nonroad”
Nonroad
County
Inventory
[2020, 2030, 2035, 2040, 2050]
All Selected
All Selected
New Mexico
[Bernalillo (35001), Catron (35003), Chaves
(35005), Cibola (35006), Colfax (35007), Curry
(35009), De Baca (35011), Dona Ana (35013),
Eddy (35015), Grant (35017), Guadalupe
(35019), Harding (35021), Hidalgo (35023), Lea
(35025), Lincoln (35027), Los Alamos (35028),
Luna (35029), McKinley (35031), Mora (35033),
Otero (35035), Quay (35037), Rio Arriba (35039),
Roosevelt (35041), San Juan (35043), San Miguel
(35045), Sandoval (35047), Santa Fe (35049),
Sierra (35051), Socorro (35053), Taos (35055),
Torrance (35057), Union (35059), Valencia
(35061)]

All Allowable Fuel/Source Type

Combinations Selected
Running Exhaust, Crankcase Running Exhaust,
Refueling Displacement Vapor Loss, Refueling
Spillage Loss, Evap Tank Permeation, Evap
Hose Permeation, Diurnal Vapor Venting, Hot
Soak Fuel Vapor Venting, Running Loss Fuel
Vapor Venting
Running Exhaust, Crankcase Running Exhaust,
Refueling Displacement Vapor Loss, Refueling
Spillage Loss, Evap Tank Permeation, Evap
Hose Permeation, Diurnal Vapor Venting, Hot
Soak Fuel Vapor Venting, Running Loss Fuel
Vapor Venting
Running Exhaust, Crankcase Running Exhaust,
Refueling Displacement Vapor Loss, Refueling
Spillage Loss, Evap Tank Permeation, Evap
Hose Permeation, Diurnal Vapor Venting, Hot
Soak Fuel Vapor Venting, Running Loss Fuel
Vapor Venting
Running Exhaust, Crankcase Running Exhaust,
Refueling Displacement Vapor Loss, Refueling
Spillage Loss, Evap Tank Permeation, Evap
Hose Permeation, Diurnal Vapor Venting, Hot
Soak Fuel Vapor Venting, Running Loss Fuel
Vapor Venting

Running Exhaust

Running Exhaust
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Road Type

General Output

Output Emissions Details

Create Input Database
Advanced Features

Variable
Primary Exhaust PM; 5
—Total
Primary Exhaust
PM10 -Total
Sulfur Dioxide
(SO»)

Brake Specific Fuel
Consumption (BSFC)
Atmospheric CO,
Available Road Types
Output Database

Units

Output Aggregation
For All
Vehicle/Equipment
Categories
Nonroad
Database
Preaggregation Options

Input

Running Exhaust
Running Exhaust
Running Exhaust

Running Exhaust

Running Exhaust

“<yyyymmdd>_c35_ctfp_nonroad_out”
Mass: Grams, Energy: Kilojoules, Distance:
Miles

24-Hour Day, County

Fuel Type, Emission Process, SCC

Sector

Day, County
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Appendix B

Table B-4. NMVES fuel volumes forecast for final rules after BRG modifications (no CTFP implementation)

Year Gasoline Ethanol Diesel Electricity Propane
2025 | 939,852,773 | 69,549,793 | 813,320,074 | 19,356,448 0 3,189,677 10,275 15,873,896 0 7,746,500
2026 | 934,191,905 | 69,134,073 | 794,313,340 | 18,904,101 0 9,033,105 64,853 16,209,014 0 8,014,948
2027 | 924,025,289 | 68,385,161 | 774,777,456 | 18,439,161 0 16,542,981 130,474 16,534,566 0 8,283,396
2028 | 909,853,295 | 67,340,050 | 754,817,713 | 17,964,133 0 25,601,940 207,123 16,850,881 0 8,551,844
2029 | 890,451,571 | 65,908,204 | 734,530,153 | 17,481,303 0 36,693,447 296,025 17,158,278 0 8,820,292
2030 | 936,074,901 | 69,287,513 | 714,264,283 | 16,998,989 0 50,181,725 434,824 17,457,065 0 9,088,741
2031 | 888,146,851 | 65,737,864 | 708,683,934 | 16,866,181 0 64,463,446 | 1,960,094 | 17,561,568 0 9,463,520
2032 | 841,480,224 | 62,281,633 | 703,097,272 | 16,733,222 0 78,664,846 | 3,467,086 | 17,666,466 0 9,838,299
2033 | 796,420,903 | 58,944,391 | 697,505,804 | 16,600,149 0 92,647,682 | 4,956,462 | 17,771,778 0 10,213,079
2034 | 752,512,254 | 55,692,367 | 691,910,925 | 16,466,995 0 106,560,011 | 6,428,843 | 17,877,518 0 10,587,858
2035 | 709,691,362 | 52,520,903 | 686,313,926 | 16,333,791 0 120,411,117 | 7,884,809 | 17,983,700 0 10,962,638
2036 | 673,050,723 | 49,807,879 | 682,574,410 | 16,244,793 0 134,877,173 | 8,929,562 | 18,032,087 0 11,425,623
2037 | 637,967,444 | 47,210,136 | 678,800,229 | 16,154,970 0 149,384,034 | 9,964,391 | 18,082,402 0 11,888,607
2038 | 604,016,478 | 44,696,238 | 674,994,230 | 16,064,390 0 164,061,214 | 10,989,678 | 18,134,627 0 12,351,592
2039 | 571,125,713 | 42,260,848 | 671,159,082 | 15,973,116 0 178,910,597 | 12,005,768 | 18,188,742 0 12,814,577
2040 | 539,229,647 | 39,899,117 | 667,297,292 | 15,881,208 0 193,934,151 | 13,012,973 | 18,244,728 0 13,277,562
2041 | 511,506,949 | 37,847,585 | 661,712,478 | 15,748,293 0 205,500,003 | 13,919,346 | 18,469,764 0 13,781,495
2042 | 484,891,884 | 35,878,010 | 656,107,327 | 15,614,895 0 217,149,575 | 14,822,704 | 18,694,661 0 14,285,428
2043 | 459,293,975 | 33,983,698 | 650,482,391 | 15,481,025 0 228,883,384 | 15,723,204 | 18,919,423 0 14,789,361
2044 | 434,633,483 | 32,158,749 | 644,838,211 | 15,346,698 0 240,701,954 | 16,620,993 | 19,144,051 0 15,293,295
2045 | 410,839,745 | 30,397,936 | 639,175,310 | 15,211,925 0 252,605,824 | 17,516,202 | 19,368,549 0 15,797,228
2046 | 387,849,826 | 28,696,603 | 633,494,201 | 15,076,718 0 264,595,541 | 18,408,952 | 19,592,918 0 16,301,161
2047 | 365,607,414 | 27,050,584 | 627,795,381 | 14,941,090 0 276,671,665 | 19,299,355 | 19,817,161 0 16,805,094
2048 | 344,061,899 | 25,456,135 | 622,079,336 | 14,805,052 0 288,834,767 | 20,187,512 | 20,041,281 0 17,309,027
2049 | 323,167,619 | 23,909,877 | 616,346,542 | 14,668,616 0 301,085,425 | 21,073,518 | 20,265,279 0 17,812,960
2050 | 302,883,215 | 22,408,751 | 610,597,462 | 14,531,792 0 313,424,232 | 21,957,460 | 20,489,158 0 18,316,894
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Appendix B

Table B-5. NMVES fuel volumes forecast from initial MOVES runs prior to BRG modifications (no CTFP implementation)

Year Gasoline Ethanol Diesel Electricity Propane
2025 | 803,072,833 | 59,432,771 | 781,916,241 | 18,609,059 0 36,032,435 296,979 | 14,120,998 0 7,746,500
2026 | 806,285,198 | 59,672,509 | 765,448,960 | 18,217,149 0 42,779,772 349,418 | 14,265,262 0 8,014,948
2027 | 808,729,984 | 59,855,452 | 749,445,515 | 17,836,278 0 49,778,289 399,866 | 14,409,547 0 8,283,396
2028 | 811,508,395 | 60,063,027 | 733,884,348 | 17,465,933 0 56,657,219 448,436 | 14,553,852 0 8,551,844
2029 | 813,405,593 | 60,205,405 | 718,745,351 | 17,105,636 0 63,852,370 495,229 | 14,698,176 0 8,820,292
2030 | 880,659,495 | 65,183,179 | 704,009,739 | 16,754,939 0 72,273,602 593,633 | 14,842,520 0 9,088,741
2031 | 824,060,272 | 60,992,278 | 690,424,583 | 16,431,621 0 91,498,913 | 3,157,792 | 14,834,120 0 9,463,520
2032 | 769,278,835 | 56,935,936 | 677,011,110 | 16,112,390 0 110,455,257 | 5,672,142 | 14,829,153 0 9,838,299
2033 | 716,540,382 | 53,030,799 | 663,765,191 | 15,797,146 0 129,042,432 | 8,138,447 | 14,827,529 0 10,213,079
2034 | 665,439,614 | 49,246,892 | 650,682,829 | 15,485,795 0 147,385,519 | 10,558,372 | 14,829,157 0 10,587,858
2035 | 615,890,996 | 45,577,885 | 637,760,152 | 15,178,245 0 165,497,136 | 12,933,492 | 14,833,951 0 10,962,638
2036 | 578,656,928 | 42,821,350 | 630,804,478 | 15,012,705 0 181,673,707 | 14,203,520 | 14,961,298 0 11,425,623
2037 | 543,109,669 | 40,189,655 | 623,922,862 | 14,848,927 0 197,823,916 | 15,453,058 | 15,090,291 0 11,888,607
2038 | 508,894,605 | 37,656,574 | 617,113,957 | 14,686,880 0 214,046,801 | 16,682,936 | 15,220,882 0 12,351,592
2039 | 475,927,246 | 35,215,853 | 610,376,463 | 14,526,532 0 230,344,728 | 17,893,920 | 15,353,024 0 12,814,577
2040 | 444,130,751 | 32,861,805 | 603,709,113 | 14,367,854 0 246,720,067 | 19,086,717 | 15,486,674 0 13,277,562
2041 | 421,175,336 | 31,163,056 | 601,926,933 | 14,325,439 0 256,219,824 | 19,667,340 | 15,783,417 0 13,781,495
2042 | 399,243,858 | 29,540,067 | 600,156,275 | 14,283,299 0 265,745,970 | 20,244,058 | 16,080,035 0 14,285,428
2043 | 378,254,866 | 27,986,809 | 598,396,943 | 14,241,428 0 275,298,747 | 20,816,959 | 16,376,530 0 14,789,361
2044 | 358,136,439 | 26,497,965 | 596,648,748 | 14,199,822 0 284,878,401 | 21,386,133 | 16,672,900 0 15,293,295
2045 | 338,824,728 | 25,068,809 | 594,911,508 | 14,158,477 0 294,485,178 | 21,951,671 | 16,969,146 0 15,797,228
2046 | 320,262,761 | 23,695,127 | 593,185,049 | 14,117,389 0 304,119,325 | 22,513,659 | 17,265,269 0 16,301,161
2047 | 302,399,475 | 22,373,142 | 591,469,202 | 14,076,553 0 313,781,092 | 23,072,183 | 17,561,270 0 16,805,094
2048 | 285,188,897 | 21,099,452 | 589,763,804 | 14,035,965 0 323,470,729 | 23,627,328 | 17,857,148 0 17,309,027
2049 | 268,589,479 | 19,870,984 | 588,068,698 | 13,995,623 0 333,188,490 | 24,179,175 | 18,152,903 0 17,812,960
2050 | 252,563,532 | 18,684,949 | 586,383,734 | 13,955,522 0 342,934,629 | 24,727,804 | 18,448,537 0 18,316,894
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Table B-6. Federal baseline fuel volumes forecast for final rules after BRG modifications (no CTFP implementation)

Year Gasoline Ethanol Diesel Electricity Propane
2025 | 940,409,857 | 69,591,330 | 807,804,701 | 19,225,186 0 4,079,587 0 17,339,680 0 7,746,500
2026 | 938,032,269 | 69,418,312 | 790,337,116 | 18,809,470 0 8,338,911 0 17,940,062 0 8,014,948
2027 | 931,557,346 | 68,942,298 | 773,407,936 | 18,406,567 0 13,789,117 0 18,518,877 0 8,283,396
2028 | 922,128,385 | 68,247,824 | 756,992,739 | 18,015,897 0 20,114,088 0 19,076,915 0 8,551,844
2029 | 907,639,530 | 67,179,172 | 740,996,817 | 17,635,205 0 28,126,370 38,223 19,614,934 0 8,820,292
2030 | 960,783,641 | 71,114,508 | 725,568,375 | 17,268,019 0 37,758,525 62,612 20,133,661 0 9,088,741
2031 | 932,289,651 | 69,002,743 | 722,620,318 | 17,197,857 0 45,367,608 165,374 | 20,512,258 0 9,463,520
2032 | 908,358,918 | 67,228,527 | 719,793,915 | 17,130,591 0 51,593,610 238,712 | 20,888,721 0 9,838,299
2033 | 863,353,808 | 63,896,104 | 716,868,091 | 17,060,958 0 65,659,976 313,982 | 21,263,075 0 10,213,079
2034 | 812,418,547 | 60,125,294 | 713,930,119 | 16,991,037 0 82,277,008 389,009 | 21,635,346 0 10,587,858
2035 | 777,227,091 | 57,518,753 | 710,971,081 | 16,920,614 0 93,567,204 463,793 | 22,005,558 0 10,962,638
2036 | 747,215,393 | 55,296,273 | 710,139,480 | 16,900,822 0 105,014,982 555,521 | 22,268,605 0 11,425,623
2037 | 719,022,957 | 53,208,428 | 709,262,307 | 16,879,946 0 116,304,613 647,269 | 22,530,904 0 11,888,607
2038 | 691,886,291 | 51,198,757 | 708,342,203 | 16,858,048 0 127,690,383 739,008 | 22,792,471 0 12,351,592
2039 | 665,737,154 | 49,262,208 | 707,381,669 | 16,835,188 0 139,173,257 830,716 | 23,053,318 0 12,814,577
2040 | 640,513,574 | 47,394,194 | 706,383,075 | 16,811,422 0 150,754,253 922,367 | 23,313,461 0 13,277,562
2041 | 616,759,185 | 45,636,338 | 702,700,133 | 16,723,771 0 160,052,572 | 1,028,291 | 23,876,606 0 13,781,495
2042 | 594,094,748 | 43,959,123 | 698,992,969 | 16,635,543 0 169,394,897 | 1,134,677 | 24,440,003 0 14,285,428
2043 | 572,431,613 | 42,355,993 | 695,262,164 | 16,546,752 0 178,781,332 | 1,241,512 | 25,003,640 0 14,789,361
2044 | 551,691,710 | 40,821,170 | 691,508,281 | 16,457,413 0 188,211,985 | 1,348,784 | 25,567,502 0 15,293,295
2045 | 531,805,916 | 39,349,543 | 687,731,865 | 16,367,537 0 197,686,970 1,456,481 | 26,131,574 0 15,797,228
2046 | 512,712,720 | 37,936,560 | 683,933,440 | 16,277,137 0 207,206,410 1,564,591 | 26,695,845 0 16,301,161
2047 | 494,357,132 | 36,578,153 | 680,113,515 | 16,186,225 0 216,770,432 | 1,673,104 | 27,260,300 0 16,805,094
2048 | 476,689,782 | 35,270,670 | 676,272,580 | 16,094,814 0 226,379,168 | 1,782,007 | 27,824,927 0 17,309,027
2049 | 459,666,168 | 34,010,818 | 672,411,110 | 16,002,913 0 236,032,758 | 1,891,289 | 28,389,714 0 17,812,960
2050 | 443,246,033 | 32,795,620 | 668,529,559 | 15,910,535 0 245,731,346 | 2,000,941 | 28,954,649 0 18,316,894
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Table B-7. Federal baseline fuel volumes forecast from initial MOVES runs prior to BRG modifications (no CTFP implementation)

Year Gasoline Ethanol Diesel Electricity RNG \ Propane
2025 | 1,007,592,539 | 74,559,090 | 820,026,066 | 19,516,046 0 517,453 0 17,339,680 0 7,746,500
2026 | 998,921,429 | 73,920,702 | 802,172,514 | 19,091,144 0 2,590,921 0 17,940,062 0 8,014,948
2027 | 982,976,900 | 72,744,467 | 783,679,565 | 18,651,025 0 6,765,716 0 18,518,877 0 8,283,396
2028 | 960,647,158 | 71,096,058 | 764,653,658 | 18,198,221 0 13,361,972 0 19,076,915 0 8,551,844
2029 | 930,241,413 | 68,850,447 | 745,121,155 | 17,733,361 0 23,504,235 0 19,614,934 0 8,820,292
2030 | 965,105,910 | 71,434,114 | 725,603,036 | 17,268,844 0 37,918,192 0 20,133,661 0 9,088,741
2031 | 939,059,835 | 69,503,358 | 722,671,196 | 17,199,068 0 45,691,213 165,374 | 20,512,258 0 9,463,520
2032 | 917,683,553 | 67,918,028 | 719,862,395 | 17,132,221 0 52,098,996 238,712 | 20,888,721 0 9,838,299
2033 | 873,244,669 | 64,627,474 | 716,943,629 | 17,062,756 0 66,372,432 313,982 | 21,263,075 0 10,213,079
2034 | 822,219,295 | 60,850,001 | 714,009,058 | 16,992,915 0 83,224,585 389,009 | 21,635,346 0 10,587,858
2035 | 787,967,792 | 58,312,964 | 711,059,989 | 16,922,730 0 94,786,075 463,793 | 22,005,558 0 10,962,638
2036 | 758,840,923 | 56,155,912 | 710,237,091 | 16,903,145 0 106,555,044 | 555,521 | 22,268,605 0 11,425,623
2037 | 731,435,977 | 54,126,297 | 709,368,174 | 16,882,466 0 118,199,048 | 647,269 | 22,530,904 0 11,888,607
2038 | 704,984,372 | 52,167,282 | 708,455,889 | 16,860,754 0 129,977,114 | 739,008 | 22,792,471 0 12,351,592
2039 | 679,423,639 | 50,274,242 | 707,502,744 | 16,838,070 0 141,890,780 | 830,716 | 23,053,318 0 12,814,577
2040 | 654,697,106 | 48,442,982 | 706,511,118 | 16,814,470 0 153,941,648 | 922,367 | 23,313,461 0 13,277,562
2041 | 631,261,262 | 46,708,680 | 702,834,897 | 16,726,978 0 163,641,358 | 1,028,291 | 23,876,606 0 13,781,495
2042 | 608,859,737 | 45,050,906 | 699,134,242 | 16,638,905 0 173,410,095 | 1,134,677 | 24,440,003 0 14,285,428
2043 | 587,406,783 | 43,463,317 | 695,409,739 | 16,550,265 0 183,248,265 | 1,241,512 | 25,003,640 0 14,789,361
2044 | 566,826,980 | 41,940,333 | 691,661,958 | 16,461,070 0 193,156,285 | 1,348,784 | 25,567,502 0 15,293,295
2045 | 547,053,627 | 40,477,020 | 687,891,449 | 16,371,335 0 203,134,578 | 1,456,481 | 26,131,574 0 15,797,228
2046 | 528,027,438 | 39,068,992 | 684,098,742 | 16,281,071 0 213,183,582 | 1,564,591 | 26,695,845 0 16,301,161
2047 | 509,695,476 | 37,712,332 | 680,284,350 | 16,190,291 0 223,303,738 | 1,673,104 | 27,260,300 0 16,805,094
2048 | 492,010,266 | 36,403,528 | 676,448,770 | 16,099,007 0 233,495,502 | 1,782,007 | 27,824,927 0 17,309,027
2049 | 474,929,063 | 35,139,418 | 672,592,479 | 16,007,230 0 243,759,335 | 1,891,289 | 28,389,714 0 17,812,960
2050 | 458,413,240 | 33,917,145 | 668,715,936 | 15,914,971 0 254,095,707 | 2,000,941 | 28,954,649 0 18,316,894
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C. Avoided Health Damages

C.1 Running COBRA

ERG used COBRA’s default 2028 data for the emissions baseline and the 2028 Source Receptor (S-R)
Matrix. ERG selected the New Mexico statewide tier as the emissions source location. Given that this
analysis was not at the county level, ERG did not run COBRA for a particular county. In most cases,
the emission changes were a reduction in tons. However, in the few cases when emissions increased
for a particular pollutant, ERG input these as an increases in emissions.

When running COBRA, ERG selected the default 2 percent discount rate, which aligns with the
Circular No. A-4 recommendation.®* COBRA uses a discount rate to express future economic values
in present terms. This accounts for present dollars being worth more now than in the future due to the
potential for investment.®

C.1.1 COBRA RESULTS BY HEALTH OUTCOME
Table C-1. Cumulative total health benefits by health outcome in 2024 USD

Scenario: NMVES +
CTFP
Cumulative
(2026-2040)

Scenario: CTFP-Only

Health Outcome Cumulative
(2026-2035)

$ Total health benefits (low estimate) $10,995,856 $38,190,099
$ Total health benefits (high estimate) $20,792,795 $51,542,167
S Total mortality (low estimate) $10,553,101 $35,201,667
$ Total mortality (high estimate) $20,350,041 $48,553,735
$ PM mortality, all causes (low) $8,870,305 $12,233,097
$ PM mortality, all causes (high) $18,667,245 $25,585,164
$ PM infant mortality $18,313 $24,212
$ Total Os mortality $1,664,482 $22,944,358
$ O3 mortality (short-term exposure) $71,401 $983,616

S 0; mortality (long-term exposure) $1,593,082 $21,960,741

$ Total asthma symptoms $42,481 $527,768
S PM asthma symptomes, albuterol use $181 $244

S O3 asthma symptoms, chest tightness $11,654 $145,336

S O3 asthma symptoms, cough $13,746 $171,439

S 0; asthma symptoms, shortness of breath $5,881 $73,346

$ 0; asthma symptoms, wheeze $11,018 $137,402

S Total incidence, asthma $149,350 $737,511
S PM incidence, asthma $101,441 $135,371

$ Os incidence, asthma $47,909 $602,138

$ Total incidence, hay fever/rhinitis $15,998 $81,202
S PM incidence, hay fever/rhinitis $10,817 $14,532

S Os incidence, hay fever/rhinitis $5,056 $65,044

84U.S. Environmental Protection Agency, “COBRA Questions and Answers,” accessed May 23, 2025,

https://www.epa.gov/cobra/cobra-questions-and-answers.

8 U.S. Environmental Protection Agency, “COBRA Questions and Answers,” accessed May 23, 2025,
https://www.epa.gov/cobra/cobra-questions-and-answers.
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Scenario: CTFP-Only

Scenario: NMVES +
CTFP

Health Outcome Cumulative Cumulative
(2026-2035) R

$ Total ER visits, respiratory $950 $5,594

S PM ER visits, respiratory $580 $781

S Os ER visits, respiratory $370 $4,814

S Total hospital admits, all respiratory $1,987 $4,803

S PM hospital admits, all respiratory $1,815 $2,456

S 05 hospital admits, all respiratory $172 $2,347

$ PM nonfatal heart attacks $31,327 $42,758

$ PM minor restricted activity days $49,394 $66,038

$ PM work loss days $21,350 $28,540

$ PM incidence, lung cancer $2,096 $2,886
$ PM Hospital Admissions cardio cerebro and

peripheral vascular disease $1,686 $2,312

$ PM Hospital Admissions Alzheimer’s Disease $4,055 $5,596

$ PM Hospital Admissions Parkinson’s Disease $833 $1,127

S PM incidence, stroke $2,598 $3,506

$ PM incidence, out-of-hospital cardiac arrest $547 $737

S PM ER visits, all cardiac outcomes $348 $475

S Os ER visits, asthma $1 $13

$ O3 school loss days, all causes $112,028 $1,437,538
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Table C-2. CTFP-only annual statewide health impacts by category (2026-2030) in 2024 USD

Disease

Disease

arrest

Health Outcome 2026 2027 2028 2029 2030
$ Total health benefits (low estimate) $1,057,152 $1,175,689 $1,351,048 $1,800,124 $1,648,187
S Total health benefits (high estimate) $2,149,363 $2,293,274 $2,538,385 $3,349,942 $3,050,428
$ Total mortality (low estimate) $1,021,636 $1,129,814 $1,292,337 $1,721,739 $1,577,418
$ Total mortality (high estimate) $2,113,847 $2,247,399 $2,479,675 $3,271,557 $2,979,659
$ PM mortality, all causes (low) $962,016 $992,852 $1,063,472 $1,397,922  $1,274,042
$ PM mortality, all causes (high) $2,054,227  $2,110,437 $2,250,808 $2,947,739  $2,676,283
$ PM infant mortality $2,232 $2,225 $2,304 $2,929 $2,585
S Total O; mortality $57,386 $134,736 $226,563 $320,888 $300,790
S 03 mortality (short-term exposure) $2,463 $5,782 $9,721 $13,767 $12,903
$ 0; mortality (long-term exposure) $54,924 $128,955 $216,842 $307,122 $287,888
$ Total asthma symptoms $1,641 $3,715 $6,059 $8,354 $7,622
S PM, albuterol use $22 $22 $23 $29 $26
$ O3, chest tightness  $446 $1,018 $1,663 $2,294 $2,093
$ 03, cough  $527 $1,200 $1,962 $2,706 $2,469
S O3, shortness of breath  $225 $514 $839 $1,157 $1,056
S 03, wheeze $422 $962 $1,572 $2,169 $1,978
S Total incidence, asthma $14,054 $16,392 $19,506 $25,644 $22,954
S PM incidence, asthma $12,218 $12,207 $12,668 $16,213 $14,349
S Osincidence, asthma $1,836 $4,184 $6,838 $9,431 $8,605
S Total incidence, hay fever/rhinitis $1,475 $1,732 $2,075 $2,741 $2,466
S PM incidence, hay fever/rhinitis  $1,280 $1,285 $1,341 $1,724 $1,534
S Oz incidence, hay fever/rhinitis  $195 $447 $734 $1,017 $932
$ Total ER visits, respiratory $84 $104 $127 $169 $153
S PM ER visits, respiratory  $71 $71 $74 $94 $84
S O; ER visits, respiratory  $14 $33 $53 $75 $69
S Total hospital admits, all respiratory $225 $235 $255 $330 $295
$ PM hospital admits, all respiratory $219 $220 $231 $296 $264
$ O; hospital admits, all respiratory $6 $14 $25 $34 $32
S PM nonfatal heart attacks $3,662 $3,720 $3,924 $5,091 $4,577
$ PM minor restricted activity days $6,028 $6,041 $6,290 $8,080 $7,176
$ PM work loss days $2,613 $2,617 $2,721 $3,494 $3,101
$ PM incidence, lung cancer $242 $247 $261 $339 $306
S PM Hospital Admissions cardio
cerebro and peripheral vascular disease $196 $200 $211 $274 $246
$ PM Hospital Admissions Alzheimer’s
$465 $476 $505 $656 $593
S PM Hospital Admissions Parkinson’s
$100 $101 $106 $135 $121
$ PM incidence, stroke $317 $318 $332 $423 $376
$ PM incidence, out-of-hospital cardiac
$67 $67 $70 $89 $79
S PM ER visits, all cardiac outcomes $41 $42 $44 $56 $50
$ O ER visits, asthma $0 $0 $0 $0 $0
$ 03 school loss days, all causes $4,304 $9,871 $16,225 $22,507 $20,654
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Table C-3. CTFP-only annual statewide health impacts by category (2031-2035) in 2024 USD

Disease

Disease

arrest

Health Outcome 2031 2032 2033 2034 2035
$ Total health benefits (low estimate) $1,468,852 $1,273,946 $754,678 $358,145 $108,034
S Total health benefits (high estimate) $2,714,056 $2,351,338 $1,414,186 $695,799 $236,023
$ Total mortality (low estimate) $1,407,443 $1,222,138 $726,573 $347,111 $106,895
S Total mortality (high estimate) $2,652,646 $2,299,530 $1,386,081 $684,765 $234,885
$ PM mortality, all causes (low) $1,139,313  $992,387 $611,377 $314,941 $121,984
$ PM mortality, all causes (high) $2,384,517 $2,069,779 $1,270,886 $652,595 $249,973
$ PM infant mortality $2,240 $1,891 $1,131 $565 $210
S Total O; mortality $265,890 $227,860 $114,064 $31,603 -$15,299
S O3 mortality (short-term exposure) $11,404 $9,772 $4,891 $1,355 -$656
$ O; mortality (long-term exposure) $254,485 $218,088 $109,173 $30,248 -$14,643
$ Total asthma symptoms $6,562 $5,480 $2,676 $726 -$355
S PM, albuterol use  $23 $19 $11 $6 $2
$ O3, chest tightness  $1,802 $1,505 $734 $199 -$98
$ 03, cough  $2,125 $1,774 $866 $234 -$116
S 03, shortness of breath  $909 $760 $371 $100 -$49
S 03, wheeze $1,704 $1,423 $694 $188 -$93
S Total incidence, asthma $19,872 $16,740 $9,344 $3,988 $857
S PM incidence, asthma $12,466 $10,555 $6,326 $3,172 $1,266
S Osincidence, asthma $7,407 $6,185 $3,018 $816 -$409
S Total incidence, hay fever/rhinitis $2,145 $1,816 $1,018 $436 $94
S PM incidence, hay fever/rhinitis  $1,340 $1,140 $687 $346 $139
S Oz incidence, hay fever/rhinitis $806 $676 $331 $90 -$45
$ Total ER visits, respiratory $132 $112 $63 $26 $4
$ PM ER visits, respiratory  $74 $63 $38 $19 $8
S O; ER visits, respiratory  $59 $49 $25 $6 -$3
S Total hospital admits, all respiratory $258 $220 $130 $64 $23
$ PM hospital admits, all respiratory $231 $197 $119 $59 $25
$ O; hospital admits, all respiratory $28 $24 $11 $3 -$2
S PM nonfatal heart attacks $4,037 $3,473 $2,113 $1,075 $439
$ PM minor restricted activity days $6,256 $5,316 $3,197 $1,609 $638
$ PM work loss days $2,700 $2,292 $1,378 $693 $277
$ PM incidence, lung cancer $272 $234 $142 $73 $30
S PM Hospital Admissions cardio
cerebro and peripheral vascular disease $217 $188 $115 $58 $24
$ PM Hospital Admissions Alzheimer’s
$526 $455 $278 $142 $58
S PM Hospital Admissions Parkinson’s
$106 $90 $54 $28 $11
S PM incidence, stroke $329 $280 $168 $85 $34
$ PM incidence, out-of-hospital cardiac
$70 $58 $36 $17 $7
S PM ER visits, all cardiac outcomes $45 $38 $24 $12 $5
$ O ER visits, asthma $0 $0 $0 $0 $0
$ 03 school loss days, all causes $17,882 $15,017 $7,371 $2,004 -$1,007
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Table C-4. CTFP + NMVES annual statewide health impacts by category (2026-2030) in 2024 USD

Disease

Disease

arrest

Health Outcome 2026 2027 2028 2029 2030
$ Total health benefits (low estimate) $1,057,152 $1,677,763 $1,960,638 $2,519,313  $2,476,231
S Total health benefits (high estimate) $2,149,363 $2,877,135 $3,250,299 $4,192,996 $4,021,059
$ Total mortality (low estimate) $1,021,636 $1,578,916  $1,839,350 $2,369,025 $2,324,505
S Total mortality (high estimate) $2,113,847 $2,778,288  $3,129,010 $4,042,708  $3,869,333
$ PM mortality, all causes (low) $962,016 $1,065,342 $1,154,927 $1,509,518 $1,403,481
$ PM mortality, all causes (high) $2,054,227  $2,264,714  $2,444,588  $3,183,201  $2,948,309
$ PM infant mortality $2,232 $2,389 $2,503 $3,165 $2,849
S Total O; mortality $57,386 $511,186 $681,918 $856,342 $918,174
S 03 mortality (short-term exposure) $2,463 $21,936 $29,258 $36,738 $39,385
$ 0; mortality (long-term exposure) $54,924 $489,250 $652,660 $819,604 $878,789
$ Total asthma symptoms $1,641 $14,034 $18,193 $22,232 $23,194
S PM, albuterol use $22 $23 $25 $31 $29
$ O3, chest tightness  $446 $3,860 $5,005 $6,116 $6,383
$ 03, cough  $527 $4,554 $5,904 $7,215 $7,529
S O3, shortness of breath  $225 $1,949 $2,526 $3,086 $3,221
S O3, wheeze $422 $3,650 $4,732 $5,782 $6,034
S Total incidence, asthma $14,054 $28,968 $34,334 $42,645 $42,033
S PM incidence, asthma $12,218 $13,094 $13,753 $17,498 $15,794
S Osincidence, asthma $1,836 $15,874 $20,581 $25,148 $26,239
S Total incidence, hay fever/rhinitis $1,475 $3,075 $3,664 $4,572 $4,530
S PM incidence, hay fever/rhinitis  $1,280 $1,379 $1,455 $1,861 $1,688
S Oz incidence, hay fever/rhinitis  $195 $1,695 $2,209 $2,711 $2,842
$ Total ER visits, respiratory $84 $200 $241 $300 $300
S PM ER visits, respiratory  $71 $76 $80 $102 $92
S O; ER visits, respiratory  $14 $124 $161 $198 $208
S Total hospital admits, all respiratory $225 $292 $324 $411 $387
$ PM hospital admits, all respiratory $219 $237 $250 $320 $291
$ O; hospital admits, all respiratory $6 $56 $74 $91 $97
S PM nonfatal heart attacks $3,662 $3,990 $4,259 $5,494 $5,038
$ PM minor restricted activity days $6,028 $6,477 $6,824 $8,715 $7,892
$ PM work loss days $2,613 $2,805 $2,953 $3,768 $3,410
$ PM incidence, lung cancer $242 $265 $284 $367 $337
S PM Hospital Admissions cardio
cerebro and peripheral vascular disease $196 $214 $229 $295 $272
$ PM Hospital Admissions Alzheimer’s
$465 $511 $548 $709 $654
S PM Hospital Admissions Parkinson’s
$100 $109 $115 $147 $133
$ PM incidence, stroke $317 $341 $361 $458 $415
$ PM incidence, out-of-hospital cardiac
$67 $72 $76 $96 $87
$ PM ER visits, all cardiac outcomes $41 $45 $47 $61 $55
$ O; ER visits, asthma $0 $0 $0 $1 $1
$ 03 school loss days, all causes $4,304 $37,448 $48,835 $60,016 $62,985
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Table C-5. CTFP + NMVES annual statewide health impacts by category (2031-2035) in 2024 USD

Disease

Disease

arrest

Health Outcome 2031 2032 2033 2034 2035
$ Total health benefits (low estimate) $2,620,440 $2,750,404 $2,566,239 $2,514,028 $2,665,917
S Total health benefits (high estimate) $4,043,311 $4,040,128 $3,474,869  $3,139,200 $3,119,450
$ Total mortality (low estimate) $2,447,225 $2,557,045 $2,367,133 $2,302,885 $2,419,454
S Total mortality (high estimate) $3,870,097 $3,846,769 $3,275,762 $2,928,056 $2,872,985
$ PM mortality, all causes (low) $1,301,728 $1,187,806 $842,157 $582,967 $432,110
$ PM mortality, all causes (high) $2,724,600 $2,477,530 $1,750,786  $1,208,140  $885,642
$ PM infant mortality $2,560 $2,266 $1,560 $1,050 $748
S Total O; mortality $1,142,936 $1,366,973 $1,523,416 $1,718,868 $1,986,594
S O3 mortality (short-term exposure) $49,021 $58,624 $65,327 $73,701 $85,160
$ 03 mortality (long-term exposure) $1,093,915  $1,308,349  $1,458,089 $1,645,167 $1,901,434
$ Total asthma symptoms $28,103 $32,737 $35,551 $39,109 $46,265
S PM, albuterol use  $26 $23 $16 $11 $8
$ O3, chest tightness  $7,736 $9,013 $9,790 $10,772 $12,744
$ 03, cough $9,124 $10,632 $11,549 $12,707 $15,032
$ 03, shortness of breath  $3,904 $4,549 $4,940 $5,437 $6,432
$ 03, wheeze $7,313 $8,521 $9,256 $10,184 $12,049
S Total incidence, asthma $46,023 $49,659 $48,923 $50,106 $57,363
S PM incidence, asthma $14,226 $12,612 $8,687 $5,839 $4,442
S Osincidence, asthma $31,798 $37,046 $40,235 $44,266 $52,920
S Total incidence, hay fever/rhinitis $4,989 $5,412 $5,362 $5,522 $6,398
S PM incidence, hay fever/rhinitis  $1,528 $1,362 $943 $638 $490
S Os incidence, hay fever/rhinitis  $3,460 $4,050 $4,419 $4,884 $5,907
$ Total ER visits, respiratory $337 $372 $376 $394 $461
$ PM ER visits, respiratory  $84 $75 $52 $35 $27
S Os ER visits, respiratory  $253 $297 $325 $359 $435
S Total hospital admits, all respiratory $383 $377 $320 $285 $298
$ PM hospital admits, all respiratory $263 $236 $164 $111 $86
$ O; hospital admits, all respiratory $119 $141 $156 $174 $213
S PM nonfatal heart attacks $4,608 $4,150 $2,903 $1,981 $1,542
$ PM minor restricted activity days $7,131 $6,341 $4,378 $2,947 $2,219
$ PM work loss days $3,078 $2,735 $1,886 $1,269 $961
$ PM incidence, lung cancer $311 $281 $197 $135 $106
$ PM Hospital Admissions cardio
cerebro and peripheral vascular disease  $249 $224 $158 $108 $84
$ PM Hospital Admissions Alzheimer’s
$602 $545 $383 $264 $207
S PM Hospital Admissions Parkinson’s
$121 $108 $75 $51 $39
$ PM incidence, stroke $376 $335 $233 $158 $122
$ PM incidence, out-of-hospital cardiac
$79 $71 $49 $33 $26
$ PM ER visits, all cardiac outcomes $51 $46 $32 $22 $17
$ O3 ER visits, asthma $1 $1 $1 $1 $1
$ 03 school loss days, all causes $76,775 $89,967 $98,282 $108,760 $130,354
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Table C-6. CTFP + NMVES annual statewide health impacts by category (2036-2040) in 2024 USD

Disease

Disease

arrest

Health Outcome 2036 2037 2038 2039 2040
$ Total health benefits (low estimate) $2,722,761  $2,889,335 $3,054,389 $3,216,983  $3,498,505
S Total health benefits (high estimate) $3,063,169 $3,244,754 $3,424,334 $3,600,880 $3,901,223
$ Total mortality (low estimate) $2,466,184 $2,621,815 $2,776,497 $2,929,350 $3,180,648
S Total mortality (high estimate) $2,806,591 $2,977,233  $3,146,442 $3,313,249 $3,583,366
$ PM mortality, all causes (low) $325,385 $340,847 $355,904 $370,465 $398,442
$ PM mortality, all causes (high) $665,791 $696,266 $725,847 $754,362 $801,159
$ PM infant mortality $552 $566 $577 $587 $607
S Total O; mortality $2,140,248  $2,280,403 $2,420,017 $2,558,298 $2,781,600
S 03 mortality (short-term exposure) $91,740 $97,740 $103,717 $109,636 $119,172
$ 0; mortality (long-term exposure) $2,048,508 $2,182,663 $2,316,301 $2,448,662 $2,662,427
$ Total asthma symptoms $48,738 $50,793 $52,735 $54,553 $59,889
$ PM, albuterol use $6 $6 $6 $6 $7
$ O3, chest tightness  $13,426 $13,992 $14,527 $15,027 $16,498
$ 03, cough  $15,837 $16,505 $17,136 $17,727 $19,461
S O3, shortness of breath  $6,775 $7,061 $7,332 $7,584 $8,326
S 03, wheeze $12,693 $13,229 $13,734 $14,207 $15,597
S Total incidence, asthma $59,035 $61,491 $63,813 $65,988 $73,078
S PM incidence, asthma $3,255 $3,331 $3,399 $3,458 $3,765
S Osincidence, asthma $55,780 $58,160 $60,415 $62,529 $69,312
S Total incidence, hay fever/rhinitis $6,591 $6,869 $7,133 $7,382 $8,229
$ PM incidence, hay fever/rhinitis  $360 $368 $376 $383 $419
S Os incidence, hay fever/rhinitis  $6,231 $6,500 $6,758 $6,999 $7,809
$ Total ER visits, respiratory $481 $503 $525 $546 $612
S PM ER visits, respiratory  $19 $20 $20 $22 $24
S Os ER visits, respiratory  $460 $483 $504 $525 $588
S Total hospital admits, all respiratory $290 $304 $319 $332 $373
$ PM hospital admits, all respiratory $64 $66 $67 $69 $76
$ O; hospital admits, all respiratory $227 $240 $251 $263 $297
S PM nonfatal heart attacks $1,143 $1,184 $1,222 $1,258 $1,394
$ PM minor restricted activity days $1,632 $1,682 $1,728 $1,770 $1,923
$ PM work loss days $706 $727 $746 $764 $834
$ PM incidence, lung cancer $79 $82 $85 $88 $97
$ PM Hospital Admissions cardio
cerebro and peripheral vascular disease $63 $65 $68 $70 $77
$ PM Hospital Admissions Alzheimer’s
$155 $161 $167 $172 $191
S PM Hospital Admissions Parkinson’s
$29 $30 $31 $32 $35
$ PM incidence, stroke $90 $92 $94 $96 $106
$ PM incidence, out-of-hospital cardiac
$18 $19 $19 $20 $23
$ PM ER visits, all cardiac outcomes $12 $13 $13 $14 $15
$ O3 ER visits, asthma $1 $1 $1 $1 $2
$ 03 school loss days, all causes $137,513 $143,503 $149,192 $154,548 $170,981
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Table C-7. CTFP-only annual statewide avoided incidence by category (2026-2030)

Health Outcome 2026 2027 2028 2029 2030
Total mortality (low estimate) 0.0614 0.0679 0.0777 0.1035 0.0948
Total mortality (high estimate) 0.1271 0.1351 0.1490 0.1966 0.1791
PM mortality, all causes (low) 0.0578 0.0597 0.0639 0.0840 0.0766
PM mortality, all causes (high) 0.1235 0.1269 0.1353 0.1772 0.1609
PM infant mortality 0.0001 0.0001 0.0001 0.0002 0.0001
Total O; mortality 0.0034 0.0081 0.0136 0.0193 0.0181
Os mortality (short-term exposure) 0.0001 0.0003 0.0006 0.0008 0.0008
Os mortality (long-term exposure) 0.0033 0.0078 0.0130 0.0185 0.0173
Total asthma symptoms 31.9847 36.8720 43.4820 57.2732 51.4438
PM asthma symptoms, albuterol use 28.3013 28.4730 29.7548 38.3406 34.1687
O3 asthma symptoms, chest tightness 1.0148 2.3140 3.7820 5.2161 4.7595
O3 asthma symptoms, cough 1.1970 2.7296 4.4612 6.1528 5.6142
O3 asthma symptoms, shortness of
breath 0.5121 1.1678 1.9086 2.6324 2.4019
O3 asthma symptoms, wheeze 0.9594 2.1877 3.5755 49313 4.4996
Total incidence, asthma 0.1783 0.2079 0.2474 0.3253 0.2911
PM incidence, asthma 0.1550 0.1548 0.1607 0.2056 0.1820
Osincidence, asthma 0.0233 0.0531 0.0867 0.1196 0.1091
Total incidence, hay fever/rhinitis 1.1274 1.3239 1.5854 2.0948 1.8844
PM incidence, hay fever/rhinitis 0.9783 0.9824 1.0246 1.3178 1.1722
Oz incidence, hay fever/rhinitis 0.1491 0.3416 0.5608 0.7770 0.7122
Total ER visits, respiratory 0.0443 0.0541 0.0667 0.0886 0.0799
PM ER visits, respiratory 0.0368 0.0370 0.0386 0.0496 0.0442
Os ER visits, respiratory 0.0075 0.0171 0.0281 0.0390 0.0357
Total hospital admits, all respiratory 0.0080 0.0084 0.0092 0.0119 0.0107
PM hospital admits, all respiratory 0.0077 0.0077 0.0080 0.0103 0.0092
Os hospital admits, all respiratory  0.0003 0.0007 0.0012 0.0016 0.0015
PM nonfatal heart attacks 0.0371 0.0377 0.0397 0.0515 0.0463
PM minor restricted activity days 42.0650 42.1619 43.8958 56.3878 50.0766
PM work loss days 7.1579 7.1682 7.4566 9.5721 8.4935
PM incidence, lung cancer 0.0046 0.0046 0.0049 0.0064 0.0057
PM Hospital Admissions cardio cerebro
and peripheral vascular disease 0.0058 0.0059 0.0062 0.0081 0.0073
PM Hospital Admissions Alzheimer’s
Disease 0.0178 0.0181 0.0193 0.0250 0.0226
PM Hospital Admissions Parkinson’s
Disease 0.0036 0.0036 0.0038 0.0048 0.0043
PM incidence, stroke 0.0043 0.0043 0.0045 0.0057 0.0051
PM incidence, out-of-hospital cardiac
arrest 0.0009 0.0009 0.0010 0.0012 0.0011
PM ER visits, all cardiac outcomes 0.0162 0.0165 0.0173 0.0223 0.0200
O; ER visits, asthma 0.0000 0.0001 0.0001 0.0002 0.0002
0Os; school loss days, all causes 2.1961 5.0367 8.2793 11.4847 10.5394
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Table C-8. CTFP-only annual statewide avoided incidence by category (2031-2035)

Health Outcome 2031 2032 2033 2034 2035
Total mortality (low estimate) 0.0846 0.0735 0.0437 0.0209 0.0060
Total mortality (high estimate) 0.1594 0.1382 0.0833 0.0412 0.0132
PM mortality, all causes (low) 0.0685 0.0597 0.0367 0.0189 0.0068
PM mortality, all causes (high) 0.1433 0.1244 0.0764 0.0392 0.0140
PM infant mortality 0.0001 0.0001 0.0001 0.0000 0.0000
Total Oz mortality 0.0160 0.0137 0.0069 0.0019 -0.0009
O3 mortality (short-term exposure) 0.0007 0.0006 0.0003 0.0001 0.0000
Os mortality (long-term exposure) 0.0153 0.0131 0.0066 0.0018 -0.0008
Total asthma symptoms 44,7619 37.9048 21.4411 9.4041 2.1225
PM asthma symptoms, albuterol use 29.8903 25.4864 15.3804 7.7661 2.8799
O3 asthma symptoms, chest tightness 4.0973 3.4214 1.6698 0.4513 -0.2087
O3 asthma symptoms, cough 4.8331 4.0358 1.9696 0.5323 -0.2462
Os asthma symptoms, shortness of
breath 2.0677 1.7266 0.8427 0.2277 -0.1053
O3 asthma symptoms, wheeze 3.8736 3.2346 1.5786 0.4266 -0.1973
Total incidence, asthma 0.2521 0.2123 0.1185 0.0506 0.0100
PM incidence, asthma 0.1581 0.1339 0.0802 0.0402 0.0148
Osincidence, asthma 0.0939 0.0784 0.0383 0.0103 -0.0048
Total incidence, hay fever/rhinitis 1.6394 1.3877 0.7780 0.3332 0.0659
PM incidence, hay fever/rhinitis 1.0235 0.8711 0.5247 0.2644 0.0979
Oz incidence, hay fever/rhinitis 0.6159 0.5166 0.2533 0.0688 -0.0319
Total ER visits, respiratory 0.0695 0.0588 0.0325 0.0134 0.0021
PM ER visits, respiratory 0.0386 0.0328 0.0198 0.0100 0.0037
Os ER visits, respiratory  0.0309 0.0260 0.0127 0.0035 -0.0016
Total hospital admits, all respiratory 0.0093 0.0079 0.0046 0.0022 0.0007
PM hospital admits, all respiratory 0.0080 0.0068 0.0041 0.0021 0.0008
Os hospital admits, all respiratory 0.0013 0.0011 0.0006 0.0002 -0.0001
PM nonfatal heart attacks 0.0409 0.0352 0.0214 0.0109 0.0041
PM minor restricted activity days 43.6530 37.0919 22.3081 11.2268 4.1504
PM work loss days 7.3976 6.2803 3.7739 1.8976 0.7009
PM incidence, lung cancer 0.0051 0.0044 0.0027 0.0014 0.0005
PM Hospital Admissions cardio cerebro
and peripheral vascular disease 0.0065 0.0056 0.0034 0.0017 0.0006
PM Hospital Admissions Alzheimer’s
Disease 0.0201 0.0173 0.0106 0.0054 0.0020
PM Hospital Admissions Parkinson’s
Disease 0.0038 0.0032 0.0019 0.0010 0.0004
PM incidence, stroke 0.0044 0.0038 0.0023 0.0011 0.0004
PM incidence, out-of-hospital cardiac
arrest 0.0010 0.0008 0.0005 0.0002 0.0001
PM ER visits, all cardiac outcomes 0.0176 0.0151 0.0092 0.0047 0.0017
O; ER visits, asthma 0.0002 0.0001 0.0001 0.0000 0.0000
0Os; school loss days, all causes 9.1249 7.6633 3.7614 1.0224 -0.4755
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Table C-9. CTFP + NMVES annual statewide avoided incidence by category (2026-2030)

Health Outcome 2026 2027 2028 2029 2030
Total mortality (low estimate) 0.0614 0.0949 0.1106 0.1424 0.1397
Total mortality (high estimate) 0.1271 0.1670 0.1881 0.2430 0.2326
PM mortality, all causes (low) 0.0578 0.0640 0.0694 0.0907 0.0844
PM mortality, all causes (high) 0.1235 0.1361 0.1469 0.1913 0.1772
PM infant mortality 0.0001 0.0001 0.0001 0.0002 0.0002
Total O; mortality 0.0034 0.0307 0.0410 0.0515 0.0552
Os mortality (short-term exposure) 0.0001 0.0013 0.0018 0.0022 0.0024
Os mortality (long-term exposure) 0.0033 0.0294 0.0392 0.0493 0.0528
Total asthma symptoms 31.9847 62.4103 73.6228 91.8670 90.2956
PM asthma symptoms, albuterol use 28.3013 30.5460 32.3062 41.3802 37.6130
O3 asthma symptoms, chest tightness 1.0148 8.7789 11.3831 13.9095 14.5145
O3 asthma symptoms, cough 1.1970 10.3555 13.4273 16.4075 17.1211
Os asthma symptoms, shortness of
breath 0.5121 4.4304 5.7446 7.0196 7.3249
Os3 asthma symptoms, wheeze 0.9594 8.2996 10.7616 13.1501 13.7220
Total incidence, asthma 0.1783 0.3674 0.4355 0.5409 0.5331
PM incidence, asthma 0.1550 0.1661 0.1744 0.2219 0.2003
Osincidence, asthma 0.0233 0.2013 0.2611 0.3190 0.3328
Total incidence, hay fever/rhinitis 1.1274 2.3497 2.8003 3.4941 3.4621
PM incidence, hay fever/rhinitis 0.9783 1.0538 1.1124 1.4223 1.2903
Oz incidence, hay fever/rhinitis 0.1491 1.2958 1.6878 2.0718 2.1718
Total ER visits, respiratory 0.0443 0.1046 0.1265 0.1575 0.1577
PM ER visits, respiratory 0.0368 0.0397 0.0419 0.0535 0.0486
Os ER visits, respiratory 0.0075 0.0649 0.0846 0.1039 0.1091
Total hospital admits, all respiratory 0.0080 0.0109 0.0122 0.0155 0.0147
PM hospital admits, all respiratory 0.0077 0.0083 0.0087 0.0111 0.0101
Os hospital admits, all respiratory  0.0003 0.0027 0.0035 0.0043 0.0046
PM nonfatal heart attacks 0.0371 0.0404 0.0431 0.0556 0.0510
PM minor restricted activity days 42.0650 45.2024 47.6266 60.8186 55.0805
PM work loss days 7.1579 7.6849 8.0901 10.3238 9.3417
PM incidence, lung cancer 0.0046 0.0050 0.0053 0.0069 0.0063
PM Hospital Admissions cardio cerebro
and peripheral vascular disease 0.0058 0.0063 0.0068 0.0088 0.0080
PM Hospital Admissions Alzheimer’s
Disease 0.0178 0.0195 0.0209 0.0270 0.0249
PM Hospital Admissions Parkinson’s
Disease 0.0036 0.0039 0.0041 0.0052 0.0048
PM incidence, stroke 0.0043 0.0046 0.0049 0.0062 0.0056
PM incidence, out-of-hospital cardiac
arrest 0.0009 0.0010 0.0010 0.0013 0.0012
PM ER visits, all cardiac outcomes 0.0162 0.0177 0.0188 0.0241 0.0221
O; ER visits, asthma 0.0000 0.0003 0.0004 0.0005 0.0006
0Os; school loss days, all causes 2.1961 19.1091 24.9197 30.6254 32.1404
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Table C-10. CTFP + NMVES annual statewide avoided incidence by category (2031-2035)

Health Outcome 2031 2032 2033 2034 2035
Total mortality (low estimate) 0.1471 0.1537 0.1423 0.1384 0.1357
Total mortality (high estimate) 0.2326 0.2312 0.1969 0.1760 0.1611
PM mortality, all causes (low) 0.0782 0.0714 0.0506 0.0350 0.0242
PM mortality, all causes (high) 0.1638 0.1489 0.1052 0.0726 0.0497
PM infant mortality 0.0001 0.0001 0.0001 0.0001 0.0000
Total Oz mortality 0.0687 0.0822 0.0916 0.1033 0.1114
O3 mortality (short-term exposure) 0.0029 0.0035 0.0039 0.0044 0.0048
Os mortality (long-term exposure) 0.0658 0.0786 0.0876 0.0989 0.1066
Total asthma symptoms 97.9645 104.8534 101.9344 103.2140 108.2422
PM asthma symptoms, albuterol use 34.1134 30.4556 21.1232 14.2974 10.1079
O3 asthma symptoms, chest tightness 17.5915 20.4972 22.2641 24.4971 27.0366
O3 asthma symptoms, cough 20.7508 24.1783 26.2626 28.8968 31.8925
Os asthma symptoms, shortness of
breath 8.8778 10.3442 11.2359 12.3629 13.6445
Os; asthma symptoms, wheeze 16.6311 19.3781 21.0486 23.1598 25.5607
Total incidence, asthma 0.5838 0.6299 0.6205 0.6355 0.6716
PM incidence, asthma 0.1804 0.1600 0.1102 0.0741 0.0520
Osincidence, asthma 0.4033 0.4699 0.5103 0.5615 0.6196
Total incidence, hay fever/rhinitis 3.8122 4.1357 4.0975 4.2194 4.4818
PM incidence, hay fever/rhinitis 1.1681 1.0409 0.7206 0.4868 0.3436
Oz incidence, hay fever/rhinitis 2.6441 3.0948 3.3769 3.7325 4.1383
Total ER visits, respiratory 0.1769 0.1950 0.1973 0.2065 0.2218
PM ER visits, respiratory 0.0440 0.0393 0.0272 0.0184 0.0130
Os ER visits, respiratory 0.1329 0.1557 0.1701 0.1882 0.2088
Total hospital admits, all respiratory 0.0148 0.0148 0.0130 0.0120 0.0119
PM hospital admits, all respiratory 0.0091 0.0081 0.0056 0.0038 0.0027
Os hospital admits, all respiratory  0.0057 0.0067 0.0074 0.0083 0.0093
PM nonfatal heart attacks 0.0467 0.0420 0.0294 0.0201 0.0143
PM minor restricted activity days 49.7613 44.2501 30.5493 20.5656 14.4481
PM work loss days 8.4321 7.4916 5.1673 3.4753 2.4391
PM incidence, lung cancer 0.0058 0.0052 0.0037 0.0025 0.0018
PM Hospital Admissions cardio cerebro
and peripheral vascular disease 0.0074 0.0067 0.0047 0.0032 0.0023
PM Hospital Admissions Alzheimer’s
Disease 0.0229 0.0208 0.0146 0.0101 0.0072
PM Hospital Admissions Parkinson’s
Disease 0.0043 0.0039 0.0027 0.0018 0.0013
PM incidence, stroke 0.0051 0.0045 0.0031 0.0021 0.0015
PM incidence, out-of-hospital cardiac
arrest 0.0011 0.0010 0.0007 0.0005 0.0003
PM ER visits, all cardiac outcomes 0.0201 0.0181 0.0126 0.0086 0.0061
O; ER visits, asthma 0.0007 0.0008 0.0009 0.0010 0.0011
0Os; school loss days, all causes 39.1770 45.9094 50.1524 55.4985 61.6026
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Table C-11. CTFP + NMVES annual statewide avoided incidence by category (2036-2040)

Health Outcome 2036 2037 2038 2039 2040
Total mortality (low estimate) 0.1383 0.1470 0.1557 0.1643 0.1671
Total mortality (high estimate) 0.1574 0.1669 0.1764 0.1858 0.1883
PM mortality, all causes (low) 0.0182 0.0191 0.0200 0.0208 0.0209
PM mortality, all causes (high) 0.0373 0.0390 0.0407 0.0423 0.0421
PM infant mortality 0.0000 0.0000 0.0000 0.0000 0.0000
Total Oz mortality 0.1200 0.1279 0.1357 0.1435 0.1462
Os mortality (short-term exposure) 0.0051 0.0055 0.0058 0.0061 0.0063
Os mortality (long-term exposure) 0.1149 0.1224 0.1299 0.1373 0.1399
Total asthma symptoms 110.8002 115.3399 119.6227 123.6238 127.0495
PM asthma symptoms, albuterol use 7.4142 7.5956 7.7589 7.9032 7.9991
O3 asthma symptoms, chest tightness 28.4835 29.6842 30.8191 31.8817 32.7990
O3 asthma symptoms, cough 33.5992 35.0156 36.3545 37.6079 38.6900
Os asthma symptoms, shortness of
breath 14.3747 14.9807 15.5535 16.0897 16.5527
O asthma symptoms, wheeze 26.9286 28.0638 29.1368 30.1413 31.0086
Total incidence, asthma 0.6912 0.7200 0.7472 0.7726 0.7945
PM incidence, asthma 0.0381 0.0390 0.0398 0.0405 0.0409
Osincidence, asthma 0.6531 0.6810 0.7074 0.7321 0.7536
Total incidence, hay fever/rhinitis 4.6166 4.8120 4.9971 5.1709 5.3212
PM incidence, hay fever/rhinitis 0.2519 0.2580 0.2634 0.2682 0.2714
Oz incidence, hay fever/rhinitis 4.3647 4.5540 4.7337 4.9027 5.0498
Total ER visits, respiratory 0.2308 0.2418 0.2523 0.2624 0.2713
PM ER visits, respiratory 0.0096 0.0098 0.0101 0.0103 0.0105
Os ER visits, respiratory 0.2213 0.2319 0.2422 0.2520 0.2608
Total hospital admits, all respiratory 0.0118 0.0124 0.0130 0.0135 0.0141
PM hospital admits, all respiratory 0.0019 0.0020 0.0020 0.0021 0.0021
Os hospital admits, all respiratory  0.0099 0.0104 0.0110 0.0115 0.0119
PM nonfatal heart attacks 0.0106 0.0110 0.0113 0.0117 0.0119
PM minor restricted activity days 10.6246 10.9480 11.2487 11.5251 11.7333
PM work loss days 1.7915 1.8442 1.8929 1.9374 1.9704
PM incidence, lung cancer 0.0013 0.0014 0.0014 0.0015 0.0015
PM Hospital Admissions cardio cerebro
and peripheral vascular disease 0.0017 0.0018 0.0018 0.0019 0.0019
PM Hospital Admissions Alzheimer’s
Disease 0.0054 0.0056 0.0058 0.0060 0.0062
PM Hospital Admissions Parkinson’s
Disease 0.0010 0.0010 0.0010 0.0010 0.0010
PM incidence, stroke 0.0011 0.0011 0.0012 0.0012 0.0012
PM incidence, out-of-hospital cardiac
arrest 0.0002 0.0002 0.0003 0.0003 0.0003
PM ER visits, all cardiac outcomes 0.0046 0.0047 0.0049 0.0050 0.0051
O; ER visits, asthma 0.0011 0.0012 0.0012 0.0013 0.0013
0Os; school loss days, all causes 64.9857 67.8163 70.5050 73.0359 75.2417
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D. Macroeconomic Impacts

D.1 Business Consumer Proportions

As stated in economic impacts analysis, Section 6.2.3 ERG modeled changes in business
expenditures as changes in revenue, depending on each industry's reliance on gasoline or diesel.
Table D-1 presents the share of demand for each fuel type across different sectors. These
estimates are based on data from the NEI.%¢

Table D-1. Business consumers by vehicle type

[indusiy =" Gasotine | iesel._|

Agricultural equipment 0.994% | 0.024%
Commercial equipment 0.409% | 0.507%
Construction equipment 8.217% | 0.254%
Industrial equipment 0.606% | 0.059%
Lawn and garden equipment 0.167% | 1.604%
Logging equipment 0.002% | 0.000%
Recreational equipment 0.010% | 0.300%
Underground mining equipment 0.014% | 0.000%
Combination long-haul truck 35.185% | 0.000%
Combination short-haul truck 30.610% | 0.271%
Motor home 0.186% | 0.387%
Other buses 0.219% | 0.000%
Refuse truck 0.178% | 0.002%
School bus 1.562% | 0.065%
Single unit long-haul truck 2.060% | 0.943%
Single unit short-haul truck 13.578% | 4.132%
Transit bus 0.327% | 0.139%
Light commercial truck 0.630% | 4.833%
Passenger car 0.188% | 29.101%
Passenger truck 4.857% | 56.111%
Motorcycle 0.000% | 1.268%
Total 100.0% | 100.0%

D.2 Updates tothe NMVES Analysis

As part of the data shared with BRG, ERG updated its previous NMVES macroeconomic analysis of
the ACC Il and ACT. ERG updated vehicle population and VMT by adjusting the baseline of the

8 U.S. Environmental Protection Agency, “2020 National Emissions Inventory (NEI) Data,” accessed May 29,
2025, https://www.epa.gov/air-emissions-inventories/2020-national-emissions-inventory-nei-data.
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NMVES analysis to the federal baseline, shown in Figure 4-1, which resulted in macroeconomic
changes for vehicle costs, sales taxes, fuel costs, and maintenance costs.
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Overall Impressions and Summary of Recommendations

This peer review was conducted in support of Washington State Department of Ecology’s
rulemaking for a new rule, Chapter 173-424 WAC, Clean Fuels Program Rule. As part of this
peer review, the International Council on Clean Transportation (ICCT) assessed the public
documents shared at the March 15, 2022 stakeholder meeting developed by Life Cycle
Associates. These documents included a draft carbon intensity model to inform the
development of the Clean Fuels Program (CFP) and the accompanying calculations and
supporting documentation. For this peer review, ICCT assessed the methodology and results of
the draft carbon intensity model, Washington Greenhouse Gases, Regulated Emissions, and
Energy Use in Technologies Model (WA-GREET), itself an update of a similar model used in
California (CA-GREET). In doing so, ICCT reviewed the calculations within the model for
internal consistency as well as consistency with other life-cycle models, compared the data
sources & assumptions to public data and the scientific literature, as well as assessed the
recommendations of the modelers for the inclusion of indirect land-use change (ILUC)
emissions outside of the model.

Overall, we find that the life-cycle fuel model updates developed by Life Cycle Associates (LC
Associates) largely follow the existing precedent set by the California Air Resources Board
(CARB) in its comprehensive life-cycle assessment (LCA) established in the California Low-
Carbon Fuel Standard (LCFS). The changes made within WA-GREET to tailor it to Washington
state-specific data on fossil fuel consumption and electricity production are largely aligned with
existing life-cycle assessment practices and are consistent with the intended scope of the
Washington Clean Fuels Program (WA CFP). We present a high-level summary of five key fuel
pathways’ emissions in Figure 1, illustrating the difference in their carbon intensity calculated for
Washington in WA-GREET against values calculated for California’s LCFS using CA-GREET.
The most impactful changes in the Washington analysis are the inclusion of a Washington state-
average carbon intensity for electricity (resulting in a 20% decrease in electricity grid carbon
intensity relative to California), and the proposed use of a different ILUC emission factor for corn
ethanol (a 17.5% decline in default corn ethanol carbon intensity relative to California). Changes
to the crude oil carbon intensity were much smaller, with less than 1% difference compared to
California petroleum products. Throughout this peer review, we document that there are several
assumptions made in the analysis or omissions based on data gaps that affect the emissions
estimates for petroleum products and electricity, and offer several recommendations on
addressing those data gaps and developing more accurate estimates.

Washington Clean Fuels Standard — Carbon Intensity Model Peer Review Page 2

NMED Exhibit 139-A



- -0.15%
Soy Biodiesel

- %
Corn Ethanol (Dry Mill) 17.46%

Electricity -20.28%

0.68%
Jet

0,
Diesel 0.87%

) -0.45%
Gasoline o

o
N
o

40 60 80 100 120
Well-to-Wheel Carbon Intensity (gCO,e/MJ)

mWA-GREET mCA-GREET

Figure 1: Comparison of well-to-wheel carbon intensities for a selection of fuel pathways for
WA-GREET and CA-GREET

We also note several areas in which LC Associates did not develop model updates that may
warrant updates prior to implementation of the WA CFP in order to reflect the latest scientific
understanding of fuel production and climate change. This includes expanding the analysis of
crude oil upstream emissions and refinery emissions to address data gaps and reflect state-
specific fuels and practices. This will affect the emissions attributable to petroleum products
used as a transportation fuel, as well as the emissions attributable to electricity and multiple fuel
pathways using petroleum as a process fuel. We also recommend that WA-GREET
incorporates updated global warming potential (GWP) values based on the IPCC’s Fifth
Assessment Report (AR5) to reflect an updated understanding of the climate impacts of
different non-CO; greenhouse gases (GHGs).

Indirect land-use change (ILUC) emissions are an important consideration within policy making
and must be calculated outside of a process-based attributional LCA model such as WA-
GREET. These emissions estimates are based on economic modeling and come with a degree
of epistemic uncertainty in addition to decision uncertainty. ILUC estimates may be limited by
data gaps for key parameters as well as structural choices relating to model design, scenario
design and risk tolerance. We note several methodological issues associated with the emission
factor chosen for corn ethanol in the LC Associates report, based on model design and the
emission factor model for land conversion. Therefore, we recommend using the full set of
CARB’s existing ILUC estimates for the WA CFP in the near-term, as well as further work to
assess land-use change emissions for the WA CFP context. We also recommend against
including a zero-ILUC value for cover cropped carinata, as there is not a definition of cover
cropping in the proposed CFP nor a system for verifying that feedstocks are in fact being grown
as a cover crop.
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Over the next several sections of this peer review, we evaluate the major changes made to the
WA-GREET and accompanying documentation. We first assess the methodology used for the
changes and evaluate the data sources used and then document the impact of these changes
on the calculated carbon intensity for relevant fuels. Where necessary, we provide
recommendations to improve the rigor of the analysis and address data gaps.

Fossil Fuel Carbon Intensity
Crude oil mix

The calculation of average carbon intensity (Cl) of WA'’s crude oil in 2017 is calculated primarily
on two parameters: (1) the crude oil mix in WA, i.e., the volumetric distribution of the types of
crude oil that comes from different location origins; and (2) crude oil Cl of each source, which
includes the GHG emissions during crude oil extraction and processing, as well as emissions
from transporting the oil to WA. Based on the two parameters, a volumetric weighted average CI
can be calculated to represent crude oil being used in WA. This crude oil Cl is then used for the
calculation of WA’s petroleum product Cls in 2017, specifically gasoline, diesel, and jet fuel.

In addition to petroleum that is refined within the state, WA also imports refined petroleum
products from Montana and Utah. A similar approach is adopted to estimate the volumetric-
weighted average CI for crude oils in those two states, and consequently state specific
petroleum Cls. The Cls, each of gasoline, diesel, and jet fuel, from the three states are then
weight-averaged for a final gasoline, diesel, or jet fuel Cl in WA, which serves as the baseline
for the CFP.

This section identifies potential improvements that could be made regarding the methodology
used to assess the mix of crude oils consumed in Washington as well as the calculation of the
total well-to-wheel CI of petroleum products estimated.

In the peer review process, we evaluated the mix of crude oils provided by Washington State
Department of Commerce and find that the estimation of total volumes and development of the
weighted average mix matched the underlying data. The data was sufficient to determine
country-level crude oil source data and identify suitable matches in California’s previous crude
oil life-cycle analysis. Data gaps on field level crude import data is not something that LC
Associates can resolve, but nonetheless can cause difficulties when developing a
comprehensive assessment of crude oil mix in WA. In the longer-term, a better understanding of
the crude oil mix and its impact on Washington’s fuel emissions can be achieved through
regular reporting of the crude oil imports into Washington, similar to the annual reporting for
California’s LCFS."

Crude oil from Canada can be categorized into conventional oil or oil sands and CI of each vary
significantly. However, the state-level import data by oil type in Montana and Utah does not
distinguish by source and thus is estimated. According to WA’s crude oil carbon intensity
analysis spreadsheet, the estimated distribution of conventional and oil sands from Canada in
the two states are based on two sets of assumptions. First, it assumes the imported oil is from
Alberta, based on Washington’s own imports. Second, the distribution is based on the split

" https://ww2.arb.ca.gov/resources/documents/Icfs-crude-oil-life-cycle-assessment
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between conventional (16%) and oil sands (84%) per oil production in Alberta. There are two
caveats using this split. First, there is no clarification if this split is based on the year 2017.
Second, the oil produced is not necessarily proportional to the share of oil exported — it is
possible that Alberta gives a preference to one type of oil for exports. The accuracy of
distribution assumption would have a significant impact on final crude oil Cl in the two states,
especially for Montana where 93% of its oil is from Canada. Therefore, we recommend that LC
Associates conducts additional research and collects more representative distribution data in
Montana and Utah. Past studies and reports may provide some data information on the split of
Canada’s conventional oil and oil sands for PADD 4 in general, which might be more applicable
than the current approach. A possible source is the Canadian Association of Petroleum
Producers (CAPP), such as the annual Crude Qil Forecast, Markets and Transportation report.?

Crude oil carbon intensity

Crude oil extracted from different oil fields can have differing upstream GHG emissions due to
variations in the energy and emissions associated with different extraction and processing
techniques. To assess the upstream CI of different sources of crude oil, LC Associates retrieved
Cl of each of its oil origin from an existing life-cycle assessment developed by the California Air
Resources Board (CARB) for California’s Low Carbon Fuel Standard (LCFS), which is based on
modeling performed using the Oil Production Greenhouse Gas Emission Estimator (OPGEE
2.0) model.?® To develop the weighted CI for Washington’s crude oil, the modelers made two
adjustments. First, the Cl values developed for the California LCFS have finer granularity in
terms of the regional oil fields than WA and thus the modelers use weighted average were taken
(e.g., averaging multiple fields’ CI’s in Saudi Arabia). Second, the modelers adjust the
transportation emissions for crude oil to account for the change in distance between California
and Washington. This section identifies potential improvements in these two adjustments.

Even within a single country or region, different crude oil fields can have very different carbon
intensities for extraction and processing. While Washington does not provide detailed data on
the specific oil fields that supply oil to WA, the California LCFS on the other hand provides ClI
and import values that are differentiated into oil fields for each country or U.S. state. Table 2
shows an example of how data fitting for oil from Brazil was carried out with the current
approach. Specifically, WA only has the total amount of oil imported from Brazil, while LCFS
provides import volume and CI by oil field in Brazil. In order to get a single Brazil Cl for WA, the
Cl of each ail field in LCFS is weighted by its corresponding import volume in California. Such a
data fitting approach is done for almost all oil origins that export to WA, except for Canada,
Brunei, and Papua New Guinea. A potential problem with this approach is that the weighted
average of the by oil field mix imported in California does not be able to represent the
distribution in WA and thus the calculated average of imports in Washington is inaccurate.

2 CAPP’s 2017 Crude Oil Forecast, Markets and Transportation report
http://www.oscaalberta.ca/wp-content/uploads/2017/06/CAPP-2017-Crude-Qil-Forecast.pdf
3 https://ww2.arb.ca.gov/resources/documents/Icfs-crude-oil-life-cycle-assessment
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Table 1. An example of how Cl from LCFS is fitted into Washington with current approach,
using oil imports from Brazil as an example.

Data available in Data 2017 import Carbon Carbon intensity
WA available in volume by oil intensity in WA

LCFS field

(thousand bbl
: per year) :

2017 5,855 Brazil — 3,457.3 5.54 Brazil 5.86
total thousand Iracema
volume  bbl per (Cernambi)
imported year Brazil — Lula 7,652 6.24 Weighted average
from Brazil — Ostra  1,608.7 5.65 based on oil field
Brazil Brazil — 600.4 416 volume and Cl in

Peregrino LCFS

Brazil — Polvo | 298.9 4.31

An alternative approach when lacking the actual oil field volumetric data is to match fuels to Cl’s
based on oil properties. For example, the Crude Imports dataset from EIA differentiates the
import volume from each country into five crude oil grades: light sweet, light sour, medium,
heavy sweet, and heavy sour.* The categorization of light vs heavy is based on the oil's API
gravity number. The higher API, the lighter the oil. The categorization of sour vs sweet is based
on the sulphur content in the oil. High sulphur means sour and low means sweet. Other
datasets on crude oil might provide oil categorization for oil fields that are on the LCFS list and
relevant for WA, or might provide the oil property information (i.e., APl and sulphur content) on
oil fields, such as the one from Eurostat.® By matching the oil fields with the import volume by oil
grade from EIA, the oil field Cl values can be weight-averaged based on WA specific volume
information rather than California’s information. Table 3 illustrates this alternative approach,
again using oils from Brazil as an example. In this alternative approach, only oils from Iracema,
Lula, and Peregrino oil fields are taken into account for Cl fitting, as these are the ones that
match with the imports information from EIA. The new CI of Brazil’s oil into WA is thus estimated
to be 5.76, compared to 5.86 per currently used approach—a minor difference. This alternative
approach might be able to estimate country or state level crude oil Cl values that are more
representative of the cases in WA. Nonetheless, neither the currently adopted approach nor the
proposed alternative approach can provide truly accurate field-level crude oil Cls for WA. In the
longer term, particularly if a crude oil carbon intensity is revaluated later on in the lifetime of the
CFP, WA could consider implementing a reporting system to track imports by oil field to develop
more accurate crude oil ClI’s for the CFP.

4

https://www.eia.gov/petroleum/imports/browser/#/?d=000004000480&dt=RS&e=2021&f=a&gg=i
&0=000000000000000000000000000&0d=d&ot=CTY&s=2017&vs=PET_IMPORTS.CTY_AO-
RS_WA-LSW.A

S https://ec.europa.eu/eurostat/documents/38154/42198/ESTAT-ENERGY-COIR-July-
2020.xIsx/ff082ff5-918b-0d3a-21d7-18550f1ed49d
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Table 2. An alternative approach to fit crude oil Cl from LCFS into Washington, using oil imports
from Brazil as an example.

2017 import volume by Oil grade produced Carbon Fitted carbon intensity of
oil grade from EIA by oil field intensity Brazil’s oil for WA
(thousand bbl per year) from
_ LCFS _
Brazil — Brazil — Iracema Medium Current Alternative
heavy (Cernambi) approach approach
sour
Brazil - 5037 Brazil — Lula Medium sweet 6.24 5.86 5.76
medium Brazil — Ostra Heavy sweet 5.65
Brazil — Peregrino Heavy sour 4.16 Weighted Weighted
Brazil — Polvo API of 20 but no 4.31 average average
information on sulphur based on oil | based on
content (i.e., heavy but field volume | WA’s
unknow sweet or sour) and Cl in imported oil
LCFS grade
volume and
Clin LCFS

The LCFS crude oil Cl list does not provide information for oils imported from Brunei and Papua
New Guinea, while the two countries make up 0.5% of the oil imports in WA. Therefore, these
two countries, thus their oil volumes, are completely omitted when calculating the WA state
average crude oil Cl from different origins. In other words, the weighted average Cl is calculated
based on the remaining 99.5% alone. Because the contribution of petroleum of these two
countries is a small share of the total, the current approach likely only makes a minor impact on
the final crude oil Cl. However, for comprehensiveness, a literature review on crude oil Cl in
these two countries could be conducted. For example, one previous study that used OPGEE 2.0
to estimate country level crude oil Cl estimates emissions from crude oil produced from these
two countries.® Alternatively, an OPGEE assessment could be developed to estimate the Cl for
crude oil produced in these two regions.

Regarding crude oil Cls for Montana and Utah, the supplemental documentation does not
provide the data source for the Cl of crude oil produced in Wyoming, which is used when
calculating the weighted average CI for both Montana and Utah. Although the spreadsheet
indicated that Cl value is from OPGEE, it is hard-coded and not shown in the LCFS’s Cl list in
the spreadsheet. It is also not clear regarding how to get the simple averaged CI value of all
Utah sources of crude oil, which is used when calculating the weighted average Cl for Utah. The
LCFS’s Cl list in the spreadsheet only provides one single CI value for Utah, which is 6.92 and
differs from the hard-coded average Utah-sourced crude oil Cl, which is 6.03. We recommend
updating the supplemental documentation to provide additional information on crude oil ClI
sourced from Wyoming and Utah.

Crude oil produced in Montana contributes to less than 2% of the crude oil refined in Montana.
However, there is not a corresponding CI estimate for Montana crude oil in California’s LCFS
data. Therefore, this source is omitted when calculating the weighted average CI in Montana.
This omission has a minor impact, as the share of Montana-sourced oil is only approximately
0.1% of WA crude oil consumption, based on the assumption that Montana supplies 6% of

8 https://www.science.org/doi/10.1126/science.aar6859
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Washington’s petroleum. For comprehensiveness, the OPGEE model could be used to estimate
a carbon intensity for crude oil extracted in Montana.

Crude oil transportation emissions

The crude oil Cl's developed by CARB include emissions during crude oil transportation using a
variety of modes. However, these emissions are applicable for oils imported to California, while
the transportation distance of oils from the same origin to California and to WA are necessarily
different distances thus it is necessary to adjust the Cls. To summarize the approach used to
adjust transportation distances, the emissions for the distribution of crude oil are estimated by
multiplying the transport distance for the crude oil by a mode-specific (cargo ship, rail, or
pipeline) emission factor for transportation. Depending on the source of crude oil, these
adjustments either increase or decrease the transportation emissions for that crude oil, based
on the oil field’s distance to Los Angeles vs. Seattle. If the distance from the crude oil source to
Seattle is shorter, the emissions are reduced, whereas if it is further, the transportation
emissions increase.

Though the methodology used to adjust transport distances for crude oils is sound, we
recommend additional detail to document the approach in the supplementary documentation.
Additional detail is necessary regarding the transportation of oils from Canada. The OPGEE2.0
assumed oils from Canada to be first transmitted through pipeline from Edmonton to Vancouver,
which are then transported to the Los Angeles, California through vessel. In the case of
Canadian oils to WA, the pipeline transmission from Edmonton to Vancouver would remain,
while the needed distance adjustment is switching from vessel transport between Vancouver
and LA to vessel or pipeline or rail transport between Vancouver and Seattle. However, such a
description is not well documented in the spreadsheet, nor in the supplementary, which could
lead to confusions and misinterpretations.

Currently, there is no distance adjustment for crude oils used in Montana and Utah. This means
the California’s OPGEEZ2.0 ClI values are used directly. However, better estimates could be
done for the oils in these two states. For Montana, it only needs to consider crude oil
transported from Wyoming and Canada. First, a search on whether there was oil pipeline in
2017 between Wyoming and Montana. If no pipeline, then rail transport is highly likely and
locations of oil refineries in Montana and locations of oil fields in Wyoming could be identified for
an estimate of rail transport distance between the two states. The transport from Wyoming to
California is likely found from the OPGEE dataset that is being used for the CI of oil sourced
from Wyoming. Based on these sets of information, a distance adjustment for oils from
Wyoming could be done. Regarding the adjustments for oils from Canada, it is likely to have rail
transport from Canada to Montana, as in 2017, there appeared to be no existing pipeline
between western Canada and Montana, according to the 2017 CAPP report.” A similar distance
adjustment approach could be taken per rail transport from Canada to WA.

For Utah, the state report that provided volume information also specified pipeline imports of oils
from Colorado, Wyoming, and Canada. Therefore, pipeline distance adjustment for the three
origins could be conducted following similar approaches as for WA adjustments. We

7 http://www.oscaalberta.ca/wp-content/uploads/2017/06/CAPP-2017-Crude-Oil-Forecast.pdf
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recommend that LC Associates incorporate transport distance adjustments for crude oils refined
in Montana and Utah, consistent with the updates for crude oils refined in Washington.

The WA'’s crude oil carbon intensity analysis spreadsheet notes that emission factors for crude
oil by transportation mode are retrieved from OPGEE 2.0 but does not explain how these
emission factors differ from CA-GREET 3.0. Using emission factors from OPGEE 2.0 is
internally consistent with the approach to calculate upstream crude oil emissions within OPGEE
2.0.8 To better understand the impact of this choice, Table 4 compares the emission factors of
different transportation modes in WA'’s crude oil calculation spreadsheet (sourced from OPGEE
2.0) and WA-GREET. Using the emission factors from WA-GREET in place of OPGEE would
change the average crude oil Cl in WA from 12.57 gCO2e/MJ to 12.63 gCO2e/MJ, a 0.6%
difference.

Table 3. Transportation emissions factors in OPGEE 2.0 and WA-GREET

Transportation WA crude oil carbon WA-GREET Percentage
mode intensity analysis difference

spreadsheet (sourced

g/MMBtu-mi  g/MJ-mi gCO2e/MMBtu- gCO.e/MJ-
mi mi

Ocean tank 0.124 0.00012 0.204395 0.000194 65%
1.696 0.00161 0.60723 0.000576 -64%
0.49 0.00046 1.85608 0.001759 279%

GET 1.252 0.00119 0.738804 0.0007 -41%
4.257 0.00404 3.400397 0.003223 -20%

Refining carbon intensity

The weighted-average crude oil Cl in each of WA, Montana, and Utah is then used to estimate
the CI of petroleum products, particularly gasoline, diesel, and jet fuel, that are produced within
the three states. Ultimately, the Cl of each petroleum product is weighted by volume share of
the three states for a WA average Cl. These weight-average Cls serve as the baselines for
policy targets of GHG emission reductions. The estimation of petroleum Cl depends largely on
refinery assumptions. Particularly, previous studies found that the properties of crude oil, the
configuration of the refinery, as well as the finished product slate all affect the energy intensity
and the consequent GHG emissions from petroleum production.®

The upstream emissions for the weighted crude average mix are combined with refinery and
combustion emissions to develop a well-to-wake emission factor for gasoline, diesel, and jet fuel
in the “Petroleum” tab in WA-GREET. In the current approach, for gasoline and low-sulfur diesel
in WA, the refining assumptions, such as the energy efficiency and share of process fuels, are

8 We note that it would be helpful to clarify the unit of emission factors in the spreadsheet if it is
grams of COz equivalent (it is currently g/MMBtu/mi)
% https://pubs.acs.org/doi/full/10.1021/es5010347
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using the U.S. average values. Comparing these assumed values to CA-GREET 3.0, the
gasoline assumptions are different, while the assumptions for low-sulfur diesel are the same.

The refinery assumptions for each type of the petroleum product are estimated using the
methodology by Elgowainy et al. (2014).'° Specifically, an overall energy efficiency at the
refinery level is first estimated. This efficiency is then adjusted for each petroleum product
through energy allocation based on the energy intensity of the process units and their
contributions to the product yields, for example, fluid catalytic cracking, catalytic reformer,
hydrocracker, and alkylation units that contribute to gasoline. Similarly, the process fuel is also
energy-allocated among products at the process unit level. Through this process, the product-
specific energy efficiency and process energy can be derived with a production-weighted
average.

To understand whether using U.S. average or California’s assumptions are comparable for the
refineries in WA, we collect the refinery capacity information in WA, California, and the U.S.
from EIA, shown in Table 5."" Though we do not have detailed information on the refinery
configurations for Washington'’s refineries, we draw upon EIA data to on the installed capacity
by volume to infer its average configuration. The comparison of refinery capacity between
Washington, California illustrated in Table 5 suggests that WA and California have similar profile
for refinery operations; these values are also close to the U.S. average. Therefore, using
California’s or U.S. average assumptions for refining parameters likely yield a similar estimate.
We note that the underlying assumptions and calculations of the petroleum CI values in
Montana and Utah are also not included in WA-GREET and these values are instead hard-
coded in the petroleum sheet. We therefore recommend that these calculations are included
within the model for transparency.

Table 4. Refinery Capacity in Washington, California, and the United States in 2017

Refinery type breakdown (vol%) Washington California U.S. average

24% 22% 21%
7% 9% 7%
12% 13% 14%
0.2% 0.3% 0.2%
5% 9% 6%
12% 7% 9%
38% 39% 42%
2% 1% 1%

Although we find that LC Associates’ current approach largely aligns with existing practices in
California, we note that transparency and accuracy of the crude oil Cl could be improved
through a dedicated refinery LCA. Concurrent with our recommendation for use of OPGEE to
assess the LCA emissions for the specific crude oils used in Washington, a dedicated refinery
LCA model could be used to assess the emissions attributable to petroleum products in

10 https://pubs.acs.org/doi/full/10.1021/es501034 7#notes-1
" https://www.eia.gov/dnav/pet/pet_pnp_cap1_dcu_nus_a.htm
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Washington specifically. For example, the open-source Petroleum Refinery Life Cycle Inventory
Model (PRELIM) model could be used to combine fine resolution data on imported crudes with
in-state refinery specifications.’? In the long run, particularly if the fossil fuel baseline for
petroleum fuels is subject to revision, this level of additional analysis could enhance the
accuracy of the fossil fuel baseline emissions estimates.

Inclusion of fossil jet fuel

We first note that the draft CFP rule does not obligate conventional fossil aviation fuel as a
deficit generating fuel and these fuels are except from the program. However, the draft rule
does specify that alternative jet fuels are to be compared to benchmarks established within the
program—though it does not specify a benchmark value for conventional jet fuel. The draft WA-
GREET model developed by LC Associates includes a separate fossil jet fuel baseline
estimated for the WA crude oil mix of 89.98 gCO.e/MJ.

The estimated fossil jet fuel baseline is calculated by inputting the previously-derived WA
upstream crude oil upstream CI and calculating downstream emissions on a consistent basis
with the calculations in CA-GREET 3.0. The input assumes a WA-only crude mix, and does not
take into account domestic imports from Utah and Montana, which had been done for diesel and
gasoline. We note there is no documentation to describe the approach to estimating the refinery
emissions attributable to jet fuel; this value appears to be based on the existing CA-GREET 3.0
analysis, changing the source of crude oil. Table 6 summarizes the differences in key
assumptions for jet fuel between U.S. average and WA-GREET.

12 https://www.ucalgary.ca/energy-technology-assessment/open-source-models/prelim
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Table 5. Differences in refinery assumptions for jet fuel between GREET 2021 and WA-GREET

Jet fuel

WA-GREET (sourced from GREET 2021
CA-GREET 3.0)

Energy efficiency
94.9%

Share of residual

95.4%

oil 22% 25.1%
Share of natural
gas 71.8% 60.1%
Share of electricity
4.1% 4%
Share of hydrogen
1.7% 10.7%
Share of butane
NA
Share of
blendstock NA
Share of N-butane
0.27% 0.1%
Share of GTL
0.09% 0%

Though fossil jet fuel is not obligated in the CFP, we recommend the inclusion of a fossil jet
baseline in the policy, as jet fuel has meaningfully different WiW emissions from road fuels. In
practice, this means that displacing jet fuel has different climate outcomes than displacing diesel
or gasoline, as it is estimated to have approximately 10gCO2e/MJ lower WtW emissions than
either road fuel. The WA-GREET emissions estimate for fossil jet is consistent with estimates of
the jet WtW emissions conducted for California’s LCFS (89.37 gCO2e/MJ) and the international
Civil Aviation Organization (89 gCO.e/MJ)."™ Therefore, we recommend that the WA-GREET
benchmark for fossil jet fuel is included within the WA CFP similar to the inclusion of a fossil jet
fuel baseline for the opt-in aviation fuel pathway within the California LCFS, so as to ensure the
accurate crediting of alternative aviation fuels. As in California, though the benchmarks for
different fossil fuels would start at different levels, they would converge over the lifetime of the
program as the overall Cl target declines. Further, we recommend that the documentation is
updated to reflect the methodology used to calculate the upstream refining emissions for WA jet
fuel, as well as to ensure consistency with the methodology to calculate the crude oil mix and
refinery emissions of road fuels in the program.

Electricity Grid Carbon Intensity

One of the major changes necessary to adapt the GREET life-cycle model used for California’s
LCFS to Washington is to model the electricity grid carbon intensity of Washington. This change
is not only used directly to estimate emissions from electric vehicle charging, but also to

3 https://www.sciencedirect.com/science/article/pii/S1364032121006833
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estimate the emissions for other fuels pathways that utilize electricity as an input. In general, LC
Associates follows much of the same methodology as CARB does for California to estimate the
average state-wide emissions intensity for Washington’s electricity grid. The largest change in
methodology is the introduction of a new grid electricity region integrated into the model, labeled
WAMX, that represents the average electricity mix of electricity produced and consumed in
Washington. This electricity mix is derived from a disclosure report published by the WA
Department of Commerce (herein referred to as “Commerce”) for the year 2018.% In 2018,
hydropower made up the largest share of reported electricity production (59%) followed by coal
(10%) and natural gas (7%). That year, a significant share of electricity was also attributed to
“unspecified” sources defined as “electricity obtained in a transaction where the seller does not
identify a specific generating source” (p. 3)."® LC Associates does not document the rationale
for selecting the 2018 electricity data rather than the most recently published (2020) or baseline
year (2017) electricity mix assumptions.

In the WA-GREET model, electricity mix shares reported in percentages are combined with life-
cycle emission factors reported in grams of carbon dioxide equivalent (CO-¢) per kilowatt-hour
of electricity to estimate the GHG emissions associated with producing a unit of electricity. To
integrate WA fuel mix assumptions into the GREET model, LC Associates allocated electricity
production data among fuel sources that already have an existing emission factor in GREET.
This includes allocating “landfill gas”, and “unspecified” electricity toward the natural gas
category and “waste” (i.e., waste-to-energy) and “other biogenic” electricity toward the residual
oil category. Together, these sources comprise 13.2% of the WA electricity mix. The results of
this reallocation in percentage fuel shares delivered to WA state end-users are presented in
Table 7.

4 Greg Nothstein and Michael Furze, “Washington State Electric Utility Fuel Mix Disclosure
Reports for Calendar Year 2018” (Washington State Department of Commerce,

November 7, 2019).

'S Ibid
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Table 6. Average fuel mix delivered to WA state end-users

Source 2018 WA fuel mix Reallocated WA
(Commerce) fuel mix (LC

Associates)

59.16%

59.16%
Unspecified 12.93% N/A
10.22% 10.22%

m 7.33% 20.46%
m_ 4.75% 4.75%
_ 4.58% 4.58%
_ 0.28% 0.28%
0.45% 0.45%

Biogas (landfill 0.20% N/A
gas

Other Biogenic 0.05% N/A
Waste 0.04% VA

Petroleum 0.02% 0.10%

Geothermal 0.004% 0.004%

We recommend that LC Associates update the model assumptions for two reasons:

1) estimated fuel mix shares in the reallocated scenario do not align with historical data and

) LC Associates’ reallocation methodology is not consistent with methodology previously
adopted by Commerce to assign fuel mix shares to “unspecified” electricity generation. We
further recommend that LC Associates could further refine their allocation shares by modifying
the GREET model to include emission factors for landfill gas and incinerated waste electricity.

N

Because unspecified electricity is the second largest source of electricity in the original grid mix,
the decision to allocate it all to natural gas is potentially significant; the result is a sharp increase
in the assumed share of natural gas in the electricity grid. In energy terms, Commerce
estimated that the quantity of natural gas electricity delivered to Washington end-users in 2018
was 6.86 TWh while LCA estimated that this value increases to 19.14 TWh following
reallocation. To measure the annual state fuel mix, Commerce obtains documents from the
Energy Information Authority (EIA) and Environmental Protection Agency (EPA) to aggregate
electricity produced at specific generation facilities in addition to data on “unspecified power
purchases” for which the electricity source is unknown. Until 2019, Commerce was statutorily
required to assign fuel shares to unspecified power generation consistent with methodology
outlined in 19.29A.060 RCW Section 4.'® Section 4 directs electricity retail suppliers to allocate
“unspecified” power purchases among generation sources based on the grid makeup of the bulk
power market, the Northwest Power Pool. More specifically, retail suppliers are directed to

'6 Washington State 56th Legislature, “Electricity Products - Fuel Mix Disclosure,” Pub. L. No.
RCW 19.29A.060, § 4, Chapter 213 (2000), https://lawfilesext.leg.wa.gov/biennium/1999-
00/Pdf/Bills/Session%20Laws/House/2565.SL.pdf?cite=2000%20¢c%20213%20%C2%A7%204.
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calculate their product fuel mix as the “weighted average of the megawatt-hours from declared
resources and the megawatt-hours from the net system power mix for the previous calendar
year according to the proportion of declared resources and net system power contained in the
electricity product.” In 2019, House Bill 1428 revoked this requirement and instead directed
Commerce to report “unspecified” power as a separate category.'” This bill change simplifies
the reporting process and requires no product reallocation.

We compare disclosed natural gas production before House Bill 1428 was passed to natural
gas production estimated between 2018-2020 using the reallocation methodology adopted by
LCA (Figure 2). We find that between 2017-2018, generation estimates increased 86%, a sharp
increase from previous trends. We review project data to confirm that no new natural gas
capacity was built in the Northwest Power Pool market after 2017® to rule out the possibility
that this upswing is attributed to new natural gas power capacity. However, because natural gas
power plants can be easily dispatched, the quantity of natural gas electricity supplied to the grid
can fluctuate year over year.

25

20

15
1
0

2012 2013 2014 2015 2016 2017 2018 2019 2020

Natural gas electricity production
(TWh)
o

m Commerce methodology m LC Associates methodology

Figure 2: Estimated quantity of natural gas electricity delivered to WA state end-users (2012-
2020)

7 Washington State 66th Legislature, “Electricity Product Attributes - Disclosure,” Pub. L. No.
RCW 19.29A.060, Chapter 222 15 (2019).

'8 Northwest Power and Conservation Council, “Map of Power Generation in the Northwest,”
accessed March 30, 2022, https://www.nwcouncil.org/energy/energy-topics/power-supply/map-
of-power-generation-in-the-northwest/.
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LC Associates’ allocation methodology is a coarser approach than the methodology adopted by
Commerce and assumes that all undeclared electricity is sourced from natural gas power
plants. Presumabily, this is because unspecified power purchases are typically made via short-
term transactions in bulk power markets when localized electricity generators cannot meet real-
time energy demand.'® Although natural gas “peaker” plants are dispatchable and commonly
used for periods of high electricity demand, they are not the only power generation source used
for this purpose. An economic dispatch curve of electricity generated within the Western
Interconnection region indicates that biomass units are the most likely to be sourced from during
periods of maximum demand, followed by natural gas, and coal generating units.?°
Hydroelectric power can also be dispatched very quickly to meet excess electricity demand.?'
Renewable energy generation sources may also be a source of unspecified power; however,
since they typically bundled with a renewable electricity credit (REC), electricity generated at
these facilities is less likely to be unclaimed.?? Finally, unspecified power is not limited to spot
market purchases; thus, any resource on the bulk power market may be drawn from for this fuel
category.

We follow Commerce’s previous allocation methodology to provide a more precise estimate of
fuel mix allocation within Washington in 2018. We compare these results to the fuel mix
estimated by LCA and the fuel mix estimated by Commerce in 2017 (Table 8). Using this
methodology, the share of natural gas electricity in the grid mix drops from 20.5% to 10.4% and
is more closely aligned with previous disclosure reports.?® This re-allocation has a minor impact
on the average electricity emissions, reducing them by approximately 6 gCO.e/kWh.

' Nothstein and Furze, “Washington State Electric Utility Fuel Mix Disclosure Reports for
Calendar Year 2018.”

20 Alan Jenn, “Electricity Dispatch Model,” UC Davis Plug-In Hybrid & Electric Vehicle Research
Center, accessed March 31, 2022, https://phev.ucdavis.edu/project/electricity-dispatch-model/.
21 U.S. Department of the Interior Bureau of Reclamation Power Resources Office,
“Hydroelectric Power,” July 2005, https://www.usbr.gov/power/edu/pamphlet.pdf.

22 Michael Nyberg, “2019 Total System Electric Generation,” California Energy Commission
(California Energy Commission, current-date), https://www.energy.ca.gov/data-reports/energy-
almanac/california-electricity-data/2020-total-system-electric-generation/2019.

23 Nothstein and Furze, “Washington State Electric Utility Fuel Mix Disclosure Reports for
Calendar Year 2018”; Greg Nothstein and Michael Furze, “Washington State Electric Utility Fuel
Mix Disclosure Reports for Calendar Year 2017” (Washington State Department of Commerce,
November 2018).
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Table 7. Comparison of LC Associates and ICCT fuel allocation methodology

Source 2017 Electricity Mix 2018 Electricity 2018
(Commerce) Electricity Mix

67.7% -
Unspecified 0.0% N/A -
13.4% 10.2% 13.6%

m 10.8% 20.5% 10.4%
m_ 4.2% 4.8% 5.1%
_ 2.8% 4.6% 4.6%
m_ 0.0% 0.3% 0.3%
0.6% 0.5% 0.7%

Biogas (landfill 0.1% N/A 0.2%
gas

0.0% N/A 0.05%
m 0.2% N/A 0.04%
0.1% 0.1% 0.19%
0.0% 0.0% 0.004%

Emission factor assumptions for secondary generation pathways

Because the fuel mix categorization listed in annual Commerce reports is not directly
translatable to the GREET model, LC Associates assigned all unspecified power purchases
toward resources with existing emission factors (EFs) in GREET. This includes attributing
natural gas emissions to landfill gas electricity generation and residual oil emissions to the
“other biogenic”, “petroleum”, and “waste” electricity categories. All other generation sources
together comprising 64% of the total grid mix) are lumped within an “other” fuel category and
assigned an emission factor of 0.0034 gCO2e/MJ. This small quantity of emissions is attributed
to fugitive carbon dioxide emissions from geothermal power plants.?* Although LC Associates
did not explicitly state their reasoning in supporting documentation, these allocations are
presumably based on the assumption that landfill gas has similar emission factors to natural gas
and other biogenic, petroleum and WTE have similar emission factors to the residual oil
electricity pathway. We review the literature and find that there are significant differences among
life-cycle EFs for the waste-to-energy and residual oil pathways and smaller differences among
the EFs for landfill gas and natural gas.

—

Producing electricity from the incineration of waste (i.e., waste-to-energy [WTE]) is common
practice in urban areas. Within Washington, the Spokane Waste-to-Energy Plant provides a

24 J. L. Sullivan et al., “Life-Cycle Analysis Results of Geothermal Systems in Comparison to
Other Power Systems.,” October 11, 2010, https://doi.org/10.2172/993694.
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small share of electricity to the grid region managed by Avista utilities.?® Avista does not publicly
disclose facility-specific electricity data; however, its overall resource mix indicates that its
percentage production share is less than 1%.% The other commercial WTE facility located
within the NWPP is in Marion County, Oregon. The life-cycle emissions impact of incinerating
waste is largely dependent upon its material composition, specifically its energy-weighted share
of biogenic waste. The combustion emissions of the biogenic share of waste are typically
treated as zero whereas the non-biogenic portion (e.g. plastics) have a carbon intensity that is
comparable to petroleum-based products. ECY reports that 99.9% of incinerated waste at the
Spokane facility is classified as municipal/commercial and the remainder as “medical waste”
and “special waste”.?” Further, a recent survey of the state’s municipal solid waste (MSW)
stream found that approximately 53% of the post-recycle waste stream is composed of organic
material. As recycling practices improve over time, we expect that the biogenic share of MSW
will increase, followed by a decrease in its associated electricity EF.

Pfadt-Trilling et al. conducted a life-cycle analysis of electricity generated via MSW incineration
using data from a WTE facility located in New York. 28 This study used a system expansion
approach that quantified avoided emissions relative to a business-as-usual case scenario.
Pfadt-Trilling found that the WTE electricity pathway has an emission factor (EF) of 0.082 kg
CO2e/kWh when system expansion is used and an EF of 0.775 kg CO.e/kWh when avoided
emissions are unaccounted for. We convert these factors to gCO2e/MJ assuming a calorific
value of 10 MJ/kg for MSW?° and conversion efficiency of 0.693 kWh per kg of MSW incinerated
taken directly from the life-cycle study. The converted EFs range between 5.7 and 53.7
gCO02e/MJ. For comparison, the WA-GREET model reports an EF of 80.9 gCO2e/MJ for
electricity produced from residual oil. Thus, LC Associates’ assumption that incinerated waste
electricity has an EF equivalent to electricity derived from residual oil is likely to vastly overstate
this pathway’s emissions impact.

Like Pfadt-Trilling, ECY could conduct a case-specific analysis of the Spokane WTE facility to
estimate an EF for “waste” electricity to be incorporated into the WA-GREET model. For WTE
produced at other facilities on the bulk power market, a regional average emissions factor may
be more appropriate. Washington has a higher recycling rate than New York state, so we would
expect the case-specific EF to be higher than the Pfadt-Trilling et al. study. In that study, the
authors assume a waste composition of 60% biomass and 40% non-biomass materials in the
waste stream, relative to the 53% biogenic waste share measured by ECY.

25 “Waste to Energy Plant,” Spokane City, March 31, 2022,
https://my.spokanecity.org/solidwaste/waste-to-energy/.

% Avista utilities, “About Our Energy Mix,” accessed March 31, 2022,
https://www.myavista.com/about-us/about-our-energy-mix.

27 Washington State Department of Ecology, “Solid Waste & Recycling Data,” 2022,
https://ecology.wa.gov/Research-Data/Data-resources/Solid-waste-recycling-data.

2 Alyssa R. Pfadt-Trilling, Timothy A. Volk, and Marie-Odile P. Fortier, “Climate Change
Impacts of Electricity Generated at a Waste-to-Energy Facility,” Environmental Science &
Technology 55, no. 3 (February 2, 2021): 1436—45, https://doi.org/10.1021/acs.est.0c03477.
2 |EA Bioenergy, “Municipal Solid Waste and Its Role in Sustainability,” 2003,
https://www.ieabioenergy.com/wp-content/uploads/2013/10/40_IEAPositionPaperMSW.pdf.
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We also review the EF of landfill gas-generated electricity relative to the EF of natural gas. WA-
GREET already includes CI’s for electricity combusted from biogas, which has a higher
methane content and heating value than landfill gas. Landfill gas can be cleaned and upgraded
into biogas that is burned in reciprocating engines. Thus, we determine that the EF for biogas
electricity reported in GREET (65.96 gCO2e/MJ) is appropriate to adopt for landfill gas-
generated electricity. This value is roughly 17% higher than the EF estimated for utility-scale
natural gas. For natural gas burned in stationary reciprocating engines, the EFs are nearly
equivalent.

If new fuel categories for landfill gas and WTE were introduced in WA-GREET and the electricity
mix shares were updated to align with Commerce’s previous allocation methodology, this would
change the emission factor for WAMX electricity by approximately 5.9 gCO2e/kWh (or about
3.1%). Because electricity only makes up a portion of life-cycle emissions for most fuels (with
electric vehicle charging as a notable exception) and the shares of these sub-categories within
the electricity mix are so low, these changes are minor to the Cl estimates for most finished
fuels. For example, the ClI for tallow biodiesel decreases from 39.78 gCO2e/MJ in the default
model to 39.76 gCO2e/MJ in the updated model, or a reduction of 0.05%. This change is slightly
more apparent for corn ethanol where life-cycle emissions decrease by 0.12% between the
default and updated models. For fuels produced outside of Washington, changes to the WAMX
emission factor on a fuel's final Cl are inconsequential. The inclusion of these pathways and
correct attribution of emission factors in the model increases in relevance for its impact on the
estimate of utility-specific electricity grid emissions, which may incorporate larger shares of
some waste-derived electricity.

In summary, to improve the accuracy of the WAMX emission factor, we recommend that LC
Associates 1) use more recent data, and 2) break out the “unspecified” electricity into sub-
categories based on the methodology pursuant with 19.29A.060 RCW, and 3) match remaining
sources of electricity emissions to more accurate, technology-specific emission factors either in
GREET or in the literature. To streamline modifications to the model, fuel types can be assigned
to an existing electricity category in GREET. This includes grouping landfill gas and incinerated
waste within the “Others” electricity category and grouping non-biogenic electricity within the
“Residual oil” electricity category. Consistent with Recommendation 3, we recommend that ECY
also explore the model’s capability to set path dependencies for attributes (e.g., water
consumption, emission factors) from fuel sources such as landfill gas and incinerated waste not
currently built into GREET. The latter changes would require a more in-depth set of
modifications but improve the accuracy of final fuel pathway Cl estimates, particularly for
individual utilities.

Choice of GWP factors
Atmospheric scientists estimate the global warming potential (GWP) of greenhouse gases to

standardize the climate-forcing potential of GHGs relative to carbon dioxide. GWP measures the
amount of energy a mass unit of emissions will absorb over a specified period of time relative to
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the energy absorbed by carbon dioxide.*° The Intergovernmental Panel on Climate Change
(IPCC) regularly updates GWP measurements in Assessment Reports; GWP values are then
later adopted by regulatory agencies. IPCC’s GWP estimates are considered “best practice” for
emissions modeling. The most recent Assessment Report (AR6) was released in late 2021,
preceded by AR5 in 2014 and AR4 in 2007.

GWP values from AR4 were selected for the CA-GREET 3.0 model; these values were then
subsequently adopted for WA-GREET. CA-GREET 3.0 was developed in 2018 and based on
underlying modeling assumptions from the 2016 ANL GREET model.*? The GWP values used
the reference model were already outdated, leading to a continuation of outdated assumptions
over time. Over the last 15 years, the science on radiative forcing and indirect emissions effects
of gases has evolved, especially regarding the short-term climate-forcing impacts of methane
release. In ARG, scientists updated their estimates for the indirect chemical effects of methane
and nitrous oxide emissions as well as revised their atmospheric lifetimes. These changes led to
a slight reduction in GWP estimates from the previous report (AR5).3® An overview of GWP
values published by IPCC for 100-year warming periods is provided in Table 9, summarizing the
estimates from AR4 through ARG.

Table 8. Global warming potential (GWP) of primary greenhouse gases across IPCC
assessment reports

Greenhouse

We recommend that LC Associates update WA-GREET to utilize AR5 GWP factors. This would
serve to align ECY and the CFP with the latest climate science, but also align the program with
updated reporting guidelines under the Paris Agreement that require the United States to shift to
use of AR5 100-year GWP values (without feedbacks) for national inventory reporting in 2024.34

30 OAR US EPA, “Understanding Global Warming Potentials,” Overviews and Factsheets,
January 12, 2016, https://www.epa.gov/ghgemissions/understanding-global-warming-potentials.
31 IPCC, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group | to
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change”
(Intergovernmental Panel on Climate Change, 2021), https://www.ipcc.ch/report/ar6/wg1/.

32 CARB, “LCFS Life Cycle Analysis Models and Documentation,” accessed April 5, 2022,
https://ww2.arb.ca.gov/resources/documents/Icfs-life-cycle-analysis-models-and-documentation.
3 |PCC, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group | to
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.”

34 https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-
under-the-paris-agreement
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This would also align WA-GREET with the forthcoming OPGEE 3.0 release, which will be
transitioning to using AR5 GWP values.

Tier 1 Calculators

As part of this peer review, ICCT also reviewed a set of 8 “Tier 1” calculators developed for the
WA CFP and based on the draft WA-GREET model. The purpose of these calculators is to
provide a simplified method for fuel producers to input their facility-specific data to estimate their
emissions in lieu of a detailed life-cycle assessment. These calculators comprise a set of well-
characterized commercialized fuel pathways, and are based on a set of extracted emission
factors and data from WA-GREET. As part of this peer review, ICCT assessed the Tier 1
emissions calculators for consistency with the base model and separately provided
recommendations to LC Associates on small modifications to the Tier 1 calculators to address
minor data transcription errors. Overall, we found that these calculators matched the
calculations in WA-GREET and provided users sufficient flexibility to provide their own
estimates of site-specific emissions for their fuels. Major changes to the life-cycle assessment
methodologies of these pathways, such as the use of different chemicals with different upstream
emissions intensities as discussed by one commenter, may warrant additional analysis and may
require a Tier 2 application.3®

Proposed indirect land-use change emission factors

Life Cycle Associates recommends that Washington Department of Ecology (ECY) adopts many
of the ILUC values calculated in a 2014 study commissioned by the California Air Resources
Board (CARB) for their Low Carbon Fuel Standard (LCFS) program.¢ These include the ILUC
values for soy, canola, and palm bio- and renewable diesel (i.e., biomass-based diesel [BBD]),
and sugarcane ethanol, Life Cycle Associates also recommends that ECY selects the ILUC
value for corn ethanol adopted under the Oregon Clean Fuels Program (CFP) based on
modeling by Argonne National Laboratory (ANL);* the report also recommends that ECY adopt
an equivalent ILUC value for sorghum ethanol. For these two pathways, land-use change
estimates calculated in the GTAP-BIO-ADV economic model are supplemented with the Carbon
Calculator for Land Use Change from Biofuels Production (CCLUB) emission factor model to
estimate ILUC emissions, measured in grams of carbon dioxide equivalent per Megajoule
(gCO2e/MJ) of fuel. The ILUC value for corn ethanol adopted by Oregon is approximately 60%
lower than the equivalent ILUC value adopted by California. Finally, LC Associates recommends

35 https://scs-public.s3-us-gov-west-
1.amazonaws.com/env_production/oid100/did1008/pid_202037/assets/merged/f70sirb_docume
nt.pdf?v=2MT63WQUR

3 Katrina Sideco, “Detailed Analysis for Indirect Land Use Change” (CARB, 2014).

37 State of Oregon Department of Environmental Quality, “Notice of Proposed Rulemaking:
Clean Fuels Program Electricity 2021 Rulemaking,” December 22, 2020,
https://www.oregon.gov/deqg/Regulations/rulemaking/RuleDocuments/CFPE2021Notice.pdf.
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that ECY adopt a zero ILUC value for all cover crops, based on CARB’s feedstock-specific
determination for camelina BBD.*®

Background

ILUC models provide an informed estimate of the net change in global land cover due to policy-
driven biofuels demand. Researchers use ILUC models to identify how much and what type of
land area is cleared in response to a unit increase in biofuel demand; modeling results are then
paired with emission factor models to quantify the greenhouse gas (GHG) emissions impacts of
clearing and cultivating that equivalent area of land. One drawback to ILUC models is that they
are inherently uncertain and based on various input assumptions such as demand and supply
elasticities and linkages across economic sectors (e.g., trade restrictions). Computable general
equilibrium models such as GTAP model market effects across the entire economy, while partial
equilibrium models model these linkages across the global agricultural and forestry sectors at a
more granular level. General equilibrium models are wider in scope and have drawbacks in their
ability to accurately model land as well as agricultural processes.* California and Oregon have
adopted results from a version of the GTAP model (i.e., GTAP-BIO-ADV) in their LCFS and
CFP programs while the U.S. EPA uses results from FAPRI-FASOM, a combination of two
partial equilibrium models, for biofuels certified under the federal Renewable Fuel Standard
(RFS) program. Other models, such as GLOBIOM and MIRAGE have been utilized by the
European Commission and the International Civil Aviation Organization.

Both GTAP and CCLUB have been subject to significant critique from subject matter experts.°
Some of these criticisms are based on the argument that input assumptions to the models are
not reflective of real-world conditions across the global agriculture and forestry sectors. In other
cases, analysts find that the underlying datasets making up the foundation of these models are
not comprehensive, or that modifications made over time are not well substantiated. We

3% Global Clean Eenrgy Holdings, Inc., “CARB Issues First-Of-Its-Kind LCFS Pathway for
Sustainable Qils’ Patented Camelina,” GlobeNewswire News Room, February 5, 2015,
https://www.globenewswire.com/news-release/2015/02/05/703358/12627/en/CARB-Issues-
First-Of-Its-Kind-LCF S-Pathway-for-Sustainable-Oils-Patented-Camelina.html.

39 Ehsanreza Sajedinia and Wallace E. Tyner, “Use of General Equilibrium Models in Evaluating
Biofuels Policies,” in World Scientific Studies in International Economics, by Peter Dixon,
Joseph Francois, and Dominique van der Mensbrugghe, vol. 76 (WORLD SCIENTIFIC, 2021),
437-65, https://doi.org/10.1142/9789811233630_0014.

40 Stephanie Searle, “Don’t Throw out California’s ILUC Factors Yet,” ICCT Staff Blog (blog),
March 9, 2018, https://theicct.org/dont-throw-out-californias-iluc-factors-yet/; Chris Malins,
Richard Plevin, and Robert Edwards, “How Robust Are Reductions in Modeled Estimates from
GTAP-BIO of the Indirect Land Use Change Induced by Conventional Biofuels?,” Journal of
Cleaner Production 258 (June 10, 2020): 120716, https://doi.org/10.1016/j.jclepro.2020.120716;
Stephanie Searle and Chris Malins, “A Critique of Soil Carbon Assumptions Used in ILUC
Modeling” (Washington, D.C.: International Council on Clean Transportation, June 13, 2016),
https://theicct.org/publication/a-critique-of-soil-carbon-assumptions-used-in-iluc-modeling/.
Comment on 'Carbon intensity of corn ethanol in the United States: state of the science’,
https://iopscience.iop.org/article/10.1088/1748-9326/ac2e35
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summarize these critiques and provide recommendations for addressing these concerns within
ECY’s CFP program in the discussion below.

Limitations of CCLUB

CCLUB is an emissions factor model developed by ANL that can translate land use change
(LUC) estimates reported in hectares for various types of land into GHG emissions reported in
tonnes.*' CCLUB uses emission factors from the CENTURY and COLE soil and forest biomass
models as the default emission factors for the U.S., and emission factors calculated by Winrock
et al. for the rest of the world.*?> The Winrock emission factor model was developed for U.S. EPA
for its ILUC modeling for the Renewable Fuel Standard program. In contrast, California
developed the AEZ-EF emissions factor model for use in its ILUC modeling.

Our assessment finds that CCLUB takes scientific liberties in its modeling of soil carbon
changes and that its development process was far less transparent than the AEZ-EF model
adopted by CARB. One of the major concerns with CCLUB is that the predicted change in soil
carbon for certain land types modeled in CENTURY (part of CCLUB’s modeling framework)
contrast sharply with results from other emission factor models. Here, we delve into CCLUB’s
modeling of “cropland pasture”, or land that has previously been cropped but is currently in a
pasture state. Cropland pasture is not a standard land category in global land-use datasets;
thus, measuring the impacts of cropping expansion onto this land type can be difficult to
accurately quantify. The distinction between cropland and pasture is important, as soil can
rebuild carbon stocks when it is left as pasture compared with soil carbon stock depletion during
the conversion of pasture to cropland.

Malins et al. visualize how different emission factor models predict a change in soil carbon
stocks following cropland pasture conversion, as shown below in Figure 3.3 While Winrock et
al. and the AEZ-EF model predict that the conversion of cropland-pasture to corn and soybean
cropping results in soil carbon loss, the CENTURY model predicts the opposite effect — an
increase in soil carbon.*

41 Jennifer B. Dunn et al., “Carbon Calculator for Land Use Change from Biofuels Production
(CCLUB),” September 1, 2018, https://doi.org/10.2172/1480518.

42 Dunn et al.

43 Figure 6. Malins, Plevin, and Edwards, “How Robust Are Reductions in Modeled Estimates
from GTAP-BIO of the Indirect Land Use Change Induced by Conventional Biofuels?”

44 Figure 6. Malins, Plevin, and Edwards.
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Figure 3: Carbon loss following cropland pasture conversion using Winrock, CENTURY and
AEZ-EF emission factor models.

Reproduced from Malins et al. (2020).

One factor contributing to this counterintuitive finding is that CCLUB uses a very different
interpretation of the “cropland-pasture” category than what is used in official statistics. The
official definition of cropland-pasture in the United States Department of Agriculture’s glossary
is: “Cropland pasture—Generally is considered to be in long-term crop rotation. This category
includes acres of crops hogged or grazed but not harvested and some land used for pasture
that could have been cropped without additional improvement. Cropland pastured before or
after crops were harvested was included as harvested cropland and not cropland pasture.”* It
is thus clear that cropland-pasture should currently be in a pastured state and not actively
cropped. However, the CENTURY soil carbon stock values used in CCLUB are derived
assuming cropland-pasture was in a cropped state for 35 years prior to conversion to corn
production. This distinction is important; it is well-established in the scientific literature that the
conversion of pasture results in large soil carbon losses while the conversion of cropland to corn
is not a change in land use status at all. In a meta-analysis including 74 studies on the LUC
effects on soil carbon stocks, Guo and Gifford estimate a 60% reduction in soil organic carbon
(SOC) content from the conversion of pasture to cropland.*¢ When CCLUB assumes cropland-

45 USDA ERS, “Major Land Uses - Glossary,” accessed April 5, 2022,
https://www.ers.usda.gov/data-products/major-land-uses/glossary/.

46 L. B. Guo and R. M. Gifford, “Soil Carbon Stocks and Land Use Change: A Meta Analysis:
SOIL CARBON STOCKS and LAND USE CHANGE,” Global Change Biology 8, no. 4 (April
2002): 345-60, https://doi.org/10.1046/j.1354-1013.2002.00486.x.
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pasture has been cropped for the past 35 years, it very likely is modeling the same level of soil
carbon stocks that can be expected on permanent cropland, since soil carbon changes
generally equilibrate within 10 or 20 years following land conversion.*” Thus, while it is clear
from USDA's definition that the conversion of cropland-pasture to cropland resembles the
conversion of regular pasture — and thus can be expected to result in large soil carbon losses —
by assuming cropland-pasture is actually cropland instead of pasture, CCLUB omits this carbon
loss term entirely, and unjustifiably.

Another contributing factor to the strange result of soil carbon gains upon conversion of
cropland-pasture to corn in CCLUB is a misinterpretation of the scientific literature. CCLUB uses
inputs on soil carbon responses from a meta-analysis conducted by Qin et al.*® This analysis
has been previously critiqued.*® In that critique, we found that Qin et al. misinterpreted the soil
carbon literature in three ways. Firstly, Qin et al. took results from scientific studies measuring
changes in soil carbon on cropland over time (i.e., land that has not been converted from
cropland-pasture but has been cropland all along) and applied it to the conversion of cropland-
pasture to corn. Secondly, the scientific studies cited in Qin et al., when aggregated, clearly
show that soil carbon increases over time in corn/soy rotations but declines over time in
continuous corn fields. Qin et al. combined the results from continuous corn and corn/soy
rotations and applied the resulting soil carbon increase specifically to the conversion of
cropland-pasture to continuous corn. Thirdly, we found that the linear regression used in Qin et
al. was heavily influenced by a large number of data points from short-term studies finding soil
carbon increases, while those from long-term studies indicated a soil carbon loss over time. Soll
carbon is notoriously difficult to measure with high measurement error, and measurements of
long-term soil carbon changes are much more reliable than those of short-term changes. In
conclusion, CCLUB’s prediction of a net soil carbon increase from converting a hectare of
cropland pasture to hectare of corn production results from inappropriate and incorrect
interpretations of statistics and the scientific literature.

One alternative to CCLUB is the AEZ-EF model developed for the California LCFS.%° AEZ-EF is
a user-friendly model available in Excel. AEZ-EF contains thorough documentation and a clear
set of assumptions that can be traced back to the scientific literature. Although AEZ-EF is a
simpler model than CCLUB, its underlying assumptions are more consistent with the scientific
literature. For example, while CCLUB calculates an increase in SOC from the conversion of
cropland pasture to corn, AEZ-EF calculates cropland pasture conversion as the average of the
SOC change between cropland conversion and pasture conversion, resulting in a net SOC loss.

47 Danuse Murty et al., “Does Conversion of Forest to Agricultural Land Change Soil Carbon
and Nitrogen? A Review of the Literature,” Global Change Biology 8, no. 2 (2002): 105-23,
https://doi.org/10.1046/j.1354-1013.2001.00459.x.

48 Zhangcai Qin et al., “Influence of Spatially Dependent, Modeled Soil Carbon Emission Factors
on Life-Cycle Greenhouse Gas Emissions of Corn and Cellulosic Ethanol,” GCB Bioenergy 8,
no. 6 (2016): 1136—49, https://doi.org/10.1111/gcbb.12333.

49 Searle and Malins, “A Critique of Soil Carbon Assumptions Used in ILUC Modeling.”

%0 _Richard J Plevin et al., “Agro-Ecological Zone Emission Factor (AEZ-EF) Model: A Model of
Greenhouse Gas Emissions from Land-Use Change for Use with AEZ-Based Economic
Models,” February 21, 2014.
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Limitations of GTAP-BIO-ADV

GTAP is a widely used general equilibrium model for biofuels policy analysis and in other
research fields. The version most often used for biofuels policy analysis is GTAP-BIO-ADV,
developed by researchers at Purdue University. The development of this model version and
studies published by Purdue researchers using it have been criticized as favoring changes in
model structure and input assumptions that tend to reduce ILUC estimates, while avoiding
changes that would increase them. Here, we summarize these critiques.

Conversion of unmanaged forests

One drawback of GTAP-BIO-ADV is its inability to model the effects of biofuel expansion on
forested and pastured land that is currently out of economic use. The GTAP-BIO-ADV model
does not include unmanaged forests and other land and thus structurally cannot model the
conversion of these types of land to cropland. All cropland expansion in GTAP-BIO-ADV must
be on managed land that has direct economic use. This limitation prevents the model from
reflecting the land use change, and thus GHG emissions, that very likely occur from cropland
expansion in reality. This likely overstates the “intensification of existing agricultural lands and
overestimat[ing] conversions from agriculture to forestry when carbon sequestration incentives
are applied”.®' This modeling decision is in contrast with other ILUC models including GCAM,
IFPRI MIRAGE, and EPPA that account for conversion of unmanaged land.®?

It has been demonstrated that it is possible to include unmanaged land in GTAP: a modified
version of GTAP developed by Golub and Hertel included the ability to model unmanaged
forest.® In this version, authors noted that modelers “must account for the possibility that
currently inaccessible forestland will be brought into commercial production” (p. 470) to
accurately capture the effects of global markets on land development. Despite this
development, a separate team of Purdue researchers opted not to adopt this modeling change
from Golub and Hertel in the GTAP-BIO-ADV model they developed for the California LCFS.

Due to the prevalence of unmanaged land globally, we expect that excluding this parameter will
have a significant effect on final ILUC results — as of 2004, an estimated 75% of forested land in

51 Alla A. Golub et al., “Global Climate Policy Impacts on Livestock, Land Use, Livelihoods, and
Food Security,” Proceedings of the National Academy of Sciences 110, no. 52 (December 24,
2013): 20894-99, https://doi.org/10.1073/pnas.1108772109.

52 David Laborde and Hugo Valin, “Modeling Land-Use Changes in a Global CGE: Assessing
the EU Biofuel Mandates with the MIRAGE-BioF Model,” Climate Change Economics 03, no. 03
(August 2012): 1250017, https://doi.org/10.1142/S2010007812500170; P. Kyle et al., “GCAM
3.0 Agriculture and Land Use: Data Sources and Methods” (Pacific Northwest National
Laboratory, December 2011),
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-21025.pdf; Angelo
Gurgel, John M Reilly, and Sergey Paltsev, “Potential Land Use Implications of a Global
Biofuels Industry,” 2007, 36.

53 Alla Golub and Thomas W. Hertel, “Global Economic Integration and Land Use Change,”
Journal of Economic Integration 23, no. 3 (2008): 463—88.
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North America and more than 90% of forested land in Oceania is classified as inaccessible.%
Plevin ran a version of the GTAP model for the period 2020-2060 to underscore the significance
of this model limitation.%® In this analysis, GTAP predicts that increased biofuel demand results
in no loss of non-commercial forested land and that approximately half of managed forest that is
converted to cropland in the U.S. is offset by an increase in the land area of timber plantations
globally. An equivalent modeling simulation run using the base scenario of GCAM did not yield
the same results and instead predicted a net loss in non-commercial forested land area and a
net zero change in commercial forest area.

Put plainly, GTAP predicts that when commercial forested land area is converted to cropland,
this change is offset by newly planted forested area elsewhere. This is based on the assumption
that a constraint on timber supply raises its price, which timber suppliers compensate for by
planting more forested land area. In reality, we would expect that much of forest land expansion
would occur on unmanaged forests with a lower economic value, minimizing the likelihood of
any afforestation at all. Thus, we expect that GTAP modeling is likely to understate ILUC
impacts since it predicts that any loss of forest area is, to a significant extent, offset by
afforestation elsewhere. This has an important impact on estimated ILUC emissions because
forest loss results in large losses of terrestrial carbon stocks.

Price-induced yield

The price-induced yield elasticity is an important input used in GTAP-BIO-ADV. This factor
attempts to quantify the relationship between increased biofuel demand, rising crop prices, and
agricultural intensification. Because higher demand for biofuels raises the price of agricultural
commodities, the theory is that farmers will then find it economical to use methods such as
increased fertilizer consumption and higher rates of irrigation to improve yield. Price-induced
yield is quantified using a “yield elasticity to price” (i.e., YDEL) factor, defined as the percent
change in yield corresponding with a percent change in the price of the commodity. For
example, a YDEL factor of 0.25 means that a 1% increase in the price of corn would result in a
0.25% increase in the yield of planted corn. A YDEL factor of 1 corresponds with perfect
elasticity. GTAP modelers have used a range of YDEL factors throughout different iterations of
the model — a YDEL factor of 0.25 was adopted under the California LCFS program while YDEL
factors range between 0.175 and 0.325 in the most recently published ILUC studies by
Purdue.%®

4 Brent Sohngen and Colleen Tennity, “Country Specific Global Forest Data Set v.1” _
(Department of Agricultural, Environmnetal, and Development Economics Ohio State University,

November 30, 2004).

% Richard J. Plevin et al., “Choices in Land Representation Materially Affect Modeled Biofuel
Carbon Intensity Estimates,” Journal of Cleaner Production 349 (May 2022): 131477,
https://doi.org/10.1016/j.jclepro.2022.131477.

%6 Taheripour, F., Cui, H., Tyner, W.E., 2017a. An Exploration of agricultural land use change at
the intensive and extensive margins: implications for biofuels induced land use change. In: Qin,
Z., Mishra, U., Hastings, A. (Eds.), Bioenergy and Land Use Change. American Geophysical
Union, pp. 19e37. Retrieved from (continued on next page)
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The YDEL factors used in recent GTAP studies by Purdue researchers indicate a fairly high
elasticity between agricultural intensification and price. Other assessments in the literature find
little or no statistically significant relationship between crop prices and yields. In an expert
assessment for a CARB working group, Babcock et al. concluded that the average YDEL for
U.S. crops ranges between 0.05 and 0.2, although it could be justifiable to use a higher value in
ILUC modeling in order to implicitly account for an increase in the practice of double cropping
that might also occur in response to increased commaodity price.%” Berry and Schlenker (2011)
used an instrumental variable analysis to determine that there is no significant causal impact of
the price and yield of corn, soy, wheat, and rice on the yields of these crops globally and within
the U.S. and Brazil.5® The YDEL factor of 0.25 used in the modeling for the LCFS regulation is
greater than the high-end range estimated by expert reviewers, and is only justified on the basis
that it implicitly includes the yield effects of double cropping.®® Relative to other assessments,
the YDEL factor adopted by CARB may overestimate the rate of cropland intensification and
underestimate the area of land cleared to allow for increased biofuel demand.

Throughout different studies using different iterations of the GTAP model, Taheripour et al.
adopted different YDEL factors for geographic regions. Although authors note the importance of
preserving “the original central” YDEL value (i.e. 0.25) supported by the literature, in the 2017
study,® they chose to adopt a higher YDEL for 10 out of 19 agro-economic zone (AEZ) regions,
and reduce the YDEL for 6 of them. Areas where YDEL was increased account for
approximately 50% of land use change captured in a previous version of the GTAP-BIO model
61 while areas where YDEL was reduced only account for 10% of modeled land area.®?
Additionally, the decision to assign a YDEL factor of 0.3 to the entire U.S. exceeds the central

https://books.google.co.uk/books?hlzen&amp;lr/s&amp;id/avWkODwWAAQBAJ
&amp;oiafnd&amp;pgaPA19&amp;dqsAnpExplorationpofpagriculturalp
landpusepchangepatpthepintensivepandpextensivepmargins&amp;ots’a
DCLdhoHgYh&amp;sig/sheg7uMycBk6hpQ4WO0q0jQFI9Ugc.

57 Babcock, Bruce, Angelo Gurgel, Mark Stowers, and K. Adili. "Final recommendations from the
elasticity values subgroup." ARB LCFD Expert workgroup, California Environmental Protection
Agency (2011).

%8 Steven Berry and Wolfram Schlenker, “Empirical Evidence on Crop Yield Elasticities,” August
5, 2011.

59 Malins, Plevin, and Edwards, “How Robust Are Reductions in Modeled Estimates from GTAP-
BIO of the Indirect Land Use Change Induced by Conventional Biofuels?”

60 Taheripour, F., Cui, H., Tyner, W.E., 2017a. An Exploration of agricultural land use change at
the intensive and extensive margins: implications for biofuels induced land use change. In: Qin,
Z., Mishra, U., Hastings, A. (Eds.), Bioenergy and Land Use Change. American Geophysical
Union, pp. 19e37.

6" Thomas W. Hertel et al., “Effects of US Maize Ethanol on Global Land Use and Greenhouse
Gas Emissions: Estimating Market-Mediated Responses,” BioScience 60, no. 3 (March 2010):
223-31, https://doi.org/10.1525/bio.2010.60.3.8.

62 Hertel et al.
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value (0.25) used in the California modeling. Some researchers suggest that these changes to
YDEL are not well-substantiated or justified based on evidence.®

Double cropping

Along with maintaining high YDEL factors, recent studies using the GTAP model have explicitly
added an additional yield intensification factor, reflecting changes in the practice of multiple
cropping (growing more than one crop in a year) in response to commodity prices. These
studies have justified this modeling change by arguing that multiple cropping rates have
increased in some world regions in recent years, and that this will continue in response to
increased commodity demand. High and increasing rates of double cropping identified by
Taheripour et al. (2017), is not well substantiated in the literature. Although Taheripour et al. cite
multiple studies to support this assumption, only one, Babcock and Igbal (2014) draw a direct
link between increased cropping intensity and biofuel policies.® Babcock and Igbal’s analysis
relied on comparing harvested area to total cropland area using the FAOSTAT database. In
some cases, that study assumed harvested area increases cannot represent new cropland, for
example arguing that Indonesia is so densely populated that cropland expansion is not possible
— an argument undermined by continued evidence of significant cropland expansion in that
country.® Moreover, Babcock and Igbal simply try to demonstrate that cropping intensity has
increased over the same time period that biofuel production has increased and do not attempt to
demonstrate any sort of causal linkage. Even if an increase in multiple cropping has occurred
over this time period, it could be driven by other factors unrelated to biofuel policy such as
business-as-usual technology progress; neither Babcock and Igbal nor any other study have
attempted to directly tie the two trends together. Because of the likely influence of external
factors, Cui and Tyner emphasize that LUC modelers must first prove the relationship between
cropping intensity and policy-driven biofuel expansion and that if no relationship is determined,
the “biofuels-driven part of the cropping intensity change needs to be effectively isolated.”®®

Several other studies indicate that the prevalence of double cropping may not be so common
and that data limitations may contribute to a skewed result. Borchers et al. estimate that
between 1999 and 2012, double cropped land made up only 2% of total U.S. cropland and did
not increase according to any long-term trend.%” Researchers from the FAO caution against

63 Malins, Plevin, and Edwards, “How Robust Are Reductions in Modeled Estimates from GTAP-
BIO of the Indirect Land Use Change Induced by Conventional Biofuels?”

64 Bruce A Babcock and Zabid Igbal, “Using Recent Land Use Changes to Validate Land Use
Change Models” (Ames, lowa: Center for Agricultural and Rural Development, lowa State
University, November 2014).

65 Kemen G Austin et al., “What Causes Deforestation in Indonesia?,” Environmental Research
Letters 14, no. 2 (February 1, 2019): 024007, https://doi.org/10.1088/1748-9326/aaf6db.

% Hao (David) Cui and Wally Tyner, “Modeling Land Intensification Response in GTAP:
Implications for Biofuels Induced Land Use Change,” Presented at the 20th Annual Conference
on Global Economic Analysis, West Lafayette, IN, USA,
http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordlD=5287.

67 Allison Borchers et al., “Multi-Cropping Practices: Recent Trends in Double-Cropping,” May
2014.
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extrapolating the same cropland:arable land ratio to future years due to inconsistency in data
collection and reporting across datasets.®® Additionally, by comparing cropland pasture data
reported by USDA and total arable area reported by FAO, we find that FAO has likely included
cropland pasture in its reported total arable land area over time. This misclassification would
increase the ratio of cropland:arable land area (i.e., cropping intensity) in FAOSTAT data.®°
Babcock and Igbal (2014) did not rely on FAO data for the U.S. due to data issues, but
Taheripour (2017) did.

Despite weak evidence, Taheripour et al. apply a cropping intensity ratio of 4 hectares of
additional double cropping for every hectare of cropland expansion in subsequent versions of
the GTAP-BIO model.” This assumption exacerbates the effects of a high YDEL factor on land
conversion assumptions. This is demonstrated in Taheripour et al. (2017), where adding the
new double cropping assumption reduces U.S. pasture and forest conversion by a factor of 5
and global pasture and forest conversion by half in the corn ethanol scenario. A high YDEL
assumes that agricultural land is used more efficiently, minimizing total land area conversion,
while a high cropping intensity ratio assumes that a larger area of land is converted to double
cropping rather than sourced from newly cleared land. Thus, we conclude that a high YDEL
factor (higher than 0.2) can only be justified if double cropping is not explicitly included in the
modeling to minimize the risk of underestimating ILUC emissions. Such as high value is not
justified if double cropping effects are modeled independent of YDEL.

Classification of cropland pasture

Another area of concern with the GTAP-BIO-ADV model is that the nesting structure results in
cropland pasture being preferentially converted to conventional cropland in response to
increased biofuel demand. This modeling structure change reflects an assumption that cropland
expansion occurs more on cropland pasture than on other types of land, such as permanent
pasture or forest, but this finding is not substantiated by evidence. Although cropland pasture
rates reported in the USDA census have rapidly decreased over time (and thus could in theory
reflect a strong trend of cropland pasture conversion to new cropland), USDA experts have
stated that this is likely a matter of data misclassification rather than real-world trends. Bigelow
and Borchers report that this decline is attributed to methodological changes in data collection
including reclassifying a portion of “cropland pasture” to “permanent grassland pasture and
range.”’

The GTAP-BIO-ADV developers have also directly reduced the rate of cropland expansion onto
pasture and forest in the model. In a study released in 2013, Taheripour and Tyner reduced the

% Nikos Alexandratos, “World Agriculture:Towards 2010” (Food and Agriculture Organization of
the United Nations, 1995), https://www.fao.org/3/v4200e/v4200e00.htm; Nikos Alexandratos
and Jelle Bruinsma, “World Agriculture towards 2030/2050: The 2012 Revision,” June 2012,
154.

69 Malins, Plevin, and Edwards, “How Robust Are Reductions in Modeled Estimates from GTAP-
BIO of the Indirect Land Use Change Induced by Conventional Biofuels?”

0 Malins, Plevin, and Edwards.

" Daniel P Bigelow and Allison Borchers, “Major Uses of Land in the United States, 2012”
(USDA Economic Research Service, August 2017).
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land conversion elasticity of pasture and forested land area to cropland by a factor of 10 in 10 of
19 regions, while increasing it by 50% in 5 regions.”? This asymmetric treatment results in a
55% reduction in global pasture and forest conversion and is not justified based on evidence.
Because cropland expansion onto forested or pasture is less likely to occur in recent GTAP
updates, this increases the likelihood of agricultural land intensification and cropland pasture
conversion, along with an associated reduction in ILUC emissions. Together with the nesting
change in cropland pasture, these changes results in a 34% reduction in ILUC emissions,
according to the 2013 study.

Cover crops

LC Associates recommend that ECY adopt an ILUC value of zero for oilseed crops such as
carinata because it can be grown as a secondary or cover crop (i.e., over the winter, in addition
to the regular summer crop). The reasoning for this recommendation is that if carinata is grown
as a cover crop, it does not necessarily increase the demand for cropland area. This could
potentially apply to other oilseed crops such as camelina and pennycress. This recommendation
is partly based on the certification of camelina for the California LCFS as zero ILUC; however,
this fails to note that this certification has expired and was never formally certified as a fuel
pathway.” That feedstock certification was also limited to pathway-certified seeds verified with
a chain of custody, rather than to cover crops more generally.”* EPA in its rulemaking on
camelina for the RFS, anticipates that while it is likely that camelina will be cover-cropped for
economic reasons, if grown on dedicated cropland it would exceed the land-use impacts of soy
(thus qualifying for a D4 RIN), though does not estimate ILUC emissions for the pathway.”
CORSIA assigns carinata grown in the U.S. with an ILUC score of -20.4gCO2e/MJ, based on
modeling that explicitly assumes that it is planted as secondary or cover crop and avoids the
displacement of other crops.”® In theory, purpose-grown cover crops also do not displace crops
from other competing uses such as food, livestock feed, or the oleochemicals market.

However, cover crops are not necessarily additional and can easily displace food or feed crops
grown already grown as cover crops. For example, growing a second crop over the winter is
already commonplace in much of Brazil; there, the safrinha corn crop (i.e. cover crop) grown
during the winter season has surpassed the production of primary corn since 2012, and, in

2 Farzad Taheripour and Wallace E. Tyner, “Biofuels and Land Use Change: Applying Recent
Evidence to Model Estimates,” Applied Sciences 3, no. 1 (March 2013): 14-38,
https://doi.org/10.3390/app3010014.

3 CARB (n.d.) LCFS Pathway Certified Carbon Intensities.
https://ww2.arb.ca.gov/resources/documents/Icfs-pathway-certified-carbon-intensities

4 https://ww2.arb.ca.gov/sites/default/files/classic/fuels/Icfs/2a2b/apps/so-camelina-oil-rpt-
110714.pdf

7S https://www.govinfo.gov/content/pkg/FR-2013-03-05/pdf/2013-04929. pdf

6 ICAQ, “CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels,” March
2021, https://www.icao.int/environmental-

protection/ CORSIA/Documents/ICAO%20document%2006%20-%20Default%20Life%20Cycle
%Z20Emissions%20-%20March%202021.pdf.
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2021, accounted for three-quarters of Brazilian corn production.”” Double cropping is also
practiced in the U.S., although at much lower rates.”® Thus, a low-carbon fuel policy that places
high value on cover cropping incentivizes the farmer to sell the secondary (e.g. corn) crop to the
biofuel market, increasing the demand for planted corn elsewhere. If farmers switch to planting
an oilseed crop as the second crop instead of safrinha corn, this reduces the annual production
of corn, with similar market effects. Replacing cover crops like safrinha corn that are already
grown now with carinata or other biofuel feedstock will very likely cause ILUC impacts of a
similar magnitude as using primary crops for biofuel production. Due to the widespread nature
of multiple cropping even in the absence of biofuel use for those crops, we recommend that
ECY develop a more precise definition for this feedstock category prior to incentivizing it within
the CFP.

Further, planting a secondary crop on land that was previously fallow may even contribute to
ILUC in regions where cover cropping practices are expanding. Under a business-as-usual, or
counterfactual scenario, there is a high likelihood that farmers would have transitioned to double
cropping in the absence of biofuel demand. This would result in a net deficit in crop production
and associated ILUC impacts. It is hard to state with certainty that farmers that only grow in the
offseason would have transitioned to double cropping without the introduction of a low-carbon
fuels policy. However, oilseed cover crops grown on land that was previously used for crop
production certainly have an ILUC impact that should be accounted for in emissions modeling.

Strong incentives for growing oilseed cover crops may also result in the direct clearing of land; if
farmers can expect income from two crops instead of one, they would in principle be more likely
to invest in clearing new cropland. Growing cover crops can also reduce primary crop yields.”
Lastly, cover crops may increase fertilizer and water usage.

Recommendation

In its analysis, Life Cycle Associates recommends that ECY adopts ILUC values and
methodology that are largely consistent with California’s LCFS program. A significant exception
is corn and sorghum ethanol, for which Life Cycle Associates recommends the ILUC values
adopted by the state of Oregon. We raise significant concerns regarding the accuracy and
methodological integrity of the CCLUB emission factor model in the discussion above and
recommend that ECY uses a land conversion emission factor model more representative of
real-world conditions. To maintain consistency with California, the preferred emission factor
model would be AEZ-EF.

We also raise concerns regarding the accuracy and framework of the GTAP-BIO-ADV
equilibrium model, adopted for every biofuel pathway. Research is currently ongoing at the EPA
and National Academy of Sciences to review the state-of-the-art research on ILUC; however, at

7 Joana Colussi and Gary Schnitkey, “Brazil: Corn Production in Three Crops per Year,”
Farmdoc Daily (blog), April 12, 2021, https://farmdocdaily.illinois.edu/2021/04/brazil-corn-
production-in-three-crops-per-year.html.

78 Borchers et al., “Multi-Cropping Practices: Recent Trends in Double-Cropping.”

® Humberto Blanco-Canqui et al., “Harvesting Cover Crops for Biofuel and Livestock
Production: Another Ecosystem Service?,” Agronomy Journal 112, no. 4 (2020): 2373—-2400,
https://doi.org/10.1002/agj2.20165.
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this time, there is no clearly preferred alternative. In the interim, we recommend that ECY
adopts California’s ILUC values that were calculated using the GTAP-BIO-ADV model to
maintain consistency with California and consult with EPA and expert reviewers to identify a
more defensible LUC model for future adoption. We do not recommend WA ECY conduct new
modeling using the GTAP-BIO-ADV model, but if the agency chooses to do so, we recommend
that they either a) do not utilize a YDEL factor greater than 0.2, or b) utilize a YDEL factor no
greater than 0.25 and exclude explicit double cropping increases in the model to avoid
overestimating cropping intensity response. In the future, ECY can consult expert and state
agency review and incorporate stakeholder feedback to identify more suitable ILUC models for
Washington than GTAP-BIO-ADV.

For cover crops, we recommend against including an ILUC value of 0g CO.e/MJ, particularly
given the absence of any definition or verification of cover cropping. Rather than assuming that
some feedstocks such as carinata are inherently cover cropped, we recommend that an ILUC
estimate is developed for these crops as if they are purpose grown in the absence of verification
of cover cropping. To qualify for a zero-ILUC score, we recommend the use of a separate
verification scheme to ensure that they are in fact grown as cover crops and not competing with
cropland.

Summary of Recommendations

Overall, this peer review finds that the bulk of the LCA estimates and methodology developed to
inform the Washington draft Clean Fuel Program rule is methodologically rigorous, aligns with
existing policies in other jurisdictions, and reflects best practices. We identify several small
methodological discrepancies or data gaps that can be addressed to improve the accuracy of
the LCA modeling for the WA CFP in the near-term. With these changes implemented, we
anticipate that there is sufficient data and analysis to support the implementation of the
program. However, we also provide several suggestions that can be implemented in the longer-
term to improve the accuracy of the program, mitigate data gaps and provide greater certainty
that the emissions reductions intended by the WA CFP are being achieved. We make the
following recommendations.

In the longer-term, we recommend moving beyond the current analysis’ reliance on
California’s previously calculated CI figures for crude oils, particularly if Washington’s
crude oil mix begins to diverge from what is consumed in California. We recommend
additional transparency of Washington’s crude oil imports and refinery activity in the future to
facilitate closer analysis of field-level oil import data and life-cycle emissions accounting. With
that information, a Washington-specific crude oil LCA developed using the forthcoming OPGEE
3.0 model, along with an LCA assessment of Washington’s refinery emissions could enhance
the accuracy of the fossil fuel baseline.

Allocate unspecified electricity based on more granular consumption data and
incorporate additional electricity emission factors for waste-derived electricity. The
existing work to develop a WAMX emission factor for Washington already reflects a more
accurate estimate of state-specific electricity emissions than using either the California CAMX
emission factor or the national-average emission factor. The impacts of data gaps on the
estimated grid mix are relatively minor. However, we note that the attribution of the entire
“unspecified” electricity category to natural gas may overstate emissions attributable to the
electricity grid. Therefore, we recommend allocating the unspecified share of electricity to sub-
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sets of the electricity generation mix based on methodology previously used by WA Department
of Commerce. Further, we recommend the inclusion of additional emission factors for landfill
gas and waste-to-energy to more precisely attribute emissions from these pathways.

In the longer-term, we recommend that Washington updates its electricity Cl to match ongoing
changes in the electricity mix. As part of these updates, we recommend additional analysis and
disclosure of electricity sources to reduce the uncertainty associated with unspecified electricity.

Include jet fuel fossil fuel baseline as a benchmark for alternative jet fuels. LC Associates
estimated the life-cycle impact of fossil jet fuel to be approximately 10 gCO2e/MJ lower than
that of gasoline and diesel fuel, consistent with previous estimates. Therefore, while fossil jet is
not a deficit-generating fuel in the CFP, it may still be inappropriate to calculate GHG reductions
from alternative aviation fuels relative to diesel or gasoline. Therefore, we recommend the
inclusion of fossil jet fuel as a benchmark for assessing the GHG savings of alternative aviation
fuels on an opt-in basis, similar to the inclusion of aviation fuels in the California LCFS.

Include AR 5 GWP values in WA-GREET. Since the publication of the IPCC Fourth
Assessment Report (AR4) in 2007, the scientific understanding of the climate impacts of non-
CO2 greenhouse gases has grown significantly, particularly their feedback effects. In order to
reflect these changes and better align with forthcoming changes to greenhouse gas inventory
reporting, we recommend that WA-GREET incorporate global warming potentials from the IPCC
Fifth Assessment Report (AR5). This change would likely have a minimal effect on most
pathways’ estimates, except for those with high methane leakage or upstream avoided methane
emissions.

Incorporate the full set of Indirect Land-Use Change emission factors used in the
California Low-Carbon Fuel Standard. This peer review summarizes the literature on indirect
land-use change and notes several weaknesses associated with the GTAP-BIO model and
CCLUB land conversion emissions model, particularly with respect to underestimating the
emissions impacts of cropland-pasture conversion, treatment of unmanaged forestland within
the model, and assumptions of price-induced yield improvements. After more than a decade of
research, ILUC emissions remain uncertain due to data limitations as well as disagreements on
model choice, scenario design and risk tolerance. We find that the choice of the Oregon CFP
value of 7.6 gCO.e/MJ for corn and sorghum reflects recency and is not justified by the full body
of literature on corn ILUC, particularly on soil carbon changes. Therefore, we recommend
adopting the full set of existing ILUC estimates calculated previously by CARB for the California
LCFS, which uses the AEZ-EF model for estimating land conversion emissions rather than
CCLUB. We also recommend against including a 0 gCO2e/MJ ILUC factor for cover crops; in
order to justify this, we recommend the development of a formal definition for cover cropping
and a system to ensure that these crops are being grown as cover crops without displacing
existing cropland.

To develop a more robust assessment of ILUC in the WA CFP context, we recommend that in
the long-term WA ECY develops an ILUC assessment of the impact of the CFP to better
understand the interaction between the policy and indirect, market-mediated emissions in
coordination with stakeholders, academic experts and regulators at EPA and CARB. We
recommend that WA ECY consider other models beyond GTAP-BIO, and in particular, if the
GTAP-BIO model is used, we recommend the use of the AEZ-EF model for estimate land
conversion emissions.

Washington Clean Fuels Standard — Carbon Intensity Model Peer Review Page 34
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The Renewable Fuel Standard (RFS) specifies the use of biofuels in
the United States and thereby guides nearly half of all global bio-
fuel production, yet outcomes of this keystone climate and environ-
mental regulation remain unclear. Here we combine econometric
analyses, land use observations, and biophysical models to estimate
the realized effects of the RFS in aggregate and down to the scale
of individual agricultural fields across the United States. We find
that the RFS increased corn prices by 30% and the prices of other
crops by 20%, which, in turn, expanded US corn cultivation by 2.8
Mha (8.7%) and total cropland by 2.1 Mha (2.4%) in the years fol-
lowing policy enactment (2008 to 2016). These changes increased
annual nationwide fertilizer use by 3 to 8%, increased water quality
degradants by 3 to 5%, and caused enough domestic land use
change emissions such that the carbon intensity of corn ethanol
produced under the RFS is no less than gasoline and likely at least
24% higher. These tradeoffs must be weighed alongside the bene-
fits of biofuels as decision-makers consider the future of renewable
energy policies and the potential for fuels like corn ethanol to meet
climate mitigation goals.

biofuels | land use change | greenhouse gas emissions | water quality |
environmental policy

ioenergy is an essential component of most proposed path-

ways to reduce anthropogenic greenhouse gas (GHG)
emissions and limit global warming to 1.5 or 2 °C by middle to
late century (1-6). Liquid biofuels may contribute to bioen-
ergy’s share of climate mitigation by displacing petroleum-
based fuels with those generated from modern-day plants (7,
8). The GHG benefits of such substitution, however, are depen-
dent on several factors including whether biofuel production
invokes additional plant growth (9-12), the extent to which
combusted plants (typically crops) are replaced in the food sys-
tem (13-15), and the degree to which biofuel production
directly and indirectly alters patterns of land use and manage-
ment (2, 16-20). Because land use changes (LUCs) and other
consequences induced by biofuels have the potential to cause
significant novel GHG emissions and modify other ecosystem
services and disservices (21-26), accurately estimating and
accounting these outcomes is critical for the formation of effec-
tive climate and environmental policy (27-29).

The United States is the world leader in biofuel production
by volume and generated 47% of global output over the last
decade under the purview of its Renewable Fuel Standard
(RFS) (30). First enacted in 2005 and greatly expanded in
2007, the RFS requires that biofuels be blended into the trans-
portation fuel supply at annually increasing increments. Volume
targets exist for several advanced biofuel types including
biomass-based diesel and those made from cellulosic feed-
stocks. However, the vast majority (~87%) of the mandate to
date has been fulfilled by conventional renewable fuels, specifi-
cally corn grain ethanol (30, 31), such that the potential benefits

PNAS 2022 Vol. 119 No. 9 e2101084119

of its more advanced fuel requirements have not yet material-
ized (32-34).

To comply with the policy’s GHG reduction goals, the RFS
requires conventional renewable fuels to generate life cycle GHG
savings of at least 20% relative to gasoline. Upon enactment, the
policy’s regulatory analysis projected that life cycle emissions of
corn ethanol production would just clear the 20% threshold by
2022, even when emissions from LUC were included (35). At the
time, most LUC emissions were projected to occur internation-
ally. Since the initial RFS policy-making, however, observations
of widespread land conversion and resultant GHG emissions
within the United States have also emerged (36-39).

Heightened demand for crops for use as biofuel feedstocks
and the associated changes to landscapes may also engender
broader environmental disservices upon ground and surface
waters, soil resources, and other ecosystem components (40-44).
The magnitudes of such effects are highly uncertain, however, as
they ultimately depend upon unpredictable behaviors through-
out the supply chain—from field to refinery—making it difficult
to forecast impacts. As such, public policy-making and support
for biofuels has needed to rely on widely varying projections of

Significance

Biofuels are included in many proposed strategies to reduce
anthropogenic greenhouse gas emissions and limit the mag-
nitude of global warming. The US Renewable Fuel Standard
is the world’s largest existing biofuel program, yet despite
its prominence, there has been limited empirical assessment
of the program’s environmental outcomes. Even without
considering likely international land use effects, we find that
the production of corn-based ethanol in the United States
has failed to meet the policy’s own greenhouse gas emis-
sions targets and negatively affected water quality, the area
of land used for conservation, and other ecosystem pro-
cesses. Our findings suggest that profound advances in tech-
nology and policy are still needed to achieve the intended
environmental benefits of biofuel production and use.
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anticipated effects—a quandary that could potentially misguide
strategies for climate change mitigation and environmental pro-
tection (27, 28, 45).

The RFS legislation contains several environmental safe-
guards to try to prevent perverse outcomes including periodic
scientific review of the conservation impacts of the program
and opportunities to adjust annual fuel volumes if the program
creates severe environmental harm (31). Although the most
recent program review identified that biofuels may in fact be
contributing to land conversion and subsequent declines in
water quality, these impacts have not been causally attributed
to biofuels or the RFS (32). Likewise, volume requirements for
specific fuel types have not been revised based on environmen-
tal performance (31). Given the United States’ leading role in
biofuel production, understanding the outcomes of the RFS
has direct ramifications not only for national environmental
quality and global climate change but also for policy-making
around the world as governments seek to modify or develop
their own biofuel policies to meet climate and clean energy
goals.

Here we assess the effects of the RFS on US land and water
resources during the first 8 y of the policy’s implementation
(2008 to 2016) by integrating econometric analyses with
observed changes in agricultural land use and models of bio-
physical impacts. We analyze how demand from the RFS
affected corn, soybean, and wheat prices and how these price
shocks influenced the areas planted to specific crops and crop-
land overall. We then assess how these changes affected key
environmental indicators including nitrate leaching, phosphorus
runoff, soil erosion, and GHG emissions. For all estimates, we
compare outcomes under the 2007 RFS to a business-as-usual
(BAU) counterfactual scenario in which ethanol production
satisfies only the volume required by the initial 2005 version of
the policy, equivalent to the amount needed for reformulated
gasoline under the 1990 Clean Air Act. We apply our models
only domestically, such that any environmental effects that
occur outside the United States would be additional.

Our analyses show a modest change in the use of US agricul-
tural land for crop production due to the RFS, which led to siz-
able increases in associated environmental impacts including
nitrate leaching, phosphorus runoff, and soil erosion. While
improvements in production efficiency have likely reduced the
carbon intensity of corn ethanol since inception of the RFS, the
previously underestimated emissions from US land conversion
attributable to the policy are enough to fully negate or even
reverse any GHG advantages of the fuel relative to gasoline.
Our findings thereby underscore the importance of including
such LUCs and environmental effects when projecting and
evaluating the performance of renewable fuels and associated
policies.

Results and Discussion

We found that the RFS stimulated 20.8 billion L (5.5 Bgal) of
additional annual ethanol production, which requires nearly 1.3
billion bushels of corn after accounting for coproducts that can
be fed to animals (46). This heightened demand led to persis-
tent increases in corn prices of ~31% (95% confidence interval
[CI]: 5%, 70%) compared to BAU (Fig. 1). The increased
demand for corn also spilled over onto other crops, increasing
soybean prices by 19% [—8%, 72%] and wheat by 20% [2%),
60%] (SI Appendix, Table S1). These outcomes approximate the
contribution of the RFS policy specifically, although other fac-
tors including changes in fuel blending economics that favored
10% ethanol as an octane source in gasoline (E10) may also
have contributed (SI Appendix, Supplementary Results for Price
Impacts).

20f8 | PNAS
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The increase in corn prices relative to other crops increased
the area planted to corn on existing cropland by an average of
2.8 Mha* per year [95% CI: 2.4, 3.1], which is an 8.7% increase
attributable to the RFS. This additional area resulted from pro-
ducers planting corn more frequently, including a 2.1 Mha [1.§,
2.3] increase in continuous corn production (i.e., sequential
year cropping) and a 1.4 Mha [0.8, 1.9] increase in the area
planted in rotation with other crops (SI Appendix,
Supplementary Results for Crop Rotations and Fig. S1). Collec-
tively, corn area increased most markedly in North and South
Dakota, western Minnesota, and the Mississippi Alluvial
Plain—regions where the amount of corn increased 50 to 100%
due to the RFS (Fig. 24 and SI Appendix, Fig. S1).

Heightened commodity prices from the RFS also increased
active cropland extent. We estimate that the RFS caused conver-
sion of an additional 1.8 Mha [95% CI: 1.5, 2.1] of natural and
seminatural areas to cropland between 2008 and 2016, or 26%
more than would have otherwise likely occurred (SI Appendix,
Supplementary Results for Cropland Area and Table S2). Higher
prices also reduced cropland abandonment; less cropland was
returned to grass or natural cover, either as pasture or through
enrollment into the Conservation Reserve Program (CRP), a
federal set-aside that pays farmers to reestablish perennial vege-
tation. We estimate that the RFS decreased abandonment by 0.4
Mha [0.1, 0.6], or 6% less abandonment than expected with
BAU. Together these extensive changes produced a net increase
in cropland area of 2.1 Mha [1.8, 2.5] relative to BAU, with the
greatest increases occurring in the western portions of existing
agricultural regions (Fig. 2B and SI Appendix, Fig. S2).

The combined changes in the intensity of corn production
and extent of cropland caused 7.5% more reactive nitrogen (N)
from synthetic fertilizer to be applied annually to the landscape
(Table 1). This contributed to a 5.3% increase in nitrate
(NO37) leached annually from agricultural land due to the
RFS. Such nitrate losses occurred through vertical seepage
below the root zone, where nutrients are no longer accessible
to crops, and have been implicated in widespread groundwater
contamination throughout the United States with major public
health consequences (47, 48). Leaching was highest in regions
with high N inputs and coarse soil texture (Fig. 2F and SI
Appendix, Figs. S3 and S4), with nearly two-thirds of the overall
nitrate increase stemming from changes to crop rotations.

The RFS also increased total edge-of-field phosphorus (P)
runoff by 3.2% (Fig. 2I and SI Appendix, Figs. S5 and S6). This
change was driven by a 3.5% increase in total P applications
(Fig. 2G) and a 4.7% increase in soil erosion (Fig. 2H), which
transports dissolved and sediment-bound P to downstream sur-
face waters, where it often causes eutrophication and harmful
algal blooms (41, 47, 49). Erosion losses from crop fields can
also degrade soil quality over time (50, 51), contribute to
enhanced GHG emissions in waterways (52), and impair water
quality and aquatic habitat (53, 54) including that of threatened
and endangered species (55, 56).

Collectively, increased nitrate leaching, phosphorus runoff,
and soil erosion from the RFS fall within the range of outcomes
projected at its outset (41, 57, 58) and substantiate long-
standing concerns about the policy’s environmental disservices.
However, we find disproportionate effects and distinct spatial
patterns from different pathways of land use response. Shifting
crop rotations toward more corn increased N fertilizer applica-
tions and nitrate leaching by nearly twice that of cropland area
changes, due largely to the high N requirements of corn relative
to other crops. In contrast, erosion-driven P and soil losses

*See S/ Appendix results: Our model of key growing regions accounts for 91.6% of corn
acres in the United States. If one assumes a similar response in the remaining unmod-
eled area, then the nationwide change is 3.0 Mha or 8.9% more than the amount
expected without the RFS.

Lark et al.
Environmental outcomes of the US Renewable Fuel Standard
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Observed and BAU estimates for crop prices. (A) Corn. (B) Soybeans. (C) Wheat. Vertical bars represent the 95% Cls for each BAU spot price. Each

year denotes a crop year; e.g., 2006 is September 2006 to August 2007 for corn and soybeans and June 2006 to May 2007 for wheat. Averages for 2006 to
2010 (highlighted in gray) were used to derive the estimates in the text, although long-run persistent impacts were consistent with these results (46).

from cropland area expansion were roughly two and three
times greater, respectively, than those from increased corn
planting—a difference that reflects substantially higher erod-
ibility and P inputs of croplands relative to uncultivated land,
particularly in the marginal, steeper-sloped areas that were con-
verted (e.g., ST Appendix, Fig. S6I) (37, 59, 60).

Beyond its water quality effects, the RFS substantially
increased on-sitt GHG emissions from cropping systems. We
found that greater use of N fertilizer increased nitrous oxide
(N,O) emissions by 8.3% or 4.1 Tg COe y~! relative to BAU
(Fig. 2E). Most of this (68%) can be attributed to intensified corn
production on preexisting fields, where emissions increased by
5.7%, with the remainder emitted from the expanded croplands.

In addition to these annual fertilizer application emissions,
degradation of ecosystem carbon (C) stocks from cropland
expansion led to a substantial pulse of committed GHG emis-
sions. These arise from clearing land for crop production and
are typically realized over a period of roughly 30 y unless proac-
tively mitigated (35, 61). We estimate emissions associated with
RFS-induced conversion to cropland to be 320.4 Tg COse
[95% CI: 250.5, 384.3], or ~181 Mg CO,e ha™'.

Further, reduced rates of cropland retirement—through
CRP enrollment or transition to pasture—has reduced C
sequestration that would have otherwise resulted from peren-
nial grassland reestablishment and recovery. We estimate this
forgone sequestration at 77.3 Tg CO,e [95% CI: 30.8, 126.8],
assuming that abandoned land would accumulate carbon for
15 y—the standard duration of a single CRP contract—after
which its carbon fate becomes contingent upon subsequent
management. Combined, the RFS-driven changes in cropland
area between 2008 and 2016 caused a total net C flux of 397.7
Tg CO,e [313.3, 481.7] to the atmosphere (Fig. 2C).

Domestic LUC emissions spurred by the RFS undermine the
GHG benefits of using ethanol as transportation fuel. Assum-
ing 30-y amortization, ecosystem C emissions from the RFS-
induced LUC equate to 637 g CO,e L™! of increased annual
ethanol production or an emissions intensity of 29.7 g COye
MJ ! (SI Appendix, Table S3). Including on-site annual nitrous
oxide emissions from increased fertilizer application further
increases these emissions to 831 g COe L~ or 38.7 g CO,e
MJ~!. These findings stand in stark contrast to the —3.8 g
CO,e MJ ! of domestic LUC emissions estimated by the RFS
regulatory impact analysis (RIA) and surpass the 30.3 g CO,e
MJ ! estimated by the RIA for international LUC (35).

Lark et al.
Environmental outcomes of the US Renewable Fuel Standard

Substituting our empirically derived domestic emissions for
those modeled in the RFS RIA would raise ethanol’s projected
life cycle GHG emissions for 2022 to 115.7 g CO,e MJ~'—a
value 24% above baseline gasoline (93.1 g CO,e MJ™'). The
RIA estimate, however, includes improvements in feedstock and
ethanol production efficiency that were projected to occur by
2022, such that the GHG intensity of ethanol produced at earlier
time periods and over the life of the RFS to date is likely much
higher [SI Appendix, Supplementary Results for Greenhouse Gas
(GHG) Emissions from Land Use Change (LUC)].

Incorporating the domestic LUC emissions from our analysis
into other fuel program estimates similarly annuls or reverses
the GHG advantages they calculate for ethanol relative to gaso-
line (Fig. 3 and Table 2). However, life cycle GHG emissions
accounting requires consistent treatments and system bound-
aries across analyses (27, 64-66). As such, a full reanalysis,
rather than the partial revisions we illustrate here, should be
conducted to accurately assess ethanol’s carbon intensity rela-
tive to other fuels, particularly given the magnitude of domestic
LUC emissions identified. For instance, we likely underestimate
total domestic LUC impacts since we consider only the on-site
ecosystem C and nitrous oxide emissions but do not account for
additional emissions from increased fertilizer production (67)
or from water quality-related increases in N, P, and sedimenta-
tion, which have been shown to augment GHG emissions in
downstream waterways (52, 68, 69).

Furthermore, we assess only the domestic (US) impacts of
the RFS and expanded corn ethanol production. However, evi-
dence of such effects reaffirms the likely presence of interna-
tional LUC in response to the RFS (16, 19, 28, 70). As such,
our results should be considered the lower bound for total
GHG and other environmental impacts. We also limit our focus
to select environmental outcomes but note that interconnected
outcomes related to food systems (13, 14), human health (71),
and the welfare of different groups of society (72) likely exist.
For example, several assessments of the GHG implications of
the RFS model a concomitant reduction in global food and
feed consumption (13, 19).

Although we describe the incremental effects of the expanded
RFS program, our findings are representative of the observed
outcomes from corn ethanol development broadly, regardless of
the cause. Our estimates imply that for every billion gallons per
year (BGY) expansion of ethanol demand, we would expect a
5.6% increase in corn prices; 1.6 and 0.4% increases in the areas
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Fig. 2. Changes due to the RFS. (A) Corn planted area. (B) Cropland area. (C) Carbon emissions. (D) Nitrogen applications. (E) Nitrous oxide emissions. (F)
Nitrate leaching. (G) Phosphorus applications. (H) Soil erosion. (/) Phosphorus runoff. Positive numbers indicate an increase due to the RFS. Field-level
results were aggregated to the county level for enumeration and visualization.

of US corn and cropland, respectively; and attendant increases
in GHG emissions, nutrient pollution, and soil erosion (Table 1;
%A per BGY). Our findings are also specific to corn ethanol
and do not reflect advanced renewable fuels, which have lower
production volumes and are required to meet stricter GHG
reduction thresholds. To date, however, most RFS biofuel pro-
duction has come from conventional corn ethanol, thereby
missing much of the policy’s promised emissions savings and
potential environmental benefits expected from more advanced
feedstocks (2, 35, 73).

Despite the strong environmental tradeoffs under the RFS
thus far, biofuels and bioenergy may play a key role in stabiliz-
ing atmospheric CO, concentrations and holding global warm-
ing below 1.5 or 2°C, particularly with continued advancements
like carbon capture and storage (2, 4, 74-76) and increased pro-
ductivity from perennial feedstocks grown on marginal lands
(77-80). However, our findings confirm that contemporary corn
ethanol production is unlikely to contribute to climate change
mitigation. Given the current US dependence on this fuel, there
remains an urgent need to continue the research, development,
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and shift toward more-advanced renewable fuels, improved
transportation efficiency, and electrification (74, 81-83).

The United States is currently at a bioenergy crossroads.
The REFS specifies biofuel volumes through 2022; absent legisla-
tive action, the Environmental Protection Agency (EPA) will
determine volumes for subsequent years. If conventional bio-
fuel volumes were to increase, it is likely that further increases
in crop prices, LUC, and environmental impacts would ensue.
Alternatively, a decrease in mandated volumes may have less
effect, given the capital investment, established markets, and
economic value of producing ethanol at existing levels. More
broadly, any increases in demand for corn ethanol from non-
federal jurisdictions, including US states or trade partners like
Canada and China, are likely to exacerbate the domestic land
use and environmental outcomes identified here.

As policy-makers worldwide deliberate the future of biofuels,
it is essential that they consider the full scope of the associated
tradeoffs, weighing the GHG and other environmental exter-
nalities alongside each fuel’s benefits. By quantifying and attrib-
uting the outcomes of policy thus far, our findings provide
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Table 1. Net changes due to the RFS

Land use GHG emissions Environmental indicators
Corn Cropland Nitrous Ecosystem Nitrate Soil
area area oxide carbon N applied P applied leaching P runoff erosion
(Mhay™)  (Mha)  (TgCOey ") (TgCOe) (Gg-Ny ") (Gg-Py ™) (Gg-Ny ) (MgPy ) (Ggy )
Crop rotation A 2.8 — 2.8 — 480.0 21.3 87.1 203.2 2229
95% Cl lower limit 24 — 2.3 — 377.3 1.2 56.9 -27.7 11.6
95% Cl upper limit 3.1 — 3.2 — 577.0 41.2 117.7 449.3 423.6
Cropland extent A — 2.1 1.3 397.7 237.3 48.2 47.9 439.0 633.9
95% Cl lower limit —_ 1.8 1.0 313.3 190.5 38.4 33.5 273.6 485.9
95% Cl upper limit — 2.5 1.5 481.7 281.8 57.7 62.1 592.6 780.6
Combined total A 2.8 2.1 4.1 397.7 717.2 69.5 135.0 642.2 856.7
95% ClI lower limit 2.4 1.8 3.5 313.3 626.7 58.9 111.6 476.9 697.6
95% Cl upper limit 3.1 2.5 4.5 481.7 806.5 79.5 157.8 798.0 1,011.4
BAU baseline 31.7 88.4 48.6 — 9,545.5 1,986.4 2,535.5 19,939.3 18,038.7
%A from BAU 8.7% 2.4% 8.3% — 7.5% 3.5% 5.3% 3.2% 4.7%
%A per BGY 1.6% 0.4% 1.5% — 1.4% 0.6% 1.0% 0.6% 0.9%

%A from BAU = percent change from BAU; i.e., the incremental effect of the 2007 expansion of the RFS; %A per BGY = percent change per BGY
increase in ethanol demand.

Overall, our retrospective and purpose-built integrated assessment model-
ing framework has several advantages over previous projections and more
generalized approaches. For example, 1) we utilize observed rather than pre-
dicted crop prices and land uses as a baseline factual scenario against which
we compare our counterfactual scenario, thereby eliminating one (of the
two) sets of assumptions, projections, and uncertainties required for assess-
ment; 2) our estimates of the effects on crop prices and land use are based on
empirical assessments of observed changes rather than partial or general equi-

fundamental evidence to guide this process and set realistic
expectations for the contribution that current biofuel technolo-
gies can make toward climate mitigation and other environ-
mental goals.

Materials and Methods

We estimated the domestic environmental effects of the 2007 US RFS by link-
ing a series of empirical and explanatory models. First, we estimated the
impacts of the RFS on the prices of corn, soybeans, and wheat. We then simu-
lated, via independent models, the responses of crop rotations and total
cropland area to the changes in crop prices. Last, we quantified the associated
environmental outcomes by employing models specific to water quality indica-
tors, nitrous oxide emissions, and ecosystem carbon emissions and updated
existing life cycle estimates of ethanol’s GHG intensity to reflect these findings.

librium models that rely heavily on assumptions and prescribed parameters; 3)
we use historic changes in crop prices, crop rotations, and cropland area to val-
idate our econometric models’ predictions and show strong temporal and
regional fits between projected and observed changes; and 4) we utilize field-
level remote sensing data to detect the location of actual LUCs—rather than
rely on assumptions about the type, location, and characteristics of converted
lands—and use this information to more accurately estimate the environmen-
tal impacts of conversion. We also implemented several model-specific

EPA RIA' CARB LCFS? ANL GREET?
120-
Gasoline (RIA)
- 80 (e B _ 20% Reduction _ Emissions Source:
= |
% Domestic LUC
& =
o 8 International LUC
2 o |
8 Other
(2]
L
[z,
0 = v

Orwéinal This
Estimate Study

Original  This
Estimate Study

Original  This
Estimate Study

'U.S. Environmental Protection Agency (EPA) Regulatory Impact Assessment (RIA); Projection for 2022.
2California Air Resources Board (CARB) Low Carbon Fuel Standard (LCFS); Estimated from approved values for 2019, see S| Appendix.
3»ﬁxrgonne National Laboratory (ANL) Greenhouse Gases, Regulated Emissions, and Energy Use in Technologies (GREET) model; Default values from 2020.

Fig. 3. GHG emission intensities for corn ethanol with and without updated domestic LUC emissions. Original estimates reflect GHG intensities of corn
ethanol according to the US EPA RIA [projection for 2022 (35)], California Air Resources Board (CARB)’s Low Carbon Fuel Standard (LCFS) [estimated from
approved values for 2019 (62); SI Appendix], and Argonne National Laboratory (ANL)’s Greenhouse Gases, Regulated Emissions, and Energy Use in Tech-
nologies (GREET) model [default values for 2020 (63)]. Revised estimates (this study) replace the estimated domestic LUC emission from each source with
those identified in this study. Our domestic LUC emissions estimate includes ecosystem carbon losses (including methane) from land conversion and
on-site nitrous oxide emissions from additional fertilizer usage but excludes all other upstream and downstream emissions. Error bars represent 95% Cls
for emissions from domestic LUC only (S/ Appendix).
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Table 2. GHG emissions intensities for LUC, total ethanol, and
reference gasoline

% change
from
kg CO,e/mmBtu g CO,e/MJ  gasoline
LUC emissions
This study, domestic 40.9 38.7 —
EPA RIA*, domestic —-4.0 -3.8 —
EPA RIA*, international 31.8 30.1 —
CARB LCFS", combined 20.9 19.8 —
GREET*, domestic 2.1 2.0 —
GREET?, international 5.7 5.4 —
Total ethanol
RIA* 77.2 73.2 —-21.4%
RIA* + this study 122.1 115.7 24.3%
LCFS* 74.9 71.0 —23.7%
LCFS™ + this study 110.4 104.7 12.5%
GREET? 56.6 53.6 —42.4%
GREET* + this study 95.3 90.3 —3.0%
Other
RIA gasoline* 98.2 93.1 0.0%

*US EPA RIA; projection for 2022 (35).
TCARB LCFS; approved values for 2019 (62).
*ANL GREET model; default values for 2020 (63).

advances to improve the resolution, specificity, and performance of each indi-
vidual component of analysis. We briefly describe each step of our analysis
and its integration below and provide the full details in S/ Appendlix.

Effects on Crop Prices. We used a partially identified vector autoregression
model to assess the effects of the RFS on US crop prices. Our approach closely
follows that of Carter et al. (46) to account for competing shocks in demand
due to changes in inventory, weather, and external markets and extends the
work beyond corn to estimate the impacts of the RFS on soybean and wheat
prices. We also incorporate the RFS policy as a persistent shock to agricultural
markets rather than a transitory shock, whose price impacts are different (S/
Appendix, Estimating Effects on Crop Prices).

In our analysis, we compare observed market prices to a counterfactual
BAU scenario without the expanded 2007 RFS, where BAU ethanol produc-
tion satisfies only the volume required by the initial 2005 RFS. This volume
is roughly equivalent to the amount needed to meet oxygenate require-
ments for reformulated gasoline under the 1990 Clean Air Act. Our analy-
sis therefore estimates the effects of the 2007 expansion of the RFS
program above what would have otherwise likely occurred to meet
demand for ethanol as an oxygenate after ethanol replaced methyl tert-
butyl ether as the main oxygenate additive. As such, we assume the pre-
2007 trend of increasing ethanol use would have continued without the
expanded RFS, albeit at a slower rate.

Additional factors such as the Volumetric Ethanol Excise Tax Credit or
improved cost competitiveness may have also contributed to ethanol’s
growth. Our price effects are scalable, however, such that all land use, envi-
ronmental quality, and GHG emissions that we report would remain the same
on a per volume of ethanol basis, independent of the magnitude of demand
change (within reasonable limit) or its source. Thus, our results also reflect
observed outcomes from corn ethanol development in general, irrespective of
whether such changes were driven by policy, markets, or other factors.

Effects on Crop Rotations. After modeling the price impacts of the RFS, we
followed the approach of Pates and Hendricks to estimate how changes in
crop prices affected crop rotations and the likelihood of planting continuous
corn, continuous other crops, and corn—other crop rotations (49, 84, 85). We
estimated a set of Markov transition models to separately estimate the proba-
bility of planting corn conditional on the crop planted in the prior season.
One model estimates the probability of planting corn given corn was the pre-
vious crop, and the other estimates the probability of planting corn given a
different crop was the previous crop. We then used these transition probabili-
ties to estimate the probability of each crop rotation. To account for price
response heterogeneity, we separately estimated these models for each major
land resource area (MLRA) and major soil texture group. Advantages of our
approach are that it explicitly accounts for the common practice of rotating
crops and spatially heterogeneous responses to price across the country, as
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previous work shows that using aggregate data or ignoring price response
heterogeneity can significantly bias estimates (84, 85). Furthermore, our
model allows us to assess the location of environmental impacts as they relate
to variation in price response.

To estimate the models, we built a spatiotemporal database using field
boundary data (86-88) and associated information on annual crop type (89),
soil properties (90), and climate (91) as well as crop futures and local spot pri-
ces (92). We then calculated the rotation probabilities for all fields greater
than 15 acres that were in regions where 1) greater than 20% of the total
area was cropland, 2) more than 10% of cropland acreage was planted to
corn, and 3) greater than 50% of the cropland not planted to corn was
planted to a crop for which prices were available (specifically wheat, soybeans,
rice, and cotton). This set of criteria ensured adequate data were available to
train each model, and our final sample included 3.6 million fields that
accounted for 91.6% of corn acreage in the United States. Based upon results
of the price impact modeling, we used a 30% persistent increase in the price
of corn and 20% increases in the prices of soybeans and wheat to estimate,
for each field, the change in probability of each rotation due to the RFS. We
then derived area estimates using field sizes and summed the results across all
fields and rotations (S/ Appendix, Estimating Effects on Crop Rotations).

Cropland Area Changes. To assess LUCs at the extensive margin, we estimated
the probability of transitioning between cropland and pasture or transition-
ing between cropland and CRP as a function of cropland, pasture, and CRP
returns while controlling for soil and climate characteristics. We used a corre-
lated random effects model to reduce concerns about endogeneity because
the spatial variation in returns may be correlated with any omitted variables
that affect land use transitions. Thus, our model is designed to better isolate
the effect of changes in cropland returns on cropland transitions than other
approaches that may confound differences in cropland returns across space
with other unobserved factors that affect cropland transitions. We also
account for the fact that land can only enter CRP when a sign-up is offered
and can only exit CRP when the contract expires.

The model uses point-level land use transition data based on observed
annual land use transitions in the National Resources Inventory (NRI) from
2000 to 2012. We then used the model to predict the change in transitions
between 2008 and 2016 based on changes in prices (39). During this period,
we predicted changes for 8y, with the first transitions occurring between the
2008 and 2009 growing seasons. This approach may thus underestimate the
total extensive land response to the RFS, as some land likely came into produc-
tion prior to the 2009 growing season and after the 2016 growing season. In
order to allow for geographic variation in the extensive response of land use
to crop prices, we trained independent models for each of seven different
land resource regions (LRRs) corresponding to aggregated MLRAs from the
Natural Resources Conservation Service (SI Appendix, Estimating Effects on
Cropland Area).

We then mapped observed LUC at field-level resolution during our study
period following the general approach of Lark et al. (93) and using updated
recommended practices (94, 95) to extend the analysis to 2008 to 2016 (37).
These data were used to link the estimated extent of LUC associated with the
RFS in each major LRR to specific locations of observed conversion for the pur-
pose of enumerating environmental impacts. Thus, the high-resolution field
data (37) were used only to identify the possible locations and characteristics
of converted land, whereas the data from the NRI were used to estimate the
magnitude of conversion and how much of it could be attributed to the RFS.
This hybrid approach thereby combined the high certainty and long-term tem-
poral coverage (prior to any RFS price signals) of the NRI data with the field-
level specificity of the satellite-based land conversion observed during the
study period (37, 94).

Nutrient Application and Water Quality Impacts. Rates of N and P application
were developed using county-level estimates of fertilizer and manure applica-
tion compiled by the US Geological Survey (96, 97), county-level estimates of
area planted to specific crops from the Census of Agriculture (98), and typical
fertilizer application ratios for the three major crop types (corn, soybeans, and
wheat) from university extension publications (99). We then used these nutri-
ent application estimates to drive a process-based agroecosystem model to
simulate fluxes of water, energy, and nutrients across our study period for
each crop rotation system across the United States as well as for each patch of
converted land identified by the land transition model, following the
approaches of Motew et al. (100) and Donner and Kucharik (41) (S/ Appendix,
Estimating Water Quality Impacts). To determine the impacts of the RFS from
crop rotation changes, we multiplied the agroecosystem model outputs for
each crop rotation by the change in its probability due to the RFS as deter-
mined via the econometric model described in the section Effects on Crop
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Rotations. To estimate the impact from cropland transitions due to the RFS,
we assessed the relative differences in ecosystem outputs between cropland
and noncropland for each individual transitioned parcel and multiplied each
by the proportion of land transitioned within each LRR due to the RFS.

GHG Emissions. We modeled changes in N,O emissions from fertilizer applica-
tions using the nonlinear nitrogen effect model (NL-N-RR) of Gerber et al.
(101). For each change in crop rotation or cropland area due to the RFS, we
used the associated change in N application to estimate the corresponding
change in N,O emissions. N,O emission estimates were converted to CO,e by
assuming a 100-y global warming potential of 265 (102).

We estimated the ecosystem carbon emissions associated with RFS-related
LUC using the methods of Spawn et al. (36). Carbon emissions from soil and
biomass degradation associated with LUC were modeled for all observed
conversions to cropland. In addition, a variant of the Spawn et al. model was
created to assess forgone sequestration associated with reduced rates of
abandonment. This model was structurally similar to that used for conversion
to cropland but used a carbon response function (61) for conversion to grass-
land to estimate expected soil organic carbon accumulation over a 15-y
period—the average length of a CRP contract. We thus assumed that any
abandoned land would have been retired to the CRP and sequestering carbon
for the duration of its contract. To attribute emissions to the RFS, we multi-
plied the combined net change in emissions from all observed LUC within a
given LRR by the percentage of that region’s observed LUC that could be
attributed to ethanol under the RFS.

To estimate emissions per liter of increased annual ethanol demand, we
followed the approach of the EPA (35) and allocated total ecosystem car-
bon emissions over a 30-y period. We then added these amortized ecosys-
tem carbon emissions to the annual nitrous oxide emissions from crop
rotation and cropland area changes to estimate total annual emissions.
We divided total annual emissions due to the RFS by the increased annual
demand in ethanol estimated in our price impacts model and subsequently
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converted to emissions per unit of energy equivalent using a heating value
of 21.46 MJ/L (35).

Estimating Uncertainty. We quantified uncertainty at multiple points of our
causal analysis framework including the price impact analyses, the crop rota-
tion and cropland transition analyses, and the environmental impact model-
ing (S/ Appendix, Estimating Uncertainty). Except for the price impacts, we
propagated the uncertainty results throughout the connected components—
from the land use models through to all subsequent environmental outcomes.
All results are presented in the main text as 95% Cls, reported as [lower limit
(0.025 quantile), upper limit (0.975 quantile)].

Data Availability. All national and regionally aggregated data are available in
the main text and S/ Appendix. All underlying field-level data aggregated to
counties have been deposited in a permanent repository (https:/doi.org/10.
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work (https://doi.org/10.5281/zenod0.3905242).
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Executive Summary

A primary policy goal of the Renewable Fuel Standard (RFS) program is to reduce
greenhouse gas (GHG) emissions by increasing the use of renewable fuels, such as ethanol and
biodiesel. In the Energy Independence and Security Act (EISA), Congress required that biofuels
used to meet the RFS obligations achieve certain lifecycle GHG reductions. To qualify as a
renewable fuel under the RFS program, a fuel must, among other requirements, be produced
from qualifying feedstocks and have lifecycle GHG emissions that are at least 20 percent less
than the baseline petroleum-based gasoline and diesel fuels.! To determine whether fuels meet
the lifecycle GHG emissions threshold requirement, EPA developed a methodology to evaluate
the lifecycle GHG emissions of renewable fuels. EISA also provided a definition of “lifecycle
greenhouse gas emissions” to guide this methodology.>

In the March 2010 RFS2 rule, EPA used lifecycle analysis (LCA) to estimate the GHG
emissions associated with several biofuel production pathways, i.e., the emissions associated
with the production and use of each biofuel, including significant indirect emissions, on a per-
unit energy basis. At the time of the analysis for the 2010 RFS2 rule, there were no models
available “off the shelf” that could perform the type of lifecycle analysis required by EISA.
Several supply chain LCA tools existed at the time, e.g., the Greenhouse Gases, Regulated
Emissions, and Energy Use in Technologies Model (GREET). However, EPA determined in the
final RFS2 rule that these tools, when used on their own, lacked the ability to consider significant
indirect emissions, one of the core statutory requirements of the EISA definition of lifecycle
greenhouse gas emissions. EPA thus developed a new modeling framework to perform the
required analysis. The framework EPA developed and ultimately used in the 2010 RFS2 rule
included multiple models and data sources, including the Forest and Agricultural Sector
Optimization Model with Greenhouse Gases model (FASOM), the Food and Agricultural Policy
Research Institute international model developed at the Center for Agriculture and Rural
Development at lowa State University (the FAPRI-CARD model, or, more simply, FAPRI), and
the GREET model.?

Since the development of EPA’s 2010 LCA methodology, multiple researchers and
analytical teams have further studied and assessed the lifecycle GHG emissions associated with
transportation fuels in general and crop-based biofuels in particular. New models have been
developed to evaluate the GHG emissions associated with biofuel production and use, and more
models developed for other purposes have been modified and expanded to evaluate biofuels as
well. We now have over a decade of historic observations to compare with model results and
parameters and to use in model calibration. There has also been rapid growth in available data on
land use, farming practices, crude oil extraction and many other relevant factors. While the

!'See 42 USC 7545(0)(1), (2)(A)(1).

2 EISA defines lifecycle greenhouse gas emissions as “the aggregate quantity of greenhouse gas emissions
(including direct emissions and significant indirect emissions such as significant emissions from land use changes),
as determined by the Administrator, related to the full fuel lifecycle, including all stages of fuel and feedstock
production and distribution, from feedstock generation or extraction through the distribution and delivery and use of
the finished fuel to the ultimate consumer, where the mass values for all greenhouse gases are adjusted to account
for their relative global warming potential.” CAA 211(o)(1)(H).

3 EPA (2010). Renewable fuel standard program (RFS2) regulatory impact analysis. Washington, DC, US
Environmental Protection Agency Office of Transportation Air Quality. EPA-420-R-10-006. Chapter 2.4.
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results from our 2010 LCA methodology for the RFS program remain within the range of more
recent estimates from the literature, we acknowledge that our previous framework is
comparatively old, and that a better understanding of these newer models and data is needed. In
consultation with our interagency partners at USDA and DOE, EPA hosted a virtual public
workshop on biofuel GHG modeling on February 28 and March 1, 2022. At this workshop,
speakers within and outside of the federal government presented on available data, models,
methods, and uncertainties related to the assessment of GHG impacts of land-based biofuels.

The workshop presentations and public input clarified that there continues to be
substantial uncertainty and a wide range of estimates on the climate effects of biofuels,
especially regarding biofuel-induced land use change emissions. Uncertainties in land use change
emissions estimates stem from both economic modeling of market-mediated effects as well as
biophysical modeling of soil carbon and other biological systems and processes. The workshop
proceedings, including the workshop presentations and the comments submitted to the workshop
docket, discussed a broad and complex set of topics. A general theme that emerged from this
process is that, in support of a better understanding of the lifecycle GHG impacts of biofuels, it
would be helpful to compare available models, identify how and why the model estimates differ,
and evaluate which models and estimates align best with available science and data. Recognizing
this need, we have conducted a model comparison exercise (MCE) to better understand these
scientific questions.

While we are presenting the results of this MCE along with the RFS “Set” final
rulemaking, the MCE does not model or otherwise inform the GHG impacts of the Set final
volumes. Although this MCE produced GHG emission and carbon intensity results® from a range
of models under different assumptions, we do not use these values in the context of RFS program
implementation. For example, we do not use the MCE to determine whether or not fuel pathways
meet the lifecycle GHG threshold requirements of the CAA. Rather, the MCE has three main
goals:

1. Advance the science in the area of analyzing the lifecycle greenhouse gas emissions
impacts from increasing use of biofuels.

2. Identify and understand differences in scope, coverage, and key assumptions in each
model, and, to the extent possible, the impact that those differences have on the
appropriateness of using a given model to evaluate the GHG impacts of biofuels.

3. Understand how differences between models and data sources lead to varying results.

We conducted this model comparison exercise with five models: the Greenhouse Gases,
Regulated Emissions, and Energy Use in Technologies Model (GREET), Global Biosphere
Management Model (GLOBIOM), Global Change Analysis Model (GCAM), Global Trade

* For more information see the Federal Register Notice, “Announcing Upcoming Virtual Meeting on Biofuel
Greenhouse Gas Modeling.” 86 FR 73756. December 28, 2021. More information is also available on the workshop
webpage: https://www.epa.gov/renewable-fuel-standard-program/workshop-biofuel-greenhouse-gas-modeling.

5 In general, a carbon intensity, or CI, is a measure of greenhouse gas emissions per unit of fuel. Assumptions
related to the estimation of emissions or changes in volumes of fuel may differ between studies which define CI with
different scopes or for different purposes.
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Project (GTAP) model, and Applied Dynamic Analysis of the Global Economy (ADAGE)
model. To facilitate appropriate comparisons of these models, we ran common scenarios through
each framework: a reference case, a corn ethanol scenario (also referred to as the “corn ethanol
shock™), and a soybean oil biodiesel scenario (also referred to as the “soybean oil biodiesel

shock™).

Given the complex nature of these models, and the scope and scale of the analysis
involved, drawing firm conclusions from a comparison of these models and their results — and
presenting them for interested stakeholders — presents several challenges. We discuss these
challenges in detail throughout this document. However, despite the challenges inherent in such
a comparison, we have drawn several broad conclusions from this exercise, including the
following:

e Supply chain LCA® models, such as GREET, produce a fundamentally different
analysis than economic models, such as ADAGE, GCAM, GLOBIOM, and GTAP.
Supply chain LCA models evaluate the GHG emissions emanating from a particular
supply chain, whereas economic models evaluate the GHG impacts of a change in biofuel
consumption.’

e Estimates of land use change (LUC) vary significantly among the models used in
this study. Drivers of variation in these estimates include differences in assumptions
related to trade, the substitutability of food and feed products, and land conversion, as
well as structural differences in how models represent land categories. The variability of
LUC estimates significantly influences variability in overall biofuel GHG estimates.

e Economic modeling of the energy sector may be required to avoid overestimating
the emissions reduction from fossil fuel consumption. Economic models that include
energy market impacts (ADAGE, GCAM, GTAP) estimate a global refined oil
displacement that is less than the increase in biofuel consumption on an energy basis.

e Model trade structure and assumed flexibility influence the modeled emissions
results. There is general agreement among the economic models that these trade-driven
impacts will occur to some degree. However, these models show different degrees of
trade responsiveness, which impacts trade flows at differing magnitudes across model
results.

e Explicit modeling of the global livestock sector, and especially of the impact of biofuel
feed coproducts on global feed markets, is an important capability for estimating the
emissions associated with an increase in biofuel consumption.

e The degree to which other vegetable oils replace soybean oil diverted to fuel
production from other markets can impact GHG emissions associated with soybean

¢ Many terms are used in the LCA literature to describe this type of analysis, such as attributional LCA, lifecycle

inventory analysis, or process-based LCA. We use the term “supply chain LCA” as we believe it is descriptive of
what this type of modeling considers.

7 As discussed more in Section 1, different types of LCA approaches are appropriate for different applications. In
this exercise, we are not evaluating which approaches could be appropriate for RFS program implementation.
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oil biodiesel. Results in this exercise from economic models (ADAGE, GCAM,
GLOBIOM, and GTAP) align in estimating commodity substitution as a significant part
of their scenario solutions.

e The ability to endogenously consider tradeoffs between intensification and
extensification is an important capability for estimating the emissions associated
with an increase in biofuel consumption. Both intensification and extensification of
corn and soybean feedstock production occur across economic model results (ADAGE,
GCAM, GLOBIOM, and GTAP) in response to changing commodity prices.®

e Models included in the MCE produced a wider range of LCA GHG estimates for
soybean oil biodiesel than corn ethanol. The models show much greater diversity in
feedstock sourcing strategies for soybean oil biodiesel than they do for corn ethanol, and
this wider range of options contributes to greater variability in the GHG results.

e Differences in model assumptions, parameters, and structure impact the results from each
of the models. Sensitivity analysis, which considers uncertainty within a given model,
can help identify which parameters influence model results. However, pinpointing the
direct causes of why one estimate differs from another would require additional research.

This document describes EPA’s biofuel lifecycle GHG emissions model comparison
exercise in detail. In the first section, we describe our goals and scope for the exercise. Following
this we describe the models included in the comparison and their key characteristics. We then
describe the core scenarios evaluated for this project and the model estimates from those
scenarios. After that, we describe alternative scenarios and sensitivity analyses we conducted to
further improve understanding of these models. Finally, we summarize our findings and discuss
areas of future research and next steps.

EPA is interested to hear from stakeholders and researchers working in this field about
the results of our MCE, and we intend to engage with stakeholders to discuss this analysis. As
we describe throughout the document, this MCE has helped EPA to identify important
characteristics of existing models, areas for future data collection, and areas for additional
research. As we engage with stakeholders, EPA will be interested to hear perspectives on the
state of science and models in light of the findings of this exercise. As we engage in these
conversations, we will also seek areas to collaborate with stakeholders on the priority areas for
further research identified below, such as collecting new data, leveraging existing data sets,
conducting economic and statistical studies, and running additional model scenarios. Ultimately,
EPA hopes that the examination of models and understanding that flow from the exercise will
lend itself to informing the scientific discussion on which and to what extent biofuels contribute
to reduced environmental harm in comparison to consuming petroleum-based fuels.

8 We define intensification as an increase in the amount of crop production on a given area of land, and
extensification as an increase in the total area used to grow the crop of interest. Where we use the term
extensification, we are including both non-cropland that was converted to cropland and shifting of cropland from
one type of crop to another. However, our discussion of the results shows cropland shifting and land conversion to
cropland separately.
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Model Comparison Exercise Goals and Scope

1 Goals of Model Comparison

We conducted a model comparison exercise (MCE) with five models: the Greenhouse
Gases, Regulated Emissions, and Energy Use in Technologies Model (GREET), Global
Biosphere Management Model (GLOBIOM), Global Change Analysis Model (GCAM), Global
Trade Project (GTAP) model, and Applied Dynamic Analysis of the Global Economy (ADAGE)
model. As mentioned above, this MCE had three main goals:

1) Advance the science in the area of analyzing the lifecycle greenhouse gas emissions
impacts from increasing use of biofuel.

2) Identify and understand differences in scope, coverage, and key assumptions in each
model, and, to the extent possible, the impact that those differences have on the
appropriateness of using a given model to evaluate the GHG impacts of biofuels.

3) Understand how differences between models and data sources lead to varying results.

This effort is consistent with some of the conclusions and recommendations in the
National Academies of Sciences, Engineering, and Medicine (NASEM) report titled “Current
Methods for Life Cycle Analyses of Low-Carbon Transportation Fuels in the United States.””
For example, NASEM recommended that “[c]urrent and future LCFS [low carbon fuel standard]
policies should strive to reduce model uncertainties and compare results across multiple
economic modeling approaches and transparently communicate uncertainties,” (recommendation
4-2) and “LCA studies used to inform policy should explicitly consider parameter uncertainty,
scenario uncertainty, and model uncertainty” (recommendation 4-3).

LCA plays several diverse roles in the context of the RFS program. For example, LCA is
used for rulemaking impact analysis as well as to determine whether an individual pathway
meets the lifecycle GHG emissions reduction requirements. Different LCA tools may be
appropriate for different purposes. The NASEM report concluded that, “[t]he approach to LCA
needs to be guided on the basis of the question the analysis is trying to answer. Different types of
LCA are better suited for answering different questions or achieving different objectives, from
fine tuning a well-defined supply chain to reduce emissions, to understanding the global,
economy-level effect of a technology or policy change” (conclusion 2-2).!°

% National Academies of Sciences, Engineering, and Medicine (“NAS”) (2022). Current Methods for Life Cycle
Analyses of Low-Carbon Transportation Fuels in the United States. Washington, DC: The National Academies
Press. https://doi.org/10.17226/26402.

10 The NASEM report provided the following recommendations related to LCA approaches: “When emissions are to
be assigned to products or processes based on modeling choices including functional unit, method of allocating
emissions among co-products, and system boundary, ALCA [attributional lifecycle analysis] is appropriate.
Modelers should provide transparency, justification, and sensitivity or robustness analysis for modeling choices”
(Recommendation 2-1). “When a decision-maker wishes to understand the consequences of a proposed decision or
action on net GHG emissions, CLCA [consequential lifecycle analysis] is appropriate. Modelers should provide
transparency, justification, and sensitivity or robustness analysis for modeling choices for the scenarios modeled
with and without the proposed decision or action” (Recommendation 2-2).
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This document includes multiple sections:

e Section 2 introduces and summarizes the models considered in this exercise.

e Section 3 compares model characteristics, input parameters, and input data.

e Section 4 describes the common scenarios that were run across all the models for
purposes of this analysis.

e Section 5 provides details on the reference case used.

e Section 6 compares the results of the modeling work related to corn ethanol.

e Section 7 compares the results of the modeling work related to soybean oil biodiesel.

e Section 8 describes the scenarios run as part of our alternative volume sensitivity
analysis.

e Section 9 describes parameter sensitivity analyses.

e Section 10 summarizes the findings of this exercise and discusses future research.

2 Models Considered

Numerous factors influence biofuel GHG estimates, including model framework choice,
data inputs and assumptions, and other methodological decisions. In this section we discuss the
models considered in this MCE: GREET, GLOBIOM, GCAM, GTAP,!" and ADAGE.!? This
selection of models provides a broad cross-section of the most common types of modeling
frameworks used to assess biofuels, as discussed in this section. We chose to use these models
based on discussions with our partners at USDA and DOE and our experience reviewing
scientific literature on the lifecycle GHG emissions of biofuels, including for our 2022 biofuel
LCA workshop discussed above. In addition, our choice to use these particular models is also
informed by the statutory definition of lifecycle greenhouse gas emissions in Section
211(0)(1)(H) of the Clean Air Act, which includes significant indirect emissions, including
indirect land use change emissions.!'® Furthermore, in the 2010 RFS2 rule EPA interpreted this

' There are multiple GTAP models. The version used for this model comparison exercise is the GTAP-BIO model.
For brevity we refer to it throughout this report as “GTAP” or the “GTAP model”, except for instances where we are
describing the distinctions between GTAP-BIO and other GTAP models.

12 The model runs for this exercise were conducted by members of the modeling teams at Argonne National
Laboratory, ITASA, PNNL, Purdue University, and RTI International. The final contents of this document do not
necessarily represent the views of the modeling teams involved or the organizations they represent. All statements in
this document are ultimately those of EPA.

13 The full text of CAA 211(0)(1)(H) is “The term "lifecycle greenhouse gas emissions" means the aggregate
quantity of greenhouse gas emissions (including direct emissions and significant indirect emissions such as
significant emissions from land use changes), as determined by the Administrator, related to the full fuel lifecycle,
including all stages of fuel and feedstock production and distribution, from feedstock generation or extraction
through the distribution and delivery and use of the finished fuel to the ultimate consumer, where the mass values
for all greenhouse gases are adjusted to account for their relative global warming potential.”
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definition as including significant indirect emissions'* occuring anywhere in the world (i.e.,
international impacts), as GHG emission impacts are global.'>

In this exercise, we did not include FASOM or the FAPRI-CARD model, which we used
for the 2010 RFS2 rule. Given time and resource constraints, we chose to focus on models with
global scope. FASOM is not a global model, and instead covers the continental USA. The
FAPRI-CARD model is no longer maintained at the same level as it was in 2010; for example,
most of its projections still end in the 2022/2023 marketing year. There is another FAPRI model
maintained by the University of Missouri that projects further into the future, but this model
covers only the USA in detail and does not include GHG emissions. This exercise was not meant
to include every possible model that could be used to estimate biofuel GHG emissions, and
omission of a model from this exercise does not preclude its use in the future.

We provide a summary of each model included in this exercise, including its history,
sectoral representation, spatial coverage and resolution, temporal representation, and GHG
emissions representation. We then compare the characteristics of these models and describe
previously published literature which may assist the reader in understanding which factors may
contribute to variation in the biofuel GHG estimates these models produce. Our goal in this
section is not to provide a comprehensive accounting of any one of these models. Rather, our
objective is to summarize each model at a high level and highlight important similarities and
differences between models that we explore further when discussing MCE modeling results in
Sections 5-9.

There are four types of models commonly used for biofuel GHG analysis: supply chain
LCA models, partial equilibrium (PE) models, computable general equilibrium (CGE) models
and integrated assessment models (IAM). Supply chain LCA models, also known as attributional
LCA (ALCA) models, such as GREET, are designed to estimate the inputs and outputs of a
particular product supply chain in detail, using rule-based methods (e.g., allocation or
displacement) to account for coproducts.'® PE models, such as GLOBIOM, ! equate supply and
demand in one or more selected markets such that prices stabilize at their equilibrium level. PE
models focus on representing one or a few sectors of the economy, such as the agricultural
sector, but lack linkages to other sectors of the economy. In contrast, CGE models, such as
GTAP and ADAGE, are comprehensive in their representation of the economy, reflecting
feedback effects among all economic sectors and factors of production, such as land, capital,

14 When using the terms “direct” and “indirect” to refer to emissions, impacts or effects, NAS (2022) recommends
carefully defining these terms, or avoiding their use altogether (Recommendation 4-1). Given that the CAA
211(o)(1)(H) definition of lifecycle emissions uses the terms direct and indirect emissions, we believe it is
appropriate to use the direct/indirect terminology in this document. As a general matter, when we use the term
“direct emissions” in this document we are referring to emissions from the fuel supply chain itself, whereas “indirect
emissions” refers to emissions that results from market-mediated impacts induced by a change in biofuel
consumption. The same distinction holds for direct/indirect impacts or effects.

15 EPA. 2010. RFS2 Final Rule, 75 FR 14670 (March 26, 2010), https://www.gpo.gov/fdsys/pkg/FR-2010-03-
26/pdf/2010-3851.pdf. See in particular Section V, pages 14764-14799.

16 Supply chain LCA models such as GREET can also be supplemented with results from economic models to
consider indirect effects such as land use changes; however, doing so “can complicate the interpretation” of the
results (NAS 2022, p. 45).

!7 The FASOM and FAPRI models EPA used for the March 2010 RFS2 rule biofuel GHG analysis are also
categorized as PE models.
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labor and resources. IAMs, such as GCAM, integrate knowledge from several disciplines, for
example, biogeochemistry, economics, engineering, and atmospheric science, to evaluate how
changes in any of these areas affect the others. While it is hard to state the specific criteria for
identifying an IAM, we might distinguish them from PE and CGE models by their deeper
integration of human economic systems with Earth (biosphere and atmosphere) systems and
GHG emissions into one modelling framework.

PE, CGE and TAM models can all be called economic models since their model solutions
include achievement of a partial or general economic equilibrium. Supply chain LCA models are
categorically different from the other three model types as they do not simulate economic
equilibria, behavior, or prices. Instead, supply chain LCA models inventory the emissions that
occur along each stage of a supply chain and assign or attribute the emissions to a functional
unit, such as a volume or energy unit of fuel.'® In contrast, the other types of models (PE, IAM,
CGE) can be used for a consequential lifecycle analysis, which looks at how the emissions or
impacts, including market-mediated impacts, will change in response to a decision or action,
such as a change in the level of biofuel consumption.!® All of these models have strengths and
weaknesses, as well as uncertainties and limitations. Thus, there are often tradeoffs to consider
when selecting between models for a particular analysis. For example, there may be tradeoffs
between sectoral and temporal scope on the one hand, versus supply chain and technological
resolution on the other. The potential tradeoffs between scope and detail most relevant to this
MCE are discussed in more detail in Section 3. As discussed above, when considering these
tradeoffs, the NASEM report says that analysts need to be guided on the basis of the question
their analysis is trying to answer.>

2.1 The Greenhouse Gases, Regulated Emissions, and Energy Use in
Technologies (GREET) Model

The Greenhouse gases, Regulated Emissions, and Energy use in Technologies (GREET)
Model is a lifecycle analysis model based on supply chains of technologies and products. It
provides lifecycle energy, water, GHG, and other air emissions results intended to evaluate the
impacts of various vehicle and fuel combinations, as well as chemicals, products, and materials
that crosscut major economic sectors. The developer is Argonne National Laboratory (ANL), and
the project is sponsored by the U.S. Department of Energy (DOE). Initially made available in
1995, it was developed with the purpose of evaluating the energy and environmental (e.g., GHG
emissions, criteria air pollutant emissions, and water consumption) impacts of new fuels and
vehicles for use in the transportation sector.’!

18 NAS (2022) lists many definitions of an attributional lifecycle analysis without prescribing one particular
definition. This sentence is adapted from the first sentence under the heading “Attributional Life-Cycle Assessment
on page 22 of NAS (2022).

9 NAS (2022) lists many definitions of a consequential lifecycle analysis without prescribing one particular
definition. This sentence is adapted from the first sentence under the heading “Consequential Life-Cycle Assessment
on page 26 of NAS (2022).

20NAS (2022), conclusion 2-2.

2! Elgowainy, A. and Wang, M. (2019) ‘Overview of Life Cycle Analysis (LCA) with the GREET Model’, p. 21.
https://greet.es.anl.gov/files/workshop 2019 overview.
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GREET includes a suite of models and tools. For the transportation sector, it includes a
fuel cycle model of vehicle technologies and transportation fuels (GREET1) and a vehicle
manufacturing model of vehicle technologies (GREET2). Given that our focus is on renewable
fuels, we are primarily concerned with GREET1. GREET is available in two platforms, a large
Excel workbook and a “.net” version. The Excel version of GREET provides transparency while
the .net version offers a modular user interface with a structured database. There are several
derivates of the core GREET model, such as CA-GREET developed with the California Air
Resources Board (CARB) and used in support of the California Low Carbon Fuels Standard
(CA-LCFS), and ICAO-GREET developed with the International Civil Aviation Organization in
support of the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA).
New versions of GREET are normally released in October of each year, with the latest version as
of the time of this writing being GREET-2022. GREET includes more than 100 fuel production
pathways including fuels used in road, air, rail, and marine transportation. It also examines more
than 80 on-road vehicle/fuel systems for both light and heavy-duty vehicles. The model reports
lifecycle energy use, air pollutants, GHGs and water consumption. It includes detailed
representations of the petroleum, electric, natural gas, hydrogen, and renewable energy sectors.

The GREET modeling framework is largely a process-based LCA approach (sometimes
referred to as attributional LCA).?> GREET can be used to estimate the carbon intensity (CI)* of
individual supply chains and the benefits of specific supply chain adjustments, such as reducing
fertilizer application rates or switching to more efficient fuel distribution modes. Fundamentally,
GREET is most closely related to other supply chain LCA frameworks such as SimaPro, GaBi,
and OpenLCA, though GREET differs in that it comes with predeveloped fuel pathways and pre-
populated data and assumptions developed by ANL. In general, GREET evaluates production of
a fuel commodity by considering the activities from the associated supply chain. In the context of
GREET, the data on the activities controlled within a fuel commodity supply chain are called the
“foreground” data. GREET accounts for important biofuel coproducts such as distillers grains
and soybean meal through allocation or displacement rules. Figure 2.1-1 provides a schematic
overview of how the biofuel lifecycle is represented in GREET. GREET can be used to estimate
the CI of individual supply chains and the benefits of specific supply chain adjustments, such as
reducing fertilizer application rates or switching to more efficient fuel distribution modes. The
model can also consider technology improvements at the process- or site-specific level for
biofuels.

22 Wang, M. (2022). “Biofuel Life-cycle Analysis with the GREET Model.” Presentation at the EPA Biofuel
Modeling Workshop. Argonne National Laboratory. March 1, 2022.
https://www.epa.gov/system/files/documents/2022-03/biofuel-ghg-model-workshop-biofuel-lifecycle-analysis-
greet-model-2022-03-01.pdf. Slide 5.

23 Carbon intensity is a measure of greenhouse gas emissions per unit of fuel.

NMED Exhibit 39-C_000011



Figure 2.1-1: Schematic of Biofuel Supply Chain Representation in GREET?*
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GREET primarily estimates default fuel CIs using data for average resource and energy
production in the United States. In the context of GREET, these data on resource and energy
production are referred to as the “background data.” For example, GREET by default models
electricity based on data for average U.S. electricity generation. However, GREET includes
some pathways representing foreign fuel production (e.g., Brazilian sugarcane ethanol) and in
some cases users can choose to model some supply chains located in particular regions of the
U.S. (e.g., states or electricity grid regions). A user with enough data on their supply chain could,
in certain cases, customize the background data in GREET to estimate the CI of their fuel
considering regional details and particular suppliers of energy and material inputs.

GREET is not a dynamic model as it does not make projections whereby future time
periods depend on the simulation of prior time periods. However, it does include projected
background data, using projections from sources such as the U.S. Energy Information
Administration (EIA). GREET users can select a target year, between 1990-2050, to estimate
lifecycle emissions for their supply chain given background data assumptions for the selected
year. Thus, it can be used to show how the estimated CI of a fuel changes over time based on
changes in technological efficiency and other factors. For example, Lee et al. (2021) used data on
U.S. ethanol production efficiencies and corn yields to estimate the CI of U.S. corn ethanol each
year from 2005 to 2019.%°

Although GREET does not endogenously estimate indirect emissions such as those
resulting from direct and indirect land use change, GREET incorporates a static module called
the Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) to account for

24 Copied from Wang (2022), slide 9.
% Lee, U., et al. (2021). “Retrospective analysis of the US corn ethanol industry for 2005-2019: implications for
greenhouse gas emission reductions.” Biofuels, Bioproducts and Biorefining.
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land use change emissions.?® CCLUB relies on a set of estimated induced land use changes for
various biofuel pathways obtained from GTAP studies conducted between 2011-2018 (see Table
2.1-1), combined with emissions factors estimated with a parametrized CENTURY model and
derived from various data sources to estimate land use change GHG emissions per unit of biofuel
production.?’ Thus, the well-to-wheel emissions for crop-based pathways are estimated as the
process-based emissions plus the induced land use change estimates from CCLUB. The data
sources and calculations in CCLUB are summarized in Figure 2.1-2, reproduced from the
CCLUB user manual.

Figure 2.1-2: Schematic of Data Sources and Calculations in CCLUB??
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CCLUB includes land use change area estimates from nine different GTAP scenarios:
four soybean oil biodiesel shocks, two corn ethanol shocks, and one shock each for ethanol from
corn stover, miscanthus and switchgrass. The corn ethanol and soybean oil biodiesel scenarios
included in CCLUB are described in Table 2.1-1. The two corn ethanol scenarios are similar
except that the “Corn Ethanol 2013” estimate was produced with a version of GTAP with
regionally differentiated land transformation elasticities and a modified land nesting structure
that makes it more costly within the model to convert forest to cropland relative to converting
pasture to cropland.

26 Kwon, Hoyoung, et al. (2021). Carbon calculator for land use change from biofuels production (CCLUB) users’
manual and technical documentation, Argonne National Lab, Argonne, IL. https://greet.es.anl.gov/publication-
cclub-manual-r7-2021

27 Hoyoung Kwon and Uisung Lee (2019) ‘Life Cycle Analysis (LCA) of Biofuels and Land Use Change with the
GREET Model’. https://greet.es.anl.gov/files/workshop 2019 _biofuel luc.

28 Kwon, Hoyoung, Liu, Xinyu, Dunn, Jennifer B., Mueller, Steffen, Wander, Michelle M., and Wang, Michael.
(2020). Carbon Calculator for Land Use and Land Management Change from Biofuels Production (CCLUB). United
States: N. p., 2020. Web. doi:10.2172/1670706. Copy of Figure 1.
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Table 2.1-1: Corn Starch and Soybean Oil Based Biofuel Scenarios Available in CCLUB?*

Shock Size

Case Description (Billion Gallons) Source
“Corn Ethanol 2011.” An increase in corn ethanol 11.59 Taheripour et al.
production from its 2004 level (3.41 billion gallons (2011)%
[BG]) to 15 BG
“Corn Ethanol 2013.” An increase in corn ethanol 11.59 Taheripour and
production from its 2004 level (3.41 billion gallons Tyner (2013)!
[BG]) to 15 BG
Increase in soybean oil biodiesel production by 0.812 Chen et al.
0.812 BG (CARB case 8) (2018)*
Increase in soybean oil biodiesel production by 0.812 Chen et al. (2018)
0.812 BG (CARB average proxy)
Increase in soybean oil biodiesel production by 0.8 | 0.8 Taheripour et al.
BG (GTAP 2004) (2017)*
Increase in soybean oil biodiesel production by 0.5 0.5 Taheripour et al.
BG (GTAP 2011) (2017)

For each case, the estimates CCLUB uses from GTAP are the area of changes in
cropland, forest, pasture in each agro-ecological zone (AEZ) and region, and cropland pasture in
the U.S., Brazil, and Canada. Land use change GHG emissions are estimated based on these land
conversion areas using data from a few different sources. Based upon user selections, CCLUB
ultimately combines a given GTAP scenario’s estimated land use change impacts with sets of
user-selected emission factor data** to provide domestic and international land use change GHG
emissions per functional unit of biofuel. By default, for corn ethanol and soybean oil biodiesel,
among other crop-based fuels, GREET adds the LUC GHG estimates from CCLUB to the rest of
the supply chain LCA estimates to produce a CI score for each fuel pathway.

A module called the Feedstock Carbon Intensity Calculator (FD-CIC) was more recently
added to GREET.?® FD-CIC is designed to examine CI variations of different corn, soybean,
sorghum, and rice farming practices at the farm level. The FD-CIC uses county level data and
allows users to input their own farm level data on energy and chemical farming inputs, tillage,
cover cropping and other crop management practices. Based on these input data, the FD-CIC

2% Adapted from Table 1 in Dunn, J. B., et al. (2017). Carbon calculator for land use change from biofuels
production (CCLUB) users’ manual and technical documentation, Argonne National Lab. (ANL), Argonne, IL
(United States).

30 Taheripour, F., et al. (2011). Global land use change due to the U.S. cellulosic biofuels program simulated with
the GTAP model, Argonne National Laboratory: 47.

31 Taheripour, F. and W. E. Tyner (2013). “Biofuels and land use change: Applying recent evidence to model
estimates.” Applied Sciences 3(1): 14-38.

32 Chen, R, et al. (2018). “Life cycle energy and greenhouse gas emission effects of biodiesel in the United States
with induced land use change impacts.” Bioresource Technology 251: 249-258.

3 Taheripour, F., et al. (2017). “The impact of considering land intensification and updated data on biofuels land use
change and emissions estimates.” Biotechnology for Biofuels 10(1): 191.

34 For this model comparison exercise, we use the default emissions factor data used by GREET, which are from the
parameterized CENTURY model and Winrock. See Kwon, Hoyoung, et al. (2021) for details.

3 Liu, X, et al. (2020). “Shifting agricultural practices to produce sustainable, low carbon intensity feedstocks for
biofuel production.” Environmental Research Letters 15(8): 084014.
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estimates the farm level emissions from energy, fertilizers, herbicide, and insecticide, as well as
effects on soil organic carbon relative to the baseline assumptions in GREET. The FD-CIC may
be useful to estimate the soil carbon benefits of reduced tillage and cover cropping, and to
examine regional differences or farm-level differences in feedstock CI.

While GREET accounts for indirect land use change emissions, it does not consider other
indirect effects associated with a change in biofuel demand, such as through market-mediated
impacts on the agriculture, livestock, or energy sectors.

GREET is used by a variety of academic, commercial, and government entities.
California’s Low Carbon Fuel Standard (LCFS) program relies in part on a customized version
of GREET called CA-GREET to provide state-specific fuel pathways and CI values.*® Oregon
uses a similar approach for their LCFS program.’’ The International Civil Aviation Organization
(ICAO) uses GREET among several models to provide carbon intensities for specific aviation
fuel pathways.>® Most of these programs (with the exception of Oregon) use the non-land use
change GHG estimates from GREET and add their own land use change estimates in specific
market and policy contexts instead of those derived from CCLUB to calculate biofuel carbon
intensities. Among other applications, EPA has used GREET since the inception of the RFS
program to provide data for rulemakings and biofuel pathway support as part of our suite of tools
in addition to FASOM and FAPRI.

2.2 The Global Biosphere Management Model (GLOBIOM)

The Global Biosphere Management Model (GLOBIOM) was developed and continues to
be managed by the International Institute for Applied Systems Analysis (IIASA). The model was
developed in the late 2000s originally to conduct impact assessments of climate change
mitigation policies of biofuels and other land-based efforts.> It was developed on the basis of the
U.S. Forest and Agricultural Sector Optimization Model (FASOM model).*’ There are several
model versions of GLOBIOM available for different applications and contexts. A sample of
GLOBIOM code is available to the public, and an open-source version is under development.*!

36 California Air Resources Board. LCFS Life Cycle Analysis Models and Documentation.
https://ww?2.arb.ca.gov/resources/documents/Icfs-life-cycle-analysis-models-and-documentation.

37 Oregon Department of Environmental Quality. Carbon Intensity Values: Oregon Clean Fuels Program.
https://www.oregon.gov/deq/ghgp/cfp/Pages/Clean-Fuel-Pathways.aspx. This version is based on a previous version
of Argonne GREET.

3 ICAO. Models and Databases. https://www.icao.int/environmental-protection/pages/modelling-and-
databases.aspx.

39 International Institute for Applied Systems Analysis, “GLOBIOM,” https://iiasa.ac.at/models-tools-data/globiom.
0 Frank, Stefan, et al. “The Global Biosphere Management Model,”
https://www.epa.gov/system/files/documents/2022-03/biofuel-ghg-model-workshop-global-biosphere-mgmt-model-
2022-03-01.pdf. See also, Valin, Hugo et al. The Land Use Change Impact of Biofuels Consumed in the EU:
Quantification of Area Greenhouse Gas Impacts. August 27, 2015, pg. 128.

41 See, GLOBIOM, “Model Code,” https://iiasa.github.io/GLOBIOM/model_code.html.
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Figure 2.2-1: GLOBIOM Regional Mapping*?

GLOBIOM is a PE model that captures the agricultural, forest, and bioenergy sectors.
The model solves recursively dynamic using an economic equilibrium modeling approach with
detailed grid cell land representation.** The model finds market equilibria that maximize the sum
of producer and consumer surplus subject to resource, technological, demand and policy
constraints at a country/regional level. Producer surplus is defined as the difference between
market prices at a regional level and the product’s supply curve at the regional level. The supply
curve accounts for labor, land, capital and other purchased input. Consumer surplus is based on
the level of consumption of each market and is arrived at by integrating the difference between
the demand function of a good and its market price. The model uses linear programming to
solve, although it also contains some non-linear functions that have been linearized using
stepwise approximation.* GLOBIOM features global coverage with 37 regions (see Figure 2.2-
1) and simulates for the years 2000-2100 using ten-year time steps. As a PE model, GLOBIOM
does not have feedback from labor, capital, or other parts of the economy. However, the model
can be linked to other models, such as IIASA’s energy sector model MESSAGE.

42 [IASA. (2020). “GLOBIOM regional and country level modeling.” SUPREMA GLOBIOM-MAGNET Training.
December 4, 2020. https://iiasa.github.io/GLOBIOM/training_material/GLOBIOM/GLOBIOM-
Topic_RegionalApplications APalazzo Nov2020.pdf.

43 In models with recursive dynamic solution algorithms, the model solves at each time step before moving forward
to the next time step. In contrast, forward looking optimization models solve for all time periods at once.

4 [IASA, “GLOBIOM Documentation 20180604.pdf,”
https://iiasa.github.io/GLOBIOM/GLOBIOM_Documentation_20180604.pdf.

14

NMED Exhibit 39-C_000016



Figure 2.2-2: Schematic Overview of GLOBIOM*
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The detailed grid cell-level spatial coverage for GLOBIOM includes more than 10,000
spatial units worldwide. The model represents 18 crops globally (and nine additional crops in
Europe) using FAOSTAT as the primary database for crop statistics. Area of other crops that are
not represented dynamically (e.g., fruits and vegetables) are kept constant. Crop modeling
includes differentiation in management systems and multi-cropping.

GLOBIOM also features highly detailed livestock representation, based on FAOSTAT
data. The model includes 7 animal products, which can be produced in differentiated production
systems. For ruminants there are 8 production system possibilities, including grazing systems in
different climatic locations such as arid and humid, mixed crop-livestock systems, and others.
Pigs and poultry are classified under either small holder or industrial systems. Based on the
production system, animal species, and region, GLOBIOM differentiates diets, yields, and GHG
emissions. For instance, dairy and meat herds are modeled separately, and their diets are
differentiated. Poultry in industrial systems is split into laying hens and broilers, again with
different dietary needs.

4 IIASA. GLOBIOM Online Documentation. https:/iiasa.github.io/GLOBIOM/introduction.html.
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For ruminants, livestock production is modeled spatially in GLOBIOM’s gridded cell
structure. At the cell level, animal yields for bovine and small ruminants are estimated using the
GLOBIOM module, RUMINANT. RUMINANT calculates a production yield that matches
plausible feed rations and checks this against regional-level data of livestock production. Feed
for animals is also differentiated in the RUMINANT model and can be composed of feed crops,
grass, stover, and other feed. Monogastric productivities are calculated based on FAOSTAT and
assumptions of potential productivities of smallholder and industrial systems. Livestock
production is allowed to intensify or extensify, thereby altering the amount of feed or grass
consumed.*® Since for ruminants this is modeled spatially, any changes in grassland consumed
due to changes in production systems, animal type, yield, and GHGs is captured in the spatially-
relevant areas. Each final livestock product is considered a homogenous good with its own
specific market (apart from bovine and small ruminant milk).

Forestry in GLOBIOM is captured through the G4M module*’ and includes detailed
representation of the sector and its supply chain and a differentiation between managed and
unmanaged forest areas. GLOBIOM includes bilateral trade for agricultural and wood products.
These products are assumed to be homogenous and traded based on least expensive production
costs though transportation costs and tariffs are also included.

The model also includes a bioenergy sector with first and second generation biofuels and
biomass power plants. Perennial crops and short-rotation coppice are included as inputs to the
bioenergy sector. GLOBIOM represents biofuel coproducts including distillers grains, oilseed
meals, and sugar beet fibers. These coproducts can be traded either in their processed or whole
forms. Coproducts that can be used for livestock feed are incorporated into the livestock
RUMINANT module and can substitute other forms of feed depending on protein and
metabolizable energy content.*?

There are nine land cover types in GLOBIOM, and 6 of these are modeled dynamically:
cropland, grassland, short rotation plantations, managed forests, unmanaged forests, and other
natural vegetation land. The other three land cover categories are represented in the model but
kept constant, they include other agricultural land, wetlands, and not relevant (ice, water bodies
etc.). Greenhouse gas emission coverage includes 12 sources of emissions that cover crop
cultivation, livestock, above and below-ground biomass, soil-organic carbon, and peatland.
Although GLOBIOM does not track terrestrial carbon stocks dynamically, carbon fluxes from
land use change are calculated with equations, following I[PCC guidelines, that estimate changes
over time and allocate the average annual emissions to the time period in which the land use
change occurs.

46 Intensifying involves increasing livestock output without expanding the area of pasture land by grazing more
livestock per area of land, increasing feed relative to grazing, or using feedlots. Extensifying is the opposite — it
involves expanding pasture area in order to increase livestock production.

47 International Institute for Applied Systems Analysis, “Global Forest Model (G4M)”, https://iiasa.ac.at/models-
and-data/global-forest-model.

*8 Valin, Hugo, et al., September 17, 2014, “Improvements to GLOBIOM for Modelling of Biofuels Indirect Land
Use Change,” http://www.globiom-iluc.eu/wp-content/uploads/2014/12/GLOBIOM_All improvements_Sept14.pdf,

pg. 38.
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Land use in GLOBIOM allows for both intensification and extensification. When land is
converted, this is endogenously determined in the model based on conversion costs, and the
profitability of primary products, coproducts, and final products. Costs increase as the area
converted expands. Additionally, there are biophysical land suitability and production potential
restrictions. Land use change is determined at the grid cell level.* There is a land transition
matrix that sets the options for land conversion for each cell and is based on land conversion
patterns specific to that region and conversion costs depending on the type of land converted.*°
In the USA and EU regions, GLOBIOM, by default, does not allow forest conversion and
restricts natural land conversion though these assumptions can be changed.

In policy settings, GLOBIOM is used for both modeling the European Union’s biofuel
mandates and for estimating induced land use change impacts of biofuels for the International
Civil Aviation Organization’s Carbon Offsetting and Reduction Scheme for Civil Aviation
(CORSIA). In research contexts, the model has regularly participated in AgMIP, an agricultural
model intercomparison and improvement project.’! One result of this project was an article on
the key determinants of global land use projections.’> GCAM, discussed in Section 2.3, was also
part of the AgMIP study. GLOBIOM has been used to assess other topics in the academic
literature, publishing work on topics such as reducing greenhouse gas emissions from the
agricultural sector, food security, and climate mitigation of livestock system transitions.

2.3 The Global Change Analysis Model (GCAM)

The Global Change Analysis Model (GCAM) is a partial equilibrium, integrated
assessment modeling framework which explores human and earth dynamics. The model includes
representation of energy, economy, land, water, and physical earth systems and interactions
between these systems within a fully integrated computational system. The model includes all
human systems and economic sectors which produce or consume energy, or which emit GHGs.
GCAM operates as a recursive dynamic framework, generally in 5-year time steps. In practice,
the model is often run from a base year in the recent past through the years 2050 or 2100.
However, time step and scenario length are flexible input assumptions to GCAM, and the
framework can support scenario analysis across a wide range of time scales. By default and for
the purposes of this model comparison exercise, the model base year is currently 2015. But other
historical base periods may be specified. For each modeled time period, GCAM iterates until it
finds a vector of prices that clears all markets and satisfies all consistency conditions. The model

4 GLOBIOM represents most land in the world using a 5 arcminutes by 5 arcminutes grid. At the equator, this is
roughly 9km by 9km.

SO IIASA, “Spatial Resolution and Land Use Representation,”
https://iiasa.github.io/GLOBIOM/documentation.html#spatial-resolution-and-land-use-representation.

31 Several studies have estimated water use and availability impacts associated with future scenarios of increased
cellulosic biofuel production. These studies often project future land use/management for different scenarios of
increased production of cellulosic crops, and then estimate impacts on water use and changes in streamflow for
specific watersheds. See for example: Cibin, R., Trybula, E., Chaubey, ., Brouder, S. M., & Volenec, J. J. (2016).
Watershed-scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. Geb
Bioenergy, 8(4), 837-848 or Le, P. V., Kumar, P., & Drewry, D. T. (2011). Implications for the hydrologic cycle
under climate change due to the expansion of bioenergy crops in the Midwestern United States. Proceedings of the
National Academy of Sciences, 108(37), 15085-15090.

52 Stehfest, E., van Zeist, WJ., Valin, H. et al. Key determinants of global land-use projections. Nat Commun 10,
2166 (2019). https://doi.org/10.1038/5s41467-019-09945-w
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is designed to explore different “what-if” scenarios, assessing the implications of different
futures on a wide range of outcomes, such as energy supplies and demands, land allocation, or
commodity prices.

The core GCAM is developed and maintained at the Joint Global Change Research
Institute, a partnership between Pacific Northwest National Lab (PNNL) and the University of
Maryland (UMD) in College Park, Maryland. PNNL is the primary steward of the model, though
members of a larger GCAM Community also contribute to development of the framework.>?
GCAM was originally developed in the early 1980s to assess the magnitude of GHG emissions
from fossil fuel COz through the mid-21% Century. Over time, the model has expanded in scope
to serve a wide set of scientific modeling applications. The model has now been in continuous
development for over 40 years and has been applied in several studies and model inter-
comparison activities, including the IPCC’s Representative Concentration Pathways>* and
Shared Socioeconomic Pathways.”> GCAM is an open-source community model that can be
downloaded from a public repository.>® The model documentation is also publicly available®’
and includes a partial list of GCAM publications.>®

Economic systems in GCAM are divided into sectors and, within each sector, specific
technologies. Figure 2.3-1 provides an overview of the sectors represented in GCAM, along with
the inputs and outputs of the model. As shown in the figure, there are exogenous natural resource
supply, land, economy, and demand inputs to the model. These exogenous inputs include global
population and GDP. Each sector of GCAM is structured with a multi-level nesting approach
that allows competition between different nodes at each level, and any number of levels. This
nested competition follows a discrete logit>® or modified logit model®, depending on the object.
The market share of each discrete technology is determined by a) a share-weight parameter that
reflects the specific preferences for a particular choice, b) the cost, which includes fuel and non-
fuel costs, and ¢) an exogenous logit exponent that determines the price responsiveness of the
competition. In most cases the share-weights are derived from base-year calibration when market
shares are known. Technologies that are introduced in future time periods are assigned
exogenous share-weights in each model time period. The market shares are therefore influenced
by a number of endogenous and exogenous parameters, including fuel and non-fuel costs,
efficiency or input-output coefficients, share-weights, and logit exponents. These parameters are
documented and can be consulted in online repository.®!

33 For more information, see https:/gcims.pnnl.gov/community.

34 Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, et al. RCP4. 5: a pathway for stabilization of
radiative forcing by 2100. Clim Change 2011;109:77.

55 Calvin K, Bond-Lamberty B, Clarke L, Edmonds J, Eom J, Hartin C, et al. The SSP4: A world of deepening
inequality. Glob Environ Change 2017;42:284-96.

36 See https://github.com/JGCRI/gcam-core.

57 See http://jgcri.github.io/gcam-doc/index.html.

38 See more specifically http:/jgeri.github.io/gcam-doc/references.html.

% McFadden D. Conditional logit analysis of qualitative choice behavior 1973.

60 Clarke JF, Edmonds JA. Modelling energy technologies in a competitive market. Energy Econ 1993;15:123-9.
61 See Calvin et al. 2019. GCAM v5.1: Representing the linkages between energy, water, land, climate, and
economic systems. Geoscientific Model Development 12, 1-22. See also the online documentation
(https://github.com/JGCRI/gcam-doc/blob/gh-pages/ssp.md) for the specific quantification of the inputs and
parameters to the model.

18

NMED Exhibit 39-C_000020



International trade of commodities in GCAM is specified using one of two methods.
Agricultural, livestock, and forestry primary goods are traded through regionally-differentiated
markets following an Armington-style approach.®” In the version of GCAM used for this
exercise, all other commodities are traded through homogenous global markets following the
Heckscher-Ohlin theorem. % These approaches are described in detail in GCAM’s online
documentation.*

Figure 2.3-1: GCAM diagram of model inputs, sectors, and outputs®
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GCAM includes detailed representations of the energy sector, inclusive of liquid biofuels,
and the agriculture and land sectors. The energy sector module in GCAM consists of depletable
and renewable resources®, energy transformation and distribution sectors (electricity, refining,

62 The Armington approach to modeling international trade is based on the premise that products traded
internationally are differentiated by country of origin. This is in contrast to models that assume perfect substitution
between products produced in different countries. Armington, P. S. (1969). A Theory of Demand for Products
Distinguished by Place of Production. IMF Staff Papers, 1969 (001).

6 Note that the most recent public version of GCAM trades all energy goods through the Armington-like approach,
rather than through homogenous markets. This version of the model was not released in time for inclusion in this
exercise.

%4 See http://jgcri.github.io/gcam-doc/details_trade.html

65 See http://jgcri.github.io/gcam-doc/index.html.

% Depletable resources are based on graded supply curves for coal, oil, gas and uranium. Renewable resources
include annual flows of wind, solar, geothermal, hydropower, and biomass.

19

NMED Exhibit 39-C_000021



gas processing, hydrogen production, and district services), and final energy demand sectors
(buildings, industry, and transportation).®’ For transportation biofuels specifically (referred to in
the GCAM documentation as “biomass liquids”), by default the model includes a total of 11
biofuel production technologies. These include four “first generation” technologies, representing
ethanols and biodiesels produced from agricultural commodity crops, and seven “second
generation” technologies representing fuels produced from a variety of feedstocks, including
energy crops and residues. By default, the technology assumptions for second generation
represent the inputs and outputs of cellulosic ethanol and Fischer-Tropsch fuels. However, the
input assumptions for these technologies can be modified to represent other fuel production
pathways. Secondary outputs such as dried distillers grains (DDG) and electricity produced from
lignin can be considered, as can the potential for carbon capture and storage. Further description
of these technological representations is available in the online GCAM documentation. ®3

The agriculture and land use module differentiates 384 land use regions globally,
generated as the intersection of 32 socioeconomic regions with 235 water basins (see Figure 2-
2). Within each land use region, up to 25 land use types compete for land share based on the
relative profitability of each use, using a nested land allocator tree structure.® The conversion of
land from one type to another is determined in part by the logit structure of the model and the
land nesting structure.”” GCAM land categories are structured in sub-nests, with easier
conversion between land types within a sub-nest than across sub-nests. Land use types include
exogenous land types (tundra, desert, urban), commercial and non-commercial pasture and forest
lands, grasslands and shrublands, and a detailed set of agricultural crop commodities, including
bioenergy crops, classified by irrigation type and fertilizer use.”!

Within this nesting structure, the allocations of land to each land use type are calibrated
in the model base year, and in the future, changes from the base-year allocations are driven by
changes in the relative profitability of each land use type, including both commercial and natural
lands. Profitability of lands in agricultural and forestry production changes over time as a
function of future commodity prices, yields, and costs of production (including endogenous costs
of fertilizer, fuel, and irrigation water). The intrinsic profitability or value of natural lands is
inferred from the base year profitability of proximate land used for agriculture and forestry in
each region. The logit competition for land is non-linear and exhibits diminishing marginal

7 More detailed information on the GCAM energy system can be found in online documentation, see
http://jgcri.github.io/gcam-doc/index.html, and also in previous studies (see Clarke L, Eom J, Marten EH, Horowitz
R, Kyle P, Link R, et al. Effects of long-term climate change on global building energy expenditures. Energy Econ
2018;72:667—77; Muratori M, Ledna C, McJeon H, Kyle P, Patel P, Kim SH, et al. Cost of power or power of cost:
A US modeling perspective. Renew Sustain Energy Rev 2017;77:861-74.)

%8 See http:/jgcri.github.io/gcam-doc/supply_energy.html.

% See Wise M, Calvin K, Kyle P, Luckow P, Edmonds J. Economic and physical modeling of land use in GCAM
3.0 and an application to agricultural productivity, land, and terrestrial carbon. Clim Change Econ 2014;5:1450003,
and Zhao X, Calvin KV, Wise MA. The critical role of conversion cost and comparative advantage in modeling
agricultural land use change. Clim Change Econ 2020;11.

70 See http://jgcri.github.io/gcam-doc/details_land.html

"' A complete description of the land use module can be found in the online documentation (see
http://jgcri.github.io/gcam-doc/toc.html) and in Kyle GP, Luckow P, Calvin KV, Emanuel WR, Nathan M, Zhou Y.
GCAM 3.0 agriculture and land use: data sources and methods. Pacific Northwest National Lab.(PNNL), Richland,
WA (United States); 2011.
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returns to expansion of each use as well as non-constant elasticities.”” This nonlinear nature
allows the land shares to be solved based on equal value at the margin without need the explicit
constraints used in linear models.

GCAM also uses land suitability and land protection assumptions to determine what land
is available for expansion. All versions of GCAM divide land into arable and non-arable
categories and, by default, protect some portion of the arable land from conversion to agricultural
or silvicultural use. In the version of GCAM used for this exercise, GCAM-T, other assumptions
limit the suitability of arable lands for crop production based on biophysical limitations (e.g.,
slope, annual rainfall) and human-imposed limitations such as land protection policies. The latter
are parameterized using the International Union for Conservation of Nature’s (IUCN) World
Database of Protected Areas.”

Terrestrial carbon stocks and flows are modeled for each land type in each water basin.”™
The agricultural sector of the model primarily relies on input data from the UN Food and
Agriculture Organization (FAO) historical data sets, and includes all crops for which FAO
reports area and production data for the model base year of 2015.7° Major global commodity
crops, such as corn, rice, soybeans and wheat are modeled individually, while all other crops are
modeled as a series of thematic aggregations.

Figure 2.3-2: GCAM Regional Mapping’®
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In addition to the core GCAM described in this section, there exist several other
subversions and downscaling tools which can be used to examine regions and systems at a finer
grain of resolution. These include, among others, GCAM-USA”’, which models each U.S. state

2 See Wise et al (2020).

73 For more information, see documentation provide at https:/github.com/gcamt/gcam-core/tree/ GCAM-T-2020.
7 Input assumptions related to terrestrial carbon and land transitions are documented at http://jgcri.github.io/gcam-
doc/land.html.

75 See http://jgeri.github.io/gcam-doc/inputs_land.html for further data on land inputs to the model.

76 See http://jecri.github.io/gcam-doc/overview.html.

7T See http://jecri.github.io/gcam-doc/gcam-usa.html.

21

NMED Exhibit 39-C_000023



as an individual region, Tethys’®, which allows for the downscaling of modeled GCAM water
impacts, and Demeter”?, which allows for the downscaling of modeled land allocation impacts.
Numerous additional tools are in various stages of development at JGCRI and other research
groups which participate in the GCAM Community. 3

One of these, GCAM-T, was used in a recent study of corn ethanol impacts by Plevin et
al. The results of that study are discussed in greater detail later in this chapter.®! GCAM-T is also
the version of the model used for the present model comparison exercise. This version of the
model includes greater detail in several sectors relevant to the modeling of transportation energy
technologies, including biofuels. The version of GCAM-T used for the Plevin et al paper,
GCAM-T 2020.0, is publicly documented.®?> Additional documentation for the version of
GCAM-T used for this model comparison exercise, GCAM-T 2022.0, is included as a
memorandum to the docket.®* GCAM-T 2022.0 is referred to simply as “GCAM” for the
remainder of this RIA discussion and in the preamble of this final rulemaking.

In addition to biofuel modeling,®* GCAM is used for diverse purposes across a wide
range of stakeholders, including federal, state, and local U.S. government, foreign governments
and international governance bodies, academia, private industry, and non-governmental
organizations. As noted above, GCAM is used on an ongoing basis by the IPCC in the
development of socioeconomic and climatic projections via the Representative Concentration
Pathways®’ and Shared Socioeconomic Pathways.¢ Another notable recent application was the
use of GCAM to produce scenario analysis for the Long-Terms Strategy of the United States,
submitted to the United Nations under the Paris Agreement by the U.S. State Department and
Executive Office of the President.®” Numerous other research papers associated with GCAM are
accessible via PNNL’s publications page for the model.®®

2.4 The Global Trade Analysis Project (GTAP) Model

The GTAP-BIO model is an extension of the standard Global Trade Analysis Project
(GTAP) model which has been developed at the GTAP center of the Department of Agricultural
Economics at Purdue University to study the economic and environmental impacts of biofuel
production and policy.

78 https://github.com/JGCRI/tethys.

7 https://github.com/JGCRI/demeter.

80 For more information, see https:/gcims.pnnl.gov/community.

81 Plevin, R. I, et al. (2022). “Choices in land representation materially affect modeled biofuel carbon intensity
estimates.” Journal of Cleaner Production: 131477.

82 See https://github.com/gcamt/gcam-core/tree/GCAM-T-2020 and https://zenodo.org/record/4705472.

8 See “GCAM-T 2022.0 Documentation” in the docket.

8 See for example, Mignone, B. K., Huster, J. E., Torkamani, S., O’Rourke, P., & Wise, M. (2022). Changes in
Global Land Use and CO, Emissions from US Bioethanol Production: What Drives Differences in Estimates
between Corn and Cellulosic Ethanol?. Climate Change Economics, 13(04), 2250008.

85 Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, et al. RCP4. 5: a pathway for stabilization of
radiative forcing by 2100. Clim Change 2011;109:77.

8 Calvin K, Bond-Lamberty B, Clarke L, Edmonds J, Eom J, Hartin C, et al. The SSP4: A world of deepening
inequality. Glob Environ Change 2017;42:284-96.

87 See https://unfccc.int/documents/308100

88 See https://gcims.pnnl.gov/gcims-publications
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The GTAP center is the focal point of a global network of more than 27 thousand
researchers, scholars, academic institutions, and policy research entities that are conducting
quantitative analysis of a wide range of policy issues related to trade, energy, agriculture, and
climate change. The members of this network provide and share various databases, develop
modeling ideas and codes, conduct research, and disseminate their research findings. The GTAP
center facilitates these activities by providing various databases and modeling tools. In particular
this center assembles databases that support modeling practices around the world for various
modeling approaches. The standard GTAP database is centerpiece of these activities. The most
recent versions of this database include Input-output (I-O) tables for 160 regions converting the
whole world economic activities; bilateral trade data at global scale; production, consumption,
and trade of energy products; data on various types of GHG and non-GHG emissions generated
around the world; land use and land cover data; and several other items. The GTAP database is
particularly supports CGE modeling activities. However, it has been used by many other
modeling practices around the world. To various extents, several of the models participated in
this modeling comparison exercise rely on the GTAP database. The latest available version of
this standard database represents the global economy in 2017.

In addition to providing data, the GTAP center develops standard modeling platforms as
well. The standard GTAP model is the core of these platforms. This model has been originally
developed in 1999 and documented in Hertel (1999).%° This model and its extensions have been
used in many research activities and thousands of publications. Corong et al. (2017) has
introduced the latest version of this standard model and its capabilities and extensions, with
detailed discussion on the theory and derivation of the behavioral and equations in the mode
The standard GTAP is a global, comparative static, multi-commodity, and multi-regional
Computable General Equilibrium model that traces production, consumption, and trade of all
good and service produced across the world. This model assumes perfect competition in all
markets with price adjustments to ensure that all markets are simultaneously in equilibrium.
Some GTAP versions deviate from the perfect competition assumption.

1.90

As shown in Figure 2.4-1, in each region of this model a regional household collects all
the income in its region and spends it over three expenditure types: private household
(representing all consumers), government, and savings, as governed by a utility function. A
representative firm maximizes profits subject to a production function that combines primary
factors of production including labor, land, capital, and resources and intermediate inputs to
produce a final good or service. Firms pay wages/rental rates to the regional household in return
for their uses of primary inputs. Firms also sell their output to other firms (as intermediate
inputs), private households, government, and investment. Since this is a global model, firms also
export the tradable commodities and import the intermediate inputs from other regions. These
goods or services are assumed to be differentiated by region and thus the model is able to track
bilateral trade flows. The model follows Armington assumptions for bilateral trade, to account
for product heterogeneity among outputs produced in different regions. Taxes are paid to the

8 Hertel, T.W., ed. 1997. Global Trade Analysis: Modeling and Applications. New York,

NY: Cambridge University Press.

%0 Corong, E. L., Hertel, T. W., McDougall, R., Tsigas, M. E., & Van Der Mensbrugghe, D. (2017). The standard
GTAP model, version 7. Journal of Global Economic Analysis, 2(1), 1-119.
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regional household. The rest of the world receives revenues by exporting to the private
household, firms, and government. These revenues are spent on export taxes and import tariffs,

which eventually go to the regional household. The rest of world represents other regions of the
model.

As noted above, the standard GTAP model is a comparative static model. Hence, as noted
by Corong et al. (2017) “a GTAP simulation presents not changes through time, but differences
between possible states of the global economy — a base case and a policy case — at a fixed point
in time, or with respect to two points in time (base period vs. a future projection period).”®! The
version of GTAP used for this exercise is based on the 2014 database; thus, we can say that the
biofuel simulations for this exercise with GTAP estimate changes in the 2014 economy due to a
change in biofuel consumption. A typical comparative static simulation isolates the impacts of a
phenomenon or changes in one or a set of variables that may affect the global economy from
many other factors that vary over time.

Figure 2.4-1: Standard GTAP Model Analytical Framework®?
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Our model comparison exercise includes the GTAP-BIO model. While this comparative
static model is the most widely used GTAP model for biofuel analysis, we recognize there are
other GTAP models available that could potentially be used for this purpose. For example,
GDyn-BIO and GTAP-DEPS are recursive-dynamic versions of GTAP that have been used to

o1 Tbid.
92 An updated version of the depiction first developed in Brockmeier M. (2011) “A graphical exposition of the
GTAP Model”, GTAP Technical paper No. 08.
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model U.S. corn ethanol impacts.”> ENVISAGE is another dynamic model complemented by an
emissions and climate module that links changes in temperature to impacts on economic
variables such as agricultural yields.®* While we did not have the ability to include more than
one GTAP model in our current model comparison exercise, exploring and comparing the
capabilities of other GTAP models for biofuel analysis is a potential area for future research.
Such an exploration and comparison may consider multiple factors. For example, other GTAP
models do not currently carry all the modifications incorporated in the GTAP-BIO model to
show the role and importance of various factors that could affect the economic and
environmental impacts of biofuel production and policy. Assessing induced land use changes due
to biofuels has been the core of many of these GTAP-BIO modifications, and it has also been
used to evaluate the consequences of climate change, water scarcity, and environmental
policies.” Another factor to consider are the trade-offs between using a historical comparative
static framework like GTAP-BIO, versus using a model that projects into the future. Projecting
changes in the global economy over time is helpful to answer certain analytical questions, and
requires making projections on many factors with associated uncertainties.

Over time, various modifications have been made in the standard GTAP databases to
study the economic and environmental impacts of biofuel production and policy. The standard
GTAP databases do not explicitly represent production, consumption, and trade of biofuels, their
byproducts and coproducts. They also lack proper sectoral disaggregation to support biofuel
studies. The GTAP-BIO databases have been generated to remove these barriers. These
databases explicitly represent traditional biofuels (grain-based ethanol, ethanol produced from
sugar crops and biodiesel produced from oilseeds) that are produced and consumed across the
world. Some GTAP-BIO databases represent more advance biofuel technologies that produce
road and aviation fuels from traditional feedstocks and lignocellulosic materials. These
databases, depending on the application, provide more disaggregated crops, and further
disaggregate some standard GTAP sectors to facilitate biofuel studies. For example, the
substitution between biofuels and fossil fuels occurs in a newly introduced sector that blends
fossil fuels and biofuels.

For analyzing land use change, the GTAP-BIO databases follow the GTAP-AEZ land
databases and divide the land rents and land areas of each country into 18 Agro-Ecological

% Golub, A. A., et al. (2017). Global Land Use Impacts of U.S. Ethanol: Revised Analysis Using GDyn-BIO
Framework. Handbook of Bioenergy Economics and Policy: Volume II: Modeling Land Use and Greenhouse Gas
Implications. M. Khanna and D. Zilberman. New York, NY, Springer New York: 183-212.; Oladosu, Gbadebo, and
Keith Kline. “A dynamic simulation of the ILUC effects of biofuel use in the USA.” Energy policy 61 (2013): 1127-
1139.

% Van der Mensbrugghe, Dominique. “The environmental impact and sustainability applied general equilibrium
(ENVISAGE) model.” The World Bank, January (2008): 334934-1193838209522.

% A few examples are: Taheripour F., Hertel, T. W., & Ramankutty, N. (2019). “Market-mediated responses
confound policies to limit deforestation from oil palm expansion in Malaysia and Indonesia,” Proceedings of the
National Academy of Sciences, 116 (38), 19193—-19199; Pefia-Lévano, L. M., Taheripour, F., and Tyner, W. E.
(2019). “Climate change interactions with agriculture, forestry sequestration, and food security,” Environmental and
Resource Economics, 74, 653—-675; Yao G., Hertel T., and Taheripour F. (2018). “Economic drivers of telecoupling
and terrestrial carbon fluxes in the global soybean complex,” Global Environmental Change, 5: 190-200; Liu J.,
Hertel T., Taheripour F., Zhu T., and Rigal C. (2014). “International trade buffers the impact of future irrigation
shortfalls,” Global Environmental Change, Vol. 29, 22-31.
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Zones.”® The AEZs represent 18 relativity homogeneous groups of lands based on length of
growing days, moisture regions, and climate zones. The GTAP-BIO databases trace land cover
items (forest, pasture and cropland), harvested areas, and crops produced at AEZ level. While the
GTAP databases represent managed and unmanaged lands, in modeling induced land use
changes due to biofuels only managed lands are represented in GTAP-BIO for various reasons.”’

Figure 2.4-2: Comparison of GTAP LULC v.6 and v.9 AEZs%
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The most recent version of GTAP-BIO available in time for our model comparison
exercise uses GTAP-BIO database version 10, representing the global economy in 2014.%° The
geographical aggregation of this this data is presented in Figure 2.4-3. Researchers at Purdue
have the ability to project a database forward in time based on macro-economic projections in

%6 Hertel et al. (2009) described the original GTAP land use data. Baldos and Corong (2020) documented the recent
GTAP land use databases up to 2014. Hertel, T.W., S. Rose, and R. Tol. 2009. “Land use in computable general
equilibrium models: An overview.” In Economic Analysis of Land Use in Global Climate Change Policy. United
Kingdom: Routledge, Routledge Explorations in Environmental Economics; Baldos U. and E. Corong (2020)
Development of GTAP 10 Land Use and Land Cover Data Base for years 2004, 2007, 2011, 2014. GTAP Research
Memorandum No. 36.

7 Hertel, T.W., Golub, A.A., Jones, A.D., OHare, M., Plevin, R.J., Kammen, D.M., 2010. Effects of US maize
ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. BioScience 60,
223-231. See the supporting information which says on page 27, “The current version of GTAP does not estimate
conversions from unmanaged land to cropland.” Also, footnote 6: “Forest land area used in this work is accessible
forest land area and not managed forests. The forest accessibility is function of distance to infrastructure. Accessible
forests area includes managed forests plus that part of unmanaged forests that is easily accessible.”

9% Uris, B. L. (2017) Development of GTAP 9 Land Use and Land Cover Data Base for years 2004, 2007 and 2011.
GTAP Research Memorandum No. 30

% Aguiar, A., Chepeliev, M., Corong, E., McDougall, R., & van der Mensbrugghe, D. (2019). The GTAP Data
Base: Version 10. Journal of Global Economic Analysis, 4(1), 1-27. Retrieved from
https://www.jgea.org/ojs/index.php/jgea/article/view/77
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order to simulate future time periods.'® EPA and Purdue explored the possibility of creating a
version of GTAP-BIO with a projected 2030 database to align better with the scenarios modeled
with the dynamic models in our model comparison. Unfortunately, we were unable to complete
this work in time for the model comparison exercise.

Figure 2.4-3: Economic regions represented in GTAP

IH United States M Central and Caribbean Americas “10ther East Europe and Rest of Former Soviet
M European Union 27 1 South and Other Americas M Rest of European Countries

I Brazil M East Asia ZIMiddle Eastern and Morth Africa

B Canada [“I Malaysia and Indonesia B Sub Saharan Africa

W Japan ™ Rest of South East Asia B Oceania Countries

[ China and Hong Kong [ Rest of South Asia
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GTAP-BIO has been updated multiple times to add features that are relevant for biofuel
GHG modeling. Tyner et al. (2010) included marginal lands and productivity estimates for
potential new cropland based on a biophysical model.'! Taheripour et al. (2012) used a
biophysical model (TEM) and estimated a set of extensification parameters which represent
productivity of new cropland versus the existing land by AEZ region.!'% Taheripour and Tyner
(2013) used a tuning process to differentiate land transformation elasticities by region based on
FAO data.!® Taheripour and Tyner (2013) modified the land supply tree putting cropland
pasture and dedicated energy crops (e.g., switchgrass) in one nest and all other crops in another
nest, “to make greater use of cropland pasture (a representative for marginal land) to produce
dedicated energy crops.”'%* Taheripour et al. (2016) altered the land use module of GTAP-BIO

190 Yao G., Hertel T., and Taheripour F. (2018). “Economic drivers of telecoupling and terrestrial carbon fluxes in
the global soybean complex,” Global Environmental Change, 5: 190-200

191 Tyner, W. E., Taheripour, F., Zhuang, Q., Birur, D., & Baldos, U. (2010). Land use changes and consequent CO,
emissions due to US corn ethanol production: A comprehensive analysis. Department of Agricultural Economics,
Purdue University, 1-90.

102 Taheripour, F., et al. (2012). “Biofuels, cropland expansion, and the extensive margin.” Energy, Sustainability
and Society 2(1): 25.

103 Taheripour, F. and W. E. Tyner (2013). “Biofuels and land use change: Applying recent evidence to model
estimates.” Applied Sciences 3(1): 14-38.

104 Taheripour, F. and W. E. Tyner (2013). “Induced Land Use Emissions due to First and Second Generation
Biofuels and Uncertainty in Land Use Emission Factors.” Economics Research International 2013: 12.
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to include cropland intensification due to multiple cropping or returning idled cropland
production, defined a new set of regional intensification parameters and determined, and defined
regional yield responses to price based on analysis of regional changes in crop yields.!?
Taheripour et al. (2017) brought all of these modifications into one version of GTAP-BIO using
the GTAP database representing 2011.!% The version of GTAP-BIO used in this exercise
includes the above developments and adds cropland pasture as a land category in all regions
using the FAO land use database, whereas the previous version included cropland pasture in only
the United States, Brazil and Canada.

GTAP estimates areas and types of land use change by region in response to a biofuel
shock. Given that this model does not endogenously estimate land use change GHG emissions,
land use change areas are translated to GHG emissions using either the AEZ-EF model'" or the
CCLUB module of GREET, which produce significantly different estimates.'°® These tools
make assumptions about how land use changes will occur in the future. To calculate a land use
change CI metric, the land use change emissions are annualized (e.g., over 20-30 years,
depending on the policy context) and divided by the energy content of the simulated biofuel
shock. For this model comparison exercise, land use change areas estimated with GTAP are
converted to land use change GHG emissions with AEZ-EF, version 52, and annualized over 30
years.

In general, the GTAP-based models are able to evaluate changes in GHG emission due to
changes in economic activities. While the GTAP-BIO model has been used mainly to assess
induced land use change emissions, this model can also estimate changes in GHG and non-GHG
emissions due to changes in economic activities. For this model comparison exercise, we are
interested in broadly evaluating the capabilities of each model. Thus, we also consider GTAP
estimates for all global economic sectors such as energy, livestock and forestry. These estimates
include changes in CO2 and non-CO> emissions due to biofuel induced changes.!” While, this
report provides these results, the results could be further studied for potential improvements in
model parameters that govern changes in these emissions.

GTAP-BIO is used widely for biofuel land use change analysis. As discussed above, the
GREET model incorporates land use change estimates from this model through the CCLUB
module. The GTAP-BIO results are used to estimate induced land use change GHG emissions
for the California, Oregon, and Washington low carbon fuel standard programs. GTAP-BIO is
also one of two models, along with GLOBIOM, used to estimate induced land use change
emissions for the International Civil Aviation Organization (ICAQO) Carbon Offsetting and
Reduction Scheme for International Aviation (CORSIA). Furthermore, GTAP-BIO has been

195 Taheripour, F., et al. (2016). An Exploration of Agricultural Land Use Change at Intensive and Extensive
Margins. Bioenergy and Land Use Change: 19-37.

106 Taheripour, F., et al. (2017). “The impact of considering land intensification and updated data on biofuels land
use change and emissions estimates.” Biotechnology for Biofuels 10(1): 191.

107 Plevin, R., Gibbs, H., Duffy, J., Yui, S and Yeh, S. (2014). Agro-ecological Zone Emission Factor (AEZ-EF)
Model (v52).

198 Chen, R., et al. (2018). "Life cycle energy and greenhouse gas emission effects of biodiesel in the United States
with induced land use change impacts." Bioresource Technology 251: 249-258. Figure 4.

199 Chepeliev, M. (2020). Development of the Non-CO, GHG Emissions Database for the GTAP Data Base Version
10A (No. 5993). Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University
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used to estimate biofuel induced land use change emissions for numerous journal articles (see for
example the articles cited above).

2.5 The Applied Dynamic Analysis of the Global Economy (ADAGE)
Model

The Applied Dynamic Analysis of the Global Economy (ADAGE) model is a multi-
region, multi-sector computable general equilibrium (CGE) model developed and maintained by
RTI International.'!® The original ADAGE model was a forward-looking model.!!! It was
originally developed to examine impacts of climate change mitigation policies and was used, for
example, to analyze economy-wide impacts of various legislative proposals, including the
American Clean Energy and Security Act of 2009. More recently, the ADAGE model has been
developed to have additional sectoral detail, particularly in agriculture, bioenergy, and
transportation. ''> This version of the ADAGE model (hereinafter referred to as “ADAGE” or
“the ADAGE model”) is global, rather than national, and is recursive-dynamic, which means that
decisions about production, consumption, savings, and investment are based on previous and
current economic conditions.

ADAGE represents the entire economy, including private and public consumption,
production, trade, and investment, and follows the classical Arrow-Debreu general equilibrium
framework.!!> The model uses nested constant elasticity of substitution (CES) production
functions. As illustrated in Figure 2.5-1, ADAGE includes representative households and firms,
and economic flows among households, firms, and government are considered. Bilateral trade is
represented using an Armington aggregation approach.!'* Dynamics in ADAGE are represented
by 1) growth in the available effective labor supply from population growth and changes in labor
productivity; 2) capital accumulation through savings and investment; 3) changes in stocks of
natural resources; and 4) technological change from improvements in manufacturing, energy
efficiency and land productivity, and advanced technologies that become cost competitive over
time.

110 The ADAGE model is available at https:/github.com/R TlInternational/ ADAGE.

1 Ross, M. 2009. Documentation of the Applied Dynamic Analysis of the Global Economy (ADAGE) Model.
Working paper 09 _01. Research Triangle Park, NC: RTI International.

12 Cai Y., Beach R., Woollacott J., Daenzer K., 2023. Documentation of the Applied Dynamic Analysis of the
Global Economy (ADAGE) model. Technical Report. Available at https://github.com/RTIInternational/ADAGE.

13 Arrow, K.J., and G. Debreu. 1954. Existence of an equilibrium for a competitive economy. Econometrica 22:265-
290.

114 Armington, P. S. (1969). A Theory of Demand for Products Distinguished by Place of Production. Staff Papers -
International Monetary Fund, 16(1), 159-178.
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Figure 2.5-1: Representation of Economic Flows in the ADAGE model'!3
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ADAGE includes additional detail for the energy, food, agriculture, and transportation
sectors. It runs in 5-year intervals from 2010 through 2050, and includes 8 global regions
(Africa, Brazil, China, EU 27, United States, Rest of Asia, Rest of South America, and Rest of
World; Figure 2.5-2). ADAGE is built off the GTAP v7.1 database which represents the global
economy in 2004, !¢ with additional data from other sources such as the International Energy
Agency, U.S. Energy Information Administration, and United Nations Food and Agriculture
Organization. These additional data help to extend the global economy from 2004 to 2010
through balanced growth and add more sectoral details and physical accounts. ADAGE tracks
inputs and outputs in monetary units, and also tracks commodities and resources in physical units
(such as energy units of fuel consumption, area of land, and mass of emissions).

115 Cai Y., Beach R., Woollacott J., Daenzer K., 2023. Documentation of the Applied Dynamic Analysis of the
Global Economy (ADAGE) model. Technical Report.

116 Narayanan, G. B., and T. L. Walmsley (Eds.). 2008. Global Trade, Assistance, and Production: The GTAP 7
Data Base. West Lafayette, IN: Center for Global Trade Analysis, Purdue University.
http://www.gtap.agecon.purdue.edu/databases/v7/v7_doco.asp.
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Figure 2.5-2: ADAGE Regional Mapping
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ADAGE models the markets for several agricultural commodities: wheat, corn, soybean,
sugarcane, sugar beet, rest of cereal grains, rest of oilseeds, and rest of crops, in addition to one
livestock category and one forestry category. The agricultural sector in the underlying GTAP
v7.1 database is more aggregated, so creating these commodities in ADAGE required
disaggregation using information on trade shares, consumption shares, cost shares, and own use
shares. !'7 This disaggregation was done with software called SplitCom!'® and data from the
United Nations Food and Agricultural Organization FAOSTAT database and the United Nations
Comtrade Database.!!*!12° The “cereal grains” sector in GTAP v7.1 was split into corn and rest of
cereal grains, the oil seeds sector was split into soybean and rest of oilseeds, and the combined
sugarcane and sugar beet sector was split into sugarcane and sugar beet.

Agricultural sector details in ADAGE enable it to model several kinds of biofuels.
ADAGE includes 8 types of first-generation biofuels (corn ethanol, wheat ethanol, sugarcane
ethanol, sugar beet ethanol, soybean oil biodiesel, rape-mustard biodiesel, palm kernel biodiesel,
and corn oil biodiesel) and 5 types of advanced biofuels (ethanol from switchgrass, miscanthus,
agricultural residue, forest residue, and forest pulpwood). These biofuels are not included in the
GTAP 7.1 database and were split from GTAP v7.1 sectors using the SplitCom software and
secondary data from USDA’s Economic Research Service, DOE’s Energy Information

17 Beach, R.H., D.K. Birur, L.M. Davis, and M.T. Ross. 2011. A dynamic general equilibrium analysis of U.S.
biofuels production. AAEA & NAREA Joint Annual Meeting, Pittsburgh, PA.
https://ageconsearch.umn.edu/bitstream/103965/2/ADAGE-Biofuels AAEA_Conference Paper.pdf.

18 Horridge, M., J. Madden, and G. Wittwer. 2005. The impact of the 2002-2003 drought on Australia. Journal of
Policy Modeling 27(3):285-308.

119 Food and Agriculture Organization of the United Nations. 2012. FAOSTAT Database. Rome, Italy: FAO.
http://www.fao.org/faostat/en/#data.

120 United Nations. 2012. UN Comtrade Database. http://comtrade.un.org.
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Administration, and the United Nations Comtrade database.!?!"!?%!2> Corn ethanol and wheat
ethanol were split from the “food products sector” in GTAP v7.1, which receives inputs from
corn and wheat. Sugarcane ethanol and sugar beet ethanol were split from the chemicals sector.
Biodiesel from soybean, rapeseed, and palm oil were split from the vegetable oils and fats sector.
Distillers grains with solubles (DGS) and corn oil biodiesel are coproducts of corn ethanol
production. An oil meal coproduct was split from the vegetable oil sector in GTAP v7.1. Because
ADAGE does not explicitly represent rapeseed and palm oil production, the input shares of “rest
of oilseeds” is based on region-specific palm oil and rapeseed biodiesel yields (gallon of
biodiesel per ton of feedstock). Advanced biofuels were not included in the 2010 base year in
ADAGE but are allowed to enter the market in future years.

The energy sectors of the ADAGE model include coal, natural gas, crude oil, and refined
oil, and several categories of electricity generation technologies (conventional coal, conventional
natural gas, conventional oil, combined-cycle natural gas, nuclear, hydropower, geothermal,
wind, solar, and biomass). The supply of fossil fuels is limited by the availability of natural
resources, which is represented as a fixed factor in the model. Crude oil is used as an input for
refined oil and enters the production function in a fixed proportion. Electricity generation
technologies are combined into a single electricity output.

The transportation sector in ADAGE has been developed to include light duty vehicles,
freight trucks, buses, marine, aviation, freight rail and passenger rail. Biofuels can be consumed
in on-road transportation (light duty vehicles, buses, and trucks). Alternative fuel options
(hybrid, battery electric, fuel cell, and natural gas) are available for on-road vehicles. The GTAP
v7.1 database includes three types of transportation (air, water, and rest of transportation) and
was disaggregated using data from several sources. '

ADAGE includes six land types (cropland, pasture, managed forest, natural forest,
natural grassland, and other land'?). Land use change is represented by the combination of a
given land type with materials, capital, and labor to produce a new land type. The amount of
conversion in a period is limited by a fixed factor that is substitutable with other inputs. Each
land type has its own endowment, land rent, and usage. The conversion cost between land types
is equal to the differences in land rents, involving input cost from the labor, capital, and materials
inputs for conversion activity. There are also constraints on the types of land that can be
converted to other types. For example, only pasture and managed forest can be converted directly
to cropland, but cropland can convert to any land type.'?® A fixed factor elasticity is defined for

121 USDA, Economic Research Service (ERS). 2012. U.S. Bioenergy statistics. Washington, DC: U.S. Department
of Agriculture. https://www.ers.usda.gov/data-products/us-bioenergy-statistics.

122 EJA. 2012. Petroleum & other liquids. Washington, DC: U.S. Department of Energy.
https://www.cia.gov/dnav/pet/pet_move impcus_a2_nus_epooxe im0 _mbbl a.htm.

123 United Nations. 2012. UN Comtrade Database. http://comtrade.un.org.

124 Data sources include GCAM 4.2, the Bureau of Economic Analysis, the Bureau of Transportation Statistics, the
International Energy Agency, and the Energy Information Administration. For more details, see Cai Y., Beach R.,
Woollacott J., Daenzer K., 2023. Documentation of the Applied Dynamic Analysis of the Global Economy (ADAGE)
model. Technical Report.

125 “QOther land” includes bare ground, wetlands, mangroves, salt marsh, glaciers, and lakes, and is assumed to be
constant over time.

126 Unmanaged forest can only be converted to managed forest, and grassland can only be converted to pasture.
Through these conversions, unmanaged forest and grassland could be converted to cropland over two time steps.
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each starting land type/ending land type pair. Elasticities are generally the same in every region.
However, the elasticities governing the conversion of natural forest to managed forest and
grassland to pasture vary by region. ADAGE models land in physical as well as monetary
quantities. Emissions from land use change are based on the differences in carbon stocks
(vegetative and soil carbon) between the land types, and emission factors (one for vegetative
carbon, and one for soil carbon) that represent the fraction of the change in carbon stock that
would occur over 20 years after land conversion. Land use change emissions and sequestration
are all reported in the model year in which the land use change occurs. Vegetative and soil
carbon stocks are based on data from GCAM 3.2, which were aggregated to ADAGE regions
using weighted land area.

ADAGE includes six types of greenhouse gases: carbon dioxide (CO2), methane (CHa),
nitrous oxide (N20), perfluorocarbons (PFCs), hydrofluorocarbons (HFCs), and sulfur
hexafluoride (SF¢). CO2 emissions from fossil fuel combustion are based on emissions factors
(kgCO2/MMBTU) for coal, gas, and oil. The emission factors are differentiated by region and
based on data from EIA’s International Energy Statistics. CO2 emission factors from sources
other than fossil fuel combustion and land use change are based on data from the Emissions
Database for Global Atmospheric Research (EDGAR) version 4.2.'%” Non-CO: emission factors
are based on data from EPA. 1?8

CGE models often represent individual economic sectors at a higher level of commodity
and technology aggregation than some PE models of those same economic sectors. However,
because CGE models capture the entire economy, they can be useful for determining impacts of
environmental policies across sectors and on GDP. In one study, the ADAGE model was used to
analyze projected impacts of the RFS on land use, crop production, crop prices, fossil energy
use, GHG emissions, and GDP.!'?* ADAGE has also been used to study the impact of oil prices
on biofuel expansion.'** In model comparison studies, ADAGE was used to analyze the GHG
abatement potential in Latin America,'*! and the impacts of climate policy and agriculture,
forestry, and land use emissions. '

127 Joint Research Centre at European Commission. 2013. Emission Database for Global Atmospheric Research.
http://edgar.jrc.ec.europa.cu/overview.php?v=42FT2010.

128 U.S. Environmental Protection Agency (EPA). 2012. Global Non-CO» GHG Emissions: 1990-2030. Washington,
DC: EPA. https://www.epa.gov/global-mitigation-non-co2-greenhouse-gases/global-non-co2-ghg-emissions-1990-
2030.

129 Cai, Y., D.K. Birur, R.H. Beach, and L.M. Davis. (2013, August). Tradeoff of the U.S. Renewable Fuel Standard,
a General Equilibrium Analysis. Presented at 2013 AAEA & CAES Joint Annual Meeting, Washington, D.C.

130 Cai, Y., R.H. Beach, and Y. Zhang. (2014, March). Exploring the Implications of Oil Prices for Global Biofuels,
Food Security, and GHG Mitigation. Presented at 2014 AAEA Annual Meeting, Minneapolis, MN.

131 Clarke L., McFarland J., Octaviano C., van Ruijven B., Beach R., Daenzer K., Herreras Martinez S., Lucena
A.F.P., Kitous A., Labriet M., Loboguerrero Rodriguez A.M., Mundra A., van der Zwaan B., 2016. Long-term
abatement potential and current policy trajectories in Latin American countries. Energy Econ. 56, 513-525.
http://dx.doi.org/10.1016/j.eneco.2016.01.011.

132 Calvin K. V., Beach R., Gurgel A., Labriet M., Loboguerrero Rodriguez A.M., 2016. Agriculture, forestry, and
other land-use emissions in Latin America. Energy Econ. 56, 615-624.
http://dx.doi.org/10.1016/j.enec0.2015.03.020.
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3 Comparison of Model Characteristics, Input Parameters, and Input Data

In this section we compare the characteristics of the five models described above in
Section 2. We compare the models across several characteristics that are important for biofuel
analysis. In later sections, we discuss how these model characteristics impact model results.

3.1 Model Characteristics

Table 3.1-1 summarizes some of the key characteristics of the five models featured in
Section 2. Although there are many ways to compare these models, we chose six key
characteristics based on their relevance to the definition of lifecycle greenhouse gas emissions in
Section 211(0)(1)(H) of the Clean Air Act.!** Specifically, we consider model sectoral coverage,
temporal resolution, regional coverage, GHG emissions coverage, land representation, and trade
dynamics. Differences among modeling frameworks along these coverage, resolution, and
dynamics characteristics may lead to significant differences in modeled perspectives on GHG
emissions outcomes. These six characteristics therefore provide a good starting point for
understanding the primary differences across these frameworks. We start our discussion based on
these six characteristics before touching on other key aspects of these models for biofuel GHG
analysis.

While we are not ruling out consideration or future use of other models, based on the
biofuel GHG modeling workshop and our review of the literature, we believe the models listed in
the table are the most likely to meet our needs for evaluating lifecycle GHG emissions. In
addition, the models selected provide a broad representation of the types of models that can be
used for lifecycle analysis.

133 Other important considerations are not included in this table, such as open access to the models.
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Table 3.1-1 Comparison of Key Characteristics Across Models

Characteristic ADAGE GCAM GLOBIOM GREET GTAP
Type of Model Computable Integrated Partial Supply chain Computable
general assessment equilibrium LCA general
equilibrium model (IAM); (PE); equilibrium
(CGE); consequential consequential (CGE);
consequential LCA LCA consequential
LCA LCA
Sectoral Economy-wide | Energy Agriculture, Fuel supply Economy-wide
Coverage with 36 sectors | (conventional forestry, and chains aggregated into
and renewable), | bioenergy including 65 sectors
industry, energy
buildings, resource and
transportation, material inputs
agriculture,
forestry, water
Temporal Recursive Recursive Recursive Static (users Comparative
Representation dynamic (5- dynamic (5-year | dynamic (10- can select a static
year time time steps) year time steps) | target year
steps) from 1990-
2050)
Regional 8 economic 32 economic 37 economic Customizable 19 economic
Coverage and spatial regions; 384 land | regions; 10,000 | (typically U.S. | regions; 18
regions regions (water spatial units average) agro-ecological
basins, (grid cell) zones
intersected with
economic
regions)
GHG Emissions | Economy-wide | Global GHGs Crop Direct supply- | Economy-wide
Coverage GHGs including land production, chain GHGs, with
including land | use change livestock, and emissions + land use change
use change land use change | indirect land GHGs
use change calculated with
from CCLUB | the AEZ-EF
module model
Land Cropland, Cropland, Cropland, other | Exogenous Cropland
Representation pasture, commercial agricultural (Land use (including
(Arable land commercial pasture and land, grassland, | change cropland-
categories forest, non- forest, non- commercial and | estimates from | pasture and
considered in commercial commercial non-commercial | GTAP-BIO unused
biofuel land use forest, natural pasture and forest, and CCLUB) cropland),
change analysis) | grassland, forest, shrubland, | wetlands, other livestock
other land grassland, natural land pasture,
“protected” non- “accessible”
commercial land forestry land

As observed above, modeling inherently involves trade-offs. For example, there may be
trade-offs between scope and detail, or between capabilities to understand individual supply
chains versus global impacts. Among the four model types considered in this exercise, the supply
chain LCA models, like GREET, have the most detailed technological representations but the
most limited scope. For example, the GREET model includes detailed representations of
numerous biofuel and energy production processes but does not include price-induced
interactions between supply chains or economic sectors or any other features which seek to

balance economic equilibria within or across sectors. PE models used for biofuel analysis tend to
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have a high level of detail in the agricultural sector, but limited interactions with other sectors.
For example, GLOBIOM has a detailed representation of crop production, livestock, and land
use, but does not include economic interactions between the agricultural and energy sectors (e.g.,
fuel prices are exogenous). CGE models are the broadest in economic scope, but they often
represent the world using a smaller number of physical regions and fewer specific technological
options within a given economic sector. IJAMs focus on representing physical processes, but
often lack certain sectoral details relative to PE models, and treat more economic factors (e.g.,
global GDP) as exogenous relative to CGE models. When considering tradeoffs between these
methodological options, one must consider the goals of the analysis and whether cross-sectoral
impacts are potentially influential on the overall results. In instances where such impacts are
potentially influential, broader sectoral coverage is likely to be more critical. In instances where
such impacts are limited, or where the goal of the analysis is to understand GHG emissions from
a particular supply chain or sector, the narrower scope of a supply chain LCA or PE model may
be an acceptable tradeoff. Model comparison exercises can assist with these types of
assessments. We discuss below the extent to which cross-sectoral impacts appear relevant to
biofuel LCA modeling.

3.1.1 Sectoral Coverage

The modeling frameworks differ substantially in the scope of economic interactions that
they represent. Capturing a wide range of economic interactions is important for understanding
the overall GHG impacts, including indirect impacts, of crop-based biofuel production. Based on
economic theory, we expect increased consumption of crop-based biofuels to have complex
ripple effects through the entire world economy. For example, as the demand for feedstocks
increase, we expect the price of these commodities to increase, with consequences for
agricultural markets not only in the U.S., but around the world. These interactions are
complicated by the fact that the major crop-based biofuel feedstocks have coproducts (e.g.,
distiller grains, soybean meal) that are used as livestock feed. Given that producing biofuels
requires material (e.g., fertilizer) and energy (e.g., natural gas), increased biofuel production may
affect these input commodity markets as well. When biofuels displace gasoline or diesel in the
U.S., this change may affect consumer fuel prices and crude oil prices, which may in turn affect
other sectors of the economy.

Supply chain LCA models such as GREET do not include most of these economic
interactions. However, GREET includes agricultural sector interactions to a limited extent
through the exogenous addition of land use change GHG estimates. GLOBIOM models
economic interactions within and between the agricultural (including crops and livestock) and
forestry sectors. GLOBIOM also includes a bioenergy sector with limited economic interactions
other than through its consumption of feedstocks from the agricultural and forestry sectors.
GCAM models economic interactions within and among the energy, agriculture, forestry, and
water systems. The energy system in GCAM is highly developed, including energy production
from a broad range of technologies and resources, and energy consumption in the industrial,
commercial, residential, transportation, agriculture, and forestry sectors. As CGE models, GTAP
and ADAGE model interactions across the entire economy. Thus, CGE models include economic
interactions that the other modeling frameworks take as exogenous or do not include. As noted
above, however, this creates computational tradeoffs which often require CGE models to
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represent sectoral dynamics at a more highly aggregated level than other model types with
narrower scope.

The three models which represent energy market interactions (ADAGE, GCAM, and
GTAP) also differ in which energy commodities are represented and how demand for energy
commodities is linked to other model components. ADAGE represents production and bilateral
trade of crude oil, refined oil'**, natural gas, coal, electricity, biodiesel (soy, palm kernel, rape-
mustard, corn oil), and ethanol (corn, wheat, sugarcane, sugar beet). ADAGE dynamically
represents the energy inputs required for extracting and refining petroleum and the inputs
required for production of biofuels. GCAM represents crude oil, refined oil, natural gas, coal,
electricity, biodiesel (soy, palm kernel, rapeseed, other oilseed-oil), and ethanol (corn, sugar
crops, energy grasses, crop residues). GCAM dynamically represents both the energy inputs
required for extracting and refining petroleum and the inputs required for growing and
transporting crops and producing biofuels.'*> GTAP represents coal, crude oil, refined
petroleum, electricity, natural gas, corn ethanol, sugarcane ethanol, grain ethanol, soybean oil
biodiesel, rapeseed oil biodiesel, palm oil biodiesel, and other biodiesel. GTAP represents
production, consumption, and bilateral trade in these commodities.

3.1.2 Temporal Representation

Temporal representation, or the treatment of time dynamics, is another important
characteristic that differentiates the modeling frameworks. The ability to endogenously represent
temporal dynamics is an important model feature given that biofuel land use change emissions
occur over time (e.g., soil carbon levels change over multiple decades following land conversion)
and biofuel-induced effects are dependent on factors that change over time, such as crop yields
and overall demands of the population on land to produce food, feed, and fiber. GREET is
designed to simulate supply chains in a given year, and includes the flexibility for users to
choose background data (e.g., grid electricity mix) for future years extending out to 2050,
GTAP is a comparative static model, meaning it simulates changes in the 2014 economy due to a
change in biofuel production or consumption.'” GLOBIOM, GCAM and ADAGE are recursive
dynamic models in which certain production, consumption, and investment decisions are made
on the basis of market conditions in each period with dependence on previous model periods
through capital and/or resource stocks. Conditions from previous periods are carried forward to
influence the next modeled period. This differentiates dynamic recursive frameworks
computationally from comparative static frameworks.

ADAGE and GCAM use 5-year time steps, whereas GLOBIOM uses 10-year time steps.
In ADAGE and GCAM, the time step represents a point in time (e.g., the 2020 time step
represents the estimated state of the world in the year 2020). In GLOBIOM, the time step

134 In these models, refined oil is an aggregation of all refined petroleum products, including gasoline and diesel.
135 Sampedro, J., Kyle, P., Ramig, C. W., Tanner, D., Huster, J. E., & Wise, M. A. (2021). Dynamic linking of
upstream energy and freight demands for bio and fossil energy pathways in the Global Change Analysis Model.
Applied Energy, 302, 117580. https://doi.org/10.1016/j.apenergy.2021.117580

136 However, as discussed above, if provided with sufficient data, GREET can estimate supply chain emissions for
different time periods

137 GTAP can model different time periods if the GTAP database is first manually projected forward (or backward)
based on assumptions. Due to time constraints, we were unable to perform such projections for this exercise.
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represents a long-term trend of changes over the applicable 10-year period (e.g., the 2020 time
step is a representative average of changes from 2011 to 2020).

3.1.3 Regional Coverage

Thorough understanding of the impacts of a change in biofuel consumption through LCA
requires consideration of significant indirect emissions. Many studies have shown that biofuel
consumption in the U.S. can have significant impacts in other regions of the world.!*
Consequently, models need to represent all relevant regions to consider the full indirect impacts
of a change in biofuel consumption. Furthermore, regional representation is important due to
geographic variations related to terrestrial carbon stocks, agricultural yields, energy resources
and other factors. PE, CGE and IAM models often distinguish between economic regions and
biophysical regions. These models use solution algorithms to find market clearing conditions in,
and trade between, each of the economic regions. Biophysical regions are often defined based on
physical geography and geology to allocate economic activities and biophysical processes to
physical locations. GTAP models 19 economic regions and 18 non-contiguous AEZs (see
Figures 2.4-2 and 2.4-3). GLOBIOM models 37 economic regions and uses a spatially explicit
grid-cell approach to represent 10,000 spatial units worldwide. GCAM models 32 economic
regions and 235 global water basins—the intersection of the economic regions and water basins
produces 384 spatial subregions.!** ADAGE models 8 economic and geographic regions. In
contrast, GREET is not a geographic or regional model, but it can be customized to represent
biofuel production conditions for particular regions or supply chains. Data for GREET is
primarily representative of the USA. GREET also has modules that are designed to estimate soil
carbon and land use change emissions at a regional level. The FD-CIC module allows users to
estimate feedstock production emissions at county level, and the CCLUB module estimates
indirect land use change emissions based on the geographic regions represented by GTAP.

For this exercise, based on a template we provided to the modelers, ADAGE, GCAM,
and GLOBIOM reported results from eight mutually exclusive global regions: Africa, Brazil,
China, EU, USA, Rest of Asia, Rest of Latin America, and Rest of World. GTAP reported results
from 19 global regions. In this document, we generally present results from the USA region of
each model and an aggregation of the non-USA regions of each model.

3.1.4 GHG Emissions Coverage

There are notable differences in coverage of GHG emissions sources across the models.
These differences in which GHGs are included in each model lead to differences among biofuel

138 See for example, ICAO (2021). CORSIA Eligible Fuels - Lifecycle Assessment Methodology. CORSIA
Supporting Document. Version 3: 155; Plevin, R. J., J. Jones, P. Kyle, A. W. Levy, M. J. Shell and D. J. Tanner
(2022). "Choices in land representation materially affect modeled biofuel carbon intensity estimates." Journal of
Cleaner Production: 131477; Taheripour, F., X. Zhao and W. E. Tyner (2017). "The impact of considering land
intensification and updated data on biofuels land use change and emissions estimates." Biotechnology for Biofuels
10(1): 191.

139 Although we did not use it for this exercise, a spatial downscaling model called Demeter is able to present
GCAM land use results at higher spatial resolution (0.05° x 0.05°), but this tool is not used for this model
comparison. Chen, M., Vernon, C.R., Graham, N.T. et al. Global land use for 2015-2100 at 0.05° resolution under
diverse socioeconomic and climate scenarios. Sci Data 7, 320 (2020). https://doi.org/10.1038/s41597-020-00669-x.
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GHG emissions estimates produced from these models. As mentioned previously, GREET
estimates direct GHG emissions from a biofuel production supply chain and generally does not
include indirect market-mediated emissions from other sources and sectors. The exception is
indirect land use change emissions, which can be added exogenously to GREET results through
the CCLUB module. GLOBIOM endogenously calculates GHG emissions from agriculture,
including crop and livestock production, forestry, and land use change. GTAP reports three
overall categories of GHG emissions which collectively provide an estimate of global GHG
impacts: 1) fossil fuel combustion CO2 emissions, 2) non-CO2 emissions including changes in
these emissions for energy and energy activities,*’ and 3) land use change emissions.'*!
ADAGE endogenously calculates GHG emissions from the entire economy, including land use
change. GCAM endogenously calculates all global GHG emissions sources, including those
from the energy, agriculture, forestry and water systems, including from land use changes. Of the
five highlighted models, ADAGE, GCAM, and GTAP are the only models that capture GHG
emissions from market-mediated changes within the energy system.

It is important to note that although all five models seem to overlap in their coverage of
GHG emissions, they estimate GHG impacts using different methods. For example, GREET and
GLOBIOM both estimate GHG emissions from crop production, but they do so in fundamentally
different ways. GREET estimates the GHG emissions associated with producing the crops that
are directly used in the biofuel supply chain under evaluation. In contrast, GLOBIOM estimates
the GHG emissions associated with the market-mediated marginal changes in crop production
stemming from a biofuel shock (i.e., the difference in crop production emissions from a scenario
with a given amount of biofuel relative to a scenario absent that biofuel). ADAGE, GCAM and
GTAP represent a further departure from the GREET approach as they include market-mediated
GHG impacts from yet more economic sectors. A notable example is the inclusion of GHG
emissions from transportation fuel market effects in ADAGE, GCAM and GTAP. When these
models are shocked to consume more biofuels in a particular region, they estimate the effects of
the shock on transportation fuel prices and consumption, both in the region where the shock
occurs and all other global regions. Instead of assuming that biofuels displace gasoline or diesel
on an energy-equivalent basis, these models estimate the global market-mediated changes in
gasoline and diesel consumption associated with the biofuel shock and report the resulting GHG
emissions changes.

3.1.5 Land Representation

Categorization or binning of land into types is an important, but often overlooked,
consideration for land use change modeling. The ways in which land is categorized and the
assumptions regarding how much of it is available or unavailable for commercial use vary
widely across modeling frameworks. The GREET model does not explicitly represent land. But
it is able to add induced land use change emissions through the CCLUB module, which uses
GTAP. The other four models estimate interactions between cropland, pasture, forestry, and, in
some of these models, other land types as well. For example, GLOBIOM, ADAGE and GCAM

149 The non-CO, emissions category includes “other CO,”, i.e., CO, emissions from activities other than fossil fuel
combustion, see Chepeliev (2020). These include CHa, N>O, and fluorinated gases (CFs, HFC134a, HFC23, SFs).
141 Land use change GHG emissions are calculated based on land category area changes from GTAP and emissions
factors from the AEZ-EF model.
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also model the expansion of commercial cropland, pasture and forestry activities into grassland
and forests that are not otherwise used for commercial production. By default, GLOBIOM and
GCAM both place various exogenous limits on conversion of certain lands, to broadly represent
land protection policies and regimes (e.g., protection of ecologically sensitive lands), though
these assumptions may be modified. In contrast, as discussed in Section 2.4, while the GTAP
databases represent managed and unmanaged lands, the GTAP-BIO model only allows managed
lands to be used for productive uses, excluding the possibility for “unmanaged” land, such as
rainforests or native grasslands, to be brought into agricultural or silvicultural production. As
shown in Figure 5.2-1, this assumption applies to a relatively large share of arable land and
means that GTAP employs a much different representation of commercially available land than
the other models. Additionally, the share of non-commercial land assumed to be protected or
unavailable for commercial use is also an important assumption across models. For example, to
the extent modeling assumes that policies will be implemented and enforced to protect natural
forests with high carbon stocks, this will likely reduce the land use change GHG estimates by a
significant amount compared to a scenario which assumes laxer enforcement of land
protections.'*? Other differences in land representation, such as the representation of unused
cropland and the treatment of multicropping, could also impact model results, and are discussed
further in Sections 5.2 and 6.5, respectively. For land categories that are given the same name in
different models (e.g., cropland, pasture), the underlying definitions and data may be different —
investigating and potentially aligning these definitions and categorizations is a potential area for
further research.

3.1.6 Trade

A significant source of theoretical and practical variation across the models considered in
this comparison is their approach to representing commodity trade. ADAGE and GTAP
represent trade bilaterally using an Armington approach (i.e., assuming imperfect substitution
between the same product produced in different countries), however the degree of substitution
varies across traded items. GLOBIOM models trade bilaterally based on the spatial equilibrium
approach and assumes commodities to be homogenous and traded based on least expensive
production costs, though transportation costs and tariffs are also included. GCAM represents
trade in agricultural, livestock, forestry, and renewable fuel commodities through an Armington-
like approach and trade in all other commodities, including most energy commodities, through
homogenous global markets.!* These methods have areas of overlap and similarity but lead to
distinct structures of trade. These differences in structure have significance to the present model
comparison exercise for multiple reasons. The ability of these models to deviate from the
historical trade patterns to which they are calibrated varies. The willingness of simulated
economic actors to substitute imported goods for domestically produced goods, and vice versa,
also varies by model.

142 Mignone, B. K., Huster, J. E., Torkamani, S., O’Rourke, P., & Wise, M. (2022). Changes in Global Land Use and
CO; Emissions from US Bioethanol Production: What Drives Differences in Estimates between Corn and Cellulosic
Ethanol?. Climate Change Economics, 13(04), 2250008.; Plevin, R. J., et al. (2022). “Choices in land representation
materially affect modeled biofuel carbon intensity estimates.” Journal of Cleaner Production: 131477. Figure S9.

143 Note that the most recent public version of GCAM trades all energy goods through the Armington-like approach,
rather than through homogenous markets. This version of the model was not released in time for inclusion in this
exercise.
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3.2 Input Parameters and Data

In addition to the key model characteristics discussed above, it is also important to
consider differences in data and parameter inputs used within models for biofuel GHG analysis.
There have been very few published efforts to compare assumptions across these models or to
evaluate which parameters are highly influential on model results. However, the previous work
which has been done has suggested the parameter assumptions which are among the most
influential in biofuel GHG analysis are related to:

Crop yields

Crop intensification

Land competition and land transitions
Carbon stocks of different land types
Trade

e Peatland emissions

e Substitutability in food and feed markets

In this section, we review this previously published literature related to data and
parameter inputs. We explore parameter sensitivity further through modeled scenarios in Section
9.

Assumptions related to crop yields and crop intensification are important for biofuel
GHG modeling. Global crop yield data is readily available from FAO; however, this data is
generally available at a country level and it is also crop-specific. Many models require data
inputs for subnational physical regions and must also aggregate many of the dozens of FAO-
reported crops into groups for computational tractability. Modelers must determine for
themselves how to downscale or aggregate data as needed. There may be differences in how the
models map this historical data to the crop categories and physical regions they represent.
Assumptions about how crop yields may change in the future are also influential and inherently
uncertain. Perhaps even more important for biofuel modeling are assumptions about how crop
yields may change in response to price changes. Plevin et al. (2015) performed a sensitivity
analysis of biophysical and economic inputs to the GTAP+AEZ-EF modeling framework, and
found the elasticity of crop yield with respect to price (YDEL) to be “by far” the most influential
parameter in terms of its effect on the estimated ILUC emissions associated with corn ethanol,
sugarcane ethanol and soybean oil biodiesel.'** In the GTAP model used in this model
comparison, the YDEL parameter may have less influence on the results, as it now accounts for
the ability of increased harvest frequency and use of “unused cropland” to increase crop
production without extensification..'* However, a sensitivity analysis with GCAM did not
identify crop yield assumptions to be among the most influential parameters determining corn
ethanol land use change GHG emissions.'*® This suggests that input parameters that are highly

144 Plevin, R. J., et al. (2015). “Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-
Induced Land Use Change.” Environmental Science & Technology 49(5): 2656-2664.

145 Taheripour, F., et al. (2017). “The impact of considering land intensification and updated data on biofuels land
use change and emissions estimates.” Biotechnology for Biofuels 10(1): 191

146 Plevin, R. J., et al. (2022). “Choices in land representation materially affect modeled biofuel carbon intensity
estimates.” Journal of Cleaner Production: 131477. Figure 7.
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influential in one model might not highly influential in another model due to structural
differences between frameworks.

The parameters which control land competition and land transitions within models are
also important. These parameters control the amount of substitution between land types that
occurs based on changes in commodity prices and land rental rates. A sensitivity analysis of
GCAM found the parameter controlling ease of transition between cropland, forest, and
grassland to be an influential parameter. A sensitivity analysis of GTAP also found that the
assumed elasticity of transformation between managed forest, cropland, and pasture is influential
for corn ethanol LUC GHG estimates. '’

Sensitivity analysis using GCAM found other assumptions to be influential when
estimating corn ethanol land use change GHG emissions, including the soil carbon density of
cropland, ease of transition between crop types, the soil carbon density of grassland, and the soil
carbon density of other arable land.'*® Other influential assumptions identified through
sensitivity analysis with GTAP include the relative productivity of newly converted cropland,
trade elasticities (i.e., ease of substitution among products imported from other countries) and
emissions from conversion of cropland pasture.'*’

Sensitivity analyses have shown that other influential assumptions within GTAP include,
but are not limited to, tropical peat soil oxidation and the share of palm oil expansion on peatland
for vegetable oil based biofuel modeling, and the share of vegetable oil biofuel feedstock that is
supplied through expanded vegetable oil production versus reduced demand and substitutions
with other products. !>

Another influential assumption in biofuel GHG modeling is the choice of data sets for
soil carbon and biomass carbon stocks, and how these data are mapped to land categories and
regions to determine the GHG emissions from converting an acre of land from one use to
another. The soil and biomass carbon data sources used in each model are discussed in the model
descriptions above. Soil carbon data and analysis are active areas of research, and higher
resolution datasets have recently been produced using statistical methods and remote sensing
data.'>! For example, the SoilGrids250m version 2.0 dataset provides soil carbon estimates for
the globe with quantified spatial uncertainty,'>? and Spawn et al. (2020) developed global maps

147 Plevin, R. J., et al. (2015). “Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-
Induced Land Use Change.” Environmental Science & Technology 49(5): 2656-2664. Table S9 in the Supplemental
Information.

148 Plevin, R. J., et al. (2022). “Choices in land representation materially affect modeled biofuel carbon intensity
estimates.” Journal of Cleaner Production: 131477. Figure 7.

149 Plevin, R. J., et al. (2015). “Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-
Induced Land Use Change.” Environmental Science & Technology 49(5): 2656-2664. Table S9 in the Supplemental
Information.

130 JCAO (2021). CORSIA Eligible Fuels - Lifecycle Assessment Methodology. CORSIA Supporting Document.
Version 3: 155. Section 6.2

131 Spawn-Lee, Seth. (2022). “Carbon: Where is it and how can we know?” Presentation for EPA Biofuel GHG
Modeling Workshop. February 28, 2022. EPA-HQ-OAR-2021-0921-0022

152 poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.:
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217-240, 2021.
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of above and below ground biomass carbon density in the year 2010.'>* With few exceptions,'**
these newer data sets have not yet been incorporated into published estimates of biofuel land use
change.

Model Comparison Core Scenarios

4 Description of Core Modeled Scenarios

To compare the five models described above, we ran two scenarios through each
framework: 1) a reference case, 2) a corn ethanol scenario (also referred to as the “corn ethanol
shock™), and 3) a soybean oil biodiesel scenario (also referred to as the “soybean oil biodiesel
shock™). All of these scenarios are hypothetical and designed solely for the purpose of evaluating
and comparing the models. The modeled scenarios do not represent our forecast of what is likely
to occur in the future, nor should they be interpreted as reflecting EPA’s expectations about
future biofuel policy decisions.

For the three dynamic models (ADAGE, GLOBIOM, and GCAM), we defined a
hypothetical reference case for modeling purposes with U.S. biofuel consumption volumes for
each modeled fuel set to constant values from 2020-2050, based on the 2016-2019 average from
EPA-Moderated Transaction System (EMTS) data (Table 4-1). We used the EMTS sum of
biodiesel and renewable diesel for the biodiesel baseline. For GTAP, the reference case is the
global economy as represented in the 2014 GTAP database.

The core GREET model, excluding the ILUC module, does not include an explicit
reference case for corn ethanol or soybean oil biodiesel. As discussed above, GREET does not
model GHG impacts resulting from a change in biofuel production relative to a reference case.
Instead, it estimates the GHG emissions associated with, or attributable to, each biofuel supply
chain. Although it does not include scenarios, GREET considers background and foreground
data. The foreground data represents the processes in the supply chain evaluated (e.g., corn
farming, ethanol production). The background data represents processes that are outside of the
supply chain, but that provide energy and material inputs to the supply chain (e.g., electricity
grid, natural gas supply chain, fertilizer supply chain). While GREET is a static time step model,
it provides default assumptions and estimates for individual years out to 2050. For the purposes
of this model comparison, we use GREET with the analysis year set to 2030,

153 Spawn, S. A., et al. (2020). “Harmonized global maps of above and belowground biomass carbon density in the
year 2010.” Scientific Data 7(1): 112.

154 Lark, T. J., et al. (2022). “Environmental outcomes of the US Renewable Fuel Standard.” Proceedings of the
National Academy of Sciences 119(9): €2101084119.

155 Argonne National Lab updates GREET on an annual basis with modifications that impact results across many of
the pathways. Results in this section are from GREET-2022.
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Table 4-1: U.S. annual biofuel consumption volumes in the model reference case, for 2020-
2050156

Billion Gallons | Quad BTU
Ethanol from Corn 14.82 1.126
Biodiesel from Soybean Oil 1.19 0.14
](3)1ii)d1esel from Canola/Rapeseed 0.26 0.03
Biodiesel from Palm Oil 0.09 0.01
Ethanol from Sugarcane 0.1 0.007

In addition to the reference case, we ran a corn ethanol scenario and a soybean oil
biodiesel scenario. The corn ethanol scenario is a consumption shock with an additional one
billion gallons (0.076 QBTU) of U.S. corn ethanol consumption in each year, with all other U.S.
biofuel consumption volumes set by assumption at the reference case levels. The soybean oil
biodiesel scenario is a consumption shock with an additional one billion gallons (0.118 QBTU)
of U.S. soybean oil biodiesel consumption in each year, with all other U.S. biofuel consumption
volumes set by assumption at the reference case levels. We selected the one billion gallon shock
size as a simple and reasonably sized shock that is large enough for the purposes of testing these
models. For the large economic models considered in our model comparison, it is necessary to
specify a change that is large enough to produce a tangible change in the model. We also did not
want to specify a shock that would be unreasonably large given current biofuel production levels.
As discussed above, these scenarios are hypothetical and designed solely for research purposes.

For the dynamic models (ADAGE, GCAM, GLOBIOM), the shocks increase linearly
from 2020 to 2030, such that that there is a 0.5 BG shock in 2025, and the full 1 BG shock is
reached in 2030. In these models, volumes are held at the 2030 value for 2030 to 2050 (Table 4-
2). The results from this exercise may be sensitive to the shape of the implemented shock of
time. We designed the scenarios with this ramp up to 2030 for a few reasons. First, these models
are primarily designed for evaluating future scenarios. While it is possible to set up these models
for retrospective analysis to simulate historical years (“hindcasting”), we did not have the time or
resources to complete such an analysis as part of this model comparison exercise. Second, we
designed the scenario with a linear ramp up to 2030 as that is the first future time period
represented in GLOBIOM.

For GTAP, these U.S. biofuel consumption volumes were added to the 2014 base year.
Because GTAP is a comparative static model, there is no ramp up period for the biofuel
consumption shocks in the modeled results for this framework.

136 To convert between gallons and Quad BTU, we used a lower heating value for ethanol of 0.076 Quad
BTU/Billion gallon, and a lower heating value for biodiesel of 0.118 Quad BTU/Billion gallon. For GTAP, the
reference case is 2014, which includes the following U.S. biofuel volumes: 14.29 billion gallons (1.09 Quad BTU)
of corn ethanol, 0.20 billion gallons (0.01 Quad BTU) of other ethanol, 0.68 billion gallons (0.08 Quad BTU) of
soybean oil biodiesel, and 0.61 billion gallons (0.07 Quad BTU) of other biodiesel.
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Table 4-2: U.S. corn ethanol and soybean oil biodiesel consumption volumes, in Quad BTU,
for ADAGE, GCAM, and GLOBIOM
| 2020| 2025[ 2030 2035 2040| 2045| 2050

Reference Case

Ethanol from Corn 1.126 | 1.126 | 1.126| 1.126| 1.126| 1.126 1.126
Biodiesel from Soybean Oil 0.140 | 0.140 | 0.140] 0.140| 0.140 | 0.140 0.140
1 BG Soybean Qil Biodiesel Case
Ethanol from Corn 1.126 | 1.126 | 1.126 ] 1.126 | 1.126 | 1.126 1.126
Biodiesel from Soybean Oil 0.140 | 0.199] 0.258] 0.258| 0.258| 0.258 0.258
1 BG Corn Ethanol Case
Ethanol from Corn 1.126 | 1.164| 1.202] 1.202]| 1.202] 1.202 1.202
Biodiesel from Soybean Oil 0.140 | 0.140 [ 0.140] 0.140| 0.140 [ 0.140 0.140

For these scenarios, we aligned the conversion factors for vegetable oil to biodiesel and
corn to ethanol across ADAGE, GCAM, and GLOBIOM (Table 4-3). These factors were aligned
to represent a standard dry mill process for production of corn ethanol, assuming natural gas use
to dry 100 percent of the DDG coproduct produced, and a transesterification process for
production of soybean oil biodiesel. The 2015 conversion factors are based on data received
from petitions under the RFS. For corn ethanol, the yield increase over time assumes that the
corn ethanol yield will approach the theoretical maximum efficiency of corn conversion to
ethanol by 2050, based on the assumed quantity of convertible material in a given quantity of
corn. Compared to our assumed 2020 yield, this is approximately a 10 percent increase in
ethanol yield per unit of corn feedstock. For soybean oil biodiesel, the yield increase over time
assumes that current state-of-the-art technology will become the nationwide industry average by
2050. Compared to our assumed 2020 yield, this is approximately a 5 percent increase in
biodiesel yield per unit of soybean oil feedstock. By default, the GTAP model uses conversion
assumptions based on historical data from 2014. While it is possible to adjust the conversion
yield in GTAP, we did not do so for his exercise in order to maintain the consistency of the 2014
database. In GTAP, the conversion factor for corn to ethanol is 2.8 gal/bushel, and the
conversion factor of soybean oil to biodiesel is 0.132 gal/lb oil. For the corn ethanol shock,
GTAP models a natural gas-fired dry mill corn ethanol process with dry DGS coproduct and no
corn oil coproduct. For the biodiesel shock, GTAP models a standard natural gas-fired
transesterification biodiesel production process. The GREET analysis relies on the assumptions
in GREET for 2030, which are a conversion factor for corn to ethanol of 2.92 gal/bushel, and a
conversion factor for soybean oil to biodiesel of 0.136 gal/lb oil. For 2030, GREET assumes by
default that 99.6 percent of the energy use in dry mill ethanol production will be from natural
gas, with the remainder from coal.
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Table 4-3: Conversion factors for vegetable oil to biodiesel and corn to ethanol, for
ADAGE, GCAM, and GLOBIOM

Soybean oil

Corn conversion | conversion to

to ethanol biodiesel

gal/bushel gal/lb oil
2015 2.75 0.130
2020 2.78 0.132
2025 2.80 0.133
2030 2.85 0.134
2035 291 0.135
2040 2.96 0.135
2045 3.02 0.136
2050 3.06 0.136

Corn ethanol production creates DDG and corn oil coproducts. Table 4-4 shows the
assumptions in the models related to these coproducts. We did not align these assumptions across
the models. However, ADAGE, GCAM, and GLOBIOM already had similar DDG and corn oil
production assumptions. In GREET, less DDG and more corn oil is produced than in the other
models. In GTAP, more DDG is produced, and corn oil is not represented. ADAGE, GCAM, and
GLOBIOM all produce less DDG coproduct over time as corn ethanol production becomes more
efficient (i.e., more gallons per bushel) and a greater share of the initial feedstock mass is
converted to fuel. Soybean oil biodiesel production creates a glycerin coproduct. ADAGE,
GCAM, GLOBIOM and GTAP do not explicitly model this coproduct, while GREET does
explicitly model the glycerin coproduct. !>’

Table 4-4: Coproduct assumptions for corn ethanol

DDG (Ib/gal ethanol) Corn oil (Ib/gal ethanol)
ADAGE (2020) 5.9 0.2
ADAGE (2050) 5.1 0.2
GCAM (2020) 5.9 0.2
GCAM (2050) 5.1 0.2
GLOBIOM (2020) 5.9 0.2
GLOBIOM (2050) 5.1 0.2
GREET (2030) 4.2 0.4
GTAP (2014) 6.1 --

Note: Model year shown in parentheses.

A key assumption in soybean oil biodiesel production is the shares of soybean oil and
soybean meal produced per unit of soybeans crushed. Table 4-5 shows the soybean crush yield
share assumptions for each model. ADAGE, GCAM, and GLOBIOM all assume that 0.19 tons
of soybean oil are produced per ton of soybean crushed. These values are not assumed to change
over time in these models, and the assumptions are uniform across model regions. GREET and

157 In GREET, roughly 0.1 Ib of glycerin is produced per pound of soy oil input.
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GTAP assume higher oil yields and lower meal yields relative to ADAGE, GCAM, and
GLOBIOM. In GTAP the amount of soybean oil produced from crushing varies by region.

Table 4-5: Production assumptions for soybean oil biodiesel

Soybean oil (tons oil/tons Soybean meal (tons oil/tons
soybean) soybean)
ADAGE (2020) 0.19 0.8
ADAGE (2050) 0.19 0.8
GCAM (2020) 0.19 0.8
GCAM (2050) 0.19 0.8
GLOBIOM (2020) 0.19 0.8
GLOBIOM (2050) 0.19 0.8
GREET (2030) 0.22 0.78
GTAP (2014)!38 0.2 0.8
Note: Model year shown in parentheses.
5 Comparison of Reference Case Estimates

In this section we compare the estimates and assumptions from the reference case. We
look, in turn, at the following elements from the reference case:

Crop production
Land use impacts
Crop yields

Energy consumption
GHG emissions

The majority of these comparisons include ADAGE, GCAM, GLOBIOM, and GTAP.
The comparison of energy consumption does not include GLOBIOM as this model does not
endogenously consider energy markets. Only the comparisons of crop yield and GHG emissions
includes GREET. GREET is a supply chain LCA model that does not represent changes in
agricultural and economic markets between reference and modeled scenarios, as the other
models in this comparison exercise are designed to estimate.

5.1 Crop Production

ADAGE, GCAM, GLOBIOM, and GTAP each include different crops, which we
aggregated into common categories for reporting purposes to better enable comparison across the
models. Table 5.1-1 shows the crops included in each model, and how they are reported here. Of
the models, GLOBIOM includes the most disaggregated set of modeled crop categories. In

158 Values are approximate for the USA region. GTAP crushing rates are based on the mean data provided by the
World Oil data set. This data set shows the crushing rate for soybeans varies across countries, and is generally 18-
20 percent, with some rare cases of 17 percent (in Bangladesh and Thailand) and 21 percent (in Japan). The World
Oil data shows a crushing rate of 19.75 percent for the U.S. in 2014, which is implemented in the GTAP database
construction.
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ADAGE, palm fruit and rapeseed are not explicitly represented, but are included under “rest of

oilseeds.”

Table 5.1-1: Crops represented in ADAGE, GCAM, GLOBIOM, and GTAP

Model ADAGE GCAM GLOBIOM GTAP
Comparison
Category
Corn Corn Corn Corn Corn
Soybean Soybean Soybean Soybean Soybean
Wheat Wheat Wheat Wheat, Durum Wheat
wheat*, Soft
wheat*
Rice Not explicitly Rice Rice Paddy rice
represented;
aggregated with
“other grains”
Sugar crops Sugarcane, Sugar crops Sugar cane, Sugar crops
Sugar beet Sugar beet*
Palm fruit Not explicitly Oil palm and Palm fruit Palm fruit
represented; coconuts
aggregated with
“rest of oilseeds”
Rapeseed Not explicitly Rapeseed Rapeseed Rapeseed
represented;
aggregated with
“rest of oilseeds”
Other oil crops Rest of oilseeds | Oil crops Groundnut, Other oil seeds
Sunflower
Other grains Rest of cereal Other grain Barley, Millet, Other grain
grains Sorghum
Energy crops None!? Herbaceous
biomass crop;
woody biomass
crop
Other crops Rest of crops Root/tuber; Cassava, Other crops
Fiber crop; Chickpeas, Dry
Fodder herb, beans, Potatoes,
Fodder grass, Sweet potatoes,
Miscellaneous Cotton, Peas*,
crops Rye*, Oat*,
Flax*
*EU region only

159 ADAGE has the ability to model switchgrass and miscanthus, but production of those crops were not included in

these scenarios.

48

NMED Exhibit 39-C_000050



Figure 5.1-1 shows the reference case crop production in 2014 (GTAP) and 2020 and
2050 (ADAGE, GCAM, and GLOBIOM). Total crop production in 2020 in the USA region is
highest in the ADAGE results and lowest in the GLOBIOM results. In the non-USA regions,
GCAM results have the highest 2020 crop production, and GLOBIOM results have the lowest
production. In 2050, the total production is again the highest in ADAGE results in the USA
region, and the highest in GCAM results in the non-USA region. The total crop production in the
USA region has a similar percent increase between 2020 and 2050 in the ADAGE and GCAM
results (30 percent and 27 percent, respectively). However, the ADAGE and GCAM results
differ in the growth rate of the production of individual crops. GLOBIOM results have a lower
percent increase in crop production (13 percent). In the non-USA regions, GCAM and
GLOBIOM results have a similar percent increase in total crop production (47 percent and 50
percent, respectively), whereas ADAGE results have a lower percent increase in total crop
production (21 percent).

Figure 5.1-1: Crop production (million metric tons) in the reference case!%%161
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Table 5.1-2 compares these modeled values with crop production data from FAOSTAT.
GTAP’s crop production, which is calibrated to 2014 data, aligns closely with the FAOSTAT
2014 production data for corn and soybeans. 2020 crop production in ADAGE, GCAM and
GLOBIOM differs from the 2020 FAO values, for a few reasons. First, these models project
2020 production from a 2010, 2015, and 2000 model base year respectively. Long run economic
modeling projections do not, as a general methodological practice, attempt to build in exogenous
representation of short term historical economic shocks in modeled periods (i.e., times steps after

160 Note that the USA and non-USA regions are shown on different scales to better show differences across the
models.

161 Reference case production values in the “Other Crops™ category are mostly incomparable between models
because the models differ in which crops are represented in this category (see Table 5.1-1).
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the model base year), and these models should be expected to endogenously predict such shocks.
This alone leads to some variation in modeled estimates from the historical record for years like
2020, where a significant economic shock occurred in the form of the COVID-19 pandemic.
Second, as described in Section 3.1.2, the 2020 time step in ADAGE and GCAM represents a
slightly different time period than the 2020 time step in GLOBIOM. The ADAGE, GCAM, and
GLOBIOM crop production in 2020 generally falls within the range of production over the years
2015-2021, with a few exceptions. The ADAGE corn production results are higher than the FAO
range in the USA region, but lower than the FAO range in the non-USA regions. ADAGE and
GCAM soybean production results are both lower than the FAO range in the non-USA regions.

Table 5.1-2: Corn and soybean production (million metric tons) from reference case and
FAOSTAT data'®?

Data source Corn, USA Soybean, USA Corn, Non-USA | Soybean, Non-
Region Region Region USA Region

GTAP, 2014 361 107 678 199

FAOSTAT, 361 107 680 199

2014

ADAGE, 2020 462 114 622 199

GCAM, 2020 376 111 733 204

GLOBIOM, 368 99 742 219

2020

FAOSTAT, 358 115 805 240

2020

FAOSTAT, 345-412 97-121 708-826 216-251

2015-2021 range

5.2 Land Use

ADAGE, GCAM, GLOBIOM, and GTAP each include different land types, and different
assumptions about the reference area of each land type over time. For this exercise, for reporting
purposes we mapped land types to common categories across the models, as shown in Table 5.2-
1. Areas of land types in the “other non-arable land” category are held constant over time and
cannot convert to other land types.

162 FAOSTAT data from: https://www.fao.org/faostat/en/#data. Non-USA values were calculated by subtracting the
United States production from the World production. FAOSTAT 2015-2021 range shows the highest and lowest
production from the years 2015 to 2021. These do not necessarily correspond to the 2015 and the 2021 values.
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Table 5.2-1: Land representation in ADAGE, GCAM, GLOBIOM, and GTAP
Model ADAGE GCAM'6? GLOBIOM GTAP
Comparison
Category
Cropland Cropland Cropland Cropland, short Cropland*

rotation
plantation
Forest Managed forest Commercial Managed forest Forest!'®*
(managed) forest
Forest Natural forest Forest Unmanaged
(unmanaged) forest
Grassland Natural grassland | Grassland Grassland
Other arable | Not included Other arable land | Other agricultural | Cropland
land land, other pasture*, “unused
natural land land”*
Other non- Other land: Tundra, Wetlands, “not
arable land includes bare Rock/ice/desert, | relevant” (e.g.
ground, wetlands, | Urban ice, water bodies)
mangroves, salt
marsh, glaciers,
lakes
Pasture Pasture Intensively- Pasture Pasture'®
(managed) grazed pasture
Pasture Not included Other pasture
(unmanaged)
Shrubland Not included Shrubland

* GTAP results report an aggregated “Cropland” category which is meant to represent fallow cropland in addition to
actively cultivated cropland. For the scenario difference values, we are able to disaggregate those fallow land
categories — “cropland pasture” and “unused land” — and assign them to the “Other arable land”” model comparison
category. For this model comparison exercise, GTAP assumes no change in U.S. Conservation Reserve Program
area due to the biofuel shocks.

Reference case land use for arable land is shown in Figure 5.2-1 for 2014 (GTAP) and
2020 and 2050 (ADAGE, GLOBIOM, and GCAM).!'% The GTAP reference case land areas
differ most from the other models because GTAP does not include unmanaged land such as
unmanaged forest, grassland or shrubland.

163 In the version of GCAM used in this exercise, land types are further split by mineral soil and peat soil.
164 In the GTAP database the managed forest area is the sum of managed/commercial forest and “accessible” forest,
with accessibility determined based on an analysis of distance from roads.
165 Tn the GTAP database pasture area includes areas of grassland.
166 L .and cover and land use changes in the model reference cases are based on the agricultural demand, differences
in land rent among land types, ease of substitution among land, and relative changes in land productivity.
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Figure 5.2-1: Arable land use (million metric hectares) in the reference case!¢7-168
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For cropland, GLOBIOM shows lower area than other models in the non-USA regions.
For forest, ADAGE and GLOBIOM have similar area in the non-USA regions, and GCAM has
lower area. Because GTAP only represents managed forest, the total forest area is smaller than
the other models. But the managed forest area is larger than the other models. Grassland is
highest in ADAGE, followed by GCAM then GLOBIOM. For pasture, only GCAM
differentiates between managed and unmanaged pasture. GCAM has very little managed pasture
in the non-USA regions, but similar total pasture as GTAP. GTAP shows the largest area of
managed pasture, as it represents pasture and grassland jointly. ADAGE and GLOBIOM have
lower total pasture.

ADAGE, GCAM, and GLOBIOM all project an increase in cropland area and a decrease
in grassland area over time, both in the USA region and the non-USA regions. Each of these
models also shows a decrease in non-USA total forest area over time, with an increase in
managed forest and a decrease in unmanaged forest. In the USA region, GCAM and GLOBIOM
both show an increase in total forest area over time, with an increase in managed forest and a
decrease in unmanaged forest. In ADAGE, the USA region has a small decrease in managed
forest and increase in unmanaged forest, with an overall decrease in total forest area. For pasture,
ADAGE, GCAM, and GLOBIOM show different trends. In the non-USA regions, total pasture
decreases over time in ADAGE and GCAM, but increases in GLOBIOM. In the USA region,
total pasture increases over time in ADAGE, and decreases in GCAM and GLOBIOM. In
GCAM, managed pasture area increases over time, and unmanaged pasture area decreases over
time, in both the USA region and non-USA regions.

167 Note that the USA region and the non-USA region have different scales.

168 Cropland area in GTAP represents the sum of land cultivated for row crops, cropland pasture, and other unused
land that GTAP classifies as cropland. This differs from the “Cropland” category of land presented in Figure 6.6-2
and Figure 7.6-2 which illustrate changes in cropland compared to the reference case. In those figures, cropland
pasture and other unused cropland are assigned to the “Other Arable Land” category.
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The GLOBIOM and GCAM reference case results include reductions in “other arable”
land over time from 2020 to 2050. For GCAM, the other arable land category includes fallow,
unused, and unharvested cropland and also serves to represent differences in land area estimates
between FAO and other data sources. None of the models explicitly represent Conservation
Reserve Program (CRP) land in the USA as a unique land category. For agricultural land areas,
GLOBIOM and GCAM rely on FAO data, which does not explicitly list CRP. CRP may be
implicitly represented in the “other arable” category of GCAM and GLOBIOM, but without
explicitly accounting for the particular incentives offered to farmers by the program. ADAGE
does not include CRP and does not explicitly account for conservation management decisions.
The GTAP database includes data on CRP area, but the GTAP model included in our comparison
exercise assumes no change in CRP area due to the biofuel shocks, and this is the standard
assumption used in the GTAP model. Given that other studies focusing on the U.S. suggest that
biofuel consumption may have a significant effect on CRP area,'®’ this may be an area for future
research and model development.

5.3 Crop Yield

ADAGE, GCAM, and GLOBIOM use different exogenous assumptions about crop yield
growth over time. In GLOBIOM, exogenous yield improvements represent technological change
and multi-cropping. Crop yield growth is based on an extrapolation of historic yield trends from
FAO data. Exogenous assumptions on multi-cropping are based on a literature review and apply
to areas such as Brazil. In GCAM, exogenous yield growth is based on FAO data. In ADAGE,
land productivity by land type is from the linked EPPA-TEM model, and a 1 percent annual
growth in crop yield is assumed.

These models also have the ability to change crop yields endogenously, based on changes
in prices or other factors, as does the GTAP model. In ADAGE and GTAP, a nested CES
(constant elasticity of substitution) function governs the endogenous yield changes. Materials
(e.g., fertilizer) or energy (e.g., for farm equipment) can be substituted for land to increase the
yield. Additional capital or labor can also be invested to increase yields. GTAP imposes a
restriction on substitution among labor, land, and a mix of capital-energy in crop sectors to reach
a target for price-induced yield response. GCAM has four different technology options (rainfed
vs. irrigated; low-yield vs. high-yield), each with different yields. A logit function determines the
share of production in each of these technology options based on profit rates, and the prices of
fertilizer and irrigation water also affect the competition of these technologies. Yields within any
land use region, crop type, and irrigation level can increase or decrease by up to 20 percent based
on the profitability. GLOBIOM also has four management options with different intensity levels
(subsistence, low input, high input, irrigated high input). Crop production is represented at the
grid level, and GLOBIOM can reallocate production from one cell to another based on the
productivity and profitability.

Reference case corn and soy annual yields for these models are shown in Figure 5.3-1.
This figure also shows the 2014 yields in GTAP, and data and yield projections from USDA.

169 See for example, Chen, X., & Khanna, M. (2018). Effect of corn ethanol production on Conservation Reserve
Program acres in the US. Applied Energy, 225, 124-134.

53

NMED Exhibit 39-C_000055



Models show a range in the crop yield and the yield growth rate. For corn, ADAGE and GCAM
have the highest yields in the USA region. For soybeans, GCAM has the highest yield and
ADAGE has the lowest yield in the USA region. USDA data and projections are generally within
the range of the modeled yields. In the USA region, the 2030 corn yield in GREET is 12.5 t/ha,
and the soybean yield is 3.7 t/ha. The non-USA region yield is weighted by crop production for
each individual region outside of the USA region. The corn and soybean yield in the non-USA
region is similar across models, although there is more variation in the soybean yields over time.

Figure 5.3-1: Corn and soybean yields (tons per hectare) in the reference case!”
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5.4 Energy Consumption

2050/2010 2020 2030 2040 2050

Each model was given specifications for biofuel consumption in the USA region to stay
constant at specific levels in the reference case.!”! However, constraints were not placed on
biofuel consumption in non-USA regions. Figure 5.4-1 shows the biofuel consumption in
ADAGE, GCAM, GLOBIOM, and GTAP. The models show very different reference case
amounts of biofuel consumption in the non-USA regions in 2020, and different projections over

170 Yields reported from ADAGE, GLOBIOM, GTAP, and in the USDA data and projections are calculated as crop
production per harvested area (i.e., production per harvest). Yields reported from GCAM are calculated as crop
production per cultivated area (i.e., production from all harvests per cultivated area, where cultivated area is equal to
harvested area divided by harvest frequency).

171 ADAGE does not include rapeseed oil consumption in the USA region, so that consumption volume is set at zero

instead of the specified amount.
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time through 2050. Since GLOBIOM does not endogenously represent energy markets, levels of
consumption of biofuels are set exogenously for all regions. For this exercise, consumption
levels of biofuels in the non-USA regions are held constant throughout the period of analysis.
GCAM shows similar total biofuel consumption in the non-USA region as GLOBIOM in 2020,
but the consumption more than doubles by 2050. ADAGE has much lower total biofuel
consumption in non-USA regions in 2020 than the other models, with almost no consumption of
soybean oil biodiesel.!”? Biofuel consumption increases over time, with most of the increase in
ethanol from sugar crops. In GTAP, the 2014 non-USA biofuel consumption is higher than the
2020 consumption in ADAGE and lower than the 2020 consumption in GCAM and GLOBIOM.
There are also differences in the fuel categories, with most of the ethanol in GTAP coming from
an aggregated “other feedstocks” category rather than sugar crops, and most of the biodiesel
coming from “other oil crop oil.”

Figure 5.4-1: Biofuel consumption (Quad BTU) in the reference case
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ADAGE, GCAM, and GTAP show similar fossil fuel consumption in the reference case
(Figure 5.4-2).'73 Consumption of natural gas, coal, and refined oil is slightly higher in the USA
region in 2020 in ADAGE than GCAM. In GTAP, the 2014 coal consumption in the USA is
higher than the 2020 consumption in ADAGE and GCAM, but the 2014 natural gas and refined
oil consumption is lower than the 2020 consumption in ADAGE and GCAM. In both ADAGE

172 ADAGE includes conventional vehicles and alternative fuel vehicles in its transportation sector. In this reference
run, ADAGE projects biofuel consumption in non-USA regions based on the relative competitiveness of
conventional and alternative fuel vehicles in the model over time. As electric vehicles become more competitive,
less biofuel is consumed. In the assumptions used by ADAGE in this run, soybean oil biodiesel is more costly to
produce than other biofuels in non-USA regions, so it is not consumed in these regions in the reference.

173 GLOBIOM does not model fossil energy consumption.
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and GCAM, natural gas consumption in the USA region increases over time, and coal
consumption decreases. In GCAM, refined oil consumption in the USA region decreases
between 2020 and 2050, whereas in ADAGE refined oil consumption increases. In the non-USA
regions in 2020, ADAGE has higher refined oil and natural gas consumption, but lower coal
consumption than GCAM. Both models show increases in consumption of these fossil fuels over
time in the non-USA regions, with ADAGE showing a larger increase. GTAP’s 2014 non-USA
coal consumption is higher than the ADAGE and GCAM 2020 consumption, whereas the refined
oil consumption is lower. Natural gas consumption in 2014 in the non-USA region of GTAP is
slightly higher than GCAM’s 2020 consumption. The differences between GTAP and other
models may reflect the difference in time periods represented. Differences across the models in
the reference case fossil fuel and biofuel consumption over time could impact the results of the
amount and type of fuel displaced in the biofuel volume shocks. Exploring the impact of these
differences could be an area for future research.

Figure 5.4-2: Fossil fuel consumption (Quad BTU) in the reference case
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5.5 GHG Emissions

The models in this exercise include emissions from different sectors, with ADAGE and
GCAM including emissions from the entire global economy, GTAP including emissions from
land use change, the energy sector, and emissions from other sectors and activities, and
GLOBIOM including emissions from crop production, livestock, and land use change (Table 3-
1). GREET reports emissions associated with the supply chain of biofuel production. GREET’s
CCLUB module is able to add indirect land use change emissions as well. Each model also
reports different greenhouse gases (Table 5.5-1).
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Table 5.5-1: Greenhouse gases represented in each model

ADAGE GCAM GLOBIOM GREET'"* GTAP
CO2, CHa4, HFC, | CO2, CHa4, CO2, CHs4, N2O | CO2, CH4, N2O | CO2, CH4, N20O,
N:0, PFC, SFs HFC125, Fluorinated gases
HFC134a, (CF4, HFC134a,
HFC152a, HFC23, SFs)
HFC227ea,
HFC23,
HFC236fa,
HFC32,
HFC365mfc,
N20, PFC, SF¢

Total GHG emissions in 2020 in the reference case are around 57 gigatons CO2
equivalents (GtCO2eq) in ADAGE and 59 GtCOz2eq in GCAM. For comparison, the IPCC Sixth
Assessment Report estimates that global GHG emissions were 59+6.6 GtCOzeq in 2019.!75 In
both ADAGE and GCAM, CO:x is the largest contributor to the emissions, with methane the
second largest contributor. The GCAM reference case has higher non-CO: emissions in 2020
than ADAGE and GLOBIOM.

Figure 5.5-1 groups reference case emissions into a several broad categories. "Energy
from Fossil Fuels" includes all GHG emissions from fossil fuel combustion. Consequently, fossil
fuel emissions are not included in other categories. For example, emissions from diesel used to
drive tractors for crop production are included under "Energy from Fossil Fuels" rather than
"Crop Production." "Other (Industrial & Waste)" includes non-fossil fuel emissions from the
industrial and waste management sectors, such as COz from cement manufacturing and CHs
from landfills. "Livestock Production" includes emissions such as CH4 from enteric fermentation
and N20 and CH4 from manure. "LUC" includes emissions from biomass and soil carbon
associated with land use change. "Crop Production" includes emissions from crop inputs such as
N20 from fertilizer use and from crop production processes such as CHs from rice production.

As shown in Figure 5.5-1, most emissions from ADAGE and GCAM come from CO2
from the energy from fossil fuels category. “Other (Industrial & Waste)” emissions are similar in
ADAGE and GCAM in 2020, but higher in GCAM than ADAGE by 2050. Emissions in this
category come from a mix of greenhouse gases. Emissions in this sector are not reported in
GLOBIOM. Emissions from livestock production are similar in ADAGE and GLOBIOM, and
higher in GCAM, and come primarily from methane. Land use change emissions are
significantly lower in ADAGE and GLOBIOM than GCAM. Crop production emissions are
similar in ADAGE and GCAM in 2020, but are 50 percent lower in GLOBIOM. Crop
production emissions increase over time in GCAM and GLOBIOM, but decrease over time in
ADAGE. GTAP reports land use change emissions by comparing land use areas between two
scenarios, but it does not track terrestrial carbon stocks or report total land use change emissions

174 GREET includes the ability to represent GWPs of short-lived climate forcers (volatile organic compounds,
carbon monoxide, NOx, and black carbon) but does not include them in results by default.

175 IPCC, 2023: Summary for Policymakers. In: Synthesis Report of the IPCC Sixth Assessment Report (AR6).
Available at: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR SPM.pdf
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in each scenario. GTAP does also report several other categories of emissions, including
emissions from use of fossil fuels and total non-CO:2 emissions from sources other than land use
change. GREET is a supply chain LCA model that is designed to represent the emissions
emanating from the fuel supply chain rather than estimate the global economic impacts of a
change in biofuel consumption. GTAP and GREET are not included in Figure 5.5-1 because they
do not represent scenario-based emissions over time.

Figure 5.5-1: Global greenhouse gas emissions in ADAGE, GCAM, and GLOBIOM in the
reference case!”®
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176 Note that the rows of this figure use different scales. GTAP is not included in this figure because it does not
represent emissions over time, and due to time constraints, we do not have GTAP LUC emissions in the reference
case, or GHG emissions by gas for the source categories used in this figure. For comparison, for GTAP, in the
reference case (2014), fossil fuel combustion and industrial CO; emissions = 30,048 Mt, and other GHGs emissions
from all covered sources = 16,616 Mt CO.e, of which N;O = 2,891 Mt COze, CH4 = 8742 Mt COze, fluorinated
gases = 986 Mt CO,e, and other CO, = 3996 Mt CO,e. GREET is not included in this figure because it does not
include an explicit reference case, and therefore does not provide reference case emissions.
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5.6 Summary of Reference Case Estimates

The previous sections illustrate differences in the reference case in ADAGE, GCAM,
GLOBIOM, GTAP and GREET. Notable differences are observed across the models in crop
production, land use areas, biofuel and fossil fuel consumption in non-USA regions, and overall
emissions. These include differences in the reference case for 2020, as the models are initialized
with older data and define the 2020 time period in different ways.

Some of these differences could impact the results of the corn ethanol and soybean oil
biodiesel shocks from these models. For example, differences in the reference case crop yields
among models would cause differences in the amount of land needed to produce additional
crops. Differences in reference case biofuel and fossil fuel consumption among models could
affect energy sector responses the biofuel shocks. Potential future research could focus on how
the reference case influences the results of the biofuel shocks.

6 Comparison of Corn Ethanol Estimates

In this section, we present the results of the corn ethanol shock. The results in this section
show the difference between the corn ethanol shock and the reference case. We consider the
following elements in turn:

Sources of corn ethanol to meet the shock

Energy market impacts from the shock

Crop production and consumption

Trade impacts

Yield changes

Land use impacts

Emissions: the modeled results of energy consumption, crop production, and land use
change described above come together in the modeled greenhouse gas emissions.

The majority of these comparisons include ADAGE, GCAM, GLOBIOM, and GTAP.
Only the comparison of GHG emissions includes GREET. GREET is a supply chain LCA model
that does not represent changes in agricultural and economic markets between reference and
modeled scenarios, as the other models in this comparison exercise are designed to estimate.

6.1 Sourcing Overview

The models included in this analysis have many options available for meeting the corn
ethanol consumption shock. For example, the USA region could produce additional corn ethanol,
import more corn ethanol, or export less corn ethanol. Additional imported corn ethanol supplies
could come from reduced consumption of corn ethanol in non-USA regions, or increased
production of corn ethanol. Increased domestic corn ethanol production could come from
diversion of corn from other uses, or increased production of corn, through yield increases or
increases in the area of corn cropland. This section will give an overview of the extent to which
the models rely on each of the available options for meeting the corn ethanol consumption shock.
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In the corn ethanol shock, most of the additional corn ethanol consumed in the USA
region comes from increased corn ethanol production in the USA region (Figure 6.1-1). In
ADAGE, GLOBIOM, and GTAP, the shock is met entirely by increased corn ethanol
production, with no change in gross imports or exports of corn ethanol in the USA region. In
GLOBIOM, because there is no energy sector, there cannot be a change in corn ethanol exports
or imports, so the shock must be met by corn ethanol production in the USA region.

In GCAM, up to 20 percent of the shock is met by changes in gross imports and exports
of corn ethanol, with the change in exports contributing to a larger percentage of the shock over
time. This change in exports is consistent with a reduction in the consumption of corn ethanol in
non-USA regions (blue bars, Figure 6.1-2).!”” These GCAM results illustrate the potential
impact of dynamic energy sector modeling. Because some of the corn ethanol shock in GCAM is
met through changes in the energy sector in the non-USA regions, less new corn ethanol needs to
be produced, which reduces the impact on corn production and end uses.

Figure 6.1-1: Sources of additional corn ethanol consumed in the corn ethanol shock
relative to the reference case!’®

USA
ADAGE GCAM GLOBIOM  GTAP

ADAGE, GCAM, GLOBIOM, and GTAP meet the corn ethanol shock through different
amounts of corn diversion from other uses, crop intensification, crop shifting to corn, and new
cropland (Figure 6.1-2). Based on the assumed conversion factor of corn to corn ethanol (Section
4), if all of the shock were met by new corn ethanol production, ADAGE, GCAM, and
GLOBIOM would need 8.9 million metric tons of additional corn for ethanol in 2030 and 8.3
million metric tons of additional corn for ethanol in 2050. GTAP would need 9.1 million metric
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177 As shown in Figure 6.2-1, sugarcane ethanol is substituting for corn ethanol in non-USA regions of GCAM.

178 Red shows the contribution increased corn ethanol production in the USA region; orange shows the contribution
from increased corn ethanol gross imports to the USA region; blue shows the contribution from reduced corn
ethanol gross exports from the USA region.
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tons of additional corn for ethanol in 2014. The bottom panel of Figure 6.1-2 shows the sourcing
of corn for corn ethanol in units of million metric tons. In these results, GCAM needs less corn
feedstock than ADAGE, GLOBIOM, and GTAP because some of the shock is met by a decrease
in corn ethanol consumption in the non-USA region.

In these results, commodity diversion (reduced crop use for other purposes) accounts for
15-17 percent of the shock in ADAGE, 23-24 percent of the shock in GCAM, 26-40 percent of
the shock in GLOBIOM, and 57 percent of the shock in GTAP. These results are described more
in Section 6.3. Of the additional corn production, ADAGE, GCAM, GLOBIOM, and GTAP each
use a different mix of crop intensification (increased corn yields), shifting of cropland from other
crops to corn (“crop shifting” in Figure 6.1-2), and shifting land from other land types to
cropland (“new cropland” in Figure 6.1-2). In the GCAM results, most of the new corn comes
from new cropland. In the GLOBIOM and GTAP results, most of the new corn comes from
shifting of cropland from other crops to corn. In the ADAGE results, there is a transition over
time from more cropland shifting in 2030 to more new cropland in 2050. For GTAP, the primary
strategy for meeting the corn ethanol shock is commodity diversion, highlighted by a 1 percent
reduction in USA region feed consumption (DDG feed increases, corn feed decreases). However,
this reduction in total feed use has a much smaller impact (0.002 percent reduction) on USA
region meat and dairy production. Corn production and land use results are described in more
detail in Sections 6.3 and 6.6.
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Figure 6.1-2: Top panel: Percentage of the corn ethanol shock that is met by different
categories in 2030 and 2050. Bottom panel: Million metric tons of additional corn
production (red, orange, and yellow) and corn diverted to corn ethanol production from
other uses (green)!”
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6.2 Energy Market Impacts

Corn ethanol has the potential to reduce GHGs and mitigate climate change if its use
reduces consumption of sufficient quantities of other fuels derived from fossil sources (e.g.,
petroleum, natural gas). Thus, the effect of increased corn ethanol consumption on other energy
markets is a critical component of the overall assessment of GHG impacts of corn ethanol use.

While the market impacts of increasing the use of one category of fuel are complex and
interrelated, we can consider several broad mechanisms that affect the use of other sources of
energy. First, increasing the use of a liquid biofuel can directly replace the use of petroleum-
derived fuels, thereby decreasing the amount of petroleum-derived fuel consumed. Secondly, an
increase in the production of additional biofuel requires additional energy inputs; increased corn
ethanol production, for example, would result in increased demand for natural gas and any other

179 A negative percent contribution means that there was decrease in corn production or an increase in non-fuel uses
of corn. New cropland in GLOBIOM has a negative percent contribution in 2050 because the amount of corn
cropland in non-USA regions is lower in the corn ethanol shock than in the reference case. In 2050, non-USA
regions in GLOBIOM produce less corn and more of other types of crops to make up for lost production in the USA
region. There are also shifts in the feed market from corn to DDG. These types of dynamics are discussed more in
Sections 6.3.
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energy inputs required to grow, transport, and process additional feedstock. Correspondingly, a
reduction in the extraction and refining of petroleum would result in decreased demand for the
energy sources required in those processes. Finally, all of the above effects on demand for
energy sources will affect fuel prices, which, in turn, affect supply and demand for those fuels.
We refer to these adjustments in supply and demand to price as market-mediated effects.

Towards the end of this section, we present modeling results describing changes in liquid
fuel consumption relative to the size of the cumulative corn ethanol shock.!®® These metrics
indicate whether one BTU of increased corn ethanol consumption in the USA region displaces
more or less than one BTU of refined oil'®! or biofuel consumption, when averaged across all
years represented in the scenarios, and including the indirect effects discussed above. These
effects vary depending on whether they are considered within the USA region or non-USA
regions. As an illustration of the regional differentiation, we consider the expected effect of an
increase in corn ethanol consumption in the USA region on consumption of refined oil in the
non-USA regions. The primary theoretical mechanism for this effect is as follows: 1) biofuel
consumption increases in the USA region, displacing some quantity of refined oil consumption
in the USA region; 2) this reduces global demand for petroleum which puts downward pressure
on the price of crude and refined oil in non-USA regions; 3) the effect on crude and refined oil
prices leads to increasing demand for refined oil outside of the USA. The degree to which these
effects are reflected in the model results is presented in Figure 6.2-3 and the accompanying
discussion at the end of this section.

As discussed in Section 3, the models considered in this section differ in their
representations of energy markets. GREET is largely an attributional framework which includes
detailed accounting of the energy inputs for production of feedstocks, biofuels, and fossil fuels
but does not include a representation of markets for energy goods, the displacement effect of an
increase of biofuel use, nor of any other market mediated effects. GLOBIOM does not represent
energy commodities or markets, so it cannot be used to estimate the effects of a biofuel shock on
these markets. ADAGE, GCAM, and GTAP each represent a selection of energy commodities,
end use sectors, and market interactions.

1301 ., the cumulative changes in energy consumption expressed as a percentage of the cumulative change in US
corn ethanol consumption over the duration of the modeled period.
181 In these models, refined oil is an aggregation of all refined petroleum products, including gasoline and diesel.
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Figure 6.2-1: Difference in consumption of energy commodities (quadrillion BTUs) in the

corn ethanol shock relative to the reference case in 2030 and 2050 (ADAGE, GCAM) and
2014 (GTAP)
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ADAGE, GCAM, and GTAP results show differing estimated net impacts on biofuel
consumption and fossil fuel consumption under a one billion-gallon corn ethanol shock scenario
(Figure 6.2-1). As illustrated in Figure 6.1-1, a portion of the corn ethanol shock in GCAM is
met through decreased U.S. net exports of corn ethanol, the majority of which (95 percent in
2030) is a reduction in gross exports, as opposed to increased gross imports. This results in a
decrease in corn ethanol consumption in the non-USA regions (roughly ten percent when
compared to the total energy content of the corn ethanol shock in 2030) and an increase in
consumption of ethanol produced from sugar crops in non-USA regions (two percent of the
shock in 2030). While ADAGE and GTAP do represent trade in biofuel commodities (see Figure
6.2-2 below), the corn ethanol shock has little effect on trade of ethanol, and, consequently, little
effect on consumption of biofuels in non-USA regions, in the results from these models.
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Figure 6.2-2: Difference in U.S. net exports of energy commodities (quadrillion BTUs) in

the corn ethanol shock relative to the reference case in 2030 and 2050 (ADAGE, GCAM)
and 2014 (GTAP)
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Results in all three models show increased consumption and decreased U.S. net exports
of natural gas, largely due to increased production of corn ethanol and drying of DDGs, though
the size of these impacts is notably smaller in GTAP results compared to in ADAGE and
GCAM. Impacts on natural gas use in the non-USA regions differ. GCAM results show
consistent and decreasing consumption of natural gas, corresponding with decreased demand for
natural gas used in ethanol production in non-USA regions and with other market mediated
effects. The lack of significant impacts on non-USA ethanol consumption in ADAGE and GTAP
results in a smaller effect on non-USA natural gas consumption in results from those models.

ADAGE, GCAM, and GTAP each model an aggregated refined oil commodity which
represents a range of petroleum products including gasoline, distillate fuel, and other industrial
chemicals and products. The primary displacement effect of increased corn ethanol consumption
is seen in the consumption of this modeled refined oil commodity. Within the USA region,
ADAGE, GCAM, and GTAP results show differing reductions in refined oil use; 0.068 and
0.079 quads in ADAGE and GCAM respectively in 2030, and 0.048 quads in GTAP in 2014.
The decrease in refined oil use in both ADAGE and GCAM is predominantly in the
transportation end use sector — this is the primary displacement effect — with some relatively
minor market mediated effects in other end use sectors. Results available from the GTAP model
did not disaggregate refined oil use by end use.
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The decrease in demand for crude and refined oil in the USA region observed in these
model results corresponds with a decrease in the price of these commodities. However, the
impact of the modeled shock on estimated prices of crude oil and refined oil is very small in
absolute terms because the one billion gallon shock represents only around one tenth of one
percent of global liquid fuel consumption. The result is a decrease in the estimated prices of
crude and refined oil by between one and three hundredths of one percent in the USA and non-
USA regions in ADAGE and GCAM results. Since crude and refined oil are globally traded, the
modeled price changes within and outside of the USA region are similar in direction and
magnitude. Outside of the USA region, all three model results show increased refined oil
consumption, largely driven by the downward price pressure on oil discussed above, though the
magnitude varies among models and model years.

Displacement and other net market impacts on refined oil consumption are often
presented in metrics normalized to the biofuel shock volume. This representation facilitates
comparisons of the effect across different studies and shock volumes. This indirect fuel use
effect is sometimes described in the literature as “oil rebound,” though the scope of what is
included within the definition of “rebound" varies.

In the case of this model comparison exercise, we find it illustrative to consider the ratio
of cumulative net impacts on refined oil and other biofuels to the cumulative impacts on
consumption of corn ethanol in the USA region. These metrics indicate whether one BTU of
corn ethanol displaces more or less than one BTU of refined oil or other biofuel consumption,
when averaged across all years represented in the scenarios, and including the indirect effects
discussed above.
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Figure 6.2-3: Difference in liquid fuel consumption relative to the volume of the corn
ethanol shock!%?
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Figure 6.2-3 illustrates these cumulative relative effects within the USA region and non-
USA regions for both biofuels and refined oil. The left pane depicts the effect of the corn ethanol
shock on total biofuel consumption within the USA region (blue) and non-USA region (orange).
As discussed in Section 4, in the corn ethanol shock scenario, U.S. consumption of corn ethanol
is increased by one billion gallons, while U.S. consumption of all other biofuels is held constant
at reference case levels. Thus the cumulative difference in biofuel consumption in the USA
region between the corn ethanol scenario and the reference case is equivalent to the cumulative
size of the corn ethanol shock, which is the denominator of all of these relative metrics.
Therefore, by definition, the blue bar in the left pane is 100 percent, and represents the full
cumulative corn ethanol shock. Note that the scenarios in this model comparison exercise did not
place any additional constraints on consumption of biofuels in non-USA regions, so the
cumulative difference in consumption of biofuels in non-USA regions, depicted in orange on the
left pane of Figure 6.2-3, represents net impacts of the shock on consumption across all
represented biofuels. As discussed above, in the GCAM results for the corn ethanol scenario,
some of the required corn ethanol shock volume is met through adjustments in net trade of corn
ethanol. In the ADAGE and GTAP results for this scenario, the shock is met almost entirely
through increased corn ethanol production in the USA region. The cumulative effect of this

182 Values in the figure represent the difference between the shock and reference case of the given fuel category
(refined oil vs. liquid biofuels) and given region (USA region vs non-USA regions) divided by the difference in
consumption of liquid biofuels in the USA region (i.¢., the shock volume). For ADAGE and GCAM, this is
calculated using cumulative volume differences between 2020 and 2050. For GTAP, which only estimates
differences in a single time step, the calculation uses only the volume differences in 2014.
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difference is seen in the orange bars; in GCAM, cumulative non-USA consumption of biofuels
decreases by eight percent of the cumulative USA corn ethanol shock volume, whereas ADAGE
and GTAP only show a one percent decrease in non-USA biofuel consumption. Thus, on net, the
shock scenario in GCAM increases global biofuel consumption by 92 percent of the total
specified cumulative shock, whereas the shock scenario in ADAGE and GTAP increases global
biofuel consumption by 99 percent of the total specified cumulative shock.

The righthand pane in Figure 6.2-3 illustrates the cumulative effects on refined oil
consumption within and outside the USA region. Under the corn ethanol shock scenario, that
additional volume is required to be consumed within the USA region, so the primary
displacement of refined oil used for transportation is within the USA region. If one BTU of
ethanol use displaced exactly one BTU of refined oil use in a given set of model results, and all
of the other indirect effects within the USA region discussed above were negligible, the blue bars
in this pane would show 100 percent. Thus, the size of the bar relative to 100 percent shows
whether the cumulative net impacts within the USA region are more or less than perfect energy
equivalent displacement.

As seen in the figure, there is greater than perfect displacement of refined oil in the USA
region in the GCAM results (107 percent). This displacement exceeds 100 percent primarily
because GCAM projects that the corn ethanol shock will increase the average price of fuel in the
USA region’s gasoline pool. This causes a small decrease in USA region demand for gasoline in
addition to the energy equivalent displacement. In contrast, the ADAGE and GTAP results show
less than perfect displacement of refined oil in the USA region (83 percent and 61 percent,
respectively). In ADAGE, this difference is largely due to smaller reductions in refined oil
consumption in 2040 and 2050.

The effect on cumulative net non-USA oil consumption — a commonly used definition of
“oil rebound” in the literature — shows how global oil consumption changes as a result of the
shock. GCAM and GTAP results show larger increases in non-USA refined oil consumption (23
percent and 22 percent of the cumulative shock, respectively) than ADAGE (15 percent). The
global net effect of the shock on refined oil consumption is that, on average, 100 BTUs of corn
ethanol required to be consumed in the USA displaces 68 BTUs of global refined oil
consumption in ADAGE, 83 BTUs of global refined oil consumption in GCAM, and 40 BTUs of
global refined oil consumption in GTAP. That the estimated net effect of a U.S. biofuel shock on
global oil consumption amounts to less than one-for-one displacement makes intuitive sense; oil
and refined oil products are globally traded commodities. Any reduction in consumption of
refined oil in the USA makes available some additional supply to the rest of the world, which
would be expected to reduce the price of crude and refined oil globally and result in adjustments
to consumption patterns in all regions. We note, however, that the range of reductions in refined
oil use varies widely across the three models with energy sector representation, directly resulting
in the wide range of energy sector emissions savings estimated by these models. These emissions
results are presented in Section 6.7 below. Future research could better define and understand the
parameters and assumptions that lead to this range in reduction of refined oil consumption.
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6.3 Crop Production and Consumption

As shown in Section 6.1, ADAGE, GCAM, GLOBIOM, and GTAP results estimate
about 40-85 percent of the corn ethanol shock would be sourced from new corn production.
Estimated new corn production comes primarily from the USA region in these ADAGE, GCAM,
GLOBIOM, and GTAP results, with some new corn also produced in the non-USA regions in
the GCAM and GLOBIOM results (Figure 6.3-1). All four models estimate some reduction in
production of other crops in the USA region, though the magnitude varies.'**> Soybean
production accounts for a large percentage of this decrease in all four models, but the
displacement of other crops is more variable across the results. GLOBIOM estimates the largest

decrease in non-corn USA crop production and GTAP the second largest, with GCAM and
ADAGE showing similar, more modest decreases.

Figure 6.3-1: Difference in commodity production (million metric tons) in the corn ethanol

shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM,
GLOBIOM)
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Results from three of the four models — GCAM, GLOBIOM, and GTAP — also estimate a
net increase in crop production in the non-USA region. These increases are multi-faceted, but
generally the crops with greater non-USA production are those for which U.S. net exports are
decreasing in the results for each respective model, i.e., some combination of corn, soybeans,
and/or wheat. One notable outlier to this general trend is the increase in sugar crop production in
GCAM. As shown in Section 6.2 and Figure 6.3-2, this additional sugar crop production is used
for fuel production in the non-USA regions of GCAM, which contributes to an increase in the

183 We also looked at forest product production for the models that are able to report it (ADAGE, GCAM,
GLOBIOM), and the change relative to the reference case is negligible.
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consumption of sugar crop ethanol. Conversely, in the ADAGE results, we observe a small net
decrease in crop production in the non-USA regions.

Globally, crop production increases in all four sets of model results. Most of the net
increase globally is from new corn production to produce additional corn ethanol. One exception
is the aforementioned increase in sugar crop production in GCAM,; this is also occuring
indirectly to allow for greater consumption of corn ethanol in the USA region. We observe
substantial variation across the models regarding the magnitude of increased crop production,
and the share occurring within the USA region versus the non-USA regions. This is an area of
uncertainty across the models.

As explained in Section 6.1, in the ADAGE, GCAM, GLOBIOM, and GTAP results,
some of the corn ethanol shock is met by diversion of corn to fuel production from other end
uses. All four of these models show a reduction in the amount of corn used for feed, but there is
variation across the model results in how much the corn feed consumption is reduced (Figure
6.3-2). Part of the feed market impact may be attributable to the increase in corn prices which
follows from increased demand for corn in the shock case (changes in prices in the corn ethanol
shock case are discussed further below in Section 6.5). But it is also in part attributable to greater
production of corn DDG in the shock case.

DDG is a coproduct of corn ethanol production used almost exclusively for animal feed.
In these model results, the additional DDG produced from the additional corn ethanol production
is used for feed to replace the corn (that is, the DDG “backfills” for the corn diverted from feed
use to fuel use). Historically, USA-produced corn DDG is both consumed domestically and
exported. The degree to which future additional DDG production might be consumed
domestically versus exported is therefore a key uncertainty in forward-looking scenario analysis
for corn ethanol consumption. In the GLOBIOM results shown in Figure 6.3-2 below, the DDG
is consumed entirely within the USA region in 2030, displacing mostly corn in the feed market.
In ADAGE, GCAM, and GTAP, some of the additional DDG is consumed domestically and
some is exported for consumption in the non-USA regions (see also Figure 6.4-1). ADAGE
shows the largest share of exported DDG. Within the USA region, mostly corn is displaced in the
feed market. In non-USA regions, larger proportions of other crops are displaced, commensurate
with the dominant feed products in the affected regions. The results across all four models agree
however that, on a global basis, corn is the primary feed commodity displaced by additional
DDG. There is also good agreement across these four sets of results about the magnitude of
increased DDG production and consumption in response to the corn ethanol shock.

We observe from these results that there is more consistency among the models we
considered about the global magnitude of DDG consumption in response to a corn ethanol shock
than there is about where in the world that additional DDG consumption will occur. From this
we can conclude that exogenous assumptions about the location of DDG consumption carry
uncertainty. A possible area for further sensitivity analysis is to explore the potential impacts on
estimated GHG emissions should additional DDG be consumed primarily in the USA versus
primarily outside the USA.
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The ADAGE, GLOBIOM, and GTAP results estimate more additional corn for fuel
production than do the GCAM results. This is because, as discussed above, GCAM is meeting
some of the shock by reducing corn ethanol consumption in non-USA regions and reducing the
U.S. net exports of corn ethanol. To make up for the loss of corn ethanol in the GCAM results,
non-USA regions produce and consume some additional sugar crop-based ethanol. The question
of whether non-USA biofuel production and consumption would be measurably affected by
additional demand for corn ethanol in the USA therefore remains an uncertainty. However, it is
clear that such potential impacts on the energy sector may meaningfully affect the results; these
impacts cannot confidently be assumed to be zero.

The scenario results from ADAGE, GCAM, GLOBIOM, and GTAP consistently show
only minimal changes in the consumption of commodities for food, crushing, and other uses.
These results also consistently show only minimal changes in the consumption of commodities
and coproducts other than corn, DDG, and sugar crops.

Figure 6.3-2: Difference in consumption by end use (million metric tons) in the corn
ethanol shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM,
GLOBIOM) 84
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6.4 Trade of Agricultural Commodities

As discussed in Section 3.1.6, the structural representations of trade vary across the four
economic models considered in this exercise (ADAGE, GCAM, GLOBIOM, GTAP). Because
trade is more elastic by default in some model trade structures than others, one would expect the

184 Results are shown in million metric tons of each feedstock.
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impact of the corn ethanol shock on U.S. corn and other agricultural commodity exports to vary
by model. One would also expect the shares of domestic versus international consumption of the
DDG coproduct to vary by model, as imported DDG from the U.S. would be valued differently
based on how simulated economic actors are calibrated to value imported versus domestically
produced feed products.

Consistent with this expectation, we do observe ADAGE, GCAM, GLOBIOM, and
GTAP differ in their agricultural commodity trade responses to the corn ethanol shock. This is
illustrated by differences between the shock scenario and reference case in U.S. net exports of
crops and secondary agricultural commodities (see Figure 6.4-1). Results from all four models
show relatively minor changes in gross imports relative to gross exports, so the data displayed in
Figure 6.4-1 are roughly equivalent to differences in gross exports from the USA region. In
general, these reductions appear largely commensurate with the declines in crop production from
the USA region discussed in Section 6.3 above.

Figure 6.4-1: Difference in U.S. net exports of crops and secondary agricultural products
(million metric tons) in the corn ethanol shock relative to the reference case in 2030 and
2050 (ADAGE, GCAM, GLOBIOM) and 2014 (GTAP)

Model / Year Commodity
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As discussed in Section 6.1, most of the corn ethanol shock in the ADAGE results is met
through additional corn production in the USA region, rather than imported corn. This results in
additional DDG production, roughly 41 percent of which is exported to the non-USA region.
There is very little change in trade of corn in the ADAGE results. In the GCAM results, the USA

Million Tons
1
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region reduces gross exports of corn to supply a portion of the additional demanded ethanol
feedstock. Of the additional DDG production in the USA region, roughly 18 percent is exported.
In these GCAM results, there are also decreases in U.S. net exports of other crops, most notably
soy and wheat. This is due to competition for land leading to some crop switching from other
crops to corn production in the USA region, resulting in less of these crops being available for
export. The GTAP results show a similar pattern as the GCAM results, i.e., net exports of DDG
increase while net exports of other commodities decrease relative to the reference case. Relative
to the GCAM results, the GTAP results include a smaller increase in DDG net exports, a smaller
decrease in corn net exports, but a larger decrease in net exports of other commodities such as
soybeans. As discussed in Section 6.1, in these GLOBIOM results most of the additional corn
used for ethanol feedstock in the corn ethanol shock scenario is produced in the USA region by
switching cropland from other crops to corn production. This results in greater reductions in the
production of other crops compared to what we observe in the ADAGE and GCAM results, most
notably in production of soy, wheat, and other crops. This results in larger decreases in exports
of those crops from the USA region in the GLOBIOM results. In these results, GLOBIOM
chooses to consume most of the additional DDG production domestically in 2030 and 2050,
which creates greater flexibility to divert corn used to meet the ethanol shock from the feed
market. In 2050, however, GLOBIOM estimates additional crop switching from soy to corn,
increasing the amount of corn which is used for animal feed and freeing up some DDG for
export in that model period.

6.5 Crop Yield

As discussed in Section 5.3 above, the four economic models included in this comparison
exercise all have the ability to increase crop yields in response to changes in crop price. The
theoretical basis for yields responding to price is similar across models; to the extent producers
see long-term revenue per ton of crop increasing, they may choose to invest in more expensive
but higher yielding agricultural technologies (i.e., invest more revenue in capital and material
inputs to production) and/or increase their personnel (i.e., invest more revenue in labor inputs to
production).

As discussed in Section 5.3 above, the endogenous mechanisms within each model which
simulate these decisions vary in structure. GCAM and GLOBIOM each represent four distinct
crop management options for each crop, though the characteristics of the four options in each
model are not fully aligned with one another. In ADAGE and GTAP, inputs of labor, capital, and
materials may be increased to generate higher yields through nested CES production functions.
The main similarity across these four models when it comes to changes in crop yield is that an
increase in crop price is the mechanism by which higher crop yields are induced. However, these
differences in endogenous yield response mechanisms indicate that each model would be
expected to simulate somewhat different patterns and magnitudes of crop yield response to a
given change in price.

Reference case yield trends are also an important factor in understanding differences
across models. As shown in Figure 5.3-1, reference case corn crop yield trends across the four

economic models are fairly similar in the historical periods of 2010 and 2015, though not
identical. However, for the three dynamic models, ADAGE, GCAM, and GLOBIOM, the trends
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in reference case corn yields diverge over time. Yields are calibrated to improve over time in all
three models however, reflecting a shared assumption that agricultural technologies will continue
to improve into the future. In reviewing the change in corn yields in our shock scenario relative
to the reference case shown by these dynamic models, the reader should keep in mind that yields
are improving over time in both the USA and non-USA regions in both scenarios, as they do in
the reference case.

As shown in Figure 6.1-2, crop intensification contributes to the sourcing of corn for the
ethanol shock to varying degrees across the models. In the biofuel volume shock scenarios
modeled for this exercise, we observe that the contributions from intensification are a minority of
the feedstock sourcing solution, accounting 15 percent or less of the additional feedstock
required. Intensification is a part of each model solution to at least some degree however, and we
can make some useful observations about how this effect is similar and different across the
models considered.

Before discussing the modeled crop yield results from this exercise, it is important first to
understand what is meant in this case by the term intensification. Increasing crop yield per
harvested unit of land is only one method of intensifying crop production. In regions of the world
where climatic conditions allow for it, multi-cropping (i.e., planting more than one crop per year)
is another option. GLOBIOM and GTAP consider this option explicitly to some extent by
distinguishing between the physical area on which crops are planted and the number of harvests
achieved annually on that area. In ADAGE and GCAM, no such distinction is made, and multi-
cropping is represented implicitly, embedded in the average yield for a given crop in a given
growing region. GTAP does not report total areas of multi-cropping in a given scenario, but it
does calculate and report changes between scenarios in harvested cropland area, unused cropland
and multi-cropping area. Thus, increasing the ratio of harvested to planted cropland area is a
distinct intensification strategy for GTAP.

Another intensification option is to shift production from less productive land or growing
regions to more productive land or regions. More productive land is assumed in these models to
garner a higher rental rate (i.e., the land is more expensive to purchase or use) because of the
higher revenues it can generate. As crop prices rise however, crop producers can potentially
afford more of this more expensive land. This intensification option is represented in all four
models to varying degrees, as the spatial detail of growing regions and land cover varies across
models.

When models report average yield for a given crop across a broad geopolitical region,
that output value mixes together some, but not necessarily all, of these effects. Depending on
how the reported yield value is calculated, different information about intensification may be
embedded. For the purposes of this section, yield output is calculated as regional production of a
crop divided by reported regional cropland use for that crop (these outputs are discussed in
greater detail in Section 6.6 below). Therefore, the reader should keep in mind that what is
discussed in this section as modeled crop yield output represents intensification more broadly
and 1s not only an improvement in the yield of a crop on specific acres of land through greater
investment in crop production inputs on that land.
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As shown in Figure 6.5-1 below, average USA region corn yields increase in all four
models in response to the corn ethanol shock. One can compare these results with the reference
case yields presented in Figure 5.3-1 and observe that these improvements are minor, less than a
1 percent improvement in USA region average yield in all cases. While improvements may be
larger in particular growing regions, the average yield across the USA region is instructive in
understanding why intensification plays only a minor role in the sourcing of corn for the ethanol
shock. As a collective, these four models estimate the corn ethanol shock modeled for this
comparison would induce relatively minor improvements in corn yield. This small observed
change in USA region corn yields is reasonable in light of the crop price changes. Figure 6.5-2
below shows that the change in corn price is also small, less than 0.5 percent in 2030. As
discussed above, crop price is the primary driver of increased crop yields and intensification in
general, and a small price change would be expected to induce a small yield response as well.

Looking at the non-USA results, there is even less effect on corn yield. This is not an
unexpected result. Figure 6.3-1 above shows the increase in corn production in response to the
shock 1s concentrated in the USA region. Figure 6.5-2 shows there is virtually zero change in
corn prices in the non-USA regions in response to the shock as well. This lack of perturbation of
the non-USA corn systems would not be expected to induce much change in corn yields.

Figure 6.5-1: Difference in corn yield in the corn ethanol shock relative to the reference
case in 2014 (GTAP) and 2030 (ADAGE, GCAM, GLOBIOM, GTAP)
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Figure 6.5-2: Percent difference in commodity prices in the corn ethanol shock relative to
the reference case!8s
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In the dynamic models, it is also instructive to consider the trend in yield change over
time, relative to the reference case. As shown in Figure 6.5-3 below, the pattern of this change
over time varies across the three dynamic models. Looking first at the results for the USA region,
in two of the three dynamic models, ADAGE and GCAM, the corn crop yield response to the
corn ethanol shock is strongest in 2030, the time step in which the shock reaches its peak. The
yield response diminishes thereafter over time, likely reflecting the fact that reference case yields
continue to improve in both of these models beyond 2030. The GLOBIOM results show a
different pattern. However, because all of these changes are fairly small compared to the
reference case corn yield, it is difficult to read much into the trends over time. Outside of the
USA region, none of the four models show a substantial change in corn yield. These responses
are consistent with the changes in corn area in each of the three models, described in Figure 6.6-
2 further below.

185 Average commodity prices for non-USA regions in GTAP results were not available for this exercise.
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Figure 6.5-3: Difference in corn yield in the corn ethanol shock relative to the reference
case in 2014 (GTAP) and over time from 2020 to 2050 (ADAGE, GCAM, GLOBIOM)
Model
USA Non-USA . ADAGE
GCAM
0.035 M GLoBIOM
- GTAP

t/ha

While the corn crop yield change results may appear to be somewhat different across
models based on Figure 6.5-3, when compared to reference case corn yields in each model they
are all relatively small. In ADAGE, GCAM, and GLOBIOM the percent differences in corn
yields in 2030 in the corn shock relative to the reference case are all less than one percent for the
USA and non-USA regions. We can observe from these results that the four economic models
generally agree that, in the specific scenarios modeled for this exercise, yields are not projected
to improve substantially in response to the corn ethanol shock. However, it is also notable that
even these small changes in corn yield are responsible for a small but notable percentage of the
additional corn produced to meet the shock.

From this exercise however, we cannot draw any firm conclusions from this yield
comparison regarding whether one method is superior to the others. All four of the models seem
to behave reasonably in these yield results. Sensitivity analysis may reveal the degree to which
GHG emissions results change when the underlying assumptions about crop yield responsiveness
to price are changed. This may indicate areas for further research.

6.6 Land Use

As described in Sections 6.1 and 6.3, in the ADAGE, GCAM, GLOBIOM, and GTAP
results, some of the corn ethanol shock is met by increased corn production, which comes from a
mix of cropland shifting from other crops to corn, land use change from other land types to
cropland, and changes in corn yield. As shown in Figure 6.6-1, corn cropland in the USA region
increases by 0.3 Mha in GTAP (2014) and 0.4-0.5 Mha in ADAGE, GCAM, and GLOBIOM
(2030). All of these model results show some amount of shifting of other crops to corn, but the
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amount of crop shifting varies. Model results also show differences in the impact on non-USA
regions.

In the GTAP and GLOBIOM results, most of the new corn cropland in the USA region
comes from shifting of other crops. In these model results, the area of soybean and wheat
increases in non-USA regions to make up for the loss of production of these crops in the USA
region. In both the GTAP and GLOBIOM results, the total cropland increases more in non-USA
regions than in the USA region, even though the corn for the corn ethanol shock is coming from
the USA region. In the ADAGE results there is some cropland shifting in the USA region, but a
larger net increase in cropland area in the USA region than seen in the GTAP or GLOBIOM
results. ADAGE has small amounts of cropland shifting in non-USA regions, with minimal
changes in total non-USA cropland. In the GCAM results, a much smaller fraction of the new
corn cropland is coming from crop shifting, and the net increase in cropland in the USA region is
higher than in the other models. The GCAM results also show an increase in corn cropland in

non-USA regions, reflecting the increased corn production in non-USA regions to meet the
shock.

Figure 6.6-1: Difference in cropland area by crop type (million hectares) in the corn
ethanol shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM,
GLOBIOM)!86
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136 Horizontal lines show the net change in cropland. Cropland area shown represents land cultivated for row crops
in ADAGE and GCAM and harvested area in GLOBIOM and GTAP. When a single unit of land is harvested

multiple times in a single year, the area is counted multiple times as “harvested area” but only a single time as
“cultivated area.”
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Each model considered here categorizes land in somewhat different ways (summarized in
Section 5.2), and each uses different methods for determining which land types, and how much
of each, are converted in response to economic stimuli in scenario runs (summarized in Section
2). In addition, the historical data sources on which the models rely to estimate reference case
land cover and land use differ in some ways, with data primarily coming either from FAO or
from the GTAP database.

The four economic models all choose to expand cropland to some degree to meet
growing crop demands in the corn ethanol shock, which subsequently causes changes in the area
of other land types in each model (Figure 6.6-2). In the ADAGE results for the corn ethanol
shock, most of the new cropland converted in the USA region comes from managed pasture. Due
to the land rent and net primary production (NPP)'87 assumptions in ADAGE, that is the most
profitable conversion option. Very little land is converted outside the USA region in these
ADAGE results.

The GCAM results for the corn ethanol shock show decreasing cover for a mix of land
types in both USA and non-USA regions, with the largest shift in land use estimated to come
from unmanaged pasture. The change in USA land use is approximately three times greater than
the non-USA change in use. In the GLOBIOM results, very little new cropland is created in the
USA region; what change does occur comes largely from managed pasture. In the non-USA
region, the area of other arable land and grassland decreases relative to the reference case. As
explained in Section 2, in these model runs GLOBIOM does not allow forest conversion in the
USA and EU regions and restricts natural land conversion. The restriction on natural land
conversion may be a significant explanatory factor behind the observation in these GLOBIOM
results that the new corn cropland is mostly coming from crop shifting, rather than from a net
increase in cropland.

In the GTAP results, most of the new cropland comes from other arable land, which
includes the land types categorized in the GTAP results as “cropland pasture” and “unused
cropland.” In the GTAP results, in the USA region, about 75 percent of the increase in harvested
area is explained by a reduction in cropland pasture area (land that fluctuates between cropland
and pasture and was unharvested in the reference case), 16 percent by a reduction in unused
cropland, 7 percent by a decrease in pasture, and 4 percent by an increase in multi-cropping. In
the GTAP results, in the non-USA regions, cropland pasture is once again the main source for
new harvested area (54 percent), followed by pasture (21 percent), unused cropland (12 percent),
forest (7 percent) and increased multi-cropping (6 percent). The GTAP results show no change in
unmanaged forest, grassland or pasture as these are not land categories in the GTAP model.

Each of the models has different assumptions about the carbon stock of different land
types in different regions. As shown in more detail in Section 6.7, the type and amount of land
converted and the carbon stock of the land types will factor in to the emissions from land use
change.

187 Net primary production is a measure of the rate of increase in plant biomass.

79

NMED Exhibit 39-C_000081



Figure 6.6-2: Difference in land use (million hectares) in the corn ethanol shock relative to
the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, GLOBIOM) 88
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Following the trends observed in the crop production results, the models show variation
in both the magnitude and location of land use change. As might be expected given their
differences in land competition structure and land categorization, these four models also present
diverse estimates regarding what types of land might be converted to cropland in response to
greater demand for corn ethanol. The models show some consistency in that they all convert a
significant share of the new cropland from pasture lands. Beyond this, some models convert
some generally smaller amount of forest land while others convert some amount of natural
grassland. Some of this uncertainty appears to be spatial in nature, that is, the models have
different estimates regarding where in the world cropland will expand. However, a significant
portion also appears attributable to differences in land conversion flexibility across the models.
Both factors are areas ripe for sensitivity and uncertainty analysis. As discussed in detail in
Sections 8 and 9, we have conducted some analyses of this sort for this exercise, but this remains
an area of potential for future research.

6.7 Emissions

The modeled results of energy consumption, crop production, and land use change
described above come together in the modeled greenhouse gas emissions. As shown in Figure
6.7-1, the modeled GHG emissions over time vary by model.

138 In Figure 6.6-2 and 7.6-2, “Cropland” area in GTAP represents land cultivated for row crops (calculated as the
change in harvested area minus the change in multicropping), while cropland pasture, and other unused cropland
have been reassigned to “Other Arable Land.” This differs from Figure 5.2-1, in which cropland pasture and other
unused cropland are reported under the “Cropland” category.

80

NMED Exhibit 39-C_000082



Figure 6.7-1: Difference in global greenhouse gas emissions in the corn ethanol shock
relative to the reference case'®
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139 GTAP is not included in this figure because it does not represent emissions over time, and due to time
constraints, we do not have GTAP GHG emissions by gas for the source categories used in this figure. For
comparison, for GTAP, in the corn ethanol scenario relative to the reference case (2014), LUC emissions = 0.46 Mt
COze, fossil fuel combustion and industrial CO; emissions = -1.15 Mt, and other GHGs emissions from all covered
sources = 0.085 Mt COxe, of which N,O = 0.41 Mt CO,e, CH4 = -0.28 Mt CO,e, fluorinated gases = 0.001 Mt
COse, and other CO, = -0.045 Mt COse; net total GHG emissions =-0.61 Mt CO,e. GREET is not included in this
figure because it does not represent scenario-based emissions over time. See Table 6.7-1 for carbon intensity values.
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Emissions from land use change show different patterns in the GCAM, ADAGE, and
GLOBIOM results due to the type of land use change occurring relative to the reference case and
to the carbon stock assumptions in each model. In the ADAGE results, most of the land use
change emissions that occur are attributable to the conversion of pasture to cropland. ADAGE
assumes that the soil carbon stock of cropland in the USA region is higher on a per-hectare basis
than the soil carbon stock of pasture.!*® Therefore, the conversion of pasture to cropland causes
net carbon sequestration, and the emissions over time are less than in the reference case, but
close to zero. In GCAM, most of the cropland change is estimated to convert from land types
with relatively low carbon stocks, such as pasture and grassland. However, some of the land use
change is attributable to reduced future afforestation relative to what GCAM estimates would
occur in the future in the reference case. Even though the amount of change in future forest land
is small compared to the amount of change in other land types, the relatively higher carbon
stocks of forest compared to other land types lead to higher overall land use change emissions in
these GCAM results, relative to the other models. GLOBIOM shows conversion of cropland
from grassland and the other arable land aggregate category, which results in estimated LUC
emissions in between those of ADAGE and GCAM. The GCAM and GLOBIOM results show
land use change emissions peaking in 2030. This is because land conversion to cropland happens
primarily from 2020-2030 as more land is needed to increase corn production to meet the corn
ethanol shock.

“Energy from Fossil Fuels” (or “fossil fuel emissions”) includes emissions associated
with producing biofuels (e.g., from consuming natural gas or electricity for process energy),
direct emissions associated with on-farm energy use to produce feedstock, and transporting both
biofuel feedstocks and finished fuels, as well as emissions from indirect impacts on the energy
sector, including displaced gasoline use for transportation that is replaced by corn ethanol. Of the
three models shown in Figure 6.7-1, these emissions are reported by ADAGE and GCAM. In the
corn ethanol results from these models, emissions from fossil fuels are lower than in the
reference case. Fossil fuel emissions reductions in the GCAM results become larger until 2030,
and then stay relatively constant through 2050. In the ADAGE results, emissions reductions
become larger until 2030 but then become smaller from 2030 to 2050 (while staying below the
reference case emissions). As shown in Section 6.2, fossil fuel consumption decreases in the corn
ethanol shock scenario relative to the reference case. GCAM results show the most reduction in
fossil fuel consumption, leading to a greater emissions reduction in the GCAM results than in the
ADAGE results. The drivers of these varying results in fossil fuel consumption are discussed in
Section 6.2 above.

Crop production emissions are higher than the reference case in the ADAGE, GCAM,
and GLOBIOM results. Changes in crop production emissions relative to the reference case are
due to changes in the types and quantities of crops grown in the models, and primarily come
from changes in N2O emissions, driven by both increased fertilizer use and direct nitrogen
fixation by soybeans. As shown in Section 6.3, ADAGE, GCAM, and GLOBIOM results all
show increases in corn production, with smaller changes in the production of other crops.
GLOBIOM results also show shifts in the location of soybean production. The increase in crop
production emissions is small in all of these model results. In the GLOBIOM results, the crop

190 These assumptions are based on an area-weighted average of carbon stocks from an earlier version of GCAM
(GCAM 3.2).
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production emissions increase over time. In the ADAGE and GCAM results, the crop production
emissions peak in 2030, and then decrease slightly until 2050. The change in emissions relative
to the reference case from the livestock sector and from industrial and waste management sectors
is very small.

The total change in GHG emissions across all sources over time varies across the models
(Figure 6.7-1). The ADAGE results show a net decrease in emissions from 2020-2040, primarily
driven by the decrease in CO2 emissions in the energy from fossil fuels category. From 2040-
2050, emissions are higher than in the reference case because the increase in N2O emissions from
crop production becomes larger than the decrease in CO2 emissions from fossil fuels. In the
GCAM results, net GHG emissions are greater than the reference case from 2020-2030 and less
than the reference case from 2035-2050, because the CO2 emissions from land use change
decline rapidly after 2030. In the GLOBIOM results, net emissions are greater than the reference
case from 2020-2050, because the largest contributors to emissions (CO:z from land use change
and N20 from crop production) are greater than the reference case over this time period.

There are a few commonalities across the ADAGE, GCAM, and GLOBIOM results of
emissions over time. All of these model results show small but positive emissions from crop
production relative to the reference case. The model results also all show very small emissions
from livestock production, waste management, and industry. There are also some key differences
in the emissions. Although GCAM and ADAGE both consider indirect impacts on the energy
sector, the emissions over time from the energy sector are very different. Future research could
explore the factors that determine the extent of refined oil displacement in each model through
sensitivity analysis. Additionally, there are large differences across the model results in the
amount of land use change emissions, due to differences in both the types of land converted and
the carbon stock assumptions. A sensitivity analysis of the carbon stock assumptions in GCAM
is shown in Section 9.2 below, and a sensitivity analysis of the land conversion elasticities in
ADAGE is shown in Section 9.3. Future research could focus on the impact of carbon stock
assumptions in other models, or on other model parameters that determine the types of land
converted.

As a next step in considering the lifecycle greenhouse gas emissions associated with the
corn ethanol shock in these model results, we calculated a carbon intensity (CI) for each category
of emissions. A CI is an estimate of the emissions per unit of fuel, which we express here in
kgCO2eq/MMBTU. The CI calculated from a model run depends on the particular scenario and
model assumptions used. To calculate a CI for the ADAGE, GCAM, and GLOBIOM results, we
summed the emissions relative to the reference case from 2020 to 2050 to get the difference in
total cumulative emissions relative to the reference case. Then, we summed the difference in
corn ethanol consumption in the USA region (i.e., the corn ethanol shock) over 2020 to 2050 to
get the total cumulative biofuel consumption difference relative to the reference case. Finally, we
divided the cumulative emissions difference by the cumulative biofuel consumption difference to
estimate a CI. The calculated CI depends on the time horizon included in the calculation, because
the annual emissions vary over time. For example, emissions in the corn ethanol scenario relative
to the reference case may be higher from 2020-2030 than in later time steps, as is the case in
these GCAM and GLOBIOM results (Figure 6.7-1), or lower in 2020-2030 than in later time
steps, as is the case in these ADAGE results. Calculating a CI using only the results from 2020-
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2030 would result in a higher CI than considering emissions from 2020-2050 for GCAM and
GLOBIOM in this case. The opposite would be true for ADAGE in this case. For GTAP results,
we divided the emissions difference by the biofuel consumption difference in the USA region in
the single 2014 time step. GTAP emissions are given for a single year, but these results are
amortized over a 30 year time period. Results from GREET are already given as carbon
intensities, i.e., this is the metric GREET is designed to estimate.

When interpreting the ADAGE, GCAM, GLOBIOM, and GTAP CI results, a CI of zero
means that global GHG emissions are equal in the shock case and the reference case, a positive
CI means a greater quantity of GHGs are emitted globally relative to the reference case, and a
negative CI means a smaller quantity of GHGs are emitted globally relative to the reference case.
Importantly, a negative CI from one of these four models does not necessarily represent GHG
sequestration, but rather is best interpreted as a lower rate of emissions. Conversely, because
GREET is an attributional rather than consequential approach, a CI of zero means that the supply
chain for the fuel is estimated to not produce any emissions, a positive CI means that the supply
chain is estimated to release net GHG emissions, and a negative CI means that the supply chain
is estimated to achieve net GHG sequestration.'*!

Table 6.7-1 shows the CI of corn ethanol calculated using the emissions reported by each
model. Models are divided between those frameworks with energy markets (in the left side
columns) and models without energy markets (in the right side columns). This division is made
to reflect important differences in the sectors represented and the difficulty of direct
comparability between models on the left with models on the right. ADAGE, GCAM, and GTAP
include global emissions from every economic sector, including indirect, market-mediated
impacts. GREET includes detailed emissions estimates from fuel production, transport, and use,
but, as it is not a consequential model, it does not estimate the net change in GHG emissions
resulting from a change in biofuel consumption. Rather it estimates the emissions directly
attributable to the biofuel supply chain. GLOBIOM does not include any energy sector
emissions, but does include market impacts on crop production and the livestock sector.

Because of the differences outlined above, it would be inappropriate to compare all of the
emissions estimates across all of the models, but we can make several meaningful comparisons.
Results from the three models with energy markets (ADAGE, GCAM, GTAP) can be directly
compared, with the caveat that GTAP is representing 2014 while the other models are
representing a 2020-2050 scenario. Furthermore, we can compare the land use change emissions
estimates for all of the models, as GREET uses a consequential approach for this category of
emissions, again with proper caveats about temporal differences. We can also compare crop
production and livestock sector emissions estimates from ADAGE, GCAM and GLOBIOM. *?
In the table below, we report emissions from “Agriculture, forestry and land use” for all five

191 This sentence about interpreting GREET CI estimates applies for biofuel pathways, such as corn ethanol and

soybean oil biodiesel, produced from “primary” feedstocks, but not for all pathways made with waste, byproduct or
residue feedstocks. For the waste, residue, and byproduct pathways, GREET sometimes considers emissions relative
to a baseline/counterfactual scenario, in which case a negative CI cannot always be interpreted as a net GHG
sequestration.

192 GTAP can also report emissions disaggregated into these source categories, but due to time constraints we did
not obtain such results from GTAP for this exercise.
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models as the sum of emissions from these stages; however, the GREET estimate for this
aggregate category is not directly comparable with the other models for reasons discussed below.

Energy sector emissions have a large impact on the CI in the ADAGE, GCAM, and
GTAP results. The energy sector CI is much lower (more negative) for the GCAM results than
for ADAGE and GTAP results, which is consistent with the greater cumulative global reduction
of refined oil use (shown in Figure 6.2-3) and lower emissions from fossil fuels over time
(shown in Figure 6.7-1). GREET reports the CI from fuel production and transportation but does
not consider indirect impacts on the energy sector, such as the energy rebound effects shown in
Section 6.2. The fuel production and transportation CI in the GREET results is based on the
amount of process energy needed for corn ethanol production as well as the amount of energy
needed to transport the feedstock and the fuel. This is why we use the label “Energy Sector” for
the first row in Table 6.7-1 for the three models with energy markets, but the label “Biofuel
Production” for this row for GREET.
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Table 6.7-1: Carbon intensity of corn ethanol (kgCO.eq/MMBTU) calculated using
emissions reported by each model'*

Models with Energy Markets Models without Energy Markets
ADAGE | GCAM | GTAP GLOBIOM | GREET
Energy
from Fossil -15 -65 -15 | Biofuel Production X 29
Fuels
Crop Production 9 X

Crop 14 16

Sector/stage- | production Feedstock X 16

specific 1 Production
emissions -
Livestock 0.1 0.3 Livestock Sector -1 X
Sector
Other 1 -1 Fuel Use X 0.4
Land Use -1 31 6 | Land Use Change 13 8
Change
gchzlsig}l]ture, Agriculture,
and land 14 47 7 forestry, and land 21 24
use
use
Totals Global
GHG -1 -19 -8 Global GHG Impact X X
Impact
Supply )
Chain GHG |  x x x | Supply Chain GHG x 53
.. Emissions

Emissions

The ADAGE and GCAM results show a similar CI from crop production. The crop
production CI from the GLOBIOM results is lower than these models, consistent with the lower
emissions over time in GLOBIOM relative to ADAGE and GCAM. GREET’s feedstock
production CI is based on the energy and chemical inputs required to produce the amount of corn
needed for | MMBTU of ethanol. Unlike the other models, this value does not represent the
change in crop production emissions associated with an increase in ethanol production; in other
words, it does not include indirect impacts on the production of other types of crops. Livestock
and other sectors (including waste management and other industrial sectors) have only minor
impacts on the overall CI in ADAGE, GCAM, and GLOBIOM.

For the GTAP results, as discussed in Section 3.1.4, we have estimates of non-CO:2
emissions by greenhouse gas, but we do not have these emissions disaggregated by sector or

193 <X means that the model does not report that category. For GTAP, emissions from crop production, the
livestock sector, and “other” are reported as an aggregated value of non-LUC, non-fossil fuel emissions. Negative
values for ADAGE, GCAM, GTAP, and GLOBIOM mean that emissions are lower than the reference case, whereas
positive values mean the emissions are higher than the reference case.
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lifecycle stage. GTAP can also report emissions disaggregated into these source categories, but
due to time constraints we did not obtain such results from GTAP for this exercise. The largest
changes, by gas, are an increase in N2O and a decrease in CHa. We believe the bulk of the
changes in these emissions are associated with changes in fertilizer N2O and livestock CHa4, but
more work would be needed to confirm our intuition. For these reasons, in Table 6.7-1, we report
the aggregated non-CO: emissions estimate from GTAP across three rows combining Crop
Production, Livestock Sector and Other. This aggregated emissions estimate from GTAP is
lower than what the other models report for the sum of emissions from these three categories.
We would need to do more research to disaggregate these emissions and understand why they
are lower than estimates from the other models.

Land use change emissions are reported in all the models, and the CI results have wide
ranges across the models. As explained above, these differences are due to the type of land use
change and the carbon stocks of each land type in the models. GREET’s LUC CI is based on
Argonne’s CCLUB translation of a preestablished GTAP run using a different shock size (11.59
billion gallons of corn ethanol) from a 2004 baseline. This earlier GTAP run estimated a global
cropland area increase of 2.1 million hectares, with 47 percent of that additional land
requirement coming from the USA region, and forest land making up about 11 percent of the
land needed to convert to cropland.'**

We can compare “Agriculture, forestry and land use change emissions” across four of the
models (ADAGE, GCAM, GLOBIOM, GTAP). For GTAP, we include the non-CO2 emissions
in this category. For this category, the GCAM results include the highest emissions, driven by
the land use change emissions. Although the ADAGE results include lower land use change
emissions than the GTAP results, the aggregated agriculture and forest sector emissions are
higher for the ADAGE results, due to the difference in crop production emissions.

The total global CI can be compared across ADAGE, GCAM, and GTAP, because all of
these models represent the same sectors and include market impacts. The results from these
models show a range in corn ethanol CI, primarily due to differences in the energy sector CI and
land use change CI. For GLOBIOM and GREET, a total global CI cannot be calculated from the
model results because these models do not include all the relevant sectors and/or do not include
all the relevant market impacts. For GREET, we calculate the total supply chain CI. This is a
different metric than the other models’ Cls, since GREET primarily uses an attributional
approach, coupled with consequential ILUC modeling from GTAP and CCLUB in lifecycle
analysis rather than a consequential approach. This value does not include any displacement of
fossil fuel consumption that would occur from the increased consumption of biofuels.!*?

194 Taheripour, Farzad, Wallace Tyner, and Michael Wang. 2011. “Global Land Use Changes Due to the U.S.
Cellulosic Biofuel Program Simulated with the GTAP Model.” Argonne National Laboratory and Purdue
University. https://greet.es.anl.gov/publication-luc_ethanol.

195 GREET’s ethanol CI estimates are often compared with GREET CI estimates for gasoline to derive a GHG
percent reduction relative to gasoline. In our 2010 RFS analysis, we similarly compared ethanol CI estimates from
models that do not include energy markets with a CI estimate for gasoline to calculate a percent reduction in
emissions.
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6.8 Summary of Corn Ethanol Estimates

Section 6 compares and contrasts the corn ethanol modeling estimates from ADAGE,
GCAM, GLOBIOM, GREET, and GTAP produced for this exercise. These models source the
corn ethanol required to meet the assumed shock in different ways in these results, but there are
some commonalities. Across frameworks, the two primary model strategies are to source corn
from new production and to divert corn from other uses. However, different models rely more on
one of these sourcing strategies or the other. Because of these differences in sourcing strategy,
the model results differ regarding the total additional corn production, crop trade, and land use
change impacts of the shock. The model results also have some other notable similarities and
differences. ADAGE, GCAM, GLOBIOM, and GTAP results all show a small amount of crop
yield intensification. The results also show a displacement of corn for feed use with DDG,
though there is disagreement regarding how much might be consumed in the USA region versus
exported and consumed elsewhere in the world. The models which explicitly include the energy
sector, ADAGE, GCAM, and GTAP, all show a decrease in refined oil consumption in the USA
region in their results, and an increase in non-USA regions. But there are notable differences
across these models in the total global displacement of refined oil. These factors all contribute to
differences in the estimated GHG emissions and CI of corn ethanol across the models, with
energy sector emissions and land use change emissions differing the most across the model
results.

The previous sections also highlight potential areas for future research. Sensitivity
analysis could better define the GHG emissions implications of model decisions regarding the
location of additional DDG consumption. Further research and sensitivity analysis could also
seek to better understand the parameters that influence land conversion to cropland. Furthermore,
research and sensitivity analysis could seek to better understand why model results show a range
in the reduction of refined oil consumption. These are only a few examples of the many research
topics that could help to explain what is driving differences in these model results.

7 Comparison of Soybean Oil Biodiesel Estimates

In this section, we present the results of the soybean oil biodiesel shock. The results in
this section show the difference between the soybean oil biodiesel shock and the reference case.
We consider the following elements in turn:

Sources of soybean oil biodiesel to meet the shock

Energy market impacts from the shock

Crop production and consumption

Trade impacts

Yield changes

Land use impacts

Emissions: the modeled results of energy consumption, crop production, and land use
change described above come together in the modeled greenhouse gas emissions.

The majority of these comparisons include ADAGE, GCAM, GLOBIOM, and GTAP.
Only the comparison of GHG emissions includes GREET. GREET is a supply chain LCA model
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that does not represent changes in agricultural and economic markets between reference and
modeled scenarios, as the other models in this comparison exercise are designed to estimate.

7.1 Sourcing Overview

As in the corn ethanol runs, the models included in this analysis have many options
available for meeting the soybean oil biodiesel consumption shock, including increased
production of soybean oil biodiesel and changes in biodiesel imports and exports. Increased
soybean oil biodiesel production could come from diversion of soybeans or soybean oil from
other uses, increased crushing of existing soybean supplies, or increased production of soybeans.
This section will give an overview of the extent to which the models rely on each of these
options for meeting the soybean oil biodiesel consumption shock.

In the soybean oil biodiesel shock, the models show a range of solutions for meeting the
shock (Figure 7.1-1). In the ADAGE soybean oil biodiesel results, around half of the shock is
met by increased biodiesel production in the USA region, and half is met by increased gross
imports to the USA region. In the GCAM results, 77-79 percent of the shock is met by increased
soybean oil biodiesel production in the USA region, and 21-23 percent is met by a combination
of increased imports and reduced exports of soybean oil biodiesel. In GLOBIOM and GTAP, the
shock is met entirely by increased soybean oil biodiesel production in the USA region.
GLOBIOM does not have an energy market and therefore cannot trade biofuels, making
domestic biodiesel production the only option in this model.

Figure 7.1-1: Sources of additional soybean oil biodiesel consumed in the soybean oil
biodiesel shock relative to the reference case!*®
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196 Red shows the contribution increased soybean oil biodiesel production in the USA region; orange shows the
contribution from increased soybean oil biodiesel gross imports to the USA region; blue shows the contribution
from reduced soybean oil biodiesel gross exports from the USA region.
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Although the ADAGE and GCAM results both meet a large percentage of the shock
through changes in soybean oil biodiesel imports, the impact on non-USA regions is very
different. In the GCAM results, 43-52 percent of the shock is met by reduced soybean oil
biodiesel consumption in non-USA regions (Figure 7.1-2). This latter share is larger than the
share of biofuel trade noted in Figure 7.1-1 above. The estimate in Figure 7.1-2 also includes
soybeans and soybean oil feedstock which are exported to the USA region rather than being
processed into biodiesel in their region of origin and consumed domestically. In contrast, the
ADAGE results do not show a reduction in soybean oil biodiesel consumption in other regions;
instead the increased imports are sourced from increased soybean oil biodiesel production in
non-USA regions. Energy market impacts are discussed further in Section 7.2.

ADAGE, GCAM, GLOBIOM, and GTAP meet the soybean oil biodiesel shock through
different amounts of soybean and soybean oil diversion from other uses, crop intensification,
crop shifting to soybean, and new cropland (Figure 7.1-2). Based on the assumed conversion
factor of soybean oil to soybean oil biodiesel (Section 4), if all of the shock were met by new
soybean oil biodiesel production, ADAGE, GCAM, and GLOBIOM would need 3.4 million
metric tons of additional soybean oil for biodiesel in 2030 and 3.3 million metric tons of
additional soybean oil for biodiesel in 2050 (bottom panel of Figure 7.1-2). GTAP would need
3.4 million metric tons of additional soybean oil for biodiesel in 2014. The GCAM results show
much less additional soybean oil is needed for the soybean oil biodiesel shock than in the
ADAGE, GLOBIOM, or GTAP results because soybean oil biodiesel consumption decreases in
the non-USA region in GCAM. Because soybean crushing yields about 19 percent extractable
soybean oil, if all of the additional soybean oil were coming from new soybean production,
ADAGE, GCAM, and GLOBIOM would require additional production of 17.8 million metric
tons of soybeans in 2030 and 17.6 million metric tons of soybeans in 2050. GTAP would require
an additional 18.1 million metric tons of soybeans in 2014.

In the ADAGE soybean oil biodiesel shock results, less than 5 percent of the shock is met
by commodity diversion, with the majority of the shock met by new soybean production. In the
GCAM results, because so much of the shock is met by reduction of soybean oil biodiesel
consumption in non-USA regions, much less additional soybean oil feedstock is needed than in
the other models. Of the additional soybean oil feedstock sourced in GCAM, around half comes
from commodity diversion, and half comes from new soybean production (primarily from new
cropland). In GLOBIOM and GTAP, the majority of the shock is met through commodity
diversion (85-88 percent and 83 percent, respectively). GTAP meets a small percentage of the
shock (2 percent) through a reduction of soybean oil biodiesel consumption in non-USA regions.
Commodity diversion and soybean production results are described more in Section 7.3, and land
use results are described in more detail in Section 7.6.
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Figure 7.1-2: Top panel: Percentage of the soybean oil biodiesel shock that is met by
different categories in 2030 and 2050. Bottom panel: Million metric tons of additional
soybean oil from new soybean production (red, orange, and yellow) and diversion from
other uses (green)!®’
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7.2 Energy Market Impacts

The energy market mechanisms at play in the corn ethanol shock generally hold for
soybean oil biodiesel as well, though the magnitude and some of the detailed effects differ. We
refer to Section 6.2 above for a discussion of those principles. As noted in that section, of the
models considered under this model comparison exercise, ADAGE, GCAM, and GTAP include
explicit representations of energy commodities and energy commodity trade, end use sectors, and
energy market interactions.

The impacts of the soybean oil biodiesel shock on consumption of refined 0il'*® in the
USA region in ADAGE, GCAM, and GTAP broadly mirror the impacts seen under the corn
ethanol shock scenario; all three models show substantial displacement of refined oil use in the
USA region, with displacement in GCAM being the highest, displacement in ADAGE starting
somewhat less than in GCAM and declining over time, and GTAP having the smallest average
displacement of refined oil consumption in the USA region. Displacement of consumption of

197 A negative percent contribution means that there was decrease in soy production or an increase in non-fuel uses
of soybean. ADAGE has a negative percent contribution from commodity diversion in 2050 because some
additional soybeans were consumed for “other uses” — in this case, seed for additional soybean production.
GLOBIOM has a negative percent contribution from new cropland because soy cropland area decreased in non-USA
regions.

198 In these models, refined oil is an aggregation of all refined petroleum products, including gasoline and diesel.
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refined oil in the USA region results in reduced net imports of crude and refined oil, amounting
to 93 percent and 101 percent of the reduced USA consumption of refined oil in 2030 in
ADAGE results and GCAM results respectively.!®”

Figure 7.2-1: Difference in consumption of energy commodities (quadrillion BTUs) in the
soybean oil biodiesel shock relative to the reference case in 2030 and 2050 (ADAGE,
GCAM) and 2014 (GTAP)
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Trade in energy commodities plays a significant role in meeting the soybean oil biodiesel
shock in results from several of the models considered (see Figures 7.1-1 and 7.2-1). In ADAGE
and GCAM results, a substantial portion of the shock is met through greater net USA imports of
soybean oil biodiesel (48 percent and 23 percent of the shock in 2030 in ADAGE and GCAM
results respectively). In the ADAGE results, the increased net imports of soybean oil biodiesel in
the USA region are constituted almost exclusively of an increase in gross exports from the Rest
of Latin America region to the USA region. In the GCAM results, the increased net imports of
soybean oil biodiesel in the USA region are constituted of changes in exports of biodiesel across
multiple regions. It is notable that patterns of impacts of the soybean oil biodiesel shock on
biofuel trade in ADAGE and GCAM reflect the theoretical representations of trade in the two
models. In ADAGE, where trade is represented bilaterally and calibrated using historical trade
data, impacts occur almost exclusively in a region with large historical exports of biodiesel to the
USA. In GCAM, where commodities are exported to and imported from a global pool for each
commodity, impacts are distributed across multiple regions with historical exports (regardless of
destination) of biodiesel.

199 Data on trade of crude oil in GTAP results were not available for this exercise.
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We also note that GCAM’s estimated reduction in consumption of soybean oil biodiesel
in the non-USA regions is greater in magnitude than the increased volume of biodiesel exported
to the USA region. This is because increased demand for soybeans and soybean oil puts upward

pressure on their prices and further reduces consumption for fuel, food, and other uses in the
non-USA regions.

Figure 7.2-2: Difference in U.S. net exports of energy commodities (quadrillion BTUs) in
the soybean oil biodiesel shock relative to the reference case in 2030 and 2050 (ADAGE,
GCAM) and 2014 (GTAP)
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Modeled changes in consumption of refined oil in non-USA regions are driven by two
main mechanisms in the results from ADAGE, GCAM, and GTAP. First, increased use of
soybean oil biodiesel in the USA region results in decreased consumption of refined oil in that
region (i.e., “the displacement effect”). This puts downward pressure on the global prices of
crude and refined oil, though the effect is small in absolute terms (between one and four
hundredths of a percent) due to the relatively small size of the one billion gallon shock compared
to global refined liquid fuel consumption. The result of this downward price pressure is some
increased demand for refined oil in non-USA regions. This effect is present in, and a contributing
factor to, the increased refined oil consumption seen in all three models in Figure 7.2-1. Second,
if a portion of the soybean oil biodiesel shock in the USA region is met through increased net
imports of soybean oil biodiesel, as is the case in ADAGE and GCAM, then the corresponding
non-USA regions with increased exports of biofuels have to make up that deficit in their liquid
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fuel markets by “backfilling” with either a) increased consumption of biofuels, likely coming
from increased production within those regions, or b) increased consumption of refined oil.

These two backfilling strategies are employed to different extents in ADAGE and GCAM
results. In the GCAM results, multiple regions increase exports of soybean oil biodiesel to meet
the increased demand in the USA region, but do not show commensurate increases in domestic
biodiesel production. This results in reduced consumption of biodiesel in those regions which is
backfilled with additional refined oil use. In contrast, in the ADAGE results, the increased
exports of soybean oil biodiesel from the Latin America region are met with increased
production, resulting in little impact on biofuel consumption in that region and obviating the
refined oil backfill effect shown in the GCAM results.

In summary, these dynamics explain the differences between the models in increasing
consumption of refined oil in non-USA regions. In GCAM results, deficits in liquid fuels
markets in non-USA regions are backfilled with refined oil, reducing the net global displacement
effect of the shock on refined oil consumption. In ADAGE results, deficits in liquid fuels
markets in non-USA regions are backfilled with increased biofuel production. In GTAP results,
there is little change in trade of biofuels, so there are no significant deficits in liquid fuel markets
in non-USA regions.

Finally, ADAGE and GCAM show increased natural gas consumption in the USA region,
albeit less than in the corn ethanol scenario, while GTAP shows little impact on natural gas
consumption in any region. The smaller impact on natural gas in the soybean oil biodiesel
scenario relative to the corn ethanol scenario is logical due to differences in the direct natural gas
demands of their respective fuel production technologies. The corn ethanol dry mill process
requires substantial natural gas for DDG drying, whereas the biodiesel transesterification
production process requires relatively little natural gas.

As discussed in Section 6.2, cumulative measures of the changes in refined oil and
biofuel consumption, relative to the size of the shock, are common and useful measures for
summarizing energy market impacts. These cumulative measures, illustrated in Figure 7.2-3
reflect the story presented above on the impacts of the soybean oil biodiesel shock on
consumption of other biofuels and refined oil globally.
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Figure 7.2-3: Difference in liquid fuel consumption relative to the volume of the soybean oil
biodiesel shock2"
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In the lefthand pane of this figure, we see that the cumulative change in biofuel
consumption in the non-USA region amounts to one percent of the cumulative soybean oil
biodiesel shock in ADAGE, and 50 percent of the cumulative soybean oil biodiesel shock in
GCAM (largely attributable to reductions in soybean oil biodiesel consumption across a number
of non-USA regions), and six percent of the 2014 soybean oil biodiesel shock in GTAP.

In the righthand pane, we see similar directional effects on refined oil consumption in the
USA region as in the corn ethanol shock scenario discussed in Section 6.2; GCAM shows a
greater reduction in USA consumption of refined oil than the cumulative energy content of the
shocked biodiesel (119 percent), whereas ADAGE and GTAP show smaller reductions in USA
consumption of refined oil than the energy content of the shock (91 and 86 percent,
respectively). GCAM shows a much larger cumulative increase in non-USA refined oil
consumption outside of the USA region, which is driven by backfill of reduced biodiesel
consumption in the non-USA region.

The effect on cumulative net non-USA refined oil consumption — a commonly used
definition of “oil rebound” in the literature — shows how global oil consumption changes as a

200 Values in the figure represent the difference between the shock and reference case of the given fuel category
(refined oil vs. liquid biofuels) and given region (USA region vs non-USA regions) divided by the difference in
consumption of liquid biofuels in the USA region (i.¢., the shock volume). For ADAGE and GCAM, this is
calculated using cumulative volume differences between 2020 and 2050. For GTAP, which only estimates
differences in a single time step, the calculation uses only the volume differences in 2014.
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result of the shock. GCAM results show the largest increase in non-USA refined oil consumption
(67 percent of the cumulative shock) due to backfilling for traded biodiesel, as discussed above.
GTAP and ADAGE show more modest increases in non-USA refined oil consumption (34 and
24 percent respectively). The global net effect of the shock on refined oil consumption is that, on
average, for every 100 BTUs of soybean oil biodiesel required to be consumed in the USA, 67
BTUs of global refined oil consumption are displaced in ADAGE, 52 BTUs of global refined oil
consumption are displaced in GCAM, and 51 BTUs of global refined oil consumption are
displaced in GTAP. Future research could be done to better understand the parameters and
assumptions that lead to the range in reduction of refined oil consumption.

7.3 Crop Production and Consumption

As shown in Section 7.1, the ADAGE, GCAM, GLOBIOM, and GTAP results differ
notably in how much of the soybean oil biodiesel shock they each estimate would be sourced
from new soybean production. This is reflected in the estimated changes in soybean production
shown in Figure 7.3-1. The ADAGE results show the largest increase in global soybean
production, followed by GCAM, then GLOBIOM, and then GTAP. ADAGE and GCAM results
estimate the increase in soybean production would be split between the USA and non-USA
regions. In the GTAP results, the increase in production is estimated to occur almost entirely in
the USA region. In GLOBIOM, soybean production is estimated to increase in the USA region
but decrease in aggregate across the non-USA regions. ADAGE, GCAM, and GLOBIOM results
all show a decrease in corn production in the USA region as some of the new soybean area
displaces corn area.

In the non-USA region, the model results show an increase in the production of oil crops.
The ADAGE results show an increase in “other oil crop” production.?’! In the GTAP, GCAM,
and GLOBIOM results, the increased oil crop production is primarily palm fruit. The GCAM
results show decreased corn production in non-USA regions, whereas the GLOBIOM results
show increased corn production in non-USA regions.

Globally, crop production increases in all four sets of model results.?”> However, there is
much greater variation in the types and location of crop production across the models than there
was in the corn ethanol results. All four sets of the model results show an increase in soybean
production in the USA region, and a decrease in the production of other crops. There is
substantial variation in the crop production in the non-USA regions, particularly for soybean
production and palm fruit production. A comparison of Figures 6.1-2 and 7.1-2 lays plain one
important first order reason for this greater variability. The models show much greater diversity
in sourcing strategies for soybean oil biodiesel than they do for corn ethanol. This variation in
sourcing for soybean oil biodiesel results in more complex economic and environmental
outcomes than corn ethanol. Across the four economic models in this exercise, virtually all of the
corn for ethanol is produced in the USA region. This is largely attributable to the monolithic role
of the U.S. in historical global corn production and trade and to the fact that corn has no near-

201 As explained in Section 5.1, ADAGE does not explicitly represent oil crops other than soybeans. Therefore, for
ADAGE, “other oil crops” includes palm fruit.

202 We also looked at forest product production for the models that are able to report it (ADAGE, GCAM,
GLOBIOM), and the change relative to the reference case is negligible.
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perfect substitutes. By contrast, soybean oil does have near perfect substitutes for many end uses,
in the form of other vegetable oils. Additionally, soybean oil production and exports, and
vegetable oil production and exports more broadly, are historically distributed across more
regions. Marginal global demands for vegetable oil may reasonably be supplied from North
America, South America, or Asia. Thus, for soybean oil biodiesel, the models have a wider range
of options for the location of additional vegetable oil production. Also, soybean oil biodiesel
production has more complex impacts on the consumption and production of other crops than
corn ethanol production because of the wider range of end uses for soybean oil and meal, as
described below. The location of additional soybean production and the impact on the production
of other crops is a potential area for future research and sensitivity analysis.

Figure 7.3-1: Difference in commodity production (million metric tons) in the soybean oil

biodiesel shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM,
GLOBIOM)
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ADAGE, GCAM, GLOBIOM, and GTAP have slightly different pathways for producing
soybean oil biodiesel. In GCAM, GLOBIOM, and GTAP, soybean oil biodiesel is produced
from soybean oil. In ADAGE, soybean oil is not explicitly represented, and instead soybean oil
is part of an aggregated vegetable oil commodity. Soybean oil biodiesel in ADAGE can be
produced from vegetable oil or directly from soybeans.?* Soybean oil biodiesel produced from
soybeans produces oil crop meal (a generic vegetable meal commodity) as a coproduct.

203 From a theoretical perspective, the latter strategy would represent a facility which co-locates crushing and
biodiesel production plants. Such a facility inputs whole soybeans and outputs biodiesel and soybean meal.
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The end use impacts of the soybean oil biodiesel shock are more complex than the
impacts in the corn ethanol shock because soybean oil biodiesel production can impact oilseed
markets, vegetable oil markets, and oil meal markets (Figure 7.3-2). The ADAGE, GCAM,
GLOBIOM, and GTAP results all show an increase in soybean crushing in the USA region. This
produces soybean oil and soybean meal in GCAM, GLOBIOM, and GTAP, and vegetable oil
and oil crop meal in ADAGE. In the GCAM, GLOBIOM, and GTAP results, additional soybean
oil is used for fuel production in the USA region. In the ADAGE results, some additional
vegetable oil is used for fuel production in the USA region, and additional soybean is also used
directly for fuel production. In the GCAM results, the additional soybean meal produced in the
USA region largely displaces corn for domestic feed use. We observe a similar trend in the
ADAGE results, where oil crop meal displaces corn for feed use in the USA region. In GTAP,
the additional soybean meal produced in the USA region displaces other oil crop meal for
domestic feed use. By contrast, all of the additional soybean meal produced in the USA region in
the GLOBIOM results is exported; this increase in USA soybean meal exports in turn depresses
non-USA production of feed crops, including soybeans. However, USA exports of DDG
decrease and more DDG is consumed in the USA region, displacing corn for feed use. In the
USA region, ADAGE, GCAM, and GLOBIOM results show only minimal impacts on food end
uses. In contrast, the GTAP results show a reduction in soybean oil for food use and no increases
in other types of crops for food use, implying a net reduction in food consumption. GTAP results
also show a reduction in soybean oil for “other uses,” which includes soybean oil that is
industrially processed into other products.?** “Other uses” of soybeans increases in the ADAGE
results; this represents additional soybean seeds needed to grow more soybeans.

Non-USA regions show different impacts than the USA region. In the non-USA regions,
the ADAGE results show an increase in soybean consumption for crushing, an increase in
vegetable oil and soybean consumption for fuel production, an increase in soybean consumption
for other uses (seed), and feed displacement of other crops with oil crop meal. In the GCAM,
GLOBIOM, and GTAP results, there is an increase in oilseed crushing to make vegetable oil,
including palm fruit (GCAM, GLOBIOM, and GTAP), rapeseed (GCAM and GLOBIOM), and
other oil crops (GCAM and GTAP). ADAGE represents only two oil crop commodities,
soybeans and “other oil crop.” The ADAGE results show an increase in the consumption of the
aggregated other oil crop for crushing. In the GLOBIOM results, the increased palm fruit
crushing helps backfill for reduced soybean crushing, which is due to decreased soybean
production in non-USA regions. In the ADAGE, GCAM, and GTAP results, the increased palm
fruit, rapeseed, and other oil crop crushing is in addition to increased soybean crushing.

These results also show impacts on the food and feed markets in the non-USA region. In
both the GCAM and GLOBIOM results, other vegetable oils replace soybean oil to at least some
extent in the food market in non-USA regions.?*> GLOBIOM results show an overall reduction
in food consumption in the non-USA regions. GCAM results show a small reduction in food
consumption, but the overall change is close to zero. These food market impacts are smaller than

204 The “other uses” of soybean oil in GTAP can include processing for food products, such as margarine or salad
dressing, whereas the food end use includes soybean oil used directly for food, such as cooking oil.

205 In GLOBIOM results, palm fruit oil replaces soybean oil. In GCAM results, a mix of palm fruit oil, rapeseed oil,
and other oil crop oil replaces soybean oil.
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the feed market impacts. The GLOBIOM results also show displacement of soybean oil with
palm fruit oil for other uses (e.g., industrial uses such as cosmetics production) and an overall
increase in feed consumption, primarily from corn, soybean meal, and other crops. GCAM and
GTAP results show displacement of crops with soybean meal and other oil crop meal in the feed
market. The degree of substitution among feed commodities and food commodities, particularly
in the non-USA regions, is an area of difference across the model results.

Figure 7.3-2: Difference in consumption by end use (million metric tons) in the soybean oil
biodiesel shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM,
GLOBIOM)?%
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7.4 Trade of Agricultural Commodities

As discussed in Section 3.1.6, ADAGE, GCAM, GLOBIOM, and GTAP all specify
commodity trade in somewhat different ways. From a theoretical perspective, we would expect
this to be relevant to a soybean oil biodiesel consumption shock scenario in several ways
analogous to those observed for corn ethanol in Section 6.4. Model results related to trade in
soybeans and other crops would be expected to vary by model. In addition, the assumed
elasticity of competition and degree of assumed fungibility between vegetable oils varies across
these modeling frameworks and would be expected to produce somewhat different results across
the models. Another consideration unique to soybean oil biodiesel scenarios is the treatment of
soybean meal trade.

206 Results are shown in million metric tons of each feedstock. Because soybeans contain 19 percent oil, 10 million
metric tons of soybeans is equivalent to 1.9 million metric tons of soybean oil. ADAGE does not explicitly track
soybean oil or soybean meal, and those are included in “Other Oil Crops Oil” and “Other Oil Crops Meal,”
respectively.
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Figure 7.4-1: Difference in U.S. net exports of crops and secondary agricultural products
(million metric tons) in the soybean oil biodiesel shock relative to the reference case in 2030
and 2050 (ADAGE, GCAM, GLOBIOM) and 2014 (GTAP)
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In ADAGE, of the additional soybean oil biodiesel produced in the USA region, a
sizeable portion is sourced from shifting cropland from corn production to soybean production.
Reduced corn production coincides with reduced use of corn for livestock feed in the USA
region, which is backfilled with the additional oilseed meal available in the soybean oil biodiesel
shock scenario. This results in relatively little change in U.S. net exports of agricultural goods in
ADAGE.

In GCAM, the USA region increases gross imports of soybean oil and decreases gross
exports of whole soybeans in order to meet the soybean oil biodiesel shock targets. There is a
smaller (relative to ADAGE) effect on crop production for non-soybean crops in the USA
region, so the additional soybean meal produced to meet the shock is not needed to backfill
deficits in livestock feed demand. A relatively small portion of the shock in GCAM (compared to
ADAGE) is met through crop shifting in the USA region, so livestock feed demand met by corn
and other crops is less affected by the soybean oil biodiesel shock. This results in increased gross
exports of soybean meal from the USA region in the soybean oil biodiesel shock in GCAM.
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GLOBIOM does not represent energy commodities nor their trade, so all of the biodiesel
needed to meet the soybean oil biodiesel shock must be produced in the USA region in
GLOBIOM. Additionally, GLOBIOM restricts the amount of natural land that can be converted
to crop production, so the majority of the additional feedstock needed to meet the soybean oil
biodiesel shock is sourced from either switching cropland from production of other crops to
soybean production, or from changes in net trade of soybeans and soybean oil in the USA region.
This results in reduced gross exports of soybeans and soybean oil and increased gross imports
soybean oil in the USA region. Crop switching reduces production of other crops in the USA
region, most notably corn, which results in decreased gross exports of corn and DDG, and wheat,
which results in increased gross imports of wheat to meet demands for food.

The GTAP results include a reduction in soybean exports, but a larger increase in exports
of soybean meal and other oilseed meals for livestock feed. Unlike the other models, the GTAP
results include an overall increase in the mass of USA region net crop and secondary crop
product exports. Relative to the other model results, the GTAP results include a smaller
reduction in soybean oil and soybean exports. Instead of reduced exports, the GTAP results
include reduced domestic consumption of soybeans and soybean oil for feed, food and other non-
biofuel purposes.

7.5 Crop Yield

As was observed in Section 6.5 above regarding corn crop yield modeling results, the
four economic models included in this comparison exercise all have the ability to increase crop
yields in response to changes in crop price. However, while these models share some similar
theoretical underpinnings regarding the economic logic of crop yield response to price, their
mechanisms for simulating this response vary in structure. Further, these models represent
additional methods of crop intensification beyond the ability to invest resources to increase yield
per acre on existing cropland.

Reference case yield trends are also an important factor in understanding differences
across models. As shown in Figure 5.3-1, reference case soybean crop yield trends across the
four economic models are fairly similar in the historical periods of 2010 and 2015, though not
identical. However, for the three dynamic models, ADAGE, GCAM, and GLOBIOM, the trends
in reference case soybean yields diverge over time. Yields are calibrated to improve over time in
all three models however, reflecting a shared assumption that agricultural technologies will
continue to improve into the future. In reviewing the change in soybean yields in our shock
scenario relative to the reference case shown by these dynamic models, the reader should keep in
mind that yields are improving over time in both the USA and non-USA regions in both
scenarios as they do in the reference case.

As shown in Figure 7.1-2 above, crop intensification contributes to the sourcing of
soybean oil for the biodiesel shock to varying degrees across the models. In both of the biofuel
volume shock scenarios modeled for this exercise, we observe that the contributions from
intensification are a minority of the feedstock sourcing solution, accounting for 17 percent or less
of the feedstock required. Intensification is a part of each model solution to at least some degree
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however, and we can make some useful observations about how this effect is similar and
different across the models considered.

As shown in Figure 7.5-1, average USA region soybean yields increase in all four models
in response to the soybean oil biodiesel shock. One can compare these results with the reference
case yields presented in Figure 5.3-1 and observe that these improvements are generally less than
a 1 percent increase relative to reference case yields, though in the case of ADAGE, USA region
average yield does increase by 1.3 percent in 2030. While improvements may be larger in
particular growing regions, the average yield across the USA region is instructive in
understanding why intensification plays only a minor role in the sourcing of soybean oil for the
biodiesel shock. As a collective, these four models estimate the soybean oil biodiesel shock
modeled for this comparison does not induce much improvement in soybean yield relative to
reference case yields. This small observed change in USA region soybean yields is reasonable in
light of the crop price changes observed in these results. Figure 7.5-2 shows that the change in
soybean price is also small, less than 2 percent in 2030. As discussed above, crop price is the
primary driver of increased crop yields and intensification in general, and a small price change
would be expected to induce a small yield response as well. These changes in soybean price are
largely a function of the changes in soybean oil and soybean meal prices, shown in Figure 7.5-3.

Figure 7.5-1: Difference in soybean yield in the soybean oil biodiesel shock relative to the
reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, GLOBIOM, GTAP)
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Looking at the non-USA regions results, we see smaller average soybean yield responses
from all four models. We observe more yield response in the ADAGE and GLOBIOM results
than in the GCAM or GTAP results. ADAGE estimates the largest non-USA regional soybean
production response of the four models, so it is perhaps unsurprising from that perspective that it
also shows the strongest non-USA yield response. Soybean oil biodiesel produced in South
America provides a substantial share of the shock in the ADAGE results. The increased demand
of this new biodiesel production creates greater investment in soybean yields in this region. The
GLOBIOM results tell a different story. In these results, soybean production declines outside the
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USA region overall. As discussed in Section 7.3 above, the decline in non-USA soybean
production is primarily a response to the influx of USA-produced soybean meal into global feed
markets. However, it is notable that GLOBIOM appears to use intensification as a method for
mitigating the reduction in soybean production, rather than a means of further boosting increased
production, as is the case in the ADAGE results. Conversely, yields increase very little in GTAP
and GCAM as these models appear to focus on other strategies for supplying the needed soybean
oil. However, the responses from all four models are fairly small. These results, again, appear
reasonable in light of the very small soybean price changes in the non-USA regions observed in
Figure 7.5-2.

Figure 7.5-2: Percent difference in commodity prices in the soybean oil biodiesel shock
relative to the reference case?"’
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207 Average commodity prices for non-USA regions in GTAP results were not available for this exercise.
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Figure 7.5-3: Percent difference in coproduct prices in the soybean oil biodiesel shock
relative to the reference case?%
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In the three dynamic models, ADAGE, GCAM, and GLOBIOM, we see somewhat
similar patterns of yield change over time. Figure 7.5-4 shows that all four of the models
estimate an increase in soybean yield in 2030 as the shock reaches its peak, both in the USA and
non-USA regions though the magnitudes of these increases vary by region and model. By 2050,
this increase tapers off in all models in both the USA and non-USA regions as well. The
magnitude of this tapering varies as well and that magnitude appears to positively correlate to
some degree with the magnitude of the 2030 increase in yield. In general, this tapering effect
appears attributable to improving reference case soybean yields over time.

208 Average commodity prices for non-USA regions in GTAP results were not available for this exercise.
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Figure 7.5-4: Difference in soybean yield in the soybean oil biodiesel shock relative to the
reference case in 2014 (GTAP) and over time from 2020 to 2050 (ADAGE, GCAM,
GLOBIOM)
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While the soybean crop yield change results may appear to be somewhat different across
models based on the figures presented, they are all relatively small increases when compared to
reference case soybean yields in each model The largest increase in soybean yields in 2030 is
seen in the ADAGE results in the USA region — about 1.3 percent — while soybean yield changes
in the other models and regions are all less than one percent in 2030. We can observe from these
results that the four economic models generally agree that, in the specific scenarios modeled for
this exercise, yields are not projected to improve substantially in response to the soybean oil
biodiesel shock. However, it is also notable that even these small changes in soybean yield are
responsible for a small but notable percentage of the additional soybean oil produced to meet the
shock.

From this exercise however, we cannot draw any firm conclusions from this yield
comparison regarding whether one method is better than the others. All four of the models seem
to behave reasonably in these yield results. Sensitivity analysis may reveal the degree to which
GHG emissions results change when the underlying assumptions about crop yield responsiveness
to price are changed. This may indicate areas for further research.

7.6 Land Use

The increased soybean production comes from a mix of cropland shifting from other
crops to soybeans, land use change from other land types to cropland, and changes in soybean
yield. As shown in Figure 7.6-1, soybean cropland in the USA region increases by 0.3 Mha in
GTAP (2014), 2.7 Mha in ADAGE (2030), 0.7 Mha in GCAM (2030), and 1.1 Mha in
GLOBIOM (2030). In the non-USA regions, soybean cropland increases by 0.02 to 2.1 Mha in
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GTAP, ADAGE, and GCAM, and decreases by 1.2 Mha in GLOBIOM. All of these models
show some amount of shifting of other crops to soybeans, but the amount of crop shifting varies.

In the GTAP and GLOBIOM results, most new soybean cropland in the USA region
comes from shifting of other crops. In the GLOBIOM results, there is a shift in the non-USA
region from soybean cropland to corn, wheat, other grains, and other crops, to make up for the
lost production of these crops in the USA region. In both models, the total cropland increases
more in non-USA regions than in the USA region. In the ADAGE results, there is some cropland
shifting in the USA and non-USA regions, but a larger net increase in cropland area than in
GTAP or GLOBIOM. In the GCAM results, even though there is much less new soybean
cropland than in ADAGE, there is a similar net increase in total new cropland (horizontal line in
Figure 7.6-1) because there is less cropland shifting than in ADAGE.

Figure 7.6-1: Difference in cropland area by crop type (million hectares) in the soybean oil
biodiesel shock relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM,
GLOBIOM)?"
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The net increase in cropland causes changes in the area of other land types in each model
(Figure 7.6-3). As described in Sections 2 and 6.6, the type of land use change in each model
depends on the model structure and constraints. In ADAGE, most of the increase in cropland in
the USA region is coming from managed pasture. In contrast, non-USA regions show large

209 Horizontal lines show the net change in cropland. Cropland area shown represents land cultivated for row crops
in ADAGE and GCAM and harvested area in GLOBIOM and GTAP. When a single unit of land is harvested
multiple times in a single year, the area is counted multiple times as “harvested area” but only a single time as
“cultivated area.”
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decreases in managed and unmanaged forest. In the non-USA region, the soybean production
and land use change are occurring the Rest of Latin America region. In the Rest of Latin
America region in ADAGE, the model assumes that forest productivity decreases over time,
which impacts land prices, and causes the reduction of forest area. GCAM results show a
decrease in a mix of land types in both the USA and non-USA regions, with the largest impact
on unmanaged pasture, similar to the corn shock. In the GLOBIOM results, the area of other
arable land and managed forest decreases relative to the reference in non-USA regions. The
restriction on natural land conversion in GLOBIOM could drive the result that the new soybean
cropland in the USA region comes from crop shifting, rather than land use change.

In the GTAP results, there is very little change in land use in the USA region, but in the
non-USA regions, cropland increases and other arable land decreases. In GTAP, in the non-USA
regions cropland pasture is the main source for new harvested area (53 percent), followed by
pasture (30 percent), unharvested cropland (11 percent), increased multi-cropping (5 percent),
and forest (1 percent). Because GTAP only represents managed land, the results show no
conversion of unmanaged forest, grassland, or unmanaged pasture.

Each of the models has different assumptions about the carbon stock of different land
types in different regions. As shown in more detail in Section 7.7, the type and amount of land

converted and the carbon stock of the land types will factor into the emissions from land use
change.
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Figure 7.6-2: Difference in land use (million hectares) in the soybean oil biodiesel shock
relative to the reference case in 2014 (GTAP) and 2030 (ADAGE, GCAM, GLOBIOM)?!"
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Following the trends observed in the crop production results, the models show variation
in both the magnitude and location of land use change. As might be expected given their
differences in land competition structure and land categorization, these four models also present
diverse estimates regarding what types of land might be converted to cropland in response to
greater demand for soybean oil biodiesel, in particular the extent of forest loss. Some of these
differences appear to be related to where in the world the results show that cropland will expand.
The differences also appear to be attributable to differences in land conversion flexibility across
the models. These are areas for potential future sensitivity and uncertainty analysis.

7.7 Emissions

The modeled results of energy consumption, crop production, and land use change
described above come together in the modeled greenhouse gas emissions. As shown in Figure
7.7-1, the modeled GHG emissions over time vary by model.

210 In Figure 6.6-2 and 7.6-2, “Cropland” area in GTAP represents land cultivated for row crops (calculated as the
change in harvested area minus the change in multicropping), while cropland pasture, and other unused cropland
have been reassigned to “Other Arable Land.” This differs from Figure 5.2-1, in which cropland pasture and other
unused cropland are reported under the “Cropland” category.
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Figure 7.7-1: Difference in global greenhouse gas emissions in the soybean oil biodiesel
shock relative to the reference case?!!
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211 GTAP is not included in this figure because it does not represent emissions over time, and due to time
constraints, we do not have GTAP GHG emissions by gas for the source categories used in this figure. For
comparison, for GTAP, in the soybean oil biodiesel scenario relative to the reference case (2014), LUC emissions =
1.1 Mt COze, fossil fuel combustion and industrial CO; emissions = -5.5 Mt, and other GHGs emissions from all
covered sources = -0.70 Mt CO»e, of which N,O = 0.13 Mt COse, CH4 =-0.72 Mt COze, fluorinated gases = 0.01 Mt
COze, and other CO, =-0.13 Mt COze; net total GHG emissions = -5.1 Mt CO,e. GREET is not included in this
figure because it does not represent scenario-based emissions over time. See Table 7.7-1 for carbon intensity values.
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Emissions from land use change show different trends in ADAGE, GCAM, and
GLOBIOM results, due primarily to two factors: variation in the type(s) of land use change
occurring relative to the reference case, and variation in the underlying carbon stock data sets
and assumptions used in each model. In the ADAGE results, land use change emissions are the
highest of the models shown here. These emissions peak in 2030 in ADAGE and are higher than
the reference case throughout the entire model period. In the ADAGE results, the non-USA
region has a large amount of forest converted to cropland. Because forests have a higher carbon
stock than other land types, the ADAGE results show high land use change emissions. In
addition, emissions continue after 2030 because the assumptions and structure in ADAGE make
it cost effective to continue to convert land after 2030.

In the GCAM and GLOBIOM results, land use change emissions estimates are higher
than the reference case from 2020 to 2040, peaking in 2030. From 2040-2050, emissions are
slightly lower than the reference case. Emissions in the GCAM results are higher than in the
GLOBIOM results. In the GCAM results, most of the land use change is coming from lower
carbon land types, such as pasture and grassland. However, some of the land use change is
attributable to reduced amounts of estimated future afforestation relative to the reference case.
Even though the amount of change in forest land is small compared to the amount of change in
other land types, the high carbon stocks of forest land leads to higher land use change emissions.
The GLOBIOM results have less forest conversion than ADAGE and GCAM, and therefore
lower land use change emissions, especially earlier in the modeled period.

The “Energy from Fossil Fuels” (or “fossil fuel emissions”) category includes emissions
associated with producing biofuels (e.g., from consuming natural gas or electricity for process
energy), direct emissions associated with on-farm energy use to produce feedstock, and
transporting both biofuel feedstocks and finished fuels, as well as emissions from indirect
impacts on the energy sector, including displaced diesel use for transportation that is replaced by
soybean biodiesel. In the soybean oil biodiesel results, ADAGE and GCAM show lower fossil
fuel emissions than in the reference case.?!? In these results, the reduction in emissions from
fossil fuels becomes larger until 2030. From 2030-2050, fossil fuel emissions in the GCAM
results are relatively constant. In the ADAGE results, from 2030-2050 the reduction in emissions
becomes smaller, but emissions stay lower than in the reference case. As shown in Section 7.2,
refined oil consumption decreases in the soybean oil biodiesel shock scenario relative to the
reference case. Globally, the refined oil consumption decreases more in the ADAGE results than
the GCAM results. However, ADAGE results show a larger increase in global natural gas
consumption than the GCAM results, and an increase in coal consumption, rather than the
decrease seen in the GCAM results. The higher consumption of natural gas and coal in the
ADAGE results leads to a lower reduction in fossil fuel emissions in the ADAGE results than the
GCAM results.

Crop production emissions are higher than the reference case in the ADAGE, GCAM,
and GLOBIOM results, with GCAM results showing the largest increase. Changes in crop
production emissions relative to the reference case are due to changes in the types and quantities
of crops grown in the models, and primarily come from changes in N2O emissions, driven by
both increased fertilizer use and direct nitrogen fixation by soybeans. As shown in Section 7.3,

212 Emissions from “Energy from fossil fuels” are not reported by GLOBIOM.
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the ADAGE, GCAM, and GLOBIOM results all show increases in soybean production. These
results also show increased production of palm fruit and other oil crops. ADAGE and GCAM
results show a decrease in corn production, whereas GLOBIOM results show a shift in corn
production from the USA region to the non-USA regions. The crop production emissions are
small in all of these model results. Emissions peak in 2030 in the GCAM and GLOBIOM results,
and in 2040 in the ADAGE results, and then decrease until 2050. The change in emissions
relative to the reference case from the livestock sector and from industrial and waste
management sectors is very small.

The total change in GHG emissions across all sources over time varies across the models
(Figure 7.7-1). The ADAGE results show higher emissions than in the reference case from 2020-
2050, which is dominated by CO2 emissions from land use change. In the GCAM results, GHG
emissions are higher than in the reference case from 2020-2030 and lower than the reference
case from 2035-2050, because the COz emissions from land use change decline rapidly after
2030. In the GLOBIOM results, emissions are higher than in the reference case from 2020-2050,
and are dominated by CO:z emissions from land use change.

There are a few commonalities across the ADAGE, GCAM, and GLOBIOM results of
emissions over time. All of these model results show small but positive emissions from crop
production relative to the reference case. The model results also all show very small changes in
emissions from livestock production, waste management, and industry. The GCAM and ADAGE
results both show lower emissions from fossil fuel than the reference case, but there are
differences in the amount of fossil fuel emissions reduction. Future research could explore the
factors that determine the extent of refined oil displacement in each model through sensitivity
analysis. Additionally, there are large differences across the model results in the amount of land
use change emissions, due to differences in both the types of land converted and the carbon stock
assumptions. A sensitivity analysis of the carbon stock assumptions in GCAM is shown in
Section 9.2 below, and a sensitivity analysis of the land conversion elasticities in ADAGE 1is
shown in Section 9.3. Future research could focus on the impact of carbon stock assumptions in
other models, or on other model parameters that determine the types of land converted.

As explained in Section 6.7, we calculated a CI for each category of emissions, in
kgCO2eq/MMBTU (Table 7.7-1). We also consider CI results from GREET. As explained in
Section 6.7, the models report emissions from different sectors. Models are divided between
those frameworks with energy markets (in the left side columns) and models without energy
markets (in the right side columns). This division is made to reflect important differences in the
sectors represented and the difficulty of direct comparability between models on the left with
models on the right. ADAGE, GCAM, and GTAP include global emissions from every economic
sector, including indirect, market-mediated impacts. GREET includes detailed emissions
assumptions from fuel production, transport, and use, but, as it is not a consequential model, it
does not estimate the net change in GHG emissions resulting from a change in biofuel
consumption. Rather it estimates the emissions directly attributable to the biofuel supply chain.
GLOBIOM does not include any energy sector emissions but does include market impacts on
crop production and the livestock sector.
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Because of the differences outlined above, it would be inappropriate to compare all of the
emissions estimates across all of the models, but we can make several meaningful comparisons.
Results from the three models with energy markets (ADAGE, GCAM, GTAP) can be directly
compared, with the caveat that GTAP is representing 2014 while the other models are
representing a 2020-2050 scenario. Furthermore, we can compare the land use change emissions
estimates for all of the models, as GREET uses a consequential approach for this category of
emissions, again with proper caveats about temporal differences. We can also compare crop
production and livestock sector emissions estimates from ADAGE, GCAM and GLOBIOM. In
the table below, we report emissions from “Agriculture, forestry and land use” for all five
models as the sum of emissions from these stages; however, the GREET estimate for this
aggregate category is not directly comparable with the other models for reasons discussed below.

Like in the corn ethanol shocks, energy sector emissions have a large impact on the CI of
soybean oil biodiesel in the ADAGE, GCAM, and GTAP results. The energy sector CI is higher
(less negative) for the ADAGE results than for the GCAM and GTAP results, which is consistent
with the smaller emissions reduction from fossil fuels over time shown in Figure 7.7-1,
particularly in the later model years. GREET reports the CI from fuel production and
transportation but does not consider indirect impacts on the energy sector, such as the energy
rebound effects shown in Section 7.2. The fuel production and transportation CI in the GREET
results is based on the amount of process energy needed for soybean oil biodiesel production as
well as the amount of energy needed to transport the feedstock and the fuel. This is why we use
the label “Energy Sector” for the first row in Table 7.7-1 for the three models with energy
markets, but the label “Biofuel Production” for this row for GREET.
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Table 7.7-1: Carbon intensity of soybean oil biodiesel (kgCO.eq/MMBTU) calculated using
emissions reported by each model?!3

Models with Energy Markets Models without Energy Markets
ADAGE | GCAM | GTAP GLOBIOM | GREET
Energy
from Fossil -28 -40 -46 | Biofuel Production X 13
Fuels
Crop Production 11 X
Crop 7 71
Sector/stage- | production Feedstock N 9
specific .6 | Production
emissions -
Livestock 0.7 -1.3 Livestock Sector 3 X
Sector
Other 1 0 Fuel Use X 0.4
Land Use 295 62 10 | Land Use Change 23 10
Change
gilsig}l]ture’ Agriculture,
and land 303 82 4 forestry, and land 38 19
use
use
Totals Global
GHG 276 42 -42 | Global GHG Impact X X
Impact
Supply .
Chain GHG | x x x | Supply Chain GHG X 32
. Emissions
Emissions
The ADAGE, GCAM, and GLOBIOM results show a range of CI from crop production.
The crop production CI from the GCAM results is higher than the other models, consistent with
the higher emissions over time in the GCAM results relative to the ADAGE and GLOBIOM
results. GREET’s feedstock production CI is based on the energy and chemical inputs required to
produce the amount of soybean oil needed for 1 MMBTU of biodiesel. Unlike the other models,
this value does not consider indirect impacts on the production of other types of crops. Livestock
and other sectors (including waste management and other industrial sectors) have only minor
impacts on the overall CI in ADAGE, GCAM, and GLOBIOM.
For the GTAP results, we have estimates of non-CO2 emissions by greenhouse gas, but
we do not have these emissions disaggregated by sector or lifecycle stage. The largest change, by
213 «X> means that the model does not report that category. For GTAP, emissions from crop production, the
livestock sector, and “other” are reported as an aggregated value of non-LUC, non-fossil fuel emissions. Negative
values for ADAGE, GCAM, GTAP, and GLOBIOM mean that emissions are lower than the reference case, whereas
positive values mean the emissions are higher than the reference case. For further discussion of how to interpret
positive and negative values, see Section 6.7.
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gas, is a decrease in CH4 emissions. We believe the bulk of the changes in these emissions are
associated with changes livestock CHa, but more work would be needed to confirm our intuition.
In Table 7.7-1, we report the aggregated non-COz emissions estimate from GTAP across three
rows combining Crop Production, Livestock Sector and Other. GTAP shows a negative CI in this
aggregated category. We would need to do more research to understand why these emissions are
lower than estimates from the other models.

Land use change emissions are reported across all the models, and the CI results show
wide differences, consistent with the large differences in emissions shown in Figure 7.7-1. As
explained in Section 7.6, ADAGE results show conversion of forest land to cropland to grow
soybeans in non-USA regions, which results in a high estimated LUC CI. In contrast, GTAP
results show very little land use change, and therefore this model estimates a low LUC CI. Here
again, GREET’s LUC ClI is based on a GTAP run?'* using a different shock size (0.812 billion
gallons of soybean oil biodiesel) using a 2004 baseline where around 13 percent of crop land
cover demand comes from forest land, and the remainder comes from land previously having
been pastureland.?!?

We can compare “Agriculture, forestry and land use change emissions” across four of the
models (ADAGE, GCAM, GLOBIOM, GTAP). For GTAP, we include the non-CO2 emissions
in this category. For this category, the ADAGE results include the highest emissions, followed
by GCAM. These differences are driven by the land use change emissions.

The total global CI can be compared across ADAGE, GCAM, and GTAP, because all of
these models represent the same sectors and include market impacts. The results from these
models show a range in soybean oil biodiesel CI, primarily due to differences in the land use
change CI. For GLOBIOM and GREET, a total global CI cannot be calculated from the model
results because these models do not include all the relevant sectors and/or do not include all the
relevant market impacts. For GREET, we calculate the total supply chain CI. This is a
fundamentally different metric than the other models’ CIs, since GREET primarily uses an
attributional approach to lifecycle analysis rather than a consequential approach. This value does
not include any displacement of fossil fuel consumption that would occur from the increased
consumption of biofuels.?'®

7.8 Summary of Soybean Oil Biodiesel Estimates

Section 7 compares and contrasts the soybean oil biodiesel modeling estimates from
ADAGE, GCAM, GLOBIOM, GREET, and GTAP produced for this exercise. These models
source the soybean oil biodiesel required to meet the assumed shock in different ways in these

214 We present the default soybean oil biodiesel run from GREET’s LUC CCLUB tool here, referred to as “Soy
Biodiesel CARB Case 8”

215 Chen, Rui, Zhangcai Qin, Jeongwoo Han, Michael Wang, Farzad Taheripour, Wallace Tyner, Don O’Connor,
and James Duffield. 2018. “Life Cycle Energy and Greenhouse Gas Emission Effects of Biodiesel in the United
States with Induced Land Use Change Impacts.” Bioresource Technology 251 (March): 249-58.
https://doi.org/10.1016/]j.biortech.2017.12.031.

216 GREET s biodiesel CI estimates are often compared with GREET CI estimates for diesel to derive a GHG
percent reduction relative to diesel. In our 2010 RFS analysis, we similarly compared biodiesel CI estimates from
models that do not include energy markets with a CI estimate for diesel to calculate a percent reduction in emissions.
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results. Some models rely primarily on crushing of new soybean production to produce
additional soybean oil feedstock. Other models rely primarily on diversion of soybean oil from
other uses. Some models also show a contribution from reduced soybean oil biodiesel
consumption in non-USA regions. In addition, the model results show differences in how much
of the new soybean oil biodiesel is produced in the USA region versus the non-USA regions.
Because of these differences in sourcing strategy, the model results differ regarding the amount
and location of soybean oil production, vegetable oil and biodiesel trade, and land use change
impacts of the shock. Notably, the amount and location of land use change, and the types of land
converted to cropland, differ substantially across the range of model results. The model results
also show differences in the impact on the food and feed markets, and different amounts of
displacement of palm oil or other oils. The model results also have some notable similarities.
ADAGE, GCAM, GLOBIOM, and GTAP results all show a small amount of crop yield
intensification. The models which explicitly include the energy sector, ADAGE, GCAM, and
GTAP, all show a decrease in refined oil consumption in the USA region in their results, and an
increase in non-USA regions. But there are differences across these models in the total global
displacement of refined oil. These factors all contribute to differences in the estimated GHG
emissions and CI of soybean oil biodiesel across the models, with the differences in land use
change emissions having the greatest impact on estimated CI.

The previous sections also highlight potential areas for future research. Sensitivity
analysis could test the impact of different degrees of substitution in feed and food markets.
Further research and sensitivity analysis could also seek to better understand the parameters that
influence land conversion to cropland. Furthermore, research and sensitivity analysis could seek
to better understand why model results show a range in the reduction of refined oil consumption.
These are only a few examples of the many research areas that could help us to understand what
is driving the variation in estimates across models.

Alternative Scenarios and Model Sensitivity Analysis

8 Alternative Volume Scenarios

To determine whether and how GHG emissions estimates from these models may vary
based on the volume of biofuels assumed, we ran alternative volume scenarios through the
models. The scenarios included half of the original soybean oil biodiesel shock (decreased to 500
million gallons) and a combined scenario in which both soybean oil biodiesel and corn ethanol
consumption are each increased by 1 billion gallons simultaneously. These new volume
scenarios were performed in ADAGE, GCAM, GLOBIOM, and GTAP using the same methods
for the core corn ethanol and soybean oil biodiesel scenarios. The alternative shock size was
chosen to compare how each model functions, and they are not necessarily meant to represent
realistic biofuel shock sizes.

8.1 Soybean Oil Biodiesel 500 Million Gallons (MG) Scenario

The 500 MG soybean oil biodiesel shock results generally indicate a linear relationship
between shock size and most output parameters. ADAGE, GCAM, and GTAP show a high
degree of linearity between volume shock assumptions and output values, with scenario changes
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from the reference case for the 500 MG soybean oil biodiesel shock generally being half the size
of those from the 1 BG shock. The GLOBIOM results show more nonlinear variability in output
values, but these nonlinearities tend to be quantitatively minor. To examine these questions of
model response linearity and for clarity of presentation, the 500 MG soybean oil biodiesel shock
has been normalized to show impacts per 1 billion gallons of soybean oil biodiesel in the results
presented in this section.

8.1.1 Energy Market Impacts

The models that include energy market impacts, ADAGE, GCAM, and GTAP, show a
linear relationship between shock size and global energy consumption. The size of the energy
sector impacts, expressed in quad BTUs per billion gallons (of shocked biodiesel), are generally
equal across the 500 MG and 1 BG soybean oil biodiesel scenarios, as illustrated in Figure 8.1.1-
1. GLOBIOM does not represent the energy sector and as such was not included in this section
of the analysis.

Figure 8.1.1-1: Difference in global energy consumption (Quad BTUs per BG of shocked
soybean oil biodiesel consumption) in the 500 MG and 1 BG soybean oil biodiesel shocks
relative to the reference case in 2030 (ADAGE and GCAM) and 2014 (GTAP)
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8.1.2 Crop production and consumption

Similar to energy consumption, ADAGE and GCAM show a generally linear relationship
between shock size and global commodity production impacts in the 500 MG soybean oil
biodiesel shock. GTAP also shows a generally linear relationship between commodity
production and shock size. GLOBIOM results have slight differences in production of corn and
soy between the 500 MG and 1 BG soybean oil biodiesel shocks, but these differences are minor.

Global commodity consumption by end use indicates a generally linear relationship with
respect to shock size across ADAGE, GCAM, and GLOBIOM in the year 2030, and there are
not any notable changes between the 500 MG and 1 BG soybean oil biodiesel scenarios. GTAP
also shows a generally linear relationship between global commodity consumption and shock
sizes in 2014.

However, in the 2050 time step, GLOBIOM results show nonlinearities in the global
crushing of palm fruit and the consumption of sugar crops and other crops for feed, with the 500
MG shock showing higher consumption per billion gallons.?'” The nonlinearity for palm fruit is
attributable to the commodity substitution dynamics of GLOBIOM. As a commodity becomes
scarcer on the global market (soybean oil in this case), the price of that commodity increases and
there is increasing incentive to substitute less expensive alternatives (palm oil in this case).
However, that substitution becomes more expensive, i.e., the price of the substitute good
increases as greater quantities of the substituted product are demanded. In both the 500 MG and
1 BG soybean oil biodiesel shocks, increasing U.S. demand for soybean oil to produce biodiesel
leads to lower availability of soybean oil in other countries and higher prices for soybean oil and
soybeans. This shortfall is partly addressed with increased palm oil supply from Southeast Asia.
However, substitution of palm oil for soybean oil grows more costly per unit as demand rises.
For this reason, this substitution effect is less pronounced in the 1 BG case than in the 500 MG
case, where the total volume of additional palm oil demanded is smaller.

Regarding feed crops, the economic dynamics at play are somewhat similar. The 500 MG
soybean oil biodiesel shock generates less additional soybean meal than the 1 BG case, and U.S.
soybean meal prices are depressed by a smaller amount. This smaller price depression leads to a
less than proportional increase of the use of the meal as livestock feed abroad. The nonlinear
change in consumption of other feed products in the 500 MG case is related to the fact that,
unlike the other models considered in this exercise, GLOBIOM explicitly accounts for the need
for animal feed diets to be balanced nutritionally. Increasing consumption of one feed product, in
this case soybean meal, means that consumption of other complementary feed products must also
increase to maintain nutritional balance for livestock. In the 500 MG soybean oil biodiesel case
relative to the 1 BG case, the smaller increase in Non-USA consumption of soybean meal,
relative to the size of the shock, means that increased consumption of these other feed products is
also proportionally smaller. Figure 8.1.2-1 illustrates the differences in global commodity

27 In the 500 MG scenario results from GLOBIOM, consumption of palm fruit for crushing was 6.8 Mt per BG,
consumption of sugar crops for feed was 1.2 Mt per BG, and consumption of other crops for feed was 1.8 Mt per
BG. In the 1 BG scenario, consumption of palm fruit for crushing was 5.3 Mt per BG, consumption of sugar crops
for feed was 0.8 Mt per BG, and consumption of other crops for feed was 0.6 Mt per BG.
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consumption by end use in the 2050 time step for ADAGE, GCAM, and GLOBIOM, as well as
the 2014 time step for GTAP.

Figure 8.1.2-1: Difference in global commodity consumption by end use (Mt per BG of
shocked soybean oil biodiesel consumption) in the 500 MG and 1 BG soybean oil biodiesel
scenarios relative to the reference case in 2050 (ADAGE, GCAM, and GLOBIOM) and
2014 (GTAP)
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8.1.3 Land Use

The global land use change by land cover type in the 500 MG soybean oil biodiesel shock
has a relatively linear relationship in ADAGE, GCAM, and GTAP results, as seen in Figure
8.1.3-1. However, GLOBIOM results show an increase in global land converting to pasture per
billion gallons in the 500 MG shock (0.383 Mha per BG) relative to the 1 BG shock (0.233 Mha
per BG). Soybean meal and pasture are both livestock inputs and they are in competition with
each other to some extent to provide nutrition to livestock. When soybean meal prices fall as a
result of a supply influx, as occurs in the soybean oil biodiesel shocks, this reduces the
competitiveness of alternative forms of livestock nutrition, i.e., grazing on pasture land. In the
smaller 500 MG shock, soybean meal prices decrease less, which improves the competitiveness
of pasture relative to the larger 1 BG shock. As overall livestock demand rises in both of the
soybean oil biodiesel scenarios, pasture therefore captures a larger share of the nutrition supply
in the scenario where it is more competitive, i.e., the 500 MG shock. GLOBIOM results also
show a larger decrease in other arable land per billion gallons in the 500 MG shock (-0.964 Mha
per BG) compared to the 1 BG shock (-0.778 Mha per BG).

118

NMED Exhibit 39-C_000120



Figure 8.1.3-1: Difference in land use (Mha per BG of shocked soybean oil biodiesel
consumption) for the 500 MG and 1 BG soybean oil biodiesel shocks relative to the
reference case in 2030 (ADAGE, GCAM, and GLOBIOM) and 2014 (GTAP)
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The GLOBIOM 500 MG results also show differences in where LUC occurs relative to
the 1 BG results (Figure 8.1.3-2). In the USA region, GLOBIOM results show a larger increase
in land conversion to pasture per billion gallon in the 500 MG scenario (0.325 Mha per BG) in
comparison to the 1 BG scenario (0.110 Mha per BG) and a larger decrease in other arable land
(-0.897 Mha per BG) compared to the 1 BG scenario (-0.666 Mha per BG). Forest has a smaller
decrease in land conversion in the 500 MG scenario (-0.145 Mha per BG) compared to the 1 BG
scenario (-0.21 Mha per BG) in GLOBIOM as well. In the non-USA regions, the 500 MG

GLOBIOM results show a greater increase in pasture and a greater decrease in other arable land
per billion gallons than the 1 BG results.
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Figure 8.1.3-2: Difference in land use by region (Mha per BG of shocked soybean oil
biodiesel consumption) for the S00 MG and 1 BG soybean oil biodiesel shocks relative to
the reference case in 2030 (ADAGE, GCAM, and GLOBIOM) and 2014 (GTAP)
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8.1.4 Emissions

In the 500 MG scenarios, ADAGE, GCAM, and GTAP results indicate a relatively linear
relationship between shock size and global GHG emissions. These models estimate a slight
percentage decrease in total cumulative GHG emissions in the 500 MG scenarios relative to the 1
BG scenarios, but these results are quantitatively minor (Table 8.1.4-1). In comparison to
ADAGE, GCAM, and GTAP, GLOBIOM results estimate a larger percentage decrease in global
cumulative emissions in the 500 MG soybean oil biodiesel scenario compared to the 1 BG
soybean oil biodiesel scenario.

Table 8.1.4-1: Percent difference in global accumulated GHG emissions per billion gallons
of soybean oil biodiesel shock in the 500 MG shock scenario relative to the 1 BG shock
scenario

ADAGE | GCAM | GLOBIOM | GTAP
Percent Difference (TOTAL GHG) -2% -2% -24% -6%
Percent Difference (LUC Only) 0% -2% -21% -1%
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When examining global GHGs over time, in the 500 MG scenario, GLOBIOM results
estimate an increase in N2O emissions in 2050 compared to the 1 BG scenario (Figure 8.1.4-1).
While the accumulated GHGs in ADAGE remain relatively linear by the year 2050, when
examining emissions over time, ADAGE has more variability in each time step. This includes a
smaller increase in CO2 emissions in the year 2040 and conversely a larger increase in the year
2045 for the 500 MG shock in comparison to the 1 BG shock. GCAM indicates a generally linear
relationship between both the accumulated GHGs and the emissions over time.

Figure 8.1.4-1: Difference in global GHG emissions (MtCOzeq per BG of shocked soybean
oil biodiesel consumption) in the 500 MG and 1 BG soybean oil biodiesel shocks relative to
the reference case from 2020 through 2050%'
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Global GHG emissions by source also show a linear relationship over time. The patterns
between the 500 MG and 1 BG shocks tend to mirror each other in each model. However, in the
500 MG scenario, GLOBIOM shows a decrease in livestock production emissions in the year
2050 compared to the slight increase in livestock emissions in the 1 BG scenario.

8.1.5 Summary

Overall, the soybean oil biodiesel 500 MG shock results indicate a linear effect between
shock size and most output values for ADAGE, GCAM, and GTAP results. GLOBIOM results
show somewhat more nonlinearity with shock size for certain output parameters, which leads to
differences in the GHG emissions. But the nonlinearities observed in the GLOBIOM results tend
to be minor. GLOBIOM's global commodity consumption by end use estimates an increase in
palm fruit used for crushing per billion gallon, as well as an increase in sugar crops and other

213 GTAP is not included in this figure as it doesn’t represent emissions over time. See Table for carbon intensity
values.
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crops used for feed in the 500 MG scenario relative to the 1 BG scenario. The most notable
difference in land use change is the increase in pasture and decrease in other arable land in the
non-USA region in the GLOBIOM 500 MG results relative to the 1 BG results. GLOBIOM also
estimated a decrease in global CO2 emissions in the 500 MG soybean oil biodiesel shock,
compared to the 1 BG shock. However, we can observe that, across ADAGE, GCAM, and
GTAP, the size of the biofuel shock does not appear to cause significant changes in the modeled
global GHG emissions results.

8.2 Combined Shock Volumes

In addition to the 500 MG soybean oil biodiesel scenario, a combined shock of 1 billion
gallons each of soybean oil biodiesel and corn ethanol was also performed. In the core scenarios
for corn ethanol and soybean oil biodiesel, presented in Section 6 and Section 7 respectively,
some models estimated an inverse relationship between corn and soybean production. For
instance, when we shocked the model with 1 BG of corn ethanol, soybean commodity production
would go down, as seen in Figure 6.3-1. However, historically volumes of corn ethanol and
soybean oil biodiesel consumption have grown alongside one another, though often at somewhat
different annual rates. This has resulted historically in simultaneous increases in demand for corn
starch and soybean oil from the biofuel sector. It is therefore worth considering whether modeled
LUC and emissions impacts in particular might differ from our core scenario results if the
models conduct a scenario where both corn ethanol and soybean oil biodiesel consumption in the
USA are assumed to increase simultaneously. The combined scenario was performed to examine
what would happen if both biofuels shocked the models.

There are a few general hypotheses regarding what impact such a combined volume
shock scenario might have relative to our core scenarios. One hypothesis is that the impacts will
be “additive”, that is, the results will be approximately the sum of adding together impacts from
the corn ethanol and soybean oil biodiesel core scenarios. Another hypothesis is that increasing
demand for both fuels at the same time will create greater stress on the agricultural system than
either core scenario in isolation, since it will not be possible to simply decrease USA soybean
production in response to greater corn ethanol demand, or decrease USA corn production in
response to soybean oil biodiesel demand, as is estimated to occur in most of the core scenario
results. Such a result would be expected to create greater-than-additive modeled impacts on
LUC, crop production, and the resulting GHG emissions. The third hypothesis is that there could
be a counterbalance within variables with the combined shock, where the increase in one
variable could decrease another. We find the land and emissions estimates in the combined
scenario have a mostly additive effect in which modeling results in combined scenario are
generally equal in magnitude to the sum of the individual corn ethanol (1 BG) and soybean oil
biodiesel (1 BG) core scenarios.

8.2.1 Land Use

The combined scenario provides insight into how each of the models account for the
impact on other crop commodities when both corn ethanol and soybean oil biodiesel
consumption are increased simultaneously. Figures 8.2.1-1 and 8.2.1-2 illustrate the USA and
non-USA regional land use change by crop commodity in the years 2030 (ADAGE, GCAM, and
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GLOBIOM) and 2014 (GTAP). The 1 BG corn ethanol and 1 BG soybean oil biodiesel core
scenarios are stacked together in the left-hand columns of each commodity type with a line
indicating the sum of the two scenarios, and the combined scenario is on the right-hand side of
the columns with the line indicating the total from this scenario. To the extent the results of the
combined scenario are additive, we would expect the pair of lines for each crop commodity to be
similar in magnitude.

The figures below do in fact show each model estimates a generally additive relationship
between the corn and soy shocks, meaning that the sum of the impact magnitudes from the core
scenarios generally equals the total magnitude of the combined scenario. The most notable
difference is that GLOBIOM has a slightly larger increase in USA regional soybean land cover
as well as a slightly larger decrease in the non-USA regional soybean land cover in the combined
shock.?!” Interestingly, we do not observe any notable changes in land cover for any other crop
commodities.

Figure 8.2.1-1: Difference in cropland area by crop in the corn ethanol shock, soybean oil
biodiesel shock, and combined shock relative to the reference case in the USA region in
2030 (ADAGE, GCAM, and GLOBIOM) and 2014 (GTAP)
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219 The detailed livestock feed market representation in GLOBIOM provides some explanation for this observation.
In the corn shock scenario, GLOBIOM estimates greater DDG production would displace some soybean meal used
for animal feed in the USA region, reducing the demand for soybeans and decreasing cropland used for soybeans. In
the combined shock scenario, demand for soybeans is driven by the soybean oil biodiesel target, and the
displacement effect of DDG in animal feed markets has less impact on cropland used for soybeans. This results in
surplus soybean meal in the USA region in the combined shock scenario, which is exported and displaces some
soybean production in non-USA regions.
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Figure 8.2.1-2: Difference in cropland area by crop in the corn ethanol shock, soybean oil
biodiesel shock, and combined shock relative to the reference case in non-USA regions in
2030 (ADAGE, GCAM, and GLOBIOM) and 2014 (GTAP)
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8.2.2 Emissions

To compare how the combined shock affects GHG emissions results in each model, we
analyzed the percent change from the combined shock relative to the sum of the core corn
ethanol and soybean oil biodiesel scenarios. ADAGE, GCAM, and GTAP estimate that the
combined scenario would results in relatively similar emissions to the sum of the individual 1
BG corn ethanol and soybean oil biodiesel core scenarios (Table 8.2.2-1). Similar to the soybean
oil biodiesel 500 MG scenario sensitivity, GLOBIOM estimates a larger percentage decrease
than the other models in cumulative LUC and total GHG emissions in the combined scenario.

Table 8.2.2-1: Percent difference in global accumulated emissions between the combined
shock scenario and the sum of the corn ethanol shock and soybean oil biodiesel shock
ADAGE | GCAM | GLOBIOM | GTAP
Percent Difference (TOTAL GHG) 0% 3% -27% 2%
Percent Difference (LUC Only) 0% 1% -45% 5%

8.2.3 Summary

In this section we compared LUC and GHG emissions impacts from the combined
scenario to the sum of the core corn ethanol and soybean oil biodiesel scenarios. Overall, across
each of the models (ADAGE, GCAM, GLOBIOM, and GTAP), the results from the combined
scenario show an additive effect in which the combined scenario generally equals the sum of the
two core scenarios across many output values and parameters. GLOBIOM estimates slightly
more variability or nonlinearity in output values than the other models. The most notable
nonlinearity is the decrease in cumulative LUC emissions in the combined scenario. The results
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from these scenarios did not support the hypothesis that shocking the models with 1 BG corn
ethanol and 1 BG soybean oil biodiesel simultaneously creates greater stress on the agriculture
systems of these models.

9 Parameter Sensitivities

Sensitivity analysis assesses how uncertainty in the output of a model can be apportioned
to different sources of uncertainty in the model input.??® The NASEM (2022) study on LCA
Methods for transportation fuels recommends sensitivity analysis in several areas of the report.
For example, the report says, “LCA studies used to inform transportation fuel policy should be
explicit about the feedstock and regions to which the study applies and to the extent possible
should explicitly report sensitivity of results to variation in these assumptions.”??! Following
these recommendations, we have conducted multiple sensitivity analyses as part of our model
comparison exercise.

When we model the environmental and economic impacts of biofuel production,
uncertainties arise in multiple forms. One type of uncertainty is model uncertainty, which is
related to the structure of the model employed. Two models with different structures and/or
solution techniques that otherwise are comparable in scope and use the same input data may
produce different results. One motivation for this model comparison exercise is to study model
uncertainty by comparing results of common scenarios from multiple models. The effect of
different models on GHG estimates is discussed above.

Another form of uncertainty is parameter or input uncertainty. Parameter uncertainty
naturally results as inputs to a model are not exactly known and/or the values of these inputs
cannot be exactly inferred.??* This section focuses on the effects of parameter uncertainty within
a given model. We performed multiple sensitivity analyses to study the influence of parameter
uncertainty on biofuel GHG emissions estimates. These sensitivity analyses are discussed in this
section. First, we performed stochastic sensitivity analysis, where input parameters are assigned
probability distributions, with GCAM, GLOBIOM and GREET. Second, we tested changes in
the soil organic carbon input data in GCAM. Third, we tested changes in land conversion
assumptions in ADAGE.

220 Saltelli, A. (2002), Sensitivity Analysis for Importance Assessment. Risk Analysis, 22: 579-590.
https://doi.org/10.1111/0272-4332.00040

221 National Academies of Sciences, Engineering, and Medicine 2022. Current Methods for Life Cycle Analyses of
Low-Carbon Transportation Fuels in the United States. Washington, DC: The National Academies Press.
https://doi.org/10.17226/26402. Recommendation 4-6. Other relevant recommendations include but are not limited
to: 2-1,2-2,4-2,4-4, 4-9, 4-10.

222 Related to parametric uncertainty is the concept of parametric variability which relates to the fact that even if
perfectly knowable, there is variability in values corresponding to parameter values in these systems. Models are
simplifications of reality and do not capture all the variability naturally occurring over time, space, and changing
conditions.
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9.1 Stochastic Parametric Sensitivities

9.1.1 GCAM

We ran a Monte Carlo simulation (MCS) with GCAM to explore the influence of a range
of parameters on the LCA estimates. The goals of the MCS are to test the behavior of the model,
evaluate the overall sensitivity of the CI estimates to variations in the input parameters, and to
test which parameters tend to have the largest influence on the results for this specific model.

We conducted this analysis using methods and software consistent with the MCS
described in Plevin et al. (2022).2** We ran the MCS by applying random values drawn from
distributions across 50 parameters. In this case, we use the term parameter to refer to a set of
related values in GCAM’s input files. For example, for this analysis we call biomass carbon
density of grassland one parameter, even though GCAM uses independent grassland biomass
carbon input values for each water basin region. For each of the three MCE scenarios (i.e.,
reference, corn ethanol shock, soybean oil biodiesel shock), we ran 1,000 trials (3,000 total
model runs). The same set of randomly drawn parameter values were used for each of the three
scenarios. We consulted with the GCAM developers to determine the likely range of legitimate
values for each parameter and then set selected distributions for each parameter based on our
own subjective judgements. In some cases we were able to leverage previous research to
determine empirically based distribution shapes. Table 9.1.1-1 describes the parameters and
distributions used in our MCS.

Table 9.1.1-1: GCAM Monte Carlo Simulation Parameter Distributions24

Name Distribution Description

bd-biomassQOil- Triangle(0.95, 1, 1.05) The EJ of biomass oil required to produce an EJ of biodiesel.
coef

Corn-etoh-corn- Triangle(0.98, 1, 1.02) The Tg of corn required to produce an EJ of corn ethanol.
coef

Crop-biomass-c Triangle(0.7, 1, 1.3) Biomass carbon density of cropland.

Grass-biomass-c Triangle(0.7, 1, 1.3) Biomass carbon density of unmanaged grass land.
Mgd-forest- Triangle(0.7, 1, 1.3) Biomass carbon density of managed forest land.

biomass-c

Mgd-pasture- Triangle(0.7, 1, 1.3) Biomass carbon density of managed pasture.

biomass-c

Other-arable- Triangle(0.7, 1, 1.3) Biomass carbon density of “other arable” land.

biomass-c

Shrub-biomass-c Triangle(0.7, 1, 1.3) Biomass carbon density of shrubland.

Unmgd-forest- Triangle(0.7, 1, 1.3) Biomass carbon density of unmanaged forest land.
biomass-c

Unmgd-pasture- Linked(grass-biomass- | Biomass carbon density of unmanaged pasture (linked with
biomass-c-linked c) grass-biomass-c).

223 Plevin, R. J., Jones, J., Kyle, P., Levy, A. W., Shell, M. J., & Tanner, D. J. (2022). Choices in land representation
materially affect modeled biofuel carbon intensity estimates. Journal of cleaner production, 349, 131477. Section 2.5
describes the MCS.

224 Unless the parameter name includes an asterisk, the draws from the given distributions were multiplied by the
GCAM default values to produce values for each trial. For parameter names with an asterisk, values from the
distribution were used directly, replacing the default values.
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crop-soil-c

Triangle(0.7, 1, 1.3)

Soil carbon density of cropland.

Grass-soil-c

Triangle(0.7, 1, 1.3)

Soil carbon density of unmanaged grass land.

Mgd-forest-soil-c

Triangle(0.7, 1, 1.3)

Soil carbon density of managed forest land.

Mgd-pasture-soil-
c-linked

Linked(grass-soil-c)

Soil carbon density of managed pasture.

Other-arable-soil-c

Triangle(0.7, 1, 1.3)

Soil carbon density of “other arable” land.

Peat-CO2- Uniform(0.5, 2.0) CO; emissions from peatland conversion.

emissions

Peat-CO2- Linked(peat-CO2- CO; emissions from peatland conversion on unmanaged land.
emissions-linked emissions)

Shrub-soil-c Triangle(0.7, 1, 1.3) Soil carbon density of shrubland.

Unmgd-forest-soil-
c

Triangle(0.7, 1, 1.3)

Soil carbon density of unmanaged forest land.

Unmgd-pasture-
soil-c-linked

Linked(grass-soil-c)

Soil carbon density of unmanaged pasture (linked with grass-
soil-¢).

N-fertilizer-rate

Triangle(0.7, 1, 1.3)

Quantity of N fertilizer required per mass of crop harvested.

Ag-energy-coef

Triangle(0.7, 1, 1.3)

Energy consumption coefficient for crop production.

Ag-energy-freight-
coef

Triangle(0.5, 1.0, 3.0)

Energy consumption coefficient for transport of ag and energy
commodities.

Crop-productivity

Triangle(0.7, 1, 1.3)

Annual change in agricultural productivity (yield).

Irrig-rainfed-logit-
exp

Triangle(0.333, 1, 3.0)

Logit exponent controlling competition between irrigated and
rainfed land.

Mgmt-level-logit-
exp

Triangle(0.333, 1, 3.0)

Logit exponent controlling competition between high and low
crop management levels.

N2o-emissions

Triangle(0.5, 1, 2.0)

N->O emissions intensity of agricultural production.

Veg-oil-demand-
logit-exp

Triangle(0.333, 1, 3.0)

Controls substitution among types of vegetable oil

water-wd-price

Triangle(0.333, 1, 3.0)

The price of withdrawn water.

Non-staples-
demand-share-
logit*

Uniform(-5.0, 0.0)

Logit exponent controlling shifting between non-staple foods.
Standard value is O in all regions.

Agro-forest-logit-
exp

Triangle(0.333, 1, 3.0)

Logit exponent controlling competition between forest-grass-
crop and pasture.

Cow-sheepgoat-
feed-logit

Triangle(0.5, 1, 2.0)

Logit exponent controlling competition between Beef, Dairy,
and SheepGoat, which determines the sharing between Mixed
and Pastoral subsectors.

Crop-logit-exp

Triangle(0.333, 1, 3.0)

Logit exponent controlling competition among crops.

Forest-grass-crop-
logit-exp

Triangle(0.1, 1.0, 3.0)

Logit exponent controlling competition among forest, grassland,
and cropland.

Forest-logit-exp

Triangle(0.333, 1, 3.0)

Logit exponent controlling competition between managed and
unmanaged forest.

Pasture-logit-exp

Triangle(0.333, 1, 3.0)

Logit exponent controlling competition between managed and
unmanaged pasture.

Regional-crop-

Triangle(0.333, 1, 3.0)

Logit exponent controlling competition between imports and

logit-exp domestic ag products.

Traded- Triangle(0.333, 1, 3.0) Logit exponent controlling competition in traded ag
commodity-logit- commodities.

exp

Traded- Triangle(0.333, 1, 3.0) Logit exponent controlling competition among exports in each
commodity- traded commodity sector

subsector-logit-exp
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ng-upstream-ch4 Uniform(0.9, 1.3) CH,4 emissions upstream from natural gas production processes
and transport.

Population-factor* | Triangle(0.0, 0.5, 1.0) Defines a path between the lower and higher bounds of the
UNDP 95 percent confidence interval around population
projections.

Resource-energy- | Triangle(0.5, 1, 1.5) Energy consumption coefficient for producing energy

coef commodities.

Biodiesel- Triangle(0.5, 1, 2.0) Controls substitution among types of biodiesel

competition-logit-

exp

pass-road-ldv-4W- | Triangle(0.5, 1, 2.0) Logit exponent controlling substitution among Compact Car,

logit-exp Midsize Car, Large Car, Light Truck and SUV.

Pass-road-1dv-4W- | Triangle(0.5, 1, 2.0) Logit exponent controlling substitution among 4WD vehicle

vehicle-logit-exp fuel technology options include BEV, FCEV, Hybrid liquids,
Liquids, and NG.

pass-road-ldv- Triangle(0.5, 1, 2.0) Logit exponent controlling substitution between 2- and 4-wheel

logit-exp light-duty vehicles.

Ref-fuel-enduse- Triangle(0.333, 1, 3.0) Controls substitution in supplies of refined fuel for “end use”

ex-US outside the USA.

Staples-price- empirical Price elasticity of demand for staple foods

elast*

non-staples-price- | empirical Own price elasticity of non-staple food demand.

clast*

Non-staples- empirical Income elasticity of non-staple food demand.

income-elast*

In some cases, combinations of parameters push the model beyond its ability to match
supply and demand in all markets simultaneously, in which case the model fails to solve. As
shown in the table above, we primarily used triangular distributions to reduce the likelihood,
relative to normal distributions, of outlier parameter draws, thus reducing the number of model
failures. Nonetheless, some of the trials failed to solve; the actual number of reference
case/shock pairs completed for each model version was 916 for corn ethanol (91.6 percent) and
918 for soybean oil biodiesel (91.8 percent). We investigated the source of failures and found the
parameter perturbations most likely causing the failures are some combination of: crop-logit-exp,
staples-price-elast, agro-forest-logit-exp, veg-oil-competition-logit-exp and forest-grass-crop-
logit-exp. The purpose of the MCS is to understand the model’s response to parameter variation.
We could reduce the failure rate by narrowing the distributions for these parameters, but this
would come at the cost of gaining insights about how wider distributions influence the model.
Furthermore, evaluating which parameters tend to cause model failures provides valuable
information about the model. For these reasons, we did not to adjust our MCS setup to reduce the
failure rate.

The following figure presents the results of our MCS experiment with GCAM as
distributions of CI estimates for corn ethanol and soybean oil biodiesel. Although the figure
presents the MCS results in probabilistic terms, the actual probability of any given GHG
emissions impact cannot be determined from this analysis. Our sensitivity analysis only reveals
the likelihood of an outcome given all of the inputs into our analysis, such as the version of
GCAM, the reference parameter values, the solution technique, the definitions chosen for the
parameters evaluated, and the distributions for the parameters evaluated. Although the figure
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does not tell us the actual probability of a given outcome, it provides information about the
general tendency of the model and the variance of results due to parametric uncertainty.

Figure 9.1.1-1: Distribution of GCAM (a) land use change carbon intensity and (b) overall
carbon intensity estimates for corn ethanol and soybean oil biodiesel based on the MCS?*
(a) LUC emissions only
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In the above figure, we present the distribution of land use change CI separately from the
distribution of overall CI. We extract the land use change CI to facilitate comparisons with other
studies or models that only report land use change emissions. While we do this separation to
facilitate comparison, we caution against considering the land use change estimates in isolation,
without considering the influence of scenario design and other sectors on the land use change
estimates. For example, in many of the soybean oil biodiesel trials, non-USA biodiesel
consumption decreases relative to the reference case, which tends to decrease land use change
emissions but tends to increase overall emissions because it is associated with greater use of
refined oil.

Based on the above figure, we observe that GCAM tends to estimate higher CI for
soybean oil biodiesel than corn ethanol, for both land use change and overall. The majority of
overall CI estimates for corn ethanol are less than zero, meaning that over the 2020-2050 period
considered, the modeled corn ethanol shock tends to result in a decrease in global GHG

225 Boxes indicate interquartile range; whiskers indicate 5th and 95th percentiles; vertical line indicates median
value. For corn ethanol, the median land use change carbon intensity is 22 gCO»e/MJ with 95 percent interval from
2 to 48 gCO,e/MJ. For corn ethanol, the median overall carbon intensity is -21 gCO2e/MJ with 95 percent interval
from -48 to § gCO,e/MJ. For soybean oil biodiesel, the median land use change carbon intensity is 53 gCO,e/MJ
with 95 percent interval from 9 to 106 gCO,e/MJ. For soybean oil biodiesel, the median overall carbon intensity is
40 gCO,e/MJ with 95 percent interval from -5 to 93 gCO,e/M1J.
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emissions, inclusive of reductions in refined oil consumption. Conversely, a large majority of the
overall CI estimates for soybean oil biodiesel are greater than zero. The overall CI distributions
for the two fuels overlap, but in every trial (i.e., each set of runs with identical parameter values)
the overall CI of corn ethanol is at least 24 gCO2e MJ! smaller than that of soybean oil biodiesel.
This is explained by the fact that that the most influential parameters have the same directional
effect on the CI estimates for both corn ethanol and soybean oil biodiesel. Finally, the figure
shows that the interval spanning the central 95 percent of CI estimates is about twice as wide for
soybean oil biodiesel relative to corn ethanol, indicating a higher level of parameter uncertainty
for soybean oil biodiesel.

As part of the MCS experiment, we identified the parameters most strongly influencing
the variance in GHG emissions results. We did this by computing the rank correlations between
the values for each random variable and the resulting GHG emissions across all MCS trials. The
rank correlations are squared and normalized to sum to one to produce an approximate
“contribution to variance.” In the tornado charts below, the sign of the correlation is applied after
normalization. These figures show the strength of the influence of the 15 most influential input
parameters on the variance in the output (GHG emissions), in descending order, with the
magnitude and direction corresponding to the strength and direction of the correlation
respectively. A contribution to variance further from zero indicates that the parameter is more
influential. A positive contribution to variance indicates that as the parameter value increases or
decreases the CI estimates tend to move in the same direction. A negative contribution to
variance indicates the opposite. Following the figures, we discuss our interpretation of the
findings.
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Figure 9.1.1-2: Tornado chart of most the influential parameters on corn ethanol land use
change carbon intensity estimates with GCAM
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Figure 9.1.1-3: Tornado chart of most the influential parameters on corn ethanol overall
carbon intensity estimates with GCAM
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Figure 9.1.1-4: Tornado chart of most the influential parameters on soybean oil biodiesel
land use change carbon intensity estimates with GCAM
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Figure 9.1.1-5: Tornado chart of most the influential parameters on soybean oil biodiesel
overall carbon intensity estimates with GCAM
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For overall CI, the tornado charts show that, for this MCS experiment, about 6
parameters have an outsized influence on the estimates. This does not mean the other parameters
have no effect, but rather that their influence is overwhelmed by the 6 most influential
parameters. The 6 most influential parameters for corn ethanol CI are also the 6 most influential
parameters for soybean oil biodiesel, with minor differences in their rank order. All of the 6 most
influential parameters for overall CI are directly related to emissions from land use and land use
change.

For both fuels, the most influential parameter is forest-grass-crop-logit-exp, the
parameter controlling the flexibility of competition among forest, grassland, and cropland.
Higher values for this parameter mean more flexibility for price-driven land use changes among
these land categories. For example, given an increase in crop prices, higher values for this
parameter will translate to larger increases in crop area at the expense of grassland and forest
area. This finding helps to clarify that land conversion flexibility is not only a source of
uncertainty for GHG emissions impacts of biofuels between models, as we observe in Sections
6.6 and 7.6 above. It is also a source of uncertainty within models, at least for GCAM.

The other most influential parameters for both fuels are: 1) crop-soil-c, the soil carbon
density of cropland, 2) n2o-emissions, the N2O emissions intensity of agriculture, 3) crop-logit-
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exp, the flexibility of competition among crops, 4) agro-forest-logit-exp, the flexibility of
competition between forest, grassland, cropland and pasture, and 5) unmgd-forest-soil-c, the soil
carbon density of unmanaged forest land.

When we look at the most influential parameters on the CI of land use change, we see
almost the same group of influential parameters, but with two exceptions. First, the n2o-
emissions parameter is absent from the tornado charts for land use change CI. N2O emissions are
an important component of crop production emissions in the GCAM results. This parameter is
only absent because we define land use change CI as the projected global change in CO2
emissions from LUC per unit of additional corn ethanol production, with both quantities summed
annually from 2021 through 2050 (i.e., it excludes N2O emission). The second exception is that
ref-fuel-enduse-ex-US parameter shows up as one of the most influential parameters for soybean
oil biodiesel land use change CI. This parameter controls substitution in supplies of refined fuel
outside the USA. For example, it controls substitution between biodiesel and petroleum diesel in
non-USA regions. As discussed above, in GCAM the soybean oil biodiesel shock tends to reduce
biodiesel consumption outside the USA, which increases petroleum diesel consumption and
requires less land for biodiesel feedstocks. Thus, higher values for ref-fuel-enduse-ex-US tends to
result in lower land use change emissions, but increases other emissions, resulting in a small net
effect on overall CI.

Overall, our MCS experiment with GCAM provides several insights. Parameter
uncertainty is an important factor for CI estimates of corn ethanol and soybean oil biodiesel with
GCAM. Based on this experiment, CI estimates for soybean oil biodiesel are more sensitive to
parameter uncertainty than such estimates for corn ethanol. Parameters related to land use change
have the most influence on CI estimates. In particular, parameters related to soil carbon densities
and ease of substitution between land categories are highly influential, and thus warrant special
attention.

9.1.2 GLOBIOM

We ran a Monte Carlo simulation (MCS) with GLOBIOM to explore the influence of a
range of parameters on land use change carbon intensity (LUC CI) for soybean oil biodiesel.??®
The goals of the GLOBIOM MCS mirror those of the GCAM MCS discussed in Section 9.1.1; to
test the behavior of the model and to evaluate the overall sensitivity of the CI estimates to
variations in the input parameters.

The approach used in the GLOBIOM MCS was similar to that used in the GCAM MCS
described in Section 9.1.1. We ran the MCS by applying random values drawn from distributions
defined for 11 parameters. For each of two cases (i.e., a reference case and a soybean oil

226 The GLOBIOM MCS was conducted prior to the initiation of this MCE and, as such, differs somewhat in its
scenario design and assumptions. Differences between the version of GLOBIOM used in the MCE include some
minor updates of corn food consumption trends to better match historic development (2010, 2020) in a number of
different regions represented in GLOBIOM. The changes shift upward the food demand projections in both the
reference and shock scenarios. Additionally, the shock scenario in the MCS was specified as one billion gallons
gasoline equivalent of soybean oil biodiesel above reference case levels, whereas the shock in the MCE was
specified as one billion wet gallons of soybean oil biodiesel consumption above reference case levels.
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biodiesel shock), we ran 1,000 trials (2,000 scenario runs total). The same set of randomly drawn
parameter values were used for both of the two cases.

The eleven identified parameters were chosen by GLOBIOM developers based on expert
knowledge and previous research.??”2?%:22% These include seven economic parameters and four
biophysical parameters. The parameters and distributions used in the GLOBIOM MCS are
described below in Table 9.1.2-1. Each parameter distribution below represents a set of related
input values in GLOBIOM which are adjusted simultaneously based on the drawn value of the
parameter in a given trial. For example, a value drawn for the parameter labeled “Demand
elasticity (vegetable oils)” in Table 9.1.2-1 below is a multiplicative scalar which simultaneously
adjusts the demand elasticity for each vegetable oil and each region represented in GLOBIOM.

Three of the parameters in Table 9.1.2-1 represent collections of inputs which each have
independently drawn scalar values from the identical distribution. These parameter groups are
indicated with bold names and described in the Description column. When accounting for these
parameter groups, 72 separate values are drawn for each of 1,000 trials in the MCS.

227 Valin, H., D. Peters, M. van den Berg, S. Frank, P. Havlik, N. Forsell & C. Hamelinck (2015) The land use
change impact of biofuels consumed in the EU. Quantification of area and greenhouse gas impacts. Ecofys, Utrecht
(the Netherlands).

228 Nelson, G. C., H. Valin, R. D. Sands, P. Havlik, H. Ahammad, D. Deryng, J. Elliott, S. Fujimori, T. Hasegawa,
E. Heyhoe, P. Kyle, M. Von Lampe, H. Lotze-Campen, D. Mason d'Croz, H. van Meijl, D. van der Mensbrugghe, C.
Muller, A. Popp, R. Robertson, S. Robinson, E. Schmid, C. Schmitz, A. Tabeau & D. Willenbockel (2014) Climate
change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci U S A4, 111, 3274-9.
https://doi.org/10.1073/pnas.1222465110

22 Valin, H., R. D. Sands, D. van der Mensbrugghe, G. C. Nelson, H. Ahammad, E. Blanc, B. Bodirsky, S.
Fujimori, T. Hasegawa, P. Havlik, E. Heyhoe, P. Kyle, D. Mason-D'Croz, S. Paltsev, S. Rolinski, A. Tabeau, H. van
Meijl, M. von Lampe & D. Willenbockel (2014) The future of food demand: understanding differences in global
economic models. Agricultural Economics, 45, 51-67. https://doi.org/10.1111/agec.12089
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Table 9.1.2-1: GLOBIOM Monte Carlo simulation parameter distributions?3%23!

Name

Distribution

Description

Demand elasticity
(vegetable oils)

Log-uniform(0.5, 2)

Own-price and cross-price elasticities of demand for
vegetable oils. Determines adjustments in food uses of
vegetable oils.

Demand elasticity
(animal products)

Log-uniform(0.5, 2)

Own-price and cross-price elasticities of demand for animal
products (meat and dairy). Determines adjustments in food
uses of animal products.

Trade elasticity
(vegetable oils)

Log-uniform(0.75, 4)

Response of bilaterally traded quantities of vegetable oils to
changes in market prices.

Separate scalar values are drawn from identical distributions
for each of the four vegetable oils represented in
GLOBIOM.

Substitution
elasticity
(vegetable oils)

Log-uniform(0.75, 4)

Substitutability of vegetable oils for all uses, given a change
in their market price.

Separate scalar values are drawn from identical distributions
for each of 58 different global regions represented in
GLOBIOM.

Cropland and
pasture expansion
into natural
vegetation

Log-uniform(0.5, 2)

Extent to which cropland and grazing pasture can expand
into natural land uses, represented by land transition costs.
Separate scalar values are drawn from identical distributions
for cropland and grazing pasture.

Yield elasticity
(corn and soybean)

Log-uniform(0.9, 1.1)

Changes in corn and soybean yields in response to changes
in crop prices.

Yield projection
(corn and soy)

Log-uniform distribution
between SSP3 and SSP5
assumptions.

Exogenous yield change over time for corn in the USA
region and soybeans in the USA, Brazil, and Argentina
regions.

Expansion response
of palm into

Uniform(0.5, 1.5)

Degree of expansion of palm plantation into peatland in
Indonesia and Malaysia.?*

peatland

Peatland emission Lognormal distribution on | Peatland emission intensity per unit of area converted in
factor on range of 49 to 8549 tCO, | Indonesia and Malaysia.

undisturbed forest* | ha™! yr'!

Emission factor for
carbon sequestration
in biomass on palm
plantations

Normal(0.59, 1, 1.41)

Carbon sequestration (as CO>) in palm plantations in
Indonesia and Malaysia per unit of area. Range based on
(IPCC 2019).2%

Emission factors
from forest biomass
loss

Normal(0.5, 1, 1.5)

Emissions per unit of area due to forest clearing.

230 Bold parameter names indicate related groups of parameters. Unless the parameter name includes an asterisk,
the draws from the given distributions were multiplied by the GLOBIOM default values to produce values for each
trial. For parameter names with an asterisk, values from the distribution were used directly, replacing the default

values.
231

Note that some of the scalar distributions in this MCS are not balanced around the central value (scalar of 1). For

example, in the distribution for trade elasticity of vegetable oils (Log-uniform(0.75, 4)), roughly 17 percent of the
draws would be expected to be below one, and thus decrease the value of the given vegetable oil trade elasticity, and
roughly 83 percent of the draws would be expected to be above one, and thus increase that elasticity.

232 In GLOBIOM, expansion of palm plantations is assumed to occur in peatland and non-peatland at a fixed ratio,

which we adjust stochastically in this MCS analysis.
23 IPCC. 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4:
Agriculture, Forestry and Other Land Use. Geneva (Switzerland): Intergovernmental Panel on Climate Change.
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Figure 9.1.2-1 below presents distributions of carbon intensity factors for a number of
different emissions categories, after excluding trials considered outliers.?** Although the figure
presents the MCS results in probabilistic terms, the actual probability of any given GHG
emissions impact cannot be determined from this analysis. Our sensitivity analysis only reveals
the likelihood of an outcome given all of the inputs into our analysis, including the version of
GLOBIOM, the reference parameter values, and the distributions for the parameters evaluated.
Although the figure does not tell us the actual probability of a given outcome, it provides
information about the general tendency of the model and the variance of results due to
parametric uncertainty.

Figure 9.1.2-1: Distributions of carbon intensities from different categories of emissions for
soybean oil biodiesel based on the GLOBIOM MCS. >3

LUC - Biomass [
LUC - SOC — [
LUC - Peat S fE—————
LUC - Total T

Livestock production ﬂ>
Crop production 4>

-50 0 50 100
gCO.e MJ '

The MCS produced a range of LUC CI results (9.5, 40.6, and 73.5 gCO2¢e/M]J for the 10™
percentile, mean, and 90™ percentile respectively), with variation in emissions from biomass loss
accounting for a substantial portion of the variability in total LUC emissions. Note that the mean
value of total LUC CI for the GLOBIOM MCS is larger than the LUC CI estimate from the

234 Qutliers are identified in these results based on the so-called “1.5 rule”, assuming that the distribution of
emissions factors follows a normal distribution. According to this rule, a data point is considered an outlier if it is
less than (Q1 - 1.5*IQR) or greater than (Q3 + 1.5*IQR), where IQR is the interquartile range and Q1 and Q3 are
the first and third quartiles of the distribution, respectively. Outlier trials were identified using this rule for each of
three emissions categories — total land use change, crop production, and livestock production — after which all
identified outlier trials were excluded from the following results analysis. In total, 42 outlier trials were excluded
using this procedure.

235 Vertical lines within distributions represent mean values. “LUC — Biomass” includes emissions changes from
biomass loss from land use change, changes in agricultural biomass, natural reversion of land, and carbon
sequestered in harvested wood products. “LUC — SOC” emissions are land use change emissions from soil organic
carbon. “LUC — Peat” emissions are land use change emission from oxidation of peatlands. “LUC — Total” is the
sum of the above land use change emissions categories.
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soybean oil biodiesel shock scenario in the MCE. This difference arises for two reasons; 1) the
version of GLOBIOM used in the MCE was a more recent version of the model, with several
updated assumptions (see footnote above); and 2) some of the distributions of scalar values
applied to the parameters are weighted towards increasing the value of the parameter, which may
result in more trials showing CI values on one side of the central MCS scenario than the other.
This difference illustrates the limitation discussed above, but worth reiterating; distributions of
CI values produced through this MCS analysis are dependent on the inputs of the analysis and
should not be interpreted as representative of the probability of a given GHG emissions impact.

However, there are still meaningful observations we can make using these results.
GLOBIOM’s estimates of GHG emissions from land use change, particularly emissions from
biomass loss but also from other subcategories of estimated LUC emissions, appear to be more
sensitive to parametric variations, at least for the parameters and distributions included in this
study, than estimates of emissions from livestock production and from crop production. This
observation reinforces the importance of continued study of model assumptions affecting LUC
and LUC CI and of considering uncertainty in LUC CI estimates.

In a process similar to that used in the GCAM MCS described in Section 9.1.1 above, we
identified the parameters most strongly influencing the variance in LUC CI. We did this by
computing the rank correlations between the values for each random variable and the resulting
LUC CI estimate across all MCS trials. The rank correlations are squared and normalized to sum
to one to produce an approximate “contribution to variance.” In Figure 9.1.2-2 below, the sign of
the correlation is applied after normalization. This figure shows the strength of the influence of
each input parameter on the variance in the output (LUC CI), in descending order, with the
magnitude and direction corresponding to the strength and direction of the correlation
respectively. A contribution to variance further from zero indicates that the parameter is more
influential. A positive contribution to variance indicates that as the parameter value increases or
decreases the CI estimates tend to move in the same direction. A negative contribution to
variance indicates the opposite.
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Figure 9.1.2-2: Tornado chart of most the influential parameters in GLOBIOM MCS on
soybean oil biodiesel land use change carbon intensity.23¢
-0.1 0.0 0.1 0.2 0.3 0.4
Expansion response of palm into peatland
EF from forest biomass loss
Yield projection (corn and soy) -
Substitution elasticity (vegetable oils)
Peatland EF on undisturbed forest .
Yield elasticity (corn and soybean) .
EF for carbon in biomass on palm plantations
Cropland and pasture expansion into natural vegetation
Demand elasticity (vegetable oils)

Trade elasticity (vegetable oils)

Demand elasticity (animal products)

Contribution to variance in LUC CI

The two parameters found to have the largest contribution to variance in LUC CI were
the expansion response of palm into peatland and the emissions factor from forest biomass loss.
The positive correlation of these parameters with LUC CI is logical; larger values of the first
result in greater expansion of palm plantations into peatland in response to the increased demand
for vegetable oils imposed under a soybean oil biodiesel shock. Larger values of the second
increase the emissions associated with forest loss in response to the shock. The sensitivity of
GHG emissions estimates to these parameters highlights the importance of further examination
of all of the models’ parameterizations of land transitions, carbon fluxes, and representation of
peat lands.

The parameter with the third largest contribution to variance of LUC CI is the assumed
yield growth of corn and soy throughout the duration of the GLOBIOM run, which is negatively
correlated with LUC CI. Again, this relationship is logical; lower yield growth results in lower
yields in the future, which means that producing feedstock (soybeans) to meet the shock requires
additional cropland area and results in greater areas of land use change. The relative impact of
this parameter highlights the importance of considering the impact of assumptions about baseline
trends and how they continue into the future.

Finally, we note the relative importance (4" in Figure 9.1.2-2) of the substitution
elasticity of vegetable oils. Increasing the assumed substitutability of vegetable oils allows the
model to backfill more easily for deficits in soybean oil use with other oilseed oils, including

236 For parameters which represent groups of independently adjusted model inputs (indicated in bold), the
contributions to variance across all inputs within a given parameter group are summed. For all three of the grouped
parameters, this results in some cancellation because the signs of the calculated contributions to variance differ
among the inputs within a group. An alternative MCS design which instead used a single value applied to all model
inputs within these parameter groups may be expected to increase the relative contribution to variance of these
parameters.
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from palm and rapeseed. This results in increased diversion of soybean oil from food and other
uses. The impacts of this substitution on land use change and emissions are not straightforward,
vary by region and type of vegetable oil substitution, and interact with other parameters
perturbed in this MCS.?7 This complicating layer of market interaction contributes to the wider
range of estimated GHG emissions impacts of soybean oil biodiesel relative to corn ethanol.

9.1.3 GREET

We worked with Argonne to develop the lifecycle GHG emissions analyses presented in
Section 6.7 and Section 7.7. These analyses rely on many input values from many sources
including government (e.g., USDA, EPA, DOE), academia, and industry. All these input values
are subject to some level of variation and uncertainty. We worked with Argonne to conduct
multiple sensitivity analyses with the GREET model®*® to explore the influence of the inputs and
assumptions in the model framework on the results. This exercise allowed us to observe some of
the most influential and important factors to consider for further research to address uncertainty.
We conducted three sensitivity analyses, where we varied one parameter or assumption at a time,
and one stochastic sensitivity analysis (Section 9.1.3.4) where we varied all of the input
parameters simultaneously based on random draws from statistical distributions. Each of these
analyses are described in this section.

9.1.3.1 Parameter Input Data

To support our parametric sensitivity analyses we used data that Argonne has previously
collected from various sources. These data provide information about the variation in some of
the key input values to GREET. For farming input data, the main source of the variation is
geographic, and the source of variation for ethanol production data is differences among
individual corn ethanol facilities. The value and ranges for these parameters were used in both
the sensitivity and stochastic (Section 9.1.3.4) analyses discussed below. The tables below list
the parameter values and their ranges for corn ethanol and soybean oil biodiesel. The tables also
indicate the shape of the distribution used for each parameter for the stochastic analysis. For
parameters where Argonne had a relatively large data set on variation they used a normal
distribution, whereas they used a triangular distribution for parameters informed with less data
on variation.

Most of the data used in support of corn ethanol sensitivities is documented in Lee et al.
(2021).%° For corn farming, that includes data from USDA datasets (National Agricultural
Statistics Service [NASS], the Economic Research Service [ERS], and the Office of the Chief

237 For example, the effect on GHG emissions of greater substitution of palm oil for soybean oil used for food and
fuel production in Southeast Asia is amplified or muted by the parameters governing the expansion response of palm
plantations onto peatland, emissions factors associated with forest biomass loss, and the carbon in biomass on palm
plantations.

238 Sensitivity analyses presented in this section were run using GREET-2022 for the 2021 time step. This is the
default time step for the model. We decided to conduct sensitivity analyses for the 2021 time step as the data used to
inform the parameter ranges is more representative of 2021 than 2030.

2% Lee, Uisung, Hoyoung Kwon, May Wu, and Michael Wang (2021). “Retrospective Analysis of the US Corn
Ethanol Industry for 2005-2019: Implications for Greenhouse Gas Emission Reductions.” Biofuels, Bioproducts and
Biorefining 15 (5): 1318-31.
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Economist [OCE] reports). Ethanol production data relies heavily on a corn ethanol
benchmarking and an agricultural consulting company that has conducted quarterly surveys of 65
dry mill ethanol facilities between 2005 — 2019 and includes ethanol yields (with corn inputs and

ethanol production), energy inputs by type (natural gas, coal, and electricity), chemical inputs,
and the yields of coproducts. Argonne used the 10th percentile (P10) and the 90th percentile
(P90) values as the high and low bounds of the ranges for ethanol production parameters in this
exercise. The full set of input parameters and their ranges for corn ethanol are shown below in

Table 9.1.3-1.

Table 9.1.3-1: GREET Corn Ethanol Sensitivity and Stochastic Simulation Input
Parameter Distributions for Model Year 2021

Name Distribution?4? Units
Farming: Corn yield Normal (113, 178, 191) bushels/acre
Farming: Corn yield (Nine states)?*! Normal (153, 178, 191) bushels/acre
Farming: N fertilizer Normal (72, 158, 187) Ibs/acre
Farming: P fertilizer Normal (33, 59, 89) lbs/acre
Farming: K fertilizer Normal (16, 60, 130) Ibs/acre
Farming: N,O rate Normal (0.8, 1.26, 1.6) percent
Farming: Herbicide Normal (0.0, 2.3, 3.2) Ibs/acre
Farming: Insecticide Normal (0.0, 0.0, 0.2) Ibs/acre
Farming: Diesel Normal (630,025; 927,625; 1,578,474) BTU/acre
Farming: Gasoline Normal (115,686; 143,155; 201,905) BTU/acre
Farming: Natural gas Normal (0; 85,504; 260,170) BTU acre
Farming: LPG Normal (57,257; 183,004; 290,957) BTU/acre
Farming: Electricity Normal (72,741; 236,548; 950,459) BTU /acre
Corn transportation distance Normal (32, 40, 48) miles
Ethanol: Yield Triangular (2.7, 2.9, 3.0) gal/bu
Ethanol: DGS yield Triangular (3.7, 4.6, 5.5) Ibs/gal
Ethanol: Natural gas Triangular (8,846; 22,386; 30,961) BTU/gal
Ethanol: Electricity Triangular (600; 2,098; 3,646) BTU/gal

For soybean farming, the data informing the sensitivity analysis was mostly documented
in Xu et al. (2022)*** and primarily comes from USDA’s National Agricultural Statistics Service
(NASS) Quick Stats database.?** Farm energy use data was obtained from USDA’s ERS based
on the Agricultural Resource Management Survey. The farming data covers 19 major soybean-

240 In the parentheses, the first value is the P10 value, the middle value is the default assumption in GREET, and the

third value is the P90 value.

241 Corn is grown in many states in the United States but is primarily grown in the Midwest region across nine states.
For this sensitivity analysis, we present both the fuller range of corn yields across the U.S., and this subset of nine
primary corn growing states, which has a tighter range of corn yields.
242 Xu, Hui, Longwen Ou, Yuan Li, Troy R. Hawkins, and Michael Wang. 2022. “Life Cycle Greenhouse Gas
Emissions of Biodiesel and Renewable Diesel Production in the United States.” Environmental Science &
Technology 56 (12): 7512-21. https://doi.org/10.1021/acs.est.2c00289.

243 USDA National Agricultural Statistics Service Quick Stats Database. Available at:

https://quickstats.nass.usda.gov/
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producing U.S. states. Parameter data on biodiesel production (e.g., chemical inputs, energy
consumption, product yields) came from an Argonne-led industry survey conducted of biodiesel
producers in 2021 with support from what was then known as the National Biodiesel Board
(NBB) and is now known as Clean Fuels Alliance America as documented in Xu et al. The full
set of input parameter values and their ranges for soybean oil biodiesel are shown below in Table

9.1.3-2.

Table 9.1.3-2: GREET Soybean Oil Biodiesel Sensitivity and Stochastic Simulation Input
Parameter Distributions for Model year 2021

Name Distribution?* Units
Farming: Soybean yield Triangular (31.4, 50.6, 61.7) bushels/acre
Farming: N fertilizer Triangular (1.3, 4.9, 15.6) Ibs/acre
Farming: P fertilizer Triangular (12.4, 23.2, 54.8) Ibs/acre
Farming: K fertilizer Triangular (2.9, 36.8, 92.6) Ibs/acre
Farming: Herbicide Triangular (1.5, 2.2, 3.8) Ibs/acre
Farming: Insecticide Triangular (0.002, 0.03, 0.40) Ibs/acre
Farming: Energy use Triangular (338,791; 694,421; 1,373,805) BTU /acre
Biodiesel production: Methanol use Triangular (926, 945, 964) BTU/Ib BD
Biodiesel production: Energy use Triangular (437, 514, 592) BTU/Ib BD
Biodiesel production: Biodiesel yield Triangular (0.133, 0.136, 0.138) gal BD/Ib oil

Triangular (4.4, 4.6, 4.9) dry lbs
Oil extraction: Oil yield soybean/

1b soybean oil

Oil extraction: Energy use Triangular (2,765; 3,073; 3,380) BTU/Ib oil
Biodiesel production: Glycerin yield Triangular (0.09, 0.10, 0.11) 1b/Ib BD

9.1.3.2 Parameter Sensitivity Scenario Analysis

The first set of parametric sensitivities presented here was developed with Argonne and
assessed the modeling framework by considering variations and ranges of the key parameters
shown above and their individual impacts on the carbon intensities of corn ethanol and soybean
oil biodiesel produced in the United States. We conducted these sensitivity analyses by varying
each major input parameter shown in Table 9.1.3-1 for corn ethanol and Table 9.1.3-2 for
soybean oil biodiesel across their full range of values, each one at a time while keeping all the
other parameter values constant. By varying one parameter at a time, while holding others
constant, we can see the relative impact of each parameter on the final estimated LCA results.
This is also informative for identifying areas of uncertainty and necessary further research.
However, this "one at a time approach” provides less information than a stochastic analysis about
the potential range of results stemming from parameter uncertainty. This is because one at a time
analysis does not consider the effect of multiple parameters simultaneously varying from their
default input values. For example, if corn yield is higher than the default input value and
simultaneously the farming nitrogen fertilizer rate is actually lower than the default input value,
the actual carbon intensity may be lower than any of the results depicted in the Figure 9.1.3-1.

244 In the parentheses, the first value is the P10 value, the middle value is the default assumption in GREET, and the
third value is the P90 value.
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We used the parameter values in Table 9.1.3-1 for corn ethanol in GREET-2022
representing 2021 to conduct the sensitivity analysis of each individual parameter against a
baseline CI value of 45.9 gCO2/MJ derived using GREET’s default assumptions (including
coproduct allocation assumptions). This value excludes LUC impacts from GREET’s separate
CCLUB module that are discussed further below. Figure 9.1.3-1 shows the results of the
sensitivity analysis for corn ethanol minus GREET’s CCLUB derived LUC impacts. Parameters
are ordered by their relative individual influence on the overall CI with the most impactful
parameters at the top of the figure.

Figure 9.1.3-1: Sensitivity analysis results of USA corn ethanol carbon intensity values

ranked by relative influence of each parameter’s potential impact in GREET
30 35 40 45 50 55 60

Ethanol: Natural gas, Btu/gal (+ 38%/-60%)
Farming: Corn yield, bu/acre (+ 7%/-37%)
Farming: N fertilizer, Ib/acre (+ 18%/-54%)
Ethanol: Electricity, Btu/gal (+ 74%/-71%)
Farming: Corn yield (9 states), bu/acre (+ 7%/-14%)
Ethanol: DGS yield, Ib/gal (+ 20%/-20%)

Ethanol: Yield, gal/bu (+ 3%/-4%)

Farming: Electricity, Btu/acre (+ 302%/-69%)
Farming: Diesel, Btu/acre (+ 70%/-32%)

Farming: N20 rate, % (+ -37%/27%)

Farming: P fertilizer, Ib/acre (+ 50%/-44%)
Farming: K fertilizer, Ib/acre (+ 117%/-73%)
Farming: Herbicide, Ib/acre (+ 39%/-100%)
Farming: Natural gas, Btu/acre (+ 204%/-100%)
Farming: LPG, Btu/acre (+ 59%/-69%)

Corn transportation distance, miles (+ 20%/-20%)
Farming: Gasoline, Btu/acre (+ 41%/-19%)
Farming: Insecticide, Ib/acre (+ 3354%/-100%)

Based on the data provided, overall CI for corn ethanol saw the largest variation and
influence in this exercise from the amount of natural gas used in processing and producing
ethanol in facilities with a wide range of efficiencies representing a difference of roughly 20
grams of CO2 per MJ of ethanol produced. Corn yields from farming corn was the next most
important factor when considering the variation in growing corn across the country. A subset of
these corn yields appears further down the list when considering only the nine states in the
Midwest. These states represent the majority of corn production volume and have higher corn
yields than most of the country. Corn farming and corn ethanol production do take place across
many states outside the Midwest,?** and we present both variations of this parameter for context.
Nitrogen fertilizer used to obtain higher crop yields was the third highest parameter of
importance in this sensitivity analysis.

We used the parameter values in Table 9.1-3 for soybean oil biodiesel in GREET-2022
representing 2021 to conduct the sensitivity analysis of each individual parameter against a
baseline CI value of 22.0 gCO2/MJ derived using GREET’s default assumptions (including
coproduct allocation assumptions). This value also excludes LUC impacts from GREET’s
separate CCLUB module that are discussed further below. Figure 9.1.3-2 shows the results of the

245 Geographic Representation of Corn Ethanol Production Ethanol Facilities in The United States. EIA (2023).
Available at: https://atlas.eia.gov/maps/3f984029aadc4647ac4025675799a190
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sensitivity analysis for soybean oil biodiesel minus GREET’s CCLUB derived LUC impacts.
Parameters are ordered by their relative individual influence on the overall CI with the most
impactful parameters at the top of the figure.

Figure 9.1.3-2: Sensitivity analysis results of USA soybean oil biodiesel carbon intensity
values ranked by relative influence of each parameter’s potential impact in GREET

21 215 22 225 23 23.5 24
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Farming: Energy use, Btu/acre (-51%, +98%)  21.7 I e 23,5
Farming: N fertilizer, Ib/acre (-74%, +220%) 21.6 I N 731
Oil extraction; Qil yield, |b soybean/|b oil (-5%, +5%) 215 I 2 S
Farming: P fertilizer, |b/acre (-47%, +136%) 21,8 I 2.7
Biodiesel production; Energy use, Btu/lb BD (-15%, +15%) 21.6 I 22 .4
Oil extraction: Energy use, Btu/lb ail {-10%, +10%) 21,7 NS 2.3
Biodiesel production; Biodiesel yield, gal BD/Ib ail (-2%, +2%) 21,7 R 223
Farming: K fertilizer, |b/acre (-92%, +152%) Z21.8 I 023
Farming: Herbicide, Ib/acre [-33%, +78%) 21,9 M 22.3
Biodiesel production: Methanol use, Btu/lb BD (-2%, +2%) 210 EmEm 22.1
Farming: Insecticide, Ibfacre (-92%, +1118%) 22.0 W 22,1
Bindiesel production: Glycerin yield, |b/lb BD (-10%, +10%) 22.0 W 220

Based on our input parameters and our GREET framework, the overall CI for soybean oil
biodiesel saw the most influence from the soybean crop yields. Energy used in growing soybean
on the field was the next most important factor. Nitrogen fertilizer used to obtain higher crop
yields was again the third highest parameter of importance in this sensitivity analysis. There was
not a wide variation of results in this exercise, and the greatest variation was in soybean farming
rather than soybean oil biodiesel production but that is due in part to a limited amount of
available data on variations in biodiesel production. The relatively small variation in estimates
suggests that variation in the parameters tested is not a large source of uncertainty for supply
chain LCA of soybean oil biodiesel. However, there are other assumptions that have a larger
influence on soybean oil biodiesel LCA estimates, as discussed in the sections that follow.

With some minor differences, we saw similarities between the most influential
parameters across corn ethanol and soybean oil biodiesel in this exercise. Crop yields and
nitrogen fertilizer as inputs were among the most influential factors in both scenarios and had
some of the largest impacts on these results based on the data provided. However, while both
sensitivities included farming practices, these did not include LUC parameters.

9.1.3.3 Allocation Sensitivity Analysis

Corn ethanol and soybean oil biodiesel production processes both yield biofuels as well
as economically significant coproducts. Dry mill corn ethanol production for example produces
distillers grains that are often used as livestock feed, and corn oil that is a vegetable oil that can
be used for cooking. Both have the potential to be further processed for producing biodiesel.
Similarly, soybean oil biodiesel transesterification results in coproducts such as soy meal which
is high in fiber and can be used as cattle feed, and glycerin that has a range of applications across
cosmetics and pharmaceuticals.
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For supply chain LCA models such as GREET, these coproducts are relevant because the
GHG impacts of the fuel of interest and its coproducts can be accounted for using various
methods and therefore yield different GHG results depending on the allocation methods used.
Allocation methods can use the economic values of the different product streams, the embedded
energy content (where applicable), or physical properties such as mass. This allocation
sensitivity analysis shows the variation in the CI values presented using the default input
parameters and how the resulting GHG emissions can vary quite significantly depending on the
LCA allocation methods selected.

For corn ethanol in GREET, Argonne uses a default displacement allocation method
whereby dried distillers grains are given a coproduct credit under the assumption they will be
used in place of conventional animal feeds such as corn and soybean meal. This results in the
estimated default CI value of 45.9 gCO2/MJ for corn ethanol shown in Figure 9.1.3-3, but this
result can vary significantly if the allocation method used is instead based on the energy content
of the ethanol and distillers grains or based on market value of the distillers grains versus the
ethanol fuel (which in turn relies on constantly varying and geographically diverse market
values). A hybrid method is also presented to allocate distillers grains, ethanol, and corn oil first
based on the market value first, and then energy allocation is used to calculate emissions for
ethanol and corn oil. The last results shown are a process-level allocation method that assigns
emission burdens of individual process steps to the product that is responsible for each specific
process. These last two allocation methods are further detailed in Wang et al. (2015).2*¢ Based on
allocation method alone in this scenario, we derived a range between 32.2 — 48.4 gCO2/M]J for
corn ethanol (excluding LUC impacts).

Figure 9.1.3-3: Variations in the Carbon Intensity of Corn Ethanol Based on Various LCA
Allocation Methods
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For soybean oil biodiesel, Argonne presents further delineations of LCA allocation
methods used either at the process level (assigning the GHG impacts based on the individual
steps that are involved, in this case soybean oil and soybean meal at the crushing facilities and
then between biodiesel and glycerin at the biodiesel plants) or the system level (in this instance
assigning the GHG burden across biodiesel, soy meal, and glycerin as products rather than

246 Wang, Zhichao, Jennifer B. Dunn, Jeongwoo Han, and Michael Q. Wang. 2015. “Influence of Corn Oil Recovery
on Life-Cycle Greenhouse Gas Emissions of Corn Ethanol and Corn Oil Biodiesel.” Biotechnology for Biofuels 8
(1): 178. https://doi.org/10.1186/s13068-015-0350-8.
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individual steps). Within each of the process- and system-level allocation methods, there are the
same three methods of allocation shown for corn ethanol: mass, market value, and energy
allocation. Argonne by default uses a hybrid allocation method for soybean oil biodiesel in
GREET whereby mass-based allocation is used to account for the soybean meal coproduct from
soybean crushing and market-based allocation is used to account for the glycerine coproduct
from biodiesel production. This results in the estimated default CI value of 22.0 gCO2/MJ for
soybean oil biodiesel as shown in Figure 9.1.3-4. Based on different allocation methods alone in
this scenario, we derived a range between 18.4 — 33.7 gCO2/MJ for soybean oil biodiesel
(excluding LUC impacts), exemplifying how complicated it can be to perform LCA allocation
for various biofuels. This results in the estimated default CI value of 22.0 gCO2/MJ for soybean
oil biodiesel as shown in Figure 9.1.3-4. Based on different allocation methods alone in this
scenario, we derived a range between 18.4 — 33.7 gCO2/MJ for soybean oil biodiesel (excluding
LUC impacts).

Figure 9.1.3-4: Variations in the Carbon Intensity of Soybean Oil Biodiesel Based on
Various LCA Allocation Methods
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As illustrated by the figures above in this allocation sensitivity analysis section,
coproduct allocation methods can have a significant impact on biofuel LCA estimates when
using a supply chain LCA model such as GREET. As with the above sections, these results did
not include GREET’s reported LUC GHG emissions that come from CCLUB and rely on GTAP
data.

9.1.3.4 Stochastic Parameter Analysis

Relying on the same parameter inputs and distributions shown in Tables 9.1.3-1 and
9.1.3-2, we also conducted a sensitivity analysis using the stochastic tool built into the GREET
model. This tool allows for stochastic analyses of probable ranges of the different factors that
result in the likelihood of multiple outcomes, to conduct parameter uncertainty. This stochastic
tool also does not make changes to the land use change results that come from CCLUB
translating GTAP data but focuses on agricultural practices, fuel production, and transportation.
Therefore, the uncertainty present in LUC emissions estimates, discussed in other sections above
and below, is not considered here. Because GREET operates as a static attributional LCA
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framework, any uncertainties in market-mediated responses to biofuel consumption in the

agricultural or energy sectors is also not considered, nor are any uncertainties regarding dynamic
change over time.

A probability density function (PDF) was developed for the corn ethanol pathway
analyzed using the stochastic tool. GREET breaks down the corn ethanol pathway into the
following steps: farming energy, farming chemicals, ethanol production, coproducts, and tailpipe
fuel combustion (non-CO:z emissions). The base values are presented along with what are known
as P10 and P90 values that make up the uncertainty bars. Ninety percent of the observations in
the stochastic analysis are above the P10 value, while ninety percent of observations fall below
the P90 value. Figure 9.1.3-5 below shows the stochastic analysis results for corn ethanol. This
stochastic analysis for corn ethanol relying on the input data provided would imply an 80 percent
probability that the GREET estimate for the fuel would be between 40.7 and 57.0 gCO2/MJ
(before accounting for LUC). The greatest variation identified based on data provided came from
farming chemicals used to support corn yields.

Figure 9.1.3-5: Stochastic analysis results of USA corn ethanol by lifecycle stage in GREET
(whiskers indicate P10 and P90 values)
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A stochastic analysis developed using GREET’s stochastic tool for the soybean oil
biodiesel pathway is also presented below in Figure 9.1.3-6. Categories for this pathway are
broken down using the following steps: soybean farming, soy oil extraction at the biodiesel
production facility, soybean oil transesterification (the process of converting the soybean oil into
biodiesel), and the combined fuel distribution and tailpipe fuel combustion (non-CO2 emissions).
Again, the base values are presented along with the P10 and P90 values that make up the
uncertainty bars. This stochastic analysis using the input data provided would imply an 80
percent probability that soybean oil biodiesel would have a CI between 21.5 and 22.7 gCO2/MJ
(before accounting for LUC). As with the sensitivity analysis above (Section 9.1.3.2), there was
not a wide variation of results in this exercise due in part to the assumed triangular parameter
values which were chosen based on the limited amount of data available to inform the
distribution shapes.

This should not provide the artificial inference that there is little variation in GHGs from
soybean farming and soybean oil biodiesel production but instead is an indication of potential
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results and an opportunity for further research. Soybean farming showed the greatest area of
uncertainty, which would be likely to be even greater if the scope of these data were expanded
beyond the United States. We also note that the estimates in Figure 9.1-3-6 are estimates of the
average supply chain GHG emissions associated with average soybean oil biodiesel. GREET
may estimate higher or lower LCA emissions for biodiesel produced from soybeans grown on a
particular farm or produced at a particular biodiesel facility.

Figure 9.1.3-6: Stochastic analysis results of USA soybean oil biodiesel by lifecycle stage in
GREET (whiskers indicate P10 and P90 values)
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9.1.3.5 Land Use Change Sensitivity Analysis

As GREET is an attributional (or “supply chain”) LCA model that does not endogenously
estimate indirect emissions such as those resulting from indirect land use change, GREET
incorporates a module called the Carbon Calculator for Land Use Change from Biofuels
Production (CCLUB) to account for indirect land use change emissions.?*” CCLUB relies on a
selection of land use change estimates from GTAP studies conducted between 2011-2018, and
includes two corn ethanol and four soybean oil biodiesel scenarios that are described in Table 1-
1 of this document. We describe the CCLUB module in greater detail in Section 2.1 of this
document.

As a final parameter sensitivity analysis for GREET, we show a range of results
representing variations of soil organic carbon emission factors data sets and related assumptions
as options in the CCLUB module. By default, CCLUB relies on soil organic carbon emission
factors from the CENTURY model developed by Colorado State University for domestic land
use change calculations, and a separate dataset by Winrock International for international land
use change emission calculations.?*® In our LUC sensitivity analysis, we present results using
both emission factors datasets where applicable, as well as varying the soil depth considered and

247 Kwon, Hoyoung, et al. (2021). Carbon calculator for land use change from biofuels production (CCLUB) users’
manual and technical documentation, Argonne National Lab, Argonne, IL. https://greet.es.anl.gov/publication-
cclub-manual-r7-2021

248 Ibid. See details about how these emission factor datasets are developed and used in the CCLUB manual.
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tillage practices. Similarly, we included results both based on assumptions about corn and
soybean crop yields increasing over time or remaining static.

CCLUB includes a forest prorating factor that is meant to adjust the forest land in GTAP
results to better align with the amount of accessible forest land as reported by the Cropland Data
Layer (CDL), a dataset developed by USDA’s National Agricultural Statistics Service.>*’
Argonne accordingly applies this proration factor by region to the accessible forest land that
GTAP predicts will be converted in order to satisfy land needed to meet a given biofuel shock
based on a ratio of the differences between GTAP’s assumed forest landcover versus what was in
USDA’s CDL. This results in different amounts of assumed forest land to cropland conversions
and therefore LUC GHG emissions. We took the approach in this sensitivity analysis of
presenting results both with and without CCLUB making this forest proration factor adjustment.

GREET’s default LUC scenario for corn ethanol is referred to as “Corn Ethanol 2011 in
CCLUB and is described in Taheripour et al. (2011).2°° The scenario represents an increase in
USA corn ethanol production from 2004 levels (3.41 billion gallons) to 15 billion gallons (a
shock size of 11.59 billion gallons). Table 9.1.3-3 presents 20 different permutations and a range
of different emissions based on changing the assumptions for how CCLUB interprets this single
modeled GTAP scenario for land use change representing a corn shock. Argonne’s pre-selected
options in CCLUB yield an estimate of 7.4 gCO2e/MJ of corn ethanol for induced land use
change, while varying the assumptions in this sensitivity analysis yields a range between 6.5
gC0O2e/MJ to 9.7 gCO2e/MJ when relying on CENTURY emission factors for domestic LUC
emissions, with the main differences coming from variations in the corn yield and tillage
practices. That estimated range expands to a high value of 16.2 gCO2e/MJ if both the domestic
and international LUC emissions are based on the 2009 Winrock emissions factor data.

249 USDA National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) is available online at:
https://croplandcros.scinet.usda.gov/

230 Taheripour, F., et al. (2011). Global land use change due to the U.S. cellulosic biofuels program simulated with
the GTAP model, Argonne National Laboratory: 47.
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Table 9.1.3-3: CCLUB Sensitivity Results for “Corn Ethanol 2011” Scenario by Parameter

Select Select Domestic Soil depth Harvested |Tillage Forest Domestic (Foreign |gCO2e/MJ

Domestic International Emissions considered in |Wood Practice for |Prorating |(Data (Data

Emissions Emissions Modeling modeling Product Corn and Factor Cell) Cell)

Modeling Modeling Scenario (HWP) Corn Stover

Scenario Scenario Scenario Production

Century Winrock yield 30 cm| HEATH | No Till Yes 109.6| 432.7 6.7
increase

Century Winrock yield 100 cm| HEATH | No Till Yes 91.5| 432.7 6.5
increase

Century Winrock yield 30 cm| HEATH | No Till Yes 235.6| 432.7 8.3
constant

Century Winrock yield 100 cm| HEATH | No Till Yes 2457 432.7 8.4
constant

Century Winrock yield 30 cm| HEATH | No Till No 146.3| 4327 7.2
increase

Century Winrock yield 100 cm| HEATH | No Till No 130.9| 4327 7.0
increase

Century Winrock yield 30 cm| HEATH | No Till No 2742 4327 8.8
constant

Century Winrock yield 100 cm| HEATH | No Till No 287.4( 432.7 8.9
constant

Century Winrock yield 30 cm| HEATH usS Yes 157.7| 432.7 7.3
increase Average

Century Winrock yield 100 cm| HEATH usS Yes 162.4| 4327 7.4
increase Average

Century Winrock yield 30 cm| HEATH uUs Yes 276.7) 432.7 8.8
constant Average

Century Winrock yield 100 cm| HEATH US Yes 307.9| 432.7 9.2
constant Average

Century Winrock yield 30 cm| HEATH US No 1953 4327 7.8
increase Average

Century Winrock yield 100 cm| HEATH usS No 203.5( 432.7 7.9
increase Average

Century Winrock yield 30 cm| HEATH usS No 316.1| 4327 9.3
constant Average

Century Winrock yield 100 cm| HEATH uUs No 351.2| 4327 9.7
constant Average

Winrock  |Winrock 871.1] 4327 16.2

GREET’s default LUC scenario for soybean oil biodiesel is referred to as “Soy Biodiesel
CARB case 8” in CCLUB and is described in Chen et al. (2018)*! and Taheripour et al.
(2017)%*2. The scenario represents an increase in U.S. soybean oil biodiesel production by 0.812
billion gallons. Table 9.1.3-4 presents eight different permutations and a range of different
emissions based on changing the assumptions for how CCLUB interprets this modeled GTAP
scenario for land use change representing a soybean shock. Argonne’s pre-selected options in
CCLUB yield an estimate of 9.3 gCO2¢e/MJ of soybean oil biodiesel for induced land use change,

251 Chen, R., Qin, Z., Han, J., Wang, M., Taheripour, F., Tyner, W., O’Connor, D., Duffield, J., 2018. Life cycle

energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts.
Bioresource Technology 251, 249-258. https://doi.org/10.1016/j.biortech.2017.12.031
252 Taheripour, F., Zhao, X., Tyner, W.E., 2017. The impact of considering land intensification and updated data on
biofuels land use change and emissions estimates. Biotechnol Biofuels 10, 191. https://doi.org/10.1186/s13068-017-

0877-y
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while varying the assumptions in this sensitivity analysis yields a range between 9.0 gCO2e/MJ
to 9.6 gCO2¢/MJ when relying on CENTURY emission factors alone for domestic LUC
emissions, with the variations primarily again coming from assumed soybean yield and tillage
practices. That estimated range expands significantly to a high value of 21.5 gCO2¢/MJ if both
the domestic and international LUC emissions are based on the 2009 Winrock emissions factor
data.

Table 9.1.3-4: CCLUB Sensitivity Results for “Soy Biodiesel CARB case 8” Scenario by
Parameter

Domestic International Harvested Tillage Practice Forest Domestic Foreign gCO2e/MJ
Emissions Emissions Wood Product | for Corn and Prorating Emissions Emissions

Modeling Modeling (HWP) Corn Stover Factor

Scenario Scenario Scenario Production

Century Winrock HEATH No Till Yes 24.4 1,105.7 9.0
Century Winrock HEATH No Till No 53.8 1,105.7 9.2
Century Winrock HEATH US Average Yes 68.2 1,105.7 9.3
Century Winrock HEATH US Average No 98.6 1,105.7 9.5
Winrock Winrock 1,613.7 1,105.7 21.5

Both the corn ethanol and soybean oil biodiesel LUC sensitivity analysis results show
that even relying on the same LUC results from GTAP can yield significantly different emission
results based on assumption differences such as the emission factors used and other key data sets
or data interpretations.

We do not present results in this section with the intention of concluding what a range of
potential emissions the GREET model can be for corn ethanol and soybean oil biodiesel, as that
is outside the scope of this analysis. Instead, we mean to illustrate the variation in results that
come from key assumptions and where the model framework demonstrates the most variation in
its estimates based on those assumptions.

Across the various sensitivities we performed for GREET, corn ethanol and soybean oil
biodiesel each relied on a single LUC scenario provided by GTAP and interpreted by CCLUB.
While other models showed a significant variation in LUC impacts based on differing sensitivity
assumptions, the area of LUC was held constant for GREET. Instead, these sensitivities
highlighted variability associated with other assumptions. Our parameter and stochastic
sensitivities demonstrated the importance to emissions that corn and soybean yields have on
results and how they vary considerably across the country (they also vary over time). Data based
on industry surveys also suggested that there is still a significant range of efficiencies for energy
inputs both on fields and in biofuel facilities. On LCA allocation methods, we demonstrated how
impactful decisions are in emissions accounting for ethanol or biodiesel versus coproducts.
Similar to what is shown in the next section (Section 9.2), the soil carbon assumptions illustrated
in our GREET LUC sensitivity analysis had a relatively large impact based on the datasets used
to represent LUC emissions from static GTAP scenarios. Finally, some of these same areas seem
important for additional research. The uncertainty around farming chemical use for example was
also seen with our GCAM sensitivities.
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9.2 Soil Organic Carbon Sensitivities

Land use change emissions estimation is an important component of crop-based biofuel
lifecycle analysis, as demonstrated by the results we present in Sections 6.7 and 7.7. Estimates of
LUC emissions from the conversion of other land types to cropland vary to some extent based on
the type of land being converted. But beyond this another important area of variability is the
assumed carbon density of lands and the quantity of carbon emitted or sequestered when land
transitions from one state to another. The magnitude of this carbon exchange varies based on
climate, soil type, vegetation type, soil microbial activity, and numerous other factors. At the
time of the March 2010 RFS rule, most model soil carbon assumptions were based on field scale
sampling of soils and other estimation techniques, which were then extrapolated and applied to
much larger areas of land than their empirical samples covered. A small number of global
satellite-based data sets, such as the MODIS-based Winrock data we used to estimate LUC
emissions from the FAPRI model, also existed, but were relatively new. Over the last decade,
empirical satellite-based datasets have become more numerous and sophisticated, necessitating
revisitation of this area of science.?*?

We observed in Section 9.1.1 above that the GCAM results produced for this exercise are
sensitive to the assumed value of soil carbon density input parameters. For the analysis described
in Section 9.1.1, we stochastically varied the soil carbon and vegetation densities assumed in
GCAM, with independent distributions for each land category. The sensitivity analysis described
in this section is different, as it tests the influence of using different soil carbon data sources,
described below, to determine the baseline soil carbon densities.

The soil carbon assumptions of GCAM rely on a simple carbon cycle model that tracks
cohorts of soil and vegetation carbon over time, starting in 1750, the first spin-up year. In
previous versions of GCAM, average terminal carbon stocks (above and below ground
vegetative carbon and soil carbon) for each land use type were assumed exogenously based on
aggregate data, not differentiated by GCAM land use region. More recently, carbon stock data
acquisition and modeling capabilities have improved, and current vegetation and soil carbon
stock maps can be generated using sophisticated mathematical and statistical techniques. In an
additional set of runs, we tested the impacts of different soil carbon stocks on the land use
change emissions in GCAM.

The GCAM results presented in the core scenarios in Sections 5-7 use globally gridded soil
carbon stock data from SoilGrids 20172%* (30 cm depth) and vegetative carbon stock data from
Spawn et al. (2020).2% SoilGrids is based on soil profile observations from the WoSIS database
that have been interpolated via random forest machine algorithms to 250 m grid cells. Because
GCAM represents land at a water basin level, the model needs only one carbon stock input per

253 For more information on carbon stock datasets see: Spawn-Lee, S., “Carbon: Where is it and how can we know?”
EPA Workshop on Biofuel Greenhouse Gas Modeling, 2022. https://www.epa.gov/system/files/documents/2022-
03/biofuel-ghg-model-workshop-measure-map-soil-carbon-2022-02-28.pdf

254 Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A., . &
Guevara, M. A. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one,
12(2), ¢0169748.

255 Spawn, S.A., Sullivan, C.C., Lark, T.J. et al. Harmonized global maps of above and belowground biomass carbon
density in the year 2010. Sci Data 7, 112 (2020).
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land type, per water basin.?*® Summary statistics (the third quartile) were calculated for every
land use type in each basin to represent the steady state soil carbon stock at the beginning of
environmental simulation in 1700.%7

To test the sensitivity of GCAM results to soil carbon stock assumptions, we tested
GCAM using 3 additional soil C datasets, as shown in Table 9.2-1. The Harmonized World Soils
Database (HWSD) uses a “paint by number” approach to categorize carbon stocks. The map was
built on several different global and regional expert-informed soil databases (SOTER, ESD, Soil
Map of China, WISE), built on a 30 arc-second resolution (approximately 1 km), and reprojected
with a grid scale size of 250 m. Each grid cell has estimates informed from these databases, with
areas lacking data filled in using machine learning estimates. In some countries, the soil
boundaries are defined polygons, with the center value assumed to be the value for the entire
polygon (hence the description as a “paint by number” approach). This type of map can result in
distinct boundaries at political or geological boundaries.

Table 9.2-1: Soil carbon stock datasets used for sensitivity analysis in GCAM

Dataset Method Depth Resolution

Harmonized World Soils Professionally derived | 30 cm 30 arc-second

Database (HWSD)>*® “Paint by Number”

Food and Agricultural Combination raster of | 30 cm 30 arc-second

Organization Global Soil country driven soil

Organic Carbon Map (FAO maps

GLOSIS)*

SoilGrids 20172 Random forest 30 cm 250 m
machine learning

SoilGrids 2020%¢! Random forest 30 cm 250 m
machine learning

The FAO GLOSIS (Global Soil Information System) map is based on data collected and
reported by national institutions. The countries, under the guidance of the Intergovernmental
Technical Panel on Soils and the Global Soil Partnership Secretariat, used a uniform
methodology with modern soil digital mapping tools to create national maps, which were then
standardized to the global area. These maps were built on a 30 arc-second resolution
(approximately 1 km), and reprojected with a grid scale size of 250 m. Over 63 percent of the

256 Further description of the land allocation module in GCAM is available at: https:/jgcri.github.io/gcam-
doc/land.html

257 Since GCAM requires estimates of soil carbon from 1700, and the soil data we have represents modern day, the
moirai framework utilized the Q3 (third quartile) SoilGrids data, to represent a historic baseline.

258 Wieder, W.R., J. Boehnert, G.B. Bonan, and M. Langseth. 2014. Regridded Harmonized World Soil Database
v1.2. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active
Archive Center, Oak Ridge, Tennessee, USA. http://dx.doi.org/10.3334/ORNLDAAC/1247

299 FAO and ITPS. 2018. Global Soil Organic Carbon Map (GSOCmap) Technical Report. Rome. 162 pp.
https://www.fao.org/3/18891EN/i8891en.pdf

260 Hengl, T., Mendes de Jesus, J., Heuvelink, G. B., Ruiperez Gonzalez, M., Kilibarda, M., Blagotic, A., . &
Guevara, M. A. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS one,
12(2), e0169748.

261 poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., and Rossiter, D.:
SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, SOIL, 7, 217-240, 2021.

154

NMED Exhibit 39-C_000156



world map is based on country submissions. Countries that did not participate were filled in
using the SoilGrids 2017 map (1.9 percent of the world), and the remainder were calculated
using the Global Soil Partnership Secretariat partnerships and gap filling.

SoilGrids 2020 is an update of SoilGrids 2017. The SoilGrids 2020 estimate includes
more soil observations and a different set of environmental covariates than SoilGrids 2017. This
created a different interpolation of the data to a 250 m grid cell level. This method is more
computationally intensive than the method used for SoilGrids 2017, so the carbon stock is only
available for 0-30 cm depth. One benefit of SoilGrids 2020 over SoilGrids 2017 is that the
methods used to interpolate the SoilGrids 2017 map created some overestimates of SOC,
especially in the far northern latitudes (60-90°N).2%2 However, the soil carbon levels for the rest
of the world tended to be lower than most other soil carbon mapping estimates, so both 2017 and
2020 SoilGrids maps provide different information. We include SoilGrids 2017 in our analysis
because it is currently the default soil carbon dataset in GCAM v6.

In GCAM, land use change emissions are determined by the amount of land use change,
the location of land use change, and the difference in carbon stock between the starting and
ending land types. GCAM does not use soil carbon stock information to determine the types and
locations of land that change. Therefore, the quantity and location of land use change did not
vary across the runs, and differences in emissions are entirely based on differences in soil carbon
stock assumptions. Figure 9.2-1 shows the global emissions from land use change in the
reference case for each set of soil carbon stock assumptions. SoilGrids 2017 produces the highest
emissions and SoilGrids 2020 produces the lowest emissions.

Figure 9.2-1: Global emissions from land use change in the reference case using four soil
carbon datasets
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262 Tifafi, M., Guenet, B., Hatté, C. (2018), Large differences in global and regional total soil carbon stock estimates
based on SoilGrids, HWSD, and NCSCD: Intercomparison and evaluation based on field data from USA, England,
Wales, and France. Global Biogeochemical Cycles, 32, (1), 42-56
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In Figure 9.2-2, we calculated the CI, as described in Sections 6.7 and 7.7. The CI is
based on the difference between the corn ethanol or soybean oil biodiesel scenario and the
reference case. The FAO GLOSIS dataset produces the lowest CI results, even though SoilGrids
2020 had the lowest LUC emissions in the reference case. This is because the corn ethanol and
soybean oil biodiesel scenarios had land use change in different locations than the reference case.
The CI of land use change varies greatly across the runs, from 9-31 kgCO2¢/MMBTU for corn
ethanol and 36-63 kgCO2e/MMBTU for soybean oil biodiesel. For each of the soil carbon stock
assumptions, the CI from land use change is around twice as high for soybean oil biodiesel as for
corn ethanol.

Figure 9.2-2: Carbon intensity from land use change emissions for the corn ethanol shock
and the soybean oil biodiesel shock using a range of soil carbon datasets
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We draw no conclusions here about which soil carbon data set is most appropriate to use
for biofuel lifecycle analysis in GCAM or any other modeling framework. While this is a valid
scientific question, it was beyond the scope and resources of this exercise. Rather, our intention
is to show that the choice of soil carbon stock assumption, among commonly used datasets, can
have a large impact on the modeled CI of corn ethanol and soybean oil biodiesel within a given
modeling framework. Further work will be needed to explore how different soil carbon datasets
impact the results of other models, and to determine which soil carbon dataset is most
appropriate to use in this context.

9.3 Land Conversion Elasticity Sensitivities

In the soybean oil biodiesel results presented in Section 7, one of the major differences
between the ADAGE results and the results of the other models is the emissions from land use
change. We ran a set of sensitivity scenarios to determine whether changing the model
parameters changes the result that a large amount of forestland is converted to cropland.
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As explained in Section 2.5, the direction and magnitude of land use change in ADAGE
is determined by differences in prices between land types (which are in part driven by
differences in net primary production [NPP]) and fixed factor elasticities between the land types.
In the results presented above, the fixed factor elasticity from pasture to cropland is the same as
that from managed forest to cropland (Table 9.3-1). This means if prices of pasture and forest are
equal to each other, it is equally easy to convert forest to cropland and pasture to cropland. In
contrast, the fixed factor elasticity from cropland to pasture is higher than the fixed factor
elasticity from cropland to managed forest, meaning that given equal prices, more cropland
would convert to pasture than to managed forest. In these scenarios, because of assumptions of
NPP declining for forest and rising for pasture over time in key non-USA soybean-producing
regions, the price of managed forest declines while the price of pasture rises. Since the fixed
factor elasticity of converting these two land types to cropland is assumed to be equal, more of
the lower cost land, i.e., managed forest is converted in non-USA regions in these results.

Table 9.3-1: Fixed factor elasticity between land types in ADAGE core scenarios

Land Conversion Frm:; :
Cropland Pastureland %/éarz:ﬁfm d ?(?rt::lsr?lan d Grassland
Cropland 0.26 0.26
Pastureland 0.3 0.02-0.509
To Managed Forestland 0.15 0.02-0.509
Natural Forestland 0.15 0.15
Grassland 0.15 0.15 0.15

Note: Elasticity values for agricultural lands converting to other land types are assumed to be the same for all
regions. Elasticities for natural land conversion to agricultural land vary by region and range from 0.02 to 0.509.

We conducted a sensitivity analysis on the fixed factor elasticities between land types to
assess the impact of making it more difficult to convert forest to cropland than pasture to
cropland. The alternative elasticity values used in this sensitivity analysis are shown in Table
9.3-2. In this sensitivity, the fixed factor elasticities from pasture/managed forest to cropland
were swapped with the fixed factor elasticities from cropland to pasture/managed forest. In this
scenario, the fixed factor elasticity from pasture to cropland is twice as large as the fixed factor
elasticity from managed forest to cropland, making it easier to convert pasture than forest to
cropland.
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Table 9.3-2: Fixed factor elasticity between land types in ADAGE sensitivity runs

Land Conversion M le:; N )
Cropland Pastureland FoireleslﬁZn d F(E)lruel;gan d Grassland
Cropland 0.3 0.15
Pastureland 0.26 0.02-0.509
To Managed Forestland 0.26 0.02-0.509
Natural Forestland 0.15 0.15
Grassland 0.15 0.15 0.15

Note: Elasticity values for agricultural lands converting to other land types are assumed to be the same for all
regions. Elasticities for natural land conversion to agricultural land vary by region and range from 0.02 to 0.509.

We focus on the results of the soybean oil biodiesel scenario. As shown in Figure 9.3-1,
the new runs (“Sensitivity”) have more additional soybean cropland than the runs described in
Section 7 (“Core”). In the sensitivity runs, the soybean yield does not increase as much as in the
core runs, so more cropland is needed to produce soybeans for biodiesel. The sensitivity runs
also show a greater increase in total cropland. There is less shifting of land from other crop types
to soybean.

Figure 9.3-1: Difference in cropland area by crop type (million hectares) in the soybean oil
biodiesel shock relative to the reference case in 2030 for the original ADAGE runs (“Core”)
and the fixed factor elasticity sensitivity runs (“Sensitivity”)26?
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In the sensitivity runs, there is a large change in the type of land converted to cropland,
relative to the core runs (Figure 9.3-2). In the USA region, managed pasture is still the primary

263 Horizontal lines show the net change in cropland.
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land type that is converted to cropland. However, in the non-USA regions, land is converted
from pasture and grassland rather than forest. Even though prices and production of the land
types did not change in this sensitivity, decreasing the land conversion elasticity of forest to
cropland resulted in a large reduction in the amount of forest conversion.

Figure 9.3-2: Difference in land use (million hectares) in the soybean oil biodiesel shock
relative to the reference case in 2030 for the original ADAGE runs (“Core”) and the fixed
factor elasticity sensitivity runs (“Sensitivity”)
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As a result of the change to the land conversion elasticity, the estimated CI from land use
change decreased substantially, from 295 kgCO2eq/MMBTU to 33 kgCO2eq/MMBTU (Table
9.3-3). In the sensitivity runs, there is more total land use change, but much less emissions from
land use change. This emphasizes that the type of land converted and the carbon stock of the
converted land plays a major role in the emissions from land use change.
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Table 9.3-1: Carbon intensity of soybean oil biodiesel and corn ethanol
(kgCO2eq/MMBTU) calculated using emissions reported by each ADAGE run

Soybean oil biodiesel Corn ethanol
Core Sensitivity Core Sensitivity

Energy Sector -28 -30 -15 -17

Sector - Crop Production 7 8 14 14
specific Livestock Sector 0.7 0.7 0.1 0.1
€1m1SS10nS Other 1 1 1 1
Land Use Change 295 33 -1 -1

Global GHG Impact 276 12 -1 -3

The corn ethanol sensitivity scenario similarly shows less corn yield increase than the
core corn ethanol scenario, and more additional cropland. However, the core corn ethanol
scenario results in conversion of pasture to cropland, and this does not change in the sensitivity.
The estimated CI for the corn ethanol scenarios are shown in Table 9.3-3. The land use change
CI in the sensitivity is similar to the core run.

These results illustrate the importance of considering land parameter assumptions in the
models. We do not make conclusions here about which of these sets of results is more correct.
Rather, these results show that if there are assumptions in a model that allow more forest to be
converted in a biofuel scenario, then the emissions can be much higher. Future work could
explore whether there are other similarly important parameters in the models. For cases where
data are not available to set a parameter value (as is often the case for elasticity values), future
work could involve developing methods to use historical data to inform the choice of parameter
value.

9.4 Summary of Parameter Sensitivities

In this section we discussed the results of five sensitivity experiments testing the
influence of parameter input values on biofuel GHG impact estimates, including stochastic
analyses of GCAM, GLOBIOM, and the GREET model, a separate soil organic carbon
sensitivity analysis of GCAM, and a land conversion elasticity sensitivity of the ADAGE model.

Stochastic parameter experiments with GCAM indicate the assumptions relating to soil
carbon stocks, the ease of substitution between land and crop types, and the N2O emissions
intensity of agriculture are influential parameters for corn ethanol and soybean oil biodiesel
GHG impact estimates. The parameter controlling substitution between the non-USA regions
refined oil and biodiesel is also influential for the soybean oil biodiesel GHG estimates.
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A similar stochastic experiment with GLOBIOM considering only soybean oil biodiesel
GHG impact estimates finds that a different set of parameters are the most influential. For
example, the GLOBIOM experiment finds biomass carbon stock assumptions to be influential,
whereas these assumptions were not identified as influential by the stochastic GCAM
experiment. Other parameters that registered as influential in the GLOBIOM stochastic
experiment but not in the GCAM stochastic experiment include assumptions related to tropical
peat soil, substitution between vegetable oils, and yield elasticities for corn and soybeans.

The land conversion elasticity sensitivity experiment with the ADAGE model finds that
land use change GHG estimates for soybean oil biodiesel are highly sensitive to the assumed
fixed factor elasticities for forest and pasture to cropland. These results indicate that parameter
influence on biofuel GHG impact estimates is model dependent, i.e., a set of parameters that is
influential in one model may not be influential in another model.

The stochastic analyses conducted with the GREET model, using a specific set of
assumed parameter uncertainty distributions, suggest that supply chain LCA estimates for corn
ethanol are more sensitive to parameter input values than such estimates for soybean oil
biodiesel. Scenario sensitivity analyses with the GREET model indicate that corn ethanol and
soybean oil biodiesel estimates are more sensitive to coproduct allocation choices and
assumptions related to land conversion GHG emissions factors.

A parameter sensitivity analysis with different soil carbon datasets in GCAM indicates
that the initial steady state soil carbon conditions have a relatively large influence on land use
change GHG estimates. This suggests that estimates from the same model are likely to change
over time as science evolves and new data sets become available.

10 Summary of Findings and Future Research

Through this model comparison exercise, we aimed to move the science forward on
analyzing the lifecycle GHG impacts of the increased use of biofuel, understand model
differences, and examine how those differences impact model results. As described in Section 1,
this effort is consistent with recommendations from the NASEM report, “Current Methods for
Life Cycle Analyses of Low-Carbon Transportation Fuels in the United States,” which
emphasizes the importance of comparing results across multiple economic models and
considering uncertainty.?** The detailed results and insights from this model comparison exercise
are explained in the sections above. This section summarizes our main findings, including areas
of similarity and difference across the models considered in this exercise, and potential areas for
future research.

264 NASEM recommendation 4-2: “Current and future LCFS [low carbon fuel standard] policies should strive to
reduce model uncertainties and compare results across multiple economic modeling approaches and transparently
communicate uncertainties.” NASEM recommendation 4-3: “LCA studies used to inform policy should explicitly
consider parameter uncertainty, scenario uncertainty, and model uncertainty.” National Academies of Sciences,
Engineering, and Medicine 2022. Current Methods for Life Cycle Analyses of Low-Carbon Transportation Fuels in
the United States. Washington, DC: The National Academies Press. https://doi.org/10.17226/26402.
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Some of these observations and findings are relevant only to certain models, based on
their characteristics and areas of coverage. As explained throughout this document, not every
model considered in this study includes all sectors of the economy or all types of interactions
discussed in this section. For example, we do not discuss GREET in any of our findings related
to economic interactions, nor do we discuss GREET and GLOBIOM in any of our findings
related to the energy sector. Models that are not listed in the findings of each subsection in this
summary do not model the features described in that subsection.

Framework Differences

Supply chain LCA models produce a fundamentally different analysis than economic
models. Supply chain LCA models generate detailed and transparent fuel production emissions
estimates. However, they do not evaluate all the indirect emissions associated with a change in
biofuel consumption. The economic models in our comparison are broad in scope, but they lack
certain supply chain details and are associated with greater variability. Their complexity makes it
difficult to identify the precise reasons that estimates vary across the models.

The emissions impacts observed in this exercise do not remain static over time in
frameworks with the ability to model dynamic change. The dynamic models considered in this
exercise, ADAGE, GCAM, and GLOBIOM, all agree that land use, crop production, livestock
markets, and energy markets would all be expected to adjust over time in response to a biofuel
shock, with cascading impacts on GHG emissions. Dynamically modeling the impacts of
biofuels over time results in different model solutions for GHG emissions than what would
be predicted by more simply extrapolating results in a single time step forward through
post hoc estimation. We make no conclusions about whether dynamic or static models are more
appropriate for different applications, but it is important to address the fact that they arrive at
different conclusions and to robustly consider the time period used for biofuel LCA modeling.?%

Land Use Change and Emissions

Land use change and associated emissions magnitudes vary across the range of scenarios
presented in this exercise. Results between models show differences in the types of land which
transfer into cropland status between the reference and biofuel shock scenarios. Our Monte Carlo
and land conversion elasticity parameter sensitivity analyses show that these estimates can also
vary within individual models, depending on the parameter assumptions used. There are several
important factors in explaining these differences in LUC estimates among and within models.
Models use different economic equations, mathematical decision frameworks,?* and
assumptions to estimate which types of land to convert, in what quantities, and in which regions.
The quantities and location of LUC intersect with the global commodity market dynamics
discussed above. Differences in mathematical representations of LUC may lead to model results
which convert primarily one type of land or, conversely, results which spread the LUC impact

265 1t is also important to consider the model reference case assumptions, including model projections into the future.
The parameter sensitivity analyses discussed in Section 9 suggest several concrete examples, such as the projection
of future crop yields, which critically influence model results.

266 For example, ADAGE and GTAP use a CES structure, GCAM uses logit nests, and GLOBIOM uses a global
gridded system.
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across multiple land types. Neither of these strategies necessarily leads to higher or lower LUC
emissions relative to the other. For example, the ADAGE modeling results demonstrate that
concentrating LUC to one type of conversion may lead to relatively larger LUC emissions
estimates (as shown in the soybean oil biodiesel results) or relatively smaller LUC emissions
estimates (as shown in the corn ethanol results). Within models, our sensitivity analyses
demonstrate that input parameter assumptions, such as those described in Sections 9.1.1 and 9.3,
may alter economic decisions and thus affect which land types are selected for conversion. This
model comparison and the associated sensitivity analyses have indicated that assumptions about
the ease of land substitution, especially from carbon-rich lands, remain a critical area of
uncertainty in biofuel LCA modeling. Future modeling efforts should robustly quantify this
uncertainty using either the types of methods described in this exercise or other rigorous
methods. This exercise highlights that inclusion of land use change emissions is critical for
biofuel lifecycle analysis and that frameworks must have the ability to robustly quantify
uncertainty in land use change and LUC emissions.

Further, spatial resolution in the land sector varies substantially across models and this
affects the scale at which economic land conversion decisions are made. This major area of
difference among models is critically tied to the scope of each model and the associated
computational burdens of land use modeling. It is unlikely that the CGE models, which must
necessarily resolve equations for more economic sectors, can achieve the spatial resolution
present in PE models and IAMs. However, the uncertainties created by coarser spatial resolution
may be quantifiable through targeted uncertainty analysis. Uncertainty also still exists at the
resolution represented by PE models and IAMs given that these LUC results are necessarily
estimates of the sum of economic decisions made by multiple actors. We conclude that there is
no one correct level of spatial resolution for biofuel LCA modeling. Sensitivity and
uncertainty analysis will be critical at all scales.

The economic models included in this exercise also restrict land conversion to varying
degrees, and the differences in assumptions across models are especially large for the most
carbon-rich arable lands (i.e., natural forests and grasslands). However, these assumptions are
also uniformly exogenous and previous literature has demonstrated that, to at least some extent,
they can be aligned across modeling frameworks. Future research could explore this space and
test whether LUC estimates across models become more similar when similar categories and
quantities of lands are available for conversion to cropland.

Additionally, the models use different assumptions about the carbon stocks of the
different land types, resulting in different emissions from land use change. A sensitivity analysis
using GCAM shows that when different soil carbon stock assumptions are used, there are large
differences in the resulting land use change emissions, even though the type and amount of land
converted is the same in each run. The stochastic parameter sensitivities conducted with GCAM,
GLOBIOM, and GREET also demonstrate that assumptions about soil carbon exchange from
LUC may substantially impact emissions results. Addressing variability and uncertainty in
soil carbon content globally and regionally will be critical to future biofuel LCA efforts. A
potential area for future research is to align carbon stock assumptions across multiple models to
better understand the relative impacts of land use change amount/type and carbon stocks on land
use change emissions.
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Energy Market Impacts

The models that include energy market impacts (ADAGE, GCAM, and GTAP) all
estimate significant indirect effects on fossil and/or bio-based energy consumption in the USA
and non-USA regions in both the corn ethanol and soybean oil biodiesel shocks. The results from
these models are in broad agreement that global displacement of refined 0il*%” consumption due
to the increase in biofuel consumption is estimated to generate net global energy emissions
savings. However, the amount of refined oil displaced globally was not equal to the increase in
biofuel consumption on an energy basis (i.e., a 1:1 displacement). This finding has broad
relevance to biofuel LCA because modeling efforts using frameworks which do not include an
energy sector generally assume 1:1 displacement by default. All three models in this study with
energy sectors show smaller global refined oil savings than would be expected from a 1:1
displacement. There are some directional differences regarding the impact in the USA region.
The ADAGE and GTAP results show less domestic refined oil displacement than would be
expected from a 1:1 displacement, while the GCAM results show more domestic refined oil
displacement than would be expected from a 1:1 displacement. However, the larger driver of the
global result is refined oil and biofuel consumption in the non-USA regions. Non-USA refined
oil consumption increases in the results from each of these models as a result of the shock. In
ADAGE and GCAM, there are significant changes in non-USA biofuel production and
consumption as well. In the ADAGE soybean oil biodiesel scenario, the non-USA regions
collectively produce more biodiesel and consume less of it, exporting that fuel to the USA region
instead. This reduced biodiesel consumption increases demand for fossil fuels. The increased
production is associated with agricultural sector emissions. The GCAM results show impacts on
non-USA biofuel production and consumption as well, particularly sugar crop ethanol in the corn
ethanol scenario, and soybean oil biodiesel in the soybean oil biodiesel scenario. These results
also show substantial changes in biofuel trade to and from the USA region in response to the
shocks. The results across all three models collectively indicate that the assumption of 1:1
displacement of refined oil for biofuel may be insufficient to capture the energy sector
impacts of biofuels; consequential modeling of the energy sector is an appropriate
methodology for capturing these impacts.

This insight illustrates the importance of including indirect energy market impacts in a
modeling framework. The ADAGE, GCAM, and GTAP results consistently indicate that the
assumption of a 1:1 refined oil displacement may be an overestimate of global fossil fuel
emissions savings. This becomes a crucial issue for biofuel lifecycle analysis, firstly, because
smaller fossil fuel emissions savings increase the estimated emissions intensity of the biofuel
being modeled and, secondly, because increased non-USA production of biofuels is associated
with emissions as well. However, further sensitivities would be needed to better understand the
driving factors behind the differences in the fossil fuel displacement across the models.

Global Trade

Global trade plays an important role in modeled emissions results from both the land and
energy sectors of these frameworks. Model results from the economic models considered in this

267 In these models, refined oil is an aggregation of all refined petroleum products, including gasoline and diesel.
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exercise consistently demonstrate that biofuel shocks can impact agricultural commodity trade
and energy trade in important ways. These include impacts on trade in refined oil and biofuels,
soybean meal and DDG feed products, and vegetable oils, among others. These changes in terms
of trade lead to differences in the energy emissions savings estimated by the models as well as
differences in the quantity of non-USA land use change estimated by the models. There is
general agreement among the economic models that these trade-driven impacts will occur to
some degree. However, despite the uniform agreement on the importance of trade-driven impacts
across the economic models included in this exercise, these models show different degrees of
trade responsiveness, which leads to results of differing magnitudes. Model trade structure and
assumed flexibility critically influence the modeled emissions results.

Commodity Substitutability

A second key factor, intertwined with trade, is commodity substitutability. Results in this
exercise from ADAGE, GCAM, GLOBIOM, and GTAP align in estimating commodity
substitution as a significant part of their scenario solution. As our sourcing analyses in Sections
6.1 and 7.1 above demonstrate, the degree to which this substitution occurs varies across models.
However, results from all of the models support two overarching findings: first, that estimates of
indirect GHG impacts are sensitive to whether and how substitution interactions are considered
and, second, that uncertainty in the ease of commodity substitution at different price points must
be considered. Key interactions include the substitutability of: biofuels for fossil fuels, one
biofuel for another, DDG and soybean meal for other feed products, and soybean oil for other
vegetable oils. Our modeling exercise has demonstrated that these commodity substitutability
relationships critically impact overall GHG emissions results from biofuel LCA modeling.
We summarize these critical impacts further below.

Crop and Coproduct Consumption by End Use

The results of the corn ethanol and soybean oil biodiesel scenarios also show significant
effects on end uses of biofuel feedstocks and coproducts across ADAGE, GCAM, GLOBIOM
and GTAP, most notably effects on corn, DDG, and soybean meal animal feed use and soybean
oil food use. In the corn ethanol scenario, the model results consistently show a decrease in corn
consumption for feed use and an increase in DDG consumption. However, the model results
differ crucially in their estimates regarding the location of DDG consumption (i.e., USA vs non-
USA regions) as well as the degree of displacement of other types of feed. Similarly, in the
soybean oil biodiesel scenario, the model results show an increase in soybean meal?*® production
and use for feed. The models all estimate this influx of soybean meal will lead to a global
increase in feed use on a mass basis. However, the models differ regarding the location of
soybean meal production and the degree of displacement of other types of feed. Increased use of
DDG or soybean meal for feed can result in lower land use change emissions if these coproducts
displace crops for feed use. On the other hand, increased use of DDG or soybean meal for feed
can result in higher livestock sector emissions if their use causes an increase in total feed use,
rather than replacing other types of feed. Exploring the emissions impact of DDG and soybean
meal consumption location on overall GHG results is a potential area of future research, and one
which is closely related to further research into model commodity trade behavior more generally.

268 In ADAGE, the soybean meal is included in the aggregated “other oil seed meal” category.
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It is clear however that explicit modeling of the global livestock sector, including global feed
markets, is an important capability for estimating the emissions associated with an increase
in biofuel consumption. Modeling efforts which do not include these economic dynamics
exclude both critical drivers of overall GHG emissions and critical sources of uncertainty in
GHG modeling results.

In the soybean oil biodiesel scenario, the models differ in the amount of food
displacement. ADAGE results do not show any impact on food consumption. On the other hand,
GCAM, GLOBIOM, and GTAP results all show a decrease in the amount of soybean oil used for
food. In the GTAP results, a very small amount of the soybean oil is replaced by other oils; these
results also show an overall reduction in crops consumed for food. GTAP results also show a
decrease in soybean oil used for other uses (e.g., processing into other products) that is not
replaced by other oils. In the GCAM and GLOBIOM results, there is also a decrease in soybean
oil for food use. However, a major difference between these results and the GTAP results is that
the GCAM and GLOBIOM results show much greater replacement of soybean oil in the food
market with palm oil, rapeseed oil, and/or other crop oil, whereas the GTAP results show very
little replacement of soybean oil with other oils. The degree of substitution varies between
GCAM and GLOBIOM, with GLOBIOM results showing a net decrease in consumption of
crops for food, and GCAM results showing a nearly net zero change in consumption of crops for
food. Substitution of soybean oil with other oil types could result in a reduction of land use
change emissions from soybean production because less new soybean oil production is needed
for the biofuel shock. However, substitution of soybean oil with other vegetable oils could also
result in increased emissions from land use change.?®® The effect of the number of vegetable oil
substitutes in a model on the lifecycle results, and the degree of substitution among feed
commodities and food commodities, particularly in the non-USA regions, is a potential area for
future study. Inclusion of explicit global vegetable oil competition is critical to biofuel
lifecycle analysis results because this competition affects the quantity and location of
estimated LUC emissions impacts.

Feedstock Production

Both intensification and extensification of corn and soybean feedstock production occur
across ADAGE, GCAM, GLOBIOM, and GTAP results in response to changing commodity
prices. In each of these models, extensification, including crop shifting, contributes to more of
the biofuel sourcing than intensification. All four models estimate yield increases of corn in the
corn ethanol scenario and soybeans in the soybean oil biodiesel scenario, but these increases are
small relative to the reference case yields. One factor could be that our volume shocks are not
large enough to induce much change in corn and soybean prices; indeed, the feedstock crop price
changes in these scenario results appear fairly small across models. In our soybean oil biofuel
volume sensitivity scenario, the models appear fairly stable in this area with respect to the size of
the shock, suggesting that shock size might not have significant influence on model yield
response. However, further research using a wider range of shock sizes and reference case
assumptions could test this hypothesis more rigorously than we have been able to in this
exercise.

269 For example, land use change to produce palm oil could result in increased emissions, particularly if the land

converted is peat land.
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We can observe generally that the models considered in this exercise do not see yield
improvements as a primary strategy for supplying additional biofuel feedstock, given our
scenario assumptions. Rather, feedstock crop extensification, including crop shifting, appears to
be relied upon more than intensification to increase the net supply of biofuel feedstock for
biofuel production across the economic modeling results presented in this exercise. This finding
appears to be robust across a wide range of uncertainty analyses. However, that is not to say crop
yield assumptions do not affect the results. Indeed, our parametric sensitivities do suggest that
crop productivity assumptions may be influential, though other parameters appear to be more
influential. Further research could better define this influence. The ability to endogenously
consider tradeoffs between intensification and extensification is an important capability for
estimating the emissions associated with an increase in biofuel consumption.

Soybean oil biodiesel and corn ethanol results vary

The models included in this study show greater diversity in feedstock sourcing strategies
for soybean oil biodiesel than they do for corn ethanol, and this wider range of options leads to
greater variability in the GHG results. There are several important reasons for this greater
diversity of strategies, which were explored throughout this document. For example, compared
to the corn ethanol results, there is less agreement among the models about where in the world
soybean oil biodiesel production would change in response to a change in USA region soybean
oil biodiesel consumption. Because of these differences in sourcing strategy, the model results
differ regarding the amount and location of soybean oil production, vegetable oil and biodiesel
trade, and land use change impacts of the shock.

Much of the new production of corn and corn ethanol in the corn ethanol shock results is
estimated to occur in the USA region. Conversely, in at least some of the modeling results, much
of the new production of soybeans, soybean oil and soybean oil biodiesel in the soybean oil
biodiesel shock results is estimated to occur outside the USA region. Partly for this reason, the
corn ethanol shock affects overall global trade, commodity production, and land use decisions to
a lesser extent than the soybean oil biodiesel shock. Across the suite of results from the MCE,
the USA imports more soybean oil biodiesel than corn ethanol. To the extent the increase in
USA consumption of soybean oil biodiesel increases non-USA soybean oil biodiesel exports,
some of the models choose to substitute this lost non-USA consumption of soybean oil biodiesel
with greater use of palm oil biodiesel or fossil fuels. To the extent that new biofuel feedstock
crops must be produced in these modeled scenarios to help satisfy demand for biofuels, each unit
of soybean oil biodiesel feedstock supplied in this way requires more land than does an
equivalent unit of corn ethanol feedstock supplied. This is because there is a lower yield per acre
of soybeans, and, implicitly, of soybean oil, compared to corn. Along with land use, soybean oil
biodiesel production also has much greater potential impacts on livestock production per unit of
fuel produced than does corn ethanol production. Soybean meal produced per gallon of soybean
oil biodiesel is greater than the amount of DDG produced per gallon of corn ethanol, which, all
else equal, can lead to a greater expansion of livestock production in the soybean oil biodiesel
scenario. These possibilities are realized to greater and lesser extents across the models and
across sensitivity analyses. Models included in the MCE produced a wider range of LCA
GHG estimates for soybean oil biodiesel than corn ethanol. This wider range of estimates is
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related to the greater diversity of feedstock sourcing strategies and the greater sensitivity of the
biodiesel estimates to the variability and uncertainty present in the parameter assumptions
discussed above.

Sensitivity Analysis

Alternative volume scenarios examine whether and how the assumed magnitude of the
volume shock of USA biofuel consumption impacts GHG emissions and other model output
values. In one scenario, where the soybean oil biodiesel volume is reduced to 500 MG, the
ADAGE, GCAM, and GTAP results do not differ substantially from the 1 BG scenario when
they are considered on a per billion gallon basis. GLOBIOM results do show some differences,
such as GHG emissions impacts per billion gallons, between the 1 BG and the 500 MG soybean
oil biodiesel shocks. In a combined scenario, in which corn ethanol and soybean oil biodiesel
were simultaneously increased by 1 BG each, the results generally equal the sum of impacts
observed in the individual 1 BG corn ethanol and soybean oil biodiesel core scenarios for
ADAGE, GCAM, and GTAP. GLOBIOM results for the combined scenarios show more
differences in the estimated output values, including GHG emissions, compared to the sum of the
individual scenarios. These results indicate that, within the range of volumes considered, shock
size does not lead to substantially different impacts on the modeled agriculture system and
estimated GHG emissions in most of the frameworks we have tested.

Finally, stochastic sensitivity analysis identifies which parameter assumptions are
particularly important for a particular model and scenario. Monte Carlo simulations with GCAM
indicate that assumptions relating to soil carbon stocks and the ease of substitution among land
types and crop types have a relatively large influence on the corn ethanol and soybean oil
biodiesel results. The parameter controlling substitution between non-USA regions refined oil
and biodiesel is also influential for the soybean oil biodiesel GHG estimates. A similar analysis
with GLOBIOM finds that biophysical parameters, including those governing the expansion
response of palm cultivation into peatland and governing the emissions associated with such
expansion, are influential on soybean oil biodiesel GHG estimates. Stochastic analysis with
GREET indicates that parameter assumptions have less influence on the supply chain LCA
estimates for corn ethanol and soybean oil biodiesel when using an attributional LCA model.
However, the sensitivity analysis with GREET shows more uncertainty associated with
coproduct allocation choices and for assumptions related to induced land use change GHG
emissions. Considered alongside the other results of this exercise, these parameter sensitivity
analyses indicate that substantial uncertainty in the emissions associated with corn ethanol
and soybean oil biodiesel remains, both within and across models, and that additional
research on economic model parameters remains a high priority. These sensitivity analyses
can help us allocate limited research resources by highlighting which types of parameters are
most influential. Additional parametric sensitivity analysis could help us further pinpoint specific
parameters for additional research and analysis.

Conclusions

In sum, we draw some important general conclusions from this model comparison
exercise. First, ADAGE, GCAM, GLOBIOM and GTAP estimate that substantial indirect effects
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would be induced by the corn ethanol and, especially, soybean oil biodiesel shocks that we ran
for this exercise. These indirect effects are important drivers in the modeled emissions associated
with these fuels, which highlights the importance of considering indirect effects in LCA.?™

Second, we find substantial uncertainty regarding the overall greenhouse gas intensity of
the two biofuels examined in this exercise, corn ethanol and soybean oil biodiesel. Based on this
model comparison exercise, it is evident that variation in estimates remains high across models,
and within individual models when parameter uncertainty is considered. Although models have
advanced and new data has become available since EPA modeled the lifecycle GHG emissions
associated with corn ethanol and soybean oil biodiesel for the March 2010 RFS2 rule, there is
still a large degree of variation and uncertainty in lifecycle GHG estimates that consider
significant indirect emissions. The analyses we have conducted for this exercise highlight the
value of sensitivity analysis as a way of understanding which parameters and assumptions
influence the model results. Furthermore, given that uncertainty remains high for this type of
analysis, it is critical to perform robust uncertainty analysis and provide information about the
range of potential effects and risks of greater biofuel consumption. It is also important to
compare model results and parameters to historic observation.

To summarize, we find that the following model characteristics are critical for evaluating
the GHG impacts, including direct and indirect emissions, associated with a change in biofuel
consumption:

1. Supply chain LCA models produce a fundamentally different analysis than
economic models. Supply chain LCA models evaluate the GHG emissions emanating
from a particular supply chain, whereas economic models evaluate the GHG impacts of a
change in biofuel consumption. Supply chain LCA models generate detailed and
transparent fuel production emissions estimates. However, they do not evaluate all of the
indirect emissions associated with a change in biofuel consumption. The economic
models in our comparison are broad in scope, but they lack certain supply chain details.

2. Land use change emissions are a major contributor to the overall emissions.
ADAGE, GCAM, GLOBIOM, and GTAP all include land use change and land use
change emissions. GREET includes a static estimate of land use change emissions using
previous GTAP results with a different shock size and a 2004 baseline. Estimates of land
use change vary significantly. Drivers of variation in these estimates include differences
in assumptions related to trade, the substitutability of food and feed products, and land
conversion, as well as structural differences in how models represent land categories.

3. This exercise showed that when impacts of biofuel consumption on global energy
markets are considered, GHG emissions estimates are significantly altered. The

270 This finding also supports NASEM recommendation 2-2: “When a decision-maker wishes to understand the
consequences of a proposed decision or action on net GHG emissions, CLCA [consequential lifecycle analysis] is
appropriate. Modelers should provide transparency, justification, and sensitivity/robustness analysis for modeling
choices for the scenarios modeled with and without the proposed decision or action.” National Academies of
Sciences, Engineering, and Medicine 2022. Current Methods for Life Cycle Analyses of Low-Carbon
Transportation Fuels in the United States. Washington, DC: The National Academies Press.
https://doi.org/10.17226/26402.
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models that include energy sector results (ADAGE, GCAM, and GTAP) all estimate that
displacement of refined oil for biofuel is less than 1:1, reducing the GHG emission
reductions associated with the biofuels modeled. This indicates that economic modeling
of the energy sector may be required to avoid overestimating the emissions reductions
from fossil fuel consumption.

Model trade structure and assumed flexibility influence the modeled emissions
results. There is general agreement among the economic models that these trade-driven
impacts will occur to some degree. However, these models show different degrees of
trade responsiveness, which impacts trade flows at differing magnitudes across model
results.

. Certain commodity consumption dynamics appear to substantially influence GHG
emissions results. DDG and soybean meal’s impact on the livestock and feed sectors can
affect the estimated GHG emissions associated with biofuels. Explicit modeling of the
global livestock sector, including global feed markets, is an important capability for
estimating the emissions associated with an increase in biofuel consumption.

The degree to which other vegetable oils replace soybean oil diverted to fuel
production from other markets can impact GHG emissions associated with soybean
oil biodiesel. Results in this exercise from economic models (ADAGE, GCAM,
GLOBIOM, and GTAP) align in estimating commodity substitution as a significant part
of their scenario solution. Inclusion of explicit global vegetable oil competition is critical
to biofuel lifecycle analysis results because this competition affects the quantity and
location of estimated LUC emissions impacts.

. The ability to endogenously consider tradeoffs between intensification and

extensification is an important capability for estimating the emissions associated
with an increase in biofuel consumption. Both intensification and extensification of
corn and soybean feedstock production occur across ADAGE, GCAM, GLOBIOM, and
GTAP results in response to changing commodity prices. The degree of crop yield
intensification influences the amount of extensification needed to produce new feedstock
for biofuels. ADAGE, GCAM, GLOBIOM, and GTAP can all model increased crop
yields in response to crop prices. GLOBIOM and GTAP also explicitly consider multi-

cropping.

Models included in the MCE produced a wider range of LCA GHG estimates for
soybean oil biodiesel than corn ethanol. The models show much greater diversity in
feedstock sourcing strategies for soybean oil biodiesel than they do for corn ethanol, and
this wider range of options contributes to greater variability in the GHG results. There are
several important reasons for this greater diversity of strategies which were discussed
throughout this document.

This exercise demonstrated that a wide range of results can be obtained by varying
parameter values, highlighting the importance of sensitivity and uncertainty
analysis. Stochastic uncertainty analysis can currently be performed with GCAM,
GLOBIOM, and GREET, and Monte Carlo analysis can be performed with GCAM and
GLOBIOM. Other types of sensitivity analysis, such as varying individual parameters,
can be performed with ADAGE and GTAP as well. Sensitivity analysis, which considers
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uncertainty within a given model, can help identify which parameters influence model
results. However, pinpointing the direct causes of why one estimate differs from another
would require additional research.

Next Steps

A primary goal of this modeling exercise is to help advance the science related to
understanding how different modeling tools can be used to assess the GHG impacts of biofuels.
We understand that there is significant interest amongst stakeholders in a separate but related
topic: namely, how to determine which models, methods, and data are best suited for evaluating
the GHG impact of biofuels. Some stakeholders have suggested that EPA should include criteria
for such evaluative purposes as part of this MCE.

This MCE intentionally does not directly address that subject, nor does it include
proposed criteria. We have in this document instead focused on improving our understanding of
the current state of science for biofuel GHG modeling, including, but not limited to, how the
different models vary, how those variations affect results, and which parameters are critical to
model results. We have not developed a set of criteria against which different models can be
assessed, though we recognize that the development and use of such criteria could be critical in
helping to inform future policy decisions. EPA notes that the criteria used to assess different
models could vary greatly depending on the context in which lifecycle GHG modeling is being
used. For example, the criteria could differ if the context was a holistic program-wide regulatory
analysis as opposed to an assessment of individual fuel pathways. Criteria might also differ
based on the extent to which fuel volumes from a given individual biofuel pathway appear likely
to have impacts on the broader energy or agricultural sectors. To the extent EPA goes on to
develop criteria against which we evaluate different models, this model comparison exercise
provides critical information which will help EPA’s work.

The preceding sections of this document note areas for further research, and we are
interested in hearing stakeholder input on those suggestions. EPA is also interested in feedback
and evaluation from outside researchers and organizations on this model comparison exercise.
We plan to directly engage with stakeholders to collect input, consider our outstanding research
needs in this area, and identify those lines of inquiry most critical to future decisions.
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Abstract: Biofuels” induced land-use change (ILUC) emissions have been widely studied over the
past 15 years. Many studies have addressed uncertainties associated with these estimates. These
studies have broadly examined uncertainties associated with the choice of economic models, their
assumptions and parameters, and a few bio-physical variables. However, uncertainties in land-use
emission factors that represent the soil and vegetation carbon contents of various land types across
the world and are used to estimate carbon fluxes due to land conversions are mostly overlooked. This
paper calls attention to this important omission. It highlights some important sources of uncertainty
in land-use emissions factors, explores the range in these factors from established data sources, and
compares the influence of their variability on ILUC emissions for several sustainable aviation fuel
(SAF) pathways. The estimated land-use changes for each pathway are taken from a well-known
computable general equilibrium model, GTAP-BIO. Two well-known carbon calculator models
(CCLUB and AEZ-EF) that represent two different sets of emissions factors are used to convert the
GTAP-BIO estimated land-use changes to ILUC emissions. The results show that the calculated
ILUC emissions obtained from these carbon calculators for each examined SAF pathway are largely
different, even for the same amortization time horizon. For example, the ILUC emissions values
obtained from the AEZ-EF and CCLUB models for producing jet fuel from corn ethanol for a 25-year
amortization period are 24.9 gCO,e/M] and 15.96 gCOye/M]J, respectively. This represents a 60%
difference between the results of these two carbon calculators for the same set of land-use changes.
The results show larger differences for other pathways as well.

Keywords: biofuels; ILUC; emission factors; uncertainties

1. Introduction

Since the late 2000s, many papers have estimated greenhouse gas (GHG) emissions
of biofuels” induced land-use change (ILUC). To accomplish this task, as described by the
Committee on Current Methods for Life Cycle Analyses of Low-Carbon Transportation
Fuels in the United States [1], the examined studies for the calculation of ILUC emissions fol-
lowed a similar approach consisting of two sequential phases: (i) using an economic model
to project regional land-use changes for the biofuel under study, and (ii) implementing a
set of land-use emission factors (LUEFs) combined with some supporting assumptions to
convert the projected land-use changes to GHG emissions. In general, the LUEFs estimate
the soil and vegetation carbon content of land and are used to quantify emissions from
different types of land conversions.
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The existing literature has frequently noted that the estimated ILUC emissions val-
ues are uncertain [1-8]. The variations in modeling approach and structure, modeling
assumptions and data, and implemented economic parameters are identified as the main
sources of uncertainties in ILUC emissions values. However, only a few papers have stud-
ied uncertainties in LUEFs and their associated assumptions. Plevin et al. [6] conducted
a sensitivity assessment combining the GTAP-BIO model with an agro-ecological zone
emission factor (AEZ-EF) model [9,10] and concluded that the estimated ILUC emissions
values are more sensitive to the changes in economic parameters than the changes in LUEFs.
However, by using only one source for LUEFs, the authors’ sensitivity assessment did not
account for variability in background data or modeling assumptions behind the LUEFs.
Leland et al. [7] performed a similar sensitivity assessment focusing on the impacts of four
selected AEZ-EF input parameters on ILUC emission. In a related perspective, Taheripour
and Tyner [4] examined the influence of different sets of LUEFs in combination with the
estimated land-use changes for various biofuel pathways obtained from the GTAP-BIO
model and concluded that the estimated ILUC emissions value of each pathway vary
significantly with changes in the implemented LUEFs obtained from alternative sources.

In another study, Chen et al. [8] compared the estimated land-use changes for several
biodiesel pathways obtained from the GTAP-BIO model using two different set of emission
factors, including the Carbon Calculator for Land-Use and Land Management Change from
Biofuels Production (CCLUB) [11] and AEZ-EF models. The authors showed that the ILUC
emissions value of each pathway vary significantly with the implemented LUEFs used in
these emission accounting models. In particular, they showed that the selected LUEFs for
marginal cropland could largely alter the estimated ILUC emissions values. The findings
of these studies demonstrate that the role of LUEFs in assessing ILUC emissions values is
an important gap in land-use change research that has not been adequately evaluated.

This paper aims to fill this knowledge gap with two different but related research
activities. The first evaluates the available sources of information on vegetation and soil
carbon datasets that have been used in developing LUEFs to understand their similarities
and differences across various land types and ecological conditions. The second applies
the two emission accounting models mentioned above (AEZ-EF and CCLUB) to estimated
land-use changes obtained from an advanced version of the GTAP-BIO model for eight
Sustainable Aviation Fuel (SAF) pathways to examine the sensitivity of the ILUC emissions
values to the changes in the LUEFs embedded in these accounting models. The eight
selected SAF pathways represent those pathways that could be deployed in the US. These
research activities significantly contribute to the debates on uncertainties in ILUC emissions
values by highlighting how differences in the data source and LUEF modeling approach
affect ILUC emissions values.

The article is organized as follows. The Materials and Methods section explains how
ILUC emissions have been calculated and introduces the data sources that are often used
to estimate LUEFs and their components. This section also outlines the main features of the
GTAP-BIO model, which is frequently applied to estimate ILUC emissions. The section
ends with a presentation of methods used in the present study to calculate ILUC emissions
for a set of eight biofuel aviation pathways with two different set of LUEFs to highlight
the importance of uncertainties in these factors. The results section includes a presentation
of the wide ranges of LUEFs obtained from different datasets, a review of the causes of
differences between LUEF datasets, and highlights the influence of these differences on a
case study of ILUC emissions for the eight aviation biofuel pathways. We conclude the
article with a short discussion emphasizing the importance of uncertainties in LUEFs and
the ways that this line of uncertainty should be addressed by future research.

2. Materials and Methods
2.1. Common Approach in Calcualting ILUC Emissions

As noted in the Introduction, two sets of data are required to calculate ILUC emissions
from a biofuel pathway: (i) estimated land-use changes due to an increase in consump-
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tion/production of the selected biofuel, and (ii) a set of LUEFs for the relevant land-use
transitions. In general, regardless of differences across modeling practices, the following
stylized formula has been implemented to calculate an ILUC emissions value for a given
pathway (Zhao et al. [12]):

YikrOALix, X LUEF;,

IL =
uc T x E

1)

In this formula, the index i represents the list of all types of land transitions (e.g., forest
to cropland, forest to pasture, etc.), the index k shows spatial resolution (which could
represent the national level, agro-ecological level, grid cell, or any other geographical
resolution) within each country, and the index r indicates countries. The variables AL,
LUEF, T, and E are land conversions in hectares, land-use emission factors measured in
gCOse per hectare, amortization time horizon in years, and annual energy produced by
the pathway under study measured in megajoules (M]), respectively. Therefore, an ILUC
emissions value estimates emissions in gCOe/M]J.

Hence, one needs to determine AL, LUEF, T, and E in calculating ILUC emissions
values. The last two variables of this list are usually predetermined by the accounting
system and fuel type, respectively. However, the first two variables are unknown and must
be estimated, simulated, or measured. A sizeable expansion in production or consumption
of a biofuel pathway that uses agricultural feedstocks (e.g., corn, soybeans, or perennial
grasses) could induce land-use changes directly or indirectly at the local, national, and
international levels (Hertel et al. [13]. The size, location, and type of land-use changes
(i.e., AL;,) could vary based on the characteristics of the pathway under consideration
and on many economic and biophysical variables. Unfortunately, land-use changes are not
directly observable or measurable. Economic models have been used to estimate land-use
changes. In this paper, we use the results of a well-known computable general equilibrium
(CGE) model, GTAP-BIO, which has been widely used in this field of research to assess
land-use changes for various biofuel pathways.

2.2. Components and Sources of LUEFs

In calculating ILUC emissions values, one needs to determine the variable LUEF; ,
for the i, k, and r indices, which is not a trivial task. In principle, this variable should
capture all types of carbon fluxes associated with each type of land conversion. These
fluxes are driven by changes in biological and mineral carbon pools, including soil organic
carbon, carbon stock in above- and belowground live biomass, and dead organic matter
and litter. Additionally, some carbon accounting frameworks include forgone carbon
sequestration, emissions due to biomass burning through land clearing, and non-CO,
emissions associated with the land use, land-use change, and forestry (LULUCF). Because
of differences in background data and the included categories of emissions, alternative
data sources provide widely varying estimates of LUEF; ; , for the same land-use transition
and location.

Several foundational data sources in this field include the Harmonized World Soil
Database (HWSD) [14], IPCC [15,16], Winrock [17], and Woods Hole [18] datasets of
carbon in soil and vegetation. Terrestrial-biogeochemical models such as Century [19,20],
Daycent [21], TEM [22], and ISAM [23] have also been widely used to estimate the core
components of LUEFs. Additional sources for critical background data on terrestrial carbon
pools and associated GHG emissions during land-use transitions include individual studies
such as Gibbs et al. [24], Saatchi et al. [25], and Batjes [26].

In addition to the required data on soil and vegetation carbon stocks, depending on
the case under study, one may need additional information or use certain assumptions to
mix and match AL; , and LUEF; , variables. One may follow different approaches and
assumptions to facilitate this process, which can cause significant variations in the resulting
ILUC emissions values. The following three examples represent different approaches that
the AEZ-EF and CCLUB models use to match the GTAP-BIO estimated land-use changes
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with their emission factors. Example 1: The GTAP-BIO model projects conversion of
“cropland pasture” (a category of marginal land) to crop production due to biofuel shocks.
In an ad hoc manner, the AEZ-EF model assumes that the soil carbon content for this
type of land in each AEZ region is half of that of pasture land. On the other hand, the
CCLUB model relies on a terrestrial-biogeochemical model (Century) to evaluate carbon
content for this type of land by AEZ. Example 2: The AEZ-EF uses some assumptions and
extends the original GTAP-BIO land conversions beyond the land conversions that this
CGE model provides to match the land conversions with its emissions factors. For instance,
the AEZ-EF model includes emission factors for converting forest or pasture to sugarcane.
The GTAP-BIO model does not determine these land conversions. However, the AEZ-EF
model uses some assumptions and determines these land conversions. The CCLUB model
only uses the original GTAP-BIO land conversions. Example 3: The AEZ-EF uses some
assumptions and assigns a portion of converted forest to cropland as forest on peat land,
while the CCLUB uses more recent data with a different assumed portion of converted
forest to cropland as forest on peat land.

Because the results of the GTAP-BIO model are used in this paper, we use two emis-
sions accounting models that have been developed and used to convert the results of this
model to ILUC emissions values. These two models are the AEZ-EF and CCLUB. The
AEZ-EF model relies on IPCC, FAO, HWSD, and several other data sources to convert the
GTAP-BIO results to ILUC emissions. This model follows the IPCC approach of using the
differences in the biomass and soil organic carbon (SOC) pools between land-cover types
as the emissions (or sequestration) values from land conversion.

In contrast, CCLUB provides users with Century simulated GHG emissions changes
in US domestic land conversions to cropland and the option of using either the Winrock or
Woods Hole data sources for international land conversions to simulate biomass and SOC
changes between land-use categories over a period of time. As mentioned earlier, using
the Century model, the CCLUB model also provides some assessments for the emission
factors associated with the land category of “cropland pasture”. In conclusion, the AEZ-EF
and CCLUB models use different sources of data on carbon pools and follow different
assumptions to convert the results of the GTAP-BIO model to ILUC emissions, especially
for US domestic land conversions.

To highlight uncertainties and variations in the data on LUEF; ,, we first review four
existing sets of emission factors for converting forest to cropland and pasture to cropland:
AEZ-EF, TEM, Winrock, and Woods Hole. These datasets have been used in calculating
ILUC values for various US biofuel pathways over the past 15 years, but are limited by
their reliance on outdated data in assessing emission factors. For example, the AEZ-EF
model uses the 2006 IPCC guidelines for national greenhouse gas inventories instead of the
new guidelines published in 2019. To highlight the potential impacts of using outdated
data, we compare changes in the reference values for SOC stocks obtained from the IPCC
2006 and 2019 guidelines.

Finally, we calculate ILUC emissions values for eight aviation biofuel pathways that
can be produced in the US by using the estimated land-use changes provided by the
GTAP-BIO model and CCLUB carbon accounting model and compare the results with the
corresponding values that have been calculated by the Carbon Offsetting and Reduction
Scheme for International Aviation (CORSIA) of the International Civil Aviation Organiza-
tion (ICAO) [12] using the AEZ-EF model. The eight selected SAF pathways are introduced
in the next section. In this paper, we calculate ILUC emissions values for the selected
pathways using the AEZ-EF and CCLUB models to highlight their differences.

2.3. A Short Review of GTAP-BIO Model and Implemented AL for the Examined SAF Pathways

As mentioned above, the AEZ-EF and CCLUB emission calculators were designed to
use the estimated land conversions (AL) obtained from the GTAP-BIO model. Hence, in
this paper, we use the estimated land-use changes obtained from this CGE model which has
been widely used in assessing ILUC emissions values due to biofuel production and policy.
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This global CGE model is an advanced version of the standard GTAP model originally
developed by Hertel [27]. This global macro model represents consumers and producers
and simulates their behaviors in consuming and producing goods and services to determine
their demands and supplies, respectively. It also includes government consumption,
international trade, and investment. The standard GTAP model traces the production,
consumption, and trade of all goods and services produced across the world by country.
However, the standard model and its database do not represent biofuels and their by-
products explicitly. The GTAP-BIO model and its database remedy this deficiency and
explicitly represent supplies and uses of alternative types of biofuels that are commercially
produced around the world [13,28-32]. These biofuels include ethanol produced from
grains (e.g., corn and wheat) and sugar crops (e.g., sugarcane and sugar beet) and biodiesel
produced from soy oil, rapeseed oil, palm oil, and other types of vegetable oils. Note that
using oilseeds for biodiesel production generates oilseed meal and converting grains to
ethanol generates distiller’s dried grains with solubles (DDGS). These by-products play an
important role when assessing the system-wide land-use effects of a biofuel pathway.

In addition, the GTAP-BIO model represents land uses by the agricultural and forestry
sectors and traces their changes due to changes in demands for foods and biofuels. The agri-
cultural sectors in this model include crop producers (rice, wheat, coarse grains, soybeans,
rapeseed, palm oil, other oilseeds, sugar crops, and other crops) and livestock producers
(dairy farms, ruminants, and non-ruminants). The GTAP-BIO model divides the accessible
land across three land-cover categories: forest, pasture/grassland, and cropland. It then
allocates pasture land across livestock activities and cropland across crop producers. The
model takes into account multiple cropping (producing more than one crop per year on the
same cropland), allows the return of unused cropland to crop production if needed, and
takes into account yield improvement due to higher crop profitability.

An advanced version of GTAP-BIO has been developed to assess potential land-use
changes for pioneering biofuels that are not yet produced at the commercial level. In
addition to traditional crops, this model also has the capability to simulate the production
of dedicated energy crops such as miscanthus, switchgrass, and poplar. Zhao et al. [12]
have used this advanced version of the GTAP-BIO model to estimate land-use changes
for a wide range of SAF pathways that can be produced across the world. This study
applies the estimated land-use changes provided by Zhao et al. [12] for eight SAF pathways
that can be produced in the US. These pathways are: (i) jet fuel produced from soy oil
using the hydro-processed ester and fatty acid technology (soy oil HEFA); (ii) jet fuel
produced from corn using the iso-butanol alcohol technology (corn AT]J); (iii) jet fuel
produced from corn ethanol (corn ETJ); (iv) jet fuel produced from miscanthus using
the Fischer—Tropsch technology (miscanthus FTJ); (v) jet fuel produced from switchgrass
using the Fischer—Tropsch technology (switchgrass FIJ); (vi) jet fuel produced from poplar
using the Fischer-Tropsch technology (poplar FTJ); (vii) jet fuel produced from miscanthus
using the iso-butanol alcohol technology (miscanthus ATJ); and (viii) jet fuel produced
from switchgrass using the iso-butanol alcohol technology (miscanthus ATJ). The technical
details regarding these pathways are provided in the CORSIA Supporting Document [33].
More details about the estimated land-use changes for these pathways are provided in
Zhao et al. [12]. The estimated land-use changes for the selected SAF pathways were
obtained for the given expansions in their fuel supplies as reported in Table 1.

As shown in Table 1, in addition to jet fuel, some SAF pathways produce a conventional
biofuel co-product as well. The co-product biofuels could be ethanol or biodiesel that can
be used in road transportation. The biofuel co-products of the HEFA and ET]J technologies
are biodiesel and diesel / gasoline, respectively. The AT] technology produces no co-product
biofuel. The total energy output for each pathway (including jet fuel and conventional
biofuel) is shown in petajoules and also in billion gallons of gasoline equivalent (BGGE) in
Table 1. The variable E presented in the denominator of Equation (1) represents the total
energy output of each pathway after conversion to megajoules.
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Table 1. Assumed expansions in supplies of the selected SAF pathways.
Increases in Fuel Supplies Increases in Fuel Supplies in Bllion
in Petajoules Gallons of Gasolin Equivalent
Pathways Biofuel Biofuel

Jet Fuel Co-product Total Jet Fuel Co-product Total

Soy oil HEFA 57.1 171.3 228.4 0.47 1.4 1.86
Corn AT] 103.8 0 103.8 0.85 0 0.85

Corn ETJ 103.8 32.2 136 0.85 0.26 1.11
Miscanthus FTJ 69.2 207.7 276.9 0.57 1.7 2.26
Switchgrass FT] 69.2 207.7 276.9 0.57 1.7 2.26
Poplar FTJ 69.2 207.7 276.9 0.57 1.7 2.26
Miscanthus ATJ 69.2 0 69.2 0.57 0 0.57
Switchgrass ATJ 69.2 0 69.2 0.57 0 0.57

Source: Table 64 of CORSIA Supporting Document [33]. HEFA, ATJ, ETJ, and FTJ stand for producing jet
fuel using hydro-processed ester and fatty acid; iso-butanol alcohol; ethanol to jet fuel; and Fischer-Tropsch
technologies, respectively.

3. Results
3.1. Uncertainty in Emission Factors

The results show that the existing data sources provide different assessments of
emission factors for a given land type conversion (pasture to cropland or forest to cropland)
in a geographical region. Figure 1 provides comparisons across the existing data sources
on emission factors for converting forest and pasture to cropland across the world. The
data sources are the AEZ-EF, TEM, Winrock, and Woods Hole datasets. This figure shows
the following:

e  Regardless of region or data source, the emission factors of converting forest land to
cropland are higher than the emission factors of converting pasture to cropland;

e Regardless of the data source for a given land type, the emission factors vary signifi-
cantly across regions. This is because the vegetation cover and soil characteristics vary
significantly across regions;

e For a given region and land type, alternative sources provide significantly different
emission factors. This item highlights uncertainties in LUEFs across data sources; and

e  The observed variation among the alternative sources of LUEFs for a given country or
region is caused by many factors, including differences in model assumptions, system
boundaries, primary carbon stock data sources, and categorization of ecosystems and
land uses, among others. Major research efforts are needed to identify, prioritize, and
validate these factors to better assess the true scope and uncertainty of ILUC emissions.

To better assess this line of uncertainty, we examined the differences between these
emission factor sources by calculating the ratios of TEM/AEZ-EF, Woods Hole/AEZ-EF,
and Winrock/AEZ-EF for each type of land conversion (pasture to cropland and forest to
cropland) in each region. As shown in Figure 2, the ratios for both forest and pasture are
highly variable across regions. This figure shows the following:

e  There is a large disparity among emission factors for the pasture land to cropland
transition, which often vary by a factor of three or more between the smallest and
largest estimates;

e  The TEM emissions factors for pasture land to cropland in Brazil, East Asia, Malaysia,
and Indonesia, and the rest of South Asia are much larger than those EFs from
other sources.

e  The Woods Hole emission factors for pasture land to cropland in China, India, the
rest of South Asia, Russia, and some European regions are much larger than those
emissions factors from other sources;
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e  The forest land to cropland transition emissions factors from TEM and Woods Hole
models are larger than those from other models;

e In each region, the disparity among the alternative sources of emission factors for
forest land is also considerable, but lower than the disparity for pasture land.

Pasture land to cropland

w w s &G
8 & 8 &8 8

g 8

Million grams of CO,e per hectare
=3 N
8 3

USA EU27 Brazil Canada Japan China& India Carri. & South EastAsia Malaysia Restof Restof Russia Other Other Middle Sub Oceania
Hong Central America & South South CEEand Europe East& Saharan
Kong America Indonesia East Asia  Asia CIs North Africa
Africa

[
o

o

B AEZ-EF BTEM Winrock @ Woods Hole

Forest land to cropland

1100
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100
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USA EU27 Brazil Canada Japan China& India Carri. & South EastAsia Malaysia Restof Restof Russia Other Other Middle Sub Oceania

Hong Central America & South South CEEand Europe East& Saharan
Kong America Indonesia East Asia  Asia cIs North Africa
Africa
W AEZ-EF BTEM Winrock @ Woods Hole

Figure 1. Emission factors for converting forest and pasture to cropland by region across different
data sources. The AEZ-EF emission factors represent weighted averages across AEZs of each region
using pasture and forest areas. The Winrock emission factors are taken from the CCLUB tables. Other
emission factors are obtained from Taheripour and Tyner [4]. The CEE and CIS regions represent
Central and Eastern Europe and the Commonwealth of Independent States, respectively.

These results suggest that differences across alternative sources of emission factors, in
many cases, are extremely large. This indicates that using alternative emission factors could
lead to major uncertainties in assessing ILUC emissions values. Each of these datasets
represents various data items, components, and assumptions. They represent different
assessments for soil organic carbon and carbon stock in above- and belowground live
biomass. Their assessments for dead organic matter and litter carbon pools are different.
For example, in addition to the carbon content of forest live biomass, emission factors may
include carbon stored in dead organic matter consists of litter and dead wood. Quantifica-
tion of these carbon sources is highly uncertain and varies across data sources. The existing
data sources also follow different assumptions in calculating forgone carbon sequestration.
Forgone sequestration refers to the carbon that would have been captured by soils or plants
that are lost due to land-use changes. Alternative sources that provide emission factors use
different data sources and follow different approaches and assumptions to assess forgone
sequestration. This leads to significant variations in emissions factors. The existing emis-
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sion factors may also follow different approaches in calculating biomass burning through
land clearing and non-CO; emissions associated with LULUCF. Biomass burning may
accrue in land-clearing activities induced by expansions in demand for cropland. The
share of biomass burning in land-clearing activities varies across regions. In addition,
various approaches could be followed in assessing the CO, and non-CO, emissions due to
biomass burning. These factors jointly make the emissions induced by biomass burning
very uncertain.

With the observed variations in the presented emission factors, it should be very
clear that these factors are major sources of uncertainties. Understanding this line of
uncertainty could help to provide better estimates for ILUC emissions values for alternative
biofuel pathways.

4.0
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25
20
1.5
1.0

Pasture land to cropland
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0.0

USA EU27 Brazil Canada Japan China& India Carri. & South EastAsia Malaysia Restof Restof Russia Other Other Middle Sub  Oceania

Hong Central America & South South CEEand Europe East& Saharan
Kong America Indonesia East Asia  Asia CIs North  Africa
Africa
EWTEM/AEZ-EF Winrock/AEZ-EF @@ Woods Hole/AEZ-EF  ——AEZ-EF/AEZ-EF
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Kong America Indonesia East Asia  Asia North Africa
Africa
EENTEM/AEZ-EF [ Winrock/AEZ-EF EE@Woods Hole/AEZ-EF ~ ——AEZ-EF/AEZ-EF

Figure 2. Ratios of emission factors of TEM/AEZ-EF, Winrock/ AEZ-EF, Woods Hole/AEZ-EF, and
AEZ-EF/AEZ-EF for converting pasture and forest to cropland by region. The AEZ-EF emission
factors represent weighted averages across AEZs of each region using pasture and forest areas. The
Winrock emission factors are taken from the CCLUB tables. Other emission factors are obtained from
Taheripour and Tyner [4]. The CEE and CIS regions represent Central and Eastern Europe and the
Commonwealth of Independent States, respectively.

3.2. Emission Factors Containing Outdated Data

As mentioned before, emission factors represent various data items, components, and
assumptions. Many of these data items have not been updated over time, while the existing
literature has provided their new updates. As an example, the AEZ-EF model following
Edwards et al. [34] assumes that 33% of an increase in palm plantation is converted from
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forest on peatland in Malaysia and Indonesia. However, as noted by Zhao et al. [12], more
recent data provided by Austin et al. [35] suggest lower rates of palm on peatland.

The AEZ-EF model relies on an outdated version of HWSD data and follows the IPCC
2006 guidelines to estimate SOC for each region-AEZ. The HWSD dataset has been revised
over time. However, the AEZ-EF emission factors have not been updated accordingly.
The first version of this dataset (V1.1) was released in 2009. The AEZ-EF model was built
using this version. The latest version of this dataset was released in 2023. Updating the
AEZ-EF data sources to represent the new version of HWSD data could affect the estimates
of ILUC emissions.

As another example and as explained above, the AEZ-EF model relies on the IPCC
2006 guidelines to determine its emission factors. However, the IPCC revises its datasets
and guidelines over time. These revisions suggest that soil and vegetation carbon content
data sources are uncertain and subject to reassessments over time. To highlight this fact,
consider Figure 3, which shows percent differences in the IPCC default reference values
for soil organic carbon stocks (SOCgrgr) for mineral soil presented in the 2019 and 2006
guidelines for various soil types and climate regions. This figure indicates that in most
cases, the default SOCRrgr values declined in the new IPCC guideline. This suggests that
the AEZ-EF model that uses the 2006 IPCC guidelines in determining SOC values needs
to adopt the newer 2019 IPCC guidelines to provide ILUC emissions based on the most
recent available information. Note that the SOC values are not the only data items of
the AEZ-EF model that should change due to revisions in the IPCC guidelines. Other
important data items and assumptions that need revisions according to the newer IPCC
guidelines are global warming potentials, litter data, soil stock change factors, and forest
combustion factors.

80.0
60.0
40.0
20.0

0.0 —I

-20.0

% Difference

-40.0

-60.0

-80.0
HAC LAC SAN voL WET

M Cool temperate dry (C2) M Cool temperate moist (C1) Warm temperate dry (W2)
Warm temperate moist (W1) W Tropical dry (T4) m Tropical moist (T3)
M Tropical wet (T2) M Tropical montane (T1)

Figure 3. Percent differences in reference values for soil organic carbon stocks (SOCrgr) between the
2019 and 2006 IPCC national accounting guidance for various soil types and climate regions. Here,
HAC, LAC, SAN, VOL, and WET stand for high activity clay soils, low activity clay soils, sandy soils,
volcanic soils, and wetland soils, respectively. Percent differences are [(SOCRrgr of 2019_SOCgrgr of
2006)/SOCggr of 2006] x 100.

3.3. ILUC Emissions for Selected SAF Pathways

The calculated ILUC emission values for the selected eight US SAF pathways differ
substantially when assessed using the AEZ-EF versus CCLUB carbon accounting models
(Table 2). For the soy oil HEFA, corn ATJ, and corn ET] pathways, the CCLUB model pro-
vides lower ILUC emission values than AEZ-EF. In these cases, the difference is primarily
driven by a more detailed parameterization of the “cropland pasture” land category in
CCLUB compared to AEZ-EF. Based on extensive research characterizing cropland pasture,
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CCLUB accounts for accumulation of SOC upon conversion to cropland through Century
simulations. In contrast, the AEZ-EF model assumes on an ad hoc basis that the conversion
of cropland pasture to crop production releases carbon with a soil carbon content of half of
that for pasture land.

Table 2. Estimated ILUC emissions values for US SAF pathways using different emissions accounting

models for a 25-year amortization time horizon (gCO,e/M]J).

ILUC Obtained from the AEZ-EF Model

ILUC Obtained Difference:
Pathways Sog a(zll;%:lnic ]éi:g)lzis Others ** AEZ-EF Total frorl?/lgdce]iUB AEZ-EF-CCLUB

Soy oil HEFA 5 1.6 134 20 15.0 5.0
Corn ATJ 8.4 —-0.3 144 22.5 144 8.1
Corn ETJ 94 —-0.3 15.8 249 15.6 9.3

Miscanthus FTJ —-33.6 —-17.8 14.1 —-37.3 —-12.8 —24.5

Switchgrass FTJ -17.3 —11.8 20.9 —8.2 1.0 —9.2

Poplar FTJ —7.8 —-19.5 17.7 —-9.6 7.0 —16.6

Miscanthus AT] —51 —25.3 17.8 —58.5 —26.1 —-32.3

Switchgrass AT] —28.7 —18.5 28.3 —18.9 —14.1 —4.7

Source: Zhao et al. [12]. HEFA, ATJ, ETJ, and FTJ stand for producing jet fuel using hydro-processed ester and
fatty acid; iso-butanol alcohol; ethanol to jet fuel; and Fischer-Tropsch technologies, respectively. ** Others include
natural vegetation, foregone sequestration, and peat land oxidation.

The results applying the AEZ-EF emissions factors suggest substantially lower ILUC
emissions for dedicated energy crops than those calculated using the CCLUB model. For
these biofuel pathways, the AEZ-EF assigns improvements in SOC per hectare of converted
cropland to the dedicated energy crops. However, CCLUB only considers improvements in
the SOC of cropland pasture. The implications of these differences are highlighted in Table 2.
The calculated SOC values indicate that the AEF-EF model assesses large negative changes
in SOC on land conversion to dedicated bioenergy crops. A match between the approaches
followed by these models in assessing SOC gains could lead to lower differences between
their results for the pathways that use dedicated energy crops as feedstock. As presented in
Table 2, those pathways that use dedicated energy crops provide major carbon savings due
to the accumulation of biomass carbon in the production processes of these energy crops
as well.

As mentioned above, Table 2 shows ILUC emissions values for a 25-year amortization
time horizon, the assumption in the ICAO CORSIA program. However, the US biofuel
policies consider a 30-year amortization time horizon. Table 3 provides the ILUC values for
the examined pathways for 25-year and 30-year amortization time horizons.

Table 3. Estimated ILUC emissions values for various SAF pathways using different emissions
accounting models for 25- and 30-year amortization time periods (§CO,e/M]).

Amortization Time Horizon

Pathways 25 Years 30 Years
AEZ-EF CCLUB AEZ-EF CCLUB
Soy oil HEFA 20.0 15.0 16.6 125
Corn ATJ 22.5 14.4 18.7 12.0
Corn ETJ 249 15.6 20.8 13.0
Miscanthus FTJ —37.3 —12.8 —31.1 -10.7
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Table 3. Cont.

Amortization Time Horizon

Pathways 25 Years 30 Years
AEZ-EF CCLUB AEZ-EF CCLUB
Switchgrass FTJ —8.2 1.0 —6.8 0.9
Poplar FTJ -9.6 7.0 -8.0 59
Miscanthus ATJ iBuOH —58.5 —26.1 —48.7 —21.8
Switchgrass AT] iBuOH —18.9 —14.1 —15.7 —11.8
Grain AT]J 225 14.4 18.7 12.0
Grain ETJ 249 15.6 20.8 13.0

HEFA, AT]J, ETJ, and FTJ stand for producing jet fuel using hydro-processed ester and fatty acid; iso-butanol
alcohol; ethanol to jet fuel; and Fischer-Tropsch technologies, respectively.

As shown in Table 3, a 30-year amortization time horizon leads to lower ILUC emis-
sions values for all pathways and for both the AEF-EF and CCLUB models.

3.4. Land-Use Emission Factors Used in Other Economic Models

Uncertainties associated with emission factors are not limited to the emission factors
that are used to convert the GTAP-BIO estimated land-use changes to ILUC emissions.
Other economic models that have been used to assess ILUC emissions are subject to
the same uncertainties. Here, we briefly introduce the emission factors of three other
economic models.

The economic projection and policy analysis (EPPA) model [36] which has been used
to assess land-use changes and their associated emissions uses a set of emissions factors
that were obtained from the TEM model [37,38]. These emissions factors are different
from those emission factors that are reported and used by Taheripour et al. [4] using the
same terrestrial model. This model estimates land-use emission factors by calculating the
net ecosystem productivity, the carbon emissions due to the conversion of natural land
to agricultural use, and carbon emissions because of the decomposition of forestry and
agricultural products [39]. The calculations of these components are subject to various
types of uncertainties regarding the implemented data and model parameters.

The global biosphere management model (GLOBIOM) [40] is another model which
has been used to evaluate ILUC emissions for various biofuel pathways [33]. This model
uses IPCC guidelines and data, a version of the HWSD dataset, and its own equations
to calculates carbon fluxes from land-use changes. While details regarding the emission
factors of this model are not available, one could expect that the emission factors of this
model are also subject to uncertainties, as GLOBIOM also uses the same data sources and
approaches that are used by other models.

The global change analysis model (GCAM) has also used to assess ILUC emissions.
According to Kyle et al. [41], this model uses a set of predetermined emission factors. These
emission factors divide the carbon pools into vegetation and soil carbon, similar to the AEZ-
EF model approach. However, the vegetation carbon pool used in GCAM disregards litter
and dead vegetation. This model relies on various publications to assess the soil and carbon
content of land by region and AEZ. These data sources are subject to uncertainties, similar
to the data sources that are used in the AEZ-EF and CCLUB models. Van de Ven et al. [42]
have reported the GCAM model emission factors by land type and AEZ.

4. Discussion

This paper highlights that many studies have addressed uncertainties in ILUC emis-
sions stemming from the choice of economic models and their assumptions and parameters,
while uncertainties in LUEFs that represent soil and vegetation carbon contents of various
land types across the world and are used to estimate carbon fluxes due to land conver-
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sions are mostly overlooked. We call attention to this major omission, demonstrating
that common sources of LUEFs vary substantially for the same land type, geographical
region, and vegetation cover. Some of this variation is due to differences in background in
model system boundaries, assumptions, and data sources. The existing LUEFs not only
use different sources of data to measure the soil and vegetation carbon of the global land
cover, they follow different approaches in determining carbon fluxes due to changes in
dead organic matter, litter carbon pools, forgone carbon sequestration, and emissions due
to biomass burning that occur in land-clearing activities. LUEFs estimates often rely on
outdated data sources, which could also lead to inaccurate ILUC emissions. By highlighting
the differences in the calculated ILUC values from a variety of aviation biofuel pathways
using two common LUEFs datasets, this study emphasizes that the choice of LUEFs dataset,
and thus the variation in model systems and data sources, substantially affects ILUC values
for biofuels. To reduce these uncertainties and provide more accurate ILUC emissions from
biofuels, more advanced research activities are required to improve estimates in the soil
and vegetation carbon of land-cover types across geographies, validate the data sources
that underpin existing LUEFs, and develop a set of standard procedures for the application
of biological carbon estimates and modeling systems to the field of ILUC.

As recommended by the Committee on Current Methods for Life Cycle Analyses of
Low-Carbon Transportation Fuels in the United States [1], with up-to-date data sources,
additional research should be conducted to improve and validate LUEFs. These improve-
ment and validation efforts are needed to better estimate the change in GHG emissions
by displacing fossil fuels with biofuels. This will help to guide policies and programs
that support expansions in biofuels to ensure savings in GHG in transportation sectors by
biofuels. Key policies and programs (e.g., the US Renewable Fuel Standard, the California
Low Carbon Fuel Standard, and the ICAO-CORSIA program) rely on life cycle analyses
and estimations of ILUC emissions to calculate the GHG emission intensities of biofuels.
With new research activities that improve and validate the LUEFs, we could enhance
effectiveness of the public policies in reducing GHG emissions. Without developing these
crucial new studies, public policy may have unintended consequences of supporting fuel
options that may have high-ILUC GHG emissions.

5. Conclusions

This study shows that while the existing literature has extensively discussed uncer-
tainties in modeling land-use changes due to biofuels, no major effort has been made to
evaluate uncertainties in land-use emission factors. Our study indicates that variations in
the available data sources that provide land-use emission factors are substantially large.
Hence, moving from one set of land-use emission factors to another significantly affects
the estimated ILUC emissions values for a given set of estimated land-use changes for a
given pathway. To highlight and confirm this important point, we explained components
of several available emissions factors, data sources, and assumptions that have been used
to develop those emissions factors and show that the AEZ-EF and CCLUB models, which
represent two sets of different land-use emission factors, provide different assessments
for ILUC emissions values. Finally, we discussed that uncertainties in emissions factors
are not limited to the emissions factors used in the AEZ-EF and CCLUB models that have
been frequently used to assess ILUC values in combination with the GTAP-BIO model
land-use change projections. The ILUC emissions calculated by other economic models
such as EPPA, CGAM, and GLOBIOM are also subject to uncertainties in land-use emission
factors as well.

The varied selection of primary data sources, system boundaries, and other modeling
assumptions make it very challenging to identify the root causes of the observed variations
across models for emission factors for a given country/region. Major research efforts are
needed to determine the sources of these variations, assess the accuracy of these models,
and validate the resulting emissions factors. To reconcile large differences in emission
quantification due to biofuel uses, we call for using advanced satellite and remote-sensing
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technology to refine emission factor quantifications and field sampling studies to verify the
model estimates for large-scale quantification of emissions due to biofuel production.
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PADD regions enable regional analysis of petroleum product supply and movements
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The Petroleum Administration for Defense Districts (PADDs) are geographic aggregations of the 50 States and the District of Columbia into five districts:
PADD 1 is the East Coast, PADD 2 the Midwest, PADD 3 the Gulf Coast, PADD 4 the Rocky Mountain Region, and PADD 5 the West Coast. Due to its large
population, PADD 1 is further divided into sub-PADDs, with PADD 1A as New England, PADD 1B the Central Atlantic States, and PADD 1C comprising the
Lower Atlantic States. There are two additional PADDs (PADDs VI and VII) that encompass U.S. Territories (these are not pictured on the map). The PADDs
help users of EIA's petroleum data assess regional petroleum product supplies.

Source: U.S. Energy Information Administration.

During World War Il the Petroleum Administration for War, established by an Executive order in 1942, used these five districts to ration gasoline. Although the
Administration was abolished after the war in 1946, Congress passed the Defense Production Act of 1950, which created the Petroleum Administration for
Defense and used the same five districts, only now called the Petroleum Administration for Defense Districts.

The PADDs also allow data users to analyze patterns of crude oil and petroleum product movements throughout the nation. During 2010 (the latest full year
for which published data are available), the bulk of petroleum product pipeline movements took place among PADDs 1, 2, and 3 (see table below). More than
half of the total U.S. inter-PADD product pipeline movements were from PADD 3 (an area with significant refining capacity) to PADD 1 (a major population
center). By contrast, PADDs 4 and 5 show very small volumes entering and leaving by pipeline, with nothing leaving PADD 5.

For crude oil, nearly three-quarters of the inter-PADD pipeline movements in 2010 were movements from PADD 3 to PADD 2 (see table below). These
volumes include crude oil produced in the Gulf of Mexico and imports to the Gulf Coast region that move inland to refineries in PADD 2. The volume of crude
oil moving by pipeline from PADD 3 to PADD 2 has steadily declined in recent years, as pipeline receipts of Canadian oil sands crude oil and increased
production from North Dakota's Bakken formation have bolstered PADD 2 crude oil supplies. This increase in PADD 2 crude supplies has reduced their need
for crude oil supplies from the Gulf Coast. The vast majority of the inter-PADD crude oil pipeline movements occur among PADDs 2, 3, and 4, with very little
crude oil pipeline activity into or out of PADDs 1 and 5. Such crude oil and petroleum product movement patterns would be hard to discern without the
availability of PADD-level data.

Petroleum Product Inter-PADD Pipeline Movements, 2010
million barrels

SHIPPING PADD
Total
PADD| From 1| From2| From 3| From 4| From 5|receipts
Tol - 17 886 0 0 903
To2 111 - 278 58 0 447
To3 0 121 - 69 0 190
To4 0 28 10| 0 38
To5 0 0 54 12 - 66
Total
shipments 111 166 1228 139 0 1644

Source: U.S. Energy Information Administration, Petroleum Supply Monthly.
Download CSV Data

https://www.eia.gov/todayinenergy/detail.php?id=4890 12
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Crude Qil Inter-PADD Pipeline Movements, 2010

million barrels

SHIPPING PADD

Total
PADD| From 1|From 2 | From3 | From 4| From 5|receipts
To1l - 2 6 1] 1] )
To2 o - 440 65 o 505
To3 5 50 - 2 1] 57
Tod 1] 22 o - 1] 22
To5 o o 0 12 - 12
Total
shipments 5 74 445 79 0 604

Source: U.S. Energy Information Administration, Petroleum Supply Monthly.

Download CSV Data

https://www.eia.gov/todayinenergy/detail.php?id=4890
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Crude Oil Production

Period-Unit: Annual-Thousand Barrels v
. View
Production 2019 2020 2021 2022 2023 2024 History
uU.s. O 4,494,885 4,149,016 4,128,623 4,381,539 4,724,335 4,843,858 12805;4
1981-
PADD 1 O 25,594 26,513 26,060 21,872 24,270 19,191 2024
. 1981-
Florida O 1,937 1,488 1,490 1,210 1,022 878 2024
1981-
New York O 277 238 266 266 251 206 2024
. 1981-
Pennsylvania O 6,117 5,298 6,334 5,195 4,832 4,450 2024
o 1981-
Virginia O 6 5 5 7 6 5 2024
L 1981-
West Virginia O 17,256 19,484 17,964 15,194 18,159 13,651 2024
1981-
PADD 2 O 816,640 676,665 618,654 606,626 664,374 664,158 2024
. 1981-
lllinois O 8,241 7,148 7,056 6,924 6,890 6,971 2024
. 1981-
Indiana O 1,579 1,323 1,521 1,711 1,532 1,628 2024
1981-
Kansas O 33,193 28,258 27,905 28,003 27,698 26,829 2024
1981-
Kentucky O 2,505 2,265 2,464 2,252 1,876 2,040 2024
. 1981-
Michigan O 5,227 4,187 4,683 4,795 4,902 4,546 2024
. . 1981-
Missouri O 85 62 60 69 63 57 2024
1981-
Nebraska O 1,866 1,673 1,592 1,706 1,543 1,287 2024
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1981-

North Dakota O 517,672 433,555 405180 386,273 431,752 437,008 o004
- 1981-
Ohio 0 27,965 24,149 19,092 22,459 30,339 36,593 o004
1981-

Oklahoma 0 216,929 172,868 147,943 151,300 156,691 146,167 04
1981-

South Dakota 0 1,166 1,024 1,017 961 923 868 o004
Tennessee O 211 151 141 173 165 165 1981-
2024

PADD 3 (] 2967196 2,822,048 2,889,354 3,149,996 3,409,394 3,521,674 129(?21;
1981-

Alabama 0 4,859 4,295 4,291 3,821 3,591 3,357 04
1981-

Arkansas 0 4,825 4,138 4,207 4,442 4,452 4,066 04
o 1981-
Louisiana 0O 45815 36,401 34,284 36,484 34216 30,359 o004
o 1981-
Mississippi 0 16,878 14,166 13,434 12,667 12,576 12,135 004
New Mexico 0 336999 377811 463501 590105 672271 740402 Lo
Texas (] 1864989 1775173 1,746,470 1,870,578 2,001,888 2,077,133 12%321 .
g)edera' Offshore (PADD O 692,831 610,064 623167 631,900 680400 654,223 129(?214;
PADD 4 0 354345 310,595 203541 317,372 344404 370826 o0
1981-

Colorado 0 192,233 171,513 153526 160,314 166,905 170,289 004
2007-

Idaho 0O 22 1 26 42 36 19 004
1981-

Montana 0 22,998 19,083 18,968 20,591 22,650 26,655 004
1981-

Utah 0 36,933 31,001 35,771 45773 58,074 67,106 004
, 1981-
Wyoming 0 102,160 88,997 85,250 90,651 96,740 106,757 004
1981-

PADD 5 0O 331,111 313,195 301,015 285673 281,893 268,008 o004
1981-

Alaska 0 170,037 163,880 159,650 159,627 155475 154,174 004
1981-

South Alaska 0 5,211 4,419 3,462 3,443 3,123 3,053 004
1981-

North Slope 0 164,826 159,461 156,188 156,185 152351 151,121 094
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1981-

Arizona O 7 5 6 6 7 6 2024
o 1981-
California 0 156,350 144,521 137,144 123120 123186 109828 0
Nevada 0 268 221 223 238 207 177 1981
2024

g;edera' Offshore (PADD 0 4,449 4,569 3,992 2,682 3,019 3823 SO

Click on the source key icon to learn how to download series into Excel, or to embed a chart or map on your website.

- = No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

Notes: Year-to-date totals include revised monthly production estimates by state published in Petroleum Navigator. Crude oil
production quantities are estimated by state and summed to the PADD and the U.S. level. State production estimates reported by EIA
are normally different from data reported by state agencies. For example, production estimates for Texas reported on table 26 are
different from production reported by the Railroad Commission of Texas. See EIA Today In Energy article released on July 10, 2015 for
an explanation of differences in production data for Texas. Totals may not equal sum of components due to independent rounding.
See Definitions, Sources, and Notes link above for more information on this table.

Release Date: 10/31/2025
Next Release Date: 8/31/2026
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PAD District Imports by Country of Origin

Product: Crude Oil v Period/Unit: Annual-Thousand Barrels v
Import Area: Gulf Coast (PADD 3)
Show Data By:
Import -

Product Count View
O O Area O v 2019 2020 2021 2022 2023 2024  History
All Countries () 720650 666250 567,285 597,650 624747 603058 O
. 1993-
Persian Gulf O 127,832 132,525 75,701 102,668 70,601 68,709 2024
1993-
OPEC* O 176,839 133,475 81,208 103,617 117,121 147,233 2024
Algeria O 9 12%?23‘;
Congo (Brazzaville) O 129[? 137'
Equatorial Guinea O 1,326 12%?%
Gabon O 785 1;(?234
Iran O 2,033 507 1,729 P
1995-
Iraq O 62,254 18,178 8,397 19,994 4,826 1,492 2024
. 1993-
Kuwait O 7,654 4,133 5,941 6,716 6,496 7,002 2024
Libya O 1,276 220(?; 1
Nigeria 0 6,999 2,858 557
. . 1993-
Saudi Arabia O 57,924 110,214 59,330 75,451 57,550 60,215 2024
United Arab Emirates O 129(? 137'
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Venezuela

Non OPEC*

Angola

Argentina

Australia

Azerbaijan

Bahamas

Barbados

Belarus

Belize

Benin

Bolivia

Brazil

Brunei

Cameroon

Canada

Chad

Chile

China

Colombia

Congo (Kinshasa)

Denmark

Ecuador

o 0o 0o 0o o bbb 0o oo 0o oo oo Lo o0 0o g oo

28,904

543,811

1,939

4,305

211

24,925

1,339

188,209

1,901

76,463

9,839

532,775 486,077

950 1,373

1,896

1,007

15,117 7,293

622 648

191,557 194,765

71,019 45,881

6,133 1,455

46,520

494,033 507,626

949

3,982 11,534

617

214,870 195,730

58,435 53,087
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77,173

455,825

7,125

8,550

649

192,444

57,155

710

1993-
2024

1993-
2024

1993-
2024

1993-
2020

1993-
2018

1995-
2018

2020-
2020

2018-
2018

2006-
2006

2006-
2019

1995-
2002

1995-
2018

1995-
2024

1995-
2002

1995-
2024

1993-
2024

2004-
2019

1995-
2002

1995-
2006

1993-
2024

1993-
2011

1995-
2016

1993-
2024



Egypt

Estonia

Germany

Ghana

Guatemala

Guinea

Guyana

Indonesia

Italy

Ivory Coast

Kazakhstan

Kyrgyzstan

Malaysia

Mauritania

Mexico

Netherlands

Netherlands Antilles

Norway

Oman

Papua New Guinea

Peru

Qatar

Russia

o 0o 0o 0o o bbb 0o 0oobo oo oo 0o Lo o 0o g oo

1,625

2,498

203,480

486

629

11,747

1,401

5,927

346

218,423

339

6,369

1,124 868

2,987 3,037

188,406 194,883

798

259

20,941
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560

1,505

228,550

383

836

11,491

151,652

1,834

1993-
2019

1995-
2002

2004-
2004

2013-
2024

1995-
2024

1995-
2003

2020-
2024

1993-
2009

2018-
2020

1995-
2018

2004-
2011

1995-
2002

1995-
2009

2007-
2017

1993-
2024

2004-
2023

2004-
2004

1993-
2024

1995-
2016

1995-
2002

1995-
2022

1995-
2011

1995-
2021



Senegal

Singapore

South Africa

South Sudan

Spain

Syria

Thailand

Trinidad and Tobago

Tunisia

United Kingdom

Vietnam

Virgin Islands (U.S.)

Yemen

o 0o o 0O O o 0o 0o o 0O O oo

41

13,702

12,250

8,611

4,008

11,421

10,358

995

9,076 7,443 12,143

8,623 8,217 10,237

2024-
2024

1995-
2006

2006-
2009

2019-
2019

1995-
2002

1993-
2011

1993-
2002

1993-
2024

2006-
2008

1993-
2024

1995-
2012

1995-
2002

1993-
2005

Click on the source key icon to learn how to download series into Excel, or to embed a chart or map on your website.

- = No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

Notes: Crude oil and unfinished oils are reported by the PAD District in which they are processed; all other products are reported by

the PAD District of entry. Crude oil includes imports for storage in the Strategic Petroleum Reserve. Totals may not equal sum of

components due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table.
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