

Site History

- The Kirtland Air Force Base (KAFB) Bulk Fuels Facility (BFF) is located in the northwestern portion of the base and began operation in 1953
- BFF was the fueling area for the installation and received bulk shipments of fuel from railcars and trucks
- An underground pipeline extending from the fuel offloading area to the fuel pump house leaked jet fuel into the ground
- The leak was discovered in 1999 and KAFB sealed off the underground pipe and removed it from service
- The KAFB fuels facility was replaced in 2011 with all above-ground piping and tanks along with state-of-theart leak detection technology

1999 Leak Photos at BFF

Removal of Piping 2010 Photos

Regulatory Framework

- The New Mexico Environment Department (NMED) governs the fuel leak site through the administration of two federal acts:
 - Safe Drinking Water Act (SDWA)
 - Resource Conservation and Recovery Act (RCRA)
- Site activities are being completed under the Corrective Action provision of RCRA and KAFB's permit
 - Site investigation
 - Interim Measures (IMs)
 - Corrective Measures Evaluation (CME)
 - Corrective Measures Implementation (CMI)

Fuel Plume Basics

- What is a plume?
 - A plume is a measureable discharge of a contaminant from a given point of origin
- When fuel is released into the ground, it migrates through the soil (vadose zone) until it eventually reaches groundwater
- In the case of the BFF, the fuel is found in four phases:
 - Light Non-aqueous Phase Liquid (LNAPL) residual fuel
 - Soil gas (vapor phase)
 - Adsorbed contaminants
 - Dissolved contaminants

Understanding the Hydrology

Understanding the Geology

What do we know?

Groundwater Network and Sampling

- 134 groundwater monitoring wells
- Quarterly and semi-annual measurements include:
 - Field analysis for temperature, pH, dissolved oxygen (DO), conductivity, & oxidation reduction potential (ORP)
 - Laboratory analysis for volatile organic compounds (VOCs), ethylene dibromide (EDB), metals, anions, ammonia nitrogen, sulfide, and alkalinity
- Data is evaluated to identify concentration trends to define the dissolved phase and evaluate effectiveness of cleanup

Plume Anatomy

Source Area Definition

- Highest fuel concentrations
- Residual LNAPL
- Dissolved hydrocarbons
- Dissolved EDB
- High biodegradation

Distal Plume Definition

- Only dissolved EDB
- No biodegradation

Plume Geochemistry

Redox Conditions

- Lines of evidence for redox conditions:
 - Dissolved oxygen < 1 mg/L → anaerobic</p>
 - Dissolved oxygen ≥ 1 mg/L → aerobic
 - Anaerobic redox conditions require further definition through evaluation of nitrate, manganese, iron, sulfate, and carbon dioxide

Redox Take-Away:

Understanding redox conditions is crucial for understanding the occurrence and degradation of plume constituents.

Plume Geochemistry

Degradation

- Hydrocarbons can undergo biological degradation
- Lines of evidence for biodegradation
 - Elevated alkalinity (> 250 mg/L)
 - Elevated bromide
 - Redox conditions
 - Decreased O₂ and hydrocarbon concentration

Degradation Take-Away

Multiple biodegradation processes can occur and each process results in different degradation rates for individual hydrocarbon compounds.

Plume Geochemistry

Multiple solutes

- Jet fuel and aviation gas have multiple organic compounds
- The solubility of organic compounds is dependent on the mixture of solutes present

Multiple Solutes Take-Away

- The concentration of a solute is less than it would be in water alone.
- Over time, the fraction of LNAPL constituents with lower solubility increases → increased equilibrium concentration in groundwater. ???

Benzene Footprint - Solubility

Toluene ≥ 750 µg/l NMED standard

Interim Measure Strategies at BFF

Source Removal

- Soil excavation down to 20 feet below ground surface at leak location (primary source)
- Soil vapor extraction (SVE) in vadose zone (secondary source)

EDB Plume Collapse

- Contain the dissolved EDB mass (secondary source)
- Prevent EDB from reaching drinking water supply wells near the dissolved plumes

Soil Vapor Network and Sampling

- Soil vapor sampling in source area from a network of 284 soil vapor monitoring points
 - 56 locations with 3 or 6 sampling depths each location
- Quarterly measurements include:
 - Field measurements of O₂, CO₂, and total petroleum hydrocarbons (TPH)
 - Laboratory analysis for volatile organic compounds (VOCs), EDB, and TPH
- Data is evaluated to identify hydrocarbon concentrations and to inform evaluation of remediation methods

Soil Vapor Extraction

SVE is a remediation technology that reduces concentrations of volatile petroleum hydrocarbons by applying a vacuum and treating the vapors

Application of SVE

- The effectiveness of SVE is dependent on soil and contaminant properties
- Must be able to move vapor and effectively reach contaminated soils
 - Soil permeability
 - Soil structure
 - Soil moisture
- The ease of a contaminant to go into the vapor phase is important
 - Henry's Law Constant
 - Vapor pressure
- SVE efficiency decreases over time as mass is removed

History of SVE at BFF

- The original SVE system was installed in 2003
 - One unit connected to a total of 9 SVE wells
- In 2008/2009 SVE was expanded to add in three more units at existing groundwater monitoring wells
- Additional expansion and optimization was done in 2012, 2013, and 2014
 - In 2013 expansion included startup of a larger SVE system (known as the CATOX)
- SVE continued until 2015 when it was shut down to support in situ rebound test to determine where residual source remains in the soil

Groundwater Remediation

- Remediation generally addresses two issues:
 - Source control (primary and secondary)
 - Protection of human health and the environment through cleanup to regulatory standards
- Technologies include:
 - Pump and treat
 - Air sparging
 - Permeable reactive barriers

- Remediation is **NOT** one-size fits all. Key factors include:
- Site geology and hydrology
- Depth of contamination
- Infrastructure requirements
- Cost
- Monitored natural attenuation
- Enhanced bioremediation recirculation

EDB Plume Collapse

Bioremediation

- Biodegradation can happen in both soil and groundwater
- Naturally occurring soil bacteria consume O₂ and produce CO₂ as they biodegrade hydrocarbons

$$C_6 + O_2 \rightarrow \text{biomass} + CO_2 + H_2O$$

Testing for Biodegradation

In Situ Respiration Testing

 Measure concentrations of oxygen, carbon dioxide, and hydrocarbons over time

Laboratory Microcosm Studies

- Experiments run in a laboratory using groundwater and soil from the site
- Identify potential technologies for degradation of hydrocarbons, including EDB

In Situ Respiration Testing

- Short-term monitoring of 61 soil vapor monitoring points (SVMPs)
- Long-term monitoring on a subset of 34 SVMPs
- Field parameters: total hydrocarbon, O₂, CO₂, pre- and post-purge static pressure, and relative humidity
- Laboratory analyses in addition to field measurements

Summary of Results - Respiration

- Changes in O₂ and CO₂ indicates aerobic hydrocarbon degradation
- Some locations indicate microbial activity limited due to relative humidity

Understanding the Data

Laboratory Microcosm Testing

Two areas were cored and sampled:

Side gradient:

- Collected core during drilling of a groundwater monitoring well KAFB-10612R
- Collected groundwater from the same well

Source Area (LNAPL):

- Collected core during drilling of groundwater monitoring well KAFB-106210
- Collected groundwater from the same well

Laboratory Microcosm Testing

Aerobic conditions (with oxygen)

Microcosm Summary

Side Gradient

Aerobic

 Complete BTEX and nearly complete EDB degradation

Anaerobic

- Complete EDB degradation when Dehalococcoides added
- Minimal EDB degradation with added lactate, sulface, Fe, and/or nutrients

Source Area

Aerobic

 Completed BTEX and partial EDB degradation

Anaerobic

- Completed EDB degradation when Dehalococcoides added
- Minimal EDB degradation with added lactate, sulfate, Fe, and/or nutrients

Vadose Zone Remediation

- Remediation generally addresses two issues:
 - Source removal
 - Protect human health and the environment
- Technologies include:
 - Excavation remove soil
 - SVE applying a vacuum to draw volatile compounds and destroy them
 - Bioventing injecting air to stimulate biodegradation
 - Natural attenuation

Remediation is **NOT** one-size fits all and evolves as the contaminant is cleanup overtime. Key factors include:

- Natural Conditions (aerobic vs anaerobic)
- Effectiveness and Efficiency
- Sustainability and Cost

H - Henry's Law Coefficient (atm · m3/mole)

Bioventing

In-situ remediation technology that enhances the activity of indigenous (naturally existing) bacteria to degrade contaminants of concern in the vadose zone by injecting air or adding amendments

LNAPL Remediation

- Technologies include:
 - Skimmer extracting primary source (i.e., free product/LNAPL)
 - SVE
 - Air sparging bubbling air into the saturated zone
 - Enhanced in situ bioremediation
 may use biostimulation and/or bioaugmentation to speed up degrade
- Past measurable LNAPL floating on the groundwater before skimmer/SVE applied ~ 1 to 1.5 feet thickness
- Currently measurable LNAPL has been small amounts (i.e., 0.1 foot to sheen) to non-measurable

Anaerobic Biodegradation

Groundwater Recirculation

- Pump groundwater and add amendments in phases
- Inject amended water up-gradient to create a recirculation cell
- Supports anaerobic degradation of EDB

Discussion

